
PIC BASED CONTROLLER AREA NETWORK (CAN)

By

AZHANI AHMAD SHAFEI

Final Report

Submitted to the Electrical & Electronics Engineering Programme

in Partial Fulfillment ofthe Requirements

for the Degree

Bachelor ofEngineering (Hons)
(Electrical & Electronics Engineering)

Universiti Teknologi Petronas

Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

© Copyright 2007

by

Azhani Ahmad Shafei, 2007

it

CERTIFICATION OF APPROVAL

PIC BASED CONTROLLER AREA NETWORK (CAN)

Approved:

by

Azhani Ahmad Shafei

A project dissertation submitted to the
Electrical & Electronics Engineering Programme

Universiti Teknologi PETRONAS
inpartial fulfilment of the requirement for the

Bachelor ofEngineering (Hons)

(Electrical & Electronics Engineering)

Assoc. Prof Dr. Varun Jeoti Jagadish

Project Supervisor

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

June 2007

in

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and acknowledgements,

and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

Azhani Ahmad Shafei

IV

ABSTRACT

The field of automation and control is constantly expanding and with that the

complexity in automation and control system has also been increasing. The
complexity ofcontrol systems and the need toexchange data between them mean that
moreand morehard-wired, dedicated signal lineshaveto be provided. The challenges

faced inautomation and control system is thecomplexity of wiring, thecomplexity of

the system itself and its reliability in harsh environment. Controller Area Network
(CAN) provides solution in dealing with complexity of networking. CAN is also
growing in popularity due to its ease of use and low costs in implementing them.
CAN isas simple to use as a serial UART, and currently the cost ofCAN controllers
is still decreasing. The implementation of CAN not only covers the car and
automation industries, but also into fields such as medical instrumentation and

domestic appliances. One ofthe CAN microcontrollers available inthe market is the
Microchip's PIC18 family. The project's goal is to set up Controller Area Network
(CAN) by utilizing the Microchip's PIC18. Microchip's MCP2551 CAN transceivers
are used to interface the CAN controllers with the CAN bus. C language program is

writtento controlthe microcontrollers. The C program is translated to HEXfile using

CCS compiler. The HEX files are downloaded onto the microcontrollers. The traffic
of the transmission of the messages is monitored using HyperTerminal. The

microcontrollers are able to send messages among them using the CANmodule. The

ID ofthe message transmitted from one microcontroller matches the ID received from

the receiving microcontroller. This work demonstrates a CAN network built using

PIC microcontrollers.

ACKNOWLEDGEMENTS

My deepest gratitude goes to supervisor Assoc. Prof Dr. Varun Jeoti for his useful

advices and for his time spent on me for the past few months. I appreciate the

opportunity he has given me to work under him for this project which has given me

new insight and experiences in new area.

Special thanks to Mr Patrick Sebastian Ms. Noorashikin Binti Yahya for their kind

gestures in lending me their knowledge and expertise to carry out the project. Not

forgetting Ms. Nasreen Badruddin for her kind help to entertain me. Not forgetting

EE FYP committee especiallyto Ms. Azrina and Ms. Hawa for their hospitability.

Appreciation also goes to the technicians, Miss Siti Hawa and Miss Siti Fatimah for

all their help and their guidance throughout the process. Thanks to classmates for

giving their view and ideas and feedbacks through some useful and enlightening

discussions.

Last but not least, my love and appreciation goes to all individuals, friends and

families who gave endless support and help for these past few months.

vi

TABLE OF CONTENTS

LIST OFFIGURES ix

LIST OF TABLES..... x

CHAPTER 1INTRODUCTION l

1.1 Background ofStudy • 1

1.2 Problem Statement 2

1.3 Objectives and Scope ofStudy 2

1.3.1 Objectives • 2

1.3.2 Scope of Study 3

CHAPTER 2 LITERATURE REVIEW 4

2.1 Controller Area Network 4

2.1.1 Example ofCAN Application in industry 5

2.2 CAN Physical Layer 5

2.3 Medium AccessControl 6

2.3.1 CSMA/CD 7

2.3.2 Bus Arbitration 8

2.3.3 Frame Formats 9

2.4 Microcontroller 10

2.4.1 PIC18F458 u

2.4.2 CAN modes ofoperations 12

2.5 CAN transceivers MCP2551 12

2.5.1 MCP2551 modes of operations 13

2.6 PIC18xxx8 CAN Functions 14

2.7 WirelessCAN i4

2.7.1 RFMAC I4

2.7.2 WMAC I5

2.7.3 On-OfTKeying - 15

CHAPTER 3 METHODOLOGY 16

3.1 Procedure I6

3.2 Tools I7

3.2.1 Software 17

3.2.2 Hardware I8

vn

CHAPTER 4 RESULTS AND DISCUSSIONS 19

4.1 Hardware Implementation 19

4.1.1 Loopbackmode 19

4.1.2Normal mode 21

4.2 Communication between two microcontrollers 24

4.3 Communication between three microcontrollers 26

4.3.1 Writing Cprogram 27

4.3.2 Result 30

CHAPTER 5 CONCLUSION & RECOMMENDATION 33

5.1 Conclusion.... 33

5.2 Recommendation 33

REFERENCES 34

APPENDICES • 35
Appendix APIC18FXX8 Data sheet 36
Appendix BMCP2551 Data sheet 37
Appendix CPIC18FXX8 CAN Driver with Prioritized Transmit Buffer

38

Appendix DCCode: ex can.c 39
Appendix E C Code for Communication between Two
Microcontrollers :Node.c 40

Appendix F C Code for Communication between Three
Microcontrollers: StationAx 41

Appendix G C Code for Communication between Three
Microcontrollers : Stationb.c • 42

Appendix H C ode for Communication between Three
Microcontrollers : Stationc.c 43

Appendix I Hardware Connection 44

vm

LIST OF FIGURES

Figure 1Block diagram ofaAEAS-7000 with CAN interface 5

Figure 2 Block diagram ofa CAN network 6
Figure 3Examples ofmultiple access protocols 7

Figure 4 CSMA/CD Procedure [8] 8
Figure 5Bit arbitration mechanism in CAN [11] 9
Figure 6The CAN 2.0 Bdata frame 9
Figure 7The PIC18458/448 Pin Diagram 12
Figure 8The MCP2551 Pin Diagram 13
Figure 9 Modification made to the EX_CAN.c 19
Figure 10 Block diagram ofCAN hardware for loopback mode 20

Figure 11 Screen capture for loopback mode traffic 20
Figure 12 Block diagram ofCAN hardware for normal mode 22
Figure 13 Modification made to the EX_CAN.c for normal mode 22
Figure 14 Schematic ofcontrollers and transceivers circuit 23

Figure 15 Schematic ofMAX232 circuit.. 23
Figure 16 Communication between the microcontrollers 25

Figure 17 Display atHyperTerminal atNode A 25
Figure 18 Communication between Node A, Node Band Node C 26

Figure 19 Operation between Node A, Node Band Node C 27

Figure 20 Flowchart for program Node A - 28
Figure 21 Flowchart for program Node Band Node C 29
Figure 22 Screen capture for Node A(sending message toB) 30

Figure 23 Screen capture for Node B 31
Figure 24 Screen capture for Node C 31

ix

LIST OF TABLES

Table 1 The CAN2.0B dataframe field nameand purpose 10

Table 2 PIC18 Family Feature Summary U

Table 3 PIC18xxx8 Function Index 14

CHAPTER 1

INTRODUCTION

1.1 Background of Study

The field of automation and control is constantly expanding with the introduction of

innovative techniques, particularly with the advent of lower cost and higher technology tools.
Day by day, the complexity in automation and control system has been increasing. For
example in a car automation system, there is the need to control many electronic systems.
Anti-lock Braking, Engine Management, Traction Control, Air Conditioning Control, central

door locking, and powered seat and mirror controls are just some examples. The complexity
of these control systems, and the need to exchange data between them meant that more and

more hard-wired, dedicated signal lines had to be provided. Sensors had to be duplicated if

measured parameters were needed by different controllers. Apart from the cost of the wiring
looms needed to connect all these components together, the physical size of thewiring looms

sometimes made it impossible to thread them around thevehicle. Inaddition to the cost, the

increased number of connections posed serious reliability, fault diagnosis, and repair

problems during bothmanufacture and in service.

Same can be said to automation and control in other industrial system. Some ofthe examples

are Marine control and navigation systems, elevator control systems, agricultural machinery,

production line control systems, machine tools, photo copiers, medical systems, paper
making and processing machinery, packaging machinery, and textile production machinery.

All these automation and control system will benefit if there is a controller which helps

reduce the complexity of wiring while reliable and is costeffective.

1.2 Problem Statement

The challenges faced in automation and control system is the complexity of wiring, the
complexity ofthe system itself and its reliability in harsh environment. CAN is growing in
term ofpopularity for it is cost-effective and proven reliability and robustness, CAN is now

also being used in many other control applications.

Controller Area Network (CAN) is inexpensive and durable. The control unit can have a

single CAN interface rather than analog and digital inputs to every device in the system. Each
of the devices on the network has a CAN controller chip and is therefore intelligent. All

devices on the network see all transmitted messages. Each device can decide if a message is

relevant or if it should be filtered. In addition, every message has a priority, so if two nodes

try to send messages simultaneously, the one with the higher priority gets transmitted and the

one with the lower priority gets postponed.

With this functions and features, CAN seems like a perfect candidate in automation and

control system. At the moment there are few companies that produces CAN controller. One
ofthe products available inthe PIC family from Microchip includes PIC18F458, PIC18F258,

PIC18F448, and PIC18F248.

1.3 Objectives and Scope of Study

1.3.1 Objectives

Based on the problem discussed, the project proposes a Controller Area Network to build

based on PIC microcontroller.

The objectives of this project are:

• To be ableto explain the concept behind the Controller AreaNetwork

• To be able to explain the concept of the Medium Access Control which determines

the access to the transmission medium

• To be able to implement and built hardware network of Controller Area Network

using MicrochipPICmicrocontroller.

1.3.2 Scope ofStudy

The scope ofstudy will divided into two parts. First is the understanding and research part
which includes exploration in the concept of Controller Area Network and the Medium
Access Control (MAC). After that research is continued on Microchip PIC, its function and

utility.

The next part is the implementation part which includes programming using Clanguage and
building the hardware and alongside testing the circuit's and network behaviour.

CHAPTER 2

LITERATURE REVIEW

2.1 Controller Area Network

Controller Area Network (CAN) is a serial bus system. The system helps communicate
several intelligence devices, for example sensors and actuators. These devices or CAN nodes
cantryto transmit dataat anypoint of the time [1].

CAN provide an inexpensive, durable network that helps multiple CAN devices
communicate with one another. Basically, the CAN Controller implements the CAN

specifications in hardware. CAN protocol is a CSMA/CD (Carrier Sense Multiple
Access/Collision Detection) protocol. The protocol basically lets the nodes check the bus
activity for a period before sending messages on the bus (Carrier Sense). If there is no
activity, all nodes have an equal opportunity to transmit amessage (Multiple Access). Iftwo
nodes start to transmit at the same time, the nodes will detect the collision and appropriate

actions will be taken (Collision Detection) [1].

To solve the collision, bitwise arbitration is utilized. Logic states are defined as dominant
(logic bit 0) and recessive (logic bit 1).Transmitting nodes will need to check whether the
logic state out from its node appear in the bus. Dominant bit state will always win the
arbitration over the Recessive bit state thus will be able to transmit its message across the
bus. The lower the value in the Message Identifier, the higher the message priority. The node

that lost the arbitration will haveto stoptransmitting its message [1].

