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ABSTRACT

This report presents the project work and results of the Simple-As-Possible (SAP)
computer system development on Field Programmable Gate Array (FPGA) project.
This project undertaken as fulfilment of the two semesters EEB5034 & EEB5044
Final Year Project course is aimed to develop the first generation of SAP computer
(SAP-1) introduced by Albert Paul Malvino on FPGAs for educational purpose. This
includes systerh level synthesis of SAP-1 computer on a single FPGA chip, as well as
modular synthesis of SAP-1 with each SAP-1 functional block on a Complex
Programmable Logic Device (CPLD) or FPGA chip.

The objective of this project is to develop SAP-1 computer mode! for better
structured lab practices of the Computer System Architecture course. Implementation
of SAP-1 computer is initially suggested by Malvino to be based on TTL logic
circuits. FPGA and CPLD are selected instead in this project due to their improved
robustness and ease of debugging. The project also serves as introductory practice for
understanding of fundamental computer architecture and Verilog Hardware
Description Language (HDL) simulation and synthesis of digital systems to the

developer.

iv



ACKNOWLEDGEMENT

T would like to express my highest appreciation to a few people who has contributed
greatly towards making this project a successful and valuable one. Firstly, I would
want to thank the project supervisor, Mr. Lo Hai Hiung for his guidance throughout
the development of this project. Thanks Mr. Lo for his kind advice in determining the
project development flow and methodology, consultations on learning process of
Verilog HDL, HDL simulator, and development software, and valuable suggestions
in debugging of the prototype. His effort in reviewing the reports written throughout
this project is also highly appreciated.

I would want to thank the technician of the Digital System Design Lab, Mr.
Badrulnizam for his coordination in leasing of Altera’s University Program 2 (UP2)
development platforms for project prototype development purpose. I would want to
thank Printed Circuit Board (PCB) Lab technician, Mr. Isnani too for his assistance in
PCB development for organized interconnectivity of UP2 platforms used in modular

synthesis of SAP-1 computer.

Last but not least, I would also want to thank all lecturers whose name is not
mentioned here, yet have contributed their opinion or suggestion valuable to
development of this project. Thanks to all technicians for their kind cooperation

especially in leasing of components and equipment for project development purpose.



TABLE OF CONTENT

CERTIFICATIONS.......ccccenmurnnrrtnsrssensnsssssssssssersessasssesnssssssens v di
ABSTRACT.........ccvurneue. w1V
ACKNOWLEDGEMENT..... . tobsrenennsnestensans v
CHAPTER1 INTRODUCTION.....ccouunnee S 1

L1 Project Backround............cocvvvvevereeeeececeneeneeee oo, 1

1.2 Problem Statement

1.3 Objective & Scope of Study

CHAPTER 2 LITERATURE REVIEW
2.1 SAP-1 Architecture

...........................................................................

.............................................................

..........................................................................

200 W BUS oottt ses s ceees et et 4
2.1.2  Program Counter (COntrol Umit).....mmemereeevssooroseoo. 4
2.1.3  Memory Address Register & Address Input
(Memory Unit / Input URit).....cecoereeeerveeeereseresessissossonn. 4
2.1.4  Random Access Memory & Instruction/Data Input
(Memory Unit / Inpuut URIL) uuee.eeveeeseeesrsoereeeseesineesrssss oo 5
2.1.5  Instruction Register (Control Unit).......comeocomremronsroonn J
2.1.6  Controller/Sequencer (Control Unit)........oereessrereorersoonn. 5
2.1.7 Mode-Select Switches, De-bouncers, and Clock Buffer
(Input Unit / CONtIol URIL).ueveeeceveeeeeoreeeeveseeses oo 5
2.1.8  Accumulator (Arithmetic Logic URif)........ooeveeeeveeen.., 5
2.1.9  Adder/Subtracter (Arithmetic Logic URit)......ueemrnesoon..... 5
2.1.10 B Register (Arithmetic Logic URit) ..comeerveseereervseoooseooeeons 6
2.1.11 Output Register & Binary Display (Output Unitheeeceeecernane. 6
22 SAP-1 INStIUCHON Seluvuuunuurrurrereeessreeeneeeeeeeeeeeesessseeseesesses oo 6
2.3 SAP-1 PrOGramiming..........euuevuevereesuseeeeennererosreomsossososoeoseeeos e 6
24 SAP-1 Machine Cycle & Instruction CYCI€........vvvevveeomoooooo 7

vi



CHAPTER3 METHODOLOGY & PROJECT WORK.. w8

3.1 Literature Study of Digital Electronics Fundamentals and
APPLICALIONS. ....ocvvivirisiscrccreceieiriete s ser e s bbb s aseeeseseenes 9
3.2 Literature Study of SAP-1 Computer System...........ocecremvereererrverrnnnen 9
3.3 Literature Study of Verilog HDL for Synthesis of Digital
SYSIEIMIS..c.vtviicirci sttt eees st b bbb e sesn e e enneeees 9
34 Simulation of SAP-1 Computer SyStem.........ccovvuvirivemreeeenrereeeeresnnens 10
3.5 System Synthesis of SAP-1 Computer System.......ovveveeeermereeeersrerennn. 11
3.6 Modular Synthesis of SAP-1 Computer System........cccovvrmmereeeeerernne. 16
CHAPTER 4 RESULTS & DISCUSSIONS. cesnsassassrssassessins e 19
4.1  Simulation of SAP-1 Computer SYSteim.........ccccevuremmceceenersrserresesnnns 19
B B o O 19
412 MAR......cconvvernnnrnnn s s b sna s 20
4.1.3  2to 1 Multiplexer......occomeveinersiceeeeeeeecnrien e e 21
414 16 X ERAM.coneeivtviviretereceesee e ever et enens e 21
4.1.5  InStruction REGISIEr.......veerecreeeeereeeeeeseeissensseseeseseeseenesans 22
4.1.6  Accumulator........ e ettt bt nean e eae s 22 .
417 AQACH/SUBIACIEF ......onveueveeeereriererereeseecetv s reeeasseereonn 23
418 B REGISIEE ...ttt e r s sessts e oa s sn e e eee 24
4.1.9  OuIpUt REGISIEY ......oreeereeerreieessrstc e rs e sessssssssens 25
4.1.10 Controller/Sequencer (Instruction Decoder,
Ring Counter & Control Matrix) .......cecvvivvrneesnsissseennnnn. 25
4.1.11 Mode-Select Switches, De-bouncers & Clock Buffer ........... 27
4.1.12 System Level Simulation of SAP-1 Computer.................... 29
4.1.13 Overall FINAINGS ceeoeueereveceeeeecnis e eesensen s 35
42  System Synthesis of SAP-1 Computer SYsStem.......vuvvmevereereerrercrens 35
4.3 Modular Synthesis of SAP-1 Computer System..........ccovervrrreecrareseas 40
CHAPTERS CONCLUSION & RECOMMENDATION......ccooteeemerersneone 46
5.1 CONCIUSION .1ttt st ene s s ror st s ae s 46
3.2 RecomMENdAtion.......c.coccereetrennirieecsinisns s sses e secsserssosenas 47
REFERENCES......... e ——— R 48

vii



APPENDIX A MODIFIED BLOCK DIAGRAM OF SAP-1 50

APPENDIX B TRUTH TABLE OF BINARY TO HEXADECIMAL

7-SEGMENT DISPLAY DECODER MODULE.......cccesvsrinians 51

APPENDIX C ALTERA’S UNIVERSITY PROGRAM 2 DEVELOPMENT

PLATFROM COMPONENT LAYOUT......ccevercerirens .52
APPENDIX D SAP-1 SYSTEM SYNTHESIS SOURCE CODE........cccoeusseree 53
D-1  Program COUNET......covirirrmrmoisimeniinsmicsinesisssieninssses e ssesnssnssnssssees 53
D-2 MAR & 2 t0 ] MultipleXer.........ccovviemicnnmnninniccsscnineee e 54
D3 16 X BRAM. et seeneesrnaes e sesseness e e nseenes 55
D-4  InStruction REZISIET.....cvcveerrermiseriessimiassssseersssmmessssansossessmsssssarsssoons 56
D=5 ACCUMULALOT......c.ciiiiieanerrirresraeessesseasessssreestsmeceensssesseessssessensassaessaees 57
D-6  Adder/Subtracter...c.omiimmceiiiincicr et 58
D-7 B REZISIET .ot e 59
D-8  Output ReiSIEr.c.cvuceiirrcricccinistniccnt s e esanns 60
D-9 Controller/Sequencer (Instruction Decoder, Ring Counter &
CONLTO]l MAEIX c.oueeeneeceerce e reencr s ns e brsese st et nne e nneentebennsn 61
D-10 Mode-Select Switches, De-bouncers & Clock Buffer.......ccccconvvvrvenens 63
D1T SAP-L. ettt st cro s s e se s on s srs s essne s 65
D-12 Additional Hexadecimal Display of MAR & 2 to 1 MUX
Output on MAX 70008 Device......cuiiniminmmininimomions 66
APPENDIX E SAP-1 MODULAR SYNTHESIS SOURCE CODE................. 68
E-1  Program COUNLEL.......cccvrerectieressorimnionssnsssosmsmsssasissssssssissrossansssessones 68
E-2 MAR & 210 1| Multiplexer......cccnvmmnimmninmmnnion, 69
E-3 16 X BRAM. ..ot e e 71
E-4  Instruction RegiSter.....cccoiivivmiciniiniiiiiiiceness s 73
E-53  ACCUMUIBION. ... e viiviiercrreriininieie it sae e s s ons 75
E-6  Adder/SUBACEr......covviriciinrcrire s snsenenss 76
E-7 B REZISIET...coriviivieiiiminesnicinesis st cssss s asnene 78
E-8 Output RegiSter. ..ot 79

viii



E-9 Controller/Sequencer (Instruction Decoder, Ring Counter &

CONITOL ML cveeeeeeeeeeieseseessnesseeessesesssssssssassrssssassssssssssaessssnns rensassnas 80

E-10 Mode-Select Switches, De-bouncers & Clock Buffer.......cecoveeevneeee. 83

APPENDIX F PIN ASSIGNMENTS, PIN INTERCONNECTIONS, AND

INPUT & OUTPUT DEVICE UTILIZATION OF THE

MODULAR SAP-1 PROTOTYPE.... " 86
F-1  Progtam COUNEL.........ccoovimvrmiisissenmniisinsasssnenn s sssessssssssesnassssnsens 86
F-2 MAR & 210 | MUltipleXer.......coovvviimcimmcininenesiseen, 87
F-3 16 X B RAM. ittt misisis i st s s s st e s s s 88
F-4  Instruction REGiSter.....covvieccomeciiricnimiirrnrcinsinermc e nsnsiersseeisssasans 89
F-3  ACCUIMUIALOT. .uviveeeeercriecnerrcrseirtiststsss s rsnsn e rre b st e st e e s e e saenanes 90
F-6  Adder/Subtracter........cccovrniniisminirnissssse s assssnennes 91
F-7 B REZISIE ottt 92
F-8  Output REZISIEr....ccovvviecirerciieeissinnsinnrise s e naas 93
F-9 Controller/Sequencer (Instruction Decoder, Ring Counter &
C MOl MALIEX. verriererererersessssesesasssrecsssessesststsssssssreessssssssssssnsaesnerson 94
F-10 Mode-Select Switches, De-bouncers & Clock Buffer.........coveceeinecens 95
APPENDIX G PHOTOS OF MODULAR SAP-1 PROTOTYPE.......ccccnn.... 96

ix



FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE §
FIGURE 6

FIGURE 7

FIGURE 8

FIGURE 9

FIGURE 10

FIGURE 11

FIGURE 12

FIGURE 13

FIGURE 14

LIST OF FIGURES

Project development flowchart.......ovcvnncnnniincinnicnaes 8

Simulation results of the Program Counter module..........cccoveiirnnees 20
Simulation results of the MAR module.......ccocoomnimnniirmiiinniininn 20
Simulation results of the 2 to 1 Multiplexer module...........coourueunen, 21
Simulation results of the 16 x 8 RAM module........ccconvviviiisiinn, 22

Simulation results of the Adder/Subtracter module for addition
OPETALIOM cc.rvvvosirrsssismssisssessbsse bbb s st b s s san b a s 24

Simulation results of the Adder/Subtracter module for subtraction

OPCIALIOM. .. e cenreermicristissistrer sttt st et s er st b b s s saeresas 24
Simulation results of the B Register module.........ccoivieenriinininnnne. 24
Simulation results of the Output Register module................ rereeeanens 25
Simulation results of the Controller/Sequencer module.................... 26

Input and output waveforms of simulation of the Controller/
Sequencer module at the earliest 2 instruction cycles..........co.......... 27
Simulation results of the Mode-Select Switches, De-bouncers &
Clock Buffer module. ..o 28

Input and output waveforms of SAP-1 system level simulation

in RAM-programming mode........cceeverervrierierinenennsisnssnsssensinseesnenans 30
Input and output waveforms of SAP-1 system level simulation

- for execution of the ADD and SUB routing.......coevvevevvesmreresnsvinenenens 31
Final results of SAP-1 system level simulation......cueeeeninin, 34

FIGURE 15
FIGURE 16

FIGURE 17

FIGURE 18

FIGURE 19
FIGURE 20

Schematic diagram of the LOW_HIGH input switches

IMPIEMENTALION. ..c.evecerirveririsnrie s na s 38
Modified block diagram of SAP-1 redrawn from chapter 10 of
[1] Digital Computer Electronics by Malvino (1983)......cccvunennse. 50

Component layout of Altera’s University Program 2 Development
Platform from page 3 of [13] "University Program UP2 Education

Kit User Guide v3.1", Altera Corporation, www.altera.com/

literature/univ/upds.pdf........c e, 52
Modular SAP-1 prototype, picture L., 96
Modular SAP-1 prototype, pICtUre 2......ccoevevreeeecrsmreccerierecsesreecenns 96



TABLE 1

TABLE 2

TABLE 3

TABLE 4

TABLE 5

TABLE 6

TABLE 7

TABLE 8

LIST OF TABLES

SAP-1 Instruction Set Summary from chapter 10 of [1] Digital
Computer Electronics by Malvino (1983).....cciivinnnininnna, 6
UP2 platform input & output devices and driven or driving

signals in SAP-1 system synthesis........ et ssaeereeseee 14
Active control signals for each routine at every T state obtained

from simulation results of the Controller/Sequencer module.............. 26
Program used for verification of SAP-1 system level

SHMULALION. ... cveerenreeererscns e er e st beba s as annebssrsaeas 29
Summary of internal operations of the ADD routine in test

Program of SAP-1 system simulation............cvemnninicnninnnecnne 32
Detailed observations of test program execution on SAP-1 system
synthesis prototype in manual-clocked mode.......ccoeinvriverrnnnnnne. 39
Detailed observations of test program execution on modular SAP-1
prototype in manual-clocked Mode.......oemevienirninrrerrcininisnerisieinen, 44
Truth table of binary to hexadecimal 7-segment display decoder
module for common anode, active low 7 segment display on

Altera’s UP 2 Development Platform.........c.oivinininiininniciennnes 51

Xi



CHAPTER 1
INTRODUCTION

1.1  Background of Study

Simple-As-Possible (SAP) computer system is an educational computer system
introduced by Albert Paul Malvino in his book, Digital Computer Electronics
published in 1983. This computer system introduces only the most crucial ideas
behind computer operation. Though, these ideas make up valuable fundamental for
understanding of many modern and more complex computer architectures. SAP
comes in three generations with increasing number of functional blocks and
operational complexity, namely SAP-1, SAP-2, and SAP-3. SAP computer system
has been implemented in universities using TTL logic circuits as proposed by

Malvino’s original design.

Field Programmable Gate Arrays (FPGA) are programmable logic chips
utilizing large scale integration technology [2]. It is made up of basic logic
components that can be programmed for certain logical behavior. These programmed
blocks can then be linked to generate more complex logic system [3]. This technology
has replaced the usage of Application Specific Integrated Circuit (ASIC) for design
and prototyping of Integrated Circuits (IC) [4]. Utilization of FGPA has tremendously

increased efficiency of IC design and prototyping in terms of cost and time.

Complex Programmable Logic Devices (CPLD) which can be traced back as
historical root of invention of FPGA [5], is another type of programmable IC with
different architecture. It is made up of fully programmable AND and OR gates array
for logical functions and a macrocells bank performing combinatorial or sequential

logic [6]. CPLD typically has less logical elements than FPGA [7]. Another



noticeable difference between FPGA and CPLD is the presence of on-chip non-
volatile memory in the CPLD [8].

Traditional circuit design uses schematic to describe circuits for simulation.
As new circuits increase greatly in complexity, this approach has become impractical.
Development of Hardware Description Language (HDL) has evolved to solve this
problem. HDL uses textual description representation of electronic circuits and
systems {9]. Verilog is one of the most widely used HDL, with another being VHDL.
Having its syntax being similar to ‘C’ language, Verilog is preferred by most
commercial designers [10]. Verilog is first designed for circuit simulation [9]. Latter
efforts have made Verilog capable for synthesis of circuit on chips too. Despite the
limitations on circuit synthesis with Verilog, as in not all statements implemented in
simulation are synthesizable, Verilog is still a powerful HDL for synthesis of digital

systems. Verilog allows various specification levels and styles.

1.2 Problem Statement

This project is aimed to develop first generation of SAP computers (SAP-1) on FPGA
for educational purpose. Verilog HDL will be used to capture each functional block

of SAP system for simulation and synthesis purpose.

The developed prototype will be utilized in lab sessions of EEB5253
Computer System Architecture course. Previously, lab practices would require the
students to construct their circuit for experimental purpose based on TTL logic
circuits. Maintaining a working Verilog program, the circuit can be reprogrammed or
duplicated whenever circuit failure occurs. This is far more efficient than debugging
complicated TTL circuits as error is encountered. Therefore, students of the course
can concentrate better on learning of computer system architecture rather than

spending time debugging TTL circuits during the lab session.

Meanwhile, FPGA also features higher robustness compared to TTL circuits.
TTL circuits implementation of SAP-1 computer suggested by Malvino requires more

than 50 TTL chips with messy wirings. Failure of a single TTL chip or connection of



a single wire may lead to malfunction of the entire system. This justifies the decision
to implement SAP computer system on FPGA rather than TTL circuits. Development
of this project also provides an alternative of learning computer system architecture

through Verilog HDL and FPGA besides construction of TTL logic circuits.

1.3  Objective & Scope of Study

This project is aimed to develop hardware required for better structured lab
experiments of the Computer System Architecture course. This includes system level
synthesis of SAP-1 computer on a single University Program 2 (UP2) development
platform by Altera, as well as modular synthesis of SAP-1 computer utilizing a UP2
platform for each functional block. Presenting only the basic components of vital
importance, while eliminating unnecessary details at the same time, SAP computets

promote easy understanding of computer operation through the lab session [1].

From the project developer’s perspective, this project enables me to gain
understanding on fundamentals of computer system. Although SAP computers
present a simple design for very basic computer operaﬁon, it forms valuable
fundamental for understanding of modern and more complex computer systems to be
encountered in the future. Apart from that, the project also provides me good practice
for picking up knowledge on Verilog HDL. Implementation of the computer system
also exposes me to FPGA technology. In short, this project is a value-added activity

for the participant.

Schematics and detailed description of all SAP generations are available in
Albert Paul Malvino’s book, [1] Digital Computer Electronics (1983). Meanwhile,
reference source of Verilog HDL is widely available. The project supervisor, Mr. Lo
Hai Hiung is a very knowledgeable person on Verilog for valuable consultancy. The
university also provides good facility for digital system design on FPGA. Hence with
proper project scheduling, this project has high feasibility.



CHAPTER 2
LITERATURE REVIEW

This chapter provides a high level architectural overview of SAP-1. As SAP
computer is introduced by Albert Paul Malvino, information in this chapter is cited
from his publication, [1] Digital Computer Electronics (1983). Kindly refer to the
book for further details. .

2.1 SAP-1 Architecture

Brief description of each functional block of SAP-1 is provided below. Kindly refer
to Appendix A for modified block diagram of SAP-1 computer system.

2,1.1 W Bus
The W Bus is a three-state 8-bit wide bus interconnecting various SAP-1

modules, allowing orderly transfer of data [1].

2.1.2 Program Counter (Control Unit)
The program counter is essentially a ripple counter. It is incremented for every
instruction cycle to poiht to the memory location of the next instruction to be
fetched and executed [1].

2.1.3 Memory Address Register & Address Input (Memory Unit / Input Unit)
The Memory Address Register (MAR) stores memory address coming from
the Program Counter and Instruction Register for access of instruction or data
stored in the Random Access Memory. Switches are utilized for memory

location selection during programming stage [1].



2.1.4

2.1.5

2.1.6

2.1.7

2.1.8

2.1.9

Random Access Memory & Instruction/Data Input (Memory Unit / Input
Unit)

The 16 8-bit-words Random Access Memory (RAM) stores program and data
of SAP-1. 8-bit switches are attached to this RAM for instruction/data

inputting purpose at the programming stage [1].

