PIC BASED CONTROLLER AREA NETWORK (CAN)

By

AZHANI AHMAD SHAFEIL

Final Report

Submitted to the Electrical & Electronics Engineering Programme
in Partial Fulfillment of the Requirements
for the Degree

Bachelor of Engineering (Hons)
(Electrical & Electronics Engineering)

Universiti Teknologi Petronas
Bandar Seri Iskandar
31750 Tronoh
Perak Darul Ridzuan

© Copyright 2007
by
Azhani Ahmad Shafei, 2007

ii

CERTIFICATION OF APPROVAL

PIC BASED CONTROLLER AREA NETWORK (CAN)

by

Azhani Ahmad Shafei

A project dissertation submitted to the
Electrical & Electronics Engineering Programme
Universiti Teknologi PETRONAS
in partial fulfilment of the requirement for the
Bachelor of Engineering (Hons)
(Electrical & Electronics Engineering)

Approved:

VFe—

Assoc. Prof Dr. Varun Jeoti Jagadish

Project Supervisor

UNIVERSITI TEKNOLOGI PETRONAS
TRONOH, PERAK

June 2007

iii

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the
original work is my own except as specified in the references and acknowledgements,
and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

2y

Azhani Ahmad Shafei

iv

ABSTRACT

The field of automation and contro} is constantly expanding and with that the
complexity in automation and conmtrol system has also been increasing. The
complexity of control systems and the need to exchange data between them mean that
more and more hard-wired, dedicated signal lines have to be provided. The challenges
faced in autornation and control system is the complexity of wiring, the complexity of
the system itself and its reliability in harsh environment. Controller Area Network
(CAN) provides solution in dealing with complexity of networking. CAN is also
growing in popularity due to its ease of use and low costs in implementing them.
CAN is as simple to use as a serial UART, and currently the cost of CAN controilers
is still decreasing. The implementation of CAN not only covers the car and
automation industries, but also into fields such as medical instrumentation and
domestic appliances. One of the CAN microcontrollers availabie in the market is the
Microchii;’s PIC18 family. The project;é goal is to set up Controller Area Network
(CAN) by utiiiiing_ the Microchip’s PIC18. Microchip’s MCP2551 CAN transceivers
are used to interface the CAN controllers with the CAN bus. C language program is
written to control the microcontrollers. The C program is translated to HEX file using
CCS compiler. The HEX files are downloaded onto the microcontrollers. The traffic
of the transmission of the messages is monitored using HyperTerminal. The
microcontrollers are able to send messages among them using the CAN module. The
ID of the message transmitted from one microcontroller matches the ID received from
the receiving microcontrolier. This work demonstrates a CAN network built using

PIC microcontrollers.

ACKNOWLEDGEMENTS

My decpest gratitude goes to supervisor Assoc. Prof Dr. Varun Jeoti for his useful
advices and for his time spent on me for the past few months. I appreciate the
opportunity he has given me to work under him for this project which has given me

new insight and experiences in new area.

Special thanks to Mr Patrick Sebastian Ms. Noorashikin Binti Yahya for their kind
gestures in lending me their knowledge and expertise to carry out the project. Not
forgetting Ms. Nasreen Badruddin for her kind help to entertain me. Not forgetting
EE FYP committee especially to Ms. Azrina and Ms. Hawa for their hospitability.

Appreciation also goes to the technicians, Miss Siti Hawa and Miss Siti Fatimah for
all their help and their guidance throughout the process. Thanks to classmates for
giving their view and ideas and feedbacks through some useful and enlightening

discussions.

Last but not least, my love and appreciation goes to all individuals, friends and

families who gave endless support and help for these past few months.

vi

TABLE OF CONTENTS

LIST OF FIGURES. ...c.etrtieeretrscresesaessssssssessssisssemeatsssessmsassstasserissssassassssnsasronsasssss ix
LIST OF TABLES ..ot eicirtecensssensesestarasesssssasssssssstassssssassssssasiosssssissmssisamsstsssasaassasssosss X
CHAPTER 1 INTRODUGCTIONoooiieereermistismemtesssesemssassesssssssssassssnssnsnsssssssassassaas 1
1.1 Background of STUAY ..ottt et 1

1.2 Problem StatemeENtcvecerrevirstrcscsrmassesesressasssnssssssessarsstssssnsasasasesans 2

1.3 Objectives and Scope of StUAY .vovveecemerieeritiene s 2

1.3.1 OBJECHIVES cemrerrrecerririssescamnsnninaesrstasasessstn s seasasasasassssasacscessssons 2

1.3.2 Scope Of StAY cccvvereeceimiietrressistcsesn st s 3

CHAPTER 2 LITERATURE REVIEW ...coooiiimiinrsisstnntnscncescmssssnisssssnsssassssssssssssess 4
2.1 Controller Area NetWOTKccovecveiinmirrireesineceannssenacrnstsssssessanssasassnass 4

2.1.1 Example of CAN Application in industrycveimeesiinnns 5

2.2 CAN PhySical LaYET......c.coceerereiamenrsnssesssssismsssannrisrassssssanssscsssasanesans 5

2.3 Medium Access CONTOL......coreracereescsssisiesssnssesamaresssssscsssssssnsnses 6

2.3.1 CSMA/CD .eecveeerceeecrrceeesesssessesssssnssssansssrsassssansssrssssassssnssasness 7

2.3.2 Bus ArDHIationoccrereeevermnsnirsesnsstnsassseessesss s e sanaseass 8

2.3.3 Frame FOIMALS ...ccooaeereerrrnsicasinneannsesesensessssnesssssssnrersnstaasssnnens 9

2.4 MACTOCOTHTONET ...eeeereieeemceeestisssesnesssessennassmssse sassasasas s ssseannnssanans 10

24,1 PICISFAS ...ocoeeeeerrearrecmecseeseresassstssssssasssassassseassessssssssssssnsenss 11

2.4.2 CAN modes of Operations.cocueeiercnseenrrecsssssesnssssinsansinsseas 12

2.5 CAN transceivers MCP255] .ot nses s e 12

2.5.1 MCP2551 modes of Operations........ueceeeivecenesiessnsmsssssnsssaas 13

2.6 PIC18XXX8 CAN FUNCHONS...ccocreiirisrrrrvinsssseannsnenasanrsssss s smensenns 14

2.7 WIrEless CAN....ovvecierrrcaeriseessssesnessssasssssassnssssssssssesssssstassssarsascasns 14

270 REMAC oo ermeseeasssseassessesmsecisssssssssaasesmsassssessesasnsessrssiases 14

2.7.2 WIMAC ... ioriiiereerseseessseaacessessassessssssssesssesssssasassasasssassssssesas 15

2.7.3 On-Off KEYINEG .coriereereenrinicermnsnsanccrsnnnnscesass s csssasasasas deesereees 15

CHAPTER 3 METHODOLOGY ..ccoeerereaecctisisissmssnemssssnssnsrsssossssssssansssisissssissssassssnss 16
3.1 PrOCEAUITE v eeeeeneeeieciresvasssnesscnasarseaesasssasssnennssasansasassassssssssssnssssnsseass 16

3.2 TOOIS eeteeeeeeeeeeeisstsiseesssaeessnenra s enarsnmesssanas s bbb aness st aasan s araens i ans saanssann 17

3.2.1 SOFEWATE c...evvrrrrerriairecseserassressssantssssnasasssasesssssssssasssssssssnnsasans 17

3.2.2 HATAWALC ... vecricerareesereeercsssssssnsssessessssessnansssassssssssossssssssessanns 18

vii

CHAPTER 4 RESULTS AND DISCUSSIONS ...t icnmininsniivesnesssassesssssaninaneas 19

4.1 Hardware Tmplementation. ... recrniinissinniensrsssassteassnsasas 19

4.1.1 Loopback MOdE.....uoeuiiiererreerrsssassssemsanssnenssssssncnssissssssaneas 19

4.1.2 NOrmMal MOAEeereeeceeerccrrerrissenessiarnassssnsseesssensssssessssssssanasnsinss 21

4.2 Communication between two microcontrollers ... ovieiiiiinnnns 24

4.3 Communication between three microcontrollersccovviiivecnes 26

4.3.]1 Writing C PrOGIAM....corviieterenremnasrsnssosistnmn s sisnsssos sassssssssssassass 27

4.3.2 RESUM ceeeerierercivresareasseraansesssisassassmnsssssnessuaassassssnasanssrasassnasnss 30

CHAPTER 5 CONCLUSION & RECOMMENDATIONcooiimminniecnnnnnnniisins 33
5.1 CONCIUSION ...ceverrrreriencsrssessmsessirssesrsrsstsasassasmneassssssmsssmssssasnnsasscssns 33

5.2 ReCOMMENTALION. c.eiveereerrersenasnrrsnrasssrsesntasssnssssssssssonsnrsassssasssnesses 33
REFERENCES .. eeeeeteeeseesesssssssssestastassseeassessniassssssssnsassasssnsstsonassssssamsnsasstasssasssasisssiss 34
APPENDICES. - e eecereeessssessssssesesssarsesssssssstrsssssssssassatasmsssseasmestbsssssssasssmsssssssssasssstsssisas 35
Appendix A PIC18FXX8 Data Sheet ...t 36

Appendix B MCP2551 Data Sheet ..ot 37

Appendix C PIC18FXX8 CAN Driver with Prioritized Transmit Buffer
.. 38

Appendix D C Code: €X_CaN.Couiirmnemesnsensssoncs s nsesnes 39

Appendix E C Code for Communication between Two
Microcontrollers : NOGE.Cuuuureeerrrneriierisesmisssrrvrecssennssas s sassssasansssnnses 40

Appendix F C Code for Communication between Three
Microcontrollers 1 StAIOMALC ..ccouireereeesiicrnnsesarmesrsnesssenssnsatsssrassessssaas 41

Appendix G C Code for Communication between Three
Microcontrollers : Statlonb.C..c..ciiiiiinienrrsssennrsnne e scssasasssiasseanes 42

Appendix H C ode for Communication between Three
Microcontrollers : STAtIONC.C cueerrrrrrrrrermsssarrrassmernsirssssrissneeseransassesees 43

Appendix [Hardware Connection.........eeismerasnsconsssmscsisssnsssnsssnes 44

viii

LIST OF FIGURES

Figure 1 Block diagram of a AEAS-7000 with CAN interfacecccvowevnrissniecnecenns 5
Figure 2 Block diagram of @ CAN NEIWOTKceuecummimimnmiiin sttt 6
Figure 3 Examples of multiple access protocols ...t 7
Figure 4 CSMA/CD Procedure [8] ...ttt 8
Figure 5 Bit arbitration mechanism in CAN [11] ceermirmmeecesinnscnrcncsisneens 9
Figure 6 The CAN 2.0 B data fIame ...c..coveuerenmmininisisse st e 9
Figure 7 The PIC18458/448 Pin DIagramcococeiiiviminmsssnniannssnsc s 12
Figure 8 The MCP2551 Pint DIBramoerueicscmcinmiinrsrsstsssmsm s snsses 13
Figure 9 Modification made to the EX CAN.C ..ot 19
Figure 10 Block diagram of CAN hardware for loopback mode......ocuevveeeecsiencenes 20
Figure 11 Screen capture for loopback mode traffic........cmmveieninncinnciiiennns 20
Figure 12 Block diagram of CAN hardware for normal modecoeeeeseisioninncnnne 22
Figure 13 Modification made to the EX_CAN.c for normal mode.oouevecmsscennnes. 22
Figure 14 Schematic of controllers and transSceivers CirCUIt . veissiscrsiencecnniens 23
Figure 15 Schematic 0f MAX232 CIrCUIL.....ovomnersrreeciaesmsicenis sttt 23
Figure 16 Communication between the microcontrollers ... vieinnisenceccnans 25
Figure 17 Display at HyperTerminal at NOAe A c.cemviimniiecsnsis e 25
Figure 18 Communication between Node A, Node B and Node C ..cuvvvercvenenccnennnns 26
Figure 19 Operation between Node A, Node B and Node Cnvcerivsinncninenscnnennen: 27
Figure 20 Flowchart for program NOGE A ...t 28
Figure 21 Flowchart for program Node B and Node € e 29
Figure 22 Screen capture for Node A (sending message to B) .ovveeeiveniennrnnssnnianes 30
Figure 23 Screen capture for Node Bt 31
Figure 24 Screen capture for Node C. .t 31

ix

LIST OF TABLES

Table 1 The CAN 2.0 B data frame field name and purposeceeeeecriiiniiininsrenns
Table 2 PIC18 Family Feature SUMMATYcocveersiessessarisssissmsmsmansssssintasisssssnsonssasess

Table 3 PIC18xxx8 Function Index

..

