
Approved by,

CERTIFICATION OF APPROVAL

UTP WEB DESKTOP ENVIRONMENT

By

Mohd Zafar Bin Ramli

A project dissertation submitted to the

Information & Communication Technology Programme

Universiti Teknologi PETRONAS

in partial fulfillment of the requirement for the

BACHELOR OF TECHNOLOGY (Hons)

(INFORMATION & COMMUNICATION TECHNOLOGY)

(Mr. Mohammad Noor Ibrahim)

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

January 2007

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and acknowledgements,

and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

MOHD ZAF AR BIN RAMLI

ABSTRACT

This report describes about the implementation of UTP Web Desktop

Environment using Asynchronous JavaScript and XML (AJAX) as main programming

languages. The UTP Web Desktop Environment is an online 'desktop' workspace for

student where it contains multiple applications that can be accessed simultaneously

within a single web browser. The system may promote a new way of experiencing web

applications where students are given a bunch of ways to manipulate the system. The

objective of the development of the system is to provide a web-based desktop

environment that allows user to interact with the desktop workspace as same as user's

computer operating system's desktop. Due to some limitation of conventional web

applications where most of the content of it is static and dull, it is also the aim of this

research to explore the feasibility of using AJAX as the main programming language

since it make applications more responsive, interactive, and customizable. To carry out

this study, some researches have been made by comparing the requirement of this system

with a similar system, WebOS which leads to the objectives of this application. Based on

the flow of RAD, the prototypes are developed along with the new ideas of designing it

specifically for student's interest. Some researches have also been made about RSS and

AJAX's components, requirements, and implementation to distinguish the advantages of

using them rather than using other programming languages. The application is driven by

EyeOS MicroServer which responsible for managing web server and AJAX compiler. By

implementing this project for UTP student, the author can conclude that it will provides

students with a cutting edge systems that never been applied before where students may

find it very helpful and interesting to organize their live and work.

ii

ACKNOWLEDGEMENT

I would like to express my gratitude first and foremost to Almighty Allah S.W.T for

giving me this opportunity and success in doing Final Year Project entitled, UTP Web

Desktop Environment. Special thanks to my supervisor, Mr. Mohammad Noor Ibrahim,

for taking me under his wing and patiently guiding me through it all. Thanks also to the

other ICT/BIS lecturer for your guidance in completing this course especially to Mr.

Hilmi Hasan. Thank you to my beloved parents for giving me unlimited support during

my project research and development. To my friends and course mates who always

willing to share their knowledge and encourage, I thank you. Last but not least, I would

also like to express a special thank to those who have directly or indirectly contributed in

doing this Final Year Project.

iii

CERTIFICATION

ABSTRACT.

ACKNOWLEDGEMENT

TABLE OF CONTENTS

LIST OF FIGURES .

TABLE OF CONTENT

CHAPTER I: INTRODUCTION

1.1 Background of Study .

1.2 Problem Statement

1.3 Objectives & Scope of Study .

CHAPTER2: LITERATURE REVIEW

2.1 Web~Based Operating System

2.2 AJAX.

2.3 Architecture of Push & Pull Tech.

CHAPTER3: METHODOLOGY I PROJECT WORK

3.1 Methodology .

3.2 Project Work .

3.2 Tools Required

CHAPTER4: RESULT AND DISCUSSION

4.1 System Development .

4.2 Discussion

4.3 Problems Encountered

iv

i

ii

iii

iv

v

1

1

3

4

7

7

12

18

22

22

23

27

28

28

36

39

CHAPTERS: CONCLUSION AND RECOMMENDATION

5.1 Conclusion

502 Recommendation 0

REFERENCES

APPENDICES

LIST OF FIGURES

Figure 1: WebOS Architecture

Figure 2: Bootstrapping Applet Retrieval

Figure 3: A Comparison between Conventional Web Application and Ajax

Web Application

Figure 4: RSS Architecture 0

Figure 5: Rapid Application Development Processes

Figure 6: The Use-Case Diagram

Figure 7: The Data Flow Diagram

Figure 8: UTP Web Desktop Environment Main Page

Figure 9: User Personal Main Desktop Environment 0

Figure 10: Icons on the Main Toolbar

Figure 11: Interface of Home 0

Figure 12: Interface of Word Processor

Figure 13: Interface of Calendar

Figure 14: Interface of Calculator

Figure 15: Interface of Personal Messaging

Figure 16: Interface of Message Board

v

42

42

42

44

47

9

10

17

20

22

24

25

29

30

31

32

33

33

34

35

36

Figure 17: Multiple Applications Opened at Once .

Figure 18: Sample of asynchronous communication using AJAX

vi

37

39

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND OF STUDY

As the Internet has become more mature, rich applications featuring responsive user

interfaces and interactive capabilities have become increasingly popular. The capabilities

represent a way to make programs easier to use and more functional, thus enhancing the

user experience. The development of such interactive applications is become essential to

students where internet is one of the most used medium for searching online sources and

communications. But some existing applications developed for student is not sufficient

enough to fulfill their curiosity for interactivity.

Student may find it hard to perform their daily tasks, because of the limitation of

the conventional web applications. For example, whenever a student wants to use two

applications simultaneously, the student must have to open two web browsers to do so.

Thus, student may require an online workspace where it provides various applications

such as messaging services, bulletin board, virtual hard-disk, word processor, and media

players; in a single web page; which each application can be accessed simultaneously on

a single web browser.

With this "UTP Web Desktop Environment" system, it may promotes a new style

of experiencing an online workspace where students have a lot of freedom to interact and

manipulate with the applications. This UTP Web Desktop Environment System will give

users an opportunity to have their own online virtual 'desktop' workspace that they can

access it anywhere and manage their own desktop the way they want it to be and expose

1

users to a new style of organizing their life and work. Users may organize their calendar,

working on their project using provided word processing application and having fun with

media players just by login to their account at places like homes, hostels, labs, or any

places that provided internet connection.

Imagine being able to sit down at any ordinary computer in an Internet cafe or

public library, start up the resident web browser and access your personal desktop- along

with your applications, messages, and information - with a click of your mouse button.

Then, when you're done, you simply close the web browser to have all of the documents

you've just worked on safely stored on your remote server, leaving nothing on the

computer you've just been working on.