2.1.1 Example ofCANApplication in industry

CAN bus are first implemented in automotive applications but it has gained popularity in
industrial automation, medical equipment, test equipment, and mobile machines. Other
applications where CAN bus is successfully implemented are Maritime electronics, aerospace
electronics, Uninterruptible Power Supply (UPS), Elevator control, Exercise equipment, and

much more. [10]

One ofthe applications that utilizes PIC microcontroller is the implementation ofCAN for
AEAS-7000. The AEAS-7000 is a 16-bit gray code Absolute Encoder backbone with SSI
(Synchronous-Serial-Interface) communication interface. [10] There are other
microcontroller which has CAN feature in the market. One of them is CC01 from Phycore.

[93

Microcontroller
PIC18F258

T
AEAS-7000

CAN Transceiver

MCP2551

Z\

to

CD

<

<7

Figure 1 Block diagram ofa AEAS-7000 with CAN interface

2.2 CAN Physical Layer

The physical layer used to implement CAN network is a differentially driven two-wire bus
line with a common return. The two wires are called CANH and CAN_L. The CAN bus

must be terminated at both ends byresistors with recommended value around 124 ohms [1].

124 ohm

CAN

NODE A

CAN

NODEC

CAN

NODE 8

Figure 2 Block diagram of a CAN network

CAN H

124 Ohm

CAN L

2.3 Medium Access Control

The Media Access Control (MAC) sub layer is the part ofthe OSI network model data link
layer that determines who is allowed to access the physical media at any one time. It acts as
an interface between the Logical Link Control sub layer and the network's physical layer. [1]

The Medium Access Control controls access to the transmission channel. Its purpose is to
cope with problem oftwo or more stations sending data at the same time either by preventing
the problem from happening or by recognizing the collision between

data.

Multiple access
protocols

i I

Random access

protocols

Controlled-

access protocols

Channelization

protocols

~ MA

- CSMA

" CSMA/CD

L CSMA/CA

— Reservation

~~ Polling

Token Passing

~ FDMA

- TDMA

L CDMA

Figure 3 Examples ofmultiple access protocols

Many protocols have been devised to handle access to shared link. They are categorized into
three groups as shown in Figure 2. Random access protocol gives the right to medium
without being controlled by other stations. The problem faced is access conflict between data
frames when more than one station tries tosend. In controlled access, the stations consult one
another to find which station is authorized to send. Channelization is the method which the
available bandwidth ofa link is shared in time, frequency, orthrough code between stations.

[8]

2.3.1 CSMA/CD

The Medium Access Control mechanism in CAN is classified as CSMA/CD. CSMA/CD
(Carrier sense multiple access with collision detection) is modification of CSMA. In this
method, any station can send a frame. The station then monitors if the transmission is
successful. If there is collision, the frame needs to be transmitted again. To reduce the
probability of collision the second time, the station waits for an amount of time between 0
and 2N x maximum propagationtime. [8]

Wait backoff

time

c

No

Backoff

limit

Yes

Abort

X

Increment

backoff

Figure 4 CSMA/CD Procedure [8]

Sendjam
signal

Start

Set backoff to

zero

Persistence

strategy

Send the frame

Yes
Collision

-No

Success

2.3.2 Bus Arbitration

The identifier in a CAN message defines the priority of the message and is the basis for the

medium access control for CAN. The operation is as follow.

• Station detects the bus is free for transmission. If free, then the station

transmits

• During transmission, the station will keep monitoring thebus

• If, during the transmission of the Arbitration field, the node attempts to

transmit a Recessive Bit but it detects Dominant Bit on the bus, it stops the

transmission and wait for the bus to be free again before retransmitting

data.[l]

0 0

resulting bus level rfinfissivfl

bus 1

1

0 1 1 0 1 1 0

-
0A 0 1 1 1

ID=319=0100111111

|
0 0B 1 0 1 1 0 t 1 1

ID=311=0100110111

I 1
0 0C 1 0 1 1 0 1 1 0

ID=310=0100110110

* 1s Aloses }
B loses

Moses 3 lose

node A nodeB nodeC

Figure 5 Bitarbitration mechanism inCAN [11]

2.3.3 Frame Formats

In order to perform its operation, the data are transmitted as data frames. There are two
different formats for data frames, 11-bit identifier message and 29-bit identifier message. [1]

Arbitration Fieid Control Field Data Field CRC Field Ack. Field

—•* •
•4 P"* ^ *•

s 11-bit R I r Data Bytes 15-bitsCRC E

0

F

identifier T

R

D

E

o
DLC

U

F

Figure 6 The CAN2.0 B dataframe

Field Name

Start of Frame (SOF)

Identifier

Remote Transmission Request

(RTR)

Identifier extension

Reserved bit (rO)

Data Length Code (DLC)

Data field

Cyclic Redundancy Check (CRC)

Acknowledgement field

End ofFrame (EOF)

Length

(bit)

1

11

8

bytes

15

1

Purpose

Synchronization

Establish message priority and identity

If set to Dominant, frame contains data, if set

to Recessive, frame is empty.

If set to Dominant, frame is standard 11-bit

identifier, if set to Recessive, frame has 29 bit

identifier.

For fiiture use

Holds data byte count for message

Holds data

Error checking

Used to ensure message has been successfully

received by other nodes

Must be recessive

Table 1 The CAN 2.0 B data frame field name and purpose

2.4 Microcontroller

A microcontroller isa complete computer system that consists ofthe processor, memory and

I/O peripheral in single silicon [2]. It is capable ofperforming various tasks replacing the

high-end microprocessor.

There are a few microcontrollers in PIC family from Microchip that has CAN solution. This

PIC family from Microchip includes PIC18F458, PIC18F258, PIC18F448, and PIC18F248.

The microcontroller and its features are summarized in figure below.

10

Device

Program Memory
Data Memory

I/O

10-

bit
A/D

(ch)

1
a
a.

E
o

o

CCP/

ECCP

(PWM)
MSSP

<
CO
3

Timer

s 8/16-

bitFlash

(bytes

)

Single-
Word
Instructions

SRAM

(Bytes

}

EEPR
OM

(Bytes

)

SPI

Mast

er

I2C

PIC18F248 16K 8192 768 256 22 5 —

1/0 Y Y Y 1/3

PIC18F258 32K 16384 1536 256 22 5 —
1/0 Y Y Y 1/3

PIC18F448 16K 8192 768 256 33 8 2 1/1 Y Y Y 1/3

RC18F458 32K 16384 1536 256 33 8 2 1/1 Y Y Y 1/3

Table 2 PIC 18 Family Feature Summary

2.4.1 PIC18F458

PIC18F458 has a high performance RISC (reduced instruction set computer) CPU with 33
I/O pins. It has CAN bus module features with message bit rates up to 1Mbps. It conforms to
CAN 2.0B specifications with 29-bit identifier fields, 8-byte message length, 3 transmit
message buffers with prioritization, 2 receive message buffers, 6 full, 29-bit acceptance
filters, prioritization ofacceptance filters, multiple receive buffers for high priority messages
to prevent loss due to overflow and advanced error management features [3].

The PICF458 supports communication using RS232 as a serial communication between the
microcontroller and PC. This form of communication needs MAX232 as driver that acts as

level voltage converter.

While having all the functions the other microcontroller has, PIC18F458 has bigger data
memory and program memory size. PIC 18F458 also has more I/O channels ad more A/D
channels.

11

MCLfW?P
RAOfAHO/CvaEF

RA1/AM
RA2'AN2/VR=F-
RA3/A !*•* 3?VRE=+

RA4rrncK^

RA5.'AMi.'S3,a_V'Dni
RE£/AiS5.'RD

RE1/AN6/VVR>'CIOUi
RE2'AM7/C5/C20UT

V3D
VSS

OSC1/CUG
OSC2/CLKC/RA6

RC0/T1OSCyT1CK:
SC1/T10S?
RC2/CCP1

RCS'SCfc'SCL
RDa'PSP0f"C1IM+
RQVPSPI.'CIIN-

Figure 7 ThePIC18458/448 PinDiagram

RB7/PGD
RB6-FGC
R65/PGM
RB4
RB3.CANRX
RB2/CAHTX/INT2
RB1/INT1
RBO/INTO
VCD
V'SE
RC7.'PSP7.'P1D
RC6.'PSP6?P1C
RC5.'PSP5:P1B
RD4?PSP4,'ECCF1/P^
RC7/RX/DT

RCEjTXTCK
RCS/5DG

RCi.'SD!/SDA
RD3/PSP3fC2lt-4-
RD2/PSP2/C2IN+

2.4.2 CANmodes ofoperations

Tlie PIC18F458 has six main modes ofCAN operation; configuration mode, disable mode,
normal operation mode, listen only mode, loopback mode and error recognition mode.

When the controller is in loopback mode, the messages in its buffers will be transmitted to its
receiver buffers internally without going through the CAN bus. The loopback mode is asilent
mode, thus the CANTX pin will be an I/O pin. This mode is important to verify that the
transceiver andreceiver buffers ofa controller areworking correctly.

Tbe normal mode iswhen the controller can actively monitors allbus messages and generates
Acknowledge bits, error frames, etc. This is the standard mode for the controller. This is also
the only mode in which the controller will transmit messages over the CAN bus.

2.5 CAN transceivers MCP2551

The MCP2551 is ahigh-speed CAN, fault-tolerant device that is used as interface between a
CAN protocol controller and the CAN physical bus. The MCP2551 provides differential

12

transmit and receive capability for the CAN protocol controller and is fully compatible with
the ISO-11898 standard. It is capable of operation upto 1 Mb/s. [4]

£]VftE=

Figure8 The MCP2551 PinDiagram

The MCP2551 CAN stand up to 112 nodes tobe connected to the physical bus. The outputs

will drive a minimum load of 45Q, (given a minimum differential input resistance of20 kQ

and a nominal termination resistor value of 12Q& The MCP2551 has CANH and CANL pins

that define dominant and recessive states of the nodes by the differential voltage between

CANH and CANL. A dominant state occurs when the differential voltage between CANH

and CANL is greater than a defined voltage (e.g., 1.2V). A recessive state occurs when the
differential voltage is less than a defined voltage (typically 0V). [4]

2.5.1 MCP2551 modes ofoperations

The modes of operations ofMCP2551 CAN transceiver is set by setting pin RS. There are
three modes of operations which is high speed, slope control and standby. The high speed
mode is set when RS pin is connected to VSS while standby mode is set by connecting RS

pin to VDD.

Slope control mode is controlled by connecting an external resistor between RS and ground.
Changing thevalue of resistor will change the slew rate.

13

2.6 PIC18xxx8 CAN Functions

All PIC18XXX8 CAN functions are grouped into the following three categories;

Configuration/Initialization Functions, Module Operation Functions and Status Check
Functions. These functions are used inthe program to be loaded inthemicrocontroller.

