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ABSTRACT

A commonly used controller in the process industries is the Proportional-Integrai-
Derivative (PID) controller due to its features; cheap and easy to configured. Another
type of controller that is now being developed is neuro-fuzzy logic controller that
functions like a human brain which consists of interconnected processing elements
called nodes or neurons that work together to produce an output function. The feature
that it has that the PID controller does not have is the ability to be retrained to deal with
various conditions in the process industries. A previous final year project on neuro-
fuzzy logic controller yielded an unsatisfactory result as it could only perform for a
single set point change [1]. The objective of this project is to improve the neuro-fuzzy
logic controller so that it can control a process for a wider range of set point values.
Data achieved for this project are through plant experiments using SIM 305 Pilot Plant:
Plant 6 for the purpose of process modeling and computer simulation. Computer
simulation is used to design the PID controller and the neuro-fuzzy logic controller.
These two types of controllers are then compared and analyzed based on their
performances. Controlled Variable (CV) Overshoot, Manipulated Variable (MV)
Overshoot and Decay Ratio are the benchmarks used to compare and evaluate these two
controllers. Based on the simulation results, the two controllers are in par since the
benchmark values for the two controllers are nearly the same. However, it can be
concluded at this stage that the PID controller is better than the neuro-fuzzy logic
controller due to the smallest value of overshoot compared to the neuro-fuzzy logic

controller.
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CHAPTER 1
INTRODUCTION

1.1 Background of Study

Process control is a statistics and engineering discipline that deals with architectures,
mechanisms, and algorithms for controlling the output of a specific process. This
process control is important in order to maintain variable at the desired value when

disturbance occurs and to respond to the changes in the desired value or set point.

Proportional, Integral, and Derivative (PID) controller is a common feedback
loop component in process control systems. It operates by taking a measured value
from a process and compares it with a reference set point value, The difference or error
signal is then used to adjust the input to the process in order to bring the value of

process' measured back to its desired set point.

Another intelligent type of controller, neuro-fuzzy logic controller that is used
for the same purpose operates in a different ways. This controller is modeled like the
human brain which consists of interconnected processing elements calied nodes or
neurons that work together to produce an output function. The output relies on the
cooperation of the individual neurons within the network to operate. Basically each
neuron contains information specified by the user. Processing of information by these
networks is done in parallel rather than in series. Therefore, for this controller to
operate effectively, it needs to be trained with a multiple training set of data or
information for the networks to establish relationship between these neurons and

produce the desired output.



1.2 Problem Identification

The previous final year project demonstrates a major flaw on the controller as it could
only perform for a single set point change. The controller could only operate for a
single set point change of 0% to 20% opening of the valve, When the set point is
changed to other values, it yields an undesired resuit. This needs to be overcome so that

the controller can perform for the whole range of the process.

The previous controller was found to have insufficient set of data for the
training purpose of the neuro-fuzzy logic controlier. Therefore, several sets of data are
to be collected and used to train the neuro-fuzzy logic controller so that it could

perform the required task.

1.3 Objectives

The main objective of this project is to improve the performance of the neuro-fuzzy
logic controller built in the previous final year project. In order to improve this
controller, several set of data are gathered for the purpose of modeling the PID

controller and training the neuro-fuzzy logic controller.

The performance of these two controllers, the neuro-fuzzy logic controller and
the PID controller will be compared based on several benchmarks which are the decay
ratio, manipulated variable (MV) overshoot and controlled variable (CV) overshoot.
The project will also try to identify the advantages and the limitations of using neuro-

fuzzy logic controller for process control applications.



1.4 Scope of the Project

The project will focus on the feedforward-feedback temperature control of a heat

exchanger. The scopes of the project are as below:

1.4.1

1.4.2

1.4.3

1.44

Gather Experimental Data

Plant experiment is conducted in order to collect the required data for the
purpose of system modeling. SIM 305 Pilot Plant: Plant 6 (refer to Appendix A)
is used for the experiment as it consist of a feedforward-feedback temperature

control of the heat exchanger.

Empirical System Modeling

The models are determined by making changes in the input variable during the
plant experiment. The resulting output or dynamic response is used to estimate
the model parameter. This empirical modeling is an important procedure to -

develop an effective controller.

Designing the Controller

The parameters obtained from the system modeiing are used to design the PID
controller. This controller is design using MATLAB Simulink.

Train the Neuro-Fuzzy Logic Controller with Various Set Point Change

The error and the output or controlled variable (CV) resulting from the
performance of the PID controller designed will be used as the muitiple data set
to train the neuro-fuzzy logic controller.



1.4.5 Analysis and Comparison

These controllers, the PID controller and the neuro-fuzzy logic controller will
be analyzed and compared based on their performance. This process enables
identification of the advantages and limitations of using neuro-fuzzy logic

controiler in process control applications.



CHAPTER 2
LITERATURE REVIEW

2.1 Heat Exchanger

Heat exchanger is a device that enables heat to be transferred from one fluid to another.
This transfer process can be done in two ways, (i) whether the fluids are separated by a

solid wall so that they never mix, or (ii) the fluids are directly contacted.

Outlet Inlet Baffles

Figure 2.1: Shell-and-tube-heat exchanger with one shell pass and

one tube pass; cross-counterflow operation. [5]

Two fluids, of different starting temperatures, flow through the heat exchanger.
One flows through the tubes (the tube inlet) and the other flows outside the tubes but
inside the shell (the shell inlet). Heat is transferred from one fluid to the other through
the tube walls, either from tube side to shell side or vice versa. In order to transfer heat
efficiently, a large heat transfer area should be used, so there are many tubes. In this

way, waste heat can be put to use and a great way to conserve energy. [3]



2.2  Fuzzy logic

Fuzzy logic is derived from fuzzy set theory dealing with reasoning that is approximate
rather than precisely deduced from classical predicate logic. It can be thought of as the
application side of fuzzy set theory dealing with well thought out real world expert

values for a complex problem. [6]

2.3 Neural Network

Neura! networks are an interconnected assembly of simple processing elements, units
or nodes, whose functionality is loosely based on the animal brain. The processing
ability of the network is stored in the inter-unit connection strengths, or weights,
obtained by a process of adaptation to, or learning from, a set of training patterns.