Instruction Register (Control Unit)
The Instruction Register is used to separate SAP-1 instructions into the
instruction field (upper nibble) and data location field (lower nibble) and

subsequently outputs to the Controller/Sequencer and MAR respectively [1].

Controller/Sequencer (Control Unit)
This block decodes the instruction fetched by the Instruction Register and
outputs a 12-bit control word that coordinates operation of each functional

block in every T state [1].

Mode-Select Switches, De-bouncers, and Clock Buffer (Input Unit / Control
Unit)

Mode-Select Switches is made up of the START’/CLEAR switch for running
or stopping of program execution and, LOW’/HIGH and MANUAL’/AUTO
switches facilitating the clocking mode of SAP-1 computer. CLK and CLR
signals generated in this block are fed into the other SAP-1 modules [1].

Accumulator (Arithmetic Logic Unit)
This 8-bit register stores intermediate value and final result of arithmetic
operations. The value stored in the Accumulator is sent to the Output Register

and Binary Display when the “OUT” routine is executed [1].

Adder/Subtracter (Arithmetic Logic Unit)
A 2’s complement Adder/Subtracter is used in SAP-1. For subtraction
operation, a high Sy signal is sent to the Adder/Subtracter to convert one of

the operand (stored in B Register) into 2°s complement form [1].



2.1.10 B Register (Arithmetic Logic Unit)
The B register is another buffer register used in arithmetic operation. It holds
the number to be added to or subtracted from the number stored in the

Accumulator [1].

2.1.11 Output Register & Binary Display (Output Unit)
When the “OQUT” instruction is executed, number stored in the Accumulator is
sent to the Output Register to trigger 8 Light-Emitting Diodes (LEDs) Binary
Display [1].

2.2 SAP-1 Instruction Set

SAP-1°s instruction set consists of only 5 instructions. These instructions and the

corresponding operation are summarized in TABLE 1.

TABLE 1: SAP-1 instruction set summary from chapter 10 of [1] Digital Computer
Electronics by Malvino (1983)

. Op .
Mnemeonic Code Operation
LDA 0000 Load RAM data into Accumulator
ADD 0001 Load RAM data to B Register, and add B Register data to
Accumulator
SUB 0010 Load RAM data to B Register, and 2°s complement subtract B
Register data from Accumulator
ouUT 1110 Load Accumulator data into Qutput Register
HLT 1111 Stop processing

2.3  SAP-1Programming

SAP-1 program is stored in lower RAM location (from 0x0) whereas the data are
stored in the higher locations. The 8-bit instruction consists of the upper nibble
operation type and the lower nibble operand [i]. This is demonstrated in the
following example presented in both assembly language (left) and machine language
(right):-



Address Instruction/Data Address  Instruction/Data
Ox0 LDA 0x9 0000 0000 1001

} ! | |
0x9 0x11 1001 0001 0001

The example shows that instruction which essentially loads the accumulator with the
content of location 0x9 of the RAM is stored at memory location 0x0 (lower
location). The data involved in this operation is stored in a higher RAM location
(0x9). When presented in machine language, the op-code and data are given in binary
representation. We see that op-code of the “LDA” operation (0000 binary) and
memory location storing the operand occupies the upper and lower nibble of the

instruction respectively [1].

2.4  SAP-1 Machine Cycle & Instruction Cycle

Each T state of SAP-1 is characterized by each clock cycle, starting and ending with a
falling clock edge. As SAP-1 is positive-edge-triggered, this selection makes all
clocked operation to occur midway through each T state. This gives an allowance of
half a cycle time for setup time, hold time, and steady state setup time for the signal

being present at the W Bus [1].

The first three T states are named the Fetch Cycle. It generally involves
accessing of memory location of instruction pointed to by Program Counter,
incrementing the Program Counter, and feiching the instruction in the RAM to the
Instruction Register [t]. The latter three T states make up the Execution Cycle.
Operation taking place in the system during Fetch Cycle is generally common for all

instructions but differs among instructions in the Execution Cycle [1].

6 T states (T; through Ts) makes up a machine cycle for SAP-1. The number
of T states needed to fetch and execute an instruction defines an instruction cycle.

SAP-1 has fixed instruction cycle of 6 T states which equals the machine cycle {1].



CHAPTER 3
METHODOLOGY & PROJECT WORK

The project work carried throughout this Final Year Project course is presented in this

section. Shown below is the development flowchart of this project:-

Literature study of digital electronics
fundamentals and applications
(Semester 1, week 2 to week 4)

A

Literature study of SAP-1 computer
System
{Semester 1, week 5)

Literature study of Verilog HDL for
synthesis of Digital Systems
(Semester 1, week 4 to week 7)

Simulation of SAP-1 computer
Systemn
(Semester 1, week 8 to week 14)

v v

System synthesis of SAP-1 Modular synthesis of SAP-1
computer system computer system
(Semester 2, week 11 to week 12) (Throughout semester 2}

FIGURE 1: Project development flowchart

Details of each project activity will be discussed throughout this chapter. Results

obtained from these activities will be discussed in the next chapter of this report.



3.1 Literature Study of Digital Electronics Fundamental and Applications

This is the first activity of the project carried out from Week 2 to Week 4 of Semester
1. The study is carried out based on the first nine chapters of [1] Digital Computer
Electronics by Malvino (1983). The early chapters cover the digital electronics
fundamentals which are recap of the Digital Electronics I course. Subsequently,
various applications of the fundamental logic components such as the adder-
subtracter, flip-flops, registers, counters, and memory are demonstrated. Along the
descriptions in these latter chapters, sub-modules of SAP-1 have been introduced as

appropriate. This ensures good understanding during literature study of SAP-1.

3.2  Literature Study of SAP-1 Computer System

Literature study of SAP-1 is done based on chapter 10 of [1] Digital Computer
Electronics by Malvino (1983) in Week 5 of the Semester 1. In this chapter, how
small digital circuits introduced previously are combined for a simple computer
system has been seen. Details of this activity have been discussed in Chapter 2 of this
report. It is of vital importance that thorough understanding is gained at this stage for
correct Verilog HDL capturing of the computer system during latter simulation and

synthesis of the system on FPGA.

3.3  Literature Study of Verilog HDL for Synthesis of Digital Systems

This activity has been performed from Week 4 to Week 7 of the Semester 1. [10]
Verilog Styles for Synthesis of Digital Systems by Smith & Franzon (2000) and [11]
Verilog Coding for Logic Synthesis by W. F. Lee is the main reference materials used.
Meanwhile, lecture notes of the Digital System Design course have also been used as
additional reference. Topics gone through are as follows:-

- Basic Language Constructs on preliminaries, data types, and modules of

Verilog HDI..
- Structural vs. Behavioural Specification that details in the writing styles of

both specification types.



- Procedural Specification that introduces the ‘always’ block, ‘if’ statement,
‘case’ statement, and various looping statements having higher expressive
power for behavioural specification style.

- Design Approaches for Single Modules on recommended design steps and
strategies for single modules in Verilog HDL.

- Validation of Single Modules that discusses the element of good Verilog
HDL modules testing such as good testbench coding, proper test coverage,

and multiple test vector sources.

It is worth noting that Verilog HDL is initially designed for simulation thus not all
statements are synthesizable. Due to that, special attention has been paid to identify
statements that can only be used for simulation. These statements will be avoided in
simulation of SAP-1 system so that code verified through simulation can be applied

straight for synthesis purpose.

3.4  Simulation of SAP-1 Computer System

Simulation of SAP-1 has been started during Week 8 of Semester 1. ModelSim Xilinx
Edition (XE) III / Starter 6.0d has been used as the simulator. Early attempt of this
activity involves familiarization of the software by going through tutorials of the
software. Simulation is then started by capturing SAP-1 modules in Verilog HDL and
writing testbench for each module. Verilog coding used is ensured to be synthesizable
so that validated modules can be used for synthesis without any need for
modification. Testbench is written so that the simulation reflects actual operation of
the module being tested in SAP-1 system. For example, the Cp control signal that
triggers an increment in the Program Counter goes high at every T; state [1]. The

testbench is programmed to have this behaviour as well.

As Malvino’s design uses TTL chips, behaviour of the control, clock, and
clear signal are designed to comply with the TTL chips’ requirements (whether they
are active high/low, positive/negative-edge-triggered). However, this is not necessary

as SAP is to be implemented on FPGA. Appropriate simplifications as listed below
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have been made during simulation while maintaining the general behaviour of the

modules in the system:-

- All negative-edge-triggered flip-flops that accepts inverted clock signal can be
simplified to positive-edge-triggered ones which accepts non-inverted clock
signal to eliminate inverted clock from the system.

- Clear inputs of all blocks are active high.

- Inputs in each module that accepts control signals from the Controller-Sequencer
block are active high. In other words, control signals go high when it is active.
These simplifications may reduce mistakes in the Verilog code. However, there might
be other concerns (e.g. power efficiency) behind Malvino’s original design. Hence
any modification made unto the original design is documented well. This will serve as
possible parameters that require correction in case of error when SAP-1 system is

synthesized on FPGA.

Apart from the simplifications mentioned above, the Verilog program design
is kept similar to that of the original SAP-1 computer during the simulation stage. In
making sure that this fundamental program works, other simplifications or extra
features can easily be added to the system as necessary at the synthesis stage with
ease of debugging. Any error encountered that time can easily be traced to the
modifications made. We shall discuss the enhancements introduced to SAP-1

computer in detail in the next part of this chapter.

A system level simulation has also been done combining Verilog programs of
all modules. Most signals that are essentially “wire” have been declared as “output”
in the Verilog program of SAP-1. This is done to enable observation of waveform of
these signals during simulation. System level simulation of SAP-1 has been

completed towards the end of Semester 1.

3.5  System Synthesis of SAP-1 Computer System

SAP-1 system synthesis is aimed to implement all SAP-1 modules on a single
Altera’s University Program 2 (UP2) development platform. To understand the

features available on the UP2 platform, the document [13] University Program UP2
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Education Kit User Guide v3.1 has been downloaded from Altera’s website. This
document provides sufficient information for usage of the development platform in

prototype development.

The Quartus 1T 6.1 Web Edition software has also been acquired from Altera’s
website. To obtain an overview on the features available in this software, the
document [12] Imtroduction to Quartus II - Version 6.1 available from Altera’s
website has been gone through. The Quartus II is a powerful all-in-one tool for
project development using Altera’s FPGA or CPLD products. It supports HDL &
Schematic Design Entry, Analysis & Synthesis, Place & Route, Timing Analysis,

Simulation, and Configuration & Programming of the selected target device [12].

The interactive tutorial of the Quartus Il attached to the software is also
valuable in getting familiarized with the user interface of the software. Subsequently,
the project development tools relevant to this project are identified, including HDL
Design Entry, Analysis & Synthesis, Pin Assignment & Fitting, and Configuration &
Programming. Simulation is not carried out as the Verilog programs used in synthesis

have been verified in the simulation stage earlier.

After getting familiarized with the hardware and software to be utilized in the
synthesis stage, SAP-1 system synthesis has been started by setting up project
targeted for the FLEX 10K device on the UP2 platform in the Quartus II software.,
Some simplifications and additional features have been introduced as appropriate to
the Verilog programs developed in the simulation stage. Each “if” statement in the
Verilog programs is paired with an “else” statement to avoid inferred latch that may

introduce timing analysis issues during synthesis.

Another simplification has been implemented on the De-bouncers block.
Referring to the design of the Mode-Select Switches and De-bouncers in page 159 of
[1] Digital Computer Electronics by Malvino (1983), single pole double throw
(SPDT) switches are used at the latches” inputs. In order to utilize the dual in-line
package (DIP) switches available on the UP2 platform, this design can be modified so
that the upper input of each latch is driven by an ON/OFF switch. The lower input of
the latches will be tied to their respective ON/OFF switch through an inverter, always
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maintaining inputs of opposite logic level at the latches. This modification also

reduces the number of input signals required in the module by 3 inputs.

Meanwhile, the 7-segment displays available on the UP2 platform can be
utilized as hexadecimal display for output of SAP-1 computer. This improves the
readability of the computational result originally driving eight Light Emitting Diodes
(LEDs) as binary display. Thus an additional binary number to hexadecimal 7-
segment display decoder module has been written and being instantiated by the
Verilog program of the Qutput Register module. The truth table of this module is
provided in Appendix B. Note that this is a 4-bit to 8-bit (including decimal point
signal) decoder module written for common-anode active-low display unit. As
content of the Output Register consists of 2 hexadecimal digits, 2 instantiations of the
binary to hexadecimal 7-segment display module is made in the Output Register
module. The result is then concatenated to form a 16-bit decoded signal,
OUT REG HEX. Note that signals in Verilog programs of SAP-1 are presented in
Italic throughout this report (e.g. OUT REG_HEX).

Upon proper consideration and design, the LEDs available on the UP2
platform can be utilized as additional indicators so that functionality of the prototype
will be easily understandable. Table 2 summarizes the input and display devices on
the UP2 platform used in SAP-1 system synthesis and their corresponding driven or
driving signals. Kindly refer to Appendix C for board layout and components naming
of the UP2 development platform. Note the difference between naming format of
individual switch of DIP switches and the numbering used for referencing throughout
this report. Individual switch of DIP switches are represented following the naming
convention of arrays in Verilog, e.g. FLEX SWITCH[1] and MAX_SWIS].

Numbering of references is presented in boldface to make the difference clear.

As LEDs available on UP2 platform (D1 through D16) are active low [13],
additional complemented signals of 7, LDA, ADD, SUB, OUT, HLT, CLK, and CLR
are generated for display purpose. MAX SW1, MAX SW2, and the LEDs are
connected to the input/output (fO) pins of the FLEX 10K device using wires through

wire wraps soldered at the expansion holes of those pins. External wiring is not
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TABLE 2: UP2 platform input & output devices and driven or driving signals in

SAP-1 system synthesis

Signal
Type

Component

Signal

Description

Input

MAX_SWI[5]

MAX_SW1[8]

MAX_SW1[6]
MAX_SW1[7]

ADDR INf3]
ADDR_IN[2]
ADDR_IN[1]

ADDR IN[O]

Address input for programming of
RAM.
Active when RUN_PROG ==

‘START CLEAR | The first pardin
.. r U .

Input

MAX_SW2[8]
FLEX PBI

RUN_PROG
READ _WRITE

16 8 RAM mode—select inputs
The first parameter is active high, e.g.,
the RAM is in running and reading
mode when both inputs = 1.

T not[4 ]

Tnot[5] SO
LDAnot
st ‘égg ::0: Complemented decoded instruction
utpu p UTnZt signals for active low LEDs
HLTnot
Decoded signal of Output Register
Output FLEX DIGIT DIGIT DISPLAY content (OUT _REG) in RUN mode and

RAM content (RAM DISPLAY) in
PROG mode. *

v Please read further for more deta;led exp]anatlon
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necessary for the remaining components used as they are routed permanently to fixed

10 pins of the FLEX 10K device in the printed circuit board (PCB).

In order to take full advantages of the resources available on the UP2
development platform, the MAX_DIGIT device is designed for display of output of
the Memory Address Register (MAR) & 2 to 1 Multiplexer (MUX) module. This
enables the user of the prototype to observe the location of RAM being accessed
during SAP-1 program execution. As the MAX DIGIT display is routed to the fixed
10 pins of the MAX 70005 device, which are not accessible through the expansion
holes, it has been decided that decoding for the hexadecimal display is to be
implemented on the MAX 70008 device. This reduces number of external wirings
required as the 4-bit output signal of the MAR and 2 to 1 MUX module (MUX_OUT)
is passed from the FLEX 10K device to the MAX 70008 device instead of the 8-bit
decoded hexadecimal display signal. This connection is made using insulation
displacement connectors (IDC) with ribbon cable through pin headers soldered at
expansion holes of both FLEX 10K device and MAX 70008 device side.

For better clarity in the RAM-programming mode, an enhancement has been
introduced on FLEX DIGIT device initially used only for display of Output
Register’s content. FLEX_DIGIT is made to display the content of memory location
pointed to by the RAM address input switches (ADDR_IN at MAX_SW1[5] through
MAX_SWI[5]) when the RUN_PROG input is low. With this, the user is able to
verify that correct instruction and data have been entered at correct memory locations
before executing the program. To achieve this, 2 instantiations of the 4-bit binary to
hexadecimal display decoder module is made in the 16 x 8 RAM module too,
yielding decoded signal RAM DISPLAY HEX. Selection of decoded signal being
passed to the FLEX_DIGIT display is done according to th.e logic state of the
RUN _PROG input. RAM DISPLAY HEX is passed instead of MUX OUT HEX
when RUN_PROG is low and vice versa.

Applying all changes discussed earlier in this section to the Verilog program
developed during the simulation stage, the Quartus II project created for SAP-1
system synthesis is compiled for the target FLEX 10K device using the Analysis and

Synthesis function. Erroneous source code is traced and corrected in case errors are
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reported. Manual pin assignments for the input and output signals are then done,
aiming to avoid messiness of wirings on the prototyping board. Pins attached to
expansion holes at FLEX EXPAN A located nearer to the switches and LEDs are
selected. The Fitter is then run to place and route the design to logic cells of the
FLEX 10K device, whereas Assembler is executed to generate the programming file
(SRAM Object File with extension of .sof) of the project [12].

The same process is applied to the additional binary to hexadecimal display
decoder module on the MAX 7000S device, done in a different project. The
Programmer Object File (.pof) generated is added into the Chain Description File
{.cdf) of the SAP-1 system project [12}. This enables programming of both FLEX
10K and MAX 70008 devices in a chain. Applying appropriate jumper settings, the
chips are programmed using the Programmer available in the Quartus II software,
with the board being connected to the computer through ByteBlaster II cable. The

programmed platform is then ready for testing.

System synthesis of SAP-1 computer has been completed. Test results and
findings of hardware implementation of SAP-1 system will be presented in Chapter 4
of this report. Verilog programs created for this system synthesis is available in

Appendix D.

3.6  Modular Synthesis of SAP-1 Computer System

Modular synthesis is aimed to implement each functional block of SAP-1 computer
on an Altera’s UP2 development platform. SAP-1 computer will be implemented as
10 separate modules as illustrated in modified clock diagram of SAP-1 computer
available in Appendix A. All 10 boards will be interconnected to form a complete

SAP-1 computer.

This implementation has advantage over system synthesis of SAP-1 which the
entire system is implemented on a single board, as it is able to show every single
detail of SAP-1 computer down to the microinstruction level. It promotes good

understanding of the system by examining operations within the prototype alone.
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Separate Quartus IT projects are set up for each SAP-1 module to be
implemented on different UP2 platform. Binary to hexadecimal 7-segment display
decoder module as described in Section 3.5 and Appendix C is incorporated into all
SAP-1 modules except the Controller / Sequencer and Mode-Select Switches, De-
bouncers & Clock Buffer modules. This enables disﬁlay of output of these modules
on the 7-segment displays available on UP2 boards, enhancing readability of the
outputs. LEDs on the boards are also properly utilized to indicate logic state of
outputs of the modules to make the prototype easily understandable. Verilog source
code of modular synthesis of SAP-1 is available in Appendix E. Detailed pin
assignments, pin interconnections across boards, and input and ouiput device
utilization of all UP2 platforms used in SAP-1 modular synthesis are presented in

Appendix F of this report.

As the FLEX 10K device on the UP2 development platform is based on Static
RAM technology [13], it is volatile. Hence, it is impractical to implement modular
synthesis of SAP-1 on the FLEX 10K device as programming of 10 boards prior to
any usage of the prototype is tedious. This justifies our selection of the non-volatile
MAX 70008 CPLD device for this activity [13]. However, this device consisting of
only 128 macrocells could not accommodate the 16 x 8 RAM module requiring 192
macrocells [13]. We have two choices dealing with this issue. The 16 x 8 RAM
module can be implemented on the FLEX 10K device. This reduces the number of
UP2 boards required by one as the module can be implemented at any one of the nine
boards which the FLEX 10K device initially remains unused. Nevertheless, a major
drawback exists that the prototype must be programmed with this 16 x 8 RAM
module each time it is powered up. For the second option, the 16 x 8 RAM module
can be reduced to an 8 x 8 RAM module, enabling implementation on the MAX
7000S device. This option is adopted as it provides better convenicnce to the
prototype users. Although the RAM is shrunk in size, it is still sufficiently big to store
instructions and data of the test program to be used throughout discussions in Chapter

4, which consists of all five instructions of SAP-1 computer.

Interconnections of the WBus, CLK, and CLR signals are implemented on
extra PCB. This is done to reduce the messiness of wirings on the prototype, thus

decreasing the probability of mistakes when setting up the circuits. Typically,
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interconnection of multiple-bit signals such as the WBus, ACCU_OUT, B_REG_OUT,
MUX_OUT . and IR QUT INS are done using insulation displacement connectors
(IDC) with ribbon cable through pin headers soldered at the UP2 platforms or the
PCB. Other and typically single-bit signals are interconnected using wires through
wire-wraps soldered at the UP2 boards or the PCB.