Research and study will cover from the problem identification, objectives of the

project, scope of study, literature review and methodology of the project to come out a

report. This research may also cover multiple programming languages such as JavaScript,

PHP, and AJAX that can be used in developing the website. Based on the studies, smaller

part of working module will be identified to be developed and to be combined as a

prototype. The prototype of the product will be a version 1.0 of the web-based system,

which resides in a Windows-operated server. The system is developed in AJAX

(Asynchronous JavaScript and XML) languages with the use of Macromedia TM

Dreamweaver as the main development tool and Eyeos MiniServer as the web server.

2

1.2 PROBLEM STATEMENT

1.2.1 PROBLEM IDENTIFICATION

The following are identified problems from the study:

1) No complete and convenient Web-based Operating System that facilitates

web-based desktop for UTP student

Currently, there is no complete and convenient Web Desktop Enviromnent that

provides a desktop enviromnent for users to interact and use the provided services

such as word processing, bulletin board, messaging, etc.

2) Conventional web-based applications are not providing user with the

freedom to interact and manipulate the applications

Most of conventional web-based applications are not giving enough freedom to a

user to interact and manipulate the data such as drag and drop, open multiple

applications at a time, minimize, maximize, and automatically refresh the web­

browser.

3) The conventional web-based applications are disruptive and lowers

productivity

Conventional web-based applications require a user to submit a request, wait for

the server to response, and then wait for the web-browser to update the data by

reloading the entire page. Thus, this pattern is disruptive and lowers productivity

of a system.

4) Most of those web-based applications cannot interact without been asked.

Mostly, the conventional web-based applications are only responding to a request

made by a user. This web-based application implement a push and pull

technology that allows the system to work by itself without been asked.

3

1.2.2 SIGNIFICANT OF THE PROJECT

The implementation of the project promises a new way for a web-based application to

provide flexibility to users without threatening the network capabilities. The system will

provide a new look of a web-based application by removing static contents and allow

user to manipulate the contents without being restricted by website itself. Many said that

by implementing this kind of applications through internet may burden network

capabilities to send and receive data simultaneously. But this application will be

developed using AJAX (Asynchronous JavaScript and XML) languages that dynamically

reply the user requests with the result without resending the whole pages. Thus, only

small portion of data is send and receive simultaneously at a time.

1.3 OBJECTIVES AND SCOPE OF STUDY

1.3.1 OBJECTIVES OF THE PROJECT

Objectives focus on the goal of this project and purpose of completing this project. The

followings are the identified objectives of this project.

1) To perform a research about existing web-based operating system's capabilities in

term of usability, functionality, reliability, and network loads. The research will also

cover the languages that should be used to make this application as flexible as it can

be.

2) To provide a web-based desktop environment that allows user to interact with the

desktop as same as user's computer operating system's desktop. Users can drag icons

anywhere he want it and click on it to start the application, add shortcuts, remove

unwanted files by drag the file to the recycle bin, open multiple applications at a time,

4

maximize and minimize them, and move or resize the applications. These flexibilities

are not provided in most of conventional web-based applications.

3) To give users the sense they were using a desktop application instead of an Internet­

based application. It is a challenging to create such application that some big

organizations recently adapt it to their applications such as Google Gmail, Google

Maps, and Yahoo! Mail Beta.

1.3.2 THE RELEVANCY OF THE PROJECT

The relevancy of the project will be the importance and significance of this project to

solve the problems as stated in the problem statement. The importance or benefits that a

user can enjoy from implementing this system are:

1) Users can achieve mobility where they can access to his personal web-based

operating system anywhere at any ordinary computer and do their work on the web­

based operating system and save it when they done, then close the web browser to

have all of the documents you've just worked on safely stored on your remote server,

leaving nothing on the computer they've just been working on.

2) The system gives users with the freedom to interact within his personal web-based

operating system and manipulate the data such as drag and drop, open multiple

applications at a time, minimize, maximize, and move or resize them.

3) This system is not using the conventional request-wait-response-wait pattern. This

system only load all its components once at client web-browser, then any interactions

within the system only involve in small portions of data transfers. Thus, this will

reduce loads within the networks.

5

4) This system works dynamically without having users to request every time they want

to use it. The system pushes the data automatically to the user without waiting the

user to request it.

1.3.3 SCOPE OF STUDY

This project focuses on providing a web-based interface that consists of many

functionalities to make it flexible allowing drag and drop, maximize, minimize, move,

and resize applications and. All the main functionalities of this system are broken into

smaller modules, so that they are easy to develop and managed. A prototype will be

developed based on the modules identified.

This project also focus on developing applications that are suitable for UTP

student such as virtual hard disk, personal messages between users, bulletin board for

user to post updates, announcements, and news, etc. This project will be developed

within the time frame of 12 weeks duration. The allocated time frame should be enough

to carry out the necessary research as well as development work of the prototype of the

system according to the identified modules. The Gantt chart is developed in order to plan

and to oversee the entire project progress so that the project is delivered in time.

6

CHAPTER2

LITERATURE REVIEW

2.1 WEB-BASED OPERATING SYSTEM (WebOS)

Initially, operating systems were developed to provide a set of common system services

such as managing 1/0, communication between devices, storage, to simplifY application

programming. With the advancement in developing operating system, world is now

looking forward into an operating system that provides a workspace for wide area

applications. The introduction of local area networks in the 80's expended this role even

further [II]. A goal of network operating system was to make remote resources over the

LAN as easy to use as local resources, in the process simplifYing the development of

distributed applications. With the analogy of the system, it is time to provide a common

set of services for wide area applications using LAN, WAN, and Internet as the medium

of communications [6].

Although the World Wide Web has made geographically read-only data easy to

use, geographically distributed computing resources are not [2]. The result is that wide

area applications that require access to remote CPU cycles, memory, or disk must be

programmed in an ad hoc application-specific manner. For example, many popular

services such as Digital's Alta Vista or Netscape's download page, are geographically

replicated to improve bandwidth, reduce latency, and improve availability - no single

connection into the internet can supports tens of millions of users at a time[!]. This

replication is managed by hand on both the server and the client side - users are forced to

do manual polling between essential equivalent services. This situation will get worse

since it currently predicted the number of internet users will increase by an order of

7

magnitude to over 100 million in less than 5 years. To address these problems, the author

introduces a web-based operating system.

