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ABSTRACT

A commonly used controller in the process industries is the Proportional-Integral-

Derivative (PID) controller due to its features; cheap and easy to configured. Another

type of controller that is now being developed is neuro-ruzzy logic controller that

functions like a human brain which consists of interconnected processing elements

called nodes or neurons that work together to produce an output function. The feature

that it has that the PID controller does not have is the ability to be retrained to deal with

various conditions in the process industries. A previous final year project on neuro-

ruzzy logic controller yielded an unsatisfactory result as it could only perform for a

single set point change [1]. The objective of this project is to improve the neuro-ruzzy

logic controller so that it can control a process for a wider range of set point values.

Data achieved for this project are through plant experiments using SIM 305 Pilot Plant:

Plant 6 for the purpose of process modeling and computer simulation. Computer

simulation is used to design the PID controller and the neuro-fuzzy logic controller.

These two types of controllers are then compared and analyzed based on their

performances. Controlled Variable (CV) Overshoot, Manipulated Variable (MV)

Overshootand DecayRatio are the benchmarks used to compare and evaluate these two

controllers. Based on the simulation results, the two controllers are in par since the

benchmark values for the two controllers are nearly the same. However, it can be

concluded at this stage that the PID controller is better than the neuro-fuzzy logic

controller due to the smallest value of overshoot compared to the neuro-fuzzy logic

controller.
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CHAPTER 1

INTRODUCTION

1.1 Background of Study

Process control is a statistics and engineering discipline that deals with architectures,

mechanisms, and algorithms for controlling the output of a specific process. This

process control is important in order to maintain variable at the desired value when

disturbance occursand to respondto the changes in the desiredvalue or set point.

Proportional, Integral, and Derivative (PID) controller is a common feedback

loop component in process control systems. It operates by taking a measured value

from a process and compares it with a reference set point value. The difference or error

signal is then used to adjust the input to the process in order to bring the value of

process' measured back to its desired set point.

Another intelligent type of controller, neuro-fuzzy logic controller that is used

for the same purpose operates in a different ways. This controller is modeled like the

human brain which consists of interconnected processing elements called nodes or

neurons that work together to produce an output function. The output relies on the

cooperation of the individual neurons within the network to operate. Basically each

neuron contains information specified by the user. Processing of information by these

networks is done in parallel rather than in series. Therefore, for this controller to

operate effectively, it needs to be trained with a multiple training set of data or

information for the networks to establish relationship between these neurons and

produce the desired output.



1.2 Problem Identification

The previous final year project demonstrates a major flaw on the controller as it could

only perform for a single set point change. The controller could only operate for a

single set point change of 0% to 20% opening of the valve. When the set point is

changed to othervalues, it yields an undesired result. Thisneeds to be overcome so that

the controller can perform for the whole range of the process.

The previous controller was found to have insufficient set of data for the

training purpose of the neuro-fuzzy logic controller. Therefore, several sets of dataare

to be collected and used to train the neuro-fuzzy logic controller so that it could

performthe requiredtask.

1.3 Objectives

The main objective of this project is to improve the performance of the neuro-fuzzy

logic controller built in the previous final year project. In order to improve this

controller, several set of data are gathered for the purpose of modeling the PID

controller and training the neuro-fuzzy logic controller.

The performance of these two controllers, the neuro-fuzzy logic controller and

the PID controller will be compared based on several benchmarks which are the decay

ratio, manipulated variable (MV) overshoot and controlled variable (CV) overshoot.

The project will also try to identify the advantages and the limitations of using neuro-

fuzzy logiccontroller for processcontrol applications.



1.4 Scope of the Project

The project will focus on the feedforward-feedback temperature control of a heat

exchanger. The scopes of the project are as below:

1.4.1 Gather Experimental Data

Plant experiment is conducted in order to collect the required data for the

purpose of system modeling. SIM305 PilotPlant: Plant6 (refer to Appendix A)

is used for the experiment as it consist of a feedforward-feedback temperature

control of the heat exchanger.

1.4.2 Empirical System Modeling

The models are determined by making changes in the input variable during the

plant experiment. The resulting output or dynamic response is used to estimate

the model parameter. This empirical modeling is an important procedure to

develop an effective controller.

1.4.3 Designing the Controller

The parameters obtained from the system modeling are used to design the PID

controller. This controller is design using MATLAB Simulink.

1.4.4 Train the Neuro-Fuzzy Logic Controller with Various Set Point Change

The error and the output or controlled variable (CV) resulting from the

performance ofthe PID controller designed will be used as the multiple data set

to train the neuro-fuzzy logic controller.



1.4.5 Analysis and Comparison

These controllers, the PID controller and the neuro-fuzzy logic controller will

be analyzed and compared based on their performance. This process enables

identification of the advantages and limitations of using neuro-fuzzy logic

controller in process control applications.



CHAPTER 2

LITERATURE REVIEW

2.1 Heat Exchanger

Heat exchanger is a device thatenables heat to be transferred from one fluid to another.

This transfer process canbedone in twoways, (i) whether the fluids are separated bya

solidwall so that they nevermix, or (ii) the fluids aredirectlycontacted.

Tube Shell
Ouflet Met Baffles

Shell Tube
Outlet Met

Figure 2.1: Shell-and-tube-heat exchanger with one shell pass and

one tube pass; cross-counterflow operation. [5]

Two fluids, of different starting temperatures, flow through the heat exchanger.

One flows through the tubes (the tube inlet) and the other flows outside the tubes but

inside the shell (the shell inlet). Heat is transferred from one fluid to the other through

the tube walls, either from tube side to shell sideor vice versa. In order to transfer heat

efficiently, a large heat transfer area should be used, so there are many tubes. In this

way, waste heat canbeput to useanda great way to conserve energy. [5]



2.2 Fuzzy logic

Fuzzy logic is derived from fuzzy settheory dealing with reasoning that is approximate

rather than precisely deduced from classical predicate logic. It can bethought ofas the

application side of fuzzy set theory dealing with well thought out real world expert

values for a complex problem. [6]

23 Neural Network

Neural networks are an interconnected assembly of simple processing elements, units

or nodes, whose functionality is loosely based on the animal brain. The processing

ability of the network is stored in the inter-unit connection strengths, or weights,

obtained by a process of adaptation to, or learning from, a set of training patterns.