The same project development flow in Quartus II software (HIDL Design
Entry, Analysis & Synthesis, Pin Assignment & Fillting, and Configuration &
Programming) as discussed in Section 3.5 is applied here for projects set up for each
SAP-1 module. The prototyping boards are ready for testing and verification as they
are programmed using the Programmer in Quartus II software with ByteBlaster II

cable connecting the computer and UP2 platform.
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CHAPTER 4
RESULTS & DISCUSSIONS

This chapter presents the test results and findings of all SAP-1 computer simulation,
SAP-1 system synthesis, and SAP-1 modular synthesis. Kindly refer to chapter 10 of
[1] Digital Computer Electronics by Malvino (1983) as appropriate to aid your

understanding in this chapter.

4.1  Simulation of SAP-1 Computer System

Results of modular simulation and system simulation of SAP-1 computer will be
discussed in this section referring to the signal waveforms obtained. Some brief
description on the Verilog code and testbench of each module will also be given.
Note that signals in the Verilog programs are presented in Italic. As mentioned
carlier, the Verilog programs are designed for similar behaviour as SAP-1 computer
in its original TTL circuits implementation, besides simplifications stated in Section
3.4 of this report. The tesbenches are also written to reflect actual behaviour of the

modules in SAP-1 computer system.

4.1.1 Program Counter

A positive-edge-triggered JK flip-flop module with active high clear is first written.
The Program Counter which is essentially a ripple counter is then described by
instantiating the JK flip-flop module. Inverted output of the least significant bit (LSB)
JK flip-flop is fed as the clock input of the next JK flip-flop. Output of Program
Counter (signal PC) will only be made available at WBus when the enable signal Ep

goes high. Else this connection remains in high-impedance state (z state).
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FIGURE 2: Simulation resuits of the Program Counter module

Clock cycle of 20ps is used in all simulations. The Program Counter is reset to
0000 when CLR is high. The first machine cycle starts at the falling clock edge at
20ps. Ep signal that puts value of PC on the WBus goes high for every clock cycle
starting from 20ps + n*6*20ps, or technically during the T, state. Meanwhile, the
count enable signal, Cp goes high at every T, state (clock cycle starting from 40ps +
n*6*20ps). PC is incremented at each positive clock edge appearing at the middle of
each T state [1].

4.1.2 MAR

The MAR is built based on positive-edge-triggered D flip-flops with active high
enable input for data loading. Signal appearing at the input of the D flip-flop will only
be accepted at the positive clock edge if the enable signal is high. The MAR module
shows 4 instantiations of the D flip-flop module. Each D flip-flop acts as a register for
storing one address bit. These D flip-flops are fed with the input coming from the

WBus at a positive clock edge when the control signal Lm is high. Else, output of each

D flip-flop is fed back into its input.

FIGURE 3: Simulation results of the MAR module.

First machine cycle starts at time Ops for this simulation. Timing of the Lm
signal applies for all LDA, ADD, and SUB routines for this testbench coding. It goes

high at every T; and T4 state and remains low at any other instance of the machine
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cycle [1]. Assuming that the instruction being executed is stored at location 0x0 of the
RAM, whereas the data of the operand is stored at location Oxf, the behaviour of the
module is shown in Figure 3. These memory addresses start appearing at MAR_OUT
at positive clock edge midway through T, and T4 respectively and is made available
to the 2 to 1 Multiplexer.

4.1.3 2to I Multiplexer

Source code of the 2 to 1 Multiplexer is made up of a single module. It is simply a
multiplexer outputting either MAR_OUT or ADDR_IN 4-bit address depending on the
RUN _PROG select signal. The MAR_QUT address is selected if the RUN_PROG
switch is in RUN position (RUN_PROG == 1) and vice versa [1]. The output at this

multiplexer will be used as pointer to access the corresponding memory location of

the RAM.

RO |

FIGURE 4: Simulation results of the 2 to 1 Multiplexer module

As this module is not clocked, the testbench coding is straightforward.
Assuming that the input coming from MAR OUT is 1010 binary whereas the
ADDR_IN switches send signals of 1111 binary, 1010 is selected if RUN_PROG ==1.
Output of the module (MUX_OUT) is 1111 if RUN_PROG == 0.

4.14 16x8RAM
Low logic of RUN PROG and READ WRITE signals represent RAM programming

and writing mode respectively, and vice versa. When both signals are low, data from

the input switches (DATA_IN) is written to the memory location given by output of
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the 2 to 1 Multiplexer (MUX_QUT). For read operation, the high RUN_PROG input
is required. Data at address indicated by MUX QUT will be retrieved and made
available to the WBus when the Chip Enable signal (CE) goes high [1].

Testbench of the 16 x 8 RAM module is written to simulate two write
operations to memory location 0x0 and 0x1 followed by read operations from these
locations. Data being retrieved from the RAM is only made available to the WBus
when CE goes high during the read operation. The WBus remains in high-impedance

state at any other instances. Note that logical value of READ WRITE switch does not

impose any effect to the module when it is operating in RUN mode.

FIGURE 5: Simulation results of the 16 x 8§ RAM module

4.1.5 Instruction Register

The Instruction Register generally functions to separate the instruction fetched to it
into the upper nibble instruction op code and lower nibble data address. It utilizes D
flip-flops similar to that of MAR module as registers to store the input values. It
accepts input (instruction in machine code being fetched from RAM) at the WBus at
Ts and outputs the data address at WBus through its tri-state output at Ty [1]. The op

code output going into the Controller/Sequencer however is not clocked.

4.1.6 Accumulator

The Verilog program of the Accumulator module is written by instantiations of D
flip-flop module with enable input for data loading (La). A D flip-flop is used to hold

1 bit of data thus a total of 8 D flip-flops have been used. Data is loaded into the
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Accumulator at Ts (for LDA routine) or Ts (for ADD & SUB routines) when La
control signal goes high [1]. Data stored in the Accumulator is made available at the
WBus at T4 when Ea signal goes high as OUT routine is executed. The connection
between the Accumulator output and the WBus remains at high-impedance state

whenever Eq has low logic [1].

4.1.7 Adder/Subtracter

The following formula is used in description of the Adder/Subtracter module:-

ADD SUB_OUT = ACCU_OUT + B + Su
where ADD SUB_OUT is the output of the Adder/Subtracter, ACCU_QUT is the
input to the Adder/Subtracter from the Accumulator. B is obtained from the output of
B Register, B REG_OUT depending on the logic level of the subtraction enable
signal, Su. When Su is low, indicating an addition operation, B is made equal to
B REG OUT. Hence, addition of the Accumulator -and B Register’s content is

achieved through the formula above.

For a subtraction operation, Su is high. B is equals to complement of
B REG OQUT in this case. 1 (Su) is added into B (complemented B_REG_OUT) and
forms 2’s complement conversion of B_REG_OUT. The same formula now executes
addition of an unsigned number and a 2°s complement negative number that yields an

unsigned number that equals result of a subtraction operation.

“bufifl” primitives are instantiated in this module to establish a three-state
connection between ADD SUB OUT and the WBus. These tri-state buffers are
activated by the Eu control signal [1].

FIGURE 6 and 7 show the simulation waveforms of the written testbench for
addition and subtraction operation respectively. Note that as the Adder/Subtracter
module is asynchronous in nature (not clocked), result of the arithmetic operation is
available at the module’s output as soon as it is fed with the inputs (ACCU_OUT,
B REG OUT, and Su). This result is made available at the WBus at Ts when Eu goes
high as the ADD or SUB instruction is executed [1].
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FIGURE 6: Simulation results of the Adder/Subtracter module for addition operation

FIGURE 7: Simulation results of the Adder/Subtracter module for subtraction
operation

4.1.8 B Register

The B Register accepts input from the WBus when the load signal Lb goes high at Ts
for execution of ADD or SUB instruction [1]. Data loading operation occurs at the
positive clock edge midway through Ts state as positive-edge-triggered D flip-flops

are used to hold the input data [1]. This can be observed in the simulation waveforms

shown below. Meanwhile, these D flip-flops also continuously drive output signal,
B REG OUT of the module as soon as data is loaded.
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4.1.9 Output Register

Operation of the Output Register is essentially the same as the B Register except that
it is driven by data loading signal Lo. Lo only goes high at T4 when the OUT routine

is executed [1].

4.1.10 Controller/Sequencer (Instruction Decoder, Ring Counter & Control
Matrix)

First of all, the Ring Counter in the Controller/Sequencer module is constructed using
6 negative-edge-triggered JK flip-flops with active high clear. Onot and Q outputs of
the least-significant-bit (LSB) flip-flop drive the .J and X inputs of the next flip-flop
so that count of 000001 will be obtained at Onor output when high CLR signal is
applied. On the other hand, Q and Onot outputs of the second and higher flip-flops
drive the J and X input of the next higher flip-flop. Thus the Ring Counter shifts left
at each clock cycle starting with a negative clock edge. This creates 6 T states with a

positive clock edge midway through each state [1].

Meanwhile, the Instruction Decoder and Control Matrix modules are
described using logical and conditional statements. FIGURE 10 shows the waveforms
obtained from testbench written to verify this Controller/Sequencer module. Note that
as simplifications mentioned in Section 3.4 of this report apply, all control signals
goes high as they are active. The testbench simulates operations of the
Controller/Sequencer module for all LDA, ADD, SUB, OUT, and HLT routines- in
the order as listed, each occupying an instruction cycle (6 T states). Observe that the
decoded instruction signals (LDA, ADD, SUB, OUT, and HLT) only goes active one

at a time after the corresponding op code is fetched to the instruction decoder. Table 3
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summarizes the active control signals in each T state for all 5 routines according to

observations of waveforms in Figure 9:-

:

FIGURE 10: Simulation results of the Controller/Sequencer module

TABLE 3: Active control signals for each routine at every T state obtained from
simulation results of the Controller/Sequencer module

Active Control Signals
Cycle | TState | ypy ADD SUB OUT HLT
Routine Routine Routine Routine Routine

T, Ep, Lm Ep, Lm Ep, Lm Ep, Lm Fp, Lm

Fetch

Cycle T, Cp Cp Cp Cp Cp
T, CE Li CE, Li CE, Li CE Li CE Li
T, Lm, Ei Lm, Ei Lm, Ei Ea Lo -

Execution

Cycle Ts CE, La CE, Lb CE, Lb - -

Ts - La, Eu La, Su, Eu - -
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FIGURE 11: Input and output waveforms of simulation of the Controller/Sequencer
module at the earliest 2 instruction cycles

Figure 11 is similar to Figure 10 except that it is zoomed to the first 2
instruction cycles which the LDA and ADD instructions are being fetched and
decoded. This figure is included for clearer inspection of the Ring Counter’s output,
T. Note that this signal shifts left at each falling clock edge when the CLR signal is at

logic low.

4.1.11 Mode-Select Switches, De-bouncers & Clock Buffer

The Clear-Start De-bouncer, Single-Step De-bouncer, Manual-Auto Dc-bouncer, and
Clock Buffer modules are written as separate Verilog modules using SR latch, JK
flip-flop, and logic gates. Thése modules are then instantiated in a single module
named DEBOUNCERS. Due to the simplification introduced to this project, all
modules are made to accept non-inverted clock signal, Hence, the inverted clock
signal present in the original design in [1] Digital Computer Electronics by Malvino
(1983) will not be used and the block that generates it can be eliminated.

FIGURE 12 shows the simulation results of testbench written to verify the
DEBOUNCERS module:-
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FIGURE 12; Simulation results of the Mode-Select Switches, De-bouncers & Clock

Buffer module

Note that the START & CLEAR, LOW & HIGH, and MANUAL & AUTO
switches are active when they are at low logic level. When the CLEAR input is low,
the CLR signal goes high, resetting the CLX signal. Auto clock mode is simulated
after the initial resetting of the module (START and AUTO go low, CLEAR and
MANUAL go high). In this mode, the output CLK signal follows the rawCLK signal,
which is essentially the rawrawCLK signal being scaled down to half its frequency.
The bouncing phenomenon of the CLEAR & START switches pair is also simulated
through this testbench. Operation of the module is not affected by this phenomenon as
SR latch used serves as a switch de-bouncer. It can also be observed through the
figure that logic level of the LOW/HIGH switch does not have any effect in auto
clock mode. The output CLK signal stops changing state as the HLT signal goes

active.

Step-through or manual-clocking mode is simulated starting from time 85ps.
The MANUAL signal goes low now whereas the 4UTO signal changes state to high.
Bouncing phenomenon of the MANUAL switch is also simulated. The output CLK
signal now follows the logic level of the LOW & HIGH switches pair. The HLT signal
is activated at 130ps. The output CLK stops changing state regardless of the logic
level of the LOW & HIGH switches pair from then on.
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4.1.12 System Level Simulation of SAP-1 Computer

System level simulation of SAP-1 computer is done to verify the functionality of the
entire system when all independently written and tested SAP-1 modules are
combined. A module named SAP1 is written to instantiate all top level sub-modules
within each functional blocks of SAP-1 computer. Testbench of this module has been
properly designed to test its functionality thoroughly. Shown below is the SAP-1

program used in the testbench, in both assembly language and machine code:-

TABLE 4: Program used for verification of SAP-1 system level simulation

Assembly Code Machine Code
Address Instruction/Data Address Instruction/Data
0x0 LDA Oxa 0000 0000 1010
0x1 ADD 0xb 0001 0001 1011
0x2 SUB 0x¢ 0010 0010 1100
0x3 ouT 0011 1110 xxxx
Ox4 HLT 0100 1111 xxxx

| | | |
Oxa Oxaa 1010 1010 1010
Oxb 0x55 1011 0101 0101
Oxc 0x0f 1100 0000 1111

Referring to descriptions given in Section 2.3 of this report, SAP-1
instructions are programmed at lower RAM locations starting at location 0x0.
Meanwhile, the data used as operand of the instructions reside in higher location such
as location Oxa as shown in the program above. The instruction format is made up of
the upper nibble instruction op code, and the lower nibble operand RAM location.
Thus execution of the first instruction in the test program loads data stored at location
Oxa (value Oxaa) into the Accumulator. In short, the test program above does
arithmetic computation of 0xaa plus 0x55 minus 0x0f. A result of 0xf0 is expected to

be present at the Output Register upon completion of execution of this program.

Qutcome of the system simulation will be discussed next. As detailed
explanation of all operations in the entire SAP-1 system during execution of the test
program is lengthy, only details during RAM programming stage and execution stage
of the ADD and HLT routines will be examined closely here. Figure 13 shows the
waveforms obtained in SAP-1 system level simulation showing steps involved in

programming of the RAM.
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FIGURE 13: Input and output waveforms of SAP-1 system level simulation in
RAM-programming mode

Inputs of the START and CLEAR switches pair are held at logic high and logic
fow respectively to activate the global CLR signal. The activated CLR signal resets
the output of both Program Counter (PC) and upper nibble of Instruction Register
(IR_OUT INS) to value of 0000, and output of the Ring Counter (7) to 000001,
Hence, it can.be observed that the decoded instruction line of LDA and the
corresponding control signals in T, state (Ep, Lm) are active at beginning of the

testbench execution. Note that the CLK signal stops when this mode is selected.

Logic level of 0 is applied to the RUN_PROG signal at the beginning of the
testbench for RAM-programming mode. Inputs corresponding to value of the Address
and Instruction/Data field of test program shown in Table 4 are applied sequentially
fo the ADDR_IN and DATA IN signal respectively, row by row. Note that the output
of the 2 to 1 MUX (MUX_OUT) always follows logic level of the signal present at
ADDR _IN in this mode. Allowing some time for stabilization of 4DDR_IN and
DATA_IN inputs, logic state of the READ WRITE input signal is switched to low and
held constant for 5ps before returning it to logic high for memory write operation.

Repeating this for all appropriate combinations of ADDR_IN and DATA _IN inputs,
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programming of the test program into the RAM is completed at time 115ps. The
RUN _PROG input is switched to logic high for running mode of the RAM.

FIGURE 14: Input and output waveforms of SAP-1 system level simulation for
execution of the ADD and SUB routine

The left portion of Figure 13 shows the behaviour of the SAP-1 signals during
execution of the ADD routine in detail. The ADD routine is executed for an
instruction cycle (consisting of 6 clock cycles and T states, 20ps each) starting at time
255ps. For your information, the RUN_PROG signal is set to logic high for running-
mode of RAM, whereas the START & CLEAR and MANUAL & AUTO switches pairs
are tied to logic 0 & 1 and 1 & 0 respectively for auto-clocked execution mode,
although not shown in Figure 13. The CLK signal follows the rawCLK signal in this

execution mode.

According to the test program used in the testbench, the Accumulator has
already been loaded with value of Oxaa through execution of the LDA instruction
prior to execution of this ADD routine. For more organized presentation, all essential
operations occurring during each T state of the ADD routine as extracted from Figure

13 are summarized in the following table:-
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TABLE 5: Summary of internal operations of the ADD routine in test program of

SAP-1 system simulation

State

Active
Decoded
Instruction
Line Signal

Active
Control
Signal

Description

T

LDA

Ep, Lm

Activeted Ep signal makes PC signal (0001} available
at the WBus (zzzz0001) throughout the T state.
The MAR loads the lower nibble value of the WBus as

Lm goes active at positive clock edge halfway through
the T state and outputs it through MUX_ QUT (0001).

LDA

Cp

PC is incremented by one from 0001 to 0010.

Ty

LDA
(1% half of
T;)

ADD
(2™ half of

Ts)

CE Li

The RAM is enabled by the CE signal so that
instruction stored at location pointed to by MUX_OUT
is retrieved from the RAM and made available at the
WBus (00011011) throughout the T state.

The Instruction Register loads the data of the WBus as
Li goes active at positive clock edge halfway through
the T state. The data is separated into the upper nibble -
IR_OUT INS (0001) and lower nibble IR_OUT_ADDR
(1011). IR_OUT INS is decoded in the
Controller/Sequencer block, causing a change of active
decoded-instruction line signal from LDA to ADD
halfway through the T state.

T,

ADD

Lm, Ei

Eienables the tri-state buffer at the lower nibble cutput
of the Instruction Register, making data carried by the -
IR_OUT _ADDR (1011) signal available at the WBus
(zzzz1011) throughout the T state.

The MAR loads the lower nibble of data of the WBus
as Lm goes active at positive clock edge halfway
through the T state. Loaded data is output through
MUX_OUT (1011).

Ts

ADD

CE Lb

The RAM is enabled by the CE signal so that data
stored at location pointed to by MUX_OUT is retrieved
from the RAM and made available at the WBus
(01010101) throughout the T state.

The b signal enables data loading of the B Register
from the WBus at the positive clock edge halfway
through the T state. B Register’s content is output
through B_REG OUT (01010101} to the asynchronous
Adder/Subtracter, causing a change at its output,

ADD SUB_OUT (11111111) immediately.

Ts

ADD

La, Eu

Value carried by the ADD SUB_OUT signal is made
available at the WBus {(11111111) throughout the T
state as Fu goes active.

La enables data loading of the Accumulator from the
WBus at the positive edge halfway through the T state.
Loaded data is output through signal ACCU_OUT
(11111111).
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The behaviour of the ADD SUB_OUT and WBus signals may seem abnormal
at the second half of T state (time 365ps to 375ps). The observation will be justified
here. Since the Adder/Subtracter module is asynchronous in nature, result of
arithmetic computation will be available at ADD SUB OUT as soon as data is
present at both ACCU_OUT and B_REG_OUT. As the result of addition operation in
the ADD routine is loaded into the Accumulator through the WBus at the positive
edge halfway through Ts, a new data is available at ACCU_OUT. This yields a new
value of ADD SUB_OUT resulting from addition operation of the new ACCU_OUT
value and unchanged B_REG OUT value almost immediately. This new value of
ADD SUB_OUT is also passed to the WBus as the Eu signal driving the tri-state
buffer between ADD SUB_QUT and WBus remains active for the entire Ts state.
However, this invalid new ADD SUB_OQUT value is not passed to ACCU_OUT as
data loading of the Accumulator is positive-clock-edge-triggered. Hence, correct

functionality of the SAP-1 system is not affected.

Figure 15 shows the final outcome of SAP-1 system simulation’s testbench.
The HLT routine is executed from time 612ps onwards as shown in the figure. As
mentioned in Section 2.4 of this report, operations taking place are common for all
instructions in the Fetch Cycle occupying the first 3 T states. Internal operations
during T to T3 of the HLT routine is very similar to those that has been discussed in
Table 5, thus they are not repeated here to keep the discussion concise. Instead, we
will examine closely effect imposed on the system as the decoded instruction line
signal HLT is activated. As op code of the HLT instruction is decoded halfway
through T; state, the activated HLT signal forces the rawCLK signal to stop changing
state. This cause the Program Counter and Ring Counter to stop counting, hence

halted all operations within the SAP-1 system.
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FIGURE 15: Final results of SAP-1 system level simulation

Examining the value of OUT REG driven by content of the Output Register,
result of 0xf0 is obtained for computations in the tests program. This value matches
our prediction made earlier. Therefore, we can conclude that functionality of the

Verilog programs of SAP-1 system has been verified.