2.1.1 Overview

The web-based Operating System framework enables a new paradigm for Internet

services. Instead of being fixed to a single location, services can dynamically push parts

of their responsibilities out onto Internet computing resources, and transfer all the way to

the client. This may provide a number of advantages, including [13]:

i) better end-to-end availability (service-specific extensions running in the client

mask Internet or service failures),

ii) better cost-performance (by dynamically moving information closer to client,

network latency, congestion, and cost can all be reduced while maintaining

server control), and

iii) better burst behavior (by dynamically recruiting resources to handle spikes in

demand).

The development of this web-based operating system will establish an extensible

mechanism for running service-specific functionality on client machines to show that this

mechanism allows more flexible implementation of name resolution, load balancing, and

fault tolerance [1]. This development will also fmd out that it may simplifies the

implementation of a number of wide area applications since this operating system will be

a standard platform for those applications to run. Next, we will find out by implement the

coherently caching program through the file system for this operating system will speed

up the performance of applications which must repeatedly execute programs with

common inputs.

8

2.1.2 Components

There will be several major components needed to make the operating system works.

i) Resource Discovery

Many wide area services are geographically distributed. To provide the best

overall performance, a client application must be able to dynamically locate

the server to deliver the highest quality of service. This can be done by

mapping a service name to multiple servers, an algorithm for load balancing

between servers, and maintaining enough state to perform fail-over if a server

becomes unavailable [1].

User Client-Side Applel Req~':.!~

Reque.sLs :~U1, _j~re_ctor :: ""
Thread 1 fhread ~~R,.,,_,11 .,, ·-j ~ ~~t.ll !';\:..

State upd.:.Jtl2'

Figure 1: Web OS Architecture [1]

The diagram above shows that two cooperating threads of webOS make

up the operating system architecture. The GUI thread presents the service

interface and passes user request to the Director Thread. The Director is

responsible for picking a service provider likely to provide best service to the

user. The decision is made in a service-specific manner. In this case, the

nearest mirror site is chosen.

The architecture of the resource discovery is summarized in figure 1. To

achieve the objective of resource discovery management, we need to consider

9

2 approaches. First, a service name must be mapped onto the replicated

service representatives. Next, a load balancing decision must be made to

determine which server is able to deliver the best performance .

•••••••••• , Cllal C<>rtlfk:alo
.... ,...... Site: site I

•. ,..~r' Location:· CA
(j) (Search Capacity: I 00

Cert ifirate Etigi.tie
"-"""" Request ._ _ _. Site: site1

Location: MA
Capactty: 14

Figure 2: Bootstrapping Applet Retrieval [I]

.

Figure 2 summarized the approach to overcome problems with the

resource discovery such as central bottleneck, a single point of failure, and

doubling latency for small request. A meta-applet runs in a java enabled

browser and is responsible for bootstrapping accessing to the services. A new

service name space is introduced, allowing users to make request of the form

of service://URL; we need to leverage the URL name space to simplifY

integration with the existing browsers. The meta-applet translates these names

into request to a well known and highly available Internet name service to

fetch a service certificate - the list of servers capable of providing the service

[1].

The implementation of the UTP Web Desktop Environment will

developed on a single server during prototyping phase. The system will be

geographically distributed among servers later to reduce data lost and latency

problems when multiple users accessed it simultaneously. The algorithm of

selecting server will be defmed based on least accessed server at the time.

10

ii) Wide Area File System

To support replication and wide-scale sharing, we need to implement a cache

coherent wide area file system. The system will extends to wide area

applications to run in a secure HTTP name space at the same interface,

caching, and performance of existing distributed file systems. A fundamental

difference between this File System and existing Internet Naming and caching

proposals is that this File System is designed to be used by programs, not just

by individuals accessing infrequent updated data [13]. We also may

implement Internet Push Technology using IP multicast [9].

However, the implementation of UTP Web Desktop Environment version

1.0 will not be replicated and distributed as said above because the having

multiple servers running at a time is not cost effective as this system is only an

alternative way of experiencing a new way of managing student's work and

life. But it will be a good idea to provide a good overall performance later.

iii) Security and Authentication

To support security and authentication of the user, the system will provide a

key enabling feature that offers the control of capabilities to execute remote

processes on behalf of users. We need to provide security at many levels.

First, two principals communicating at the link layer believe one another's

identity and trust that the data cannot be compromised by a third party [6].

Next, principals are able to have fme-grained control over which capabilities

are transferred to remote operating system process on their behalf. Finally,

this system needs to provide an interface for registering users and for

specifying access rights to individual system resources [6].

For the UTP Web Desktop Environment, this feature is crucial to

distinguish user's individual setting and files of each account. It also provides

a privacy statement for user to keep their personal files and information.

11

iv) Process Control

The main responsibility of this system is to execute a process on a remote

node should be as simple as corresponding local operation [1]. The underlying

system is responsible for authenticating the identity of the requester and

determining the proper access rights are held. Precautions must be taken to

ensure that the process does not violate local system integrity and that it does

not consume more resources than allocated to it by the local system

administrator [2].

The implementation of the UTP Web Desktop Environment will ensures

any actions within the system will not jeopardize user's local machines

integrity and resources as it only consume a small resource of client-side

machines.

2.2 AJAX: ASYNCHRONOUS JAV ASCRIPT AND XML

Conventional browser-based web application require the user to submit a request to the

server, wait for the server to process the request and generate a response, and then wait

for the browser to update the interface with the result. This request-wait-response-wait

pattern is extremely disruptive and lower productivity. High network latency and

interface complexity, and slower server responsiveness can further impair the user

experience, resulting in decrease customer satisfaction, shorter and less frequent website

visits, and ultimately reduced revenue to we applications that implementing e-business.

To overcome these problems, world is now been introduced to Asynchronous JavaScript

and XML, also known as AJAX programming.

12

2.2.1 Overview

Asynchronous JavaScript and XML is a standards-based programming technique

designed to make web-based applications more responsive, interactive, and customizable

- in short, to recreate the seamless user experience of most other desktop applications.

