
RIMBAMON©: A Forest Monitoring System Using
Wireless Sensor Networks

By

MUHAMAD HAIDAR BIN SUHAIMI

FINAL PROJECT REPORT

Submitted to the Electrical & Electronics Engineering Programme

in Partial Fulfillment of the Requirements

for the Degree

Bachelor of Engineering (Hons)

(Electrical & Electronics Engineering)

Universiti Teknologi Petronas
Bandar Seri Iskandar

31750 Tronoh
Perak Darul Ridzuan

© Copyright 2007
by

Muhamad Haidar Bin Suhaimi, 2007

I

Approved:

CERTIFICATION OF APPROVAL

RIMBAMO~ : A Forest Monitoring System Using
Wireless Sensor Networks

by

Muhamad Haidar Bin Suhaimi

A project dissertation submitted to the
Electrical & Electronics Engineering Programme

Universiti Teknologi PETRONAS
in partial fulfilment of the requirement for the

Bachelor of Engineering (Hons)

(Electrical & Electronics Engineering)

Mr. AzlanAwang
Project Supervisor

UNIVERSITI TEKNOLOGI PETRONAS
TRONOH, PERAK

JUNE2007

II

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and acknowledgements,

and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

Muhamad Haidar Bin Suhaimi

iii

ABSTRACT

Forests are important to the lives of every human and animal living on this

planet. It provides an environment for many species of plants and animals, thus

protecting and sustaining the diversity of nature. However, it is constantly being

threatened by illegal logging and indiscriminate development. This problem needs to

be overcome in order to protect our forests before it is too late. Therefore, there is an

urgent need to constantly monitor the conditions inside the forest especially under the

forest canopy in order to develop a comprehensive, real-time Forest Decision Support

System. This report presents the RIMBAMON© system which is aimed at providing a

way to capture and manipulate forestry environmental data coming from the sensors

in a sensor network. This system utilizes Wireless Sensor Networks for

communication. As there are several existing technologies that employ the Wireless

Sensor Networks technology, this project will focus on the TinyOS operating system

for sensor networks. Various tools will be used to develop the system; such as the

TinyOS Simulator (TOSSIM), Java, Cygwin and TinyViz. The concepts behind

wireless sensor networks and the tools used in this project are examined and

discussed alongside simulation and testing of TinyOS. The outcome of this project is

a prototype system which is able to monitor and report the conditions under the forest

canopy.

iv

ACKNOWLEDGEMENTS

First of all, my gratitude goes to Allah S.W.T for giving me strength,

knowledge and good health during the course of my Final Year Project.

My warmest gratitude goes to my supervisor, Mr. Azlan Awang for his

unwavering support and guidance while completing this project. His generosity,

understanding and help have been an inspiration to me.

My special appreciation goes to Mr Wan Muzalif and Dr. Fadlee from

Universiti Putra Malaysia for their valuable expertise, guide and support in

completing this project.

Special thanks to my father, Dr. Suhaimi Napis, and mother, Dr. Faridah

Noor, who gave their time and effort in guiding and assisting me throughout

completing the project.

I would also like to thank Nurulizzatulshima, Al-Afiq and all the people who

have been involved directly or indirectly in completing this project. The contributions

you have made throughout the development of this project have been really valuable

tome.

Last but not least, my deepest gratitude and special thanks goes to my family

and friends for their support and knowledge that they shared with me.

v

TABLE OF CONTENTS

LIST OF FIGURES ... viii

LIST OF TABLES ..•...•......................................•.••.•..•.•........... ix

CHAPTER 1 : INTRODUCTION .. 1

1.1 Background of Study .. 1

1.2 Problem Statement ...•.. 2

1.3 Objective and Scope of Study ..•• 3

CHAPTER 2 : LITERATURE REVIEW .. 5

2.1 Introduction•...••..•••••.•............. 5

2.2 Wireless Sensor Networks (WSN)•.•.••.•............................ 5

2.3 Forest Situation in Malaysia ..••.•......•...•............•.... 7

2.4 Forest Remote Sensing••••.•.•...•...••...... 8

2.5 Sensor Node ...•...•..••..................................... 9

2.6 Summary .. 11

CHAPTER 3 : METHODOLOGY•...•••••••••••.•...............................••.••.•••••.•.•........ 12

3.1 Introduction ...•................................. 12

3.2 System Design•...••.................... 12

3.2.1 Sensor Nodes•.•.••...••.................. 12

3.2.2 Sensor Board•..•...•..•............................ 13

3.2.3 The nesC program ..•....••..•............ 15

3.3 Tools and Applications ...•................. 16

3.4 Additional Tools Used••...••••.•.•............... 17

3.4.1 Cygwin•.•...•...••••.•..... 17

3.4.2 Netbeans IDE 5.0 ... 18

3.5 Summary•... 19

CHAPTER 4 : RESULTS AND DISCUSSION .. 20

4.1 Introduction ... 20

4.2 Development Work•.. 20

4.2.1 Installation of TinyOS••..•...••....••••• 20

4.2.2 TinyOS Simulator (TOSSIM) ... 22

4.2.3 Visualization of Simulation using Tiny Viz 22

4.2.4 Application Graphical User Interface (GUI) 24

VI

4.2.5 MySQ L•...• 24

4.3 Results •.................•..................•......................................•.......•........••..........•... 25

4.3.1 Conversion of Raw Sensor Data ... 26

4.3.2 nesC Program ... 26

4.3.3 GUI Interface ..••............... 32

4.3.4 Monitoring Station Application .. 38

4.4 Summary ...•.................................... 40

CHAPTER 5: CONCLUSION ..•................................ 41

REFERENCES ..••..•............... 43

APPENDICES ... 45

Vll

LIST OF FIGURES

Figure 2.1 : The Crossbow MICA2 Mote ..•.......... 10

Figure 3.1 : Basic Scenario for Area Monitoring ..•••.•.. 13

Figure 4.1 : Screenshot of the Cywgin Console Window ... 18

Figure 4.2 : Screenshot of the Tiny Viz Application Running a Simulation 23

Figure 4.3 : The Main Window: Connection Details and Console Output Area 34

Figure 4.4 : Table View Window: Displays the Data from a Selected Mote••• 35

Figure 4.5 : Graph View Window: Line Graph Representation of Sensor Data 36

Figure 4.6 : Map Layout : Displays the Location of the Motes in the Area 37

vm

LIST OF TABLES

Table 4.1 : Description of Class Files ... 38

IX

CHAPTER I

INTRODUCTION

1.1 Background of Study

The pristine and green conditions of Malaysian forests have slowly

deteriorated due to illegal logging and indiscriminate development. It has indeed

become a serious problem that needs attention before it is too late. Therefore, there is

an urgent need to constantly monitor the conditions inside the forest especially under

the forest canopy in order to develop a comprehensive, real-time Forest Decision

Support System. A relatively lower cost, faster to deploy and real-time monitoring

system which offers capabilities of sensing the conditions and provide true data in

real-time need to be implemented within (on-site) the target area. Wireless Sensor

Technology can be applied to implement this at a relatively lower cost than aerial or

satellite imaging techniques. Aerial or satellite imaging techniques can only

passively monitor conditions using imaging extrapolation and data approximation

based on models and incapable of monitoring and capturing true data in situ (on-site)

and in real-time.

A Wireless Sensor Technology is based on communication using Wireless

Sensor Networks (WSN) and consists of spatially distributed autonomous devices

(sensors) to cooperatively monitor physical or enviromnental conditions, such as

temperature, sound, vibration, pressure, motion or pollutants, at different locations

and the data can be monitored and retrieved in real-time. Other software that supports

the systems development include Network Embedded Systems C (nesC), which is a

variant of the C-progranuning language and also TinyOS, an open-source,

component-based operating system designed for wireless embedded sensor networks

1

The aim of the project is to design a system that monitors the conditions

under the forest canopy and reports the results graphically in order to provide

surveillance on illegal logging activities and forest fires. This system utilizes radio­

based sensors to create a wireless sensor network for relaying sensor data. The

monitoring station provides system information and real-time data reporting and

provides data feeds that can be utilized by a Forest Decision Support System.

This project is not intended as a replacement system for remote sensing of

forest areas, but rather aims at complimenting the existing methods for gathering

information. Therefore, the project is aimed at being integrated into the field-based

sampling operations. The information gathered will provide valuable data to a

decision support system.

1.2 Problem Statement

The degradation of forests in Malaysia is a serious problem that needs to be

overcome in order to preserve its natural forests. Therefore, there is a need to

constantly monitor the conditions inside a forest in order to aid a decision support

system. Among the main conditions that need to be monitored are the temperature

levels, humidity levels, light intensity, and sound. Consequently, a relatively lower

cost, faster to deploy and real-time monitoring system which offers capabilities of

sensing these elements need to be implemented inside the target area. A Wireless

Sensor Network is capable of doing this at a relatively cheaper price than aerial or

satellite imaging techniques. This Wireless Sensor Network will consist of multiple

sensor nodes which communicate by creating a mesh network between each other.

The sensors reports the information gathered by relaying captured data to other

sensors within the network. At the heart of this network, lies a base station or base

computer that monitors and gathers the information that is passed around in the

network. This base station will be connected to the monitoring station through a long

range connection, either via satellite or wired means.

2

Due to the small program footprints of these sensors, the data that is sent and

received is contained in a compact and hard to understand message format in order to

minimize the size and conserve valu101ble battery life [3]. This information can be

converted and manipulated by applying certain algorithms or formulas to decode the

messages and properly tag it. Therefore, a program for the sensors to gather necessary

data and convey it back to the base station needs to be developed. In order to read and

understand the information, there is a need to display and convey this information in

an understandable manner. Also, a proper program to store and present the data

gathered in tables, graphs and images with a user friendly interface will have to be

created. This is where RIMBAMON© comes in. This system will provide a way of

monitoring forest areas which do not already have specialized monitoring systems for

research purposes and the prevention of forest degradation.