Neural nets are used in bioinformatics to map data and make predictions. [7]

2.4 Proportional-Integral-Derivative (PID)Controller

Proportional-Integral-Derivate controller or PID controller is a common feedback loop

used in industries.

Advantages of this controller:-

• Can adjust the process output based on the historical data unlike a simple

control algorithm.

• Can also adjust the rate of the change of the error signal and this gives it more

accurate and stable control.

• Does not require advanced mathematics to design and canbe easily adjusted as

per required.

• Can be used to control any measurable variable which can be affected by

manipulating someotherprocess variable



The controller has a reference Set Point (SP) in which the SP will be used to

compare with the measured value which may come from any process. The difference

then is used to calculate the new input in order for the process to return to normal or

desired measurement.

The basic loop of this controller consists of three parts; the first partwill be the

measurement by a sensor connected to the process, then the decision in the controller

element and lastly,action throughan output devices.

INPUT

SENSOR CONTROLLER

ELEMENT

DEVICES

OUTPUT

»>

Figure 2.2: Example of control loop

Theoretically, PID is named after its correcting calculation;

Proportional - To handle the present, the error is multiplied by a (negative)

constant P (for "proportional"), and added to (subtracting error from) the controlled

quantity. P is only valid in the band over which a controller's output is proportional to

the error of the system.

Integral - To handle thepast, the error is integrated (added up) over a period of

time, and then multiplied by a (negative) constant I (making an average), and added to

(subtracting error from) the controlled quantity. I average the measured errorto find the

process output's average error from the SP. A simple proportional system oscillates,

moving back and forth around theSP, because there's nothing to remove theerror when

it overshoots. By adding a negative proportion of the average error from the process

input, the average difference between the process output and the SP is always being



reduced. Therefore, eventually, a well-tuned PID loop's process outputwill settledown

attheSP.

Derivative - To handle the future, the first derivative (the slope of the error)

over time is calculated,and multipliedby another (negative)constant D, and also added

to (subtracting error from) the controlled quantity. The derivative term controls the

response to a change in the system. The larger the derivative term, the more rapidly the

controller responds to changes in the process's output. Its D term is the reason a PID

loop is also called a "Predictive Controller." The D term is reduced when trying to

dampen a controller's response to short term changes. Practical controllers for slow

processescan even do without D.



2.5 Empirical Model Identification

Empirical modeling method provides dynamic relationship between selected input and

output variables from experimental data. The models are determined by making small

changes in the input variable(s) about nominal operating condition and the resulting

dynamic response is used to determine the model. Empirical Model building procedure

is as in Figure 2.3.

Start

1

A priori
knowledge

Alternative

data

Experimental Design

Plant Experiment

Determine Model

Structure

Parameter Estimation

Model Verification

T
Completion

Figure2.3: EmpiricalModel BuildingProcedure[2]

2.5.1 Experimental Design

As in Figure 2.3, the empirical modeling involves six-step procedure. The most

important is the first procedure which is experimental design. Basically this step

design will determines the shape, duration and baseoperating conditions for the



process. This will resulting in determine the condition about which the model is

accurate and magnitude of the input perturbation.

2.5.2 Plant Experiment

Plant experiment is executed as close as the actual plan to ensure that the

disturbances during the experiment can be reduced. The operation is to be

monitored continuously to verify that the output is useful for identifying a

dynamic model. This is because variation in plant operation is evitable where

changes in other inputsduring the experiment could make the data unusable.

2.5.3 Determining Model Structure

The purpose or goal of this procedure is to develop a model that describes the

input-output behaviorof the process adequately for use in process control.

2.5.4 Parameter Estimation

Two methodologies used to determine values for the model parameters are

graphical technique and statistical principles. Both of these methods provide

estimation for parameters in transfer function models, such as gain, time

constant and dead time.

2.5.5 Diagnostic Evaluation

This procedure is to evaluate and determines how well the model fits the data

used for parameter estimation. Two approaches that can be used

• A comparison of the model prediction with the measured data

• A comparison of the result with any assumptions used in the estimation

method.

10



2.5.6 Verification

This procedure is performed to be sure that typical variation in plant operation

does not significantly degrade model accuracy.

2.6 The Process Reaction Curve

The process reaction curve method is used for identifying dynamic models. This

method involves the following four actions;

i. Allow the process to reach the steady state,

ii. Introducea single step change in the input variable,

iii. Collect input and output response data until the process again reaches

steady state,

iv. Performthe graphical reaction curve calculation.

45 15

-5

0 10 20 30 40
time (mh)

Dmtih plattedin davlaritw variables

Figure 2.4: IdealProcess Reaction Curve basedon the assumption of

the output is first-order-with-dead-time [4]

The graphical reaction curve calculations consist of two methods namely Method I and

Method II. The general overview of these methods is as follows:

11



2.6.1 Method I

45

S = maximum slope,
35 /

c

2 25

20

time (mln)

Data h plottedin deviation variables

Figure2.5: Graphical approach for MethodI [41

2.6.2 Method II

45

10 20

time (mln)

Data is flutied in deviation rariitNes

Figure 2.6: Graphical approach for Method II [4]
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Table 2.1: Parameters to be

calculated using Method I

Process gain K -A

Time

Constant

A
r = —

S

Dead time 0

Table 2.2: Parameters to be

calculated using Method II

Process

gain p S

Time

Constant

T = 1.->V*63% —*28%/

Dead

time
&= *61%-T



2.7 Ziegler-Nichols Open-Loop Tuning

To obtain the PID values used such as Kc, Ti and Td, the Ziegler-Nichols open-loop

tuning based on process reaction curve is used. The open loop method is based on a

measurement range of 0-100 and continuous control. This requires adjustments for

othermeasurement ranges and for the control interval in digital systems

2.8 Ziegler-Nichols Closed-Loop Tuning Correlation

Aside from using the Ziegler-Nichols open-loop tuning, Ziegler-Nichols closed-loop

tuning correlation is another method thatcould be used to obtain thevalues for each Kc,

Ti and Td. The closed loop methods does not require adjustments, a big advantage,

since both process and controller are part of the test, but suffers from one major

disadvantage: Bringing the loop into stable, sustained oscillation is simply out of the

question for industrial processes.

2.9 Feedforward Controller

The purpose of a feedforward controller is for enhancing single-loop PID control

performance where disturbance is introduced. Feedforward uses the measurement ofan

input disturbance to the plant asadditional information where this measurement provide

an"early warning" that the controlled variable will beupset some time inthe future.