CHAPTER 1
INTRODUCTION

1.1 Background of Study

The field of automation and control is constantly expanding with the introduction of
innovative techniques, particularly with the advent of lower cost and higher technology tools.
Day by day, the complexity in automation and control system has been increasing. For
example in a car automation system, there is the need to control many electronic systems.
Anti-lock Braking, Engine Management, Traction Control, Air .Condition'mg Control, central
door locking, and powered seat and mirror controls are just some examples. The complexity
of these control systems, and the need to exchange data between them meant that more and
more hard-wired, dedicated signal lines had to be provided. Sensors had to be duplicated if
measured parameters were needed by different controllers. Apart from the cost of the wiring
looms needed to connect all these components together, the physical size of the wiring looms
sometimes made it impossible to thread them around the vehicle. In addition to the cost, the
increased number of connections posed serious reliability, fault diagnosis, and repair

problems during both manufacture and in service.

Same can be said to automation and control in other industrial system. Some of the examples
are Marine control and navigation systems, elevator control systems, agriculiural machinery,
production line control systems, machine tools, photo copiers, medical systems, paper

making and processing machinery, packaging machinery, and textile production machinery.

All these automation and conirol system will benefit if there is a controller which helps

reduce the complexity of wiring while reliable and is cost effective.

1.2 Problem Statement

The challenges faced in automation and control system is the complexity of wiring, the
complexity of the system itself and its reliability in harsh environment. CAN is growing in
term of popularity for it is cost-effective and proven reliability and robustness, CAN is now

also being used in many other control applications.

Controller Area Network (CAN) is inexpensive and durable. The control unit can have a
single CAN interface rather than analog and digital inputs to every device in the system. Each
of the devices on the network has a CAN controller chip and is therefore intelligent. All
devices on the network see all transmitted messages. Each device can decide if a message is
relevant or if it should be filtered. In addition, every message has a priority, so if two nodes
try to send messages simultaneously, the one with the higher priority gets transmitted and the

one with the lower priority gets postponed.

With this functions and features, CAN seems like a perfect candidate in automation and
control system. At the moment there are few companies that produces CAN controller. One
of the products available in the PIC family from Microchip includes PIC18F458, PIC18F258,
PIC18F448, and PIC18F243.

1.3 Objectives and Scope of Study

1.3.1 Objectives

Based on the problem discussed, the project proposes a Controller Area Network to build

based on PIC microcontroller.
The objectives of this project are:
e To be able to explain the concept behind the Controlier Area Network

e To be able to explain the concept of the Medium Access Control which determines

the access to the transmission medium

e To be able to implement and built hardware network of Controller Area Network

using Microchip PIC microcontroller.

1.3.2 Scope of Study

The scope of study will divided into two parts. First is the understanding and research part
which includes exploration in the concept of Controller Area Network and the Medium
Access Control (MAC). After that research is continued on Microchip PIC, its function and
utility.

The next part is the implementation part which includes programming using C language and

building the hardware and alongside testing the circuit’s and network behaviour.

CHAPTER 2
LITERATURE REVIEW

2.1 Controller Area Network

Controller Area Network (CAN) is a serial bus system. The system helps communicate
several intelligence devices, for example sensors and actuators. These devices or CAN nodes

can try to transmit data at any point of the time {1].

CAN provide an inexpensive, durable network that helps multiple CAN devices
communicate with one another. Basically, the CAN Controller implements the CAN
specifications in hardware. CAN protocol is a CSMA/CD (Carrier Sense Multiple
Access/Collision Detection) protocol. The protocol basically lets the nodes check the bus
activity for a period before sending messages on the bus (Carrier Sense). If there is no
activity, all nodes have an equal opportunity to transmit a message (Multiple Access). If two
nodes start to transmit at the same time, the nodes will detect the collision and appropriate

actions will be taken (Collision Detection) [1].

To solve the collision, bitwise arbitration is utilized. Logic states are defined as dominant
(logic bit 0) and recessive (logic bit 1).Transmitting nodes witl need to check whether the
logic state out from its node appear in the bus. Dominant bit state will always win the
arbitration over the Recessive bit state thus will be able to transmit its message across the
bus. The lower the value in the Message Identifier, the higher the message priority. The node

that lost the arbitration will have to stop transmitting its message [1].

2.1.1 Example of CAN Application in industry

CAN bus are first implemented in automotive applications but it has gained popularity in
industrial automation, medical equipment, test equipment, and mobile machines. Other
applications where CAN bus is successfully implemented are Maritime clectronics, acrospace
electronics, Uninterruptibie Power Supply (UPS), Elevator control, Exercise equipment, and

much more. [10]

One of the applications that utilizes PIC microcontroller is the implementation of CAN for
AEAS-7000. The AEAS-7000 is a 16-bit gray code Absolute Encoder backbone with SSI
(Synchronous-Serial-Interface) ~ communication interface. [10] There are other

microcontrofler which has CAN feature in the market. One of them is CCO01 from Phycore.
[91

2N
iy
M ol CANT @
icrocontrolter ransceiver (A b
FIC18F258 -— MCP2551 — v
&2
I ~
A
AEAS-7000

Figure 1 Block diagram of a AEAS-7000 with CAN interface

2.2 CAN Physical Layer

The physical layer used to implement CAN network is a differentially driven two-wire bus
line with a common return. The two wires are called CAN_H and CAN_I.. The CAN bus

must be terminated at both ends by resistors with recommended value around 124 ohms [1].

" CAN CAN
NODE A ~ NODESB
® —9— * CAN A
124 ohm 124 ohmt
' : ® , . ® CAN L
CAN
NODEC

Figure 2 Block diagram of a CAN network

2.3 Medium Access Control

The Media Access Control (MAC) sub layer is the part of the OSI network model data link
layer that determines who is allowed to access the physical media at any one time. It acts as

an interface between the Logical Link Control sub layer and the network’s physical layer. [1]

The Medium Access Control controls access to the transmission channel. Its purpose is to
cope with problem of two or more stations sending data at the same time either by preventing
the problem from happening or by recognizing the collision between

data.

Multiple access
protocols
|
[| l
Random access Controlled- Channelization
protocols access protocols protocols

MA Reservation FDMA
CSMA Polling TDMA
CSMA/CD Token Passing CDMA
CSMA/CA

Figure 3 Examples of multiple access protocols

Many protocols have been devised to handle access to shared link. They are categorized into
three groups as shown in Figure 2. Random access protocol gives the right to medium
without being controlled by other stations. The problem faced is access conflict between data
frames when more than one station tries to send. In controlled access, the stations consult one
another to find which station is authorized to send. Channelization is the method which the

available bandwidth of a link is shared in time, frequency, or through code between stations.

(8]

2.3.1 CSMA/CD

The Medium Access Control mechanism in CAN is classified as CSMA/CD. CSMA/CD
(Carrier sense multiple access with collision detection) is modification of CSMA. In this
method, any station can send a frame. The station then monitors if the transmission is
successful. IF there is collision, the frame needs to be transmitted again. To reduce the
probability of collision the second time, the station waits for an amount of time between 0

and 2% x maximum propagation time. [8]

Set backoff to
t Zero
— "
Wait backofT Persistence
fime strategy
r Y v
Send the frame
No
- Yes
Backoff ‘ Increment Send jam ’
limit backoff signal
Yes y No

e
Abort

Figure 4 CSMA/CD Procedure [8]

2.3.2 Bus Arbitration

The identifier in a CAN message defines the priority of the message and is the basis for the

medium access control for CAN. The operation is as follow.

) Station detects the bus is free for transmission. If free, then the station
transmits

. During transmission, the station will keep monitoring the bus

J If, during the transmission of the Arbitration field, the node attempts to

transmit a Recessive Bit but it detects Dominant Bit on the bus, it stops the
transmission and wait for the bus to be free again before retransmitting

data.f1]

resulting bus level

recessive
bus 4] 1 0 0 1 1] i 1 4
A 0 1 0 0 1 1 1 IN=319=0100111111
c o 1 o 0 1 1 0 1 1 [¢] ID=310==0100110110
A loses B loses A loses
B loses

~<nodeA - —{ nodeB ' node C

Figure 5 Bit arbitration mechanism in CAN [11]

2.3.3 Frame Formats

In order to perform its operation, the data are transmitted as data frames. There are two

different formats for data frames, 11-bit identifier message and 29-bit identifier message. [1]

Arbitration Field Control Field Data Field CRC Field Ack. Field
S| 11-bit Rilb |r Data Bytes 15-bits CRC E
Q identifier TIDJ|o DLC O
F R| E F

Figure 6 The CAN 2.0 B data frame

Field Name Length | Purpose
(bit)

Start of Frame (SOF) 1 Synchronization

Identifier 1 Establish message priority and identity

Remote Transmission Request |1 If set to Dominant, frame contains data, if set

(RTR) to Recessive, frame is empty.

Identifier extension 1 If set to Dominant, frame is standard 11-bit
identifier, if set to Recessive, frame has 29 bit
identifier.

Reserved bit (r0) 2 Fdr future use

Data Length Code (DLC) 4 Holds data byte count for message

Data field 8 Holds data

bytes

Cyclic Redundancy Check (CRC) | 15 Error checking

Acknowledgement field 1 Used to ensure message has been successfuily

| received by other nodes

End of Frame (EOF) 7 Must be recessive

Table 1 The CAN 2.0 B data frame field name and purpose

2.4 Microconftroller

A microcontroller is a complete computer system that consists of the processor, memory and

I/O peripheral in singte silicon [2]. It is capable of performing various tasks replacing the

high-end microprocessor.

There are a few microcontrollers in PIC family from Microchip that has CAN solution. This
PIC family from Microchip includes PIC18F458, PIC18F238, PIC18F448, and PIC18F248.

The microcontroller and its features are summarized in figure below.

10

CCPi

* Program Memory Data Memory g | Eccp MSSP
o ' 10- 2 | pwm | Timer
. = -
Dovice [l | yeingte- | sRam | Fobr | O 1 RL g mast | 5| °0e
(bytes | Word (Bytes sPi | er
} Instructions | 3} | ®*° S 12¢
PICIBF248 | 16K 8102 768 | 256 | 22 5 | — | w Y Y | ¥y | 1
PIC18F288 | 32K 16384 1538 | 256 | 22 s | — | 10 Y Y | Y | 1
PICI8F448 | 16K 8192 768 | 256 | 33 8 2 n Y Y | vy | 1
PIC18F458 | 32K 16384 1536 | 256 | 33 8 2 n Y Yy | ¥ | 1
Table 2 PIC18 Family Feature Summary

2.4.1 PICISF458

PIC18F458 has a high performance RISC (reduced instruction set computer) CPU with 33
/O pins. It has CAN bus module features with message bit rates up to 1 Mbps. It conforms to
CAN 2. 0B speclﬁcatlons with 29-bit identifier fields, 8-byte message length, 3 transmit

message buffers with pnontlzatlon 2 receive message buffers, 6 full, 29-bit acceptance

filters, prioritization of acceptance filters, multiple receive buffers for hlgh priority messages

to prevent loss due to overflow and advanced error management features [3].

The PICF458 supports communication using RS232 as a serial communication between the

microcontroller and PC. This form of communication needs MAX232 as driver that acts as

level voltage converter.