1.3 Objective and Scope of Study

The main objective of this project is to create a system for the monitoring of

forest areas, using Wireless Sensor Networks. In addition to the creation of the

system, this project will also involve simulation of a sensor network in order to test

the system's functionality. The system would be divided into two parts which are the

programs operating the sensor nodes and the main processing program which

captures the data and information coming from the sensor network motes connected

to a base station, and manipulate the data for easy monitoring and recording. This

information will then be displayed to the user in graphs or tables depending on the

requirements of the user. However, the data that is sent by the sensor motes are in a

raw format which is hard to understand. Therefore, in order to record and output the

data, the system would need to implement formulas or algorithms to convert the raw

data coming from the sensor motes into an understandable format (engineering units).

This project will cover the study of Wireless Sensor Networks (WSN)

concepts, communication between sensors, data and information transfer within a

wireless sensor network, the TinyOS operating system for sensor networks, the

TOSSIM sensor network simulator for TinyOS, wireless sensor network simulation

3

development, and also information processing and manipulation. In addition to these,

this project will also involve progrannning using nesC and Java, and also database

development and access using SQL. The development of the system will involve

program development for the displaying and processing of the data captured from the

sensor network.

4

2.1 Introduction

CHAPTER2

LITERATURE REVIEW

This chapter will discuss the research work which has been done in order to

achieve the objectives of this project. Among the topics discussed are Wireless

Sensor Networks, the forest situation in Malaysia, current trends in forest remote

sensing and the sensors used in this project.

2.2 Wireless Sensor Networks (WSN)

A wireless sensor network (WSN) is a computer network consisting of many,

spatially distributed devices using sensors to monitor conditions at different locations,

such as temperature, sound, vibration, pressure, motion or pollutants [1][2]. As these

devices are small and inexpensive, they can be produced and deployed in large

numbers. The size and price requirements imply that the devices' resources in terms

of energy, memory, computational speed and bandwidth are severely constrained [3].

Each device is equipped with a radio transceiver, a small microcontroller, and an

energy source, usually a battery. Each device relays information from other devices to

transport data to a monitoring computer.

Although computer-based instrumentation has existed for a long time, the

density of instrumentation made possible by a shift to produce mass-produced

intelligent sensors and the use of pervasive networking technology gives wireless

sensor networks a new kind of scope that can be applied to a wide range of users [6].

These users can be categorized into several groups:

5

• Space monitoring

• Object monitoring

• Object interaction and encompassing space monitoring

The first group includes environmental and habitat monitoring, indoor climate

control, surveillance and intelligent alarms. The second includes structural

monitoring, ecophysiology, condition-based equipment maintenance, medical

diagnostics and urban terrain mapping. The most important applications involve

monitoring complex interactions, including wildlife habitats, disaster management,

emergency response, ubiquitous computing environments, asset tracking, healthcare

and manufacturing process flow.

The organization of WSN consists of several management plan and

infrastructurallayers [4]. These plans and layers define the way the mesh network

connections within a WSN area are established and the underlying technologies

involved in WSN's.

The first management plan is that of power management. This plan concerns

how the sensor node uses its stored power effectively and efficiently. The second

management plan is mobility management which detects and registers the movement

of sensor nodes or rather recognizes each neighboring sensor and balances their

power and task usage. Lastly, there is the task management with the main aim and

purpose of balancing and the sensing tasks given to a specific region of sensors.

These plans work together to manage the Wireless Sensor Network and are

interdependent with the infrastructure layers.

The infrastructure layers consist of five different layers, namely the Physical,

Data-link, Network, Transport and Application layers [4]. The following is a brief

definition of the functions of each layer:

6

(i) Physical Layer

Responsible for the frequency selection, transmission modulation and data encryption

of messages sent.

(ii) Data-link Layer

Responsible for multiplexing the data streams, performs data frame detection,

Medium Access (MAC) and error control.

(iii) Network Layer

Routes the data supplied by the Transport Layer through the use of special multi-hop

wireless routing protocols between sensor nodes and sink/base station nodes.

(iv) Transport Layer

Maintains the flow of data if the Application Layer requires it. Required if there is a

need for an end user to access the Sensor Network through the Internet.

(v) Application Layer

Makes the hardware and software of the lower layers transparent to the End-User.

2.3 Forest Situation in Malaysia

Tropical Forests are exceptional sources of biodiversity, containing

somewhere between 10 to 15 million species. The tropical rain forest has four main

functions; conservation of water catchments; conservation of the soil; conservation of

plant and animal genetic resources; and the production of wood and other forest

products. The existence of mature forests is important and vital to the survival of its

habitat and to us humans. However, lately the forest scene in Malaysia and around the

world has been changing quite rapidly as a result of uncontrolled or illegal logging,

forest fires and pollution.

Logging is a key force driving forest degradation and biodiversity loss.

Loggers in tropical Asia rarely clear cut forests. Yet they are the most important

7

factor triggering the process of deforestation. They selectively cut the largest and

most valuable trees from primary forests. They degrade forests, leaving them more

susceptible to forest fires.

Deforestation and forest fires have been especially acute in tropical Asia.

From 1960 to 1980 alone, tropical Asia lost almost one third of its forest cover [16].

Deforestation continued until 1990 where the forests only covered about 350 million

hectares of tropical Asia which is just half of the world's forests. [17]. By the start of

the twenty-first century, Many of the countries in the Asian region were severely

degraded. Currently, half of the world's humid tropical forests are already gone and

now only covers 6 percent of the earths land surface.

The degradation of forests has serious implications that include accelerating

biodiversity loss and climate change. These implications concern local, regional and

global levels. Therefore, monitoring and managing forests in a sustainable way to

reduce its degradation is crucial to the survival of tropical rainforests.

2.4 Forest Remote Sensing

Over the past few decades, remote sensing has been a valuable source of

information in mapping and monitoring forest activities. As the need for increased

amounts and quality of information about such activities becomes more apparent, it is

felt that remote sensing as an information source will be increasingly critical in the

future. The goal of a remote sensing application is the application of knowledge to

solve problems [18]. There is a need to have as much relevant information as possible

on the conditions of the forest to prescribe treatments, formulate policies, and to

provide insight on the forest condition and health.

Remote Sensing applications include:

• Detection of deforestation activities

• Monitoring of the canopies micro climate

• Detection of changes in forest conditions

8

• Fire monitoring and prevention

Currently, Malaysia uses an efficient and effective forest Resources

Monitoring System to monitor changes in the forest resources [19]. The system is

based on a three phased approach consisting ofthe following:

Phase 1: The use of satellite imagery, basically Landsat TM for the establishment of a

fixed grid of monitoring points over the forested area. A 2.5 minute grid has

been adopted for the identification of all types of natural forest and

plantation.

Phase 2: Establishment of a Geographic Information System (GIS) to describe in

detail, at anytime, the past and present forest situation at these grid points.

Apart from providing the information on total forested area, the system will

also record changes in the forest cover, due to legal or illegal human

activities.

Phase 3: Field sampling on a continuous basis, of all forest types on a randomly

selected number of grid points according to predetermined accuracy

standards. This sampling will keep the stand and stock table data of the

various types updated.

Forest monitoring services building on data coming from earth observation

satellites and in-situ sensors address the following domains:

• Climatic changes (e.g. national greenhouse gas reporting, carbon stock

statistics)

• Sustainable forest management (e.g. Clear Cut mapping and monitoring

service)

• Nature protection (e.g. Land Cover and Forest Indicator Service)

2.5 Sensor Node

A sensor node has one or more sensors attached that are connected to the

physical world [4]. Some examples of sensors are temperature sensors, light sensors

9

and PIR sensors that can measure the concurrence of events in their vicinity. Thus,

each sensor is a separate data source that generates records with several fields such as

the identity and location of the sensor type, and the value of the reading.

Figure 2.1: The Crossbow MICA2 Mote [20]

The architecture of a sensor node depends on the scenario in which it is being

used. For instance, in a weather monitoring scenario, the sensor would need to have a

temperature, humidity and light sensor. On the other hand, in an underground habitat

monitoring scenario, the sensor node would probably only need heat and movement

sensors to monitor the animals' activities. Figure 2.2 shows the heart of a sensor node

which is the Mote board. Among the important components that are contained inside

a Mote are the processor, flash memory, input and output ports and the network

communication component [4].

With the Mote board being the heart of a sensor node; it still needs several

other important components before it can be applied to the scenario. These

components would be the all important power supply and circuitry, adapted sensors

and the packaging of the node. As mentioned earlier in the report, the power

management of a sensor node plays an important role in the durability of the sensor

nodes in a real-world application [6]. Normally small batteries are used for a sensor

node as the available size for the battery is limited by the packaging. This in tum

limits the power that is available for the sensor node. Therefore, the program which

runs the sensor node and the power circuitry are both optimized in order to minimize

the power usage and prolong the life of the sensor node.

10

2.6 Summary

This chapter presents a brief overview of the technology and concepts behind

Wireless Sensor Network's, the forest situation in Malaysia, current trends in forest

remote sensing and the sensors used in this project. Several management plans and

infrastructural layers govern the way WSNs are organized. These plans are the basis

for defining the way mesh network connections within a WSN area are established

and other elements in WSNs.

II

3.1 Introduction

CHAPTER3

METHODOLOGY

This chapter presents the tools and applications to be used in this project. This

includes TinyOS, TinyOS Simulator (TOSSIM), nesC, Java Development Kit, and

MySQL.

Network Embedded System C-programming (nesC programming) was used to

create the sensor node program which captures Temperature and Light (Photo)

intensity readings and broadcasts the data back to the monitoring station in the form

of Active Messages. The Cygwin (LINUX Emulator for Windows) enviromnent was

used for the development and compilation of the TinyOS program (written in nesC).

The simulation and testing of the TinyOS program was carried out using the TinyOS

Simulator (TOSSIM). The monitoring station application was developed using Java

through the use of the Netbeans IDE (Integrated Development Enviromnent). Among

the features of the application are table and graph generation, real-time reporting and

an interactive graphical user interface (GUI). Collected data is then stored in a

MySQL database for future reuse by other systems and/or subsystems.

3.2 System Design

3.2.1 Sensor Nodes

The sensor system of RIMBAMON© consists of sensor nodes and a base

station. The sensors are categorized into two types, the sensor (monitoring) nodes and

12

the base node. The sensor nodes will be placed throughout the forest at a specific

interval from one another depending on the line of sight and the functional

communication range of the sensors. Theses sensor nodes will be made up of

Crossbow's MTS310CA sensor boards connected to Crossbow's MICA2 Mote's.