The approach to designing a feedforward controller is based on completely

canceling the effect of the disturbance. It is important to note that the feedforward

controller depends on the models for the disturbance and the process. On the nextpage

is theblock diagram of theprocess with theaddition of a feedforward controller.

13



Measured disturbance

Dm(s)

Feedforward

controller

CVA(s)

CVb(s)

Controlled

variable, T

1
•*• CV(s)

Figure2.7: Simplified blockdiagram of feedforward compensation

Based on this block diagram, the equation(2.1) and equation(2.2) are obtained.

GAs)
_MV(s)_ G„(j)

DM) G(s)

G„(*) =
DJs) ffTs +\

Where:

Lead-lag

Feadforward controller gain

Controller dead time

Lead time

Lag time

14

(2.1)

(2.2)

A^ —

eg=ed-ep>o

TU=*P

t*=tj



2.10 ANFIS

This is the major training routine for Sugeno-type fuzzy inference systems. Adaptive-

Network-based Fuzzy Inference Systems (ANFIS) uses a hybrid learning algorithm to

identify parameters ofSugeno-type fuzzy inference systems.

It applies a combination of the least-squares method and the back propagation

gradient descent method for training FIS membership function parameters to emulate a

given training data set. ANFIS can also be invoked using an optional argument for

model validation. The type of model validation that takes place with this option is a

checking for model overfitting, and the argument is a data set called the checking data

set.

2.11 Previous Work

The previous work is being referred to check and to understanding the steps and

method need to be used to complete the project. So far all the steps done are similar to

the previous project.

Previously there are two final year projects which are similar to this one. The first

one is where the neuro-fuzzy logic controller is trained for a single SP change (0-20%

opening ofthe valve) [1]. The other one is where the neuro-fuzzy logic has been trained

with multiple set of input but it implements a switching concept [2]. Switching concept

here means that it applies three neuro-fiizzy logic controllers with each one of them

having data for a single SP change and operates by choosing either one of them based

on the SP changed required.

15



CHAPTER 3

METHODOLOGY/ PROJECT WORK

3.1 Procedure and Identification

START

i

Research and Study on;
• Neural Network

• ruzzy Logic
• PIDController and PID 1 uning
• Ileaf Lxchanger
• Empirical Model Identification
• Ziegler-Nichols Open-Loop and Close-LoopTuning
• Previous Work

*

Identify model of feedforward-feedback
system

+

V
Process model

Feedback PID

controller design

t

I
Load disturbance

model

i

Feedforward

controller design
i

Feedforward-feedback controller design

16

Gather multiple training sets

Neuro-fuzzy logic feedforward-
feedback controller design

1 *
Simulation, test, analysis and comparison

Figure3.1: Method used to accomplish the objectiveofthe project



3.2 Tools and Equipments

The PID controller is designed using Simulink in MATLAB while the neuro-fuzzy

logic controller used the ANFIS Toolbox which is also in MATLAB. Aside from the

software, equipment such as the SIM 305 Pilot Plant: Plant 6 (Appendix A) is used for

the plant experiment and data gathering.

3.3 Data Gathering

The data is obtained by doing plant experiment. As briefly discuss in the introduction

part, the data gathered is for the purpose of system modeling. The experiment consist of

two parts; one is to obtained data for building a feedback loop and the other one is to

obtained data the feedforward loop.

For the feedback loop, a small change is made at the input variable during the

plant experiment and the resulting output or dynamic response is analyzed. During mis

experiment, the controller is set to operate in the manual mode. The experiment is done

to obtained result as shown below;

| £32 S££ £££ ?£T S£ *2£2 ?££ ^£ SSE
|VM IlbH ID. 1 ti

IfiKraarpv

Orurkw 1 taantXJl

HKOW

anaon*

*

*-i I IWlBAM I !—•«** 1 .].... 1 J. 1 *- 1

Figure 3.2: Result obtained from plant experiment
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Due to some technical problem with the Distribution Control System ofthe Pilot

Plant, the feedforward loop could not be retrieve using the plant experiment. Therefore,

the data requires to design the feedforward loop (the disturbance model) is taken from

the previous final year project (by Mohd Faizal Ja'afar) [1],

Figure 3.3: Result obtained from the previous final year project [1]

3.4 Data Processed

The data obtained from the experiment (the feedback loop data) is estimated using the

empirical modeling two methods (refer Chapter 2). From these methods, two transfer

functions will be obtained.

For the other data (the one retrieved from the previous final year project) [1], it

is used to generate a disturbance model and a feedforward controller.

3.5 PID Tuning

To obtain the PID values used such as Kc, Ti and Td, the Ziegler-Nichols open-loop

tuning and Ziegler-Nichols closed-loop tuning correlation based on process reaction

curve is used;

18



Table 3.1: Ziegler-Nichols open-loop tuning

Kc Ti Td

P-only (\/Kp)/(t/&) -

PI (0.9 IKp){xlff) 3.30

PID (l.2/Kp)(z/0) 2.00 0.56/

Table 3.2: Ziegler-Nichols closed-loop tuning correlation

Kc T? Td

P-only K»/2 - -

PI Ku/2.2 Pu/1.2 -

PID Ku/1.7 Pu/2 Pu/8

Where K*, = ultimate gain, and

Pu—ultimate period

The ultimate gain and the ultimate period are obtained by running the

simulation in P-mode. The proportional value is varied until CV reaches a sustained

oscillation while the others, the integral and the derivative remain zero. Sustained

oscillation means mat the oscillation did not grow nor decay but maintains at constant

amplitude. The proportional value that enables CV to reach the sustained oscillation is

the ultimate gain while the ultimate period is the time required for the sustained

oscillation to complete one oscillation cycle.

3.6 Disturbance Model and Feedforward Controller

The load disturbance has to be identified before the disturbance model and the

feedforward controller can be implemented. In order to do so, all measured process

variable that are capable of being the load disturbance are evaluated with 5
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Feedforward Variable Selection Criteria. Only the variable that satisfies all selection

criteria will be considered as the load disturbance variable, in which its model will then

be empirically obtained.

The feedforward controller is build based on the disturbance model construct by

the previous final year project (by Muhammad Faizal Ja'afar). In order to design the

disturbance model, the disturbance variable has to be identified first. Identification is

done by evaluating all measured potential variables in the pilot plant using the

Feedforward Variable Selection Criteria [1].