Note that the testbench that yields input and output waveforms shown in this
sectioned is tailored for auto-clocked execution mode. Another testbench that
simulates operations of SAP-1 in manual-clocked mode is also written. It is very
similar to the testbench for auto-clocked mode except that the MANUAL & AUTO
switches pairs are tied to logic 0 & 1 respectively, while logic state of the LOW &
HIGH switches pair are inverted repeatedly. This testbench also yields similar input
and output waveforms; except that the CLK signal follows the logic state of the LOW
& HIGH switches pair instead of the rawCLK signal. Similar final outcome of 0xf0 at
our _REG is also obtained running this testbench.
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4.1.13 Overall Findings

As mentioned earlier, testbenches of all modules are written so that they best reflect
real operations in the SAP-1 system. Test coverage has been made wide in modular
verification of the Verilog program (e.g. behaviour of all LDA, ADD, SUB, OUT,
HLT routines in the Controller/Sequencer module have been tested). Only
synthesizable Verilog statements are used in coding of SAP-1 modules. As discussed
throughout Section 4.1 of this chapter, results of all modular simulations and system
simulation show correct behaviour. No irresolvable bug has been identified in this
simulation stage, Hence, the Verilog programs written in simulation stage of SAP-1
computer will serve as fundamental programs for both system synthesis and modular

synthesis of SAP-1 computer system.

4.2  System Synthesis of SAP-1 Computer System

Verification of the prototype is started as soon as the chips are programmed and all
necessary wirings are done. The same test program as used in system simulation of
SAP-1 computer shown in Table 4 is being used here. Please refer to Table 2 in
Section 3.5 for naming of UP2 platform input and output devices and the driven or
driving signals in prototype of SAP-1 system synthesis. Note also that signals in the

Verilog programs of SAP-1 computer are presented in Jtalic.

MAX SW2[1] (START CLEAR) and MAX_SW2[2] (MANUAL_AUTO) are
initially set at OFF state (logic high) for activation of the CLR signal (indicated by
LED D16) and the auto-clocked mode. MAX_SW2[3] (LOW_HIGH) is held at ON
state. To switch to RAM-programming mode, MAX_SW2[8] (RUN_PROG) is set at
ON state to provide a logic low input. MAX_DIGIT now displays input signal present
at MAX_SWI[5] through MAX_SWI1[8] in hexadecimal representation, which is
essentially the memory location selected for programming. FLEX_DIGIT shows the
content of memory location being pointed to by address input at MAX SWI[35]
through MAX_SW1[8]. Referring to Table 4 for the first test instruction, inputs of
0000 and 00001010 are applied at MAX_SWI1[5] - MAX _SWI1[8] and FLEX SW[1]
- FLEX SW[8] for address input and data input respectively. Pressing the
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FLEX_PB1 to give a logic low input to the READ WRITE signal, the data input is
programmed into the selected RAM location, and the new content of the RAM is
being updated immediately on FLEX_DIGIT. Repeating these steps for the rest of
instructions in test program shown in Table 4, programming of the SAP-1 RAM is

completed thus program execution can be commenced.

A program test run in auto-clocked mode is first being done. With
MAX_SW2[2] being held at OFF state (MANUAL AUTO = 1, auto-clocked mode),
MAX DIGIT and FLEX DIGIT display character ‘4> and ‘FO’ as soon as
MAX_SW2[1] is turned to ON state (START CLEAR == 0, start program execution).
Character being present at MAX_DIGIT represents the final RAM location being
accessed in execution of the test program, which is the location where the HLT
instruction is stored. FLEX DIGIT indicates the content of the Output Register,
storing result of arithmetic computations carried out in the test program (0Oxaa plus

0x55 minus 0x0f).

The oscillator attached to the UP2 platform provides a CLK signal running at
25.175MHz. Being scaled down by 2 at the Clock Buffer of SAP-1, the prototype
practically runs at clock frequency of 12.5875MHz. Execution of the test program
takes 1 instruction cycle (6 T states) for LDA, ADD, SUB, OUT routines. The HLT
routine takes 3 T states before the instruction is decoded, enabling the decoded
instruction line signal, HLT which stops the CLK signal. This sums up to 27 T states
or clock cycles for execution of the entire test program, which essentially takes only
26 * (1 / 12.5875MHz) = 2.066ps. Hence, it is impossible for the user to examine
internal operation of the computer at each T state at this clock frequency in auto-

clocked execuiion mode.

Ripple counter can be programmed at the Clock Buffer to scale down the
clock signal supplied by UP2 board’s crystal oscillator, Verilog program of the Clock
Buffer is modified to include a 26 bits ripple counter constructed using JK flip-flop
modules. Taking output of the MSB JK flip-flop as the clock signal, it is scaled down
to approximately 25.175MHz / 2%6 = 0.3751Hz. Hence each clock state (half a clock
cycle) now takes approximately 1.3328s, making observation of operations within the

system at each clock state possible. The test program mentioned above being
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executed in auto-clocked mode at this clock frequency also yields the same final
result of 0xf0. Details of the operations at each clock state in auto-clocked mode are

similar to that of manual-clocked mode, which will be presented and discussed next.

Initial program test run attempts in manual-clocked mode have not been
successful. Bouncing phenomenon has been encountered on MAX_SW2[3] used to
generate manual clock signal LOW _HIGH of SAP-1 computer. This causes
generation of multiple CLK cycles in one switching action, prohibiting the prototype
user from observing changes taking place in each T state clearly. This problem is
however understandable examining the simplification introduced in Section 3.5 on
the De-bouncers block. Referring to page 159 of [1] Digital Computer Electronics by
Malvino (1983), the active-low SR latches used as the mode-select switch de-
bouncers functions provided that contact of the switch is lost as the switch bounces in
a switching action, resulting in high logic being applied at both inputs. For your
information, high logic at both inputs of an active-low SR latch results in unchanged

outputs.

Simplifications introduced in Section 3.5 causes the inputs to the latch to
always remain at opposite logic level, resulting in changes of the outputs state as the
switch bounces in a switching action. Examination of the bouncing phenomenon of
single pole double throw (SPDT) switch on oscilloscope has found that its output tend
to fall into an unconnected condition as it bounces. Understanding these, solution to
this problem is straight forward. Figure 15 shows the schematic diagram of
LOW _HIGH switch implementation applied to eliminate the bouncing problem. This
implementation is essentially the original design presented by Malvino. Both inputs to
the active-low SR latch are pulled up to Vec through 10kQ resistors. The switch
contact made drains the current thus providing low logic at one of the inputs. This
maintains high logic at both inputs of the latch as contact of the switch is lost when it
bounces. However, this implementation requires additional circuitry as dual inline
package (DIP) ON/OFF switch (initially implemented on MAX_SW?2[3] as stated in
Table 2) available on UP2 platform cannot be utilized. This additional circuit has
been constructed on veroboard. Slight modifications have been made to the Verilog
program of the Debouncers module written earlier to follow Malvino’s original

design with 2 input signals LOW and HIGH driven by an SPDT switch.
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FIGURE 16: Schematic diagram of the LOW_HIGH input switches

implementation

Bouncing phenomenon of input switches used for all other input signals is not
critical in ensuring correct functionality of the system. Hence modification is not
necessary. This eliminates the need of extra expansions of the prototyping board as

DIP switches on the UP2 platform can be used.

The same test program is executed in manual-clocked mode. The same
method of RAM programming as discussed earlier in this chapter is used. Upon
completion of instruction/data entry, both MAX_SW2[8] and FLEX PB1 are held at
OFF state to drive signals RUN_PROG and READ WRITE to logic low, enabling
running-mode of the RAM. Logic low is applied at both START CLEAR and
MANUAL AUTO inputs for program execution in manual-clocked mode. The SPDT
switch is now used to generate manual CLK signal of the SAP-1 computer. Table 6
shows observations on the prototyping board for execution of the test program at each
clock state resulting from switching of the SPDT toggle switch. ‘1’ in the table
indicates that LED is on whereas ‘0’ represents the opposite. Note that the active low
LEDs on the UP2 platform are driven by inverted signals of T, LDA, ADD, SUB,
OUT, HLT, CLK, and CLR (Tnot, LDAnot, ADDnot, SUBnot, OUTnot, HLTnot,
CLKnot, and CLRnot). For better clarity, logic levels of the non-inverted signals are

presented in the table.
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TABLE 6: Detailed observations of test program execution of SAP-1 system

synthesis in manual-clocked mode

7-Segment
LEDs Display
Switching Routine T 7 Decoded Instruction Line MAX | FLEX_
Action State | D15 Signal D16 (DIGIT{ DIGIT
CIK[Di D2 | D3| D5 | D6 | D7| DY | D10 | D11 | D12 | D13 |CLR | MUX_ | DIGIT
Trij Tf2) | T3 | TH] | 7151 | Tf6] | LDA (ADD | SUB | OUT | HLT OUT | DISPLAY
1 0|l]oiofo]oO 0

=loielol=i=-|

=

[==] for]

Switching| . | T |DI5| D1 [ D2 | D3 | D5 | D6 | D7 | D9 | D10 | DIL | D12 | D13 | D16 DIGIT| DIGIT
Action | ROUMBC | guove | CLK I Ty | Ti27 | 737 | Tyel | TYST| Tj6] | LDA | ADD | SUB | OUT | HLT| CLR | MUX_ | RAM
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From observations recorded in the table, the prototype shows clearly when the
instruction op code is decoded. This happens at the positive clock edge occurring
half-way through each T state. The prototype also displays the address of memory
location being accessed throughout execution of the program. Memory location at
MUX_OQUT for access of instruction stored in RAM (locations 0, 1, 2, 3, and 4) is
updated at positive clock edge mid-way through every T state. For LDA, ADD, and
SUB routines involving data, memory location for data retrieval from RAM is

performed at positive clock cycle of each Ty state.

The -1 switching is included in Table 6 to show behaviour of the system
when the CLR signal is active (START _CLEAR == 1). As described in Section 4.1.12,
activated CLR signal resets PC and IR_OUT INS to 0000, and T to 000001. This

verifies our observation as 7f1] and LDA are found to have logic high.

Note that the CLK signal remains unchanged at logic low even with further
switching after decoding of op code of the HLT routine (HLT == 1). Halting of
operations within the system is achieved by gating the CLK signal.

Number being displayed at FLEX_DIGIT (signal DIGIT DISPLAY) remains
invalid until result of the arithmetic operations is fetched from the Accumulator to the
Output Register at positive clock edge of T, during the OUT routine (after the 434
switching). These 7-segment displays output the non-initialized content of the Qutput
Register (OUT_REG) taking any random number prior to this. Table 6 shows that
execution of the test program yields 0xf0 as the final result. This verifies the
functionality of the prototype. The entire system is also found to function correctly
examining each state of Table 6 carefully. Kindly refer to Chapter 10 of [1] Digital
Computer Electronics by Malvino (1983) to verify test results of this section in detail.

43  Modular Synthesis of SAP-1 Computer System
Each SAP-1 module on a separate UP2 platform is first tested independently. Inputs
are supplied to each module using switches available on the board and the resultant

output is verified. This is similar to functionality of testbenches used to verify Verilog
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program of SAP-1 modules created during SAP-1 simulation stage. Detailed
discussion on the test results of hardware of each individual SAP-1 module is not
presented in this report considering the length that it might take. All boards
implementing an SAP-1 module each have been found to be working correctly

independently.

All 10 UP2 platforms each implementing functionality of a SAP-1 computer
module is then interconnected to form a complete SAP-1 computer. Various problems
have been encountered interconnecting the SAP-1 module each implemented on a
UP2 platform for a complete SAP-1 system. The encountered problems and their
solution will be discussed in this section. Experience on overcoming bouncing
problem of the HIGH LOW switch used for generation of manual clock signal gained
during SAP-1 system synthesis is applied here. Hence, an SPDT switch as illustrated

in Figure 16 is used to drive the Single-Step De-bouncer’s input.

Signals in the system tend to be unstable when the UP2 boards being supplied
by independent power adaptors are interconnected. This problem arises as different
ground level is present at each UP2 board being grounded to the earth through
respective power adaptors. To overcome this problem, all UP2 boards are powered
using a single external power supply unit while Vcc and Gnd pin of all boards are

being interconnected.

Physically connected but unused pins between the interconnected boards also
create problem in the modular SAP-1 prototype. These pins tend to drain considerable
amount of current. As a result, signals that is supposed to have high logic falls within
an indeterminate logic level. A convenient solution to this problem is to place always
disabled tri-state buffer at these pins. This implementation does not require any extra

hardware.

The modular SAP-1 prototype has not been functioning properly when it is
being clocked at 12.5875MHz as calculated Section 4.2, The cause of this problem
can be traced to degradation of signal integrity of the CLK signal being connected
from the Clock Buffer module to other modules through long wires at high frequency

as mentioned. This problem can be resolved by adopting the 26 bits ripple counter
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design at the Clock Buffer as implemented in prototype of SAP-1 system synthesis to
scale the clock speed down to approximately 0.3751Hz. Furthermore, this
implementation also enables the prototype users to examine operations within each

clock state of program execution clearly in auto-clocked mode.

Another problem observed during program execution of the modular SAP-1
prototype is due to impulse noise of the CLR signal. CLR input of all Program
Counter modules, Instruction Register module, and Controller/Sequencer module is
driven by a switch in the Mode-Select Switches module through the Start-Clear De-
bouncer. When this is implemented, content of the Program Counter and upper nibble
of the Instruction Register (holding signal JR_OUT INS, the instruction op code field
of SAP-1 instruction) tend to reset itself. Trials have been thrown by rearranging
position of the UP2 platforms so that the CLR signals can be sent through shorter
wires. Verilog program of the De-bouncers module has also been modified so that the
Start-Clear De-bouncer is driven by an SPDT switch instead of DIP switch, similar to
that of the Single-Step De-bouncer module. The problem does not work out however
applying any or both of these measures. Hence, the board configuration is altered to
place an independent CLR signal on the Program Counter module and the Instruction
Register module driven by a DIP switch on the respective UP2 board each. CLR input
of the Controller/Sequencer module remains being driven by CLR output of the

Mode-Select Switches & De-bouncers module.

With all enhancements introduced to the modular SAP-1 prototype, features

available on the prototype can be summarized as follows:-

- Supports both auto- and manual-clocked modes.

- Runs at clock frequency of approximately 0.3751Hz in auto-clocked mode.

- 8x8RAM.

- DIP switches for address input during programming of RAM.

- DIP switches for data input during programming of RAM.

- RAM-Mode-Select switches:-

o RUN/PROG’ (DIP switch)

o READ/WRITE’ (Push Button)
- Execution-Mode-Select switches:-

o START'/CLEAR (DIP switch)
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o LOW’ -HIGH’ (SPDT switch)
o MANUALJAUTO (DIP switch)

- 7-segment displays showing register content of the Program Counter, MAR &
2 to 1 MUX, 8 x 8 RAM, Instruction Register, Accumulator,
Adder/Subtracter, B Register, and Output Register modules in hexadecimal
representation.

- LEDs displaying logic level of the control signals at the respective modules
(Cp, Ep, Lm, CE, Li, Ei, La, Ea, Su, Eu, Lb, Lo).

- LEDs displaying logic level of the CLK and CLR signals.

- LEDs displaying logic level of the T states (771] through T/6]) within
machine cycle of SAP-1 computer.

- LEDs displaying logic level of the decoded instruction signal (LDA, ADD,
SUB, OUT, HLT).

Test program presented in Table 4 is modified slightly so that it fit into the
shrunk 8 x 8 RAM. Instead of storing the data at locations Oxa, 0Oxb, and Oxc, they are
stored at locations 0x5, 0x6, and 0x7. The operand field of the LDA, ADD, and SUB
instructions are also changed accordingly. This program is first loaded into the RAM
applying similar procedures as discussed in Section 4.2. Applying appropriate logic
level to the MANUAL AUTO input signal (low for manual-clocked mode, high for
auto-clocked mode), program test run has been carried out for both clocking mode.
The SPDT switch connected to the inputs of the Single-Step De-bouncer is used to
generate manual CLK signal in manual-clocked mode. Kindly refer to Appendix F for
details on pin assignments, pin interconnections across boards, and input/output

device utilization of all UP2 platforms used in modular SAP-1 prototype.

Table 7 summarizes the observations at each clock state resulting from
switching of the Single-Step switch for test program execution in manual-clocked
mode. Similar to representations in Table 6, ‘1” in the Table 6 indicates that LED is
on whereas ‘0’ represents the opposite. Note that the active low LEDs on the UP2
platform are driven by inverted signals of T, LDA, ADD, SUB, OUT, HLT, CLK, and
CLR (Tnot, LDAnot, ADDnot, SUBnot, OUTnot, HLTnot, CLKnot, and CLRnot). For

better clarity, logic levels of the non-inverted signals are presented in the table.

43



TABLE 7: Detailed observations of test program execution on modular SAP-1

prototype in manual-clocked mode

Active
Swntc'hmg CIE | Tstate Decude:d Actlv.e Control
Action Instruction Signals
Signal

o | o= —|o|=]lo

Register Transfer
/

Register Value

i on
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46 0
yr ] Tf6] our
0 - - -
55 0 HLT
56 0 ™ } _ _
57 0
Abbreviations
PC - Program Counter ACC . Accumulator
MAR - MAR & 2 to IMUX A/S - Adder/Subtractor
RAM - § x 8 RAM BR - B Register
IR - Instruction Register CR - Output Register



From Table 7, it is clear that the modular SAP-1 prototype is able to show
logic level of the CLK signal, 7f1] through T/6/ signals, dec.oded instruction signals,
control signals, as well as all register transfers in the system. All register transfers
take place during the positive CLK edge of each T state. They are recorded in the
table using the following format:-

R[destination] « R[source]
The column labelled “Register Value™ is used to record value of the register content
loaded from the source register to the destination register. For example, content of the
Program Counter (0x0) is loaded into the MAR & 2 to 1 MUX at the positive CLK
edge in between the 1% and 2™ switching action. All register transfers take place
through the WBus, except for incremental of the Program Counter count occurring at

each T state.

The active control signals remain high throughout the entire T state as
observed. Similar to observations in the prototype developed for SAP-1 system
synthesis, all instructions are decoded at the positive CLK edge halfway through Tj,
as soon as the instruction is loaded from the 8 x 8 RAM into the Instruction Register.
At the positive CLK edge between the 42™ and 43" switching action, it has been
observed that final computational result of 0xf0 is loaded from the Accumulator to
the Output Register. This verifies functionality of the prototype as the test program
essentially performs computation of Oxaa plus 0x55 minus 0x0f. Behaviour of all
other signals has also been found to be correct examining the prototype carefully.
Kindly refer to Chapter 10 of [1] Digital Computer Electronics by Malvino (1983) to

verify test results of this section in detail.
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CHAPTER 5
CONCLUSION & RECOMMENDATION

5.1 Conclusion

SAP-1 computer architecture is a good model for introductory computer system
architecture understanding. It eliminates advanced functional blocks that are difficult
to understand, yet retaining basic components sufficient to introduce all essential
concepts in computer operation [1]. Thus necessity of SAP-1 computer models in lab

experiments of the university’s course can be seen.

Developing the computer system on FPGA, the project provides not only
exposure to knowledge on computer system architecture, but also creates fearning and
practice opportunity of digital system design using HDL programming such as
Verilog. Development on FPGA has also higher robustness and ease of debugging
compared to TTL circuits. Implementation on FPGA also provides an alternative for

learning of computer system through HDL and FPGA.

Project work in Semester 1 generally involves literature studies such as digital
electronics fundamentals, SAP-1 architecture, and Verilog HDL, as well as modular
and system simulation of SAP-1 computer on ModelSim XE III software. All Verilog

programs written for SAP-1 computer have been verified successfully.

System synthesis and modular synthesis of SAP-1 computer on Altera’s UP2
platforms have been carried out in Semester 2. Working prototypes have been
produced for SAP-1 system on a single UP2 platform, and SAP-1 modular synthesis
utilizing 10 UP2 platforms. With proper design, the modular SAP-1 prototype is able
to demonstrate operations of SAP-1 computer down to microinstruction level for

good understanding of SAP-1 computer system.
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5.2 Recommendation

It is recommended that design of SAP-1 system synthesis prototype can be expanded
to show more details similar to that of modular SAP-1 prototype. This may be useful

if resource of the UP2 development platform is limited.