The reason for choosing the MICA2 Mote for this application is because of its long

range ISM band integrated radio which has a range of up to 500 feet [21] depending

on the foliage, environmental conditions, and radio frequency. The MTS310CA

sensor board offers sensing capabilities for Temperature, Light Intensity, Acoustic,

Acceleration and Magnetic readings. For the implementation of this prototype, only

the temperature and light intensity modules will be utilized. However, the additional

sensor may also be integrated into the design of the system in the future. Therefore,

this paper will also discuss the potential sensors that can be used for the monitoring

of a forest area. The sensor nodes would be placed either on the trunk of the tree, near

ground level or along the roadside.

lntemet/
Satellite

t
Task

Manager
Nade

Sensor Field

[Base Station J~:·--.---------.--- -:
I 0 :

0 I. :
I -+-......... '

"-W'
1

"":"Event
I 0

Sansor Nadn L 0
I

I

0
0

0
_R _____________ •

Figure 3.1: Basic Scenario for Area Monitoring

The Base node will be comprised of the same MICA2 Mote attached to the

MIB51 OCA progranuner board which offers a serial connection for data acquisition.

3.2.2 Sensor Board

The Sensor Mote may be equipped with several sensors which suits the

application scenario. Among the sensors that are applicable to a system that monitors

the forest conditions are the ambient temperature, the light intensity, the acoustic or

13

sound sensor and the air or soil humidity. However, due to the limitations of the

TinyOS Simulator, only the light intensity and temperature sensors could be tested.

This is due to the unavailability of other types of sensors in the simulation sensor

mote model. Although the temperature and light intensity sensors may not be enough

for monitoring the forest conditions, other sensors may easily be implemented in the

future as the nesC programming codes for the sensor parts are similar and can be

duplicated for other sensors.

1) Temperature

One of the main conditions that can directly show drastic changes in the forest

would be the ambient temperature in that area. For example, any logging activity in

an area would affect the surrounding temperature. The ground would heat up faster as

a result of direct contact with sunlight. Consequently, hot air will rise from the

ground and therefore increase the ambient temperature in that area. Although the

change in temperature would be only a few degrees, it would be enough for the

monitoring system to detect and display the change. Apart from logging, a sudden

rise in ambient temperature would also be a warning for forest fires in that area.

2) Light

Another indication of logging and forest fires would be the ambient light

intensity in that area. For the case of illegal logging, the cutting down of trees would

increase the intensity of light which reaches the lower levels of the forest. Similarly,

the light coming from early fires would also result in an increase of light intensity,

especially during the night time. Apart from logging and forest fires, light intensity

could also act as security surveillance for the forest especially during night time. If

there are people in that area who use torchlight's or light a campfire, the node would

report the change in light intensity and appropriate authorities could be alerted of the

presence of people in that area. This not only allows monitoring of the forest during

night time but also allows the efficient use of patrol forces in that area.

14

3) Acoustic

Acoustic or sound levels could also offer valuable information about activity

in the area. In the case of illegal logging, abnormal sound levels in the area would

indicate possible presence of tractors, machinery or chainsaws. Also, the sound of

someone crying for help could also be detected by the sensors, thus aiding in the

location of that person.

4) Humidity

Changes in the humidity level in an area would also be a tell-tale sign of

heavy equipment. This is because of the heat and smoke generated by the engines.

Similarly, any logging activities in nearby areas would also affect the humidity levels.

Sensor data might contain noise, and it is often possible to obtain more

accurate results by fusing data from several sensors [5]. Sununaries or aggregates of

raw sensor data are thus more useful to sensor applications than individual sensor

readings. For instance, when monitoring the concentration of a dangerous chemical in

an area, one possible query is to measure the average value of all sensor readings in

that region, and report whenever it is higher than some predefined threshold.

3.2.3 The nesC Program

The nesC program which will be progranuned onto each sensor node consists

of several parts. They are the data collector, message broadcaster, and message

listener parts. The data collector is in charge of acquiring the readings from the sensor

modules and parsing the information into a message for broadcasting. The sensors

that will be trigger are the temperature and light intensity sensors. The second part of

the program, the message broadcaster, sends a message which contains the sensor

data along with other information, such as the node ID and reading count, into the

network. This message will then be received by other nodes in the system and

captured by the base station. The third section of the program is the message listener

15

which listens for messages being broadcasted inside the network and performs the

appropriate response. The nesC program will be discussed in further detail later on.

3.3 Tools and Applications

Throughout this project, several tools and applications will be used. Among

them are:

1. TinyOS

TinyOS is an open-source operating system designed for wireless embedded

sensor networks. It features a component-based architecture which enables rapid

innovation and implementation while minimizing code size as required by the severe

memory constraints present in sensor networks. TinyOS's component library includes

network protocols, distributed services, sensor drivers, and data acquisition tools - all

of which can be used as-is or be further refined for a custom application. TinyOS's

event-driven execution model enables fine-grained power management yet allows the

scheduling flexibility made necessary by the unpredictable nature of wireless

communication and physical world interfaces. [7]

2. TOSSIM

TOSSIM is a discrete event simulator for TinyOS sensor networks. Instead of

compiling a TinyOS application for a mote, users can compile it into the TOSSIM

framework, which runs on a PC. This allows users to debug, test, and analyze

algorithms in a controlled and repeatable environment. As TOSSIM runs on a PC,

users can examine their TinyOS code using debuggers and other development tools.

[8]

3. nesC

nesC is an extension of C to support and reflect the design of TinyOS v 1.0

and above. It provides a set of language constructs and restrictions to implement

TinyOS components and applications. [9]

16

4. Java Development Kit

The Java Development Kit (JDK) is a Sun product aimed at Java developers.

Since the introduction of Java. it has been by far the most widely used Java SDK. The

primary components of the JDK are a selection ofprograrmning tools, including:

• javac- The compiler, which converts source code into Java byte code.

• jar - The archiver, which packages related class libraries into a single JAR

file.

• javadoc - The documentation generator, which automatically generates

documentation from source code comments.

5. MySQL

MySQL is a freely available open source Relational Database Management

System [RDBMS], a database engine of sorts that uses Structured Query Language

(SQL). SQL is the most popular language for adding, accessing, and processing data

in a database, and is most noted for its rapid processing, proven reliability, and ease

and flexibility of use. Since its release, it has quickly became the dominant web

database thanks to its speed, compact size and comparative ease of use - and liberal

licensing policy, being distributed from the start as open source (and later under the

GPL license) and free for many purposes. [1 0]

3.4 Additional Tools Used

In addition to the tools and applications mentioned in the previous section,

several additional tools were also used for the development of RIMBAMON© . They

are the Linux emulator for Windows, Cygwin, and the Netbeans Integrated

Development Environment (IDE).

3.4.1 Cygwin

Cygwin consists of a library that implements the POSIX system call API in

terms ofWin32 system calls, a GNU development toolchain (such as GCC and GDB)

17

to allow basic software development tasks, and a large number of application

programs equivalent to common programs on the Unix system [11]. At this point,

almost all open-source programs on Unix have been ported to Cygwin, including the

X Window System, KDE, Gnome, Apache, TeX, and various others.

A mechanism has been created for installing inetd, syslogd, sshd, Apache and

other daemons as standard Windows services, allowing a Microsoft Windows system

to function much like a Unix or Linux server. All of these programs are installed

through the standard Cygwin setup program, which downloads the necessary

packages from the Internet. The setup program can be rerun as necessary to update

programs to their latest versions or add or remove programs. Various other features

are provided by setup, such as the ability to install the source code along with the

binaries.

Figure 4.1: Screens hot of the Cygwin console window

3.4.2 Netbeans IDE 5.0

The NetBeans IDE is a robust, free, open source Java IDE that provides the

developer with everything they need to create cross-platform desktop, web and

mobile applications straight out of the box. The NetBeans IDE includes an intuitive

GUI Builder (formerly known as Project Matisse) as well as comprehensive support

for developing plug-in modules, and rich client applications based on the NetBeans

platform.

18

The Netbeans IDE will be used throughout the development of the project

since the program will be developed in Java. An additional feature ofNetbeans that is

important for the project is its GUI (Graphical User Interface) creation engine.

3.5 Summary

This chapter explained the design of the system and also the tools used in the

development of the RIMBAMONI[J ; such as TinyOS, TinyOS Simulator (TOSSIM),

nesC, Java Development Kit, MySQL, Cygwin and the Netbeans IDE.

19

CHAPTER4

RESULTS AND DISCUSSION

4.1 Introduction

This chapter presents the results and discussions that were obtained from this

project, as well as the development work for the RIMBAMON© system.

4.2 Development Work

The project involves programming on TinyOS using NesC and conducting

simulations using TOSSIM (TinyOS SIMulator). Throughout these past few weeks,

the author has started working with TinyOS. In order to learn how the TinyOS works,

the author needed to test the example source codes to familiarize himself with the

TinyOS system. The following is a brief summary of the author's experience of

working with TinyOS so far.

4.2.1 Installation of TinyOS

TinyOS is available for both Windows and Linux platforms. TinyOS also

requires the Java SDK and the Java Comm package.

Installing TinyOS on the Windows platform is simple. It only requires the

user to download the TinyOS 1.1.0 executable installer and execute it. The installer

takes care of installing the complete TinyOS code, Java SDK and the Java Comm

20

package. When TinyOS is installed under Windows it automatically installs Cygwin,

a Unix emulator which was mentioned earlier in the report.

Program compilation and simulation under Windows is carried out using the

Cygwin libraries and console. During installation it creates a shortcut to the batch file

for Cygwin on the desktop which launches the Cygwin console. Double clicking on

the shortcut brings up the Cygwin terminal Window. Using this terminal Window the

user is able to navigate to the TinyOS directory and compile a TinyOS application or

execute TOSSIM. The files for these are located under the /opt/tinyos-l.x/ directory.

During installation the installer will automatically set and update the

environment variables with TinyOS specific information under both Windows and

Linux. Once installed, the user will have access to the whole TinyOS code and

TOSSIM. (Information on downloading TinyOS and the detailed installation

instructions is available at http://www.tinyos.net/download.html#l.l.O).