Table 3.3: Evaluation of Potential Feedforward Variables [1]

Criteria
Potential Disturbance Variables *

TT-631 FT-631 TT-632 TT-633 FT-664

Single loop control notsatisfactory YES YES YES YES YES

The variable is measured YES YES YES YES YES

The variable indicates the keydisturbance NO NO NO NO YES

No causal relationship between MV and

the feedforward variable
NO NO NO YES YES

Variable dynamics is not significantly

faster than MV dynamics
NO NO NO YES YES
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Figure 3.4: Feedback-Only Control Performance [1]
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Figure 3.5: LoadDisturbance Reaction Curve Plotted from Data[1]

The loaddisturbance model parameters are calculated as follows: -

Disturbance gain, Kd: -

= a = (42.4°C-47.9°C) = -5.5°C = -17973.856
5 (4.17^4m3/s-Ul-4«3/*) 3.06e-*m3 Is

21
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• Disturbance Dead time, 8 : -

= from observation - 40 seconds

Disturbance Time Constant, x& -

= 1.5(t63% -128%) = 1.5(156 - 113 seconds) = 1.5(43) = 64.5 seeonds

[1]

[1]

3.7 Simulation Block and Testing

Two controller designs are being used to test the parameters obtained using Ziegler-

Nichols open-loop tuning and Ziegler-Nichols closed-loop tuning correlation. The

designs are as in Figure 3.6and Figure 3.7 below. The 'OutV display the step change,

the controlled variable (CV) and the process variable (PV).

PID
0.185

210s+1 ^
£| fcf 1 \
CI *v 1 )

'V *• Out1

Step PID

(WJith/

D(

Centre

Vpprox
rivativ

Her

mate

*)

Transfer Fen T ranspo

Delay
ft

Figure 3.6: The control process block diagram using a single block PID controller

H>

Step ' Ti tnt*gt(U

>©—*T~*S)

31.5 Constant

Figure 3.7: Similar control process block diagram butusing different PIDcontroller
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The majordifference between these two designs is in the PID algorithm where

the equation (3.7.1) represents the PID block of Figure 3.6 and equation (3.7.2)

represents the PID block of Figure 3.7. ThePIDpresented in Figure 3.7 is chosen since

the equation is recommended and proves to be moresufficient than in Figure 3.6.

MV(s) = P+- + Ds
s

(3.7.1)

MV(t) = Kc E(t)+U<E(t<W-Td^
Tj dt _

+ / (3.7.2)

The controller is evaluated based on its performance. The performance can be

measured using several indicators. Figure 3.8 shows an example of SP change and the

resultant CV. From this figure, two indicators can be used to measure the controller

performancethat is: (i) the decay ratio and (ii) CV overshoot.

Ho >

1.6 1 1 1 p I 1 T

*»

T"";
-

/ t '•

"" W i • i

Return lo set poinL

1 i '

Oi -

Rise time

1C * 1! 2fi 26

time

33 35 40 ib

Figure 3.8: Typical CV response ofa feedback control system to a step SP change
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3.7.1 The decay ratio

The decay ratio (DR) is the ratio ofneighboring peaks inanunderdamped CV response.

Usually, periodic behavior with large amplitudes is avoided in process variables;

therefore, a small DR is usually desired, and an overdamped response is sometimes

desired. Basedon Figure 3.8, the DR can be calculated:

DR(%)~-x\00%
A

where A = 1st peak

B=2ndpeak

The performance ofthe controller canonly beaccepted orclassified as good if theDR

is less man 25%.

3.7.2 CV overshoot

CV OS measures the performance at the output of the process. This quantity is

important as it determine the overall process performance. With large variations, the

process could take longer time to settle or reach steady-state and might not be

appropriate for certain process. Therefore a small CV OS is more appropriate and

applicable inprocess application. Based on Figure 3.8, theCVOS canbecalculated:

CK(%) = —*100%

where A - the highestvalue CV can exceed from the final steady-

state value

C = the final steady-state value

Theperformance of the controller is acceptable if the CVOSis less than20%.
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3.7.3 MV overshoot

Different with DR and CV OS, MV OS measures the performance at the output of the

controller. This quantity is of concern because the MV is also a process variable that

influences performance. There are often reasons to prevent large variations in the MV.

Some large variations can cause long-term degradation in equipment performance. In

other cases manipulations can disturb an integrated process. The overshoot of MV is

used to indicate how aggressive the controller has been adjusted. The overshoot is the

maximum amount that the MV exceeds its final steady-state value and is usually

expressed as a percent of thechange inMV from its initial to its final value.

Figure 3.9: Typical MV response of a feedback control system to a step SPchange

From the Figure3.9, the MV OS can be calculated:

MV(%)=~*100%

where C = the highest value MV can exceed from the final steady-

state value

D = the final steady-state value

Theperformance of the controller can only be accepted or classified as good if the MV

OS is between 50% - 150%.
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3.8 Generating Neuro-Fuzzy Logic Controller

To build the fuzzy-logic controller, a few steps need to be taken, especially regarding

the input to the fuzzy-logic block. An additional block is inserted into the simulation in

order to import the data required to the fuzzy-logic toolbox (ANFIS). In Figure 3.10, a

block is added that enables the data to be transferred to the workspace before it could

be called and used as training data ofthe ANFIS.

constant

Slap

Btw

duttt

Derwativel

0.1B5

210*H

TtansfwFen Transport
Delay

dufdt «—<Q L-
DtmMtws Td

T-*CD

Figure 3.10: Anadditional block added for thepurpose of importing data to the
workspace

In Figure 3.11 below is the simplified methodology of generating an .fis file which is

used by the fuzzy-logic block in Simulink.

] Import data to toolbox ;

Train the data

Create the .fis file

Load the data into the process block diagram

Figure 3.11: Simplified methodology to implement theneuro-fuzzy logic controller
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3.8.1 Data Import to ANFIS

The first step of creating the controller is by loading the data onto the ANFIS toolbox.

The data is presented in graphical form in Figure 3.12below.

50 100 150 200 250 300

Figure 3.12: Datato be used fortraining theneuro-fiizzy logic controller

When these data is loaded into the ANFIS toolbox, the plotted data is shown in Figure

3.13. Basically the data plotted is the output response. In this case, MV is the output

response whilethe error and rateof error is the input.