While having all the functions the other microcontroller has, PIC18F458 has bigger data

memory and program memory size. PIC 18F458 also has more I/O channels ad more A/D

channels.

11

o
WiLRnme —= O 1 et 403 »—= RBTPGD
RAD & AT -— g] =—— REBFGT
RE& 1 w—e] 3 FE [T - RE:! =t
RAZAND -—z 27 [T w——e FB4
RAJIAMTEY PR i L A5 [- RE3SCANRX
RAFTICK ==& 25 [=—a RBZICEHTHINTE
RASAHSSELNDIN -—eT]7 24 [T w—e RETANTI
REGIMERD =—w 12 T T 2 -+— REHNTO
REu-—\Jb"_E:C*sOUT —fiz - O O 32— "%L2
REMAMTICEIC20UT -—=O1¢ & & 2IH =3
Vi —e[Q1t M M g RO7PSPTPID
yss —w=[112 £ F 28— RCEPSPEPIC
OSCUCLE: ——e[J 47 0 80 237 -=—= ROSPSPARIE
OECHOLKORAS =1 14 27 7 e RCHPSPAECCEUPIA
RCOTADSCITICK: »—e [15 25 1] w—» RCT/RXDT
ROUTIOS: e 16 25 [T =—— RCETEICK
ROCCPT e O] 17 24 [T e—e RCE/SDT
ROSBOKSTL -— 18 25 [T =— RCE/SDESDA
RDIPSPICUNE e 19 29 T —= ROAYPSPHC2IH-
B0 BSP D M- a—e O] 20 21 a—» ROHPSPICIIN+

Figure 7 The PIC18458/448 Pin Diagram

2.4.2 CAN modes of operations

The PIC18F458 has six main modes of CAN operation; configuration mode, disable mode,

normal operation mode, listen only mode, loopback mode and error recognition mode.

When the controller is in loopback mode, the messages in its buffers will be transmitted fo its
receiver buffers internally without going through the CAN bus. The loopback mode is a silent
mode, thus the CANTX pin will be an I/O pin. This mode is important to verify that the

{ransceiver and receiver buffers of a controller are working correctly.

The normal mode is when the controller can actively monitors ail bus messages and generates
Acknowledge bits, error frames, etc. This is the standard mode for the controller. This is also

the only mode in which the controller will transmit messages over the CAN bus.

2.5 CAN transceivers MCP2551

The MCP2551 is a high-speed CAN, fault-tolerant device that is used as interface between a
CAN protocol controller and the CAN physical bus. The MCP2551 provides differential

12

transmit and receive capability for the CAN protocol controller and is fully compatible with
the ISO-11898 standard. 1t is capable of operation up to 1 Mb/s. [4]

™o - &[]Re
ves |2 = Tjcend
woo 2 oo e[]CAN.

mxp[]s 5 s[]uees

Figure 8 The MCP2551 Pin Diagram

The MCP2551 CAN stand up to 112 nodes to be connected to the physical bus. The outputs
will drive a minimum load of 45Q, (given a minimum differential input resistance of 20 k£
and a nominal termination resistof value of 120€3. The MCP2551 has CANH and CANL pins
that define dominant and recessive states of the nodes by the differential voltage between
CANH and CANL. A dominant state occurs when the differential voltage between CANH
and CANL is greater than a defined voltage (e.g., 1.2V). A recessive state occurs when the
differential voltage is less than a defined voltage (typically 0V). [4]

2.5.1 MCP2551 modes of operations

The modes of operations of MCP2551 CAN transceiver is sct by setting pin RS. There are
three modes of operations which is high speed, slope control and standby. The high speed
mode is set when RS pin is connected to VSS while standby mode is set by connecting RS
pin to VDD.

Slope control mode is controlied by connecting an external resistor between RS and ground.

Changing the value of resistor will change the slew rate.

13

2.6 PIC18xxx8 CAN Functions

All PIC18XXX8 CAN functions are grouped into the following three categories;
Configuration/Initialization Functions, Module Operation Functions and Status Check

Functions. These functions are used in the program to be loaded in the microcontroller.

Function Category
CANInitialize Configuration/Initialization
CANSetOperationMode Configuration/initiatization
CANSetOperationModeNoWait Configuration/initialization
CANSetBaudRate Configuration/Initialization
CANSetReg Configuration/Initialization
CANSendMessage Moduie Operation
CANReadMessage Module Cperation
CANAbortall Module Operation
CANGetTxErrorCount Status Check
CANGetRxFrrorCount Status Check
CANIsBusOEf ' Statius Check
CANIsTxPassive Status Check
CANIsRxPassive Status Check
CANIsRxReady ' Status Check
CANIsTxReady Status Check

Table 3 PIC18xxx8 Function Index

2.7 Wireless CAN

2.7.1 RFMAC

The RFMAC protocol is operated in the centralized WCAN network that consists of one

master (base) node and slave nodes in the range of master node.

Remote frames are used to send periodic messages without any contention of data frames.
Therefore the master node schedules all periods of data frames. If the master node wishes to

have data from any node it immediately sends a remote frame to the channel. All nodes on

14

the network receive the remote frame and decide whether the remote frame belongs to the
node by using acceptance filtering. If the remote frame identifier does not match with the
acceptance filter, the slave node stays idle. A data frame is only sent when the remote frame
identifier matches with the data frame identifier [5].

2.7.2 WMAC

For WMAC protocol, each node must wait messages’ Priority Interface Frame (PIFS) time
before sending their messages. PIFS times provide message priority to each message and are
derived from the scheduling method which is performed by the user application. The shortest
PIFS takes the highest message priority which means shortest delay before accessing the
channel. After waiting PIFS times, each node checks the channel for the second time to be
sure that the channel is available for access. Hence, a message with lower PIFS will access

the channel before any massage with higher PIFS.

Hach node has a timer called Priority Timer. The Priority Timer is set when the message is
received from the channel. This prevents the nodes from the channel access during the PIFS
time. This is essential since a node may wish to transmit a message during the PIFS time and

sense the medium is free although there could be a node waiting its PIFS {5].

2.7.3 On-Off Keying

The On-Off keying allows arbitration and acknowledgement of CAN messages, A recessive
level happens when there is no signal while dominant level is sent by tuming on the

transmitier.

During CAN arbitration, when the level is recessive, the receiver is disabled but when in

dominant state, the receiver is enabled {6].

15

CHAPTER 3
METHODOLOGY

3.1 Procedure

Preliminary research work

Preliminary research includes literature review on Controller Area Network.
Preliminary rescarches are done to gei as much information on the topic and to
gather any data on from various sources namely reference books, thesis, the web,
and experienced individual. This research work enabled student to estimate the

time process and feasibility of the project to ensure success of the project.
Detailed analysis

The information gathered will be learned thoroughly in order to have a firm grasp
on the topic. The information gathered will be analysed so that the objectives and
probiem identified for the project will be further defined.

Microcontroller programming, hardware design and implementation

Write or modifies existing C program in the PICC compiler. The program will be
downloaded into the PIC microcontroller in the form of its HEX file. The
programmer used is WARP 13.

The hardware setup includes the PIC18F458 microcontroller, MCP2551 CAN
transceivers and RS232 serial communication to monitor the traffic in the PC. The

project is now on this stage.

Testing the circuit and program

16

The testing of the circuit has several paris. First is to ensure the microconiroller
PIC18F458 works perfectly. Second is to ensure the RS232 hardware circuit
which is used to connect the microcontroller to PC serially works. Then the circuit
is tested for the communication between the nodes which includes the two

microconirollers and the two transceivers.

The programming testing is done in between the circuit testing as it used different
program to test the circuits. The two microcontrollers use identical program to be

downloaded onio them.

Final resalt/ hardware

The final circuit hardware is done both on PCB board and Vera board. R8232
ports are included so that it can be connected serially to the PC via cable. The
circuits are then mounted on a piece of Perspex. The PCB boards and Vera boards

were held together on the Perspex using glue gun.
Final report and presentation

The final report and presentation are scheduled around end of June.

3.2 Toels

3.2.1 Sofiware

PICC compiler

The software used to program the language for the microcontroller. The program
is compiled to produce a machine-level language called the HEX file. The HEX

file is to be uploaded to the microcontroiler.
WARP 13

The programmer used to program the microcontroller using the available HEX
file.

Eagle

17

The software used to build the schematic for the circuit.

e Microsoft HyperTerminal

The software used to monitor and display the data sent across serial connection to

the microcontroller.

3.2.2 Hardware

. PIC18F458
The microcontroller chosen to perform the program
. 4MHz Crystal
Clock to feed the microcontroller
. MCP 2551
The transceivers for CAN communication between the microcontrollers
. (DB 9) RS232
Connector pin out for the serial connection
. MAX232

The IC driver used to adapt to RS232 signals

. Resistors, capacitors
. Breadboard and Vera board
] Perspex as the base to bold the circuitry

. Glue gun/ Glue

. Spacer

18

CHAPTER 4
RESULTS AND DISCUSSIONS

4.1 Hardware implementation

The hardware implementation involves several PIC18F458 communicating with each other
using CAN via MCP2551 transceivers. The traffic is monitored using serial port monitor tool

at PICC compiler.

4.1.1 Loopback mode

This mode will allow internal transmission of messages from transmit buffer of a
microcontroller to its own receive buffers without actually transmitting messages on CAN
bus. [3] This mode is used to test the fransmit buffer and receive buffer for each PIC18F458

microcontroliers.

Existing C program on PICC compiler, EX_CAN.c is used to test out the CAN loopback
mode. Modification is made to the EX_CAN.c before its HEX file is downloaded to the

microcontroller.

print{"rn\rnCCS CAN EXAMPLE\");
setup timer 2(T2_DIV_BY_4,79,16); //setup up timer2 io interrupt every 1ms if using 20Mhz clock

can_imii();
can_set_mode(CAN_OP_LOOPBACK); // Added this line to test for loopback

enable_interrupts(INT_TIMER2); //enable timer2 interrupt
enable_interrupts(GLOBALY); //enable all interrupts (else timer2 wont happen)

printf{"\r\nRunning...");

Figure 9 Modification made to the EX CAN.c

19

The traffic for the transmission is monitored using RS232 with MAX232 as its driver. The
traffic monitored is as expected. The messages transmitied by the microcontroller were
received at the microcontroller own receive buffer thus implying its CAN module works

well.

PIC18F458 MAX232

—————>To PC

serial port

Figure 10 Block diagram of CAN hardware for loopback mode

s:cantoop - HyperTerminal

FihE&ﬁeuoalTraﬁwﬂdp
QJEI_@LS.J_LJJ
start

CCS CAM EXAMPLE

Runy
PUT 1 1D=24 LEN=8 PRI=3 EXT=1 RTR-8
.1 8DATA = FC FC FC FCBFC FC FE FC

" 1GOT: BUFF=0 ID=24 LEN=8 OVF=0 FILT-0 RTR=@ EXT-1 INV-®
BATAR= ¥C FC FC FC FC FC FC FC

~{PUT 1: 10=24 LEN=8 PRI-3 EXT=1 RTR-0
DATR = FC FC FC F€ FC FC FC FC

GOT: BUFF=86 ID=24 LEK=8 OVF=0 FILT—GGRTR~B EXT=1 Inv=0
188 DRIA = FC FC FCOFC FC FC FC ¥

A

L Taena P A LT b EERETT ema

Figure 11 Screen capture for loopback mode traﬁ'lc

The screen capture shows that the message from the transmit buffer managed to be sent to the
receive buffer of the same PIC. The messages sent at transmit buffer and received at receive

buffer has the same 1D as shown above.

20

At the transmit buffer, LEN is the length of the data sent which is 8 byte. PRI is short for
priority which in this case 3. EXT is for [dentifier extension. Setting the EXT to 1 means the
identifier used is the extended 29 bits identifier. RTR is for Remote Transmission Request.
Setting it to 0 means the frame is the normal data frame.

At trapsmit buffer, BUFF=0 means the data received at buffer. OVF = 0 means there is no

overflow error. INV = 0 means invalid message has not occur.