Neural nets are used in bioinformatics to map data and make predictions. [7]

2.4 Proportional-Integral-Derivative (PID) Controller

Proportional-Integral-Derivate controller or PID controller is a common feedback loop

used in industries.

Advantages of this controller:-

e Can adjust the process output based on the historical data unlike a simple
control algorithm.

o Can also adjust the rate of the change of the error signal and this gives it more
accurate and stable control.

e Does not require advanced mathematics to design and can be easily adjusted as
per required.

e Can be used to control any measurable variable which can be affected by

manipulating some other process variable



The controller has a reference Set Point (SP) in which the SP will be used to
compare with the measured value which may come from any process. The difference
then is used to calculate the new input in order for the process to return to normal or

desired measurement.

The basic loop of this controlier consists of three parts; the first part will be the
measurement by a sensor connected to the process, then the decision in the controller

element and lastly, action through an output devices.

INPUT OUTPUT

SENSOR CONTROLLER DEVICES
4 ELEMENT

-
>

\ 4

Figure 2.2: Example of control loop

Theoretically, PID is named after its correcting calculation;

Proportional - To handle the present, the error is multiplied by a (negative)
constant P (for "proportional"), and added to (subtracting error from) the controlled
quantity. P is only valid in the band over which a controller's output is proportional to

the error of the system.

Integral - To handle the past, the error is integrated (added up) over a period of
time, and then multiplied by a (negative) constant I (making an average), and added to
(subtracting error from) the controlled quantity. I average the measured error to find the
process output's average error from the SP. A simple proportional system oscillates,
moving back and forth around the SP, because there's nothing to remove the error when
it overshoots. By adding a negative proportion of the average error from the process

input, the average difference between the process output and the SP is always being



reduced. Therefore, eventually, a weli-tuned PID loop's process output will settle down
at the SP.

Derivative - To handle the future, the first derivative (the slope of the error)
over time is calculated, and multiplied by another (negative) constant D, and also added
to (subtracting error from) the controlled quantity. The derivative term controls the
response to a change in the system. The larger the derivative term, the more rapidly the
controller responds to changes in the process's output. Its D term is the reason a PID
loop is also called a "Predictive Controller." The D term is reduced when trying to
dampen a controller's response to short term changes. Practical controllers for slow

processes can even do without D.



2.5 Empirical Model Identification

Empirical modeling method provides dynamic relationship between selected input and
output variables from experimental data. The models are determined by making small
changes in the input variable(s) about nominal operating condition and the resulting

dynamic response is used to determine the model. Empirical Model building procedure

is as in Figure 2.3.
Start
»  Experimental Design {®---"""-- -
A priori — v — 3
knowledge PlamExperlmﬂnt : ; '
‘ :
Determine Model | i
4 Structure T
Parameter Estimation E
Alternative : .ModélVériﬁ;&éﬁon’ﬁ_- B ARl >
data l

Completion

Figure 2.3: Empirical Model Building Procedure 2]

2.5.1 Experimental Design

As in Figure 2.3, the empirical modeling involves six-step procedure. The most
important is the first procedure which is experimental design. Basically this step

design will determines the shape, duration and base operating conditions for the



25.2

253

254

2.3.5

process. This will resulting in determine the condition about which the model is

accurate and magnitude of the input perturbation.

Plant Experiment

Plant experiment is executed as close as the actuai plan to ensure that the
disturbances during the experiment can be reduced. The operation is to be
monitored continuously to verify that the output is useful for identifying a
dynamic model. This is because variation in plant operation is evitable where

changes in other inputs during the experiment could make the data unusable.

Determining Model Structure

The purpose or goal of this procedure is to develop a model that describes the

input-output behavior of the process adequately for use in process control.

Parameter Estimation

Two methodologies used to determine values for the model parameters are
graphical technique and statistical principles. Both of these methods provide
estimation for parameters in transfer function models, such as gain, time

constant and dead time.

Diagnostic Evaluation

This procedure is to evaluate and determines how well the model fits the data

used for parameter estimation. Two approaches that can be used

s A comparison of the model prediction with the measured data

¢ A comparison of the result with any assumptions used in the estimation
method.

10



2.5.6 Verification

This procedure is performed to be sure that typical variation in plant operation

does not significantly degrade model accuracy.

2.6 The Process Reaction Curve

The process reaction curve method is used for identifying dynamic models. This
method involves the following four actions;
i.  Allow the process to reach the steady state.
ii. Introduce a single step change in the input variable.
iii. Collect input and output response data until the process again reaches
steady state.

iv.  Perform the graphical reaction curve calcuiation.