There five characteristics of application built using Ajax [3]:

i) a user interface constructed with open standards such as the Dynamic

Hypertext Markup Language and cascading stylesheets (CSS);

ii) a dynamic, interactive user experience enabled by the document object model;

iii) data exchange and transformation using the Extensible Markup Language

(XML) and Extensible Stylesheets Language Transformations;

iv) asynchronous client/server communication via XMLHttpRequest; and

v) JavaScript as the lingua franca joining all the components together.

2.2.2 Advantages of AJAX

Ajax offers many advantages over conventional approaches to web application

development. The primary advantages of Ajax-style web applications are less waiting and

more control for the user [3]. Ajax accomplishes this by

i) eliminating full-page post-backs in favor of smaller, incremental in-place

updates;

ii) leveraging the client machine's processing power and temporal proximity by

making the web browser responsible for more aspects of the application

execution; and

iii) exploiting modem web browsers' rich graphic capabilities - transparency,

shading, animation, Z-ordering, compositing, and so on - to add more glitz

and interactivity to the presentation of information.

13

2.2.3 AJAX Component Technologies

Most of Ajax's component web teclmologies were developed and standardized during

past 10 years [4]. These teclmologies have improved recently, making them more suitable

for enterprise use.

2.2.3.1 Dynamic HTML

Ajax applications take advantage of dynamic HTML (DHTML), which consists of

HTML, cascading stylesheets, and JavaScript glued together with the document object

model. The teclmology describes HTML extensions that designers can use to develop

dynamic web pages that are more animated than those using previous HTML versions.

For example, when a cursor passes over a DHTML page, a color might change or text

might get bigger. Also a user can drag and drop images to different places.

2.2.3.2 Extensive Markup Language (XML)

Ajax uses XML to encode data for transfer between a server and a browser or client

application. The W3G started work on XML in 1996 to enable cross-platform data

interoperability over the Internet. The consortium approved the standard's first version in

1998. XML is a markup meta-language that can defme a set of languages for use with

structured data in online documents.

2.2.3.3 Cascading Stylesheets (CSS)

Cascading Stylesheets, better known as CSS gives website developers and users more

control over how browser display pages. Developers use CSS to create stylesheets that

14

define how different page elements, such as headers and links, appear. Multiple

stylesheets can apply to the same web page.

2.2.3.4 Document Object Model (DOM)

The Document Object Model is a progranuning interface that lets developers create and

modify HTML and XML documents as sets of program objects, which makes it easier to

design web pages that users can manipulate. The DOM defines the attributes associated

with each object, as well as the way in which users can interact with objects. DHTML

works with DOM to dynamically change the appearance of web pages. Working with

DOM makes Ajax applications particularly responsive for users.

2.2.3.5 JavaScript

Released in 1995 by Netscape and Sun, JavaScript interacts with HTML code and makes

web pages and Ajax applications more active. For example, the technology can cause a

linked page to appear automatically in a popup window or let a mouse rollover change

text or images. Developers can embed JavaScript, which is openly and freely available, in

HTML pages. Ajax uses asynchronous JavaScript, which an HTML page can use to make

calls asynchronously to the server from which it was loaded to fetch XML documents.

This capability lets an application make a server call, retrieve new data, and

simultaneously update the web page without having to reload all the contents, all while

the user continues interacting with the program. Because JavaScript is a cross-platform

scripting language, Ajax applications require no plug-ins, unlike Macromedia Flash and

other proprietary web application technologies.

15

2.2.3.6 XMLHttpRequest

Systems can use JavaScript-based XMLHttpRequest objects to make HTTP requests and

receive responses quickly and in the background, without the user experiencing any

visual interruptions. Thus, web pages can get new information from servers instantly

without having to completely reload. For example, users of an application with

XMLHttpRequest objects could type in a centigrade amount in one box of a temperature­

conversion application and have the Fahrenheit amount appear instantly in another box.

Various browsers such as recent versions of Internet Explorer, Mozilla Firefox, Netscape,

and Apple's Safari work with XMLHttpRequest [15].

2.2.4 The Meehanism of AJAX

In the classic web application model, user actions trigger an HTTP request to a web

server, which processes the request and returns an HTML page to the client. This makes

technical sense but doesn't always provide a great user experience because, for example,

it limits interactivity and require web pages to reload for every piece of new data. Ajax

applications create a JavaScript-based engine that runs on a browser. Instead ofloading a

traditional web page, the browser load the engine, which then displays then requested

materials, as Figure 3 shows. The engine intercepts user inputs and handles many

interactions, such as simple data validation on the client side. If the engine needs more

data, it requests the material from the server in the background without locking up the

user interface. Thus, the engine lets user interact with an application independently of

server communication, reducing server response wait times.

16

Browserclle nl

(a) (b) Source: AdaDIPie Path

Figure 3: A Comparison between Conventional Web Application and AJAX Web

Application [4]

From the figure above, In (a) a conventional web application, user actions trigger

an HTTP request to a web server, which processes the request and returns an HTML page

to the client. Additional requests lock up the application until the system update the page.

(b) Ajax applications create a JavaScript-based engine that runs on a browser. The engine

intercepts user inputs, display requested material, and handles many interactions on the

client side. If the engine needs more data, it requests material from the server in the

background, while letting the user continue to interact with the application.

Thus, Ajax is selected as the best programming language for developing UTP

Web Desktop Environment as it allows integration among system files to provide more

responsive, interactive, and customizable web applications.

17

2.3 ARCIDTECTURE OF PULL AND PUSH TECHNOLOGY

Information sharing in the Internet is currently based on two information retrieval

paradigms, namely pull technology and push technology. According to the pull

technology, data download is triggered by an explicit and intentional action of the user of

a web browser [8]. The main advantage of such an approach is that the user is drives his

custom information ride by surfing at will on the hyperlinks. But the main drawback is

the lack of any connection between the process of content creation and content access.

Hence timely access to web content is hardly achieved unless the user himself frequently

polls the website likely to generate valuable information. According to push technology,

users express their interest in receiving information related to subjects of interest by

subscribing to an information delivery channel. On the server side, content packager

delivers data as soon as they are available by publishing them on the proper channels and

all subscribers of the channel receive the same data [9]. But the main drawback of the

push approach is that a user may then be flooded by the unsolicited delivery of data

whose value to the user is far from being guaranteed.