The example programs provided with TinyOS give an introduction to the

TinyOS and NesC (Nested C) fundamentals. They provide a starting point to learn

about some of the services provided by TinyOS and how to use these services when

writing application code for sensors.

One of the many example programs that were tested is the IntToRfm

application. It provides an introduction on how to transmit a user defined data packet

of type IntMsg (defined in a file called IntMsg.h). The code for this can be found

under the /opt/tinyos-l.x/tos/lib/counter/ directory (files: IntToRfm.nc, IntToRfrnMnc

and IntMsg.h).

Similarly, the RfmTolnt application is an example for receiving user defined

packets through the transceiver. The difference is that this program reads a

transmission and converts it into a data packet of type IntMsg. The code for this can

be found in the same directory name (RfmTolnt.nc, RfmTolntMnc, and IntMsg.h).

The code in IntToRfm and RfmTolnt for sending and receiving packets is explained in

lesson 4 of the TinyOS tutorials. A list of services provided by TinyOS (Components

21

that provide services) and interfaces used for accessing those services are provided on

the TinyOS website (http://www.tinyos.net/scoop/special/support).

4.2.2 TinyOS Simulator (TOSSIM)

Lesson 5 of the tutorial introduces the user to a simulator for TinyOS called

TOSSIM. To simulate the Blink example, first the application needs to be compiled

for TOSSIM. After compilation an executable file called main.exe is created in

/opt/tinyos-l.x/apps/Blink/build/pc. This exe file is the simulator which also includes

the code for blink application.

Code Listing:

> cd /opt/tinyos-1.x/apps/Biink///Change directory to blink

>make pc //Compile app for TOSSIM

>export DBG=Ied //Instruct TOSSIM to display only led related messages

> ./build/pc/main.exe 2 //Run simulation for 2 nodes.

After the last line of the above code is entered in the Cygwin console, the

following output is displayed in the window. These messages are repeatedly

displayed until the program is stopped.

0: LEOS: red ON //Debug messages

1: LEOS: red OFF //Debug messages

0: LEOS: red ON //Debug messages

1: LEOS: red OFF //Debug messages

4.2.3 Visualization of Simulation using Tiny Viz

To visualize the working of a simulation, TinyOS includes a visualization tool

called TinyViz. The source files for this tool are available in /opt/tinyos­

l.x/tools/Java/net/tinyos/sim/. It also needs to be compiled prior to using it. To

compile it, the directory is changed to /opt/tinyos-l.x/tools/Javal and then the

22

command make is entered in the terminal window. This compiles all Java files and

creates a script called Tiny Viz.

Code Listing:

> cd /opt/tinyos-1.x/tools/Java///Change directory to Java tools

> make //To compile all Java tools

To visualize the simulation of the Blink application, the following commands

were used:

Code Listing:

> cd /opt/tinyos-1.x/apps/Biinki//Change directory to Blink application.

> make pc //Compile Blink application.

>export DBG=Ied //You can specify any of the supported debug message types.

> tinyviz -run build/pc/main.exe 2 //Run TinyViz.

If the execution of the above code results in an error, then the PATH variable

m windows has to be updated to include the TinyViz directory (/opt/tinyos­

l.x/tools/java/net/tinyos/sim). This is done by adding the following line to the end of

the text box labeled Variable Value, ";C:\tinyos\cygwin\opt\tinyos­

l.x\tools\java\net\tinyos\sim". Then the Blink application is executed in a new

instance of the cygwin window and Tiny Viz. This will display the Tiny Viz window

with two motes.

"!
. i i i

I I I
··t i __ JL
. f -+ ,I

--l---~··1·+
-~ .. f .. L . L.

I i ·-------L---- ---j- ---------r --------r' --------
' .

1 _I_ _ _ I t'--· +·······---.!.. ··1- · I ---, · ·

! l

Figure 4.2: Screenshot of the Tiny Viz application running a simulation

23

4.2.4 Application Graphical User Interface (GUI)

A way to develop the system would be to use a Java GUI as the front end of

the system. The GUI would enable the user to select and determine the queries and

information he/she wants to see. To create a Java GUI, the author needed to research

on how to develop GUI's in Java and also how to connect it to a program.

One way to create the GUI is by using Java Swing. Swing is a GUI toolkit for

Java. Swing is one part of the Java Foundation Classes (JFC). It includes graphical

user interface (GUI) widgets such as text boxes, buttons, split-panes, and tables.

Swing widgets provide more sophisticated GUI components than the earlier

Abstract Window Toolkit. Since they are written in pure Java, they run the same on

all platforms, unlike the A WT which is tied to the underlying platform's windowing

system. Swing supports pluggable look and feel - not by using the native platform's

facilities, but by roughly emulating them. This means the user can get any supported

look and feel on any platform. The disadvantage of lightweight components 1s

possibly slower execution. The advantage is uniform behavior on all platforms.

For the simplicity of building a GUI, the Netbeans IDE's built-in GUI builder

will be used for this project. Through the use of an established GUI builder, less time

is required on learning the fundamentals required to program a Swing GUI. The

development of the GUI would be started only when the basic components of the

project such as the data retrieval and logging are completed.

4.2.5 MySQL

The MySQL database has become the world's most popular open source

database because of its consistent fast performance, high reliability and ease of use

[10]. MySQL is used in more than 10 million installations ranging from large

corporations to specialized embedded applications on every continent in the world.

24

There are APis available that allow applications written m numerous

programming languages to access MySQL databases, including: C, C++, C#, Borland

Delphi (via dbExpress), Eiffel, Smalltalk, Java (with a native Java driver

implementation), Lisp, Perl, PHP, Python, Ruby, REALbasic (Mac), FreeBasic, and

Tel; each of these uses a specific API. An Open Database Connectivity (ODBC)

interface called MyODBC allows additional programming languages that support the

ODBC interface to communicate with a MySQL database, such as ASP or

Coldfusion. MySQL is mostly implemented in ANSI C.

Working with databases and SQL programming is also quite new to the

author. At the time of the report is written, the author is in the process of learning and

developing the data logging and storing component ofthe RIMBAMON© .

In addition to the testing of the TinyOS example applications, the author also

performed a literature review on the topics related to the project. These included

research papers regarding other findings on the development of query processing in

Sensor Networks. Also the author used the various manuals and tutorials on TinyOS,

Tiny DB, TOSSIM and Cygwin.

4.3 Results

A prototype of the system has been successfully developed. This prototype

consists of 2 parts, namely the TinyOS program and the Java-based Monitoring

Station Application. The TinyOS program is programmed onto the sensor motes and

functions by broadcasting the captured readings in the form of Active Messages and

enters sleep mode until the next event is triggered. This is to prolong the battery life

in order to minimize maintenance. The Monitoring Station Application provides a

graphical interface that displays critical information in the form of tables, graphs and

location maps. Messages received from the sensor motes are in hexadecimal values.

Therefore, the monitoring system converts this message into meaningful values. This

application utilizes a database storage system to store the captured data for future

retrieval.

25

4.3.1 Conversion of Raw Sensor Data

The values received from the raw message are hexadecimal values arranged in

little endian format where bytes are switched around. This means that if the bytes

from the raw message shows 06 0 I, then the actual value is 0 I 06. This process is

done inside the OscopeMsg.class.

For the calculation of the Temperature in engineering units (Celsius), the

following formula is implemented [20]:

1/T(K) =a+ b x ln(Rthr) + c x [ln(Rthr)]3

T(in Celsius)= T(in Kelvin)- 273

where:

Rt11r= Rl(ADC_FS-ADC)/ADC

a= 0.00130705

b = 0.000214381

c = 0.000000093

Rl = !Ok.

ADC FS = 1023

ADC =output value from Mote's ADC measurement.

The range of the temperature sensor is from 0° to 50° Celsius. The light

intensity is calculated using the following formula;

Light= Battery_ Voltage x (ADC I 1023)

4.3.2 nesC Program

The author has also worked on the nesC programming of the sensor motes.

The program will need to collect samples of temperature and the light percentage and

26

then pack the data in a message and transmit it back to the base station. The

application will need to be able to receive and detect AM messages coming from

within the network. For messages that are received by the base mode, the readings

will be forwarded to the base station. Each sensor mote will receive the same

message but only the messages received at the base node would be retrieved and

processed. The testing of the program was done using the nesC compiler and the

TOSSIM simulator to verify the operation of the code.

The program is based on the Oscilloscope.nc, OscilloscopeM.nc and

OscopeMsg.h files of the OscilloscopeRF application that come with the TinyOS

installation. The oscilloscope program is a demo to show the sensing capabilities of

the sensor motes running the TinyOS. The first step for modifying the program would

be to create another data stream for the temperature readings in the transmitted

message format. This is because the existing data stream only holds data for the light

sensors. This was done by adding the following line to the OscopeMsg.h file;

uint16_t dataPhoto[BUFFER_SIZE];

uint16_t dataTemp[BUFFER_SIZE];

Then the temperature sensmg operation would need to be added to the

oscilloscope main code file. This is done by declaring the Temperature sensor for the

Analog-to-Digital unit on the sensor;

OscilloscopeM.SensorControl-> Photo;

OscilloscopeM.SensorControl-> Temp;

OscilloscopeM.Photo -> Photo.PhotoADC;

OscilloscopeM.Temp -> Temp.TempADC;

The capturing of the sensor readings is done inside the OscilloscopeM.nc file.