45 15
T 35 11
g =
v g
g E
2 25 7 &
5 S
=
% -
: 2
@ . =
:'g 15 48
& 35
Ed .
Z &
a2 2
£
§ 1o
5 . . .. B
o T 2o 3 40

Eme (min)
Daru is plonted in deviution veriables

Figure 2.4: Ideal Process Reaction Curve based on the assumption of

the output is first-order-with-dead-time [4]

The graphical reaction curve calculations consist of two methods namely Method I and

Method H. The general overview of these methods is as follows:

11



2.6.1 Methodl

45 . B 1]

Table 2.1: Parameters to be

S = maximum slope, i .
g pamm St "o calculated using Method 1
x
=] -
£ g | A
= k] . —
E o2 A 7% Process gain K,=—
3 ) s
5 15 3 = Time A
3 = 3 T=2
3 — | ot 3 Constant s
- B -1
-— & .
ettt “‘T“ Dead time 0
B . . E]
4] 14 24 a6 a0
time (min}
Data is plotted in devintion variables

Figure 2.5: Graphical approach for Method I [4]

2.6.2 Method II
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. i — 4 | Constant

_1 5
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— Table 2.2: Parameters to be
£ /—_ " calculated using Method 11
€ e 0,634 5
£ 5 A 7 % Process X A
] - =
] £ . r
& 2 gain o
H :

5 . b} Tosms . E Dead

s ' 0 =150, ~7

o T w 20 e “ag : time
tima {min) :

Data i plotred in devietion rarighles

Figure 2.6: Graphical approach for Method II [4]
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2.7 Ziegler-Nichols Open-Loop Tuning

To obtain the PID values used such as K., T; and Ty, the Ziegler-Nichols open-loop
tuning based on process reaction curve is used. The open loop method is based on a
measurement range of 0-100 and continuous control. This requires adjustments for

other measurement ranges and for the control interval in digital systems

2.8 Ziegler-Nichols Closed-Loop Tuning Correlation

Aside from using the Ziegler-Nichols open-loop tuning, Ziegler-Nichols closed-loop
tuning correlation is another method that could be used to obtain the values for each K.,
Ty and T4 The closed loop methods does not require adjustments, a big advantage,
since both process and controller are part of the test, but suffers from one major
disadvantage: Bringing the loop into stable, sustained oscillation is simply out of the

question for industrial processes.

2.9 Feedforward Controller

The purpose of a feedforward controller is for enhancing single-loop PID control
performance where disturbance is introduced. Feedforward uses the measurement of an
input disturbance to the plant as additional information where this measurement provide

an “early warning” that the controlled variable will be upset some time in the future.

The approach to designing a feedforward controller is based on completely
canceling the effect of the disturbance. It is important to note that the feedforward
controller depends on the models for the disturbance and the process. On the next page
is the block diagram of the process with the addition of a feedforward controller.
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Measured disturbance

R Controlled
Duls) - Gals)y CVals) variable, T

‘ + il

+ > CV(s)

Guls) ,

A

™

MV
Feedforward ©) Gp(s)

controller

CVg(s)

Figure 2.7: Simplified block diagram of feedforward compensation

Based on this block diagram, the equation (2.1) and equation (2.2) are obtained.

MV (s) - G,(s)

Gy(s)= 2.1
T Ds) G
Gy()=2VO _ g Tius] o 22)
D_(s) Ts+1
Where:
Lead-lag _Tus+l
Ts+1
. K,
Feadforward controller gain =K, = '
P
Controller dead time =0,=6,-6,20
Lead time =T, =1,
Lag time =T, =7,
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2.10 ANFIS

This is the major training routine for Sugeno-type fuzzy inference systems. Adaptive-
Network-based Fuzzy Inference Systems (ANFIS) uses a hybrid learning algorithm to

identify parameters of Sugeno-type fuzzy inference systems.

It applies a combination of the least-squares method and the back propagation
gradient descent method for training FIS membership function parameters to emulate a
given training data set. ANFIS can also be invoked using an optional argument for
model validation. The type of model validation that takes place with this option is a
checking for model overfitting, and the argument is a data set called the checking data

set.

2.11 Previous Work

The previous work is being referred to check and to understanding the steps and
method need to be used to complete the project. So far all the steps done are similar to

the previous project.

Previously there are two final year projects which are similar to this one. The first
one is where the neuro-fuzzy logic controller is trained for a single SP change (0-20%
opening of the valve) {11. The other one is where the neuro-fuzzy logic has been trained
with multiple set of input but it implements a switching concept [2]. Switching concept
here means that it applies three neuro-fuzzy logic controllers with each one of them
having data for a single SP change and operates by choosing either one of them based

on the SP changed required.
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CHAPTER 3
METHODOLOGY/ PROJECT WORK

3.1 Procedure and Identification

Identify model of feedforward-feedback
system
h 4

;

Process model

¥
Feedback PID
controlter design

v i
h
Feedforward-feedback controller design

v

Simulation, test, anatysis and comparison

¥

Figure 3.1: Method used to accomplish the objective of the project
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3.2 Tools and Equipments

The PID controller is designed using Simulink in MATLAB while the neuro-fuzzy
logic controller used the ANFIS Toolbox which is also in MATLAB. Aside from the
sofiware, equipment such as the SIM 305 Pilot Plant: Plant 6 (Appendix A) is used for
the plant experiment and data gathering.

3.3 Data Gathering

The data is obtained by doing plant experiment. As briefly discuss in the introduction
part, the data gathered is for the purpose of system modeling. The experiment consist of
two parts; one is to obtained data for building a feedback loop and the other one is to
obtained data the feedforward loop.

For the feedback loop, a small change is made at the input variable during the
plant experiment and the resulting output or dynamic response is analyzed. During this
experiment, the controller is set to operate in the manual mode. The experiment is done

to obtained result as shown below;

SN 305 Pilol
seripiieil 7 Feed o Wi L

Frasze Mode

vt

BMHAE TUSIFA IUENPM TIGSIAM  DIZHPM J2ESIPW  3ZR21PW ZRSIAM 29021RM
S002000  OUOAOS  SRRGO0S  SEMNNOSC  GOGD0Y  DOOAOID  SO0QN0B  BEDNOE B0

[vakm  jTem [ ate I

Figure 3.2: Result obtained from plant experiment
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Due to some technical problem with the Distribution Control System of the Pilot
Plant, the feedforward loop could not be retrieve using the plant experiment, Therefore,
the data requires to design the feedforward loop (the disturbance model) is taken from
the previous final year project (by Mohd Faizal Ja’afar) [1].