Apart from that, projects on development of SAP-2 and SAP-3 computer
system on FPGA can be offered to students undertaking this Final Year Project
course in the future. These computer models features more instructions than SAP-1
computer, useful for enhancing understanding of computer systems with more

complex architecture.
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APPENDIX A
MODIFIED BLOCK DIAGRAM OF SAP-1
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FIGURE 17: Modified block diagram of SAP-1 redrawn from chapter 10 of [1]
Digital Computer Electronics by Malvino (1983)
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APPENDIX B
TRUTH TABLE OF BINARY TO HEXADECIMAL
7-SEGMENT DISPLAY DECODER MODULE

TABLE 8: Truth table of binary to hexadecimal 7-segment display decoder module
for common anode, active low 7 segment display on

Altera’s UP 2 Development Platform

Binary Qutput (a = MSB, h = LSB = decimal point)

Input a b c d e f g h
0000 0 0 0 0 0 0 1 1
0001 | 0 0 1 1 1 1 1
0010 0 0 1 0 0 1 0 1
0011 0 0 0 0 1 1 0 1
0100 1 0 0 1 | 0 0 1
0101 0 1 0 0 1 0 0 1
0110 0 1 0 0 0 0 0 1
0111 0 0 0 1 1 1 1 1
1000 0 0 0 0 0 0 0 1
1001 0 0 0 0 1 0 0 1
1010 0 0 0 1 0 0 0 1
1011 1 1 0 0 0 0 0 1
1100 0 1 1 0 0 0 1 1
1101 1 0 0 0 0 1 0 1
1110 0 1 1 0 0 0 0 1
1111 0 1 1 1 0 0 0 1
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APPENDIX C
ALTERA’S UNIVERSITY PROGRAM 2
DEVELOPMENT PLATFROM COMPONENT LAYOUT
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FIGURE 18: Component layout of Altera’s University Program 2 Development
Platform from page 3 of [13] "University Program UP2 Education Kit User

Guide v3.1”, Altera Corporation, www.altera.com/literature/univ/upds.pdf
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APPENDIX D
SAP-1 SYSTEM SYNTHESIS SOURCE CODE

As compilation of SAP-1 Verilog programs during system synthesis is done in a

single project without partitioning them according to modules, duplication of similar

modules is not allowed. For example, only D flip-flop module (D _FF() in source file
d_flipflop.v) from the MAR & 2 to 1 MUX module is included in the project. All

instantiations of this module within the system will take the same source file.

However, for better clarity, the source code is arranged here with duplications as if

compilation of independent modules is done.

D-1

Program Counter

D-1.1 Program Counter with Tri-state Qutput

module PROGREM CCUNTER(PC, WBus, Cp, Ep, CLK, CLR);:

// Cp -> high to increment BC count
// Ep -> high to put PC count at WBus

output [3:0] PC;

output [7:0] WBus;

tri [7:0] WBus;

input Cp, Ep, CLK, CLR;
wire none;

JKFF_Q POSCLK_POSCLR PCC (EC[O],Cp,Cp, CLK, CLR) ;

JKYF_(Q POSCLK_POSCLR PC1(FC[1],Cp,Cp,~PC[0],CLR);
JEFF_Q POSCLK_POSCLR PC2 (FC[2],Cp,Cp,~PC[Ll],CLR);
JKFF_Q POSCLK_POSCLR PC3(PC[3],Cp,Cp,~PC[2],CLR);

assign nene = 0;

bufifl (WBus[0],PC[0],Ep};
bufifl (WBus[1],BC[1],Ep);
bufifl (WBus[2],PC[2],Ep);
bufifl (WBus[3],PC[3]),Ep};
bufifl (WBus[4],none, none) ;
bufifl (WBus[5],none,none) ;
bufifl (WBus[6],none,none) ;
bufifl (WBus[7],none,none) ;

endmodule

D-1.2 JK Flip-flop

module JKFF_Q POSCLK POSCLR (Q,J,K,CLK,CLR) ;

input J,K,CLK,CLR;
output Q;
reg Q;
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always @{posedge CLK or posedge CLR}
begin .
if {CLR} ¢ = 1'b0;

else if ({J,K} == 2'b00) Q = Q;
else if ({J,K} == 2'b01) Q@ = 1'bO0;
else if ({J,K} == 2'bi0) Q = 1'bl;
else if ({J,K} == 2'bll) Q = ~0Q;
end
endmodule

D-2 MAR & 2 to 1 Multiplexer

D-2.1 MAR + 2 to 1 Multiplexer

module MAR MUX(MUX OUT, ADDR_IN, WBus, Lm, CLK, RUN_PROG);
input Im, CLK, RUN_PROG;
input [3:0] ADDR_IN;
input [3:0] WBus;
wire [3:0] MAR_OUT;
output [3:0] MUX_OUT;
MAR MAR_MUX_l(MAR OUT, WBus, Lm, CLK});
MUX MAR MUX_2 (MUX_OUT, MAR OUT, ADDR_IN, RUN_PROG);

endmodule

D-2.2 MAR

module MAR(MAR CUT, WBus, Lm, CLK);

// Lm ~> high to load PC count from WBus
input [3:0] WBus;
input Lm, CLK;
output [3:0] MAR OUT;
D FF MARO{MAR_OUT[U],WBuS[O],Lm,CLK);
D_FF MARL (MAR_OUT[1],WBus[1],Lm,CLK};
D_FF MAR2 {MAR_OUT{2],WBus[2],Lm,CLK};
D_FF MAR3{MAR_OUT [3],WBus [3],Lm, CLK) ;

endmodule

D-2.3 2to I Multiplexer

module MUX (MUX_OUT, MAR_OUT, ADDR_IN, RUN_PROG);

// RUN_PROG == 0 -> program

/7 -> address from switches taken
// RUON_PROG == 1 -> run
// -> address from MAR output taken

input [3:0] MAR OUT, ADDR IN;
input RUN_PROG;
output [3:0] MUX OUT;

assign MUX OUT = RUN_PROG? MAR_OUT : ADDR_IN:
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endmodule

D-2.4 D Flip-flop with Enable Input for Data Loading

module D_FF(Q,D,EN,CLK);

input DB,EN,CLK;
cutput Q:
reqg Q;

always @(posedge CLK)
if (EN == 1)
Q = D;
else

Q= Q;

endmodule

D-3 16 x8RAM

D-3.1 16 x 8 RAM

module _16x8_ RAM(WBus, DATA OUT, RAM_DISPLAY HEX,
MUX_OUT, DATR IN, CE, RUN _PROG, READ WRITE);

// RUN_PRCG == 0 --> PROG; RUN_PROS == 1 -—> RUN
// REBD WRITE == 0 --> WRITE; READ WRITE == 1 —-> READ

input [3:0] MUX_OUT;

input {7:01 DATA_IN;

input CE, RUN_PROG, READ WRITE:
output [7:0] WBus, DATA OUT;
output [15:0] RAM DISPLAY HEX;
wire [7:0] RAM DISPLAY;

tri [7:0] WBus;
reg [7:0] DATA_OUT;
reg [7:0] MEM [15:0];

always @ (MUX_QUT or DATA IN or RUN PROG ¢r READ WRITE)
begin

if (!RUN_PROG)
begin
if (!READ_WRITE)
MEM [MUX_OUT] = DATA IN;
end

else if (RUN_PROG)
DATA OUT = MEM [MUX OUT];

else;
end
assign RAM DISPLAY = MEM [MUX_OUT};
HEX _DISPLAY RAM_HEX 1

(RAM_DISPLAY HEX[15:8]1,RAM_DISPLAY{7:41);:
HEX DISPLAY RAM HEX 2

(RAM DISPLAY HEX{7:0],RAM DISPLAY[3:0]):
pbufifl (WBus[C], DATA_OUT[O],CE);
bufifl (WBus[1],DATA_OUTI[1],CE):

bufifl (WBus[2], DATA OUT[2],CE);
bufifl (WBus [3], DATA OUT[3],CE);
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D-3.2

D-4.1

bufifl(WBus[4],DATA_OUT[4],CE);
bufifl (WBus[5],DATA QUT[5],CE);
bufifl(WBUS[G],DBTA%OUT[GJ,CE)i
bufifl (WBus[7],DATA OUT[7],CE);

endmodule

Hexadecimal Display

module HEX DISPLAY(HEX OUT,HEX IN);

// HEX_OUT -> signals a-h of active low hex 7-segment display
/7 MSB = &, LSB = h {decimal point)

output {7:0] HEX OUT;
input [3:0] HEX_INK;
reg [7:0] HEX_OUT;

always @(HEX TN)

case (HEX_IN)
4'kL0001 : HEX OUT = 8'bl0011111;
4'b0010 : HEX_OUT = 8'b00100101;
4'b0011 : HEX_OUT = 8'b00001101;
4'b0100 : HEX OUT §'b10011001;
4'p0101 : HEX_OUT B8'b01001001;
4'b0110 : HEX OUT 8'b01000001;
4'b0111 : HEX_OUT 8'b00011111;
4'p1000 : HEX_OUT 8'b00000001;
4'pL1001 : HEX OUT §'L00001001;
4'p1010 : HEX_OUT 8'b00010001;
4'blG1ll : HEX OQUT 8'11000001;
4'b1100 : HEX OUT 8'b01100011;
4'bil01 : HEX_OUT 8'b10000101;
4'b1110 : HEX_QUT = 8'b0OLl1l0000L;
4'bl111 : HEX _OUT = 8'bJ1110001;
default : HEX_OUT = §'b00000011;

endcase

[}

endmodule

Instruction Register

Instruction Register with Tri-state Address Output

module INSTRUCTION_REGISTER(IR_QUT_ADDR, IR OQUT IN3, WBus, Li, Ei, CLE,

// Li -> high to lecad instruction from WBus

// El -> high to put lower nibble of insturction

/7 (data address field) at WBus

/Y

// IR_OUT_ADDR -> data address field of instructiocn

// IR_CUT_INS -> instuction opcode field (upper nibble)

input Li, Ei, CLX, CLR;

inout [7:0] WBus;

output [3:0] IR_OUT ADDR, IR QUT INS;
tri [7:0] WBus;

D _FF IRO({IR_OUT ADDR[0],WBus[0],Li,CLK);
D_FF IR1{IR_OUT ADDR[1],WBus[l],Li,CLR);
D_FF IR2{IR_CUT ADDR[2],WBus[2],Li,CLK);
D _FF IR3(IR_OUT_ADDR([3],WBus[3],1Li,CLK);
DFF_POSCLR IR4 (TR_OUT_INS[0],WBus[4],Li,CLK,CLR);
DFF_PCSCLR IR5(IR_OUT_INS[1],WBus([5],Li,CLK,CLR);
DFF_POSCLR IR6(IR_OUT_INS[2],WBus[6],Li,CLK,CLR);
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DFF_PQSCLR TR7(IR_OUT_INS[3],WBus[7],Li,CLK,CLR);
bufifl{WBus[0],IR_OUT ADDR[O],Ei};
bufifl {WBus[1],TIR_OUT ADDR[1],Ei};
bufifl{WBus[Z2], IR_OUT_ADDR[2],Ei):
bufifl (WBus [3], IR_OUT_ADDR[3],Ei);

endmodule

D-4.2 D Flip-flop with Enable Input for Data Loading

module D_FF{Q,D,EN,CLK);

input D,EW,CLK;

output Q;
reg Q;
always B{posedge CLK)
if (BN == 1)
Q=D
else
Q= Q
endmodule

D-4.3 D Flip-flop with Data Loading Enable & Clear Input

module DFF POSCLR(Q,D,EN,CLK,CLR) ;

input D,EN,CLK, CLR;
output Q;
reqg Q;

always @(posedge CLE or posedge CLR)
if (CLR == 1)

Q= 0;
else if (EN == 1)
Q= D;
else
Q=0
endmodule

D-5 Accumulator

D-5.1 Accumulator

module ACCUMULATCR (ACCU QUT, WBus, La, Ea, CLK)};

// La -> high to load data from WBus
// Ea -> high to put accumulator content ot WBus

input La, Ea, CLX;
inout [7:0] WBus;
output [7:0} ACCU_QUT;
tri [7:0] WBus;

D_FF ACCUO{ACCU_OUT[0],WBus[0],La,CLK);
D_FF ACCUL{ACCU_OUT[1},WBus[1],La,CLK);
D_FF ACCU2{ACCU QUT[2],WBus[2],La,CLK);
D_FF ACCU3{ACCU_0UT[3],WBus[3],La,CLK);
D_FF ACCU4{ACCU_OUT[4],WBus([4],La,CLK);
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D_FF ACCUS (ACCU_OUT[5],WBus([5],La,CLK);
D_FF ACCU6 (ACCU _OUT[6],WBus[6],La,CLK);
D_FF ACCU7 (ACCU_CUT{7],WBus[7],La,CLK) ;

bufifl {WBus[0],ACCU_OUT[0],Ea);
bufifl {WBus[1],ACCU OQUT[L],Ea};
bufifl{WBus[2],ACCU OUT[Z2],Ea};
bufifl {WBus[3],ACCU QUT[3],Ea);
bufifl (WBus [4],ACCU_OUT[4],Ba};
bufifl (WBus[5],ACCU_OUT[51,Ea};
bufifl (WBus[6],ACCU_OUT[6E]),Ea);
bufifl (WBus (7] ,ACCU OUT[7],Ea);

endmodule

D-5.2 D Flip-flop with Enable Input for Data Loading

module D_FF(Q,D,EN,CLK};

input D,EN,CLE;
output Q;
reg Q;

always @ (posedge CLK)
if (EN == 1)

Q= D;
else
Q=0q;
endmodule

D-6 Adder/Subtracter

D-6.1 Adder/Subtracter

module ADP SUB(ADD SUB_CUT, WBus, ACCU _OUT, B_REG_OUT, Su, Eu);

// Su -> subtraction operation enable bit, high te ceonvert

/7 B Register cutput to 2's complement form

/

// Bu -> high to put arithmetic operation result on WBus
/7

// ADD_SUB_OUT -> ARdder/Subtracter's output, arithmetic

174 operation result

I

// ACCU_OUT -> Accumulator's output, operand of arithmetic
/7 operation

//

// B_REG_CUT ~> B Register's output

/7

// B ~> temporary register to hold operand of arithmetic
/r operation

// == B_REG_OUT for addition operaticn

// == ~B_REG_OUT for subtraticn operation

/7 {added with 1 (Su) for 2's complement of B_REG_OUT)

output [7:0] ADE SUB_OUT, WBus;
input [7:0] ACCU_OUT, B_REG QUT;
input Su, Eu;

reg [7:0] ADD SUB_OUT,B;

tri (7:0] WBus:

always € (ACCU_OUT or B_REG_OUT or Su)

begin
if (Su)
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begin B = ~(B_REG_OUT); end
else
begin B = B_REG_0UT; end
ADD_SUB_OUT = ACCU_OUT + B + Su;
end

bufifl (WBus [0} ,ADD SUB OUT[J],Eu);
Dufifl (WBus[1],ADD_SUB OUT[L],Eu}
bufifl(WBus([2],ADD_SUB _OUT([2],Eu);
bufifl (WBus [3],ADD_SUB OUT[3],Eu);
bufifl (WBus [4],ADD SUB_OUT[4],Eu);
bufifl (WBus[5],ADD_SUB_OUT[S],Eu) ;
bufifl{WBusi6],ADD SUB QUT[6],Eu};
bufifl{(WBus[7],ADD SUB_OQUT[7],Eu} ;

endmodule

D-7 B Register

D-7.1 B Register

module B REGISTER(B_REG OUT, WBus, Lb, CLK):
// 1b -> high to lcad data from WBus

output [7:0] B_REG_OUT;
input [7:0] WBus:
input Lb, CLX;

D_FF B_REG_0 (B_REG_OUT[0],WRus [0],Lb,CLK);
D FF B_REG_1(B REG OUT[1],WBus[1},Lb,CLK);
D _FF B _REG_2 (B REG OUT[2],WBus[2],Lb,CLK);
D _FF B _REG 3(B REG 0UT[3],WBus[3],Lb,CLK);
D FF B REG 4 (B _REG OUT[4],WBus[4],Lb,CLK);
D_FF B_REG_5(B_REG OUT[5],WBus[5],Lb,CLK);
D FF B _REG_6(B_REG_OUT[6],WBus[6],Lb,CLK) ;
D_FF B _REG_7(B_REG_OUT[7],WBus([7],Lb,CLE);

endmodule

D-7.2 D Flip-flop with Enable Input for Data Loading

module D _FF(Q,D,EN,CLK};

input D,EN,CLE;
cutput Q;
reg Q;

always @(posedge CLK)
if (EN == 1)
¢ = D;
else
e = O

endmodule
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D-8

D-8.1

D-8.2

D-8.3

Output Register

Output Register

module QUTPUT_REGISTER (QUT_REG, QUT_REG HEX, WBus, Lo, CLK}):
// Lo -> high to load data from WBus

cutput [7:0] OUT_REG;
ocutput [15:0] OUT_REG_HEX;
input [7:0] WBus;

input Lo, CLK;

D_FF OUT_REG_0{OUT_REG[C],WBus [0],Lo, CLK) ;
D_FF OUT_REG_1{QUT_REG[1],WBus[1l],Lo,CLK) ;
D_FF OUT_REG_2 (OUT_REG[2],WBus[2],TLo,CLE);
D_FF OUT_REG_3(OUT_REG[3],WBus [3], Lo, CLK) ;
D_FF QUT_REG_4(OUT REG[4],WBus[4],TLo,CLE) ;
D_FF QUT_REG_5(OUT_REG[S],WBus[5],Lo,CLK) ;
D_FF OUT_REG_6(OUT_REG([6],WBus [6],Lo, CLK) ;
D_FF OUT_REG_7({OUT_REG[7],WBus[7],Lo,CLK);

HEX_DISPLAY OUT_HEX_1
(OUT_REG_HEX[15:8],0UT REG[7:4]):

HEX DISPLAY QUT_HEX 2
(OUT_REG_HEX[7:0],0UT_REG[3:01);

endmodule

D Flip-flop with Enable Input for Data Loading

module D FF{Q,D,EN,CLK);

input D,EN,CLK;
output 0
reg Q;

always @(posedge CLK)
if (EN == 1}

Q = D;
else
Q= Q;
endmodule
Hexadecimal Display

module HEX_DISPLAY (HEX OUT,HEX_ IN};

// HEX _OUT -> signals a-g of hex 7-segment display
// MSB = a, LSB = g

output [6:0] HEX CUT;
input [3:0] HEX_IN;
reg [6:0] HEX OUT;

always @{HEX IN)

case (HEX LK)
4'b0001 : HEX _OUT = 7'b0110000;
4'bG010 : HEX OUT 7T'h1101101;
4'pb0011 : HEX OUT T'h1111001;
4'b0100 : HEX OUT = 7'h0110011;

4'b0101 HEX:OUT = 7'b1011011;
4'0110 : HEX QUT = 7'b1011111;
4'p0111 : HEX_QUT = 7'b1110000;

4'pl000 : HEX_OUT 7'bl111111;
4'p1001 : HEX OUT = 7'b1111011;
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4'b1010 : BEX OUT = 7'b1110111;
4'b1011 : HEX OUT 7'b0011111;
4'b1100 : HEX OUT 7'b1001110;
4'£1101 : HEX_OQUT = 7'b0111161;
4'pll1l0 :; HEX_OUT = 7'bl001111;
4'bl11! : HEX_QUT = 7'b1000111;
default : HEX OUT = 7'b1111110;
endcase

endmodule

D-9  Controller/Sequencer (Instruction Decoder, Ring Counter & Control
Matrix)

D-9.1 Controller/Sequencer

module CONTROLLER_SEQUENCER
(Cp, Ep, Lm, CkE, Li, Ei, La, Ea, 3u, Bu, Lb, Lo,
LDAnot, ADDnot, SUBnot, OUTnot, HLTnot,
HLT, IR_QUT INS, T, CLK, CLR);

output Cp, Ep, Llm, CE, Li, Ei, La, Ea, Su, Eu, Lb, Lo,
LBAnot, ADDnot, SUBnct, OUTnot, HBLTnot, HLT;

output [6:1] T;

input CLK, CLR;

input [3:0] IR_OUT_INS;

wire LDA, ADD, SUB, OUT;

wire [6:1] Tnot;

RING_COQUNTER RC{T, Tnct, CLE, CLR);

INSTRUCTICN_DECODER ID(LDA, ADD, SUB, OUT, HLT, IR _CUT INS);

CCNTROL _MATRIX CM(Cp, Ep, Im, CE, Li, Ei, La, Ea, Su, Eu, Lb, Lo,
LDA, ADD, SUB, OUT, HLT, T, CLK, CLR);

assign LDAnot = ~IDA,
ADDnot = ~ADD,
3UBnot = ~5UB,
0UTnot = ~DUT,
HLTnot = ~BLT;
endmodule

D-9.2 Instruction Decoder

module INSTRUCTION_DECODER({LDA, ADD, SUB, OUT, HLT, IR_OUT_INS):

// asscciate contreol line of each routine with their
/7 corresponding opcode

output LDA, ADD, SUB, CUT, HLT;
input [3:0] IR _OUT INS;

assign  LDA (IR_OUT_INS == 4'b0000)? 1'bl : 1'b0,
ADD = (IR QUT_INS == 4'bJ001)? 1'bl : 1'b0,

SUB = (IR_CUT_INS == 4'b0010)? 1'bl : 1'bO,
OUT = (IR_OUT_INS == 4'bll1l0}? 1'bl : 1'bO,
HLT = (IR OUT_INKS == 4'b1111)? 1'bl : 1'b0;

endmodule
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D-9.3 Ring Counter

module RING_COUNTER(T, Tnot, CLK, CLR):

// CLR high -» Ring Counter resets to 000001
H

// Ring Counter shifts left at each negative
//  edge of CLK

output [6:1] T, Tnot;
input CLK, CLR;