4.1.2 Normal mode

This is the standard operating mode of the PIC18F458. In this mode, the device will monitor
all messages and decides whether to take the message or not. This is the only mode in which

the microcontroller will transmit its messages over the CAN bus. [3]

Existing C program on PICC compiler, EX_CAN.c is used to test out the CAN normal mode.
The HEX file is downloaded into two PIC18F458 microconirollers to allow them to

communicate with each other.

CAN transceivers, MCP2551 is used as the interface between a CAN protocol controller and
the physical bus. The MCP2551 provides differential transmit and receive capability for the
PIC18F458 microcontroller. [3]

For the normal mode, terminating resistors of 120 ohm are used at between CANH and
CANL pins. The RS pin is connected directly to ground so the transceiver is in high-speed

mode.

The traffic for the transmission is monitored using RS232 with MAX232 as its driver to

decide whether the messages manage to travel across the physical bus.

21

]
A
Microcontroller i
oiC1aFass = CAN Transceiver:C:D N <::> CAN Transceiver! Microcontroller
8 MCP2551 B MCCP2551 PIC18F458
u
S
MAX232 MAX232
To PC serial To PC serial
port pOl‘t

Figure 12 Block diagram of CAN hardware for normal mode

printf{"rnin\nCCS CAN EXAMPLEVW\n");
setup_timer 2(T2_DIV_BY 4,79,16); //setup up timer2 to interrupt every 1ms if using 20Mhz clock

cap_init(};
can_set_mode{CAN_OP _NORMALY; // Added this line for normal mode

enable_interrupts(INT_TIMER?2); //enable timer2 interrupt
enable_interrupts(GLOBALY); //enable all interrupts (else timer2 wont happen)

printf("\r\nRunning...");

Figure 13 Modification made to the EX CAN.c for normal mode.

22

o3 Gl
SRR

B LRRTHY g
FLARHAT

PGS
fi

FE4

LE
o
= ¥ H
RETS e
REROTHART
=] DES ALK
" GELEC LT
iataih EAMH
?ﬂ
7
- LLEPEF]
i)
T LT Y
E5S
Riw
FbyRED
o ReZ =
=1 1 t;
- o wTag “'w“:
H-) A

fotd

‘r?aas ‘ou]

penL

Figure 14 Schematic of controllers and transceivers circ

JromPic i TIOUT
e T2007 J0DES
JGRIC = R1IR

RZIH

Figure 15 Schematic of MAX232 circuit

23

4.2 Communication between two microcontrollers

The two nodes have the same hardware set up which is a microcontrotler, with a transceiver,
and connected to an RS232 hardware circuit. The nodes have push buttons to trigger message
and LEDs to indicate the messages. Both nodes have the same C program on them, Node.c as

attached in the appendix.

The program written basically lets the following:

. The push button for Node 1 will trigger a sent message 10 Node 2.
. Node 2 will decide whether to receive the message.
. Once Node 2 accepts the message, its LEDs will light up. Then it will send

back a message to Node 1 acknowledging the sent message.
. For each action, the HyperTerminal software will display the result.

. As the setup for Node 1 and Node 2 are identical, any action (sent message)

from Node 2 will trigger the same response from Node 1.
From the CAN library routines, these functions are used in the program

. can_init - Configures the PIC18xxx8 CAN peripheral

. can_set_baud - Sets the baud rate control registers

. can_set mode - Sets the CAN module into a specific mode
. can_set_id - Sets the standard and extended ID

. can_get_id - Gets the standard and extended ID

. can_putd - Sends a message/request with specified ID

. can_getd - Returns specific message/request and ID
. can_kbhit - Returns true if there is data in one of the receive buffers
. can_tbe - Returns true if the transmit buffer is ready to send more data

24

. can_abort - Aborts all pending transmissions

1. Button at Node A is triggered. Message

. i specific T

2. Node B get the message and print
out a receive message. LED is ON.
Node B send back an message to

-l

Node A receives the

messape and displav.

NODE A NCDE B

1. Buiton at Node B is triggered. Messagd

is sent to Node A with specific 10

I

2 Node A get the message and
print out a receive message. LED is
ON. Node A send back an message

»

Nade B receives thg

message and displav,

Figure 16 Communication between the microcontrollers

M - i can - Hyper Terniinal

Fie Edt Wiew Cal Transfer Help

Sending message over to Hode
Sending message over to Hode
Sending message cver to Node
il |Sending message over to Hode
Sending wessage over to Hode
Sending wessage over to Node
4} ISending message over to Node

€CS CAN. EXAMPLE

CIEREOEymOToN |

Running. ..

:|Sending message over to Hode B
‘| '|Sending message over te NHode B
- IBot a message from port B

1ED ON

Sending message over to Hode B
Bot a message from port B

LED O

Sending message over to Node B
Got a message from port B

‘| |LED ON

1Sending message over 1o Hode B
Got a message from pert B

—LLED i, W

‘Connedted 0:01:38 ko detedt D600 8-

Figure 17 Display at HyperTerminal at Node A

25

The Nodes manages to send and receive messages to each other although sometimes
messages get through the channel but sometimes the message did not reach destination. But
the HyperTerminal displays that the microcontroilers are able to communicate with each

other and reacts to messages sent to each other.

4.3 Communication between three microcontroliers

The network was set with three nodes which will communicate with each other. The

operation between these three nodes is shown in figure below.

NODE 1 NODE 2
N v
A

& -
CAN_H

S e >
CAN_L

TX/RCV3
NODE 3

Figure 18 Communication between Node A, Node B and Node C

26

Send data
Send data

Reply by
sending
response

Reply by
sending
response

NODE B

Figure 19 Operation between Node A, Node B and Node C

Node A sends data to the implied node. As CAN is a multicast protocol, the sent daia will be
read by both Node B and Node C. As the data is attached with its own id, Node B and Node
C will compare the id and decides whether the message was intended for them. If yes, the

node will reply back to Node A as a response.

4.3.1 Writing C program

The C program was developed by following the sequence of the program as shown in the
flow chart. The design is as follow.

27

Define message id
v

initialize CAN

Forever ioop

No
if data is in receive

buffer

hd

Display message

Transmit buffer empty

Read input from keyboard

v

If input == a|b]jc

if input == djjelif

Nothing happen

Ignore message

b4

Send Data

toNode B

Send Data

to Node C

pd

) 4

Figure 20 Flowchart for program Node A

28

Define message id

v
Initialize CAN

Set CAN to normal Mode

= e >

ne
If data in

receive buffer

If message

D match

Display message

Send respond

T

End

Figure 21 Flowchart for program Node B and Node C

29

4.3.2 Resull

The result is monitored using Serial Input/Output Tool from PICC compiler. The screen

captured is shown below.

A
Transmit buffer ready-Ubh
240 ‘

a5

| wou pressed a~MD

I~ WA

Mend data to Fort D@D
~ENE

IiD=513T LEM=8 PFPRI=-3 EXT=8 RTR=1-~0D
~ &L

reoeive bhuf FerBI
sent to Mode BNED

ready~ap

prassed o~EBD
Aata ta Port BNGD
EXT=0 RTRE=1~82I

B

zoe ive bhuffert

to Mode B

Figure 22 Screen capture for Node A (sending message to B)

30

receive
is from Moed
BUFF=8 ID
DF!TF! = - ® n

e CE U
f}‘on e
g I=51
= f p *

rece ive
from HMode

F =513

T
BrMonditoring CAMN.. .
H

recelive
raceiue
{-‘p-—;m

% pATH =
B @D
3 \lﬁﬂDal::\ i

=543

B
LEM=8 OUF=1 FILT=8 RTR~1
wop @i Bk

e

LEN=8 OUF=3 FILI

'r

B

ﬂpﬂ

Maode

=& HIR=1

receive huffsr-BD
fi‘-ui't MHode A \JSD
T .

FILT~=8 HITR~=1

ERT =8

IR =~

THU=88D

EXT=8 IHU-~-1~G1

EXT=d InMuU=-8-601

EXT=8 ILHU=8~8D

THT=8

1HU =6G~8D

Figure 24 Screen capture for Node C

31

Comparing Figure 7 and Figure 8, it shows that the ID for data sent by Node A matches the
1D for data received by Node B. The statement “Message sent to Node B” on Figure 7 shows
that Node B has already responded to Node A after receiving the message.

The Statement “Data in receive buffer” which is shown repeatedly in Figure 9 occurs because
the data is meant for Node B, not Node C. As CAN is a multicast network, all nodes receives
all the broadcasted data in the channel.

32

CHAPTER 5
CONCLUSION & RECOMMENDATION

5.1 <Conclusion

The objective of the project is to build a PIC based Controlier Area Network. A network is
built between two nodes which communicate with each other. Each node is controlled by a
PIC microcontroller. The messages are transmitted via CAN transceivers MCP 2551 which
connects the two nodes using CAN buses, CAN_H and CAN_L. these CAN buses need to
have terminating resistor at the end of its connection. The microcontrollers are serially

connected to PC via RS232. The data monitoring uses HyperTerminal as a displaying tool.

Programming plays a great part in the project. The programs for this project are written in C
by utilizing the functions from CAN library. The CAN network built using PIC
microcontroller is shown to be functional. The microcontrollers are able to send and receive
messages, as well as requesting messages IDs among others. The microcontrollers are able to

respond according to the messages sent by other microcontroller.

5.2 Recommendation

For future work on CAN, the system can have more complex network circuit which has large
aumber of nodes with each node controlling several control applications. The system should
be made robust, reliable and efficient.

For future studies, one can focus other functions in CAN module available in Microchip’s
PIC such as error recognition mode and listen only mode and other functions such situation

such as message overflow, error handing and synchronization.

33

10.

i1

REFERENCES

. Farsi M., & Barbosa M. (2000) CANopen Implementation Applications to Industrial

Networks, Research Studies Press Ltd.

Barnett, Cox & O’Cull (2004) Embedded C Programming and the Microchip PIC,
McGraw-Hill

PICISFXX8 Data Sheet, Microchip, Microchip Technology Inc. 2001
MCP2551 Data Sheet, Microchip, Microchip Technology Inc. 2001

A. Kutlu, H. Ekiz, E.T. Powner, Wireless Control Area Network, L.ondon, 1996
CANRF UHF Wireless CAN Module, Automation Artisan Inc. 2002

PIC18FXX8 CAN Driver with Prioritized Transmit Buffer, Microchip, Microchip
Technology Inc. 2001

. Forouzan B. A., (2004) Data Communication Network, McGraw-Hill, New York,

USA.

E. Yin, M. Sibenac, B. Kirkwood, Implementing CANopen in Autonomous
Underwater Vehicles, Stanford University 2003

Controller Avea Network (CAN) Bus for AEAS-7000 Application Note 5223, Agilent
Technologies, 2005

M. Farsi, K. Ratcliff, M. Barbosa, An Overview of Controller Area Network,
Computing and Control Engineering Journal, 1999

34

APPENDICES

35

APPENDIX A
PIC18FXX8 DATA SHEET

36

MICROCHIP

PIC18FXX8

28/40-Pin High-Performance, Enhanced Flash
Microcontrollers with CAN

High-Performance RISC CPU:

Linear program memory addressing up to
2 Mbytes

Linear data memory addressing 1o 4 Kbyles
Up to 10 MIPS operation

DC — 40 MHz clock input

4 MHz-10 MMz oscillator/clock input with
PLL active

16-bit wide instructions, 8-bit wide data path
Priority levels for interrupts

8 x 8 Singie-Cycle Hardware Multiplier

Peripheral Features:

-

High current sink/source 25 mAf25 mA
Three external interrupt pins

Timer0 module: 8-bit/16-bit timer/counter with
8-bit programmable prescaler

Timer! module: 16-bit timer/counter

TimerZ module: 8-bit timer/counter with 8-bit
period register (time base for PWM)

Timer3 module; 16-bit timer/counter
Secondary oscillator clock option — Timer1/Timer3

Capture/Compare/PWM (CCP) modules;
CCP pins can bé configured as:

- Capture input: 16-bit, max resolution 6.25 ns
- Compare: 16-bit, max resolution 100 ns (Tcy)

- PWM output: PWM resolution is 1 to 10-bit
Max. PWM freq. @:8-bit resofution = 156 kHz
10-hit resolution = 39 kHz

Enhanced CCP madule which has ail the features
of the standard CCP module, but aiso has the
following features for advanced motor control:

- 1, 2 or 4 PWM outputs
- Selectable PWM polatity
- Programmable PWM dead time

Master Synchronous Serial Port (MSSP) with two
modes of operation: .