TIRFIPWM 1SEFT M TZRETPM A PW  1IRSIAE TR AWM RXZSIPM- RMEDIPM S3ESIW
v AGOR00F  AOMOOL  ADGGRTA  AGDODM  AGDONIM  AGOQ0Y  NERGAM

Figure 3.3: Result obtained from the previous final year project [1]

3.4 Data Processed

The data obtained from the experiment (the feedback loop data) is estimated using the
empirical modeling two methods (refer Chapter 2). From these methods, two transfer
functions will be obtained.

For the other data (the one retrieved from the previous final year project) [1], it

is used to generate a disturbance model and a feedforward controller.

3.5 PID Tuning

To obtain the PID values used such as K, T; and Ty, the Ziegler-Nichols open-loop
tuning and Ziegler-Nichols closed-loop tuning correlation based on process reaction

curve is used;
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Table 3.1: Ziegler-Nichols open-loop tuning

— TSR T
P-only (1/K,)/ (! 6) ; ;
PI 0.9/K,) (c/ 6) 3.30 ;
PID (12/K,) (! 6) 200 050

Table 3.2: Ziegler-Nichols closed-loop tuning correlation

| K. Ty Ta
P-only K./2 - -
PI K,/22 P, /12 -
PID Ko/ 1.7 P,/2 P,/8

Where K, = ultimate gain, and
P, = ultimate period

The ultimate gain and the ultimate period are obtained by running the
simulation in P-mode. The proportional value is varied until CV reaches a sustained
oscillation while the others, the integral and the derivative remain zero. Sustained
oscillation means that the oscillation did not grow nor decay but maintains at constant
amplitude. The proportional value that enables CV to reach the sustained osciliation is

the ultimate gain while the ultimate period is the time required for the sustained

oscillation to complete one oscillation cycle.

3.6 Disturbance Model and Feedforward Controller

The load disturbance has to be identified before the disturbance model and the
feedforward controlier can be implemented. In order to do so, all measured process

variable that are capable of being the load disturbance are evaluated with J
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Feedforward Variable Selection Criteria. Only the variable that satisfies all selection
criteria will be considered as the load disturbance variable, in which its model will then
be empirically obtained.

The feedforward controller is build based on the disturbance model construct by
the previous final year project (by Muhammad Faizal Ja’afar). In order to design the
disturbance model, the disturbance variable has to be identified first. Identification is
done by evaluating all measured potential variables in the pilot plant using the

Feedforward Variable Selection Criteria [1].

Table 3.3: Evaluation of Potential Feedforward Variables [1]

Poteirfial Distirbance Variables *-

Single loop control not satisfactory YES YES YES YES YES

The variable is measured YES YES YES YES YES

The variable indicates the key disturbance NO NO NO NO YES

No causal relationship between MV and
the feedforward variable

NO NO NO YES YES

Variable dynamics is not significant],
v gnﬁ 4 NO NO NO YES YES

faster than MV dynamics
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Figure 3.4: Feedback-Only Control Performance 1]
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Figure 3.5: Load Disturbance Reaction Curve Plotted from Data [1]
The load disturbance model parameters are calculated as follows: -
» Disturbance gain, Ky: -

= (124°C-479°C) = -55°C  =-17973.856 1]
17w is—11r"m* /s) 3067 m’ /s -
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Disturbance Dead time, 0 : -

= from observation = 40 seconds

Disturbance Time Constant, 14: -

= 1.5(tess - tages) = 1.5(156 - 113 seconds) = 1.5(43) = 64.5 seconds

3.7 Simulation Block and Testing

1]

(1]

Two controller designs are being used to test the parameters obtained using Ziegler-

Nichols open-loop tuning and Ziegler-Nichols closed-loop tuning correlation. The

designs are as in Figure 3.6 and Figure 3.7 below. The ‘Outl’ display the step change,
the controlled variable (CV) and the process variable (PV).

LT

Step

0.188
p PID » 0%{
210s+1
PD Controller Transter Fen Transport
(with Approximate Delay
Derivative)

Outt

Figure 3.6: The control process block diagram using a single block PID controller

0.185
210s+1

2

Transter Fen

Transport
Delay

215 foansant

2]

Figure 3.7: Similar control process block diagram but using different PID controller
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The major difference between these two designs is in the PID algorithm where
the equation (3.7.1) represents the PID block of Figure 3.6 and equation (3.7.2)
represents the PID block of Figure 3.7. The PID presented in Figure 3.7 is chosen since

the equation is recommended and proves to be more sufficient than in Figure 3.6.

MV(s)=P+L+Ds (3.7.1)
§

MV(t)= KC(E(t) +-}—I{, E("dr-T, dC.V(t))+ 1 (3.7.2)
T, dt

The controller is evaluated based on its performance. The performance can be
measured using several indicators. Figure 3.8 shows an example of SP change and the
resultant CV. From this figure, two indicators can be used to measure the controller

performance that is: (i) the decay ratio and (ii) CV overshoot.

18 . ' 4

Controlled
Variable

Retumn o set puint,
oo o st

o

o
-

o ] £ ] ! 1 |

o & 17 15 bivl 25 30 L) 40 44 &
Tme

Rise time

Figure 3.8: Typical CV response of a feedback control system to a step SP change
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3.7.1 The decay ratio

The decay ratio (DR) is the ratio of neighboring peaks in an underdamped CV response.
Usually, periodic behavior with large amplitudes is avoided in process variables;
therefore, a small DR is usually desired, and an overdamped response is sometimes

desired. Based on Figure 3.8, the DR can be calculated:

DR(%)= %xl 00%

where A = 1" peak
B =2" peak
The performance of the controller can only be accepted or classified as good if the DR
is less than 25%.