JKFF_Qnot_NEGCLK_POSCLR RC1
(Tnot[l],T[l],Tnot[G],T[G],CLK,CLR};
JKFF_Qnot_NEGCLK FOSCLR RC2
(T[2),Tnot([2],T[1],Tnot{1l],CLK,CLR) ;
JKFF_Qnot_NEGCLK_POSCLR RC3
(T[3],Tnot[3],T[2],Tnot[2],CLK,CLR) ;
JKFF_QnOt_NEGCLK_POSCLR RC4
(T[4],Tnot[41,T[3],Tnot[3],CLK,CLR};
JKFF_{Qnot_NEGCLK_POSCLR RCS
(T(51,Tnot[5],T[4],Tnot[4],CLK,CLR);
JKFF_Qnot NEGCLK POSCLR RC6
(T[6],Tnot (&1, T[5],Tnot[5],CLK, CLR) ;

endmodule

D-9.4 Control Matrix

module CONTROL MATRIX(Cp, Ep, Im, CE, Li, Ei, La, Ea, Su, Eu, Lb, Lo,
1DA, ADD, SUB, OUT, HLT, T, CLK, CLR};

output Cp, Ep, Im, CE, 1i, Ei, La, Ea, Su, Eu, Lb, Lo:
input LDA, ADD, SUB, QUT, HLT, CLK, CLR;

input [6:1]1 T:

assign cp = {T[21;? 1'bl : 1'bO,

Ep = (T[i])? 1'Bl : 1'kO0,

tm = (T{1] || (LDA && T[41) || (ADD && T[4]} || (SUB && T[4]})?
1'bl : 1'b0,

CE = (T[3] || (LDA && T{5]) || (ADD && T[5]) || (SUB && T[5]1))7?
1'bl : 1'b0,

Li = (T[3])? 1'bl : 1'kO0,

Ei = ((LDA && T{4]) || {(ADD && T[4]1} |1 (SUB && T[4]})7?
1'bl : 1'bO,

La = ((LDA && T{5]) |l (RDD && T[&]) i (SUB && T[6]1))7
1'bl : 1'b0O,

Ea = (OUT && T[4])7 1'bl : 1'bO,
Su = (SUB && T[6])? 1'bl : 1'bO,
Eu = ((ADD && T[6}) || (SUB && T[6])}? 1'bl : 1'b0,
b = ((ADD && T[5]1) || (SUB && T[5])})? 1'bl : 1'v0,
Lo = (00T && T[4])7 1'bl : 1'bO0;

endmodulie
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D-9.5

D-10

Positive-edge-triggered JK Flip-flop with Active High Clear

medule JEFF(Q,Qnot,dJd,K,CLK,CLR) ;

input J,K,CLK,CLR;
output @Q,Qnot;
reg Q,Qnot;

always @(negedge CLK or posedge CLR)
begin
if (CLR}
begin
Q = 1'k0;
Qnot = ~Q;
end
else if ({J,K} == 2'b00)
begin
Q=
Qnot = ~Q;
end
else if ({J,E} == 2'b0L)
begin
Q = 1'b0;
Qnot = ~Q;
end
else 1if ({J,X} == 2'bl0)
begin
Q= 1'bl;
Qnot = ~Q;
end
else if ({J,K} == 2'bl1)
begin
¢ = ~Q:
Qnot = ~0;
end
end

endmodule

Mode-Select Switches, De-bouncers & Clock Buffer

D-10.1 De-bouncers

// START CLEAR switch -> START active low

I CLEAR active high
// MANUAL AUTC switch —-> MANUAL active low
// AUTQ active high

// LOW -> LOW manual CLK signal for logic 0 input
// HIGH -> HIGH manual CLK signal for leogic 0 input
// **All switches gives logic low when pressed**]
//

// DB_TEMPl -> clock signal in MANUAL mcde

// DB_TEMP2 -> clock signal in AUTO mode

moduls DEBCUNCERS (CLK, CLR, rawCLK, START CLEAR, LOW, HIGH,
MANUAL AUTO, HLT, rawrawCLK):;

cutput CLX;

input START CLEAR, LOW_HIGE, LOW_HIGH not, MANUAL AUTO, HLT,

rawrawCLK;

inout CLR, rawCLK;

wire CLRnot, HI_LCnot, EI_LC, MANUAL OUT, AUTO_OUT,
DB_TEMP1, DB_TEMPZ2;

CLEAR_START DEL (CLR, START CLEAR);

SINGLE_STEP  DB2 (HI_LO, LOW, HIGH);
AUTC_MANUAL  DB3 (MANUAL_OUT, AUTO_OUT, MANUAL AUTO);
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CLOCK D84 (rawCLK, HLT, rawrawCLK, CLR):;

and  DBS(DB TEMPl, ~HLT, EI LO, MANUAL OUT),
DBE(DB_TEMP2, AUTO OUT, rawCLK};

or DB7 (CLK, DB_TEMFl, DB_TEMP2};

endmodule

D-10.2 Clear-Start De-bouncer

module CLEAR START{CLR, START CLEAR);
cutput CLR;
input START_CLEAR;
wire CLRnot, START_CLEAR_NOT;
not gl(START CLEAR NOT, START_CLEAR);
SR_LATCH C8(CLRnot, CLR, START CLEAR, START CLEAR NOT);

endmodule

D-10.3 Single-Step De-bouncer

module SINGLE STEP(HI_LO, LOW, HIGH);
output HI_LO;
input LOW, HIGH;
wire EI LOnot;

SR_LATCH SS({(HI ILOnct, HI_LO, LOW, HIGH);

endmodule

D-10.4 Manual-Auto De-bouncer

module AUTC MANUAL{MANUAL OUT, AUTO OUT, MANUAL AUTQ);
output MANUAL OUT, AUTO_OUT;
input MANUAL AUTO;
wire MANUAL_AUTO NOT;
not gl (MANUAL AUTO_NOT, MANUAL_AUTO);

SR_LATCH
AM (MANUAL_OUT, AUTO OUT, MANUAL AUTO, MANUAL AUTO_NOT) ;

endmodule

D-18.5 Clock Buffer

module CLOCK(rawCLK, HLT, rawrawCLK, CLR};

output rawCLK;
input HLT, rawrawCLEK, CLR;

JKFF_() POSCLK_POSCLR Clockl
(rawCLK, ~HLT, ~HLT, rawrawCLK,CLR};

endmodule
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D-10.6 Active Low SR Latch

module SR_LATCH(Q, Onot, Snot,Rnot) ;

cutput @, Qnot;
input Snot, Rnot;

or gl(Q,~Snct,~Qnot),
g2 (Qnot, ~Rnot, ~Q) ;

endmcdule

D-10.7 Positive-edge-triggered JK Flip-flop with Active High Clear

module JEFF_(Q_POSCLE_POSCLR(Q, J,K, CLK, CLR} ;

input J,K,CLEK,CLR;
output Q;
reg Q;

always @{posedge CLK or posedge CLR)
begin
if (CLR} @ = 1'b0;

else if ({J,K} == 2'000} Q = Q;
else if ({J,K} == 2'p01) Q = 1'b0;
else if ({J,K} == 2'bl0) Q = 1'bl;
else if ({J,K} == 2'bll) { = ~Q;
end
endmodule
D-11 SAP-1
D-11.18AP-1

module SAPL(RUN_PROG, READ WRITE, START CLEAR, LOW, HIGE,
MANUAL AUTO, rawrawCLK, ADDR_IN, DATA IN,
CLK, CLR, Cp, Ep, Lm, CE, Li, Ei, La, Ea, Su, Eu, Lb, Lo,
HLT, WBus,
LDAnct, ADDnot, SUBnot, OUTnet, HLTnot, CLEnot, CLRnet,
MUX_OUT, Tnot, OUT_REG, DIGIT DISPLAY);

input RUN_PROG, READ_WRITE, START_CLEAR, LOW, HIGH,
MANUAL AUTO, rawrawCLK;

input [3:0] ADDR_IN;

input [7:0] DATA IN;

inout CLK, CLR, Cp, Ep, Lm, CE, Li, Ei, La, Ba, Su, Eu, Lb, Lo,
inout [7:0] WBus;

output LDAnot, ADDnect, SUBnot, OUTnot, HLTnot, CLKnot, CLRnot;
output [3:0] MUX_OUT;

output {6:1] Tnot;

output [7:0] OUT REG;

output [15:0] DIGIT_DISPLAY;

wire rawCLE;

wire [3:0] PC, IR OUT ADDR, IR_OUT_INS;

wire {6:1] T;

wire [7:0] DATA OUT, ACCU OUT, ARD SUB_OUT, B_REG OUT;
wire [15:0] OUT_REG_HEEX, RAM DISPLAY HEX;

tri [7:0] WBus;
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PROGREM_COUNTER
saPl_01(PC, WBus, Cp, Ep, CLK, CLR);

MAR_MUX
SAP1_02 {MUX_OUT, ADDR_IN, WBus, Lm, CLK, RUN_PROG);

_16x8_RAM
SAP1_03(WBus, DATA OUT, RAM DISPLAY HEX,
MUX OUT, DATA IN, CE, RUN_PROG, READ WRITE):;

INSTRUCTION REGISTER
SAP1 04 (IR_OUT ADDR, IR CUT INS, WBus, Li, Ei, CLK, CIR);

ACCUMULATOR
SAP1_05(ACCU_QUT, WBus, La, Ea, CLK);

ADD_SUB
SAP1_06(ADD SUE_OUT, WBus, ACCU OUT, B REG_OUT, Su, Eu);

B_REGISTER
SAP1_ 07 (B_REG_OUT, WBus, Ib, CLK);

QUTPUT_REGISTER
SAP1 0B (OUT _REG, OUT_REG_HEX, WBus, Lo, CLK):

CONTROLLER_SEQUENCER
$AP1 09(Cp, Ep, Im, CE, Li, Ei, La, Ea, Su, Fu, Lb, Lo,
LDAnot, ADDnot, SUBnct, OUTnot, HLTnot,
HLT, IR _OUT_INS, T, CLK, CLR);
DEBCUNCERS

SAPL 10(CLK, CLR, rawCLK, START_CLEAR, LCW, HIGH,
MANUAL_AUTO, HLT, rawrawCLK}:

assign DIGIT DISPLAY = RUN_PROG? OUT REG_HEX : RAM DISPLAY HEX,
Tnot = ~T,
CLEnot = ~CLK,
CLRnot = ~CLR;

endmodule

D-12 Additional Hexadecimal Display of MAR & 2 to I MUX Output on MAX
70008 Device

D-12.1 Additional Hexadecimal Display of SAP-1 on MAX7000S Device

module SAPl MAX (MUX_OUT HEX, BLANK DISPLAY, MUX OUT);

output [7:0] MUX_OQUT_HEX, BLANK_DISFLAY;
input [3:0} MUX OUT;

HEX DISPLAY SAP1l MAX DISPLAY (MUX CUT HEX,MDX OUT);
assign BLANK DISPLAY = 8'hff;

endmodule

D-12.1 Hexadecimal Display

module HEX DISPLAY (HEX OUT,HEX_IN):;

// HEX_CUT -> signals a-g of hex 7-segment display
/7 MSB = a, LSB = g
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output [6:0] HEX OUT;
input [3:0] HEX IN;
reg [6:0] HEX OUT;

always @(HEX_IN)

case (HEX_IN)

endmodule

4'p0001
4'p0010
4'50011
4'20100
4'0101
4'p0110
4'b0111
4'b1000

4'h1100

4'h1101 :

4'b1110

¢ HIR_OUT

: HEX_OUT
: HEX_OUT
: HEX_OUT
: HEX_OUT
: HEX_OUT
: HEX_OUT
¢ HEX_QUT
4'b1001
4'bi010 :
4'p1011 :

HEX_OUT
HEX_OUT
HEX_OUT

: HEX_OUT

HEX_QUT

: HEX_OUT

4'b1111 -
default :
endcase

HEX_OUT =
HEX_OUT =

7'b011000C0;
7'b1101101;
7'bi111001;
7'b0110011;
7'b1011011;
7'b1011111;
7'p1110000;
7'blil1111;
7'b1111011;
7'b1110111;
7'b0011111;
7'b1001110C;
7'b0111101;
7'b1001111;
7'b1000111;
7'b1111110;
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APPENDIX E
SAP-1 MODULAR SYNTHESIS SOURCE CODE

E-1  Program Counter

E-1.1 Program Counter with Tri-state Output

module PROGRAM COUNTER{PC,PC_HEX, BLANK DISPLAY,WBus,Cp,Ep,CLE, CLR, Cpnot,Epnot) ;

// Cp -> high to increment PC count
// Ep -> high to put BC count at WBus

output [3:0] PC;

output [7:0] WBus, PC_HEX, BLANK_DISPLAY;
output Cpnot, Epnot;

tri [7:0] WBus;

input Cp,Ep,CLK,CLR;

wire none;

JKFF_Q_POSCLE_POSCLR PCO (PC[0],Cp, Cp, CLK, CIR) ;
JKFF_Q_POSCLX_POSCLR PC1(PC[1],Cp,Cp,~BC[],CLR};
JKFF_Q POSCLX_POSCLR PC2(PC[2],Cp,Cp,~EC[1],CLR);
JKEF_()_POSCLK_POSCLR PC3(PC([31,Cp,Cp,~PC[2],CLR) ;

assign none = 0;

bufifl (WBus[0],PC[0],Ep);
bufifl (WBusi{l],PC[1],Ep);
bufifl (WBus{2],PC[2],Ep);
bufifl (WBus(3],PC[3],Ep);
bufifl (WBus[4], none, none} ;
bufifl (WBus[5],none,none);
bufifl (WBus[6],none,none) ;
bufifl (WBus[7],none,none);

HEX_DISPLAY PCHEX({FC_HEX,EC);
assign BLANK_DISPLAY = 8'b11111111,

Cpnot ~Cp,
Epnet ~Ep;

endmodule

E-1.2 JK Flip-flop

module JKFF_Q POSCLK_POSCLR(Q, J,K,CLK,CLR} ;

input J,K,CLK,CLR;
output @;
reg Q;

always 0@(posedge CLK or posedge CLR)
begin
if (CLR) Q = 1'b0;

else if ({J,K} == 2'000) Q = @;
else if {{J,K} == 2'h0l) Q = 1'h0;
else if ({J,K} == 2'bl0) Q = 1'bl;
else if ({J,K} == 2'bll) Q = ~Q;
end
endmodule
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E-1.3 Hexadecimal Display

module HEX DISPLAY (HEX OUT,HEX_IN);

// BEX_OUT -> signals a-h of active low hex 7-segment display
/Y MSB = a, LSB = h (decimal pecint)

cutput [7:0] HEX OUT;
input [3:0] HEX IN;
reg [7:0] HEX_OUT;:

always @(HEX IN)

case (HEX_IN)
4'b0001 : HEX_OUT
4'b0010 : HEX_OUT
4'b0011 : HEX_OUT
4'p0100 : HEX_OUT
4'b0101 : HEX _OUT
4'p0110 : HEX OUT 8'b01000001;
4'b0111 : HEX_OUT = 8'b00011111;
4'pl000 : HEX_QUT = 8'h0000000L;
4'H1001 : HEX OUT 8'b00001001;
4'p1010 : HEX_OUT = 8'b00010001;
4'b1011 : HEX_OUT = 8'b11000001;
4'b1100 : HEX_CUT = §'b01100011;
4'b1101 : HEX OUT = 8'L10000101;
4'b1110 : HEX OUT = §'b01100001;
4'pl111 : HEX_OUT = §'b01110001;
default : HEX_OQUT = 8'b00000011;

endcase

8'b10011111;
8'L00100101;
§'b00001101;
8'p10011001;
8'b01001001;

LI (I (|

non o

endmodule

E-2 MAR & 2 to 1 Multiplexer

E-2.1 MAR + 2 to 1 Multiplexer

module MAR MUX (MUX_OUT, MUX_OUT_HEX, BLANK_DISPLAY, HighZ,
ADDR_IN, WBus, Lm, CLK, RUN_PROG, Lmnot} ;

input Lm, CL¥K, RUN_PROG;

input [2:01 ADDR_IN;

inout {7:0] WBus;

wire nonej;

wire [2:0] MAR_OUT;

output Lmnot;

output [3:0]1 MUX _CUT:

output [5:0] HighZ;

cutput [7:0] MUX_OUT_HE¥, BLAMK DISPLAY;
tri [5:0] HighZ:

MAR MAR_MUX_1 (MAR_OUT, WBus, Lm, CLK);

MUX MAR_MUX 2
(MUX_QUT, MUX OUT_HEX, BLANK DISPLAY, MAR OUT, ADDR_IN,

RUN_PROG) ;
assign Lmnot = ~Lm,
none = 0;

bufifl (Highz[0],none,none);
bufifl(HighZ[1],none,none);
bufifl (Highz[2],none,none);
bufifl(HighZ{3], none,none);
bufifl (HighZ([4],none,ncne);
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bufifl (HighZ[5], none,none} ;

endmcdule

E-2.2 MAR

module MAR(MAR OUT,WBus,Lm, CLE) ;
// Im -> high to load BC count from WBus

inout [7:0] WBus;:
input ILm,CLK;

output [2:0] MBR OUT;
wire none;

D_FF MARO{MAR OUT[0],WBus[0],Lm, CLK) ;
D_FF MARL(MAR OUT{1],WBus[1],Lm, CLK);
D_FF MARZ (MAR_QUT[2],WBus[2],Lm, CLK) ;

assign none = 0;

bufifl (WBusiC],none, none);
bufifl (WBus{1l],none,none);
bufifl (WBus[2],none, none) ;
bufifl (WBus[3], none, none) ;
bufifl (WBus[4],none, none) ;
bufifl (WBus[5],none, none) ;
bufifl (WBus[£6], none, none);
bufifl (WBus[7],none,none};

endmodiile

E-2.3 2to I Multiplexer

module MUX (MUX_QUT, MUX_OUT_MEX, BLANK DISFLAY, MAR_OUT, ADDR_IM, RUN_PROG);

// RUN_PROG == 0 -> program

I -> address from switches taken
// RUN_PROG == 1 -> run
/7 -> address from MAR output taken

input [2:0] MAR OUT, ADDR_IN;

input RUN_PROG;

output [3:0] MUX_CUT;

output [7:0] MUX_OUT_HEX, BLANK DISPLAY;

assign MUX_OUT[2:0] = RUN_PROG? MAR_OUT : ADDR_IN,
MUX_OUT[3] = 1'kO0;

HEX_DISPLAY MUX_HEX {MUX_OUT HEX, MUX_OUT):
assign BLANK DISFLAY = B'b11111111;

endmodule

E-2.4 D Flip-flop with Enable Input for Data Loading

module D FF{Q,D,EN, CLK);

input D,EN,CLK;

output Q;
reg Q;
always @({posedge CLK)
if (EN == 1)
Q = Dy
else
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Q= Q;

endmodule

E-2.5 Hexadecimal Display

module HEX DISPLAY (HEX OUT,HEX IN);

// HEX_OUT -> signals a-h of active low hex 7-segment display
/1 MSB = a, LSB = h (decimal point)

output [7:0] HEX OUT;
input {3:0] HEX IN;
reg [7:0] HEX_OUT:

always @ (HEX_IN)
case (HEX_IN)
4'L0001 : HEX OUT = 8'b1l0011111;
4'0010 : HEX_OUT 8'b00100101;
4'50011 : HEX_OUT 8'h00001101;
4'£0100 : HEX OUT 8'p10011001;
4'p0101 : HEX_OUT 8'b01001001;
4'b0110 : HEX_OUT 8'b0100000L;
4'kL0111 : HEX OUT 8'h00011111;
4'L1000 : HEX OUT 8'b00000001;
4'k1l001 : HEX_OUT 8'b00001001;
4'pl010 : HEX_OQUT 8'b00010001;
4'b1011 : HEX OUT 8'b11000001;
4'b1100 : HEX OUT 8'b01100011;
4'b1101 : HEX_OUT 8'b10000101;
4'b1110 : HEX_QUT = 8'b01100001;
4'billl : HEX_OUT 8'h01110001;
default : HEX_OUT 8'L00000011;
endcase

| I T (|

endmodule

E-3 8x8RAM

E-3.1 8 x8RAM

module _8x8 RAM MAX (WBus,DATA_QUT,RAM DISPLAY HEY,High3,
MUX_GUT, DATA_IN,CE, CEnot, RUN_PROG, READ_WRITE) ;

// RUN_PROG == 0 -~> PROG; RUN_FROG == 1 --> RUN
// BEAD WRITE == 0 --> WRITE; READ_WRITE == 1 --> READ

input [2:0] MUX_OUT:
input [7:0] DATA IN:
input CE, RUN_FROG, READ WRITE:
output CEnot;
output [6:0] HighZ;
cutput [7:0] WBus, DATA CUT;
cutput [15:0] RAM DISPLAY HEX;
wire none;
wire [7:0] RAM DISPLAY;
tri [6:0] HighZ;

tri [7:0] WBus;
reg [7:0] DATA OUT;
reg [7:0] MEM [15:0]:

always @ (MUX CUT or DATA IN or RUN_PROG or READ WRITE)
begin
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if (!RUN_PROG)
begin
if {!READ WRITE)
MEM [MUX OUT] = DATA_LN;
end

else if (RUN_PROG)
DATR_OUT = MEM [MUX_OUTI;

else;
end

bufifl (WBus [0],DATA_QUT[C],CE);
bufifl (WBus[1],DATA OUT{1],CE);
bufifl(WBus[Z],DATA_OUT[Z],CE)F
pufifl (WBus[3],DATA_ OUT[23],CE);
bufifl {WBus[4],DATA OUT[4],CE};
bufifl (WBus[5],DATA OUT{5],CE);
bufifl (WBus (6] ,DATA QUT[&],CE);
bufifl (WBus[7],DATA OUT[7],CE);

assign RAM DISPLAY = MEM [MUX_OUT],
CEnot = ~CE,
none = 0;