2.3.1 Push Technology

Push technology, also called server push or webcasting, describes an Internet-based

content delivery system where information is delivered from a central server to a client

computer based upon a predefined set of request parameters outlined by the client

computer. A client computer such as a desktop home user would subscribe to various

information topics provided by a content provider and as that content is created by the

content provider, such information is "pushed" or delivered across the Internet to the

desktop home user and displayed on that user's computer. Push Technology differs from

normal World Wide Web usage, where a user has to request a Web Site through a web

browser [1 0].

18

E-mail is the classic Internet push media; however, this depends on the

configuration used. If the messages are stored on a server and not automatically pushed to

the client, then it is not technically push media. Instant messaging epitomizes push media.

Messages and files are pushed to the user as soon as they are sent to the messaging

service. Most web feeds, such as RSS, appear to be push media, but technically are pulled

by the user. We will discuss about the RSS on the next chapter.

2.3.2 Rich Site Summary (RSS)

RSS is a format for syndicating content and metadata over the Internet. It is commonly

used to share headlines and links to news articles. With news articles, the actual article

isn't usually shared, but metadata about the article is; this metadata can include a

headline, a URL, or a summary. RSS is an important tool for publishers because feeds

can be used to syndicate content, and to integrate third-party content into your site.

RSS is a dialect of XML. All RSS files must conform to the XML 1.0

specification, as published on the World Wide Web Consortium (W3C) Web site [8].

Here's a typical example of how RSS is used:

• A publisher has some content that they want to publicize.

• They create an RSS channel for their content.

• In this channel, they include items for Web pages they want to promote.

• This channel can be read by remote applications, and converted to headlines and

links. These links can be incorporated into new Web pages, or read in dedicated

readers.

• People see the links on various sites, click on them, and go to the original

publisher's site.

19

Browsers

Ne\'lS
Feed-s

Aggregators

Blogs

Calendar
App

Object Model

PhO!n
mogs

Picture/
Screen
Saver

Audio
Slogs

Figure 4: RSSArchitecture [10}

While headline syndication is the most common use for RSS, it is also used for

many other purposes. RSS is a very popular format in the weblog community. It's also

used for photo diaries, classified ad listings, recipes, reviews, and for tracking the status

of software packages.

RSS feeds are used in the world of e-commerce as a way of delivering

information. For example, Amazon provides custom news feeds based on its Web

services platform. This lets you track top books in your news reader, or include

information on your Web site about related books for sale at Amazon.

RSS has grown tremendously in popularity in the last few years. Syndic8.com

maintains an index ofRSS channels, and its list offeeds has grown by about 1400% in

two years. Yahoo news, the BBC, Slashdot, LockerGnome, Amazon, CNN, Wired,

20

· Rolling Stone, and Apple Computer are among the many popular sources of RSS feeds

[10].

2.3.3 RSS Compatibility Issues

For the most part, later versions in each branch are backward-compatible with earlier

versions (aside from non-conformant RDF syntax in 0.90), and both versions include

properly documented extension mechanisms using XML Namespaces, either directly (in

the 2.* branch) or through RDF (in the 1.* branch). Most syndication software supports

both branches. Mark Pilgrim's article "The Myth of RSS Compatibility" discusses RSS

version compatibility in more detail [8].

The extension mechanisms make it possible for each branch to track innovations

in the other. For example, the RSS 2. * branch was the first to support enclosures, making

it the current leading choice for podcasting, and as of mid-2005 is the format supported

for that use by iTunes and other podcasting software; however, an enclosure extension is

now available for the RSS 1.* branch, mod_enclosure. Likewise, the RSS 2.* core

specification does not support providing full-text in addition to a synopsis, but the RSS

1. * markup can be (and often is) used as an extension. There are also several common

outside extension packages available, including a new proposal from Microsoft for use in

Internet Explorer 7 [8].

The most serious compatibility problem is with HTML markup. Userland's RSS

reader-generally considered as the reference implementation--did not originally filter

out HTML markup from feeds. As a result, publishers began placing HTML markup into

the titles and descriptions of items in their RSS feeds. This behavior has become widely

expected of readers, to the point of becoming a de facto standard, though there is still

some inconsistency in how software handles this markup, particularly in titles. The RSS

2.0 specification was later updated to include examples of entity-encoded HTML,

however all prior plain text usages remain valid [9].

21

CHAPTER3

METHODOLOGY I PROJECT WORK

3.1 METHODOLOGY

Throughout this project, Rapid Application Development (RAD) is chosen as the

development methodology. RAD is a programming system that enables programmers to

quickly build working programs. Historically, RAD systems have tended to emphasize

reducing development time, sometimes at the expense of generating efficient executable

code. RAD is a methodology for compressing the analysis, design, build, and test phases

into a series of short, iterative development cycles. This has a number of distinct

advantages over the traditional sequential development model. Iteration allows for

effectiveness and self-correction.

Traditional Development

____ ,... CGmprns~----

RAD

Figure 5: Rapid Application Development Processes

22

3.2 PROJECT WORK

3.2.1 Planning and Analysis

In this first phase, brainstorming and problem identification will be done. The clear

objectives have been derived from the problem that had been identified. Multiple sources

was tested and researched. Literature reviews were done. In this project, the problem

statement and also the scope of study had been clearly stated in Chapter 1. The objectives

had also been stated within the same chapter. And during this phase, the project timeline

and milestone had also been develop according to the duration that had been stated out by

the Final Year Project Committee.

3.1.2 Design

In this design phase, the initial concept and diagrams of the whole UTP Web Desktop

Environment have been drawn. The design phase will correspond with the user feedback

on each module that will be developed throughout the procedure. The design phase is the

first phase of the iterative phase of the RAD methodology. During this phase, the main

module in the system will be identified and some modification is executed according to

the requirement of the system.

The design phase will be run through out the project duration, because of the

nature of this iterative methodology. During this phase, the tools that are needed to be use

in developing the system were identified. The best tools were selected in order to ease the

development. The tools are expected to help cut the development time, while providing

minimal cost.

After multiple entities for the system are identified, the author has come out with

the use-case diagram and the data flow diagram to drive this project ahead and start

23

developing the prototype. The use-case diagram of the system is shown below as Figure 6

and the data flow diagram is shown in Figure 7.