3.7.2 CYV overshoot

CV OS measures the performance at the output of the process. This quantity is
important as it determine the overall process performance. With large variations, the
process could take longer time to settle or reach steady-state and might not be
appropriate for certain process. Therefore a small CV OS is more appropriate and

applicable in process application. Based on Figure 3.8, the CV OS can be calculated:

CV (%) =-glx100%

where A = the highest value CV can exceed from the final steady-
state value

C = the final steady-state value

The performance of the controller is acceptable if the CV OS is less than 20%.
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3.7.3 MYV overshoot

Different with DR and CV 08, MV OS measures the performance at the output of the
controller. This quantity is of concern because the MV is also a process variable that
influences performance. There are often reasons to prevent large variations in the MV.
Some large variations can cause long-term degradation in equipment performance. In
other cases manipulations can disturb an integrated process. The overshoot of MV is
used to indicate how aggressive the controller has been adjusted. The overshoot is the
maximum amount that the MV exceeds its final steady-state value and is usually

expressed as a percent of the change in MV from its initial to its final value.

Manipulated
Variable

i
4] & 10 15 20 25 3 a5 AT 45 &0
Timie

Figure 3.9: Typical MV response of a feedback control system to a step SP change

From the Figure 3.9, the MV OS can be calculated:
MV (%)= %xl 00%

where C = the highest value MV can exceed from the final steady-
state value

D = the final steady-state value

The performance of the controller can only be accepted or classified as good if the MV
OS is between 50% - 150%.
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3.8 Generating Neuro-Fuzzy Logic Controller

To build the fuzzy-logic controller, a few steps need to be taken, especially regarding
the input to the fuzzy-logic block. An additional block is inserted into the simulation in
order to import the data required to the fuzzy-logic toolbox (ANFIS). In Figure 3.10, a
block is added that enables the data to be transferred to the workspace before it could
be called and used as training data of the ANFIS.

0.185
=
2105+1 ! &; Outt

Step Ti Integrator Tearster Fen Transport
Daiay

duidt

Derivative Td
Eror
T ey N
__’@ / Rate ofBror tendbads
\ W

Darivativet To Wodspa

Figure 3.10: An additional block added for the purpose of importing data to the
workspace

In Figure 3.11 below is the simplified methodology of generating an .fis file which is
used by the fuzzy-logic block in Simulink.

Import data to toolbox
: L S :‘- F B P}
Train the data

v
Create the .fis file

v
Load the data into the process block diagram

Figure 3.11: Simplified methodology to implement the neuro-fuzzy logic controller
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3.8.1 Data Import to ANFIS

The first step of creating the controller is by loading the data onto the ANFIS toolbox.
The data is presented in graphical form in Figure 3.12 below.

800

TooF 1
Rate of Eror

500 I

400+ 1
300 - 7.
2001 4 |

100

100 L ) : L :
0 50 100 150 200 250 300

Figure 3.12: Data to be used for training the neuro-fuzzy logic controller
When these data is loaded into the ANFIS toolbox, the plotted data is shown in Figure

3.13. Basically the data plotted is the output response. In this case, MV is the output

response while the error and rate of error is the input.

: TraiﬁingDatafdoo) L - aNesEn.

Figure 3.13: The plotted MV as it is loaded into the ANFIS toolbox
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3.8.2 Train the Neuro-Fuzzy Logic Controller

Before the data is trained, a networking between neurons needs to be established

between the input data (the error and rate of error). By generating the FIS structure in

the ANFIS toolbox, a mapping structure is established as in Figure 3.14.

Figure 3.14: The mapping structure obtained by generating the FIS.

Since ANFIS toolbox is used, the relationship between the inputs and the output

are defined automatically by the toolbox. No changes need to be done to the rules or

relationship. The next step is start training the data and obtains the result for the neuro-

fuzzy logic controller.
Teaining Emwer - AW, _
018
. ¥ of reuts: 2
LA #of gt 1
#0t bpul mts:
0171 58
: +
H
0.174 -
+
0172 *y - .
047 B R T Sinckre
o 5 1w 15 . MW X g | Sewrdl
. oo >
Losidts  ———] T GoneraleFts o;:mm = Tent Fs
Type. From: : . t, Method:
Traieiog Load from: disk bed Pt againgt:
Yesi itk Load trom worksp. Error Tokeancs: Trairting dals
i Grid partiion ¢ Tastng -
Checking  warksp. - Enochie: _w
e Sub. chatering 1% Checking dets
toadbats..  Cleat Db Genersle F15 ... - TrainMow Test How
|W\Q§iw-ﬂjm " Hel Close |

Figure 3.15: The plotted training result reduces error close to zero
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3.8.3 Creating the .fis File

After the training is completed, the trained neuro-fuzzy logic controller needs to be
saved as a .fis file. This is done to enable the neuro-fuzzy logic controller to be used in

the simulation.

3.8.4 Load the Trained Neuro-Fuzzy Logic Controller

In order to run the simulation using this controller, it has to be exported to MATLAB.

To do so, a MATLAB command needs to be executed as describe below;

>>fuzzy {file name.fis}

By doing this, a window will appear as in Figure 3.16.

\\ o .
eror ‘(U)
/ ( ’ .
raie, rror
[FBN&M: B _ IS Typar sugena
Andpathos wod : Curront Yariable
Or method —— i
' T
wploalion o Type
1| Aparegation K
[mmmmw _

Figure 3.16: The neuro-fuzzy logic relationship between the input and
output based on Sugeno type

The data can now be exported to the workspace. This can be done by:

>File = Export = To workspace
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As in Figure 3.17, the Simulink model can now be simulated when the fuzzy logic

controller has been loaded with the imported data.