' Loeddata
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Demo

Load Data...

dttfc
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ClewData

train data loaded

Training Data (coo)
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data set index

~ GenerateRS
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-Gridpartttfon

Sub. dusterhg

Generate RS...
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I of Input mis:
3 3

# of train data

pairs: 2S1

— TostFJS
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Training data

Testing data

Charting data

Figure 3.13: Theplotted MV as it is loaded into the ANFIS toolbox
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3.8.2 Train the Neuro-Fuzzy Logic Controller

Before the data is trained, a networking between neurons needs to be established

between the input data (the error and rate of error). By generating the FIS structure in

the ANFIS toolbox, a mapping structure is established as in Figure 3.14.

Input hpubm Qiiputmf output

Figure 3.14: Themapping structure obtained by generating the FIS.

Since ANFIS toolbox is used, the relationship between the inputs and the output

are defined automatically by the toolbox. No changes need to be done to the rules or

relationship. Thenext step is start training the dataandobtains the result for the neuro-

fuzzy logic controller.
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0.172

D.17
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-*•++. + +++ + + Htr++. +++* + * + * +

25 30
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#0*i-»ute2

fofodputei
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5 5

Sbuckre
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— Tejtns —j
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Epoett3aem*. 0.17063 Help Close

Figure 3.15: Theplotted training resultreduces errorcloseto zero
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3.8.3 Creating the .fis File

After the training is completed, the trained neuro-fuzzy logic controller needs to be

saved as a .fis file. This is done to enable the neuro-fuzzy logic controller to be used in

the simulation.

3.8.4 Load the Trained Neuro-Fuzzy Logic Controller

In order to run the simulation using this controller, it has to be exported to MATLAB.

To do so, a MATLAB command needsto be executed as describe below;

»fuzzy {file name, fis}

By doing this, a window willappear as in Figure 3.16.

XX
AM

test

(sugeno)

error

XX mv

rate/ror

OS Name: test FJSTyps: sugeno

And method p,^

Ormethod pomr

taipBcation

Aggregation

Damnification wtaver

Currant Variable

Name

Type

Range

He* Qosa

Renamtag ottpti variable 1 to W

Figure 3.16: Theneuro-fuzzy logic relationship between the input and

output based on Sugeno type

The datacan nowbe exported to the workspace. This can be doneby:

->File -> Export -^ To workspace
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As in Figure 3.17, the Simulink model can now be simulated when the fuzzy logic

controller has been loaded with the imported data.

U^fe3H^
Integrator

Fuzzy Logic
Controller

0.185

21084-1

Transfer Fen
cm-r*9~~*Transport
Delay

31.5 Constant

Figure 3.17: A newprocess block diagram where PIDis replaced with fuzzy-

logic controller

Out1

3.9 Design a training approach for the fuzzy logic controller to accept training

data more than one

From the two previous final year projects reviewed, in [1], the author managed to

implement the fuzzy logic controller for a single set point while the other, {2] uses a

switching concept to change the input/ output of the fiizzy logic controller for a few

ranges of set point. This project aims to implement the fuzzy logic controller for a

certain rangeofset point without the use of switching.

Predetermined variable:-

Initial temperature —31.5°C

Maximum heat exchanger operating temperature = 70°C

Range of SP change = 0°C - 40°C

The maximum SP change is set to 40°C since the maximum value achievable for

the heatexchanger in the pilot plant is 70°C. For these training purpose two alternatives

has been tried out (Alternative 1 and Alternative 2).
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3.9.1 Alternative I

The first method tried is by implementing a method as illustrated in the Figure 3.18

below.

Import data (set 1)

Train the

controller

On hold

Create .fis

file

Import data
(set 2)

Import data
(set 3)

Import data
(set 4)

*

Run the simulation to

test the controller
Figure 3.18: Methodology for Alternative 1

In the method above, 4 sets of training data are collected where each data represents a

different change of set point:

• Setl(0°C-106C)

• Set2(0°C-20°C)

• Set3(0°C-30°C)

• Set4(0°C-40DC).
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3.9.2 Alternative 2

The second method tried is by implementing a method as illustrated in the Figure 3.19

below.

Setl Set 2 Set 3

^
Import data

^

Train the

controller

1 f

Create .fis file

1 f

Run the simulation to test the controller

Set 4

Figure 3.19: Methodology for Alternative 2

Using the same set of data, another method is tried out where all the data is first

gathered before it is imported to the ANFIS toolbox. Thismethod requires a little bit of

workwherethedata is arrange in one arrayand menexport it to ANFIS toolbox. Below

is the detailed of the method since after some simulation test, the resulting output do

correspond with the desired output.
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CHAPTER 4

RESULT AND DISCUSSION

4.1 The Process Transfer Function

Using the data from plant experiments, two transfer functions are obtained based on

Method I and Method II (refer Chapter 2).

Transfer function 1 (TF1)

Y(s) ^O.me-42*
X(s)~ 210^+1

Transfer function 2 (TF2)
-84sY(s) 0.185e

X(s) 90^+1

Each of the transfer function is tested in open loop approach in order to

determine whichone closely represents the process reaction curve (plant experiment).

The percentage or the rate of difference between the models is used to compare

between these two transfer functions. The one yields the less diff is chosen. TF1 is

chosen as the transfer function because it yields 51.16% difference compared to TF2

with 51.46%. The values are rather high because the calculation is done by estimating

the data since the actual data is corrupted (refer to Appendix B).

4.2 Testing the PID Controller

As mentioned in Chapter 2, two tuning methods have been used in this project to

determine the PID controller parameters. The calculated PID parameters are as in the
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Table 4.1 and Table4.3 below. The simulation has beenrun in three modes (P-only, PI

and PID) toverify which mode satisfy and yield the most effective result.

Table 4.1: Calculated variables for PID using Ziegler-Nichols Open-loop tuning

60

40

20

0

Kc
P-only 1.08108

PI 24.32432

PID 32.43243

^y^Z.