Function Category

CANInitialize Configuration/l nitialization

CANSetOperationMode Configuration/Initialization

CANSetOperationModeNoWait Configuration/I nitialization

CANSetBaudRate Configuration/Initialization

CANSetReg Configuration/Initialization

CANSendMessage Module Operation

CANReadMessage Module Operation

CANAbortAll Module Operation

CANGetTxErrorCount Status Check

CANGetRxErrorCount Status Check

CANIsBusOff Status Check

CANIsTxPassive Status Check

CANIsRxPassive Status Check

CAHIsRxReady Status Check

CANIsTxReady Status Check

Table 3 PIC18xxx8 Function Index

2.7 Wireless CAN

2.7.1 RFMAC

The RFMAC protocol is operated in the centralized WCAN network that consists of one

master (base) node and slave nodes inthe range ofmaster node.

Remote frames are used to send periodic messages without any contention of data frames.

Therefore the master node schedules all periods of data frames. If the master node wishes to

have data from any node it immediately sends a remote frame to the channel. All nodes on

14

the network receive the remote frame and decide whether the remote frame belongs to the
node by using acceptance filtering. If the remote frame identifier does not match with the
acceptance filter, the slave node stays idle. Adata frame is only sent when the remote frame
identifier matches with the data frame identifier [5}.

2.7.2 WMAC

For WMAC protocol, each node must wait messages' Priority Interface Frame (PIFS) time
before sending their messages. PBFS times provide message priority to each message and are
derived from the scheduling method which isperformed by the user application. The shortest
PIFS takes the highest message priority which means shortest delay before accessing the
channel. After waiting PIFS times, each node checks the channel for the second time to be
sure that the channel is available for access. Hence, a message with lower PIFS will access

the channel before any massage with higher PIFS.

Each node has a timer called Priority Timer. The Priority Timer is set when the message is
received from the channel. This prevents the nodes from the channel access during the PIFS

time. This isessential since a node may wish totransmit a message during the PIFS time and

sense the medium is free although there could be a node waiting its PIFS [5].

2.7.3 On-OffKeying

The On-Off keying allows arbitration and acknowledgement ofCAN messages. Arecessive
level happens when there is no signal while dominant level is sent by turning on the
transmitter.

During CAN arbitration, when the level is recessive, the receiver is disabled but when in
dominant state, the receiver is enabled [6].

15

3.1 Procedure

CHAPTER 3

METHODOLOGY

• Preliminary research work

Preliminary research includes literature review on Controller Area Network.

Preliminary researches are done to get as much information on the topic and to

gather any data on from various sources namely reference books, thesis, the web,

and experienced individual. This research work enabled student to estimate the

time process and feasibility of the project to ensure success of the project.

• Detailed analysis

The information gatheredwill be learnedthoroughly in order to have a firm grasp

on the topic. The information gathered will be analysed so that the objectives and

problemidentifiedfor the projectwill be further defined.

• Microcontroller programming, hardware design and implementation

Write or modifies existing C program in the PICC compiler. The program will be

downloaded into the PIC microcontroller in the form of its HEX file. The

programmer used is WARP 13.

The hardware setup includes the PIC18F458 microcontroller, MCP2551 CAN

transceivers and RS232 serial communication to monitor the traffic in the PC. The

project is now on this stage.

• Testing the circuit and program

16

The testing of the circuit has several parts. First is to ensure the microcontroller

PIC18F458 works perfectly. Second is to ensure the RS232 hardware circuit

which is used to connect the microcontroller to PC serially works. Then the circuit

is tested for the communication between the nodes which includes the two

microcontrollers and the two transceivers.

The programming testing is done inbetween the circuit testing as it used different

program to test the circuits. The two microcontrollers use identical program to be

downloaded onto them.

• Final result/ hardware

The final circuit hardware is done both on PCB board and Vera board. RS232

ports are included so that it can be connected serially to the PC via cable. The

circuits are then mounted on a pieceof Perspex. The PCB boards and Vera boards

were held together on the Perspex using glue gun.

• Final report and presentation

The final report and presentationare scheduled around end of June.

3.2 Tools

3.2.1 Software

• PICC compiler

The software used to program the language for the microcontroller. The program

is compiled to produce a machine-level language called the HEX file. The HEX

file is to be uploaded to the microcontroller.

• WARP 13

The programmer used to program the microcontroller using the available HEX

file.

• Eagle

17

The softwareusedto build the schematic for the circuit.

Microsoft HyperTerminal

The software used to monitor and display thedatasent across serial connection to

the microcontroller.

3.2.2 Hardware

•

PIC18F458

The microcontroller chosen to perform the program

4MHz Crystal

Clock to feed the microcontroller

MCP 2551

The transceivers for CANcommunication between the microcontrollers

(DB 9) RS232

Connectorpin out for the serial connection

MAX232

The IC driver used to adapt to RS232 signals

Resistors, capacitors

Breadboard and Vera board

Perspex as the baseto hold the circuitry

Glue gun/ Glue

Spacer

18

CHAPTER 4

RESULTS AND DISCUSSIONS

4.1 Hardware Implementation

The hardware implementation involves several P1C18F458 communicating with each other

using CAN via MCP2551 transceivers. The traffic ismonitored using serial port monitor tool

at PICC compiler.

4.1.1 Loopback mode

This mode will allow internal transmission of messages from transmit buffer of a

microcontroller to its own receive buffers without actually transmitting messages on CAN

bus. [3] Thismode is usedto test the transmit buffer and receive buffer for each PIC18F458

microcontrollers.

Existing C program on PICC compiler, EX_CAN.c is used to test out the CAN loopback

mode. Modification is made to the EX_CAN.c before its HEX file is downloaded to the

microcontroller.

printf("\r\n\r\nCCS CAN EXAMPLEW);

setup_timer_2(T2_piV_BY_4,79,16); //setup uptimer2 to interrupt every 1ms if using 20Mhz clock

can_jnit();
can_set_mode(CAN_OP_LOOPBACK); // Added this line to test for loopback

enable_interrupts(rNT_TIMER2); //enable timer2 interrupt
enable_interrupts(GLOBAL); //enable all interrupts (else timer2 wonthappen)

printi("\r\nRunning...");

Figure 9 Modification made to the EX_CAN.c

19

The traffic for the transmission is monitored using RS232 with MAX232 as its driver. The

traffic monitored is as expected. The messages transmitted by the microcontroller were
received at the microcontroller own receive buffer thus implying its CAN module works

well.

P1C18F458 MAX232
♦To PC

serial port

Figure 10 Block diagram ofCAN hardware for loopback mode

Q["c£i @|gf.^]Bl rfj

start

CCS CAN EXAMPLE

Running... __
PUT 1: ID=2t LEN=8 PRI=3 EXT=1 RTR=8

89BTA - FC FC FC FC0FC FC FC FC

GOT- BUFF=0 ID=24 LEN=8 OVF=0 FILT=0 RTR=0 EKT=1 INV=8
DATA8= FC FC FC FC FC FC FC FC

PUT 1: ID=24 LEN=8 PRI=3 EMT=1 RTR=8
DATfi = FC FC FC FC FC FC FC FC

GOT- BUFF=6 10=24 LEN=8 0VF=9 FHT=88RTR=8 EXT=1 INV=0
m DATA = FC FC FC0FC FC FC FC FC

Figure 11 Screen capture for loopback mode traffic

The screen capture shows that the message from the transmit buffer managed to be sent to the
receive buffer of the same PIC. Themessages sent at transmit buffer and received at receive

buffer has the same ID as shown above.

20

At the transmit buffer, LEN is the length ofthe data sent which is 8 byte. PRI is short for
priority which in this case 3. EXT is for Identifier extension. Setting the EXT to 1means the
identifier used is the extended 29 bits identifier. RTR is for Remote Transmission Request.

Setting it to 0 means the frame is the normal data frame.

At transmit buffer, BUFF=0 means the data received at buffer. OVF - 0 means there isno

overflow error. INV = 0 means invalid message has not occur.

4.1.2 Normal mode

This is the standard operating mode ofthe PIC18F458. In this mode, the device will monitor
all messages and decides whether to take the message or not. This is the only mode in which
the microcontroller will transmit its messages over the CAN bus. [3]

Existing Cprogram on PICC compiler, EX_CAN.c is used to test out the CAN normal mode.
The HEX file is downloaded into two PIC18F458 microcontrollers to allow them to

communicate with each other.

CAN transceivers, MCP2551 is used as the interface between a CAN protocol controller and
the physical bus. The MCP2551 provides differential transmit and receive capability for the
PIC18F458 microcontroller. [3]

For the normal mode, terminating resistors of 120 ohm are used at between CANH and
CANL pins. The RS pin is connected directly to ground so the transceiver is in high-speed

mode.

The traffic for the transmission is monitored using RS232 with MAX232 as its driver to

decide whether the messages manage to travel across the physical bus.

21

Microcontroller

PIC18F458

I
MAX232

T
To PC serial

port

« •
CAN Transceiver

MCP2551
!nC=> £=>

CAN Transceiver

MCCP2551

Figure 12 Block diagram ofCANhardware for normal mode

Microcontroller

PIC18F458

MAX232

T
To PC serial

port

printfC\r\n\r\nCCS CAN EXAMPLE\r\n");

setup_timer_2(T2_prv_BY_4,79,16); //setup uptimer2 to interrupt every1ms if using 20Mhz clock

can_inlt();
can_set__mode<CAN_OP_NORMAL,); // Added this line for normal mode

enable_interrupts(INT_TTMER2);//enable timer2 interrupt
enable_interrupts(GLOBAL); //enable all interrupts (elsetimer2wont happen)

printf("\r\nRunning...");

Figure 13 Modification madeto the EX_CAN.c for normalmode.

22

Figure 14 Schematic ofcontrollers and transceivers circuit

+ a"
+

Ci

1
C i +

C2+

+

r '• 11; t ! o Li t

F.1DUT R1IH

,

a

_.-

•i.'-i

•L
r>

1 J

Id 7

•13
J'-

•J _&_

.pom PIC

JO PIC

Figure 15 Schematic ofMAX232 circuit

23

4.2 Communication between two microcontrollers

The two nodes have the same hardware set up which is a microcontroller, with a transceiver,
and connected to anRS232 hardware circuit. The nodes have push buttons to trigger message

and LEDs to indicate the messages. Both nodes have the same Cprogram on them, Nodex as

attached in the appendix.

Theprogram written basically letsthefollowing:

• The push button for Node 1will trigger a sent message toNode 2.

• Node 2 will decide whether to receive the message.

• Once Node 2 accepts the message, its LEDs will light up. Then it will send
back a message to Node 1 acknowledging the sentmessage.

• Foreach action, theHyperTerminal software will display theresult.

• As the setup for Node 1and Node 2 are identical, any action (sent message)
from Node 2 willtrigger the same response from Node 1.

From the CAN library routines, these functions areused in the program

canjnit - Configures the PIC18xxx8 CAN peripheral

can_set_baud - Sets the baud rate control registers

can_set_mode - Sets the CAN module into a specific mode

can_set_id - Sets thestandard and extended ID

can_get_id - Gets the standard and extended ID

can_putd - Sends a message/request with specified ID

can_getd - Returns specific message/request and ID

canjcbhit - Returns true ifthere isdata inone ofthe receive buffers

can tbe - Returns true ifthe transmitbuffer is ready to send more data

24

can abort - Aborts all pendingtransmissions

NODE A

1. Button at Node A is triggered. Message

js ^entto NoHp R with specific IP y.

2. Node B get the messageand print

out a receive message. LED is ON.

Node B send back an message to

Node A receives the

message and display.