: I Outi

31.5 |Consant

i I
L Ll
2109+1
Integrator Trander Fen Trangpor

Fuzzy Logic Delay
Controller

h 4

)

Step

Figure 3.17: A new process block diagram where PID is replaced with fuzzy-

logic controller

3.9 Design a training approach for the fuzzy logic controller to accept training

data more than one

From the two previous final year projects reviewed, in [1], the author managed to
implement the fuzzy logic controller for a single set point while the other, [2] uses a
switching concept to change the input/ output of the fuzzy logic controller for a few
ranges of set point. This project aims to implement the fuzzy logic controlier for a

certain range of set point without the use of switching.

Predetermined variable:-
Initial temperature =31.5°C
Maximum heat exchanger operating temperature = 70°C
Range of SP change =0°C-40°C

The maximum SP change is set to 40°C since the maximum value achievable for
the heat exchanger in the pilot plant is 70°C. For these training purpose two alternatives
has been tried out (Alternative 1 and Alternative 2).
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3.9.1 Alternative 1

The first method tried is by implementing a method as illustrated in the Figure 3.18

below.

Import data (set 1)

J 3 4 T

Train the Import data Import data Import data
controller (set 2) (set 3) (set4)
X ) X
h
On hold
h 4
Create .fis
file
A

Run the simulation to
test the controller

Figure 3.18: Methodology for Alternative 1

In the method above, 4 sets of training data are collected where each data represents a

different change of set point:

= Set 1(0°C - 10°C)
»  Set 2(0°C - 20°C)
= Set3(0°C - 30°C)
= Set 4(0°C - 40°C).
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3.9.2 Alternative 2

The second method tried is by implementing a method as iliustrated in the Figure 3.19
below.

Set 1 Set 2 Set 3 Setd

Import data

|

Train the
controller

v

Create fis file

|

Run the simulation to test the controller

Figure 3.19: Methodology for Alternative 2

Using the same set of data, another method is tried out where all the data is first
gathered before it is imported to the ANFIS toolbox. This method requires a little bit of
work where the data is arrange in one array and then export it to ANFIS toolbox. Below
is the detailed of the method since after some simulation test, the resulting output do

correspond with the desired output.
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CHAPTER 4
RESULT AND DISCUSSION

4.1 The Process Transfer Function

Using the data from plant experiments, two transfer functions are obtained based on
Method I and Method II (refer Chapter 2).

Transfer function 1 (TF1)
Y{s) _ 0.185¢7*
X(s) 210s+1

Transfer function 2 (TF2)
Y(s) _ 0.185¢%
X(s) 90s+1

Each of the transfer function is tested in open loop approach in order to
determine which one closely represents the process reaction curve (plant experiment).
The percentage or the rate of difference between the models is used to compare
between these two transfer functions. The one yields the less diff is chosen. TF1 is
chosen as the transfer function because it yields 51.16% difference compared to TF2
with 51.46%. The values are rather high because the calculation is done by estimating
the data since the actual data is corrupted (refer to Appendix B).

4,2 Testing the PID Controller

As mentioned in Chapter 2, two tuning methods have been used in this project to

determine the PID controller parameters. The calculated PID parameters are as in the
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Table 4.1 and Table 4.3 below. The simulation has been run in three modes (P-only, PI

and PID) to verify which mode satisfy and yield the most effective result.

Table 4.1: Calculated variables for PID using Ziegler-Nichols Open-loop tuning

K¢ Ty Ta
P-only 1.08108 - -
Pl 24.32432 138.6 -
PID 32.43243 84 21
BG T e | T T T T T T T
"M "!‘\:“""-:v,_‘___) et R S— o
Py — Controlled |
20k -
0

1] 100 200 300 400 500 600 700 80O 900 1000

400
300
200}

100} /-\__/__ Manipulated
U

_1 OD 1 1 1 Il 1 1 1 i H 1
0 100 200 300 400 500 600 700 900 900 1000

Figure 4.1: The transient response of the feedback control system to a step set
point change (using Z-N Open-Loop Tuning)

Figure 4.1 shows the resulting simulation using Ziegler-Nichols Open-loop tuning
method. The measured performance is as in Table 6 below:

Table 4.2: The performance check using Z-N Open-Loop Tuning

Indicator | Values
DR =17%
CVOS =54.75%
MV OS = 593.63%
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Table 4.3: Calculated variables for PID using Ziegler-Nichols Closed-Loop

tuning correlation
Kc Ty Ta
P-only 23 - -
Pl 20.909 129.4248 -
PID 27.0588 77.6549 19.4137
BU T r‘“!\ﬂa T 1 T L] T T L]
ifl.s‘ e T S e - N
4 ]
¢ .
ﬂ ]| 1 1 | 1 1 1 1 L
0 100 200 300 400 4500 600 700 4800 900 1000
300
200 +
100+
\ /’\
0= R
-100 i 1 1 1 1 1

1 L et 1
0O 100 200 300 400 500 600 700 800 900 1000

Figure 4.2: The transient response of the feedback control system to a step set
point change (using Z-N Closed-Loop Tuning Correlation)

Figure 4.2 shows the resulting simulation using Ziegler-Nichols Closed-loop tuning

~ correlation method. The measured performance is as in Table 8 below:

Table 4.4: The performance check using Z-N Closed-Loop Tuning Correlation

Indicator | Values
DR = 8.69%
CV 0OS =44,9%
MV 0S = 506.04%
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From the result obtained, the PID parameters obtained using Ziegler-Nichols
Closed-Loop Tuning Correlation is used since it yields less percentage in every
performance indicator measured. These parameters requires further fine tuning in order
to have the desired performance within the setting range (DR less than 25% and CV OS
less than 20%).