- 3-wire SPI™ (Supports aII 4 SPi modes)
- 12C™ Master and Slave mode
Addressable USART moduie:

- Supports interrupt-on-address bit

Advanced Analog Features:

« 10-bit, up fo 8-channel Analog-to-Digital Converter
module (A/D) with:
- Conversion available during Sleep
- Up to 8 channels available

« Analog Comparator module:
- Programmable input and output multiplexing

« Comparator Voltage Reference module

» Programmable Low-Voitage Detection (LvD} module:
- Supports interfupt—on—Low—VoItage Detection

» Programmable Brown-out Reset (BOR)

CAN bus Module Features:

= Complies with 1ISO CAN Conformance Test
» Message bit rates up to 1 Mbps
- Conforms to CAN 2.0B Active Spec with:
- 29-bit Identifier Fields
- 8-byie message length
- 3 Transmit Message Buffers with prioritization
- 2 Receive Message Buffers
- 6 full, 29-bit Acceptance Filters
- Prioritization of Acceptance Filters

- Multiple Receive Buffers for High Priority
Messages to prevent loss due o overflow

- Advanced Error Management Features

Special Microcontroller Features:
= Power-on Reset (POR), Power-up Timer (PWRT)
and Oscillator Start-up Timer (OST)

« Watchdog Timer (WDT) with its own on-chip RC
oscillator

- Programmable code protection

» Power-saving Sleep mode

= Selectable oscillator options, including:
- 4x Phase Lock Loop (PLL) of primary oscillator
- Secondary Oscillator (32 kHz) clock input

« In-Circuit Serial Programming™ ({CSP™) via two pins

Flash Technology:

« Low-power, high-speed Enhanced Flash technology
« Fully static design

» Wide operating voltage range {2.0V to 5.5V}

» Industrial and Extended temperature ranges

@ 2004 Microchip Technology inc.

DS41158D-page 1

PIC18FXX8

Program Memory Data Memory g MSSP
0-bit | B oo} Timers
Device | Elash | # Single-Word | SRAM |EEPROM| VO | AD | § | ECCP} | Master USART | o116.bit
(bytes)| Instructions | (bytes) | (bytes) (ch) E |(PWM) 2™
[&)
PIC18F248} 16K 8192 768 | 256" 22 5 — 110 Y Y Y 13
PIC18F258] 32K 16384 . 1536 256....[22 | 8. — 110 Y Y Y 1/3
PIC18F448] 16K 8192 768 256 33 8 2 1 Y Y Y 13
PIC18F458| 32K 16384 1536 | 256 33 8 2 11 Y ¥ Y 113
Pin Diagrams
PDIP
MCLRVPP —=] 1 o/ s0p «— RB7PGD
RAQ/ANG/CVREF -—a-[] 2 49 [1 =— RBEPGC
RATANA e 3 38 [1 «—» RB5/PGM
RAZIANZNREF- s 4 37 [=~—= RB4
RAANINVREF+ w—1] 5 36 {1 ~— RB3/CANRX
RA4/TOCK! =T 6 35 [] ~e—» RB2/CANTX/INT2
RAS/ANA/SSAVDIN «—e07 34 [1 «—= RB1/INT1
REO/ANSRD -—w08 2 2 3300« RBONTO
RE1/ANBNVR/C1OUT ~—=0 § Q O 32{1-—VDD
REZANTICSIC20UT -—=0 10 g5 80 31 [+—Vss
Voo -—— 00 11 bt L. | 30 3 =—» RD7PSPTAID
vss —=012 & B 200 -=—= RDEPSPGIPIC
OSCUCIKI —= 13 @ ¢ 28 -«— RD5/PSPS/PIB
OSC2/CLKORAS] 14 57 F s RDA/PSPAECCPIP1A
RCOTI0SOTICK! =——T 15 56 11 =—w RCT/RXIDT
RC1/T10SI ~e—[} 16 25 [1 .+—w RCBTX/CK
RC2ICCP1 - O 17 245 «—= RCH/S00
RC3/SCKISCL ~—[] 18 33 [=—» RCA/SDISDA
RDO/PSPO/CAING ~—w [18 52 [-«—w RDPSP3IC2IN-
RD1PSPA/CHIN- «— E] 20 210 =—» RD2IPSP2IC2IN+
' L
PLCC be B
gy >
2z Q»
83583 88 %
$<ss§ g
[+ -0 P~ 0o
22 éélf%&'éﬁ B89

4]
5
4
3
2
1
44
43
42
M
40

-t RB3/CANRX

[J+— RB2/CANTX/INT2
Gt RB1/INT 1

[[J-—— RBO/INTO
[}=——VDD

[J=——Vss

[J=—- RD7/PSPTP1D
[J=—= RDG/PSP6/P1C
[J=——s RD5/PSP5/P1B
[Sw— RDA/PSPAECCP1/P1A

|:|<—’ RC7RXDT

RAATOCK! {7 O 39
RAS/AN4/SSILVDIN ~— T 8 38
RED/ANS/RD ~e-=m[] G 37
RE1/ANG/WR/C10UT =— [10 36
REZIANWCSICZ(\J’UT -— E 212 PICi8F448 gg
o ———-
Vas——w O 13 PIC18F458 3
OSC1/CLKI=—] 14 32
OSC2/CLKOMRAE =—= [15 31
RCOT10SOTCK] ~—[1 16 30
NG 17 29
LeRENRIREN])
LI.ILIJ | LI}LJ IJIIILI | By
Btz S2LOX DO
OBRECSNBRE <
FOROURLOYEBE
oggn%m%;zu
rroPafad =
ZS5 g2
Eﬂ: 4

DS41158D-page 2

® 2004 Microchip Technology inc.

PIC18FXX38

Pin Diagrams (Continued)

TQFP
PR T 4
£2ZZZ
. 588889 _
[g (] -0 =
Egn%%%%gge
DOLLLL DO
U AN OGN
odOoLhonoCQ o
TmmeTTMTTZ
[1 !L !L 1 !17 i1 IL rif
/3295 3BEHSRE
RCT/IRADT «+— [1 33 NG
RD4/PSPAECCPIPTIAa— 2 () 32 {1 == RCOMOSO/TICKI
RD5/PSPSIP1B «——] 3 3t [1——= OSC2/CLKO/RAG
RDGPEPEIP1C =— 1 4 30 [=-—— OSC1/CLKI
RD7/PSP7/PAL -——[]5 PIC18F4438 29] =— Vss
Ve§——»={16 28 [] =—— VDD
vop—=-[J7 PIC18F458 27 1 «——> REZAN7/CSIC20UT
RBO/INTO -—=] 8 26 [0 =— REVANG/WR/CTOUT
RE1INT] =—=[9 25 []-+—= REOQ//ANS/RD
RBZ/CANTX/INTZ =——=[] 10 24] «—= RAS/AN4SSLVDIN
RB/CANRX ———=[] 14 23 [=—= RA4ITOCKI
NS Do O N
_—mr T T~ NN
UUTTTTTTTTT
VLI QO ELS & F
223588202)
Bas[Boz 2
B0DHSESS
eer|2ZzT 2%
= =
s 32
i o =
SPDIP, SOIC
— -
MCLRvPP——] 1 28 [J=——=RB7/PGD
RAQ/ANDIGVREF +—={ 2 27 [l=—RBBPGC
RAY/ANT =— 3 26 []-=—=RB5/PGM
RAZAN2/VREF- sl | 4 28 [Jam—nREB4
RAG/ANIVREF+ =— 15 oy [1=—= RB3I/CANRX
RMTOCKI-—]6 §F = e RB/CANTX/INT2
RAS/ANA/SSAVDIN ~——{|7 o 2 []-=-—=RB1/INT1
Vas 8 BE 21[0-—=RBOINTO
osciucki—ije R 20—V
OSC2/CLKORAG +-—1f {10 @ ® 19[J+—Vss
RCOIT10SOMICK! +—= 11 18 [J=—= RCHRX/DT
RC1/T1081=—{] 12 17 [[]——=RCE/TX/CK
RC2/CCP1 ~—={] 13 16 [J+—RC5/SDO
RCHSCKISCL =~—=1 14 15 RCA/SDISDA,

©® 2004 Microchip Technology Inc.

D541159D-page 3

APPENDIX B
MCP2551 DATA SHEET

37

MicrROCHIP _MC P2551

High-Speed CAN Transceiver

Features Package Types

= Supporis 1 Mb/s operation PDIP/SOIC

+ Implements IS0-11898 standard physical layer
requirements

+ Suitable for 12V and 24V systems ™D |1 8[]Rs

. Extfan?alty-controtled siope for reduced RF! vss[12 JCANH
emissions

« Detection of ground fault (permanent dominant) vop []3
on TXD input

- Power-on reset and voltage brown-out protection RXD[]4 5[] VREF

« An unpowered node or brown-out event will not
disturb the CAN bus

« Low current standby operation

+ Protection against damage due to short-circuit
conditions (positive or negative battery voltage}

» Protection against high-voltage transients
< Automatic thermal shutdown protection
+ Up to 112 nodes can be connected
= High noise immunity due to differential bus
implementation
= Temperature ranges:
- Industrial (1): 40°C to +856°C
- Extended (E): 40°C to +125°C

(

-4

TJCANL

MCP2551
®

Block Diagram

gVDD

XD | Therma!
i Dominant Shutdown

!

»| Driver
’ = Control

Siope Power-On ¥ }E CANH
Rs IZIF Control Reset 0.5 VoD

RXD] /]7 GND
X cANL

Receiver
" Reference
VREF % Voltage

Voo

™D DX} é

Y

© 2003 Microchip Technology InG. o DS21667D-page 1

MCP2551

NOTES:

_ T —— __
© 2003 Microchip Technology Inc.

p—
DS21667D-page 2

MCP2551

1.0 DEVICE OVERVIEW

The MCP2551 is a high-speed CAN, fault-tolerant
device that serves as the interface between a CAN
protocol controller and the physical bus. The MCP2551
provides differential transmit and receive capability for
the CAN protocol controller and is fully compatible with
the 1SO-11898 standard, inciuding 24V requirements. it
will operate at speeds of up to 1 Mb/s.

Typically, each node in a CAN system must have a
device fo convert the digital signals generated by a
CAN controlier to signals suitable for transmission over
the bus cabling (differential output). It also provides a
buffer between the CAN-controller and ihe high-voltage
spikes that can be generated on the CAN bus by
outside sources (EMI, ESD, electrical transients, etc.).

1.1 Transmitter Function

The CAN bus has two statess Dominant and
Recessive. A dominant state occurs when the
differential voltage between CANH and CANL is
greater than a defined voltage (e.g.,1.2V). A recessive
state occurs when the differentiat voltage is less than a
defined voliage {typically OV}. The dominant and
recessive states correspond to the fow and high state
of the TX[D input pin, respectively. However, a dominant
state initiated by another CAN node will override a
recessive state on the CAN bus.

111 MAXIMUM NUMBER OF NODES

The MCP2551 GAN outputs will drive a minimum load
of 450, allowing a maximum of 112 nodes to be
connected (given a minimum differential input
resistance of 20 KQ and a nominal termination resistor
value of 1200).

1.2 Receiver Function

The RXD output pin reflects the differential bus voltage
between CANH and CANL. The low and high states of
the RXD output pin correspond o the dominant and
recessive states of the CAN bus, respectively.