1. Button at Node B is triggered. Messag*

is sent to Node A with soecific It

2. Node A get the message and

print out a receivemessage. LED is

ON. Node A send back an message

Node B receives tht

message and disnlav

NODEB

Figure 16 Communication between the microcontrollers

• pii#i gj'si tfjsl m\

Sending
Sending
Sending
Sending
Sending
Sending
Sending

•essage

Message

Message

Message

Message

Message

Message

over

over

over

over

over

over

over

CCS CON EKHHPLE

to Node B
to Node D
to Node B
to Node 8
to Node B
to Node B
to Node B

Running...
Sending Message over to Node B
Sending Message over to Node B
Got a Message from port B
LEO ON ± u . „
Sending Message over to Node B
Got a Message fro* port B

Sending Message oyer to Node B
Got a Message fron port B
LED ON
Sending Message over to Node B
Got a Message fron port B
LED QN__

ICoimetted 0:01;3S [ftuto detect .96008*1

Figure 17 Display atHyperTerminal atNode A

25

The Nodes manages to send and receive messages to each other although sometimes
messages get through the channel but sometimes the message did not reach destination. But
the HyperTerminal displays that the microcontrollers are able to communicate with each
other and reacts to messages sent to each other.

43 Communication between three microcontrollers

The network was set with three nodes which will communicate with each other. The

operation between these three nodes is shown in figure below.

• •
rzr^i

NODE! NODE 2

TX/RCV 1 TX/RCV 3

CAN H

CAN L

TX/RCV3

NODE 3

•
ii:. ;.i

Figure 18 Communication between Node A, Node Band Node C

26

Send data

NODE A

Reply by
sending

response

Reply by
sending

response

Send data

NODEC

Figure 19 Operation between Node A,NodeB andNodeC

Node A sends data to the implied node. AsCAN is a multicast protocol, the sent data will be

read by both Node B and Node C. As the data is attached with its own id, Node B and Node

C will compare the id and decides whether the message was intended for them. If yes, the

node will reply back to Node A as a response.

4.3.1 Writing C program

The C program was developed by following the sequence of the program as shown in the

flow chart. The design is as follow.

27

Start

Define message id

initialize CAN

Display message

Read input firom keyboard

Nothing happen

I
End

Nf Ignore message

Yes

Yes

Send Data

to Node B

Send Data

to Node C

Figure 20 Flowchart forprogram Node A

28

Ignore

message

Start

Define message id

Initialize CAN

Set CAN to normal Mode

Display message
Send respond

T
End

Figure 21 Flowchart for program Node Band Node C

29

4.3.2 Result

The result is monitored using Serial Input/Output Tool from PICC compiler. The screen

captured is shown below.

Transmit fottf F & i- ready\@B
\0fl
\0ft
yo « pre a s e d. aS8B

Send data to Port B\SD

PUT 0= ID=5±3 JLEhi-S FBI = 3 EXT

DATS =

XWH

\8fl
Data
\0fl
Message sent to Node B\0D

Transn it fo«F £ e r ready\0I)

vo u pressed c\0D
\en
Send data Co Port B\@B
•\0fl
PUT 0: 1D=S13 X.EN=8 PM =3 EXT
\0fl

DftTfi =» c o c e. c c c c ""-J
\Bfl

• bufferNSD

•eot to Ho de B\0D

EDatft ifi re>
\0ft

:ent to Node E

=0 .RIR=1\@B

-0 HTH=1\0D

Figure 22 Screen capture forNode A (sending message to B)

30

*? Serial Input/Output Monitor
Rle Edit View Configuration Control lines Macro Manager

\0ftRunning. - -N0D
NBAData ±n receive buffer\8D
NBflUata is- fron Node H\8D „TT^ „ v^t, , ™T
xSfiGOT: BUFF=8 [0=513 LEH--8 OUF=l FILT=0 F.TF.-1 EXT =
\Bfl DflTfl = - J i? " n P « i S'0D

\BHDaca in r-ecexue fouff ei~\0D
\0AData ii; fron Node ft\0D
•S0AGOT: BUFF=0 ID=S13 LEN=3 OUF=B FII/T-0 RTfl-1 LX r -
\.G(\ DfiTfi = f r. L *"" f < -t "•-£>*>

\0f!Data in jrece iue buffeF\8D
\0fiDatfl is fvon Node £iX@D ,-,,..,. ra „T„ , t-u-t
\0fiGOT: BUFF=0 II>=5±3 LEN=S OUF=0 FILT-H RTR=1 EX1 =
\0fj DfiTfi » "" "- it P ii i N0D
N0fiS0D

\8fihonitoi'ing CRN. . . Node FJN0D

NSflRunning N0I)
\0fiData in i-cceiue buf f erNBD
\0fiData in i-e c e iue buffei'MSD
\0fiData in rece iue buffei'SSD

K0ftDai7a is from Node fi'sBD
SCtrtGOT: BUFF =B ID=5X3 LEN-8 OUF-0 FILT-0 RTR-1 EXT =
N«f! IWIR = b * n n n p fi i X03>

\6ftData in i-ece iue bwfferSBD
|\0flData is from Node flNSD
NSfiGOT : BUFF-0 ID=513 LEN-B OUF=0 FILT-8 HIR«=1 EX f
\0fi • DATft = " ~ F < t S0D

Figure 23 Screencapturefor NodeB

^'Serial1 inpA/putpii* Mon?*<ir"
Ffle "Edit View Configuration Control Bnes WacroManager

"•.00
iKOAXOD
KflfiMfN ifcoi' ing CAN. - - Hod-; CsM

\0flRiini.inq. - -\9D
N8ANRD
\0f!Moni':oi'ina CAN... Node C^rju
\0ANE1D

\0FS D.ila J ! t i-tic; eiue bt.ii f e i-N.fi 0

xBAgSt: ^FF^ID^T.^LfJU OUF-L Pii.T^ HT^l FXT-0 [HU -1 M3T>
vOfi DATA - I ^ <J B : - - = ^0T
\0fl\l3D
\ilflData .i ri rece it'rs but f est- sUD

NRfiCOT? TOFF*aniD=514fti:nN=8 0UF =H FILT-P RTR =1 FKT^I TKU-B^P
-,61A DATA " it 4- P c rt S > "-.(3D

iNBANfl'D
•NBA Delta in i-ece iue)mf f nt'\f)D

kIagSt: ^FF=™TD^1-A1n"B OOF^B F1M-8 *TR=-1 EX1-0 INU-tf-OD
\Bfi DATA = "" se " D '- -'- - = \0D
\afiN0D
\Sfl\0&
\3ftHunitoi-inr(CAN. - - Node CM-ID

NBA Run r, inn . . - NflB
\9ftData i.n t-ece i«e buffersBD
\0flOata it* recc iue buf f e I'^-SD

"IagSt? IuFF^S-S^LeJU OUF^ FILT=B RTR-1 EKT^P IHU=BN0D
NBA DATA - ^ + P c wS > NSD
NBfiSQD
SSHDAta in i-eceiue buffer'vfll)
vSAIJaes in i-ecBiue bufferM3D

KbRGOT1- BUFF-0,nTll=^i4nLEN'a O'JF-R FJLT-B RTR-1 EN T-H 1HU-F)nPT>
K0A DATA = *r + P c: ci S > \0D

Figure 24 Screen capture forNode C

31

Comparing Figure 7and Figure 8, it shows that the ID for data sent by Node Amatches the
ID for data received by Node B. The statement "Message sent toNode B" on Figure 7 shows
that Node B has alreadyresponded to Node A afterreceiving the message.

The Statement "Data in receive buffer" whichis shownrepeatedly in Figure 9 occurs because

the data is meant for Node B, not Node C.AsCAN is a multicast network, all nodes receives

all the broadcasted data in the channel.

32

CHAPTER 5

CONCLUSION & RECOMMENDATION

5.1 Conclusion

The objective of the project is to build a PIC based Controller Area Network. A network is
built between two nodes which communicate with each other. Each node is controlled by a

PIC microcontroller. The messages are transmitted via CANtransceivers MCP 2551 which

connects the two nodes using CAN buses, CANH and CANL. these CAN buses need to

have terminating resistor at the end of its connection. The microcontrollers are serially
connected to PC via RS232. Thedatamonitoring uses HyperTerminal as a displaying tool.

Programming plays a great part inthe project. The programs for this project are written inC
by utilizing the functions from CAN library. The CAN network built using PIC
microcontroller is shown to be functional. The microcontrollers are able to send and receive

messages, aswell asrequesting messages IDs among others. The microcontrollers are able to

respond according to themessages sent byother microcontroller.

5.2 Recommendation

For future workon CAN, the system can have more complex network circuitwhichhas large

number of nodes with each node controlling severalcontrol applications. The system should

be made robust, reliable and efficient.

For future studies, one can focus other functions in CAN module available in Microchip's

PIC such as error recognition mode andlisten only mode and other functions such situation

such asmessage overflow, errorhanding andsynchronization.

33

REFERENCES

1. Farsi M., & Barbosa M. (2000) CANopen Implementation Applications to Industrial

Networks, Research Studies Press Ltd.

2. Barnett, Cox & O'Cull (2004) Embedded CProgramming and the Microchip PIC,

McGraw-Hill

3. PIC18FXX8 Data Sheet, Microchip, Microchip Technology Inc. 2001

4. MCP2551 DataSheet, Microchip, Microchip Technology Inc. 2001

5. A.Kutlu, H. Ekiz, E.T. Powner, Wireless Control Area Network, London, 1996

6. CANRF UHF Wireless CAN Module, Automation Artisan Inc. 2002

7. PIC18FXX8 CAN Driver with Prioritized Transmit Buffer, Microchip, Microchip

Technology Inc. 2001

8. Forouzan B. A., (2004) Data Communication Network, McGraw-Hill, New York,

USA.

9. E. Yin, M. Sibenac, B. Kirkwood, Implementing CANopen in Autonomous

Underwater Vehicles, Stanford University 2003

10. Controller Area Network (CAN) BusforAEAS-7000 Application Note 5223, Agilent

Technologies, 2005

11. M. Farsi, K. Ratcliff, M. Barbosa, An Overview of Controller Area Network,
Computing and Control Engineering Journal, 1999

34

APPENDICES

35

APPENDIX A

PIC18FXX8 DATA SHEET

36

^
Microchip PIC18FXX8

28/40-Pin High-Performance, Enhanced Flash
Microcontrollers with CAN

High-Performance RISC CPU:

• Linear program memory addressing up to
2 Mbytes

• Linear data memory addressing to 4 Kbytes

• Up to 10 MIPS operation
• DC-40 MHz clock input

- 4 MHz-10 MHz oscillator/clock input with
PLL active

• 16-bit wide instructions, 8-bit wide date path

• Priority levels for interrupts
• 8 x 8 Single-Cycle Hardware Multiplier

Peripheral Features:

• Highcurrent sink/source 25 mA/25 mA
• Three external interrupt pins

• TimerO module: 8-bit/16-bit timer/counter with
8-bit programmable prescaler

• TimeM module: 16-bit timer/counter

• Timer2 module: 8-bit timer/counter with 8-bit
period register (time base for PWM)

• Timer3 module: 16-bit timer/counter

• Secondary oscillator clock option - Timerl /Timer3
• Capture/Compare/PWM (CCP) modules;

CCP pins can be configured as:
- Capture input 16-bit, max resolution 6.25 ns
- Compare: 16-bit,max resolution 100 ns (Tcy)
- PWMoutput: PWM resolution is 1 to 10-bit

Max. PWMfreq. @:8-bit resolution = 156 kHz
10-bit resolution = 39 kHz

• Enhanced CCP module which has all the features
of the standard CCP module, but also has the
following features for advanced motor control:
- 1, 2 or 4 PWM outputs

- Selectable PWM polarity

- Programmable PWM dead time
• Master Synchronous Serial Port (MSSP) with two

modes of operation:

- 3-wireSPi™ (Supports all 4 SPI modes)
- I2C™ Master and Slave mode

• Addressable USART module:

- Supports interrupt-on-address bit

© 2004 Microchip Technology Inc.