The method for this is to first call the Light sensor operation, followed by the

Temperature sensing. In order to do this, the temperature sensing method needs to be

called after the light sensing method has finished. The code for achieving this is

presented below;

27

async event result_! Photo.dataReady(uint16_1 data) {

struct OscopeMsg *pack;

}

atomic {

pack= (struct OscopeMsg *)msg[currentMsg].data;

pack->dataPhoto[packetReadingNumber++] = data;

readingNumber++;

dbg(DBG_USR1, "data_event\n");

call Temp.getData();

}

return SUCCESS;

II added code for temperature sensing

async event result_! Temp.dataReady{uint16_1 data2) {

struct OscopeMsg *pack;

}

atomic {

}

pack= (struct OscopeMsg *)msg[currentMsg].data;

pack->dataTemp[packetReadingNumber2++] = data2;

reading Number++;

dbg(DBG_USR1, "data_event\n");

if (packetReadingNumber2 ==BUFFER_ SIZE) {

}

return SUCCESS;

As seen in the above, the call Temp.ge!Data(); is called from within the light

sensing operation. Therefore, the temperature sensing operation is done after the light

sensing operation. The reason for this is because the motes share the same ADC pin

[20]. Therefore, the readings need to be taken one after another and not

simultaneously. The readings are packed into the transmitted message by the

following lines;

28

pack->dataPhoto[packetReadingNumber++] =data;

pack->dataTemp[packetReadingNumber2++] = data2;

In order to take 5 samples, each time before sending the message out, a loop is

implemented to repeat the sampling process until the message buffer is full. The

packetReadingNumber keeps track of the number of samples which has already been

added to the message buffer. After the message has been sent, the

packetReadingNumber is reset to 0 for the next sampling round.

The triggering of the sampling process is done by sending a command

message from the base node to the appropriate sensor nodes. This way, the battery

life of the sensor node could be preserved even more as the nodes do not perform

anything until the command message is received. The sending of the command

message is done by using the MIG (Message Interface Generator). This is done by

first implementing the Mote IF interface. This interface represents a Java interface for

sending and receiving messages to and from motes.

II OK, connect to the serial forwarder and start receiving data

mote = new MoteiF(PrintStreamMessenger.err, oscilloscope.group_id);

Then, the message is sent by invoking the MoteiF.send() together with the

destination address and message. Here, MoteiF.TOS_BCAST_ADDR is used to

represent the broadcast destination address, which ts identical to

TOS BCAST ADDR used in the nesC code. This destination address can also be - -

replaced with the target sensor node's ID in the network.

try {

mote.send(MoteiF.TOS_BCAST _ADDR, new OscopeResetMsg());

} catch (IOException ioe) {

}

System.err.println("Warning: Got IOException sending reset message: "+ioe);

ioe. printStack Trace();

29

The section of the nesC program which responds to the issued command

message is presented below. A variable trigger is used to indicate when a command

message is received and is accessible to other portions of the program which depends

on this variable. Here, the value of trigger is set to 1 when the message is received. A

change in the statns of the Red LED is initiated each time a command message is

received.

event TOS_MsgPtr ResetCounterMsg.receive(TOS_MsgPtr m) {

call Leds.redToggle();

trigger=1;

return m;

}

After the command message is received and the variable trigger is set to 1, the

sampling of the sensors begins. The sampling procedure is encapsulated inside a loop

which is only executed when the previously explained trigger value is at 1. Therefore,

the mote does virtually nothing as long as the command message is not received. The

sampling of the sensor data is repeated until the packetReadingNumber reaches the 5

samples buffer limit of the message. As soon as this value is reached, the sending of

the message is triggered. The function that is responsible for the broadcasting of the

message is called data Task() and will be explained later on. After the message is done

with the broadcasting, the loop is exited and the mote waits for the next command

message to arrive. The following is the excerpt of the explained code;

event result_t Timer. fired() {

dbg(DBG_USR1, "timerln");

if(trigger==1){

call Photo.getData();

if (packetReadingNumber == BUFFER_SIZE) {

post data Task();

call Leds.green Toggle();

}

}

return SUCCESS;

30

}

Broadcasting of the message is done by the data Task() function. This function

inserts the necessary data into the message format and broadcasts it into the network.

This is done by calling the pack syntax. For example, pack->sourceMoteiD =

TOS_LOCAL_ADDRESS; inserts the Node's ID in to the sourceMoteiD field in the

OscopeMSG format. Apart from packing data into the message, this function also

resets the variable packetReadingNrnnber to 0. As explained earlier, this variable

defines the nrnnber of samples taken before triggering the dataTask() function. All

the necessary information is packed into the message before sending it out.

if (call DataMsg.send(TOS_BCAST _ADDR,sizeof(struct OscopeMsg), &msg(currentMsg]))

{

atomic {

currentMsg A: Ox1;

}

call Leds.yellowToggle();

}

trigger=O;

The above code shows the implementation of the DataMsg.send() function

which performs the message broadcasting. In order for the message to be successfully

broadcasted, several values need to be inserted together with the function call. They

are the TOS_BCAST_ADDR value which is the address where the message is to be

broadcast to, sizeof(struct OscopeMsg) which is the size of the message being sent and

lastly the message itself. Once the message is successfully broadcasted, the message

count is increased and the Yell ow LED is toggled to indicate the operation is

completed. Finally, the variable trigger which was explained earlier is set to 0 to

restart the command message waiting process.

After the program code writing was completed, the next step was testing of

the code. Testing is by first compiling the source in Cygwin, using the make pc

command (the target make pc, is designated for builds targeted for simulation with

31

TOSSIM), and then simulating the code using TOSSIM. The following is an example

ofthe messages that were detected by the Data Capturing System;

Message <OscopeMsg>

(sourceMoteiD=Ox2]

(lastSampleNumber=Ox1e]

(channei=Ox1]

[dataPhoto=Ox139 Ox102 Ox160 Ox106 Ox83]

(data Temp=Ox115 Ox116 Ox2cf Ox393 Ox87]

Light(%): 31 (Ox139) ; Temperature(Celsius): 2 (Ox115);

Light(%): 25 (Ox102); Temperature(Celsius): 2 (Ox116);

Light(%): 34 (Ox160) ; Temperature(Celsius): 48 (Ox2cD ;

Light(%): 26 (Ox106); Temperature(Celsius): 87 (Ox393);

Light(%): 13 (Ox83); Temperature(Celsius): 0 (Ox87);

As displayed above, the broadcasted message contains similar header fields as

the original Oscilloscope program but with addition parameters. They are the Photo

and Light sensor readings. The application takes 5 readings for each sensor before

transmitting the message. However, the resulting values in this example seem to be

illogical. This is because of the random ADC values generated by the simulator,

TOSSIM. For more accurate simulation of the scenario, the ADC values need to be

manually added to the Tiny Viz interface.

4.3.3 GUI Interface

An important feature of the monitoring station application would be its

Graphical User Interface (GUI). The GUI would enable the user to select and view

the results and information he/she wants to see. To create a Java GUI, the author

needed to do research on how to develop GUI's in Java and also how to integrate

coding with the interface.

32

One way was by using Java Swing. Swing is a GUI toolkit for Java and is part

of the Java Foundation Classes (JFC). It includes graphical user interface (GUI)

widgets such as text boxes, buttons, split-panes, and tables.

Swing widgets provide more sophisticated GUI components than the earlier

Abstract Window Toolkit. Since they are written in pure Java, they run the same on

all platforms, unlike the A WT which is tied to the underlying platform's windowing

system. Swing supports pluggable look and feel - not by using the native platform's

facilities, but by roughly emulating them. This means the user can get any supported

look and feel on any platform. The disadvantage of lightweight components IS

possibly slower execution. The advantage is uniform behavior on all platforms.

The Netbeans IDE was used in the development of the java program and

interface. It eases the process of constructing the GUI. The built-in GUI builder

enables the user to graphically design and edit a user interface. This important feature

not only avoids the complex workings of building a GUI, but also reduces the time

spent on building the interface. Therefore, additional time would be available for the

development and tweaking of the rest of the system.

33

Main Window

r" 'RIMBAMON : A Forest Monitoring system
Options Database

- r Table \ll8w r Graph View r LIOIOut I

ConsoJe output :

~essage <OscopeMsg•
[sourceMoteiO=OxB)
pastsampleNumber=OxQ
[channel= D)('! I
[dataPhoto=Ox3da Ox203 Ox276 Ox383 Oxbf]
(dataTemp=Oxt af Ox1 ec 0003 Ox 3d Ox86 J

ighl(%): 96 ((b:3da) ; Temperature(Celsius): 17 (Ox1 al) ;
lght(%): so (0003); Temperature(Celslus): 23 (Ox1 ec);

Ugh!(%): 62 (0x276); Temperature(Celslus): 55 (Ox303);
Ught(%): 88 (Ox383) , Temperature(Celslus): 0 (Ox3d) ;
Ught(%): 19 (O)(bl) ; Temperature(Celsius): 0 (Ox86);

Message oo:OscopeMsg»
[sourceMoteiD=Ox1)
[tastsampleNumber=OxtJ

l
{channei=OX1J

=""'" O.>On n,
i ""'" "'' ""

•

Serial Forwarder

! 9001
Connection Sertal Forwarder

Senior Port :

Connected i Mole Com~:

';= _j~=~
tossim·ra~lo@1 27.0.0.1

Connection to Database

Database In Use

11 of Messages Rscel-

'- " """ -

D Verbose Mode i

I Stop Senior I I
~I

"""" "--~-------~-~--------- ____ _!

L!~!Ys oate ~~Jli~ii07~~~-~:r.-me:&1·1:.o:e-]

Figure 4.3: The Main Window- Connection Details and Console output area

This is the first window that shows when the program is started. The main

window provides connection information and provides a console view of the

information being passed through. The two connections that are displayed are the

database connection and the SerialF orwarder connection. In the database connection

area, the status of the connection and the database which is in use is displayed. In the

Serial Forwarder connection area, the server's port and the mode of connection are

displayed. The number of packets received from the motes is shown in the Pckts

Read field. Each time a message is received, the value in the field will be increased

by I. Similarly, the number of messages sent by the program to the motes are also

recorded and shown in the Pckts Wrttn field. The console view area displays the

program's output which includes errors, raw messages received, and status messages.

34

Table View Window

- l>alaba•• ..., r Mot> l_.. 1

07

:!====3il -~~-·~-5~5~~~~-J
1/iawDalafromMot .. : lo I

1/iawT""'o I
r:-·· .. -·· -··········-···---· - ... ---··-·-····-- ."'
L~~day's Date Is 1614/2007; Current Time is 15:3q;!_j

Figure 4.4: Table View Window-Displays the data from a selected Mote

This window displays the information or sensor data that has been gathered

from the motes. The data is grouped into individual database tables according to the

ID of the nodes. A MySQL database is used to store the data. The user specifies the

data of which node is to be displayed by entering the node ID into the text field at the

bottom. By pressing the View Table button after the node ID has been entered, a table

showing the data for that node will be displayed. The table is made up of 3 sections

which are the Sample Count, Temperature Data and Light Intensity Data. The table

provides the user with instant data retreival and enables the user to browse through

the data to view specific samples. The Temperature readings are represented in

Celsius whereas the Light Intensity readings are in Percentage (%).