HEX DISPLAY RAM_HEX 1

{RAM DISPLAY HEX[15:8],RAM_DISELAY[7:4]);
HEX CISPLAY RAM HEX 2

(RRM_DISPLAY HEX{7:0],RAM_DISPLAY([3:0]);

pufifl (HighZ[6], none,none);
bufifl{HighZ[5],ncne,none};
bufifl{EighZ[4],none,none};
bufifl (Highz[3],none,none);
bufifl (HighZ[2],none, none) ;
bufifl(HighZ{l],none,none);
bufifl (HighZ (0], none,none) ;

endmodule

E-3.2 Hexadecimal Display

module HEX_ DISPLAY (HEX_OUT,HEX IN);

// HEX_OUT -> signals a-h of active low hex 7-segment display
/7 MSE = a, LSB = h (decimal point)

output [7:0] HEX_OUT;
input [3:0] HEX_IN;
reg [7:0] HEX_OUT;

always @(HEX IN)
case(HEX_IN)
4'H0001 : HEX OUT = §'b10011111;
4'b0010 : HEX_OUT §'b00100101;
4'p001ll : HEX_OUT 8'b00001101;
4'p0100 : HEX QUT 8'b10011001;
4'p0101 : HEX_OUT 8'b01001001;
4'b0110 : HEX_QUT 8'b01000001;
4'b0111 : HEX_OUT 8'b00011111;
4'b1000 : HEX_OUT 8'bL0000000L;
4'b1001 : HEX OOT 8'hb00001001;
4'p1010 : HEX_OUT = 8'b00010001;
4'p1011 : HEX OUT 8'b11000001;
4'p1100 : HEX OUT = 8'b01100011;
4'b1101 : HEX_OUT 8'b10000101;
4'b11106 : HEX OUT 8'b01100001;
4'p1111 : HEX OUT = 8'h01110001;
default : HEX_QUT = §'b00000011;
endcase

o
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endmodule
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E-4 Instruction Register

E-4.1 Instruction Register with Tri-state Address Output

module INSTRUCTION_REGTSTER (IR_OUT_ADDR,IR_OUT INS,Highz,
IR_OUT_ADDR_HEX, IR_OUT_INS HEX,
WBus,Li,Ei,CLK,CLR,Linot,Einot);

// Li => high to lead instruction from WBus

// Ei -> high to put lower nibkle of insturction

/ {data address field) at WBus

//

// IR _OUT ADDR -> data address field of instructien

// IR_OUT_INS -> instuction opcode field {upper nibble)

input i, ERi,CLE,CLR;

inout [7:0] WBus;

output Linot,Einot;

output [3:0] IR_QUT_ADDR,IR_CUT INS;

output [5:0] HighZ:

output [7:0] IR_OUT_ADDR_HEX,IR OUT INS HEX;
wire none;

tri [5:0] HighZ;

tri [7:0] WBus;

D_FF IRO(IR OUT ADDR[0],WBus[C],TLi,CLK);
D _FF IRL (IR OUT ADDR[1],WBus[1],Li,CLK);
D_FF IRZ (IR OUT ADDR[2],WBus[2],ZLi,CLK);
D_FF IR3(IR OUT ADDR[3},WBus[3],Li,CLK);
DFF_POSCLR IR4{IR OUT INS[G],WBus[4],Li,CLK,CLR};
DFF_POSCLR IR5{IR OUT INS[1],WBus[5],Li,CLK,CLR);
DFF_POSCLR IR6{IR OUT INS[2],WBus[6],Li,CLK,CLR};
DF¥_POSCLE IR7{IR _OUT INS[3],WBus[7],Li,CLK,CLR};

assign none = 0;

bufifl{WBus[0], IR OUT ADDR[D],Ei}:
bufifl{WBus[1],IR_OUT_ADDR[1],Ei);
bufifl (WBus([2],IR_QUT_ADDR[2],Ei);
bufifl(WBus{3],IR_OUT_ADDR[3],Ei);
bufifl (WBus{4)], none, none) ;
bufifl (WBus[5], none,none) ;
bufifl (WBus[6],none,none);
bufifl (WBus[7],none, none) ;

HEX_DISPLAY IR_ADDR HEX (IR_OUT_ADDR_HEX,IR_QUT ADDR) ;
HEX_DISPLAY IR_INS HEX(IR OUT INS HEX,IR QUT INS};

assign Linot = ~Li,
Einot = ~Ei;

bufifl {HighZ{5], none,ncne);
bufifl (HighZ[4],none, none);
bufifl (HighZ[3],none, none};
bufifl (HighZ[2],none, none);
bufifl (HighZ[1l],none,none);
bufifl (Highz[0], none, none) ;

endmecdule

E-4.2 D Flip-flop with Enable Input for Data Loading

module D_FF{Q,D,EN,CLK);
input D,EN,CLK:;
output Q;
reqg Q;

always @(posedge CLK)
if (EN == 1}
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Q = D;
else
Q= Q;

endmodule

E-4.3 D Flip-flop with Data Loading Enable & Clear Input

module DFF_POSCLR{Q,D,EN,CLK,CLR):

input D,EN,CLK,CLR;
output Q;
reg Q;

always @(posedge CLK or posedge CLR)
if {CLR == 1)

Q= 0;
else if (EN == 1)
Q=D
else
Q= Q;
endmodule

E-4.4 Hexadecimal Display

module HEX DISPLAY (HEX OUT,HEX IN);

// HEX_OUT -> signals a~h of active low hex 7-segment display
¥ MSB = a, LSB = h (decimal pecint)

output [7:0] HEX_OUT;
input [3:0] HEX _IN;
reg [7:0) HEX OO0T;

always @(HEX IN)
case (HEX_IN)
4'20001 : HEX OUT = 8'b10011111;
4'b0010 : HEX OUT 8'bL0010010);
4'L00L1 : HEX QUT 8'b00001101;
4'p0100 : HEX OUT 8'b10011001;
4'00101 : HEX_OUT 8'b01001001;
4'b0110 : HEX_QUT 8'b01000001;
4'b0111 : HEX_OUT 8'b00011111;
4'bl000 : HEX_OUT 8'L0000000L;
4'b1001 : HEX_OUT 8'b00001001;
4'L1010 : HEX_OUT 8'p00010001;
4'bi01l : HEX OUT 8'b11000001;
4'h1100 : HEX OUT 8'b01100011;
4'h1101 : HEX OUT 8'b10000301;
4'b1110 : HEX:OUT 8'b01100001;
4'bl111 : HEX OUT 8'b01110001;
default : HEX OUT = 8'b00000011;
endcase

[ TR I |

(I (A |

endmodule
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E-5  Accumulator

E-5.1 Accumulator

module ACCUMULATOR (ACCU_QUT, ACCU_OUT_HEX,WBus, La, Ea, CLK, Lanot,Eanot,HighZ) ;

// La -> high to lecad data from WBus
// Ea ~> high to put accumulator content ot WBus

input La,Ea,CLK;
inout [7:0) WBus;

output Lanot,Fanot;

output [1:0] Highz;
cutput [7:0] ACCU OUT;
cutput [13:0] ACCU_OUT HEX;
wire none;

tri [1:0] HighZ;

tri [7:0] WBus;

D_FF ACCUQ(ACCU_QUT{0],WBus[0],La, CLK) ;
D_FF ACCUL(ACCU OUT{1],WBus[1],La,CLK) ;
D_FF ACCUZ (ACCU_OUT[2],WBus[2],La, CLK) ;
D_FF ACCU2(ACCU OUT[3],WBus[3],La, CLK) ;
D_FF ACCU4 (RCCU_OUT[4],WBus[4],La,CLK) ;
D_FF ACCUS(ACCU_OUT[S],WEUS[5],L&,CLK);
D_FF ACCUGE(ACCU_OUT[€],WBus([6],La,CLK) ;
D_FF ACCU7(ACCU OUT[7],WBus[7],La,CLK) ;

bufifl (WBus [0}, ACCU_OUT[0],Ea);
bufifl (WBus[1l],ACCU_OUT[1],Ea);
bufifl (WBus [2],ACCU_OUT[2],Ea);
bufifl (WBus (3] ,ACCU_QUT[3],Ea);
bufifl (WBus[4],ACCU_QUT[4],Ea);
bufifl (WBus[5],ACCU_OUT[5]),Ea);
bufifl (WBus[6],ACCU_OUT[6],Ea):
bufifl (WBus [7],ACCU_OUT[7],Ea);

HEX_DISPLAY ACCU_HEX 1
(ACCU_CUT_HEX({15:8],ACCU_OUT[7:4]);

HEX_DISPLAY ACCU_HEX_2
(ACCU_CUT_HEX[7:0],ACCU_OUT[3:0]);

assign Lanot = ~La,
Eanot = ~Ea,
none = 0;

bufifl (High2[1], none,none);
bufifl (HighZ[0], none, none) ;

endmedule

E-5.2 D Flip-flop with Enable Input for Data Loading

module D_FF(Q,D,EN,CLK);

input D,EN,CLK;
output Q;
reg Q:

always @{pesedge CLK)
if {EN == 1)

Q= D;
alse

Q= 0Q;
endmodule
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E-5.3 Hexadecimal Display

module HEX_DISPLAY (HEX OUT, HEX IN);

// HEX QUT -»> signals a-h of active low hex 7-segment display
/7 MSB = a, LSB = h {decimal point)

ouvtput {7:0] HEX_OUT;
input [3:0] HEX IN;

reg [7:0] HEX OUT;

always @ (HEX_IN)

case (HEX TN)
4'h0001 : HEX OUT = 8'b10011111;
4'b0010 : HEX OUT 8'b00100101;
4'b0011 : HEX OUT 8'b00001101;
4'b0100 : HEX OUT 8'10011001;
4'b0101 : HEX_OUT 8'b01001001;
4'hb0110 : HEX OUT 801000001
4'h0111 HEX OUT = 8'b00011111;
4'L1000 : HEX _QUT 8'p0000C001;
4'p1001 : HEX_OUT = 8'k00001001;
4'h1010 : HEX_OUT 8':00010001;
4'bl011 : HEX OUT 8':11000001;
4'b1i00 : HEX OUT 8'b01100011;
4'b1101 : HEX_CUT 8':10000101;
4'b1110 : HEX_CUT = 8'kL01100001;
4'bll111l : HEX_OUT §8'k01110001;
default : HEX_OUT 8'R00C000011;

endcase

ol

A

wrona il

endmodule

E-6 Adder/Subtracter

E-6.1 Adder/Subtracter

module ADD_SUB (ADD_SUB_CUT,ADD_SUB_OUT KEX,WBus,HighZ,
ACCU_OUT,B_REG_OUT, Su,Eu, Sunot, Eunot) ;

// Su -> subtraction operation enable bit, high to convert

1/ B Register output to 2's complement form

/7

// Eu -> high to put arithmetic operation result on WBus
/i

// ADD_SUB_OUT -> Adder/Subtracter's output, arithmetic

/7 operation result

/

// BCCU_OUT —-> Accumulator's cutput, operand of arithmetic
/7 operation

7/

// B_REG_OUT -> B Register's output

7/

// B -> temporary register to hold operand of arithmetic
/7 operation

// == B_REG OUT for addition operation

// == ~B_REG_OUT for subtration operation

/7 (added with 1 (Su) for 2's complement of B_REG_OUT)

output [3:0] HighZ;

output [7:0] ADD_SUB_OUT, WBus;
output [15:0] ADD SUB_COUT HEX;
output Sunot, Eunoct;

input [7:0] ACCU_OUT, B_REG_OUT;
input Su, Eu:

reg (7:0] ADD_SUB_OUT,B;
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wire none;
tri [3:0] HighZ:
tri [7:0] WBus;

always B (ACCU_OUT or B_REG _OUT or 3u)

begin
if (su)
begin B = ~(8 REG_OUT); end
else
begin B = B_REG_OUT; end
ADD SUB_CUT = ACCU QUT + B + Su;
end

bufifl (WBus (0], ADD_SUB QUT[J], Eu);
bufifl(WBus[1], ADD SUB OUT[1], Eu);
bufifl (WBus[2], ADD SUB OUT[2], Eu):
bufifl(WBus[3], ADD SUB OUT[3], Eu);
bufifl(WBus(4], ADD_SUB_OUT[4], Eu);
bufifl (WBus[5], ADD_SUB _OUT[5], Eu};
bufifl(WBus[6], ADD_SUB_OUT[6], Eu):
bufifl (WBus[7], ADD_SUB _OUT[7], Eu}:

HEX_DISPLAY ADD SUB_HEX 1
(ADD_SUB_OUT_HEX[15:8],ADD_SUB_OUT[7:4]);

HEX_DISPLAY ADD SUB HEX 2
(ADD_SUB_OUT_HEX[7:0],ADD_SUB_OUT[3:0]};

assign Sunot = ~Su,
Eunot = ~Eu,
none = 0;

bufifl (HighZ[3],ncne, none);
bufifl (Highz[2],none,none);
bufifl (HighZ[1],ncne,none);
bufifl {Highz [0}, ncne, none) ;

endmodule

E-6.2 Hexadecimal Display

module HEX DISPLAY (HEX OUT,HEX_IN);

// BEX_CUT -> signals a~h of active low hex 7-segment display
14 MSB = a, LSB = h {decimal peint)

output [7:0] HEX OUT;
input [3:0] HEX_IN;
reg [7:0] HEX QUT;

always @(HEX_IN)
case (HEX_IN)
4'p0001 : HEX OUT = 8'b10011111;
4'p00L10 : EEX_OUT = 8'hb00100101;
4'p0011 : HEX OUT = 8'b00001101;
4'p0100 : HEX_OUT = 8'b1l0011001;
4'p0101 : HEX OUT = 8'b01001001;
4'60110 ; HEX_OUT = 8'b01000001;
4'p0111 : HEX_OUT 8'b00011111;
4'L1000 : HEX QUT 8'b00000001;
4'b1601 : HEX_OUT = 8'b00001001;
4'k1010 : HEX_OQUT = 8'b00010001;
4'b1l011 : HEX_OUT = 8'bh11000001;
4'b1100 : HEX OUT = 8'b01100011;
4'b1101 : HEX_OUT = 8'b10000101;
4'b1110 : HEX OUT = 8'b01100001;
4'hll11l : HEX_OUT = 8'b01110001;
default : HEX QUT = 8'b00000011;
endcase

endmodule
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E-7

B Register

E-7.1 B Register

module B _REGISTER(B_REG OUT,B_REG OUT_HEX,WBus,Lb,CLE,Lbnot,HighZ);
// Lb -> high to load data from WBus

cutput [1:0] HighZ:

cutput {7:0] B_REG_QUT:
output {15:0] B_REG_OUT HEX;
cutput Lbnot;

input [7:0] WBus;

input Lb, CLK;

wire none;

tri [1:0] HighZ;

D_FF¥ B_REG 0 (B_REG_OUT[0],WBus{0],Lb,CLE) ;
D_FF B_REG 1(B_REG_OUT[1],WBus{1],Lb,CLX);
D_FF B_REG Z (B_REG_OUT[2],WBus[2],1b,CLX);
D_FF B_REG_3(B_REG_OUT[3],WBus(3],Lb,CLE) ;
D_FF B_REG_4(B_REG_OUT[4],WBus (4], Lb,CLE) ;
D_FF B_REG 5(B_REG_OUT([5],WBus[5],Lb,CLE);
D_FF B_REG_6(B_REG_CUT[6],WBus[€],Lb,CLK) ;
D_FF B REG_7(B_REG_CUT[7],WBus[7],Lb,CLK);

HEX_DISPLAY B_REG_HEX_1
(B_REG_OUT_HEX [15:8],B_REG_OUT[7:4]};
EEX_DISPLAY B_REG_HEX 2
{B_REG_OUT_HIZX([7:0],B_REG CUT[3:0]);

asaign Lbnot = ~Lb,
none = 0;

bufifl {flighz{l], none, none):;
bufifl(HighZ{0],none,nene);

endmodule

E-7.2 D Flip-flop with Enable Input for Data Loading

E-7.3

module D_FF(Q,D,EN,CLK};

input D,EN,CLK;

output ¢;
reg Qi
always @{posedge CLK)
if {(EN == 1)
Q=D;
else
Q= Q
endmodule
Hexadeciaml! Display

module HEX DISPLAY (HEX OUT, HEX IN);
// HEX OUT -> signals a~h of active low hex 7-segment display
// MSB = a, L8B = h (decimal point)}

output (7:0] HEX_QUT:
input [3:0] HEX_IN;
reg [7:0] HEX 0UT;
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always @(HEX_IN)
case (HEX_IN)
4'b0001 : HEX_OUT
4'b0010 : HEX_OUT
4'b0011 : HEX_ OUT
4'b0100 : HEX_CUT 8'p10011001;
4'b0101 : HEX_OUT 8':01001001;
4'b0110 : HEX OUT = 8'b0100C001;
4'b0111 : HEX_CUT 8'pb00011111;
4'b1000 : HEX OUT 8'p00000001;
4'b1001 : HEX_CUT 8':00001001;
4'b1010 : HEX COUT 8':00010001;
4'b1011 : HEX CUT = §'b1100000%;
4'b1100 : HEX_OUT 8'k01100011;
4'h1101 : HEX_OUT 8'k10000101;
4'Ll110 : HEX_OUT 8'b01100001;
4'b1111 : BEX _QUT 8'b01110001;
default : HEX_OUT 8'b000000L1;
endcase

8'p10011111;
§'p00100101;
8'k00001101;

i n

Eonnon

endmodule

E-8§ Output Register

E-8.1 Output Register

module OUTPUT_REGISTER (OUT_ REG,OUT REG_HEX, WBus, Lo, CLK, Lonot};
// Lo -> high to leoad data from WBus

output [7:0] QUT_REG;
output [15:0] QUT REG HEX;
output Lonot;

input [7:0] WBus;

input Lo, CLK;

D_FF OUT_REG_0(OUT_REG[0],WBus [0}, Lo,CLK};
D_FF OUT_REG_1{OUT REG[1],wsus[l],Lo,CLE};
D_FF OUT_REG_2 (OUT_REG[2],Wsus[2],Lo,CLK};
D_FF OQUT_REG_3{OUT_REG![3],WBus[3],Lo,CLK};
D_FF OUT_REG_4{OUT REG{4],WBus[4],Lo,CLK);
D_FF OUT_REG_5{OUT RZG{5],Wsus[5],Lo,CLK);
D_FF OUT_REG 6{QUT_REG({6],WBus[6],Lo,CLK);
D_FF OUT_REG 7{OUT_REG{7],WBus[7],Lo,CLK);

HEX DISPLAY OUT HEX 1
{OUT_REG_HEX[15:8],00T REG[7:4]);
HEX DISPLAY OUT_HEX 2
(OUT _REG_HEX[7:0},00T REG[3:0]}:

assign Lonot = ~Lo;

endmodule

E-8.2 D Flip-flop with Enable Input for Data Loading

module D FF(Q,D,EN,CLEK);
input D,EN,CLK;
output Q;
reg Q;

always @(posedge CLK)
if (BN == 1}
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Q=D
else
Q=g

endmedule

E-8.3 Hexadecimal Display

module HEX_DISPLAY (HEX OUT,HEX_IN);

// HEX _OUT -> signals a-g of hex 7~segment display
'y MSB = a, LSB = g

output [6:0] BEX OUT;
input [3:0] HEX_ IN;
reg [6:0] HEX_OUT:

always @(HEX_IN}

case (HEX_TIN)
4'b0001 : HEX OUT = 7'b0110000;
4'b0010 : HEX OUT = 7'b1101101;
4'b0011 : HEX QUT = 7'b1111001;
4'b0100 : HEX_OUT = 7'b0110011;
4'b0101 : HEX_OUT = 7'b1011011;
4'50110 : HEX _OUT = 7'bl011111;
4'50111 : HEX QUT = 7'b1110000;
4'p1000 : HEX_OUT = 7'bl111111;
4'p1001 : HEX OUT = 7'b1111011;
4'p1010 : HEX OUT = 7'bl1110111;
4'pl0il : HEX_OUT = 7'b0011111;
4'p1100 : HEX_OUT = 7'b1001110;
4'b1101 : HEX C0UT = 7'b0111101;
4'b1110 : HEX CUT = 7'b1001111;
4'b1l111 : HEX CUT = 7'b1000111;
default : HEX OUT = 7'R1111110;

endease

endmodule

E-9  Controller/Sequencer (Instruction Decoder, Ring Counter & Control
Matrix)