Ti

138.6

84

Controlled

21

t r

0 100 200 300 400 500 600 700 800 900 1000

0 100 200 300 400 500 600 700 800 900 1000

Figure 4.1: The transient response ofthe feedback control system to a step set
point change (using Z-NOpen-Loop Tuning)

Figure 4.1 shows the resulting simulation using Ziegler-Nichols Open-loop tuning

method. The measured performance is as in Table 6 below:

Table4.2: The performance check usingZ-N Open-Loop Tuning

Indicator Values

DR - 17%

CVOS - 54.75%

MVOS - 593.63%
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Table 4.3: Calculated variables for PID using Ziegler-Nichols Closed-Loop

tuning correlation

60

40

20 r

P-only
PI

PID

Kc
23

20.909

27.0588

—, r

Ti

129.4248

77.6549

Td

19.4137

0
0 100 200 300 400 500 600 700 800 900 1000

100 200 300 400 500 600 700 800 900 1000

Figure 4.2: Thetransient response of the feedback control system to a step set
point change (using Z-NClosed-Loop Tuning Correlation)

Figure 4.2 shows the resulting simulation using Ziegler-Nichols Closed-loop tuning

correlation method. The measured performance is as in Table 8 below:

Table4.4: Hie performance checkusingZ-N Closed-Loop TuningCorrelation

Indicator Values

DR - 8.69%

CVOS = 44.9%

MVOS = 506.04%
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From the result obtained, the PID parameters obtained using Ziegler-Nichols

Closed-Loop Tuning Correlation is used since it yields less percentage in every

performance indicator measured. These parameters requires fiirther fine tuning in order

to have the desired performance within the setting range (DR less than 25% and CV OS

less than 20%).

4.3 Fine Tuning

Fine tuning is conducted to modify the PID parameters so that it could perform to the

required output. The objective is to adjust the parameters so that the CV obtained have

less than 20% overshoot and the decay ratio is less than 25%.

Table 4.5: The initial values to be used for fine tuning

Kc Tj Tg
PI 20.909 129.4248

The fine tuning emphasizes the concept of trial and error. The tuning process

requires one parameter to be constant while the other one is tuned. This is done to

observe the effect of changing oneparameter to the output of the process. Below is the

result of tuning the PID controller and CV response.

Table 4.6: The values obtained after the fine tune

Initial After Tuning

P(Kc) 20.909 18.5

I(Ti) 129.4248 180
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CV overshoot = 23.4%

Decay ratio = 6%

It is decided that the derivative mode should be activated and the impact is it reduces

the CV overshoot peak.

Table 4.7: The finalized values obtained after the fine tune with addition ofTD

Initial After Tuning

P(Kc) 20.909 18.5

KTi) 129.4248 180

D(Td) 0 2
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Figure 4.4: Tuning using PID-mode

CV overshoot = 21.0%

Decay ratio = 13.5%

37



The result obtained after tuning the PID controller above is closer to the

conditions set priority i.e. (CV OS < 20% and DR< 25%) however based on thegraph

shown inFigure 4.4, the settling time is longer compared to thePi-mode.

4.4 Feedforward Controller

The feedforward controller is build based on the disturbance model construct by the

previous final year project (by Muhammad Faizal Ja'afar).

Feedforward controller is not a PID algorithm, but is a control equation that

relates the load disturbance and the process. Calculation on the feedforward control

equation is shown below: -

Feedforward controller gain, Kff

Feedforward controller dead time, 6ff

Feedforward controller lead time, T!ead

• Feedforward controller lag time, Tug

Lead/lag algorithm

—-Kd/Kp

= -(-17973.856/0.185)

= 97155.97838

ed-ep

40-42

0 second since 0ff> 0

= 210 seconds

64.5 seconds

(TleadS + l)/(Tlags + l)

mos+n/(64.5s+i)

Thus, the feedforward control equation is as follows: -
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* Gp(s) ff

Gff(s) =97155.97838
2105 + 1

64.5^+1

The block diagram in Figure 4.5 is the block diagram with the addition of

disturbance model and feedfoward controller. With the addition of these block diagram,

the process loop is completed.

Figure 4.5:The complete process blockdiagram

Two tests are conducted to observe the performance of the feedforward

controller against the disturbance. The first test is done by disconnecting the

feedforward controller from the process to observe the effectof the disturbance (Figure

4.6). The second test is conducted with the feedforward controller connected to the

process to observe how effective the feedforward controller overcomes the disturbance

(Figure 4.7).
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Figure 4.7:The effectof disturbance to the process is reduced by the

feedforward controller
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4.5 Training FeedbackNeuro-Fuzzy LogicController

The neuro-fuzzy logic controller is trained using 4 sets oftraining data:

• Set 1(0%-10%)

• Set 2(0%-20%)

• Set 3(0%-30%)

• Set 4(0%-40%)

4.5.1 Alternative 1 vs Alternative 2

Two alternatives have been proposed earlier in Chapter 3. Each alternative has been

tried out a few times and being compared to choose which is the most suitable for the

training purpose. From trials, it seems that Alternative 1 is not suitable tobe used. This

isbecause by doing multiple training tothe ANFIS toolbox, the recent data inserted and

train will be the one used as the default data and all the previous data inserted will be

deleted automatically. This means that the fuzzy logic controller will only corresponds

to set 4, where theoutput will reach steady-state at about 71.5°C. Using Alternative 1,

the controller canonly be used for a single SP change related to the latest training set.

Other SP changes will cause the CV to be oscillatory and does not reach zero offset

steady-state.

4.5.2 Alternative 2 to Train the Controller

Alternative 2 is the method where all data are arranged and combined to form a

compiled set of data. These data is the combination of data from Set 1 to Set 4. In

Figure 4.8,the compiled training data is shown loaded ontoANFIS toolbox.
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Figure 4.8: Howthe training set is input into the ANFIS toolbox

This method overcomes the weakness of the first method (Alternative 1) where each

data inserted into the ANFIS toolbox are stored and none of them is overwritten.
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4*6 Performance Check and Comparison

The neuro-fuzzy controller is simulate with multiple step change to observe the

performance and it is beingcompared with the PID controller. Two variables are used

as benchmarks (CV overshootand decay ratio) to compareor evaluatethe controllers.

Table 4.8: Performance check with step change of 23% ofvalve opening

PID

Controller

Fuzzy-Logic
Controller

Step change = 0 % - 23 %

% OPENING

0 100 200 300 400 500 600 700 800 BOO 1GQ0
TIME (S)

•-•» OPENING

O 100 200 300 400 500 600 700 8BQ 900 1000

TTME(S)

43

CV overshoot:

8.9%

Decay ratio:

6.19%

C V overshoot:

9.14%

Decay ratio:

6.43%



Table 4.9: Performance check with step change of 15%ofvalve opening

PID

Controller

Fuzzy-Logic
Controller

Step change = 0 % -15 %

TEMP (=C>

50 r~~-
r\

• i l.