Web-Based Desktop Environment For C
Progra · Student

~--1---__::-r

" ' ' "

L__--1-----/ Lo;pOcr.

Figure 6: The Use-Case Diagram

The figure above shows the relationship among users and use case of the

system. It provides an overview of part of the usage requirements for the system and

allows description of sequences of events that, taken together, lead to the system doing

something useful. Each use case provides one or more scenarios that convey how the

system should interact with the users called actors to achieve a specific business goal or

function. Based on the diagram above, the author have clearly stated that the earlier

project title was called "Web-Based Desktop Environment for C Programming Student",

which then changed to "UTP Web Desktop Environment" due to change of the target

user ofthe system during iteration process.

24

~~,.,--. -~---·•bce:T.,..<!IJ"'\adcl
L: «>m;lli« J

... ---- . -··----·- ··-·--·'

Figure 7: The Data Flow Diagram

The data flow diagram above reveals the relationships among and between the

various components in the UTP Web Desktop Environment system. It is an important

teclmique for modeling the system's high-level detail by showing how input data is

transformed to output results through a sequence of functional trausformations.

3.2.3 Implementation

The implementation phase is one of the time-consuming phases, whereby all the code­

generating, programming and system-upgrading will be done. Using the module and also

the data flow analysis that were defined previously in the design phase, the generation

and development of the system can be started. Because of the nature of the iterative

25

methodology, the development phase will also be influenced by the changing design

phase.

The development also will be modularized, with an early prototype being develop at first.

The prototype was developed according to the percentage of the complete system, which

means that the prototype can be use, however in a limited functionality. The development

will also be depending on the feedback that will be received from the target user during

the user review phase. The development and implementation of the system will be

discussed in chapter 4.

3.2.4 Test

During this phase, the target audience that had been defmed and categorized during the

Design phase will be ask to test the prototype that had been develop. The prototype will

be made available to the intended user. The users will be expected to perform the usage

of the system. The test will be conducted in the user own environments, which can help

the system blend in with the environment of each target user.

3.2.5 Deploy

Deploy phase will kick off after all the module had been complete, which means the

Deploy phase is the last phase after all the feedback and user review for each prototype

had been completed. Deploy phase will not be about prototype anymore, but it will be the

phase whereby the real product, in this case, the finished UTP Web Desktop Environment

system will be officially completed and launch. There will be no more iterative process

after the Deploy phase had been commenced. Nonetheless, there will still be minor

updates in order to keep the system stable and reliable with any current situation.

26

3.1 TOOLS REQUIRED

Hardware

For this project, a Window-based server is required to perform a webhosting to be

accessed internally within UTP. The server should be able to handle multiple users

simultaneously. In the development phase, a personal computer will be use as a

workstation and all the related work will be done using PC before being demonstrated

through actual server.

Software

For the software, Asynchronous JavaScript and XML (AJAX) will be used to develop the

UTP Web Desktop Environment. AJAX is a programming language that uses both

JavaScript and XML to trigger the PHP-coded system.

There are numerous number of system available trough the Internet that using AJAX as

their programming language. The author insists on to use EyeOS Microserver Version

0.5.6, an open source system which is released under GPL Version 2, as a pre-installed

server that runs PHP 5.2, which is released under the PHP License, version 3.01.

27

CHAPTER4

RESULT AND DISCUSSION

4.1 SYSTEM DEVELOPMENT

4.1.1 System Interface Design and Features

This section will describe the current development of UTP Web Desktop Environment

with the system interface designs and features provided. Currently, the prototype ofUTP

Web Desktop Environment version l.O is completed with the pre-embedded applications

of EyeOS applications. The system is currently running nnder EyeOS Microserver

Version 0.5.6 web server and Macromedia Dreamweaver Version 8 was used in the

designing and editing the interface.

28

UTP Web Desktop

be organized
Cal~rod:if, Ag<mda, Bookmarks ...

be productive
\JIIord Fro,~f!~SOr, o'Jie~Safill"\g St;len-1 ...

be entertained

be connected

Welcome 1o UTP \'Jab i)!!tk!llp. wh8re. \'C•!! C·~n Cl(!cle. ancl USE YN!r o•t_rn

vnt'Jal De\ktop,

Wi!k U1P Web De~hiGp dl yo;>ur dcrta i~ av<rikrbl"' wih~l9 ~ve.r 'of')V hew;;

lrtlem~t acc:e.iS and a standmds -:ornpi•anl t.ro'-i"S8r.

UTP Web Desktop

create a new account

FigureS: Environment Main Page

To put it simply, UTP Web Desktop Environment is similar to the operating

system anyone are already familiar with (like Windows, Mac and Linux), except for the

fact that it is not stored on the computer that the user are using to access it. In other

words, UTP Web Desktop does not need to be installed on user's computer in order to

use it. Instead, it lives on a remote system (the web server) that uses the Internet to

communicate with the user. Allowing user to access your personal files, safely and

securely, from anywhere in the world.

The main page of UTP Web Desktop Environment system (see figure 8) is

presented with a user-friendly login box where new user can create a new account by fill

up the required fields. Registered user can directly access their workspace by filling up

their username and password. Currently, this system can be accessed through UTP

29

intranet at http:/1165.0.6.93:8080 using conventional web browsers such as Internet

Explorer 5, Mozilla Firefox 2.0, etc.

Once a user log in to his new account, the user will be presented with the UTP

Web Desktop main desktop within his web browser window (refer Figure 9). Just like

any other web page, the system allows user to click on icons presented to launch

applications and to carry out system function. The desktop's main application toolbar is

located along the top margin of the browser window. The system also provided a small

group of icons in the bottom-right corner of the window. This contains Recycle folder

(also known as recycle bin), system clock, and the Log-out button. The rest of the screen

is the user's work area. This is where applications will appear when user opens them

from the toolbar. Applications are launched by clicking on their respected icons, located

in the main system tool bar. Clicking on these icons will launch one of the many different

30

tools provided. Just like familiar desktop environment, each application will be presented

in its own window within user's web browser.