Advanced Analog Features:

• 10-bit, up to 8-channel Analog-to-Digital Converter
module (A/D) with:

- Conversion available during Sleep

- Up to 8 channels available
• Analog Comparator module:

- Programmable input and output multiplexing
• Comparator Voltage Reference module
• Programmable Low-Voltage Detection (LVD) module:

- Supports interrupt-on-Low-Voltage Detection
• Programmable Brown-outReset (BOR)

CAN bus Module Features:

• Complies with ISO CAN Conformance Test
• Message bit rates up to 1 Mbps
• Conforms to CAN 2.0B Active Spec with:

- 29-bit Identifier Fields

- 8-byte message length
- 3 Transmit Message Buffers with prioritization

- 2 Receive Message Buffers

- 6 full, 29-bit Acceptance Filters

- Prioritization of Acceptance Filters

- Multiple Receive Buffers for High Priority
Messages to prevent loss due to overflow

- Advanced Error Management Features

Special Microcontroller Features:
• Power-on Reset (POR), Power-up Timer (PWRT)

and Oscillator Start-up Timer (OST)

• Watchdog Timer (WDT)with its own on-chip RC
oscillator

• Programmable code protection

• Power-saving Sleep mode

• Selectable oscillator options, including:
- 4x Phase Lock Loop (PLL)of primary oscillator
- Secondary Oscillator (32 kHz) clock input

• In-CircuitSerial Programming™ (ICSP™) via two pins

Flash Technology:

• Low-power, high-speed Enhanced Flash technology

• Fully static design

• Wide operating voltage range (2.0V to 5.5V)

• Industrial and Extended temperature ranges

DS41159D-page 1

PIC18FXX8

Device

Program Memory Data Memory

I/O

10-bit

A/D

(ch)

in

o

E
&
E
o

o

CCP/

ECCP

(PWM)

MSSP

USART
Timers

8/16-bitFlash

(bytes)
Single-Word

Instructions

SRAM

(bytes)
EEPROM

(bytes)
SPI™

Master
,2C™

PIC18F248 16K 8192 768 256 22 5 — 1/0 Y Y Y 1/3

PIC18F258 32K 16384 1536 256 22 5 —
1/0 Y Y Y 1/3

PIC18F448 16K 8192 768 256 33 8 2 1/1 Y Y Y 1/3

PIC18F458 32K 16384 1536 256 33 8 2 1/1 Y Y j Y 1/3

Pin Diagrams

PD1P

PL.CC

DS41159D-page2

MCLR/VPP
RAO/ANO/CVREF

RA1/AN1
RA2/AN2A/REF-

RA3/AN3/VREF+
RA4/T0CK1

RA5/AN4/SS/LVDIN
RE0/AN5/RP

RE1/AN6/WR/C10UT
RE2/AN7/CS/C20UT

VDD-
VSS

OSC1/CLKI
OSC2/CLK07RA6

RC0/T1OSO/T1CK1
RC1/T10SI
RC2/CCP1

RC3/SCK/SCL
RD0/PSP0/C11N+

RD1/PSP1/C1IN-

RA4/T0CKI
RA5/AN4/SS/LVDIN

RE0/AN5/RD
RE1/AN6/WR/C10UT

RE2/AN7/CS/C20UT
VDD

Vss
OSC1/CLKI

OSC2/CLKO/RA6
RC0/T1OSO/T1CK1

NC

r 1
w 40 H

r 7 39 J

r 3 3B J

r 4 37 J

r 5 36 J

r fi 35 J

r 7 34 I

r R "0 •D 33 3

r 9 o O 3? I

c 10
.a

31 D

r 11 -n •n 3lt I

c 12
** It 29 1

f 13 CO 00 2b J

r 14 2/ :j

r 15 26 j

r 1fi 2b j

r 17 24 j

-r 18 23 j

r 13 22 j

c 20 21 j

uufflmmmu

nnnnnnnnnnn

o

PIC18F448

PIC18F458

COO) Ot-Nrt^WlD

uuuuuuuuuuu

illl
— 1A. lj ^;

5=8 ^gs.

^ (J

t
to

a

R87/PGD
RB6/PGC

RB5/PGM
RB4
RB3/CANRX
RB2/CANTX/INT2
RB1/INT1

RB0/INT0
-Vdd

-Vss
RD7/PSP7/P1D
RD6/PSP6/P1C
RD5/PSP5/P1B
RD4/PSP4/ECCP1 /P1A
RC7/RX/DT
RC6/TX/CK
RC5/SOO

RC4/SDI/SDA
RD3/PSP3/C2IN-

RD2/PSP2/C21M+

RB3/CANRX
RB2/CANTX/INT2
RB1/INT1
RB0/INT0
Vdd
Vss

RD7/PSP7/P1D
RD6/PSP6/P1C
RD5/PSP5/P1B
RD4/PSP47ECCP1 /P1A
RC7/RX/DT

© 2004 Microchip Technology Inc.

Pin Diagrams (Continued)

TQFP

RC7/RX/DT

RD4/PSP4/ECCP1/P1A-

RD5/PSP5/P1B

RD6/PSP6/P1C
RD7/PSP7/P1D

VSS-

VDD-

RBO/INTO

RB1/1NT1

RB2/CAWTX/1NT2 •
RB3/CANRX

SPDIP, SOIC

MCLR/VPP

RAO/ANO/CVref

RA1/AN1

RA2/AN2A/REF-

RA3/AN3/VREF+

RA4/T0CKI
RA5/AN4/SS/LVDIN

Vss

OSC1/CLK!

OSC2/CLKO/RA6

RC0/T1OSO7T1CKI

RC1/T1USI

RC2/CCP1
RC3/SCK/SCL

© 2004 Microchip Technology Inc.

z z
tt CM IN

QUO
(0 n N
i Q. 0-
Q </) tO
O) HO.

5f S Si
o o o
a: a: a:

Z 2

55 o _
?; o S2r- to
a. a. ^ p. o
to m o o ^
q. g. co o t:
? 3 SS >-
ODoayo

B3gFiP:;S<
DO CD CD ITX o z —

<

PIC18FXX8

NC

RC0/T1OSO7T1CKI
OSC2/CLKO/RA6

OSC1/CLK1

VSS

•VDD __
RE2/AN7/CS/C20UT

RE1/AN6/WR/C10UT
RE0//AN5/RD

RA5/AN4/SS/LVDIN

RA4/70CKI

RB7/PGD

RB6/PGC

RB5/PGM

RB4

RB3/CANRX

RB2/CANTX/1NT2

RB1/INT1

RBO/INTO

•Vdd

VSS

RC7/RX/DT
RC6/TX/CK

RC5/SD0

RC4/SDI/SDA

DS41159D-page3

APPENDIX B

MCP2551 DATA SHEET

37

Microchip MCP2551
High-Speed CAN Transceiver

Features

• Supports 1 Mb/s operation
• Implements ISO-11898 standard physical layer

requirements

• Suitable for 12V and 24V systems

• Externally-controlled slope for reduced RFI
emissions

• Detection of ground fault (permanent dominant)
on TXD input

• Power-on reset and voltage brown-out protection
• An unpowered node or brown-out event will not

disturb the CAN bus

• Low current standby operation
» Protection against damage due to short-circuit

conditions (positive or negative battery voltage)
• Protection against high-voltage transients
- Automatic thermal shutdown protection

• Up to 112 nodes can be connected
• Highnoise immunity due to drfferentialbus

implementation

• Temperature ranges:

- Industrial (I): -40°C to +85°C
- Extended (E):-40°C to +125°C

Block Diagram

Vdd

TXD [XI

RS^

rxd[X

Slope
Control

TXD
Dominant

Detect

Power-On
Reset

Package Types

PDIP/SOIC

txd£ 1

•^>

8 urs

Vss [I

Vdd£

2

3

u>

Q.

u

7

6

HCANH

3CANL

rxd£ 4
s

5 []VREF

Thermal
Shutdown

Driver
Control

Vdd

m CANH

3 CANL
Reference

Voltage

Receiver T
VREF

^ VSS

© 2003 Microchip Technology Inc.
DS21667D-page 1

MCP2551

NOTES:

DS21667D-page 2
© 2003 Microchip Technology Inc.

1.0 DEVICE OVERVIEW

The MCP2551 is a high-speed CAN, fault-tolerant
device that serves as the interface between a CAN
protocol controller and the physical bus. The MCP2551
provides differential transmit and receive capability for
the CAN protocol controller and is fully compatible with
the ISO-11898 standard, including24Vrequirements. It
will operate at speeds of up to 1 Mb/s.
Typically, each node in a CAN system must have a
device to convert the digital signals generated by a
CAN controllerto signals suitable for transmission over
the bus cabling (differential output). Italso provides a
bufferbetween the CANcontrollerand the high-voltage
spikes that can be generated on the CAN bus by
outsidesources (EMI, ESD, electrical transients, etc.).

1.1 Transmitter Function

The CAN bus has two states: Dominant and
Recessive. A dominant state occurs when the
differential voltage between CANH and CANL is
greater than a defined voltage (e.g.,1.2V)- Arecessive
state occurs when the drfferential voltage is less than a
defined voltage (typically 0V). The dominant and
recessive states correspond to the low and high state
oftheTXDinputpin, respectively. However, adominant
state initiated by another CAN node will override a
recessive state on the CAN bus.

1.1.1 MAXIMUM NUMBER OF NODES

The MCP2551 CAN outputs will drive a minimum load
of 45G, allowing a maximum of 112 nodes to be
connected (given a minimum differential input
resistance of 20 ka and a nominal termination resistor
value of 120Q).

1.2 Receiver Function

The RXD outputpin reflects the drfferential bus voltage
betweenCANH and CANL. The low and high states of
the RXD output pin correspond to the dominant and
recessive states of the CAN bus, respectively.

1.3 Internal Protection

CANH and CANL are protected against battery short-
circuits and electrical transients that can occur on the
CAN bus. This feature prevents destruction of the
transmitter outputstage during such a fault condition.
The device is further protected from excessive current
loading by thermal shutdown circuitry that disables the
output drivers when the junction temperature exceeds
a nominal limit of 165°C. All other parts of the chip
remain operational andthechip temperature islowered
due to the decreased power dissipation in the
transmitter outputs. This protection is essential to
protect againstbus line short-circuit-induced damage.

© 2003 Microchip Technology Inc.

MCP2551

1.4 Operating Modes

The Rs pin allows three modes of operation to be
selected:

• High-Speed

• Slope-Control

• Standby

These modes are summarized in Table 1-1.

When in High-speed orSlope-control mode, the drivers
for the CANH and CANL signals are internally regu
lated to provide controlled symmetry in order to mini
mize EMI emissions.

Additionally, the slope of the signal transitions on
CANH and CANL can be controlled with a resistor
connected from pin 8 (Rs) to ground, with the slope
proportional to the current output at Rs, further
reducing EMI emissions.