% OPENING

_L __i 1 L.

0 100 200 30G 400 5DD 600 700 800 900 10D0

TEME(S)

TEMP (CC)

50 r-

7\

0 100 200 300 400 500 600 700

% OPENING

900 1000

TIME(S)

CV overshoot:

6.8%

Decay ratio:

6.33%

CV overshoot:

7.05%

Decay ratio:

5.8%

Based on Table 4.8 and Table 4.9; the performance of the neuro-fuzzy logic

controller is compared with the PID controller. From these result, it shows that the

performance of the controller is comparable to the PID controller since the CV

overshoot and the decay ratio are nearly the same.

Based on the overshoot it can be concluded at this stage that the PID controller is

better since the overshoot is less compared to the neuro-fiizzy logic controller.

44



However, the neuro-fuzzy logic controller can now perform at difference SP change.

The difference in performance maybe due to therange of training sets. The neuro-fuzzy

logic controller might work at the same level or better that the PID controller if the

number oftraining set increases.

4.7 Neuro-Fuzzy Logic Controller for Feedforward Controller

The neuro-fuzzy logic controller for the feedforward system does not yield a good

result as for feedback controller. This probably because the feedforward controller is

not a PID controller likes the feedback controller.

The ANFIS toolbox failed to build a network between the data that relates to the

feedforward. This might be due to the nature of the feedforward controller where the

corrective action is done before the disturbance occurs. The ANFIS could not recognize

a sudden change ofone data when the others are constant.

Table 4.10: Data used to train neuro-fuzzy logic controller for feedforward
controller

Size of Rate of Change in Output of Output of Feedforward
Disturbance Disturbance Size Disturbance Model Controller

0 0 0 0

0 0 0 0

0.00056 0 0 0

0.00056 0.00448 0 168

0.00056 0.00896 0 154.75

0.00056 0.01344 0 143.04

0.00056 0.01792 0 132.71

0.00056 0.0224 0 123.57

0.00056 0.02688 -1.1741 115.5

0.00056 0.03136 -2.2112 108.38

It is shown in Table 4.10, that the data available to be used to train the neuro-

fuzzy logic controller is insufficient to create a logical relationship. The change at the

controller output could not be related to other data changes thus producing a large

training error for the neuro-fiizzy logiccontroller (unacceptable).
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CHAPTERS

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

The aim of this project is to improve the performance of the neuro-fuzzy logic

controller for the heat exchanger temperature control. The improvement is on the

design of the controller for the heat exchanger sothat the neuro-fuzzy logic controller

canbeoperated for thewhole operating range orsetpoints oftheheat exchanger.

Theoretical knowledge in heat exchanger, PID controller, neural network and

neuro-fiizzy logic controller is emphasized and being the main scopes of the study in

order to complete this project.

Based on the results, it canbe concluded that the neuro-fuzzy logic controller has

been improved and can perform well over several difference SP changes by training it

with multiple set of training data. The comparison between the PID controller and the

neuro-ruzzy logic controller shows that these controllers are close toeach other interms

ofperformance.

46



5.2 Recommendation

Technically the neuro-fuzzy logic controller could be improved more by selecting the

appropriate training set ofdata. In this project, four sets oftraining data have been used

to trainthe neuro-ruzzy logic controller to replace the PIDcontroller. Even though the

performance is lesser than the PID controller ifviewed from the CV overshoot and the

decay ratio but still it performed under theacceptable range of CV overshoot (<20%)

and decay ratio (< 25%).

The feedforward controller actions theoretically differ with the feedback

controller. A further studies need to be done to the feedforward controller in order to

implement a neuro-fiizzy logic controller for the feedforward controller.

In the near future, if possible, the project could be extended by implementing

both controllers in one process loop where these controllers works together to perform

or to produce a better result.

Real-time

Real-time

Neuro-Fuzzy
Logic Controller

PID Controller

Process

•

Training

Figure 5.1: Proposed control strategy with two controllers working together
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APPENDIX B

This appendix shows thedetail of determining therate of difference for TF1 and TF2
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APPENDIX B

-The PRC in numerical data.

-These data is estimated from the curve because the actual data is corrupted.

£1.41 41 .£1 41.65 42.10 42.32 £2.60 4275 42.85 42.95 43.35 £3.10 43.17 43.22 4322 4320 £335 43.35

43,35£1.35 41 .£1 41,65 42.10 42.32 £250 42.75 42.85 42.K 43.35 £3.10 43.17 43.22 4322 43.20 £3.35

£135 41 .£5 4165 42.10 42.32 £2.5E> 4275 42.85 42.56 43.35 £3.12 43.17 43.22 4322 4320 £3.36 43.33

£1.35 41.45 41.63 42.10 42.32 £2.50 4275 42.85 42.S6 43.35 £3.12 43.17 43.22 43.22 4320 £3.36 43.33

£1.35 41.45 4165 42.10 42,32 42.5D 42.75 42.85 42.K 43.35 £3.12 43.13 43.22 4522 4325 £3.36 43.35

£1.35 41.45 41.83 42.10 42,32 £250 42.75 42.85 42.9* 43.10 £3.12 43.13 43.22 4322 4323 £336 43,3!

£1.35 41.45 4183 42.10 42.32 £2.50 42,75 42.65 42.96 43.10 £3.12 43.13 43.22 4320 4323 £335 43.35

£1.35 41.45 41.83 42.20 42.22 ££.50 42.75 42.65 42'.S 43.10 £3.12 43.13 43.22 43.13 4323 £335 43.3!