Figure 10: Icons on the main toolbar

Figure I 0 shows the icons of applications provided from the system. The first icon

is called Home (refer Figure II). This will acts as user's home directory that contains the

files user has created and saved to his UTP Web Desktop account. This system allows

user to upload and download any files from the local machines. Within this window, the

system also provides user with massage notification where user will be notified if there is

any new incoming message.

31

Tl1is directory i~ empty

Figure 11: Interface of Home

The second icon is called Word Processor (refer Figure 12) which allows user to

create a new file, type all his assignment directly into the web browser, and save it into

his account. The file can be saved as .txt or .doc file. Another capability of this word

processing is it allows file to be saved as private and public which means the file can be

saved as public where other user can access the file. If the file is saved as private, only

the author of the file is allowed to view or do changes on it.

32

~.~ =- ~---~r~s~~-t~j[-F~~--- L~.li·-Fonlf~ily-- -i~.J~~

· r~:? 1~ ~~- q:_?!'~-~~~;-~~J--·~·:·-=~~----~-=~~-~:~- .. ~=~=:~::~~~ ----·-: .•;_ ~-'-"_ .. c._, _ _._ -- --~ .'0,_1

L:J · i ~-::".,Crf;:, r;·_·:,-t;:<:

I 1_.:_1 hello Last edited: 04.03.07 - 20:33:50

I ~'::::;;, _,_,."_" "'"mm ~"'

Figure 12: Interface of Word Processor

The third icon will provides user a calendar (refer Figure 13) which user can

manage his timetable by registering his to-do-list, appointments, etc directly into the date

we wanted.

·--·----------

Note for Monday 07 May 2007

eting with-~;' .• -~gE~~
.:) May 2007 C~>

Mon Tve Wed lhv Iii Sal Suo

1 2 3 4 5 6

0 8 9 10 11 12 13

14 15 16 17 1S 19 20

21 22 23 24 25 26 27

2S 29 30 31

Figure 13: Interface of Calendar

33

The fifth button is called Calculator (see Figure 14) where user can use its basic

functions such as add, subtract, divide, and multiply. The sixth icon will open a new

window for user to send a personal message to other UTP Web Desktop Environment

users (see Figure 14). The new message notification can be seen on Home window.

Figure 14: Interface of Calculator

34

To: [rafaz J
Subject : ~J!!Orrow: me_e:_ti~·n2g __________ -"

hi there!
remember .. we are going to meet g_r.. P..Qr.b..9.0 tomorrow!!

1 send 1
--~

Figure 15: Interface of Personal Message

The next button is called Message Board where user can send any

announcements, news, thoughts, etc. that can be seen by all users. This feature is really

useful for students to add any announcement such as class replacement, test, or adjunct

lectures, etc.

35

:studBnts who arB taking res-ervoir. please take nofe that tomorrow WB
' 'gonna have a meeting with dr. borhcm

':woi

:hello

Figure 16: Interface of Message Board

The last two icons are called Options and Applications. The Option button allows user to

change the themes of his workspace and password. The Application button is where user

can add any new applications created.

36

8 I !!_ .t.iG i Is;-. :ji i;j i-1-S\IIIas~.l.vlj -F~- -Lq::F~f~- i~_'j-Fonhize-- i_Y_i

i;; ~ :~-~-~~-~~;,.I::=-;::: I;-, -$!1 ·. · I .J, :if.--:/ ·ti, """I_ :ill ·-9- 4i ~ ~:,!!?·
211-"j_i I' .'I 1-~[j~]ix,x']~lL~I -,r·_j)

Figure 17: Multiple applications opened at once

Figure 17 shows that the system allows multiple applications can be opened at once. User

also allowed dragging and resizing the each window he opened.

37

4.2 DISCUSSION

Conventional browser-based web applications require the user to submit a request to the

server, wait for the server to process the request and generate a response, and then wait

for the browser to update the interface with the results. This request-wait-response-wait

pattern is extremely disruptive and lowers productivity. Conventional browser-based web

applications require the user to submit a request to the server, wait for the server to

process the request and generate a response, and then wait for the browser to update the

interface with the results. This request-wait-response-wait pattern is extremely disruptive

and lowers productivity. High network latency and interface complexity and slow server

responsiveness can further impair the user experience, resulting in decrease user

satisfaction, and less frequent website visits.

But those weaknesses of conventional browser-based web applications can be

eliminated by implementing AJAX style programming because of the architecture of

AJAX itself that allows communication between server and client happened m

asynchronous way. The figure below expressed on how AJAX working in general.

38

Client Server

i

_____ j
Figure 18: Sample of asynchronous communications using AJAX [16]

This system is developed using AJAX style programming language which are

using three core components:

i) JavaScript components.

ii) Data exchange and transformation using the Extensible Markup Language

(XML) and Extensible Stylesheets Language Transformations.

iii) A user interface constructed with open standards such as the Dynamic

Hypertext Markup Language and cascading stylesheets (CSS).

All the data is stored in file-based system, which means there is no database

required to store user's files and action. The system will create a folder for each

39

registered user and every file the user is accessing, downloading, or uploading is stored in

his folder.

4.2.1 JavaScript Components

In order to enable the flexibility of using the system, EyeOS system used four different

functions of JavaScript which are called x_core.js, x_drag.js, x_event.js, and

x_eyeoswin.js. All of these JavaScript files are simultaneously called whenever user uses

the applications. These files react on user request to provide functions for drag, drop,

maximize windows, and such.

4.2.2 XML and Extensible Sylesheets Language Transformation

XML files for each application is stored within the PHP files where the files are triggered

from user's actions. Each PHP files are contained with the application executable codes.

Each XML file is triggered only when user clicked on the respective icons.

4.2.3 xHTML and CSS

All application's setting is stored in CSS files where developer can manage its

appearances such as size, location, colors, etc. The system also providing a function that

creating CSS file for each user whenever the user makes any change on their desktop

enviromnent; which means the system will remember settings (sizes, and locations) of

each user. Whenever the user login again, the system will automatically loads user's CSS

file and stores back whatever changes the user have made.

40

4.3 PROBLEMS ENCOUNTERED

For UTP Web Desktop Environment system version 1.0, the author faced many

challenges in making the system works as wished.