43 Fine Tuning

Fine tuning is conducted to modify the PID parameters so that it could perform to the
required output. The objective is to adjust the parameters so that the CV obtained have
less than 20% overshoot and the decay ratio is less than 25%.

Table 4.5: The initial values to be used for fine tuning

K¢ T; Ta
Pi 20.909 129.4248 -

The fine tuning emphasizes the concept of trial and error. The tuning process
requires one parameter to be constant while the other one is tuned. This is done to
observe the effect of changing one parameter to the output of the process. Below is the

result of tuning the PID controller and CV response.

Table 4.6: The values obtained after the fine tune

Initial After Tuning
P (Kc) 20.909 18.5
I(Ty) 129.4248 180
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Figure 4.3: Tuning using Pl-mode

It is decided that the derivative mode should be activated and the impact is it reduces

the CV overshoot peak.

Table 4.7: The finalized values obtained after the fine tune with addition of Tp
Initial After Tuning

P (K¢) 20.909 18.5
I{Ty) 129.4248 180
D (Tp) 0 2
13
12t ‘ f‘-.\
! CV overshoot =21.0%
T | Decay ratio = 13.5%

temperature (celcius)

'S

|

]

1

2l

| jE
L 1 1 (1 1 1 1 1 1 1

ua1mmn3n4mmu5mmamsmlmu

time {g)

Figure 4.4: Tuning using PID-mode
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The result obtained after tuning the PID controiler above is closer to the
conditions set priority i.e. (CV OS <20% and DR < 25%) however based on the graph

shown in Figure 4.4, the settling time is longer compared to the PI-mode.

4.4 Feedforward Controller

The feedforward controller is build based on the disturbance model construct by the
previous final year project (by Muhammad Faizal Ja’afar).

Feedforward controller is not a PID algorithm, but is a control equation that
relates the load disturbance and the process. Calculation on the feedforward control

equation is shown below: -

o Feedforward controller gain, K¢ = -Ky/K,
=.(-17973.856 / 0.185)
=97155.97838

»  Feedforward controller dead time, O = 04- 0,
=40-42

= (} second since 05> 0

s Feedforward controller lead time, Ty =71

= 210 seconds

=  Feedforward controller lag time, Ty, =14
= 64.5 seconds

= Lead/lag algorithm = (TieaaS + 1)/ (Tiags + 1)
=(210s + 1)/ (64.5s + 1)

Thus, the feedforward control equation is as follows: -
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Gy(s)=- G,(8) _ g ﬁ[ﬁe_aﬁjtl_]ews

Gp(s) TS +1
Gy (s) =97155.97838 2105+1 ]
64.55+1

The block diagram in Figure 4.5 is the block diagram with the addition of
disturbance model and feedfoward controller. With the addition of these block diagram,

the process loop is completed.

Digurbance Model

-179¥3.856 %
=
84,551

Dead Time

B N ey B

Gain Fesdrowand Transport

Dolay2
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Integratorz

¥

0.185 2N -
’ O' : 210541 ’ . ’ (J TN
Frocess Trnsport
Delay

Btep

4wt 21

Derivalive Td

Emor

»
1T Integrat of Error : Toedbad
Integrator! g

Figure 4.5: The complete process block diagram

Two tests are conducted to observe the performance of the feedforward
controller against the disturbance. The first test is done by disconnecting the
feedforward controller from the process to observe the effect of the disturbance (Figure
4.6). The second test is conducted with the feedforward controller connected to the
process to observe how effective the feedforward controller overcomes the disturbance

(Figure 4.7).
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Figure 4.6: The effect of disturbance to the process
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Figure 4.7: The effect of disturbance to the process is reduced by the
feedforward controlier
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4.5 Training Feedback Neuro-Fuzzy Logic Controller

The neuro-fuzzy logic controller is trained using 4 sets of training data:
v Setl(0%-10%)
= Set2(0%-20%)
= Set3(0%-30%)
= Set4 (0% -40%)

4.5.1 Alternative 1 vs Alternative 2

Two alternatives have been proposed earlier in Chapter 3. Each alternative has been
tried out a few times and being compared to choose which is the most suitable for the
training purpose. From trials, it seems that Alternative 1 is not suitable to be used. This
is because by doing multiple training to the ANFIS tootbox, the recent data inserted and
train will be the one used as the default data and all the previous data inserted will be
deleted automatically. This means that the fuzzy logic controller will only corresponds
to set 4, where the output will reach steady-state at about 71.5°C. Using Alternative 1,
the controller can only be used for a single SP change related to the latest training set.
Other SP changes will cause the CV to be oscillatory and does not reach zero offset

steady-state.

4.5.2 Alternative 2 to Train the Controller

Alternative 2 is the method where all data are arranged and combined to form a
compiled set of data. These data is the combination of data from Set 1 to Set 4. In
Figure 4.8, the compiled training data is shown loaded onto ANFIS toolbox.
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Figure 4.8: How the training set is input into the ANFIS toolbox

This method overcomes the weakness of the first method (Alternative 1) where each

data inserted into the ANFIS toolbox are stored and none of them is overwritten.

42



4,6 Performance Check and Comparison

The neuro-fuzzy controller is simujate with multiple step change to observe the
performance and it is being compared with the PID controller. Two variables are used

as benchmarks (CV overshoot and decay ratio) to compare or evaluate the controllers.