35

Graph View Window

~.- RIMBAMON :A FOrt!st MonitOring System
Options Database

Main TobleView GraphView ~llop=L,._.t=_L----------------~

___________________________ __\

Figure 4.5: Graph View Window-Line Graph representation of sensor data.

The Graph View Window displays the selected data in a line graph format.

The user selects the node and the frame limit of the samples and presses the View

Graph Button to display the graph. The graph shows the node ID at the top followed

by the nodes data. This data is retrieved from the same database used for the Table

View Window. Data is represented in two lines, one for temperature and another for

light intensity. The Temperature readings (Values) are represented in Celsius whereas

the Light Intensity readings are in Percentage(%).

36

Map Layout Window

61 RIM.BAMON: A Forest-Monitoring S~m

Options Database

Figure 4.6: Map Layout- Displays the location of the motes in the area.

This window shows a graphical representation of the location of the nodes

throughout the forest area, along with real-time display of the sensor data. The data

displayed is updated each time a new set of sensor readings is received by the

program. Whenever the program detects a reading which is beyond a certain

threshold, a warning sign (represented by a red color) is shown at the concerned

mote's ID and location. This will help alert the operator which is monitoring the

program. This would also aid in the dispatching of forest patrol teams to the area as

the exact location had already been identified.

37

4.3.4 Monitoring Station Application

The program consists of several parts which work together to perform the

tasks described and shown earlier. The following table briefly describes the functions

of each java class and its relevance to other classes;

Class Name Function(s)

Main.class 0 Main class

0 Starts Capture.class

Capture.class 0 Create connection to Seria!F orwarder

0 Logging of messages and activity

0 Create connection to MySQL database

0 Handle messages coming from Seria!Forwarder

0 Convert Raw data into proper SI representations

DBaccess.class 0 Generate table in the Table View Window

0 Retrieve specific data from database based on user input

Graphaccess.class 0 Generate graph in the Graph View Window

0 Retrieve specific data from database based on user input

OscopeMsg.class 0 Contains format of incoming raw messages

0 Parses data from the raw message

0 Enables retrieval of specific data in raw message

0 Generated by the Message Interface Generator (MIG)

OscopeResetMsg.class 0 Defines format for the Reset command message

0 Generated by the Message Interface Generator (MIG)

SFC!ient.class 0 Listens for requests from a connected Aggregator Server

0 Send messages retrieved from motes to the serial port

SFListen.class 0 Spawns SerialPortReader and ServerReceivingThread

Seria!F orwarder .class 0 Handles initiation of SerialF orwarder

0 Handle interface elements

TinyUI.class 0 Main Graphical User Interface (GUI) class

0 Defines design of GUI

0 Creates externally accessible GUI components (Buttons,

Labels)

Table 4.1: Descnptwn of class files

38

The main functions of the program are to:

1) Listen to data coming from the serial port (COMX) or TOSSIM

The data would be taken by listening to the TOSSIM outputs and its reports.

However, in a real life application, the system would be listening through the

serial port which is connected to the base station for the sensor motes. The X

indicates the communications port number of the computer which is connected to

the base station.

2) Capture the streaming raw data

The raw data that is captured is in a complex and hard-to-understand format,

hexadecimals. The raw message consists of a stream of hexadecimal bytes

arranged in the little endian format. The message format will be explained later

on. This part of the program only functions to capture the raw data and provide it

to the application when requested.

3) Manipulate the data

This part of the system would be in charge of converting the raw data into an

understandable or human-friendly format for later reporting and also storing of

the data in a database. To accomplish this, certain algorithms or functions are

applied to the raw data. These algorithms or formulae are among the information

provided together with the data sheet of the mote. At this stage, the data is ready

for representation in graphs or tables and also for storing.

4) Store the data

The converted data would then be stored in a database for later reference and

recalling. For this part of the system, a MySQL database would be used. The

database file would be stored on the host computer and copied to create backups

in case of data loss. Through the use of an MySQL database, the important

information can be protected with passwords to prevent unauthorized access.

5) Report results

The converted and stored data will be recalled for reporting. The specific data to

be recalled will be determined by the user. He/she would be able to select the data

39

to be displayed by selecting the options in the system's GUI. The Map Layout

Window provides the user with real-time sensor data from the sensors. The data is

represented in the form of graphs and tables.

4.4 Summary

This chapter described the development work, and discusses the results or

outcome of the development work. Among the work that has been done are learning

how to use Cygwin and Netbeans, Installation and setting up of TinyOS, TOSSIM,

TinyViz, TinyDB and MySQL. The result of the development work is a forest

monitoring system that consists of two separate programs, namely the sensor node

program and the monitoring station program. This system, called RIMBAMON19
,

provides a method of monitoring the changes in the microenvironment under the

forest canopy.

40

CHAPTERS

CONCLUSION AND RECOMMENDATIONS

Simulation and testing of RIMBAMOW have shown that it meets the

expectations and aims previously set at the beginning of the project. RIMBAMOW

has proved its capabilities to capture sensor data, broadcast the data using radio

communication, capture sensor readings coming from the sensor motes, convert the

Hexadecimal-based messages into meaningful data, represent the data in graphs,

tables and maps and store the data in a database. RIMBAMOW offers an alternative

to existing but costly aerial and satellite surveillance systems. The representation of

data in the form of line graphs, tables and location maps may help with surveillance

to prevent illegal logging activities and provide early warning for forest fires.

Integration of additional sensors and surveillance hardware to the existing basic

system of RIMBAMON© is possible and can certainly be further developed into an

integrated Forest Decision Support System (DSS).

Future possibilities for the RIMBAMON© system include increasing the

monitoring area by increasing the number of sensor motes inside the system.

Additionally, new sensor capabilities such as seismic, sound and humidity sensing

devices can be added to tbe TinyOS program that has been developed in the basic

system. Remote or web monitoring can also be implemented by integrating a GSM

module into tbe basic system of RIMBAMON© and monitoring can be carried out

remotely using the internet. The possible implementations of a system such as

RIMBAMON© is not limited only to forest monitoring. The system can be modified

for application in oil rigs and processing plants. However, proper encapsulation of the

sensors would need to be built in order to protect the sensors from extreme

conditions. This project provides an insight into tbe capabilities of Wireless Sensor

Technology in the area of environmental, habitat and industrial monitoring.

41

It is hoped that findings of this research may provide a better understanding of

the issues and possibilities of Wireless Sensor Networks data and information

management.

42

REFERENCES

[1] Kay Romer, Friedamann Mattern (2004), The Design Space of Wireless

Sensor Networks . . Last access: 30th May 2007. Citing Internet sources URL

http://www.vs.inf.ethz.ch/publ/papers/wsn-designspace.pdf

[2] Wireless Sensor Network article. Last access: 27th April 2007. Citing Internet

sources URL http://en.wikipedia.org/wiki/Sensor Networks

[3] Baptiste Pretre (2005), Sensor Networks : Exposure Problem. Last access:

30th May 2007. Citing Internet sources URL http://www.vs.inf.ethz.ch/

edu/SS2005/DS/reports/09 .1-sensornetze-report.pdf

[4] Zhan Yi (2005). An Introduction of Wireless Sensor Networks (WSN)

Technology. Last access: 30th May 2007. Citing Internet sources URL

http://www .sasase.ics.keio.ac. jp/j ugyo/2005/report-WSN. pdf

[5] D. L. Hall, J. Llinas (2001), Handbook of Multisensor Data Fusion. CRC

Press.

[6] David Culler, Deborah Estrin, Mani Srivastava (2004, August). Overview of

Sensor Networks. Computer, 41-49. Last access: 30th May 2007. Citing

Internet sources URL http://www.archrock.com/downloads/resources/IEEE­

overview-2004.pdf

[7] TinyOS: Mission Statement. Last access: 30th May 2007. Citing Internet

sources URL http://www.tinyos.net/special/mission

[8] Philip Levis, Nelson Lee (2003). TOSS/M : A Simulator for TinyOS

Networks. Last access: 30th May 2007. Citing Internet sources URL

http://www.cs.berkeley.edu/-pal/pubs/nido.pdf

[9] Eric Brewer, David Culler, David Gay, Phil Levis, Rob von Behren, Matt

Welsh. Last access: 2ih April 2007. Citing Internet sources URL

http ://nescc.sourceforge.netl

[10] MySQL, Last access: 2ih April 2007. Citing Internet sources URL http://sql­

info.de/mysql/mysql.html

[11] Cygwin article. Last access: 27th April 2007. Citing Internet sources URL

http://en.wikipedia.org/wiki/Cygwin

[12] TinyOS Tutorials. Last access: 27th April 2007. Citing Internet sources URL

http://www.tinyos.net/tinyos-1.x/doc/tutorial/index.html

43

[13] Sam Madden, Joe Hellerstein, Wei Hong (2003), TinyDB : In-Network

Query Processing in TinyOS. Last access: 30th May 2007. Citing Internet

sources URL http:/ /telegraph.cs. berkeley.edu/tinydb/tinydb. pdf

[14] Feng Zhao, Leonidas Guibas (2004). Wireless Sensor Networks: An

Information Processing Approach. Morgan Kaufmann Publishers.

[15] Anna Hac (2003). Wireless Sensor Network Designs. New York: John Wiley

&Son.

[16] Peter Dauvergne, Loggers and degradation in the Asia Pacific, Cambridge

University Press.

[17] Sharma, Narend P .,ed., 1992. Managing the Worlds Forests : Looking for

Balance Between Conservation and Development, Washington DC: World

Bank

[18] Steven E. Franklin (2001) Remote Sensing for Sustainable Forest

Management, Lewis Publishers

[19] Tropical Forest Mapping and Monitoring in Malaysia, 1999, Global

Observation of Forest Cover Workshop (GOFC). Last access: 30th May 2007.