1.4.1 HIGH-SPEED

High-speed mode isselected by connecting theRs pin
to Vss. Inthis mode, the transmitter output drivers have
fast output rise and fall times to support high-speed
CAN bus rates.

1.4.2 SLOPE-CONTROL

Slope-control mode further reduces EMI by limiting the
rise and fall times of CANH and CANL. The slope, or
slew rate(SR), is controlled by connecting an external
resistor (Rext) between Rs and Vol (usually ground).
Theslope isproportional tothecurrent output at the Rs
pin. Since the current is primarily determined by the
slope-control resistance value Rext, a certain slew rate
is achieved by applying a respective resistance.
Figure 1-1 illustrates typical slew rate values as a
function of the slope-control resistance value.

1.4.3 STANDBY MODE

Thedevicemaybe placedinstandbyor "SLEEP" mode
by applying a high-level to Rs. In SLEEP mode, the
transmitter is switched offand the receiver operates at
a lowercurrent. The receive pin on the controller side
(RXD) isstill functional butwill operate at a slower rate.
The attached microcontroller can monitor RXD forCAN
bus activity and place the transceiver into normal
operation via the Rs pin (at higher bus rates, the first
CAN message may be lost).

DS21667D-page 3

MCP2551

TABLE 1-1: MODES OF OPERATION

Mode Current at Rg Pin Resulting Voltage at RS Pin

Standby -Irs < 10 uA Vrs > 0.75 Vdd

Slope-control 10pA<-lRS<200uA 0.4 Vdd < Vrs < 0.6 Vdd

High-speed -lRS<610uA 0 < Vrs < 0.3VDD

TABLE 1-2: TRANSCEIVER TRUTH TABLE

Vdd Vrs TXD CANH CANL Bus State11) RXD<1>

4.5V < Vdd < 5.5V Vrs < 0.75 Vdd 0 HIGH LOW Dominant 0

1 or floating Not Driven Not Driven Recessive 1

Vrs > 0.75 Vdd X Not Driven Not Driven Recessive 1

Vpor < Vdd < 4.5V
(See Note 3)

Vrs < 0.75 Vdd 0 HIGH LOW Dominant 0

1 or floating Not Driven Not Driven Recessive 1

Vrs > 0.75 Vdd X Not Driven Not Driven Recessive 1

0 < Vdd < Vpor X X Not Driven/

No Load

Not Driven/

No Load

High Impedance X

Ifanother bus node is transmitting a dominant biton the CAN bus, then RXD is a logic 'o'.
X = "don't care".

Device drivers will function, although outputs are notensured to meet the 1SO-11898 specification.

Note 1

2;

3

FIGURE 1-1:

DS21667D-page4

SLEW RATE VS. SLOPE-CONTROL RESISTANCE VALUE

10 20 30 40 49 60 70 76 90 100 110 120

Resistance (kQ)

© 2003 Microchip Technology Inc.

1.5 TXD Permanent Dominant

Detection

If the MCP2551 detects an extended low state on the
TXD input, it will disable the CANH and CANL output
drivers in order to prevent the corruption of data on the
CAN bus. The drivers are disabled if TXD is low for
more than 1.25 ms (minimum). This implies a
maximum bit time of 62.5 us (16kb/s bus rate),
allowing upto 20 consecutivetransmitted dominantbits
during a multiple biterror and errorframescenario.The
drivers remain disabled as long as TXD remains low. A
rising edge on TXD will reset the timerlogic and enable
the CANH and CANL output drivers.

1.6 Power-on Reset

When the device is powered on, CANH and CANL
remain ina high-impedance state until Vdd reaches the
voltage-level Vporh. In addition, CANH and CANL will
remain in a high-impedance state ifTXD is low when
Vdd reaches Vporh. CANH and CANL will become
active only after TXD is asserted high. Once powered
on, CANH and CANLwill enter a high-impedance state
ifthe voltage level at Vddfalls below Vporl, providing
voltagebrown-out protection during normal operation.

1.7 Pin Descriptions

The 8-pin pinout is listed in Table 1-3.

TABLE 1-3: MCP2551 PINOUT

Pin

Number

Pin

Name
Pin Function

1 TXD Transmit Data Input

2 Vss Ground

3 Vdd Supply Voltage

4 RXD Receive Data Output

5 Vref Reference Output Voltage

6 CANL CAN Low-Level Voltage I/O

7 CANH CAN High-Level Voltage I/O

8 RS Slope-Control Input

© 2003 Microchip Technology Inc.

MCP2551

1.7.1 TRANSMITTER DATA INPUT (TXD)

TXD is a TTL-compatible inputpin. The data on this pin
is driven out on the CANH and CANL differential output
pins. It is usually connected to the transmitter data
outputof the CAN controller device. When TXD is low,
CANH and CANL are inthe dominant state. When TXD
is high, CANH and CANL are in the recessive state,
provided that anotherCAN node is notdriving the CAN
bus with a dominant state. TXD has an internal pull-up
resistor (nominal 25 kQ to Vdd).

1.7.2 GROUND SUPPLY (VSS)

Ground supply pin.

1.7.3 SUPPLY VOLTAGE (VDD)

Positive supply voltage pin.

1.7.4 RECEIVER DATA OUTPUT (RXD)

RXD is a CMOS-compatible output that drives high or
lowdepending on the differential signals on the CANH
and CANL pins and is usually connected to the receiver
data input of the CAN controller device. RXD is high
when the CAN bus is recessive and low in the dominant
state.

1.7.5 REFERENCE VOLTAGE (VREF)

Reference Voltage Output (Defined as Vdd/2).

1.7.6 CAN LOW (CANL)

The CANL output drives the low side of the CAN
differential bus. This pin is also tied internally to the
receive input comparator.

1.7.7 CAN HIGH (CANH)

The CANH output drives the high-side of the CAN
differential bus. This pin is also tied internally to the
receive input comparator.

1.7.8 SLOPE RESISTOR INPUT (Rs)

The Rs pin is used to select High-speed, Slope-control
or Standby modes via an external biasing resistor.

DS21667D-page 5

APPENDIX C

PIC18FXX8 CAN DRIVER WITH PRIORITIZED TRANSMIT BUFFER

38

® AN853
PIC18XXX8 CAN Driver with Prioritized Transmit Buffer

INTRODUCTION

The Microchip P(C1RYYY8 family of microcontrollers
pujviJc: aii iritcyratcCi Controller Ai'ca iictvVCmv \\jrwi;
solution alongwith other PICmicro® features. Although
originally intended for the automotive industry, CAN is
rinding itswayinto othercontrol applications. In CAN. a
protocol message with highest pnority wins the bus
arbitration and maintains the bus control. For minimum
message latencyand bus control, rncsG^-co •sl'iouk: Ic
transmitted on a priority basis.

Because of the wide applicability of the CAN protocol,
develooers are faced with the often cumbersome task
of dealing with the intricate details of CAN registers.
This application note presents a software library that
hides the details of CAN registers, and discusses the
designofthe CAN driver with prioritized Tran<?m* h. .ff^r
implementation. This software iibrary aiiows
dcVoiop6r* to focuo ii"i&ir ^fforis or< application logic,
whileminimizing their interaction with CAN registers.

!f thf= prsrstrrs!!fir Hg.'s hpsyv transmission !c*?.^!'i, '*- 'T
advisable to use software Transmit buffers to reduce
message latency. Firmware also supportsuser defined
Transmit buffer size. If the defined size of a Transmit
uuiTei (o utute iii«aii iiicu ctvemauiw in ikauwdie \of, utts
r^a.K-i ,-!^= .---.*• ,..,:» =.-=--- <i a ^CC cf uC~Cr^' DUrDOCC RAM

for each extra buffer.

For details about the PIC18 family of microcontrntipr«
refer to the PIC18CXX8 Data Sheet (DS30475Y the
PIC18FXX8 Data Sheet (DS41159),and the PICmicro'8'
18C MCU Famiiv Reference Manual (DS39500).

© 2002 Microchip Technology Inc.

CAN MODULE OVERVIEW

The PIC18 family of microcontrollers contain a CAN
modulethat providesthe same register and functional,
interface for all PIC18 microcontrollers.

i fte module teatures are as toitovvs:

• Implementation of CAN 1.2, CAN 2.0Aand
CAN 2.0B protocol

• Standard and extended data frames

• 0 - 8 bytes data length
• Programmable bit rate up to 1 Mbit/sec
• auppon ror remote irame

• Double-buffered receiver v.iir-. *vo prioritized

• Six full (standard/extended identifier) acceptance
fitters: two associated with the high priority
receive buffer, and four associated with the low
priority receive buffer

• Two fullacceptance filter masks, one each
associated with the high and low priority receive

Three transmit buffers with application specified
prioritizationand abort capability
Programmable wake-up functionality with

i_-__-_ «;[*_.

programmable state docking supports
,r.Al<F +-~r** nrmr^H^.*-.

• Signaling via interruptcapabilities for all CAN
receiver and transmitter error states

* Programmable clock source

=. PrGqrsinrnabte link to timer module for

Low Power SLEEP mode

DS00853A-page 1

AN853

FIGURE 1: CAN BUFFERS AND PROTOCOL ENGINE BLOCK DIAGRAM

TXBO

,- m < EC m

2PPP5

LS
Message

Queue

Control

Sz

DS00853A-page 2

TXB1

Iz

TXB2

U-

*£3

ililiPs 5

Iz
Transmit Byte Sequencer

Transmit

Logic

TX

iz

Transmit Shift

CRC Generator

Acceptance Mask
RXMO

^Z.
Acceptance Filter

RXFO

^z:
Acceptance Filter

RXF1

X
B
0 c

Identifier

Data Field

a

Receive Shift

CRC Check

Bit

Timing

Logic

RX

Acceptance Mask
RXM1

:sz:
Acceptance Filter

RXF2
3Z.
Acceptance Filter

RXF3
3z:
Acceptance Filter

RXF4

3Z
Acceptance Filter

RXF5

1
Identifier

Data Field

Receive

Error

Counter

\rxerrcnt

z./txerrcnt

—»- ErrPas

-»- BusOff

Transmit

Error

Counter

Protocol

Finite

State

Machine

Bit Timing
Generator

© 2002 Microchip Technology Inc.

Bus Arbitration and Message Latency

Inthe CAN protocol, iftwo or more bus nodes start their
transmission at the same time, message collision is
avoided by bit-wise arbitration. Each node sends the
bits of its identifier and monitors the bus level. A node
that sends a recessive identifier bit, but reads back a
dominant one, loses bus arbitration and switches to
Receive mode. This condition occurs when the mes
sage identifier of a competing node has a lower binary
value (dominant state = logic 0), which results in the
competing node sending a message with a higher pri
ority. Because of this, the bus node with the highest pri
oritymessage wins arbitration, without losing time by
having to repeat the message. Transmission of the
lower priority message is delayed until all high priority
traffic on the bus is finished, which adds some latency
to the message transmission. This type of message
latency cannot be avoided.

Depending on software driver implementation,
additional latency can be avoided by proper design of
the driver. IfCAN is working at low bus utilization, then
the delay in message transmission is not a concern
because of arbitration. However, if CAN bus utilization
is high, unwanted message latency can be reduced
with good driver design.

To illustrate this point, let us examine latency that
occurs because of the implementation of driver
software. Consider the case when a buffer contains a
low priority message in queue and a high priority
message is loaded. If no action is taken, the
transmission of the high priority message will be
delayed until the low priority message is transmitted. A
PIC18CXX8 device provides a workaround for this
problem.