4.3.1 User Can't Drag and Drop Files onto the Workspace.

For the time being, the author still can't create a function that allows items in the Home

directory to be drag and drop into the workspace. There is limitation where the system

only allows executable files such as PHP-encoded file that have been modified into

eyeOS pre-coded core to be icon in the desktop. But the author positively thinks that the

function can be created as future enhancement of the system.

4.3.2 Network Problem

As demonstrated earlier, the system can't be accessed from outside UTP because of the

network rules and limitations. Hence the objective of creating this to be mobility as other

WWW applications is foiled.

41

CHAPTERS

CONCLUSION AND FUTURE WORK

5.1 CONCLUSION

As the conclusion, we can conclude that the implementation of UTP Web Desktop

Enviromnent has provides users with the sense that they were using desktop applications

instead of a conventional web-based application. The added value of injecting AJAX into

the system might change the others perspective toward the benefits of experiencing an

interactive ways of using web applications. The UTP Web Desktop Enviromnent also can

be considered as a one step ahead towards a new paradigm of Internet services for UTP

student as it combines multiple applications into a single web space. By implementing the

project, this will create a new prograrmning enviromnent to all users by allowing them to

create their own applications where they can share it with others. It will be a new medium

of communications where students can send messages to others in more faster and

organized way. After all, the platform of creativity is created, now it depends on student

to utilize it.

5.2 FUTURE WORK AND RECOMMENDATION

There are many enhancements that can be made to make UTP Web Desktop Enviromnent

more interesting and useful for UTP student.

I) The system should allow UTP student to create his own applications directly from the

workspace and share the application with others.

42

2) User may also be able to create his own themes where he can select the font name,

font size, icons, and toolbars.

3) As refer to the problem faced by the author, there should be a future work to make

items can be drag and drop on the workspace.

Like the other systems, there must be the updates and modification on the design of the

system as we are gearing towards a better world and because user sometimes needs

refreshing to make sure they didn't get bored.

43

REFERENCE

[1] Aaron Weiss (Dec 2005). Introduction to WebOS. WebOS: Say Goodbye to

Desktop Applications, Retrieved September 2, 2006, from

http:/ /portal.acm.org/ft_gateway.cfin?id= 1103941 &type=pdf

[2] Amin Vahdat, Paul Eastham, Chad Yoshikawa, Eshwar Belani, Thomas

Anderson, David Culler (Dec 2005). Architecture of WebOS. WebOS:

WebOS: Operating System Services for Wide Area Applications, Retrieved

September 4, 2006, from

http://www.ececs.uc.edu/-yoshikco/papers/webos.pdf

[3] Sean Lockhead, Product Support Group Manager, Kaman Industrial Technologies

(1998). Alternatives Technologies of using Internet. The Use of Internet­

Based Technologies - Beyond E-mail and Search Engine, Retrieved

September 5, 2006, from http://

ieeexplore.ieee.org/xpls/abs _ all.j sp?arnumber=727780

[4] Linda Dailey Paulson (Oct 2005). AJAX Components and Functions. Building

Rich Web Applications with Ajax, Retrieved September 5, 2006, from

http:// www.computer.org/portal/cms _docs _ieeecs/ieeecs/images/ajax.pdf

[5] Keith Smith, Senior Product Manager, Microsoft (May 2006). Introduction to

AJAX. SimplifYing Ajax-Style Web Development, Retrieved September 5,

2006, from http:// ieeexplore.ieee.org/xpls/abs _ all.jsp?arnumber=1631955

44

[6] Peter G. Kropf (1999). Introduction to WOS. Overview of the WOS Project,

Retrieved September 7, 2006, from http:// citeseer.ist.psu.edu/508498.html

[7] Slim Ben Lamine, John Plaice and Peter Kropf (2005). Problems of Web Design.

Problems of Computing on the Web, Retrieved September 9, 2006, from

http:/ I citeseer.ist.psu.edu!benlamine97problems.html

[8] Vittorio Trecordi and Giacomo Verticale (2000). Push and Pull Technology: How

it Work. An Architecture for Effictive Push/Pull Web Surfing, Retrieved

September 9, 2006, from http://

eeexplore.ieee.org/iel5/6882/18540/00853679.pdf?amumber=853679

[9] Denis G. Sureau (Feb 2006). Step by Step of Using RSS. RSS, Building and Using

a Feed Retrieved September 11, 2006, from http://www.xul.fr/en-xml­

rss.html

[10] Denis G. Sureau (Feb 2006). Distributed Content Feed. Content Feeds with RSS

2.0 Retrieved September 11, 2006, from http://

www.ibm.com/developerworks/xmlllibrary/x-rss20/

[11] Zeppo Network, Inc (2007). Content Management System [ZeppOS- Standard

Internet Platform]. New York.

[12] XIN Widgets. (n.d.). Retrieved January, 2007, from

http://www.xinteleport.com/

[13] twinklefish WebOS. (n.d.). Retrieved January, 2007, from

http://www.twinklefish.com/

[14] Framework - AJAX Pattern. (n.d.). Retrieved January, 2007, from

http://ajaxpatterns.org/ Ajax _Frameworks

45

[15] Ajax Toolkit for PHP - SAJAX. (n.d.). Retrieved January, 2007, from

http:/ /www.modernmethod.com/sajax/

[16] AJAX Framework. (n.d.). Retrieved January, 2007, from

ajax.sourceforge.net/

46

http:/ /glm-

APPENDICES

APPENDIX!

FINAL YEAR PROJECT PART 1 SCHEDULE

NO DETAILS WEEK NO

~
4 5 6 7 8 9 10 11 12 13 14

1 L of proiect topic
-rroposetoclc

2 r !1.

--rroJectPi:
:::T ~ev1ew

3 L of. •
Report

4

~
::T -,

5 Submission of Interim •
11~~~.-.

16 orar •

Table 1: Final Year Project Part 1 Schedule

47

APPENDIX2

FINAL YEAR PROJECT PART 2 SCHEDULE

NO DETAILS WEEK NO
..!.2.1. £ 7 8 9 10 11 12 13 14

1 R,

2 Webn
-. •v•v•y 1""' n .. v .. lo

- ApJ r
Submission of Progress •

3 Lor tmat •
Draft
"!nl LOffinal D. ... •
Oral •

4 Lor. ·~JVV •

Table 2: Final Year Project Part 2 Schedule

48