Citing Internet sources URL http://www.eoc.ukm.my/forest.pdf

[20] MPR-MIB Users Manual, Revision B, June 2006. Crossbow Technology Inc.

Last access: 30th May 2007. Citing Internet sources URL

http://www.xbow.com/Suooort/Support pdf files/MPR-

MIB Series Users Manual.pdf

[21] Environmental Monitoring Application Note, Crossbow Technology Inc.

Last access: 30th May 2007. Citing Internet sources URL

http://www.xbow.com/Support/Support pdf files/Smart Dust AppNote.pdf

?sid=76

44

APPENDICES

45

APPENDIX A
MAIN.JA VA PROGRAM CODE

*The following is an excerpt of the java program code for the main.java tile. This file is part of
the RIMBAMON" system and is the intellectual property of the author. Therefore, please
contact the author for enquiries regarding the full program code.

public static void main(StringO args) throws IOException {
if (args.length == 1) {

group_id =(byte) lnteger.parselnt(args[O]);
System.err.println("oscilloscope: Using group ID "+group_id);
System.err.println("Note: group id should not be specified if you're using a TOSBase base station");

}
new SeriaiForwarder(args);
app = new Main();

app.init();
app.start();

}

46

APPENDIXB
CAPTURE.JA VA PROGRAM CODE

*The following is an excerpt of the java program code for the Capture.java file. This file is part
of the RIMBAMON" system and is the intellectual property of the author. Therefore, please
contact the author for enquiries regarding the full program code.

//Register the JDBC driver for MySQL.
Class.forName("com.mysql.jdbc.Driver");

//Define URL of database server for
II database named mysql on the local host
II with the default port number 3306.
String uri= "jdbc:mysql:l/localhosUmysql";

//Get a connection to the database for a
II user named root with a blank password.
II This user is the default administrator
II having full privileges to do anything.
boolean conStatus = false;

do{
try{

final Connection con= DriverManager.getConnection(url,"rool", "");
stmt = con.createStatement();
con Status =true;
stmt.executeUpdate("USE MoteData;");
TinyUI.IabeiDBName.setText("MoteData");
TinyU I . msgArea.append (11\n ***********************************\n '');
TinyUI.msgArea.append(" Connect to database server !! ");
TinyU I. msgArea.append (11\n ***********************************\n ");
TinyUI.IabeiConDB.setText("Connected");

TinyUI.bRefreshTable.addActionlistener(new java.awt.event.Actionlistener(){
public void actionPerformed(ActionEvent e){

}
});

DBaccess frame=new DBaccess(con,stmt);

//Received raw values and converting
for (i = 0; i <limit; i++) {

int vai_Photo = omsg.getEiement_dataPhoto(i);
int val_ Temp= omsg.getEiement_dataTemp(i);

double val_ Temp2 = 1'val_ Temp; II to convert int to double
double Rthr = 10000 • ((1023- vai_Temp2) I val_ Temp2);
double a= 0.001010024, b = 0.000242127, c = 0.000000146;
double ln_Rthr = java.lang.Math.log(Rthr);
double pow_ln_Rthr = Uava.lang.Math.pow(ln_Rthr,3));
double temp_Kelvin =a+ (b 'ln_Rthr) + (c • pow_ln_Rthr);
double Kelvin = 1/temp_Kelvin;

47

double temp_ Celsius= Kelvin- 273;
long Celsius= java.lang.Math.round(temp_Celsius);
if (Celsius < 0) Celsius = 0 ;

double vai_Photo2 = 1'vai_Photo; II to convert int to double
double temp_Photo = (vai_Photo2/1023) • 100;
long Photo= java.lang.Math.round(temp_Photo);

dbcount++;
tempFoto+=Photo;
tempTemp+=Celsius;
if(dbcount==5){
Celsius2 = tempTemp/5;
Photo2 = tempFoto/5;
stmt.executeUpdate("INSERT INTO mote"+ moteiD +" (Date,Time,Temperature,Light) VALUES"+

"('" + currentDate + Ill,"' + currentTime + m ,''' +Celsius2 +
"\"'+ Photo2 +'")");

dbcount=O;

//Temperature reaction
if (moteiD==O) {

TinyUI.fieldMoteOTemp.setText(Celsius2+" \uOObOC");
if(Celsius2>40) {

TinyUI.fieldMoteOTemp.setBackground(new java.awt.Color(255, 51, 51));
TinyUI.msgArea.append("\n!!");
TinyUI.msgArea.append("\n!! Warning Temp Level detected at MoteO !!");
TinyUI.msgArea.append("\n!!!");

} else TinyUI.fieldMoteOTemp.setBackground(new java.awt.Color(204, 204, 255));
}

//Light Reaction
if (moteiD==O} {

TinyUI.fieldMoteOLight.setText(Photo2+" %"};
if(Photo2>50 && (clock.h<711 clock.h>19)) {

TinyUI.fieldMoteOLight.setBackground(new java.awt.Color(255, 51, 51));
TinyUI.msgArea.append("\n!!!"};
TinyUI.msgArea.append("\n!! Warning Light Level detected at MoteO !!"};
TinyUI.msgArea.append("\n!!!"};

}
else TinyUI.fieldMoteOLight.setBackground(new java.awt.Color(255, 255, 204));

}

48

APPENDIXC
DBACCESS.JA VA PROGRAM CODE

*The following is an excerpt of the java program code for the DBAccess.java file. This file is
part of the RIMBAMON" system and is the intellectual property of the author. Therefore,
please contact the author for enquiries regarding the full program code.

public class DBaccess {

public DBaccess(Connection con, Statement stmt){
try{

TinyUI.msgArea.append("» Accessed Database! \n");
stmt.executeUpdate("USE MoteData;");
String userEntry = TinyUI.fieldChooseTable.getText();
String query= ("select* from mote"+userEntry+'"');
rs=stmt.executeQuery(query);
model=new ScrollingResultSetTableModel(rs);
TinyUI.dataTable.setModel(model);

}catch(SQLException e){
System.out.println("Error "+e);

49

APPENDIXD
GRAPHACCESS.JA VA PROGRAM CODE

*The following is an excergt of the java program code for the GraphAccess.java file. This file is
part of the RIMBAMON system and is the intellectual property of the author. Therefore,
please contact the author for enquiries regarding the full program code.

public Graphaccess(int moteNum1, String toNum1) (
try(

}

Statement stmt;

//Register the JDBC driver for MySQL.
Class.forName("com.mysql.jdbc.Driver");

//Define URL of database server for
II database named mysql on the localhost
II with the default port number 3306.
String uri = "jdbc:mysql://localhosUmysql";

//Get a connection to the database for a
II user named root with a blank password.
II This user is the default administrator
II having full privileges to do anything.
Connection con = DriverManager.getConnection(url,"root", "");

//Get a Statement object
stmt = con.createStatement();
stmt.executeUpdate("USE MoteData;");
int moteNum = moteNum1;
String sampleFromString = "5";
int from = lnteger.parselnt(sampleFromString);
int temp1 = lnteger.parselnt(toNum1);
System. out. pri n tl n(temp 1) ;
ResultSet srs = stmt.executeQuery("select Temperature,Light from mote"+moteNum+" where

Date="+temp1);
srs.last();
int rowcount = srs.getRow();
srs.beforeFirst();
System.out.println(rowcount);

II Jump to last row
II get the row count
II reset to allow forward cursor processing

50

APPENDIXE
SFCLIENT.JAVA PROGRAM CODE

*The following is an excerpt of the java program code for the SFCiient.java file. This file is part
of the RIMBAMON" system and is the intellectual property of the author and the authors
mentioned in the file. Therefore, please contact the author for enquiries regarding the full
program code.

II $1d: SFCiient.java, v 1 .6.2.2 2003/08/18 22:09:43 cssharp Exp $

I'
' "Copyright (c) 2000-2003 The Regents of the University of California.
'All rights reserved .
•
' Permission to use, copy, modify, and distribute this software and its
'documentation for any purpose, without fee, and without written agreement is
'hereby granted, provided that the above copyright notice, the following
'two paragraphs and the author appear in all copies of this software .
•

tab:4

'IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR
'DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT
'OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF
' CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
•
'THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES,
'INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
'AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS
'ON AN "AS IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATION TO
'PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS."
•
'Copyright (c) 2002·2003 Intel Corporation
'All rights reserved .
•
• This file is distributed under the terms in the attached INTEL-LICENSE
• file. If you do not find these files, copies can be found by writing to
• Intel Research Berkeley, 2150 Shattuck Avenue, Suite 1300, Berkeley, CA,
• 94704. Attention: Intel Lioense Inquiry.
'I

, ..
• File: ServerReceivingThread.java
•
• Description:
• The ServerReceivingThread listens for requests
• from a connected Aggregator Server. If a data
• packet is received, it is sent on to the serial
• port .
•
• @author Bret Hull
• @author David Gay
•
'I

51

public class SF Client extends SF Protocol implements Runnable, PacketlisteneriF {
private Thread thread;
private Socket socket= null;
private Serial Forwarder sf;
private SFListen listenServer;

private void read Packets() throws IOException {
for{;;){

byte[] packet = readPacket();

sf.incrementPacketsWritten();
if (!listenServer.source. writePacket(packet))

sf.verbose.message("write failed");
}

public void packetReceived(byte[] packet) {
try {

writePacket(packet);
}
catch (IOException e) {

II shutdown();
}

}

52

APPENDIXF
SFLISTEN.JA VA PROGRAM CODE

*The following is an excerpt of the java program code for the SFListen.java file. This file is part
of the RIMBAMON" system and is the intellectual property of the author and the authors
mentioned in the file. Therefore, please contact the author for enquiries regarding the full
program code.