In PIC18CXX8 devices, it is possible to assign priority
to all transmit buffers, which causes the highest priority
message to be transmitted first and so on. Bysetting
the transmit buffer priority within the driver software,
this type of message latency can be avoided.

© 2002 Microchip Technology Inc.

AN853

Additionally, consider the case where ail buffers are
occupiedwith a low priority message and the controller
wants to transmit a high priority message. Since all
buffers are full, the high priority message will be
blocked until one of the low priority messages is
transmitted. The low priority message wilt be sent only
after all the high priority messages on the bus are sent.
This can considerably delay the transmission of high
priority messages.

How then, can this problem be solved? Adding more
buffers may help, butmost likely the same situationwill
occur. What then, is the solution? The solution is to
unload the lowest priority message from the transmit
buffer and save it to a software buffer, then load the
transmit buffer with the higher priority message. To
maintain bus control, alt n Transmit buffers should be
loaded with n highest priority messages. Once the
transmit buffer is emptied, load the lower priority
message into the transmit buffer for transmission. To
do this, intelligent driver software is needed that will
manage these buffers, based on the priority of the
message (Lower binary value of identifier -> Higher
priority, see "Terminology Conventions" on page 5).
This method minimizes message latency for higher
priority messages.

DS00853A-page 3

AN853

Macro Wrappers

One of the problems associated with assembly
language programming is the mechanism used to pass
parameters to a function. Before a function can be
called, all parameters must be copied to a temporary
memory location. This becomes quite cumbersome
when passing many parameters to a generalized
function. One way to facilitate parameter passing is
through the useof"macro wrappers". Thisnewconcept
provides a wayto overcome the problems associated
with passing parameters to functions.

A macro wrapper is created when a macro is used to
"wrap" the assembly language function for easy
access. In the following examples, macros call the
same function, but the way they format the data is
different. Depending on the parameters, different
combinations of macro wrappers are required to fitthe
different applications.

Macro wrappers for assembly language functions
provide a high level 'C-like' language interfaceto these
functions, which makes passing multiple parameters
quite simple. Because the macroonly deals with literal
values, different macro wrappers are provided to suit
different calling requirements for the same functions.

For example, if a function is used that copies the data
at a given address, the data and address mustbe sup
plied to the function.

EXAMPLES

Using standard methods, a call to the assembly lan
guage function CopyDataFunc might look like the
macro shown in Example 1.

EXAMPLE 1: CODE WITHOUT MACRO
WRAPPER

#define Address 0x1234

UDATA

TempWord RES 02

banksel TempWord

movlw low(Address)

movwf TempWord

movlw high(Address)

movwf TempWord+i

movlw 0x56 /Copy data

call CopyDataFunc

Using a macro wrapper, the code in Example 2 shows
how to access the same function that accepts the data
value directly.

DS00853A-page 4

EXAMPLE 2: CODE WITH MACRO

WRAPPER

#define Address 0x1234

CopyData 0x56, Address

The code in Example 3 shows variable data stored in
DataLoc.

EXAMPLE 3: CODE WITHOUT MACRO
WRAPPER

^define Address 0x1234

UDATA

TempWord RES 02

DataLoc RES 01

banksel TempWord

movlw low(Address)

movwf TempWord

movlw high(Address)

movwf TempWord+1

banksel DataLoc

movf DataLoc,W

call CopyDataFunc

Using a macrowrapper, the code shown in Example4
supplies the memoryaddress location for data instead
of supplying the data value directly.

EXAMPLE 4: CODE WITH MACRO

WRAPPER

#define Address 0x1234

UDATA

Dataloc RES 01

CopyData_IDDataLoc, AddressLoc

The code inExample 5 shows one more variation using
a macro wrapper for the code of both variable
arguments.

EXAMPLE 5: CODE WITH MACRO

WRAPPER

UDATA

AddressLoc

Dataloc

CopyData_ID_

RES 02

RES 01

IA DataLoc, AddressLoc

To summarize, the code examples previously
described call for the same function, but the way they
format the data is different By using a macro wrapper,
access to assembly functions is simplified, since the
macro only deals with literal values.

© 2002 Microchip Technology Inc.

PIC18XXX8 CAN FUNCTIONS

All PIC18XXX8 CAN functions are grouped into the
following three categories:

• Configuration/Initialization Functions
• Module Operation Functions
• Status Check Functions

The following table lists each function by category,
which are described in the following sections.

TABLE 1: FUNCTION INDEX

Function Category

CANInitialize Configuration/Initialization

CANSetOperationMode Configuration/Initialization

CANSetOperationModeNoWait Configuration/Initialization

CANSetBaudRate Configuration/Initialization

CANSetReg Configuration/Initialization

CANSexidMessage Module Operation

CANReadMessage Module Operation

CANAbortAll Module Operation

CANGetTxErrorCount Status Check

CANGetRxErrorCount Status Check

CANIsBusOff Status Check

CANIsTxPassive Status Check

CANIsRxPassive Status Check

CANIsRxReady Status Check

CANIsTxReady Status Check

Terminology Conventions

The following applies when referring totheterminology used in this application note.

TABLE 2: TERMINOLOGY CONVENTIONS

Term Meaning

xyzFunc Used for original assembly language functions.

AN853

Page Number

10

12

16

19

22

23

24

25

26

27

28

30

xyz

xyz_/(First letter of argument)

The macro that will accept all literal values.

The macro thatwill acceptthe memory address location forvariable implementation.
The macrothatexpects the user is directly copying the specified parameterat the
required memory location by assembly function.

xyz_D(First letter of argument)

LL:LH:HL:HH

bit 31

HH

Y

8-bits

A.

© 2002 Microchip Technology Inc.

HL

—r-y—

8-bits

A

H—h

LH

—^

8-bits

A.

LL

—v

8-bits

bitO

DS00853A-page 5

APPENDIX D

C CODE: EX CAN.C

39

tlltlufult/tlmmmmml/lllinmlmlullmmmmmumlf
/
//// EXJCAN. C
////

////

//// Example of CCS's CAN library, using the PIC18Fxx8. This
//// n , v.^
//// example was tested using MCP250xxx CAN Developer's Kit.
////

////

//// Connect PIN_B2 (CANTX) to the CANTX pin on the open NODE A of

//// the developer's kit, and connect PIN_B3 (CANRX) to the CANRX
////
//// pin on the open NODE A.
////
////

//// NODE B has an MCP250xxx which sends and responds certan canned

//// messages. For example, hitting one of the GPX buttons on

//// the development kit causes the MCP250xxx to send a 2 byte

//// message with an ID of 0x290. After pressing one of those
////
//// buttons with this firmware you should see this message
////
//// displayed over RS232.
////

////

//// NODE B also responds to certain CAN messages. If you send

//// a request (RTR bit set) with an ID of 0x18 then NODE B will
////
//// respond with an 8-byte message containing certain readings.

//// This firmware sends this request every 2 seconds, which NODE B
////
//// responds.

////

////

Ml , *III! If you install Microchip's CANKmg software and use the

//// MCP250xxx , you can see all the CAN traffic and validate all
////
//// experiments.

////
////

//// For more documentation on the CCS CAN library, see can-18xxx8.c
////

1111 ////
ffff This example will work with the PCM and PCH compilers.
////

///7//////
//// (C) Copyright 1996,2003 Custom Computer Services

//// This source code may only be used by licensed users of the CCS

//// C compiler. This source code may only be distributed to other

I'll Ifill licensed users of the CCS C compiler. No other use,

//// reproduction or distribution is permitted without written

//// permission. Derivative programs created using this software

llll _, •//// in object code form are not restricted m any way.

////ff/////ff/////f/f/////////////llll/lllllllllllllllllllllll////l//////
/

#include Sit;18F248.h>
tfuses HS,NOPROTECT,NOLVP,NOWDT
fuse delay(clock=20000000)
#use rs232(baud=9600, xmit=PIN_C6, rcv=PIN_C7} // Jumpers: 8 to 11, /
to 12

#include <can-18xxx8.c>

intl6 ms;

#int_timer2
void isr timer2(void) { ,

ms++; //keep a running timer that increments every milli-second
}

void main{) {
struct rx_stat rxstat;
int32 rx_id;
int in_data[8];
int rx_len;

//send a request (tx_rtr=l) for 8 bytes of data (tx__len=8) from id 24
(tx_id=24)

int out_data[8] ;
int32 tx__id=24;
intl tx_rtr=l;
intl tx_ext=0;
int tx_len=8;
int tx_pri=3;

int i ;

for (i=0;i<8;i++) {
out_data[i]=0;
in_data [i]=^0;

}

printf("\r\n\r\nCCS CAN EXAMPLE\r\n");

setup_timer_2(T2_DIV_BY_4,79,16); //setup up timer2 to interrupt
every 1ms if using 20Mhz clock

can_init();

enable interrupts(INT_TIMER2}; //enable timer2 interrupt
enable^interrupts(GLOBAL); //enable all interrupts (else timer2

wont happen)

printf("\r\nRunning...");

while(TRUE)

{

if (can_kbhit()) //if data is waiting in buffer...

if(can_getd(rx_id. Samp;in_data[0], rx_len, rxstat))
{ //...then get data from buffer

printf("\r\nGOT: BUFF=%U ID=%LU LEN=%U OVF=%U ",
rxstat.buffer, rx_id, rx_len, rxstat.err_ovfl);

printf("FILT=%U RTR=%U EXT=%U INV=%U", rxstat.filthit,
rxstat.rtr, rxstat.ext, rxstat.inv);

printf("\r\n DATA = ") ;
for (i=0;i<rx_len;i++) {

printf("%X ",in_data[i]);
}
printf("\r\n"} ;

}
else {

printf("\r\nFAIL on GETD\r\n");
}

}

//every two seconds, send new data if transmit buffer is empty
if (can__tbe() samp; stamp; (ms > 2000))
{

ms=0;
i=can_putd(tx_id, out_data, tx__len,tx_pri,tx_ext,tx_rtr); //put

data on transmit buffer
if (i != OxFF) { //success, a transmit buffer was open

printf("\r\nPUT %U: ID=%L0 LEN=%U ", i, tx_id, tx_len);
printf("PRI=%U EXT=%U RTR=%U\r\n DATA = ", tx_pri, tx_ext.

tx rtr)
for (i=0;i<tx_len;i++) {

printf("%X ",out_data[i]);
}
printf("\r\n");

}
else { //fail, no transmit buffer was open

printf("\r\nFAIL on PUTD\r\n");
}

APPENDIX E

C CODE FOR COMMUNICATION BETWEEN TWO

MICROCONTROLLERS : NODE.C

40

//////////////////////

// //

//Node.c //

// //

/////////////////////

#include<18F458.h>

#inchide <stdio.h>
#fAises XT,NOPROTECT,NOLVP,NOWDT
#use delay(clock=4000000)
#use rs232(baud=9600, xmit=PIN_C6, rcv=PIN_C7) // Jumpers: 8 to 11, 7 to 12

#indude <can-18xxx8.c>

int16 ms;

#int_timer2
void isr_timer2(void) {

tos-h-; //keep a running timerthatincrements every milli-second
>

#deflne SEND_ID_B 0x201 //Send ID for PortB
#define GET_ID_B 0x202 //Send ID for Port C
#define RESPOND_TO_ID_B 0x203
#define RESPOND_FROM_IDJB 0x204