£1.35 41.45 41.83 42.20 4239 £2.50 42.32 42,85 42.56 43.10 £3.12 43.13 43.22 43.13 43.23 £335 43.35

£1.35 4145 41.83 42.20 4239 £2.70 42.32 42.85 42.96 43.35 £3.12 43.13 43.22 43.13 4525 £335 41.35

£1.35 4153 41.83 4220 42.39 £2.7E' 4232 42.85 42.S6 45.35 £3.12 41.13 4322 43.13 4323 £335 43.35

£-.35 41.53 41.63 4??D asm ££70 42.32 42.85 42.S6 43.35 £3.12 41.17 4322 43,13 4323 £3.35

£1.35 4152 4175 4220 4239 £2.70 *MZ 42.85 42.K 45.35 £3.12 43.17 43.22 43.13 4323 £335

£1.35 4152 41.75 4?!ffl 4??* £2.70 42.52 42.93 43.05 43.35 £3.12 43.17 43.22 43.13 4323, £3.35

£1.35 4153 41.75 4?m 42.39 £2.70 42.32 42.?] 43X5 43.10 £3.12 43.17 43.22 43.13 4323 £3.35

£1.35 4153 41.75 4? HI 42.39 £2.70 42.32 42.93 43X5 4310 £3.12 43.17 43.22 43.13 4323 £3.35

£1.35 41.53 41.75 42.20 42.39 £270 4232 42.93 43X5 43.10 £3.16 43.17 43.17 43.13 4323 £3.35-

£1.35 41.53 41.75 42.30 42.39 £2.70 42.32 42.93 43X5 43.10 £3.16 43.17 43.17 43.13 4323 £3.35

£1.35 41.53 41.75 4220 42.39 £270 42.32 43.03 43X5 43.10 £3.16 43.13 43.17 43.13 4325 £3.35

£1.35 41.53 41.83 4220 4? 39 42.70 42.32 42,95 43.05 43.10 £316 43.13 4-3.17 43.13 4323 £3.36

£1.35 41.53 41.83 42..20 4?S9 i?7f 42.52 42.95 43.05 43.10 £3.16 43.13 43.17 43.13 43.23 £335

£1.35 41.53 41.83 42^0 42.39 £2.70 42.32 42.95 4o.c<i 43.10 £3.16 43.13 43.22 4322 4323 £3.36

£1.35 4153 41.83 4??0 4244 i?7P 42.32 42.9! 43X0 43.10 i3.10 43.13 43.22 4322 4323 £3.35

£1.35. 4153 4183 4? 30 4? 44 £270 42.32 42.95 43X0 43.10 £3.10 43.13 4322 4322 4525 £3.35

£1.35 41.53 41.83 4220 4244 £273 42.32 42.91 45X0 43.10 £3.10 43.13 43.22 4522 4525 £335

£1.35 4153 4183 4? 70 4244 £273 42.32 42.95 43X0 43.10 £3.10 43.12 4322 4322 4325 £335

£1.35 4153 4185 42 SO 4244 £273 42.32 42.95 43X0 43.10 £3.10 43.12 43.22 4522 4325 £3.35

£1.35 4153 41.9 42.20 42.44 £2.73 4232 42.95 43.00 43.10 £3.17 43.12 43.22 4322 4323 £335

£1.35 4153 42.03 4221 42.44 £2.73 42.32 42.95 43.00 4310 £3.17 43.12 4322 4322 4323 £335

£1.35 41.59 42.03 42.32 4244 £2.73 42.32 42.95 43X0 43.10 £3.17 43.12 43.22 43.20 4323 £335

£-.41 4152 42.03 42.32 42.55 £273 42.32 42.95 43X0 43.10 £3.17 43.12 43.22 43.20 4323 £335

£1.41 4153 42.03 42.32 42.50 £2.73 42.32 42,95 43.05 43.10 £3.17 43.12 43.22 4320 4323 £3.35

£1.41 41.53 42.02 42.W 42.50 £275 42.32 42.95 43X5 43.10 £3.17 43.12 43.22 4320 4323 £335

£1.41 4155 42.03 42.32 42.50 £2.75 42.33 42.95 43X5 43,10 £3.17 43.22 43.22 4320 45.35 £3.35

£141 4155 42.03 42.32 42.50 £275 42.35 42.95 45.05 43.10 £3.17 43.22 43.22 4320 4335 £335

£1.41 4155 42.03 42.32 4250 £2.75 42.3! 42.95 43X5 43.10 £3.17 4322 43.22 4320 43.35 £335

51



APPENDIX B

Open-loop SimulationResult for TFl and TF2

10 15 33 25 30 35 40 45 50

15 20 25 30 35 40 45 50
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TFl

Y(s) _0.185e^
X(s)~ 2105+1

TF2

-84sY(s) ^0.185e
X(s)~ 905 +1



APPENDIX B

The numerical data from open-loop simulation for TFl and TF2

TFl T F2

x-axis y-axis x-axis y-axis

1 41.5 1 41.5

2 41.5 2 41.5

3 41.5 3 41.5

4 41.5 4 41.5

5 41.5 5 41.5

6 41.5 6 41.5

7 41.5 7 41.5

8 41.5 8 41.5

9 41.5 9 41.5

10 41.5 10 41.5

11 41.5 11 41.5

12 41.5 12 41.5

13 41.5 13 41.5

14 41.695 14 41.5

15 42.098 15 42.04

16 42.409 16 42,677

17 42.643 17 43.005

18 42.819 18 43.173

19 42.951 19 43.259

20 43.05 20 43.303

21 43.124 21 43.326

22 43.181 22 43.338

23 43.223 23 43.344

24 43.254 24 43.347

25 43.278 25 43.348

26 43.296 26 43.349

27 43.309 27 43.35

28 43.319 28 43.35

29 43.327 29 43.35

30 43.333 30 43.35

31 43.337 31 43.35

32 43.34 32 43.35

33 43.343 33 43.35

34 43.345 34 43.35

35 43.346 35 43.35

36 43.347 36 43.35

37 43.348 37 43.35

38 43.348 38 43.35

39 43.349 39 43.35

40 43.349 40 43.35

41 43.349 41 43.35

42 43.349 42 43.35

43 43.35 43 43.35

44 43.35 44 43.35

45 43.35 45 43.35

46 43.35 46 43.35

47 43.35 47 43.35

48 43.35 48 43.35

49 43.35 49 43.35

50 43.35 50 43.35
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APPENDIX B

Both transfer function (TF 1 and TF 2) is compared to the PRC and the absolute

difference between them and the PRC are calculated. It is repeated for an increment of

1second until they reach steady - state.

Y \temp(TF) - temp(PRC)]
Area(PRC)

Percentage diff(%) = 364.55/712.5

TFl = 51.16%

Percentage diff (%) - 366.56 / 712.5

TF2 - 51.46%
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APPENDIX C

Thesimulation blockdiagram (i) PID controller + feedforward controller and (ii)

neuro-fuzzy logic controller
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