1.3 Internal Protection

CANH and CANL are protected against battery short-
circuits and electrical fransients that can occur on the
CAN bus. This feature prevents destruction of the
transmitter output stage during such a fault condition.

The device is further protected from excessive current
loading by thermal shutdown circuitry that disables the
output drivers when the junction temperature exceeds
a nominal limit of 165°C. Ali other parts of the chip
remain operational and the chip temperature is lowered
due 1o the decreased power dissipation in the
transmitter outputs. This protection is essential to
pratect against bus line short-circuit-induced damage.

1.4 Operating Modes

The Rs pin allows three modes of operation to be
selected:

+ High-Speed

= Slope-Control

» Standby

These modes are surmmarized in Table 1-1.

When in High-speed or Slope-control mode, the drivers
for the CANH and CANL signais are internally regu-
lated to provide controlled symmetry in arder to mini-
mize EMI emissions.

Additionally, the slope of the signal transitions on
CANH and CANL can be controlled with a resistor
connected from pin 8 (Rs) fo ground, with the siope
proportional to the current output at Rs, further
reducing EMI emissions.

1.4.1 HIGH-SPEED

High-speed mode is selected by conneciing the RS pin
to Vss. In this mode, the transmiter output drivers have
fast output rise and fall times to suppori high-speed
CAN bus rates.

1.4.2 SLOPE-CONTROL

Slope-control mode further reduces EMIL by limiting the
rise and fall times of CANH and CANL. The slope, or
stew rate (SR), is controlied by connecting an external
resistor (REXT) between Rs and VoL (usually ground).
The slope is proportional to the current output at the RS
pin. Since the current is primarily determined by the
slope-control resistance value REXT, a certain slew rate
is achieved by applying a respective resistance.
Figure 1-1 itustrates typical slew rate values as a
function of the slope-control resistance value.

1.43 STANDBY MODE

The device may be piaced in standby or “SLEEP” mode
by applying a high-level to Rs. In SLEEP mode, the
fransmitter is switched off and the receiver operates at
a lower current, The receive pin on the controller side
(RXD} is still functional but will operate at a slower rate.
The attached microcontrolier can monitor RXD for CAN
bus activity and place the Fansceiver into nermal
operation via the Rs pin (at higher bus rates, the first
CAN message may be lost).

© 2003 Microchip Technology Inc.

DS216670-page 3

MCP2551

TABLE 1-1: MODES OF OPERATION
Mode Current at R; Pin Resulting Voltage at Rs Pin
Standby -Irs < 10 pA VRS > 0.75 VDD
Slope-control 10 pA < -IrSs < 200 pA 0.4 VDD < VRS < 0.6 VDD
High-speed -IRs < 610 pA 0 < VRS < 0.3VoD
TABLE 1-2: TRANSCEIVER TRUTH TABLE
VoD VRS TXD CANH CANL Bus State! ¥ | Rxol?)
4.5V < VDb < 5.5V VRS < 0.75 VoD 0 HIGH LOW Dominant 0
1 or floating | NotDriven Not Driven Recessive 1
VRS > 0.75 VDD X Not Driven Not Driven Recessive 1
VPOR < VDD < 4.5V | VRS <0.75 VoD 0 HIGH LOW Dominant 0
(See Note 3) 1 or fioating | Mot Driven Not Driven Recessive 1
VRS > 0.75 VDD X Not Driven Not Driven Recessive 1
0 < VDD < VPOR X X Not Driven/ Not Driven/ | High Impedance X
No Load No Load
Note 1: If another bus node is transmitting a dominant bit on the CAN bus, then RXD is a logic ‘0",
2: X ="dor't care”.
3: Device drivers will function, although outputs are not ensured to meet the 1ISO-11898 specification.
FIGURE 1-1: SLEW RATE VS. SLOPE-CONTROL RESISTANCE VALUE
25 [P . S U
20 |\ - i
) T
= ‘ L
> 15 | - - - - :
£ 2
m .
<4 : : .
z i0-------- - '
Qo ol :
D .
5 e o e e L i ,,,,,,,
0 T i T T T T 1 T T T
10 20 30 40 49 60 70 76 90 100 110 120
Resistance (k)
W A
DS21667D-page 4

© 2003 Micrechip Technology inc.

MCP2551

1.5 TXD Permanent Dominant
Detection

If the MCP2551 detects an extended low state an the
TXD input, it will disable the CANH and CANL output
drivers in order to prevent the corruption of data on the
CAN bus. The drivers are disabled if TXD is low for
more than 1.25ms (minimum). This implies a
maximum bit time of 62.5us (16 kbfs bus rate),
allowing up to 20 consecutive transmitted dominant bits
during a multiple bt error and error frame scenaric. The
drivers remain disabled as long as TXD remains low. A
rising edge on TXD will reset the timer logic and enable
the CANH and CANL output drivers.

1.6 Power-on Reset

When the device is powered on, CANH and CANL
remain in a high-impedance staie until VDD reaches the
voltage-level VPORH. In addition, CANH and CANL will
remain in a high-impedance state if TXD is low when
VDD reaches VPORH. CANH and CANL will become
active only after TXD is asserted high. Once powered
on, CANH and CANL will enter a high-impedance state
if the voltage level at VoD falls below VPORL, providing
voltage brown-out protection during normal operation.

17 Pin Descriptions
The 8-pin pinout is listed in Table 1-3.

TABLE 1-3: MCP2551 PINOUT
Nul:::)er Nzlr:e Pin Function

1 TAD | Transmit Data Input
2 Vss [Ground
3 Voo | Supply Voltage
4 RXD |Receive Data Quiput
5 VREF | Reference Output Voltage
6 CANL | CAN Low-Level Voltage /O
7 CANH | CAN High-Level Voltage VO
8 Rs Slope-Control Input

1.7.1 TRANSMITTER DATA INPUT (TXD)

TXD is a TTL-compatible input pin. The data on this pin
is driven out on the CANH and CANL differential output

. pins. it is usually connected to the transmitter data

output of the CAN controller device. When TXD is low,
CGANH and CANL are in the dominant state: When TXD
is high, CANH and CANL are in the recessive siate,
provided that another CAN node is not driving the CAN
bus with a dominant state. TXD has an internal puli-up
resistor (nominal 25 kQ to VDD).

172 GROUND SUPPLY (VsS)
Ground supply pin.

1.7.3 SUPPLY VOLTAGE (VDD)
Positive supply voitage pin.

1.7.4 RECEIVER DATA OUTPUT (RXD)

RXD is a CMOS-compatible output that drives high or

low depending on the differential signats on the CANH.
and CANL. pins and is usuaily connected to the receiver

data input of the CAN controller device. RXD is high

when the CAN bus is recessive and low in the dominant

state.

1.7.5 REFERENCE VOLTAGE {VREF)
Reference Voltage Output {(Defined as VbD/2).

1.7.6 CANLOW (CANL)

The CANL output drives the low side of the CAN
differential bus. This pin is afso tied internally o the
receive input comparator.

177 CANHIGH (CANH)

The CANH oufput drives the high-side of the CAN
differential bus. This pin is also tied intemnally to the
receive input comparator.

1.7.8 SLOPE RESISTOR INPUT (Rs)

The Rs pin is used to select High-speed, Slope-control
or Standby modes via an external biasing resistor.

© 2003 Microchip Technology Inc.

D521667D-page §

APPENDIX C
PIC18FXXS8 CAN DRIVER WITH PRIORITIZED TRANSMIT BUFFER

38

MICRDCHIP

AN8S53

PICISXXXS CAN Driver W1th Prmrltlzed Transmlt Buffer

L L o e LIV LR

INTRODUCTION

vin PICAAWYYE famiiy of microcontrollers

R
PIUV!UG Gll lt"-cul ﬂI.GU UU! !I.IUIIUI !"\IGG i“'-"lfvulf\ \\.lf'\l"

solution along with other PICmicro® features. Although
originally intended for the automotive industry, CAN is
finding its wav into other control applications. In CAN. a
protocoi message with highest priority wins the bus
arbitration and maintains the bus control. For minimum
message latency and bus control, mossigls SRS RS
transmitted on a priority basis.

Berguse of the wids applicability of the CAN protocol,
developers are faced with the often cumbersome fask
of dealing with the intricate details of CAN registers.
This application note presents a sofiware library that
hides the details of CAN registers, and discusses the
esign of the CAN driver with prioritized Tranemit b War
1mplementauon m;s sofiware iiprary allows
HEYGIUSTE W fOCUS s Sioie i nypuhaﬁon IOgIC
white minimizing their interaction with CAN registers.

If the controller has heavy trangmiscion londe it i
advisable to use software Tranemit buffers 1o reduca
message latency. Firmware also supports user defined
Transmit buffer size. If the defined size of a Transmit

e IS nane L) Alici, avaiauis i1 IUwdIE (3], i
R L

naa:

Y

for each axtra buffer

For deiails about the PIC18 family of microcontmilars.
refer to the PIC18CXX8 Data Sheet (DS30475). the
PIG18FXX8 Data Sheet (DS41159), and the PICmicro®
18C MCU Family Reference Manual (DS39500).

CAN MODULE OVERVIEW

The PIC18 family of microconiroliers contain a CAN
module that provides the same register and functional
interface for all PIC18 microcontrollers.

S + '~ A el LA
» ne moduls isatures are as ICHOWS!

« Implementation of CAN 1.2, CAN 2.0A and
CAN2.0B protocol

+ Standard and extended data frames

« (- 8 bytes data lengih

+ Programmable bit rate up to 1 Mbit/sec

* SUppOrt Tor remote Trame

« Double-buffered recet
o VSR RSO0 TS \‘A":-jﬁ WAL o

« Six fuli {standard/exiended identifier) acceptancs
fitters: two associated with the high priority
receive buffer. and four associated with the low
priority receive buffer

« Two full acceptance filter masks, one each
associated with the high and low priority receive

« Three transmit buffers with application specified
prioritization and abort capability

- Programmable wake-up functionality with

:.—J.._n..nl-.-_'l fmans wnewmm B

programmable state c!ockmg supports

s bF bt Aneerslioae
AL T L LALEA

« Signaling via interrupt capabiliies for all CAN
feceiver and iransmilier eiTor swaies
« Programmable clock source

o, PP T TR T it 1
= r{eg.rammaa'n BN o umer moiuis Tar

T AL IIERI R AT Tw S TTRIITR A EERed 3T iSRG

. !_ow Power SLEEP mode

® 2002 Microchip Technology Inc.

DS00853A-page 1

AN853

FIGURE 1:

CAN BUFFERS AND PROTOCOL ENGINE BLOCK DIAGRAM

TXBO TXBA TXB2
w w W TR]

o Lo o E o < ol
W, @ w, m 5o
Sofra 7 |Eszaal iEsirs g
oDl @ o290 x @ O02I0hx @
] [agii} PEREE I wg weE 8
SEFEEE 3 SEEEs = =FEEs =
Fy { T

B
Messege| | 7 7z
Quetie
Control

" Transmit Byte Sequencer
3 e

"o GO0 D

SEXKA

Acceptance Mask
RXM1

Acceptance Filter

Acceptance Mask Acceptance Filter A
RXMO RXF3 ¢
~Z N SZ AN [
Acceptance Filter Acceptanice Filter Ll
RXFQ RXF4 B
<7 7S A V:d Z5 t

Acceptance Filter Acceptance Filter L

RXF1 RXF5 !

- i R

Identifier M |dentifier x

A B

B 1

Data Field Data Field

Transmit Shift

Recsive Sl

CRC Generator

CRC Check

Transmit
Lagic

Error
Counter

TFransmit
Error
Counter
k

J

T

Timing
Logic i

Bit Timing
Generatot

DS00853A-page 2

® 2002 Microchip Technology Inc,

AN853

Bus Arbitration and Message Latency

inthe CAN protocal, if two or more bus nodes start their
transmission at the same time, message collision is
avoided by bit-wise arbitration. Each node sends the
bits of its identifier and monitors the bus level. A node
that sends a recessive identifier bit, but reads back a
dominant one, loses bus arbitration and switches to
Receive mode. This condition occurs when the mes-
sage identifier of a competing node has a lower binary
value (dominant state = logic 0}, which results in the
competing node sending a message with a higher pri-
ority. Because of this, the bis node with the highest pri-
ority message wins arbitration, without losing time by
having to repeat the message. Transmission of the
lower priority message is delayed until aff high priority
traffic on the bus is finished, which adds some latency
to the message fransmission. This type of message
latency cannot be avoided.