#define BUTTON PIN_C0
#define BUTTONPRESSED !input(BUTTON)

voidmainO {

struct rxstat rxstat;

int32 rx_id;
intin data[8];
int rx_len;

//send a request (tx_rtr=l) for 8bytes ofdata (tx_len=8) from id24(tx_id=24)
intout_data[8];
int32 tx_id=24;
intl tx_rtr=l;
intl tx_ext=0;
int tx len=8;
mttx_pri=3;

inti;

for (i=0;i<8;i++) {
out_data[i]=0xFC;
in_data[ij=0;

}

set_tris_c(0xFF);

printf("\r\n\r\nCCS CANEXAMPLE\r\n");

setup_timer_2(T2_DIV_BY_4,79,16); //setup up timer2 to interrupt every 1ms ifusing 20Mhz
clock

caninitO;
can_set_mode(CAN_OP_NORMAL);

enable interrupts(INT_TlMER2); //enable timer2 interrupt
enableJnterrupts(GLOBAL); //enable all interrupts (else timer2 wont happen)

printf("\r\nRunning...");

while(TRUE)

{

if (BUTTON_PRESSED) {
while(BUTTONJPRESSED) {}
delay_ms(200);

printf("\r\nSending message over toNode B");
can_j>utd(SEND_IDJ3, 0, 1,3, 1, 1);

}

if(can_kbhitO) //ifdata iswaiting inbuffer...

if(can_getd(rx_id, &in_data[0], rxjen, rxstat)) {//...then get data from buffer
if(rxjd= RESPONDJ?ROM_IDJB) {
printf("\r\nMessagesenttoPortB"); nrcn„.,n ™ m rprintf('V\nGOT: BUFF^/oU IT>%LU LEN^/oU OVF=%U ", rxstatbuffer, RESPOND_TOJD_B,

rX"leD' p^rnr^-FiLT-VoU RTR=%U EXT=%U INV=%U", rxstatfilthit, rxstatrtr, rxstatxxt, rxstatinv);
//printf("\r\n DATA-");
for (i-0;i<rx_len;i-H-) {

printfC%X ",in_data[i]);
}
printtT"\r\n");

}

if(rxjd — GET_ID_B){
printf("\r\nGot a message from port B");
printf("\r\nLED ON");
output high(PIN D4);

canlputd(RESPOND_TO_ID_B, &i, 1,1,1,0); //put data on transmit buffer
delay_ms(2000);
output__low(PIN_D4);

}
}

}

}
}

APPENDIX F

C CODE FOR COMMUNICATION BETWEEN THREE

MICROCONTROLLERS : STATIONA.C

41

#include <18F458.h>
#fuses XT,NOPROTECT,NOLVP,NOWDT
#use delay(clock=4000000)
#use rs232(baud=9600, xmit=PIN_C6, rcv=PIN_C7) // Jumpers: 8 to 11, 7
to 12

#include <can-18xxx8.c>

intl6 ms;

#int_timer2
void isr timer2(void) {

ms++; //keep a running timer that increments every milli-second
}

tdefine SENDJIO_PORT_B 0x201
#define SEND__TO_PORT_C 0x202
#define RESPOND_FROM_PORT_B 0x207
#define RESP0ND_FR0M_PORT_C 0x208

void main() {

char out_data;
intl tx_rtr=l;
intl tx_ext=0;
int tx_len=8;
int tx_pri=3;
int i;

struct rx_stat rxstat;
int32 rx_id;
char in_data[8];
int rx_len;
int buffer=0xfc;

printf("\r\n\r\nMonitoring CAN... Node A\r\n");

setup_timer_2 (T2_DIV_BY_4,79,16) ;

can_init(};
can_set_mode(CAN_OP_NORMAL);

enable_interrupts(INTJTIMER2);
enable_interrupts(GLOBAL);

printf("\r\nRunning...");

while(TRUE)

{

//*********** Receiving Data

if { can_kbhit()) //if data is waiting in buffer...

printf("\r\n\nData in receive buffer");
if(can_getd(rx_id, Sin_data[0], rx_len, rxstat)) { //...then

get data from buffer

//Respond from B
if (rx_id = RESPOND_FROM_PORT_B) {
printf("\r\nMessage sent to Node B");
}
//Respond from C
if (rx_id = RESPOND_FROM_PORT_C) {
printf("\r\nMessage Sent to Node C");
>

}

///////////////////////////////////////'//'//77/////7/7/'/7///'//'///////////
///////////

//******Sending

data
********i**

if { can_tbe() && (ms > 500))
{
out_data = getchar();
printf("\r\n\Transmit buffer ready");
printf("\r\n\n you pressed %c", out_data);
ms=0;

//Data for Port B
if (out_data=='a' I! out_data=='b' || out_data=='c')
{

i=can_putd{SEND_TO_PORT_B, out_data,
tx len,tx pri,tx__ext,tx_rtr) ; //put data on transmit buffer

— ~ if (i i= OxFF) { //success, a transmit buffer was open
printf("\r\nSend data to Port B");

printf("\r\nP0T %D: ID=%LU LEN=%U ", i,
SEND TO PORT B, tx len);

" - ~ printf("PRI-%U EXT=%U"RTR=%U\r\n DATA- ", tx_pri,
tx_ext, tx_rtr);

for (i=0;i<tx_len;i++) {
printf("%c ",out_data);
}
printf("\r\n");

}

}

//Data for Port C
if (out_data=='dT II out_data=='e' II out_data=='f'){
i=can_putd(SEND_TO_PORT_C, out_data,

tx len,tx pri,tx_ext,tx_rtr); //put data on transmit buffer
"~ if (i \= OxFF) { //success, a transmit buffer was open

printf("\r\nSend data to Port C");
printf("\r\nPUT %U: ID=%LU LEN=%U ", i,

SEND TO PORT C, tx len);
- ~ ~ printf("PRI=%U EXT=%U RTR=%U\r\n DATA = ", tx_pri,

tx ext, tx_rtr);
for (i=0;i<tx_len;i++) {

printf("%c ",out_data);

}
printf("\r\n");

}

}

ff////ff///ff///////////IIIIIIIIIIHIIIIIIIIIIIIII HIIIIIIIIIIIIIIIIHII
////////////

APPENDIX G

C CODE FOR COMMUNICATION BETWEEN THREE

MICROCONTROLLERS : STATIONB.C

42

#include <18F458.h>
#fuses XT,NOPROTECT,NOLVP,NOWDT
fuse delay(clock=4000000)
fuse rs232(baud=9600, xmit=PIN_C6, rcv=PIN_C7) // Jumpers: 8 to 11, 7
to 12

#include <can-18xxx8.c>

int16 ms;

#int__timer2
void isr timer2(void) {

ms++; //keep a running timer that increments every milli-second
}

#define RECEIVE_FROM_PORT_A 0x201
#define RESPOND TO PORTIA 0x207

void main() {

char out_data;
intl tx_rtr-l;
intl tx_ext=0;
int tx_len=8;
int tx_pri=3;
int i ;

struct rx_stat rxstat;
int32 rx_id;
char in_data[8];
int rx_len;
int buffer^Oxfc;

printf("\r\n\r\nMonitoring CAN... Node B\r\n");

setup_timer_2(T2_DIVJ3Y_4,79,16} ;

can_init();
can_set_mode(CAN_OP_NORMAL) ;

enable_interrupts(INTJTIMER2) ;
enable_interrupts(GLOBAL);

printf("\r\nRunning.- -") ;

while(TRUE)

{

//*********** Receiving Data

if (can_kbhit()) //if data is waiting in buffer...
{

printf("\r\nData in receive buffer");
if(can_getd(rx_id, &in_data[0], rx_len, rxstat)) { //...then

get data from buffer

//Data from A
if (rx_id = RECEIVE_FROM_PORT_A) {
printfT"\r\nData is from Node A");
printf("\r\nGOT: BUFF-%U ID=%LU LEN=%U OVF=%U ",

rxstat.buffer, rx id, rx_len, rxstat.err_ovfl);
printf("FILT=%U RTR=%U EXT=%U INV=%U", rxstat.filthit,

rxstat.rtr, rxstat.ext, rxstat.inv);
printf("\r\n DATA = ") ;
for (i=0;i<rx_len;i++) {

printf("%c ",in_data[i]);
}
printf("\r\n");
can_putd(RESPOND_TO_PORT_A, Sbuffer, 3, 1, 1, 0) ;

}

}

/////////// /// /111 /1177777777777777'/7'>7777777777777777777777777777777777
///////////

APPENDIX H

C CODE FOR COMMUNICATION BETWEEN THREE

MICROCONTROLLERS : STATIONCC

43

#TYPE INT=8

#include <18F458.h>
Ifuses XT,NOPROTECT,NOLVP,NOWDT
fuse delay(clock=4000000)
#use rs232(baud=9600, xmit=PIN_C6, rcv=PIN_C7) // Jumpers: 8 to 11, 7
to 12

#include <can-18xxx8.c>

intl6 ms;

#int_timer2
void isr__timer2 (void) {

ms++; //keep a running timer that increments every milli-second
}

#define RECEIVE_FROM_PORT_A 0x202
#define RESPOND_TO_PORT_A 0x208

void main() {

char out_data
int 1 tx_rtr=l
intl tx_ext=0
int tx_len=8;
int tx_pri=3;
int i;

struct rx_stat rxstat;
int32 rx__id;
char in__data [8];
int rx__len;
int buffer=0xfc;

printf("\r\n\r\nMonitoring CAN... Node C\r\n"

setup__timer_2 (T2_DIV_BY_4,79,16) ;

can_init(};
can_set_mode(CAN_OP_NORMAL);

enable_interrupts(INT_TIMER2) ;
enable_interrupts(GLOBAL);

printf("\r\nRunning...");

while(TRUE)

{

//*********** Receiving Data

if (can_kbhit()) //if data is waiting in buffer...
{

printf("\r\nData in receive buffer");
if(can getd(rx id, &in_data[0], rx_len, rxstat)) { //...then

get data from buffer

//Data From A

if (rx_id == RECEIVE__FROM_PORT_A) f
printf("\r\nData is from Node A");
printf("\r\nGOT: BUFF=%U ID=%LU LEN=%U OVF=%U ",

rxstat.buffer, rx_id, rx_len, rxstat.err__ovfl);
printf("FILT=%U RTR=%U EXT=%U INV=%U", rxstat.filthit,

rxstat.rtr, rxstat.ext, rxstat.inv) ;
printf("\r\n DATA = ");
for (i=0;i<rx_len;i++) {

printf("%c ",in_data[i]);
}
printf<"\r\n");

can_putd(RESPOND_TO_PORT A, &buffer, 3, 1, 1, 0);
}

}

}

//

}

APPENDIX I

HARDWARE CONNECTION

J +5v
ue

*1 128

vss

VDD

in
in
CJ
0-
CJ
z:

RS

CANH

CfiNL

VREF

CANTX , ^
* .

<l „5

*'

#C4

7

CAN transceiver, MCP 2551 connection

c*=i r r i==3 f-j

'ii:

TiWumlOBd itaj Bum PIC •—

RecoiwddataiaflC

J3

0

Q

U1 *

«+

ci-

C21-

Tlln

T2ln
Rinut g
R2out §

v-

Twur

T&ut
Rlln

FCSn

Inn

MAX232 hardware connection

44

C10