Table 4.8: Performance check with step change of 23% of valve opening

Step change =0 % -23 %
TEMP (°C) % OPENING
B0 T T T ¥
f/\\\ CV overshoot:
] 8.9%
{ —20
PID il {
Controller . .
! Decay ratio:
Lo
ul ‘ / | 6.19%
.
A
qu 1(;0 2(;[1 3[3'] 4(')0 560 6I;NJ TlI)D 860 960 1600
TIME (S)
TEMP (*C) 25 OPENING
GG T T u T T T T T 1
/f\ CV overshoot:
| !f - 9.14%
Fuzzy-Logic f ]
Controller / .
| Decay ratio:
| i 6.43%
Yo Wm0 30 40 %0 00 700 600 @00 000
TIME {S)
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Table 4.9: Performance check with step change of 15% of valve opening

Step change =0%-15%
TEMP (°C} % OPENING
50 T T T T T T T -
I\
: / T e CV overshoot:
PID | 6.8%
Controller ]
A0 - c o
‘ / Decay ratio:
oy 6.33%
i
—— J::}
0 L L L L L . 1 |
o W0 200 300 400 500 500 700 800 900 1000
TIME {S)
TEMP (°C) % OPENING
50 T T T
A
N / N
] ! CV overshoot:
} 7.05%
Fuzzy-Logic ol ' !
Controller {,
. Decay ratio:
! f 5.8%
aﬂﬂ 160 ZIIJD 3130 4;}0 5;!0 8;]0 Tlllﬂ Ba[] 960 1000
TIME (S)

Based on Table 4.8 and Table 4.9; the performance of the neuro-fuzzy logic

controller is compared with the PID controller. From these result, it shows that the

performance of the controller is comparable to the PID controller since the CV

overshoot and the decay ratio are nearly the same.

Based on the overshoot it can be concluded at this stage that the PID controller is

better since the overshoot is less compared to the neuro-fuzzy logic controller,



However, the neuro-fuzzy logic controller can now perform at difference SP change.
The difference in performance maybe due to the range of training sets. The neuro-fuzzy
logic controller might work at the same level or better that the PID controller if the

number of training set increases.

4.7 Neuro-Fuzzy Logic Controller for Feedforward Controller

The neuro-fuzzy logic controller for the feedforward system does not yield a good
result as for feedback controller. This probably because the feedforward controller is
not a PID controller likes the feedback controller.

The ANFIS toolbox failed to build a network between the data that relates to the
feedforward. This might be due to the nature of the feedforward controller where the
corrective action is done before the disturbance occurs. The ANFIS could not recognize

a sudden change of one data when the others are constant.

Table 4.10: Data used to train neuro-fuzzy logic controller for feedforward

controller

Size of Rate of Change in | Outputof | Output of Feedforward:

Disturbance | Disturbance Size | Disturbance Model | Controller
|10 0 0 1}

0 0 0 0

0.00056 0 0 0

0.00056 0.00448 0 168

0.00056 0.00896 0 154.75

0.00056 0.01344 0 143.04

0.00056 0.01792 0 132.71

0.00056 0.0224 0 123.57

0.00056 0.02688 -1.1741 115.5

0.00056 0.03136 22112 108.38

It is shown in Table 4.10, that the data available to be used to train the neuro-
fuzzy logic controller is insufficient to create a logical relationship. The change at the
controller output could not be related to other data changes thus producing a large

training error for the neuro-fuzzy logic controller (unacceptable).
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CHAPTERSS
CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

The aim of this project is to improve the performance of the neuro-fuzzy logic
controller for the heat exchanger temperature control. The improvement is on the
design of the controller for the heat exchanger so that the neuro-fuzzy logic controtler

can be operated for the whole operating range or set points of the heat exchanger.

Theoretical knowledge in heat exchanger, PID controiler, neural network and
neuro-fuzzy logic controller is emphasized and being the main scopes of the study in

order to complete this project.

Based on the resuits, it can be concluded that the neuro-fuzzy logic controller has
been improved and can perform well over several difference SP changes by training it
with multiple set of training data. The comparison between the PID controller and the
neuro-fuzzy logic controller shows that these controllers are close to each other in terms

of performance.
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5.2 Recommendation

Technically the neuro-fuzzy logic controller could be improved more by selecting the
appropriate training set of data. In this project, four sets of training data have been used
to train the neuro-fuzzy logic controller to replace the PID controller. Even though the
performance is lesser than the PID controller if viewed from the CV overshoot and the
decay ratio but still it performed under the acceptable range of CV overshoot (< 20%y}
and decay ratio (<25%).

The feedforward controller actions theoretically differ with the feedback
controller. A further studies need to be done to the feedforward controtler in order to

implement a neuro-fuzzy logic controller for the feedforward controlier.

In the near future, if possible, the project could be extended by implementing
both controllers in one process loop where these controllers works together to perform

or to produce a better result.

Real-time

»
Neuro-Fuzzy Process

Logic Controller >

Training

Real-time
. PID Controller

>

Figure 5.1: Proposed controf strategy with two controllers working together
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APPENDIX B

This appendix shows the detail of determining the rate of difference for TF1 and TF2
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APPENDIX B

-The PRC in numerical data,

-These data is estimated from the curve because the actual data is corrupted.
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Open-loop Simuiation Result for TF1 and TF2
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APPENDIX B
The numerical data from open-loop simulation for TF1 and TF2
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APPENDIX B

Both transfer function (TF 1 and TF 2) is compared to the PRC and the absolute
difference between them and the PRC are calculated. It is repeated for an increment of
Isecond until they reach steady — state.

Y [temp(TF) - temp(PRC)]
Area( PRC)

x100%

Diff (%) =

Percentage diff (%) = 364.55/712.5

TF 1 = 51.16%
Percentage diff (%) = 366.56/712.5
TF 2 = 51.46%
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APPENDIX C

The simulation block diagram (i) PID controller + feedforward controller and (ii)

neuro-fuzzy log

troller
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