Depending on software driver implementation,
additional iatency can be avoided by proper design of
the driver. If CAN is working at low bus utilization, then
the delay in message transmission is not a concern
because of arbitration. However, if CAN bus utilization
is high, unwanted message latency can be reduced
with good driver design.

To illustrate this point, let us examine latency that
cccurs because of the implementation of driver
software. Consider the case when a buffer contains a
low priority message in queue and a high priofity
message is loaded. If no action is taken, the
transmission of the high priority message will be
delayed until the low priority message is transmitted. A
PIC18CXX8 device provides a workaround for this
problem.

In PIC18CXX8 devices, it is possible to assign priority
to ali transmit buffers, which causes the highest priority
message to be transmitied first and so on. By setfing
the transmit buffer priority within the driver software,
this type of message latency can be avoided. '

Additionally, consider the case where all buffers are
occupied with a low priority message and the controlier
wants 1o transmit a high priority message. Since all
buffers are full, the high priority message wili be
blocked until one of the low priority messages is
transmitted. The low priority message will be sent only
after all the high priority messages on the bus are sent.
This can considerably delay the transmission of high
priority messages.

How then, can this problem be solved? Adding more
buffars may help, but most likely the same situation will
oceur. What then, is the solution? The solution is to
untoad the lowest priority message from the transmit
buffer and save it to a software buffer, then load the
transmit buffer with the higher priority message. To
maintain bus controf, ali n Transmit buffers should be
loaded with n highest priority messages. Once the
transmit buffer is emptied, load the lower priotity
message into the transmit buffer for transmission. To
do this, inteliigent driver software is needed that will
manage these buffers, based on the priority of the
message (Lower binary value of identifier -> Higher
priority, see "Terminology Conventions” on page 5).
This method minimizes message latency for higher
priority messages.

® 2002 Microchip Technology Inc.

DS00853A-page 3

AN8S53

Macro Wrappers

One of the problems associated with assembiy
tanguage programming is the mechanism used to pass
parameters to & function. Before a function can be
called, all parameters must be copied {0 a temporary
memory focation. This becomes quite cumbersome
when passing many parameters to a generalized
function. One way to facilitate parameter passing is
through the use of “macro wrappers™. This new concept
provides a way to overcome the problems associated
with passing parameters to functions.

A macro wrapper is created when a macro is used to
“wrap” the assembly language function for easy
access. In the following examples, macros call the
same function, but the way they format the data is
different. Depending on the parameters, different
combinations of macro wrappers are required to fit the
different applications.

Macro wrappers for assembly language functions
provide a high level ‘CHike’ language interface to these
functions, which makes passing multiple parameters
quite simple. Because the macro only deals with literal
values, different macro wrappers are provided to suit
different calling requirements for the same functions.

For example, if a function is used that copies the data
at a given address, the data and address must be sup-
plied to the function.

EXAMPLES

Using standard methods, a call to the assembly lan-
guage function CopyDataFunc might look lke the
macro shown in Example 1.

EXAMPLE 1: CODE WITHOUT MACRO
WRAPPER
#define Address 0x1234
UDATA

TempWord RES D2

bankgsel TempWord

movlw low(Address)

movwi TempWord

movlw high (Address)

movwi TempWord+1l

moviw 0x56 ;Caopy data
call Copybatafunc

Using a macro wrapper, the code in Example 2 shows
how to access the same function that accepts the data
value directly.

EXAMPLE 2: CODE WITH MACRO
WRAPPER
#define Address 0x1l234

CopyData 0x56,

addresas

The code in Example 3 shows variable data stored in

DataLoc.
EXAMPLE 3: CODE WITHOUT MACRO
WRAPPER
#define Address 0x1234
UDATA
TempWord RES 02
DatalLoc RES Q1
banksel TempWord
movlw low (Address)
movwi TempWord
moviw high{address)
movwf TempWord+l
banksel Dataloc
movE Datalog, W
call CeopyDataFunc

Using a macro wrapper, the code shown in Example 4
supplies the memory address location for data instead
of supplying the data value directly.

EXAMPLE 4: CODE WITH MACRO
WRAPPER
#define Address 0x1234
TUDATA
Dataleoc RES 01
CopyData IDDataLoc, addressLoc

The code in Example 5 shows one more variation using
a macro wrapper for the code of both variable

argumenis.
EXAMPLE 5: CODE WITH MACRO
WRAPPER
GDATA
aAddressloc RES 02
Dataloc RES 01

CopyData_ID IA Dataloc,

AddressLog

To summarize,

the code examples previously

described calt for the same funetion, but the way they
format the data is different. By using a macro wrapper,
access to assembly functions is simplified, since the
macro only deals with literal values.

—
DS00853A-page 4

® 2002 Microchip Technology Inc.

ANB8S53

PIC18XXX8 CAN FUNCTIONS

All PIC18XXX8 CAN functions are grouped into the

following three categories:

» Configuration/finitialization Functions
= Module Operation Functions

= Status Check Functions

The following table lists each function by category,
which are described in the following sections.

TABLE 1: FUNCTION INDEX
Function Category Page Number

CANInitialize Configuration/Initialization 6

ChAlSetOperationMode Configuration/initialization 8

CANSetOperationModeNoWait Configuration/Initialization 9

CANSetBaudRate Configuration/Initialization 10
CANSetRey Configuration/initialization 12
CcaNsendMessage Module Operation 16
CANReadMesgsage Module Operation 19
CANAbortAll Module Operation 22
CANGetTxErrorCount Status Check 23
caNGetRxErrorCount Status Check 24
CANIsBusOEf Status Check 25
CANIsTxPasgive Status Check 26
CANIsRxPassive Status Check 27
CANIsRxReady Status Check 28
CANIsTxReady Status Check 30

Terminology Conventions

The following applies when referring to the terminology used in this apptication note.

TABLE 2:

TERMINOLOGY CONVENTIONS

Term

Meaning

xyzFunc

Used for original assembly language functions.

Xyz The macro that will accept all literal values.

xyz_l(First tetter of argument) | The macro that wilt accept the memory address location for variable implementation.

xyz_D{First letter of argument) | The macro that expects the user is directly copying the specified parameter at the
required memory location by assembly function.

LL:LH:HL:HH

bit 31

® 2002 Microchip Technoiogy Inc.

DS00853A-page 5

APPENDIX D
C CODE: EX_CAN.C

39

//

/

1147
1177
1177
11/
144/
111
1117
111/
e
115
/1177
rer
e
1117
71
11
e
I7T
/117
1717
s
1147
rr
s
171/
i
177
77
1777
177/
e
117/
117/
e
i/
1177
1177
177
1177
/117
1777
[/
rrl/
1l
[
1777
1177
e
1177
/1177
s
e
e
s
111/
117
[
1147

EX CAK.C

Example of CCS's CAN library, using the PIC18FxxB8. This

example was tested using MCP250xxx CAN Developer's Kit.

Connect PIN B2 (CANTX) to the CANTX pin on the open NODE A of
the developer's kit, and connect PIN_B3 (CANRX) to the CANRX

pin on the open NODE A.

NODF. B has an MCP250xxx which sends and responds certan canned
messages. For example, hitting one of the GPX buttons on

the development kit causes the MCP250xxx to send a 2 byte
message with an ID of 0x290. After pressing one of those
buttons with this firmware you should see this message

displayed over RSZ3Z.

NODE B alsc responds to certain CAN messages. I1f you send
a reguest (RTR bit set) with an ID of 0x18 then NODE B will
respond with an 8-byte message containing certain readings.
This firmware sends this request every 2 seconds, which NODE B

respends.

If you install Microchip's CANKing software and use the
MCP250xxx , you can see all the CAN traffic and validate all

experiments.

For more documentation on the CCS CAN libravy, see can-18xxx8.c

ey
This example will work with the PCM and PCH compilers.

//f/////////////
/
iy (C} Copyright 1996,2003 Custom Computer Services

11/
//// This source code may only be used by licensed users of the CCS

[/f7

//// C compiler. This source code may only be distributed to other
1t/

//// licensed users of the CCS C compiler. No other use,

£r77
//// reproduction or distribution is permitted without written

Iy

//// permission. Derivative programs created using this software
/7

////{ in object code form are not restricted in any way.

[

;///

#include ⁢18F248B.he> .

ffuses HS,NOPROTECT,NOLVP,NOWDT

#use delay{clock=20000000)

#use rs232 (baud=9600, =xmit=PIN C6, rcv=PIN_C7) // Jumpers: 8 to 11, 7
to 12

#include <can-18xxx8.c>
intlé ms;

#int timer2
void isr_ﬁimer2(void) {
ms++; //keep a running timer that increments every milli-second

H

void mainn{} {
struct rx stat rxstat;
int32 rx_1id:
int in data{8]:
int rx len;

//send a reguest [tx rtr=1) for 8§ bytes of data (tx len=8) from id 24
(tx id=24)

int out datal8}:

int32 tx id=24;

intl tx rtr=i;

intl tx ext=0;

int tx_len=8;

int tx pri=3:

int i;
for (i=0;i&1t;8;i++) |
out_datali]=0;
in _datal[11=0;
1
printf ("\r\n\r\nCCS CAN EXAMPLEAr\n");

setup timer 2(T2_DIV BY 4,73,16); //setup up timerZ to interrupt
every ims if using 20Mhz clock

can init{);

enable interrupts (INT_TIMERZ); //enable timer? interrupt

enable_interrupts(GLOBAL); //enable all interrupts (else timerz
wont happen)

printf ("\r\nRunning...");

while (TRUE)
{

if (can kbhit{}) //if data is waiting in buffer...
{
if (can_getd(rxz id, &in_datalCl, rx_len, rxstat))
{ //...then get data from buffer
printf("\r\nGOT: BUFF=%0T ID=%LU LEN=%U OVEF=%U ",
‘rxstat.buffer, rx id, rx len, rxstat.err ovfl)};
printf ("FILT=%U RTR=%1 EXT=%U INV=%U", rxstat.filthit,
rxstat.rtr, rxstat.ext, rxstat.inv);
printf ("\r\n DATA = ");
for (i=0;iglt;rx len;i++) |
printf("$X ",in_dataiil);
}
printf ("\r\n"};
}
aelse {
printf {"\r\nFAIL on GETD\r\n");
¥

}

//every two seconds, send new data if transmit buffer is empty
if (can tbe() && (ms > 2000))
{
ms=0;
i=can_putd(tx_id, out_data, tx_len,tx“pri,tx_ext,tx_rtr}; //put
data on transmit buffer

if (i !'= OxFF) { //success, a transmit buffer was open
printf ("\r\nPUT %U: ID=%LU LEN=3U ", i, tx id, tx len):
printf ("PRI=%U EXT=%U RTR=%0U\r\n DATA = ", txﬁpri, tx_ext,

x rtr):
for (i=0;i⁢tx len;i+t) {
printf ("$X ",out#data[i]);
!
printf ("\r\n"};

else { //fail, no transmit buffer was open
printf ("\z\nFAIL on PUTD\r\n");
}

APPENDIX E
C CODE FOR COMMUNICATION BETWEEN TWO
MICROCONTROLLERS : NODE.C

40

I

/f I
// Node.c i
H i
T

#include <i8F458.h>

#include <stdio.h>

#fuses XT,NOPROTECT, NOLVP,NOWDT

#use delay(clock=4000000)

#use 15232(band=9600, xmit=PIN_C6, rcv=PIN_C7) // Jumpers: 8 to 11, 7 to 12

#include <can-18xxx8.c>
int16 ms;