II $1d: SFListen.java,v 1.6.2.3 2003/08/26 17:40:25 idgay Exp $
I'
• "Copyright (c) 2000·2003 The Regents of the University of California.
• All rights reserved .
•
• Permission to use, copy, modify, and distribute this software and its
• documentation for any purpose, without fee, and without written agreement is
• hereby granted, provided that the above copyright notice, the following
• two paragraphs and the author appear in all copies of this software .
•

tab:4

'IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR
'DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT
'OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF
'CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE .
•
'THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES,
'INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
'AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS
'ON AN "AS IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATION TO
'PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS."
•
• Copyright (c) 2002-2003 Intel Corporation
• All rights reserved .
•
• This file is distributed under the terms in the attached INTEL·LICENSE
• file. If you do not find these files, copies can be found by writing to
• Intel Research Berkeley, 2150 Shattuck Avenue, Suite 1300, Berkeley, CA,
• 94704. Attention: Intel License Inquiry.
'I
/"
• File: ListenServer.java
•
• Description:
• The Listen Server is the heart of the serial forwarder. Upon
• instantiation, this class spawns the SeriaiPortReader and the
• Multicast threads. As clients connect, this class spawns
• ServerReceivingThreads as wells as registers the new connection
• SeriaiPortReader. This class also provides the central
• point of contact for the GUI, allowing the server to easily
• be shut down

• @author Bret Hull
• @author David Gay
'I

public class SFListen extends Thread implements PacketlisteneriF, PhoenixError {
PhoenixSource source;

53

private ServerSocket serverSocket;
private Vector clients = new Vector();
private Serial Forwarder sf;

public void run() {
try {

sf.message("Listening to " + sf.motecom);

source= BuildSource.makePhoenix(sf.motecom, sf. verbose);
if (source == null) {

sf.message("lnvalid source"+ sf.motecom +",pick one of:");
sf.message(BuildSource.sourceHelp());
return;

)
source.setPacketErrorHandler(this);
source.registerPacketlistener(this);
source.start();

II open up our server socket
try {

serverSocket =new ServerSocket(sf.serverPort);
TinyUI.IabeiConSF.setText("Connected");

}
catch (Exception e) {

sf. message(" Could not listen on port: " + sf.serverPort);
source.shutdown();

TinyUI.IabeiConSF.setText("Error"};

}
finally {

return;

sf.verbose.message("Listening for client connections on port"+ sf.serverPort);
try {

}

for(;;) {
Socket currentSocket = serverSocket.accept();
SF Client newServicer =

new SFCiient(currentSocket, sf, this);
clients.add(newServicer);
newServicer.start();

catch (IOException e) {}

II cleanup();
sf. verbose. message("--------------------------");

public void packetReceived(byte[] packet) {
sf.incrementPacketsRead();

54

APPENDIXG
SERIALFORWARDER.JA VA PROGRAM CODE

*The following is an excerpt of the java program code for the SeriaiForwarder.java file. This file
is part of the RIMBAMON" system and is the intellectual property of the author and the
authors mentioned in the file. Therefore, please contact the author for enquiries regarding the
full program code.

II $1d: SeriaiForwarder.java,v 1.2.2.4 2003/09/1215:00:41 mdwelsh Exp $

I'
• "Copyright (c) 2000-2003 The Regents of the University of California.
• All rights reserved .
•
• Permission to use, copy, modify, and distribute this software and its
• documentation for any purpose, without fee, and without written agreement is
• hereby granted, provided that the above copyright notice, the following
• two paragraphs and the author appear in all copies of this software .
•

tab:4

'IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR
'DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT
'OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF
'CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE .
•
'THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES,
'INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
'AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS
'ON AN "AS IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATION TO
'PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS."
•
• Copyright (c) 2002-2003 Intel Corporation
• All rights reserved .
•
• This file is distributed under the terms in the attached INTEL-LICENSE
• file. If you do not find these files, copies can be found by writing to
• Intel Research Berkeley, 2150 Shattuck Avenue, Suite 1300, Berkeley, CA,
• 94704. Attention: Intel License Inquiry.
'I

/"
• File: SeriaiForwarder.java
•
• Description:
'The Serial Forwarder class provides many static functions
• that handle the initialization of the serialforwarder
• and/or the associated gui.
•
• @author Bret Hull
• @author David Gay
'I

public class Serial Forwarder implements Messenger {
II appication defaults

public SFListen listenServer;

55

public static String motecom = "tossim-radio@127.0.0.1 ";
public boolean log DB;

public static int serverPort = 9001;

public void message(String msg) (
if (TinyUI.msgArea !=null) {

TinyUI.message(msg);
}
else {

System.err.println(msg);

synchronized public void incrementPacketsRead() {
nPacketsRead++;

}

if (TinyUI.msgArea !=null) {
TinyUI.updatePacketsRead(nPacketsRead);

synchronized public void incrementPacketsWritten() {
nPacketsWritten++;
if (TinyUI.msgArea !=null) {

TinyUI.updatePacketsWritten(nPacketsWritten);

synchronized public void incrementCiients() {
nCiients++;
if (TinyUI.msgArea !=null) {

TinyU I. updateNumCiients(nCiients-1);

synchronized public void decrementCiients() {
nCiients--;
if (TinyUI.msgArea !=null) {

TinyUI.updateNumCiients(nCiients);

public synchronized void startlistenServer() {

}

if (listen Server == null) {

}

nCiients = nPacketsRead = nPacketsWritten = 0;
listenServer = new SFListen(this);
I is ten Server. start();

if (TinyUI.msgArea !=null) {
Ti nyU I. upd atelisten ServerStatu s(true);
TinyUI.updateNumCiients(nCiients);
TinyUI.updatePacketsWritten(nPacketsWritten);
TinyUI.updatePacketsRead(nPacketsRead);

56

APPENDIXH
TINYUI.JA VA PROGRAM CODE

*The following is an excerpt of the java program code for the TinyUI.java file. This file is part
of the RIMBAMON" system and is the intellectnal property ofthe author. Therefore, please
contact the author for enquiries regarding the full program code.

public class TinyUI extends javax.swing.JFrame {

private SeriaiForwarder sf;

/"Creates new form TinyUI '/
public TinyUI() {

initComponents();
}

II Variables declaration
public javax.swing.JButton bHelp;
public static javax.swing.JButton bRefreshGraph;
public static javax.swing.JButton bRefreshTable;
public static javax.swing.JButton bStopServer;
public static javax.swing.JCheckBox cbVerboseMode;
public static javax.swing.JTable data Table;
public static javax.swing.JTextField fieldChooseGraph;
public static javax.swing.JTextField fieldChooseTable;
public static javax.swing.JTextField fieldMoteCom;
public static javax.swing.JTextField fieldServerPort;
public static javax.swing.JTextField fieldGraphTo;
public static javax.swing.JTextField fieldMoteOLight;
public static javax.swing.JTextField fieldMoteOTemp;
public static javax.swing.JTextField fieldMote1 Olight;
public static javax.swing.JTextField fieldMote10Temp;
public static javax.swing.JTextField fieldMote11 Light;
public static javax.swing.JTextField fieldMote11Temp;
public static javax.swing.JTextField fieldMote12Light;
public static javax.swing.JTextField fieldMote12Temp;
public static javax.swing.JTextField fieldMote13Light;
public static javax.swing.JTextField fieldMote13Temp;
public static javax.swing.JTextField fieldMote1 Light;
public static javax.swing.JTextField fieldMote1Temp;
public static javax.swing.JTextField fieldMote2Light;
public static javax.swing.JTextField fieldMote2Temp;
public static javax.swing.JTextField fieldMote3Light;
public static javax.swing.JTextField fieldMote3Temp;
public static javax.swing.JTextField fieldMote4Light;
public static javax.swing.JTextField fieldMote4Temp;
public static javax.swing.JTextField fieldMote5Light;
public static javax.swing.JTextField fieldMote5Temp;
public static javax.swing.JTextField fieldMote6Light;
public static javax.swing.JTextField fieldMote6Temp;

57

public static javax.swing.JTextField fieldMote7Light;
public static javax.swing.JTextField fieldMote7Temp;
public static javax.swing.JTextField fieldMote8Light;
public static javax.swing.JTextField fieldMote8Temp;
public static javax.swing.JTextField fieldMote9Light;
public static javax.swing.JTextField fieldMote9Temp;
public static javax.swing.JTextField jTextField2;
public static javax.swing.JTextField fieldCiock;
public static javax.swing.JTextField fieldCiock1;
public static javax.swing.JTextField fieldCiock2;
public static javax.swing.JTextField fieldCiock3;
public javax.swing.Jlabel jlabel1;
public javax.swing.Jlabel jlabel1 0;
public javax.swing.Jlabel jlabel11;
public javax.swing.Jlabel jlabel12;
public javax.swing.JLabel jlabel13;
public javax.swing.Jlabel jlabel14;
public javax.swing.Jlabel jlabel15;
public javax.swing.Jlabel jlabel16;
public javax.swing.Jlabel jlabel17;
public javax.swing.Jlabel jlabel18;
public javax.swing.Jlabel jlabel19;
public javax.swing.Jlabel jlabel2;
public javax.swing.Jlabel jlabel6;
public javax.swing.Jlabel jlabel7;
public javax.swing.Jlabel jlabel8;
public javax.swing.Jlabel jlabel9;
public javax.swing.JMenu jMenu1;
public javax.swing.JMenu jMenu2;
public javax.swing.JMenu jMenu3;
public javax.swing.JMenuBar jMenuBar1;
public javax.swing.JMenuBar jMenu8ar2;
public javax.swing.JMenultem jMenultem1;
public javax.swing.JMenultem jMenultem2;
public javax.swing.JPanel jPanel1;
public javax.swing.JPanel jPanel2;
public javax.swing.JPanel jPanel3;
public javax.swing.JPanel jPanel4;
public javax.swing.JPanel jPanel5;
public static javax.swing.JPanel jPanel6;
public javax.swing.JPanel jPanel7;
public javax.swing.JPanel jPanel8;
public javax.swing.JScroiiPane jScroiiPane1;
public javax.swing.JScroiiPane jScroiiPane2;
public javax.swing.JTabbedPane jTabbedPane1;
public static javax.swing.JLabellabeiConDB;
public static javax.swing.JLabellabeiConSF;
public static javax.swing.JLabellabeiDBName;
public static javax.swing.JLabellabeiMoteCom;
public static javax.swing.JLabellabeiMsgRcv;
public static javax.swing.JLabellabeiNumCiients;
public static javax.swing.JLabellabeiPacketsReceived;
public static javax.swing.JLabellabeiPacketsSent;
public static javax.swing.JLabellabeiServerPort;
public static javax.swing.JTextArea msgArea;
II End of variables declaration

58