#int_timer2
void ist_timer2{void} {
ms++; //keep a running timer that increments every milli-second

}

#define SEND _ID B 0x201 //Send ID for Port B
#define GET_ID B 0x202 //Send 1D for Port C
#define RESPOND_TO _ID B 0x203

#define RESPOND FROM _ID B 0x204

fidefine BUTTON PIN CO
#define BUTTON PRESSED !linput(BUTTON)

void main() {

struct rx_stat rxstat;
int32 rx_id;

int in_data[8];

ntrx Jen;

/isend a request (tx_rtr=1) for 8 bytes of data (ix_len=8) from id 24 (x_id=24)
int out_data{8];
mt32 tx_id=24;
intl tx_rir=1;
intl tx exe=0;
int tx_len=8;
int tx_pri=3;

int i;

for (i=0;i<8;i++) {
out_data[i]=0xFC;
in_datafi]=0;

}

set iris_c(Ox¥F);
printf("rn\r\nCCS CAN EXAMPLE\r«");

setup_timer 2(T2_DIV_BY_4,79,16); //seiup up timer2 to interrupt every 1ms if using 20Mhz
clock

cap_init();
can_set_mode(CAN OP_NORMAL);

enable_interrupts(INT TIMER2); //enable timer? interrupt
enable interrupts(GLOBAL); /{enable all interrupts (else timer2 wont happen)

printf("r\nRunning...");

while(TRUE)
{

if (BUTTON PRESSED) {
while (BUTTON PRESSED) {}
delay_ms(200);

printf("\r\nSending message over (0 Node B");
can_putd(SEND ID_B,0, 1,3, 1, 1)
H

if (can_kbhit()) //if data is waiting in butfer...

if{can_getd(rx_id, &in_dataf0], rx_len, rxstat)) { //...then get data from buffer
if (rx_id == RESPOND_FROM_ID_B) {
printf{"\r\nMessage sent to PortB");
printf"r\nGOT: BUFF=%U ID=%LU LEN=%U OVF=%U ", rxstatbuffer, RESPOND_TO_ID_B,
rx_len, rxstat.err_ovil);
printf{"FILT=%U RTR=%U EXT=%U INV=%U", rxstat.filthit, rxstat.rtr, rxstat.ext, rxstat.inv);
Jprintf("r\n DATA ="}
for (i=0;i<rx_len;i++) {
printf("%X ",in_datalil);

1
printf("r\n");
¥

if rx_id == GET_ID B) {
printf("\r\inGot a message from port B");
printf("\r'nLED ON");
output_high(PIN_D4);
can putd(RESPOND_TO ID B, &i, 1,1,1,0); //put data on transmit buffer
delay ms(2000);
output_low(PIN_D4);

et e

APPENDIX F
C CODE FOR COMMUNICATION BETWEEN THREE
MICROCONTROLLERS : STATIONA.C

41

#include <18F458.h>

¥ fuses XT,NOPROTECT,NOLVP,NOWDT

#use delay{clock=4000000)

$use rs232 (baud=9600, xmit=PIN C6, rcv=PIN_C7] // Jumpers: 8 to 11, 7
to 12

#include <can-18xxxB.c>
intié ms;

#int timer2

void isr timer2(void} |

ms++; //keep a running timer that increments every milli-second
}

#define SEND TO PORT B Dx201
#define SEND_TO_PORT_C 0x202
#define RESPOND FROM PORT B 02207
#tdefine RESPOND_FROMﬁPORT_C 0x208
void main () {

char out data;
intl tx _rtr=1;
intl tx ext=0;
int tx len=8;

int tx pri=3;

int i;

struct rx stat rxstat;
int32 rx id:

char in datz[8];

int rx len;

int buffer=0Oxfc;

printf(“\r\n\r\nMonitoring CAN... Node A\r\n");
setup_timermZ(TZMDIV_BY_4,79,16);

can_init(}:
can_setgmode(CANﬁOP_NORMAL);

enable interrupts (INT TIMERZ);
enable interrupts (GLOBAL);

printf ("\r\nRunning...™):

while {TRUE}
{

J [EHxHE*R A KEEER Racaiving Dala
-k-k***-k-k******-ﬂr***

if { can kbhit ()) //if data is waiting in buffer...
{
printf ("\r\n\nData in receive buffer");
if(can_getd(rx id, §in _datall], rx_len, rxstat}) { //...then
get data from buffer

//Respond from B

if (rx_id == RESPOND_FROM FORT B) {
printf ("\r\nMessage sent to Node B"} ;
1

//Respeond from C

if (rx id == RESPOND_FROM PORT_C) {
printf ("\r\nMessage Sent to Node C7);
}

}

}
//
11771777777 '

//***xx*xSending
data***

if { can tbe() && {(ms > 500})

{
out_data = getchar():
printf ("\r\n\Transmit buffer ready"”);
printf ("\r\n\n you pressed %c", out data);

ms=0;

//Data for Port B
if (out data=='a' [| out_data=='b' || out _data==T'c")
{
i=can_putd(SEND_TO_PORT_B, out data,
tx_len,tx pri,tx ext,tx rtr); //put data on transmit buffer
3T (i t= OxFF) { //success, a transmit buffer was open

printf{™\r\nSend data to Port B™);

print £ ("\r\nPUT %U: ID=%LU LEN=%U . i

SEND_TO PORT B, tx len);
printf ("PRI~$U EXT=%U RTR=%U\r\n DATA = ", tx pri,

tx ext, tz_rtr};
for (i=0:;i<tx len;it++) {

printf ("%c ",out_data);

) :

printf ("\r\n"];
}
}
//Data for Port C
if (out_data=='d' || out data=="e' || cut _data=="f"}{

i=can putd(SEND_TO_ PORT_C, out data,

tx len,tx pri,tx ext,tx rtr); //put data on transmit buffer
if (i !'= 0OxFF} { //success, a transmit buffer was open
printf{"\r\nSend data to Port C");
printf ("\r\nPUT %U: TD=%LU LEN=%U ", i,
SEND TO PORT C, tx len);
printf ("PRI=%U EXT=%U RTR=%U\r\n DATA = ", tx pri,

tx ext, ©LxX rtr);]

- - for (i=0;i<tx len;i++) {
printf("sc ",out data):;
}
printf{"\z\n");

}

}

}
FIIIITLETI LTI T I ET LI LI TEFEI LIS LIPS LIII 117007107077
[1HEE1I07T 7T

APPENDIX G
C CODE FOR COMMUNICATION BETWEEN THREE
MICROCONTROLLERS : STATIONB.C

42

$include <18F458.h>

#fuses XT,NOPROTECT,NOLVP,NOWDT

$use delay{clock=4000000)

fuse rs232 (baud=9600, =xnit=PIN_Cé, rcv=PIN C7) // Jumpers: 8 to 11, 7
to 12

#include <can-18xxx8.c>

intl6 ms;

#int timer2
void isr timexrZ(void) {
ms++; //keep a running timer that increments every milli-second

}
tdefine RECEIVE FROM PORT A 0x201
4define RESPOND TO PORT A 0x207

void main{) {

char out data;

intl tx_rtr=1;

intl tx ext=0;

int tx len=8;

int tx pri=3;

int is

struct rx stat rxstat;

int32 rx id:

char in dataiB8]:;

int rz len;

int buffer=0xfc;

printf ("\r\n\r\nMonitoring CAN... Node BAr\n"):
setup timer 2 (T2 _DIV_BY 4,79,16);

can_init{);
can_set mode (CAN_OP NORMAL};

enable interrupts (INT TIMERZ);
enable interrupts (GLOBAL];

printf {"\r\nRunning...");

while (TRUE}
{

J/FEERkERkEF LY Raceiving Data
‘k‘k***-k**'k*-;L—-k'*-k‘k*******************‘k*******‘k**********‘k*

if (can_ kbhit ()) //if data is waiting in buffer...
{

printf ("\r\nbata in receive buffer™);
if (can getd(rx_id, &in_datail}l, rx _len, rxstat)) { //...then
get data from buffer

//Data from A

if (rx_id == RECEIVE_FROM_PORT_A) {

printf {"\r\nData is from Node ATy ;

printf("\r\nGOT: BUFF=%0U ID=%LU LEN=%U OVF=%U ",
rxstat.buffer, rxz id, rx_len, rxstat.err ovfl);

printf ("FILT=%U RTR=3%U EXT=%7 TNV=%U", rxstat.filthit,
rxstat.rtr, rxstat.ext, rxstat.inv);

printf("\r\a DATA = "};

for (i=0;i<rx len;it++) {

printf("%c ",in_datalil};

}

printf {("\r\n");

can_putd(RESPOND_TO_PORT_A, shuffer, 3, 1, 1, 0});

}

).
//
JI17F1707Y

APPENDIX H
C CODE FOR COMMUNICATION BETWEEN THREE
MICROCONTROLLERS : STATIONC.C

43

#TYPE INT=8

#inciuvde <i8F458.h>

#fuses XT,NOPROTECT,NOLVP, NOWDT

#use delay(clock=4000000)

#use rs232{baud=9600, =xmit=PIN C6, rcv-PIN_C7) // Jumpers: 8 to 1i, 7
to 12

#include <can-18xxxB.c>
intl6 ms;

#int timer?2
void isr_ timer2(void) {
ms++; //keep a running timer that increments every milli-second

¥

#define RECEIVE FROM PORT_A 0x%202
$define RESPOND TO PORT A 02208

vold main{) {

char out data;
intl tx rtr=1;
intl tx ext=0;
int tx len=8;
int tx pri=3;
int i;

struct rx stat rxstat;
int32 rx id;

char in datal[8]:

int rx len;

int buffer=0xfc;

printf ("\r\n\r\nMonitoring CAN... Node C\r\n");

setup_timer_2(T2_DIV_BY_4,79,16);

can _init();
can_set mode (CAN_OP NORMAL) ;

enable interrupts (INT_TIMERZ);
enable interrupts (GLOBAL);

printf ("\r\nRunning...");

while (TRUE)
{

J/E¥xxxxxxkxx Roceiving Data
‘k‘k‘k*‘k****-.ir-k***‘k*********‘k********************‘k****‘k

if { can kbhit{}) //1F data is waiting in buffer...
{
printf {"\r\nData in receive buffer”):
if{can getd{rx_id, &in datalC], rx len, rxstat)) { //...then

get data from buffer

//Data From A

if (rx_id == RECEIVE_FROM PORT A) {

printf{"\r\nData is from Node A");

printf ("\r\nGOT: BUFF=%U ID=%LU LEN=%U OVF=%0U .,
rxstat.buffer, rxz id, rx len, rxstat.err ovfl);

printf ("FILT=%U RTR=%U EXT=%U INV=3U", rxstat.filthit,
rxstat.rir, rxstat.ext, rxstat.inv);

printf ("\r\n DATA = ");
for (i:O;i<rX*len;i++) {

printf("3c ",in data[il);
}

printf ("\r\n");

can_putd [RESPOND TQ PORT A, &buffer, 3, 1, 1, 0};
}

¥

LILLTTITTLI LTI I LTI I 77T F L FT TP 7777077777007 7707007777 7777
LITIEE777777

}

APPENDIX I

HARDWARE CONNECTION

ArSy

uz

TXD

1o PIC
CANTX

FZ’_ vss
2

R¥T

1n PIC
CaNRX

CANH

¥
Rr2

RS._E_M?
z

CANL £

MCP2351

VREF fmeeit 3

CAN transceiver, MCP 2551 connection

2,
g
! [}
TuF
1 Tq Ui # .
L] e v | 3“
H
c V- c10
car Teept 1A - 1oF
=X 200t -
Trremited data fom PG m— X DATA BT Riin {12
L vain Roin 2
o ciatm 0 PG RXDATA T e
—— R20ut [+
J3 El MAXTT
)-8 GND
e
O
(]
2
Or5
O
CONN-ES
RS332 DS FEMALE

MAX?232 hardware connection

44