E-9.1 Controller/Sequencer

module CONTROLLER SEQUENCER
(Cp,Ep,Lm,CE,Li, Ei, La, Ea, Su,Eu,Lb, Lo, LDAnot,ADDnot, SUBnot, OUTnot, HLTnot,
ELT,HBighZ, BLANK_DISPLAY, TR_OQUT_INS, Tnot,CLK, CLR) ;

cutput Cp, Ep, Lm, CE, Li, Ei, La, Ea, Su, Eu, Lb, Lo,
LDAnot, ADDneot, SUBnot, OUTnot, HLTnot, HLT:

cutput [6:1] Tnot:

output [5:0] Highiz;

output [15:0] BLANK_DISPLAY;

input CLK, CLR;

input [3:0] IR_QUT INS;

wire LDA, ADD, SUB, OUT, none;

wire [6:1] T;

tri [5:0] Bighz;

RING_COUNTER RC{T,Tnot,CLK,CLR};

INSTRUCTION DECODER ID(LDA,ARD,SUR,QUT,HLT,IR_OUT_INS):

CONTROL_MATRIX CM(Cp,Ep,Lm,CE,Li,Ei,La,Ea,Su,Eu,Lb,Lo,
LDA,ADD, SUB, OUT, HLT, T, CLK, CLR) ;
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assign BLANK_DISPLAY = l6'hffff,
LDAnot = ~LDA,
ADDnot = ~ADD,

SUBnct = ~8UB,
OUTnot = ~OUT,
HLTnot = ~HLT,

none = 0;

bufifl (HighZ{5),none, none);
bufifl (HighZ[4], none, none);
bufifl (HighZ[3],none, none) ;
bufifl (HighZ[2], none,none);
bufifl {HighZ[1l],none,none};
bufifl{HighZ[0], nocne,none);

endmodule

E-9.2 Instruction Decoder

E-9.3

E-9.4

module INSTRUCTION DECCDER(LDA, ADD, SUB, OUT, HLT, IR_OUT_INS);

// associate control line of each routine with their
//  corresponding cpcode

cutput LDA, ADD, 8UB, OUT, HLT;
input [3:0] IR_OUT_INS;

assign LDA (IR_OUT_INS == 4'b0000)2 1'bl : 1'bO0,

ADD = (TR_OUT INS == 4'b0001)? 1'bl : 1'b0,
SUB = (IR_CUT_INS == 4'b0010)? 1'bl : 1'b0,
OUT = (IR OUT_INS == 4'pb1110)7? 1'bl : 1'bO,
HLT = (IR_CUT_IN3 == 4'ph1111)7? 1'bl : 1'b0;
endmodule
Ring Counter

module RING COURTER(T, Tnot, CLK, CLR):

// CLR high -> Ring Counter resets to (00001
/7

// Ring Counter shifts left at each negative
// edge of CLX

output [6:1] T, Tnot;
input CLK, CLR:

JKFF_Qnot NEGCLK_POSCLR RC1
{Tnot[1]1,T[{1],Tnot[6],T[6],CLK,CLR};
JKFF_Qnot NEGCLE_POSCLR RC2
(r{2],Tnot[2],T[1]),Tnot[1),CLK,CLR) ;
JKFF_Qnot NEGCLK_POSCLR RC3
(T{3]},Tnot[3],T[2],Tnot[2],CLK,CLR)};
JKFF_Qnot_NEGCLE_POSCLR RC4
(T[4],Tnot[4],T[3],Tnot[3]),CLK,CLR);
JEFF_Qnot_NEGCLE_POSCLR RCS
(T[5], Tnot[5]1,T[4],Tnot[4],CLK,CLR) ;
JKFF_Onot NEGCLK_POSCLR RCE
(T[6],Tnot[6],T[5],Tnot{5],CLK,CLR};

endmedule

Control Matrix

module CONTROL MATRIX{Cp, Ep, Lm, CE, Li, Ei, La, Ea, Su, Eu, Ib,
LDA, aADD, SUB, QUT, HLT, T, CLK, CLR):

output Cp, Ep, Im, CE, Li, Ei, La, Ea, Su, Eu, Lb, Lo;
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input LDA, ADD, SUB, OUT, HLT, CLK, CLR;
input [6:11 T:
assign Cp = {T[2]1})? 1'bl : 1'bO,
Ep = (T[1])? 1'bBl : 1'kO,
Im = (T[1] || {(LDA && T[4]) || (ADD && T{4]) || (SUB && T[4])}"?
1™1 : 1'bO,
CE = (T[3] || (LDA && T[5]) |} (ADD && T[5]) || {SUB && T[5]}}?
1'bl : 1'b0,
Li = (T[3])7? 1'bl : 1'bO,
Ei = {(LDA && T[4]) || (ADD && T[4]} |{ (SUB && T[4]})?
1'bl : 1'b0,
La = {(LDR && T[5]) || (ADD && T[6]) || {SUB && T[6]))7
1'bl : 1'k0,
Fa = (OUT && T[4])? 1'bl : 1'kO,
Su = (SUB && T[E])7? 1'bl : 1'bC,
Eu = {(ADD && T[6)) || (SUB && T[6])}7 1'bl : 1'kO,
Ib = {{ADD && T[5]} |! (8UB && T[5]))%? 1'bl : 1'k0O,
Lo = (OUT && T[4]1)7? 1'bl : 1'bL0;
endmodule

E-9.5 Positive-edge-triggered JK Flip-flop with Active High Clear

module JKFF (Q,Qnot,J,K,CLK,CLR);

input
cutput
reg Q,

always
beg

end

endmodule

J,K,CLK, CLR;
Q,Qnot;
onot;

@ (negedge CLK or
in
if (CLR)
begin
Q = 1'b0;
Qnot = ~Q;
end
else if ({J,K
begin
Q= Qi
Qnot = ~Q;
end
else if
begin
0 = 1'b0;
Cnot = ~Q;
end
else if ({J,K} ==
begin
Q = 1'bl;
Qnot = ~Q;
end
else if ({J,K
begin
Q= ~Q;
Qnot =
end

HJ, K} ==

~Q;

posedge CLR}

2'p00)

2'b01}

2'b10)

2'bl1)
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E-10 Mode-Select Switches, De-bouncers & Clock Buffer

E-10.1 De-bouncers

// START CLEAR DIP switch -> START active low

¥4 CLEAR active high

// MANUAL AUTO DIP switch -> MANUAL active low

/ ARUTO active high
// **DIP switch gives logic lew when pressed**

/

// LOW & HIGH SPDT switch -> LOW active low

1/ HIGH active low

/f

// DB_TEMPl -> clock signal in MANUAL mode
// DB_TEMP2 -> clock signal in AUTO mode

module DEBOUNCERS (CLK, CLR,CLKnot,CLRnot, BLANK DISPLAY,
START CLEAR, LOW, HIGH, MARNUAL_AUTO, HLT, rawrawCLK) ;

output CLE, CLEKnot, CLRnot:

output [15:0] BLANK DISPLAY;

input START CLEAR, LOW, HIGH, MANUAL_AUTC, HLT,

rawrawCLK;

incut CLR;

wire [25:0] rawCLK;

wire CLRnot, HI_LOnot, HI_LO, MANUAL OUT,
AUTO_OUT, DB_TEMPl, DB_TEMP2;

CLEAR_START DBl (CLR,START CLEAR);

SINGLE STEP DB2 (HI_LO,LOW,HIGH) ;

AUTO MANUAL DB3 (MANUAL OUT, AUTO_OUT, MANUAL_AUTOQ) ;

CLOCK DB4 (rawCLK, HLT, rawrawCLK, CLR} ;

and  DBS5(DB_TEMPL,~HLT,HI_LO,MANUAL_OUT),
DB6 (DB_TEMP2, AUTO_OUT, rawCLK[251) ;

or DB7(CLK,DB_TEMPL,DB_TEMPZ) ;
assign BLANK_DISPLAY = 16'hffff,
CLEnot = ~CLK,
CLRnot = ~CLR;

endmodule

E-10.2 Clear-Start De-bouncer

module CLEAR_START (CLR, START_CLEAR) ;
output CLR;
input START_CLEAR;
wire CLRnot, START CLEAR_NOT;
not gl (START_CLEAR NOT, START CLERR);
SR _LATCH C5(CLRnot, CLR, START_CLEAR, START_CLEAR_NOT};

endmodule

E-10.3 Single-Step De-bouncer

module SINGLE STEP (HI_LO, LOW, HIGH);
output HI LO;
input LOW, HIGH:
wire HI_LOnot;

SR_LATCH S§{HI_LOnot, HI_LO, LOW, HIGH);

83



endmodule

E-10.4 Manual-Auto De-bouncer

module AUTO MANUAT (MANUAL CUT, AUTO OUT, MANUAL_AUTQ);

output MANUAL OUT, AUTC_OUT;
input MANUAL_ AUTO;
wire MANUAL AUTC_ NOT;

not gl (MANUAL AUTO NOT, MANUAL_AUTO);

SR_LATCH
AM{MANUAL OUT, AUTO OUT, MANUAL AUTO, MANUAL AUTQ NOT};

endmodule

D-10.5 Clock Buffer

module CLOCK (rawCLK,HLT, rawrawCLK, CLR) ;

ocutput {25:0] rawCLK;
input HLT, rawrawCLK, CLR;

JKFF_{_POSCLK_PCGSCLR Clock00 (rawCLK[0}],~HLT,~HLT, rawrawCLK,CTR) ;
JKFF O PCSCLK_POSCLR Clock01 (rawCLK([1],~HLT,~HLT, rawCLK[Q],CLR};
JKFE_Q POSCLK_PCSCLR Clock{02 (rawCLK{2],~HLT,~HLT,rawCLK([1],CLR);
JKFF_(_POSCLK_PGSCLR Clock03 (rawCLK[3],~HLT, ~HLT,rawCLE[2],CLR);
JEFF_Q POSCLE_POSCLR Clock04 (rawCLK[4],~HLT,~HLT,rawCLK[3],CLR);
JRFF Q POSCLE_POSCLR Clock05 (rawCLK[5],~HLT,~HLT,rawCLK[4],CLR);
JEFF_Q PGSCLR_POSCLR Clock06 (rawCLK[6],~HLT, ~HLT, rawCLK[5],CLR);
JEFF _Q POSCLK_POSCLR Clock07 (rawCLK[7],~HLT,~HLT,rawCLK[6],CLR);
JEFF_Q POSCLE_POSCLR Clock08 (rawCLK[8],~HLT,~HLT, rawCLK[7],CLR);
JRFF_Q POSCLE_POSCLR Clock09 (rawCLK([9],~HLT,~HLT,rawCLK[8],CLR);
JKFF_Q_POSCLK POSCLR Clockl0 (rawCLK[10],~HLT,~HLT, rawCLK[9],CLR);
JEFF_Q POSCLEK_POSCLR Clockll ({(rawCLK[1l],~HLT,~HLT,rawCLK{10],CLR);
JEFF_Q POSCLEK_POSCLR Clockl2 (rawCLK[12],~HLT,~HLT, rawCLK[11],CLR);
JEFF_(Q_POSCLK_POSCLR Clockl3 (rawCLK[131,~HLT, ~HLT, rawCLK[12],CLR);
JEFF Q POSCLK_POSCLR Clockl4 (rawCLK[14],~HLT, ~HLT, rawCLK{13],CLR);
JEFF_Q_ POSCLE_POSCLR Clockl5 (rawCLK[15],~HLT, ~HLYT, rawCLK[14],CLR);
JEKFF_Q POSCLK POSCILR Clocklé (rawCLK[16],~HLT,~HLT, rawCLK[15],CLR);
JEFF_Q_POSCLK_POSCLR Clockl7 (rawCLK[17},~HLT, ~HLT, rawCLK[16],CLR);
JEFF_Q POSCLK POSCLR Clockls (rawCLK[1B},~HLT,~HLT,rawCLK[17],CLR};
JEKEE Q POSCLK_POSCLR ClocklS® (rawCLK[19],~HLT, ~HLT,rawCLK[18],CLR);
JKFF_Q POSCLK POSCLR Clock20 (rawCLK[20],~HLT,~BLT,rawCLK[19],CLR};
JKEF_Q POSCLK_POSCLR Clock2l (rawCLK[Z21],~HLT,~BLT,rawCLK[20],CLR);
JKEF_Q POSCLK POSCLR Clock23 (rawCLK([22],~HLT,~HLT,rawCLK[21],CIR);
JKFF _Q POSCLE POSCLR Clock24 (rawCLK[23],~HLT, ~HLT, rawCLK[22],CLR);
JKFF_Q POSCLK POSCLR Clock25 (rawCLK{24],~HLT,~HLT,rawCLK[23],CLR);
JKFF_Q POSCLK POSCLR Clock26 (rawCLK[25],~HLT,~HLT,rawCLEK[24],CLR);

endmodule

E-10.6 Active Low SR Latch

module SR TATCH(Q, Qnot, Snot, Rnot) ;

output Q, Onot;
input Snot, Rnot;

or gl{Q,~Snot,~Qnot),
g2 (Qnot, ~Rnot, ~Q) ;

endmodule
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E-10.7 Positive-edge-triggered JK Flip-flop with Active High Clear

module JKFF_Q POSCLK_POSCLR(Q, J,K,CLK,CLR);

input J,X,CLK,CLR;

output Q;
reg Q;
always @(posedge CLK or posedge CLR)
begin
if (CLR) © = 1'b0;
else if ({J,K} == 2'b00) Q = Q;
else if ({J,K} == 2'b01) Q = 1'b0;
else if {({J,K} == 2'b10) Q = 1'kl1;
else if ({J,K} == 2'bll) Q = ~Q:
end
endmodule
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APPENDIX F

PIN ASSIGNMENTS, PIN INTERCONNECTIONS, AND INPUT &
OUTPUT DEVICE UTILIZATION OF THE MODULAR SAP-1

PROTOTYPE
Abbreviations
WW - Wire through wire wrap
IDC -  IDC socket & ribbon cable through pin header
F-1  Program Counter
. Input/Qutput Device
S]l“gnil Signal Pin EI’_‘II::I’:- / Connector
YP Interconnection
Inpu QLR Y T I MAXSWORL | WW
WW through
CLK 2 14 From CLK of Cleck Buffe.r _ extraPCB

BLANK DISPLAY[7] | 58 -
BLANK DISPLAY[6] | 60 -
BLANK DISPLAY[5] | 61 -
BLANK DISPLAY[4] | 63 -
BLANK DISPLAY[3] | 64 -
BLANK DISPLAY[2] | 65 -
BLANK DISPLAY[I] _ -
BLANK_DISPLAY[0] -

Output MAX DIGIT (MSD)

(Routed on
PCB)

GLEDDY T
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F-2 MAR & 2 to T Multiplexer
. Input/OQutput Device
Signal Signal Pin Expan. / Connector
Type Hole

Interconnection

ai

Input

15

From Lm of Con/Seq

e omRL

MAX SWI[7]

ROGOIRAM L ..

18 26
ADDR_IN[I] 20 27 MAX_SWi[6]
ADDR_INJ0] 21 28 MAX_SWi[5]

WBusI0T .
MUX_OUT[3] 35 | 39
MUX_OUT[2] 36 | 40
Outpst X oUTY 1] 37 | 4
MU OUTy | ® | @

IDC

“MUX_OUT _HEX[7]
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MUX OUT HEX[6] 70 -
MUX QUT _HEX[5] 73 - )
Output ﬁg%gg; ggl{‘g ;‘é - MAX_DIGIT (LSD) (Rcl))lgfl;d on
MUX OUT HEXf2] 75 - )
MUX QUT HEX][1] 77 -
MUX OUT HEX[0 79
1:Output” i AN




F-3 8x8RAM
. Input/Output Device
S;gnal Signal Pin EI)-‘II())?:‘ / Connector
ype ‘ _Interconnection
“Input A ... 'MAX'PBI
RUN PROG MAX SW2[7]

Input

84 | 13 1 FromCEofCont/Seq. [ . WW
DATA_IN[7] 11 21 MAX SW[7]
DATA_INJ6] 12 22 MAX_SWI[6]
DATA_INJ5] 15 23 MAX_SW[5]
DATA_IN[4] 16 24 MAX _SW[4] WW
DATA_IN[3] 17 25 MAX SW[3]
DATA_IN[2] 18 26 MAX_SW[2]
DATA_IN[1] 20 27 MAX_SW[1]

DATA_INJO] '

Output

~ WBus[7]

MAX_SW[0]

WBus[6] 50 50
WBus[5] 51 51
WBus[4] 52 52
WBus[3] 54 53
WBusf2] 55
WBusf1] 56

WBus PCB expansion

IDC through
extra PCB

Output

RAM DISPLAY HEX[7] | 69 5
RAM DISPLAY HEX[6] | 70 5
RAM DISPLAY HEX[5] | 73 -
RAM DISPLAY HEX[4] | 74 .
RAM DISPLAY HEXJ3] | 76 : MAX_DIGIT (LSD) (R;%%d) on
RAM DISPLAY HEX[2] | 75 -
RAM DISPLAY HEX[1] | 77 | -

" Output

RAM_DISPLAY HEX[0]
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F-4  Instruction Register
Signal . ' Expan. Input/Output Device
Type Signal Pin Hole / Connector
yp Interconnection
' WW through
| Input CLK 2 14 From CLK of Clock Buffer extra PCB
e Rl eq | WW
From Ei of Com‘.fSeq

Inout

WBus[ 7] 49 49

WBus{6] 50 50

WRBus[5] 51 51

WBus{4] 52 52 . IDC through
WBus{3] 34 53 WBus PCB expansion extra PCB
WBusf2] 55 54

WBusf1] 56 55

WBus[0]

Output

IR OUT ADDR HEX[7] |

MAX_DIGIT (LSD)

(Routed on
PCB)

69
IR OUT ADDR_HEX[6] | 70 -
1R OUT ADDR HEX[5] | 73 .
IR OUT ADDR HEX[4] | 74 -
IR OUT ADDR HEX[3] | 76 -
IR_OUT ADDR HEX2] | 15 -
TR_OUT ADDR HEX[1] | 77 -
IR OUT ADDR HEX[0] | 79 | -

Output
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F-5 Accumulator

ACCU OUTI0].

. Input/Qutput Device
S'Il‘gn:l Signal Pin EI"I[;?: / Connector
P ' _ Interconnection
Input La
Input S oeEg 84 137
WBus{7] 49 49
WBus[6] 30 30
WBusf5] 51 51
WhBus[4] 52 52 . IDC through
Inout WBus[3] 54 | 53 WBus PCB expansion extra PCB
WBus{2] 55
WBus[!1] 56
WBus(0]
ACCU OU’I‘[?]: i
~ ACCU OUT] S
oupu ouTer ok e

Output

ACCU OUT HEX[I5] | 58

ACCU OUT _HEX[14] 60

ACCU OUT _HEX[13] 61

ACCU OUT HEX[12] 63

ACCU OUT HEX[11] | 64

ACCU OUT HEX[10] 63

ACCU OUT HEX[9] | 67

ACCU_QUT HEX[S] 68 |

MAX_DIGIT (MSD)

(Routed on
PCRB)

Output .

LED D1

'3.1
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F-7 B Register

Expan. Illput/Out})ut Device

Hole Connector

Signal Pin

Interconnection ‘

B REG OUT[7] 11 21

B REG QUTJ6] 7 2

B REG OUTJ3] 5 | 23

B REG OUT] 6 | 24 To B_REG OUT of

Output B REG OUT/[3] 17 25 Adder/Subtracter IDE

B REG OUII2] 18 26

B REG OUT/I] 20 T 27

B_REG_OUT/0]

s o fd @ v
B REG OUT HEX[7] | 69 -
B REG OUT HEXj6] | 70 -
B REG OUT HEX[3] | 73 -
B REG OUT HEX[4] | 74 -

Output 5 REG OUT HEX[3] 7 - MAX_DIGIT (LSD) (R;tgo]agd on
B REG QUT HEX[2] 75 - )
B REG OUT HEX[1] 77 -
B REG OUT HEX[0] 79 -
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F-8  Output Register

Signal
Type

Pin

Expan.

Hole

Input/Output Device
/

Interconnection

Connector

From Lo of Cont/qu»

3US. : =
OUT REG HEX[I5]

OUT REG HEX[14]

Output

OUT REG HEX[I3] | 61 -
OUT REG HEX[12] | 63 .
OUT REG HEX[11] | 64 ;
OUT REG HEX[10] | 65 -
OUT REG HEX[9] 67 -
OUT REG HEX/8] 68 -

MAX_DIGIT (MSD)

{Routed on
PCB)
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F-9  Controller/Sequencer (Instruction Decoder, Ring Counter & Control

Matrix)

Signal

Pin

Expan.

Hole

Input/Output Device
!

Connector

Interconnection

B WW through;m

Input CLK

Output HLT

51

- To HLT of Mode-Select
Switches, De-bouncers, and

Clock Buffer

Tnot[ o]

extra PCB _

WwW

44 45 LED D7

Trnotf5] 45 46 LED D6

Trotf4] 16 47 LED D5

Output Tnot[3] 48 48 LED D3
Tnot/2] 49 49 LED D2

_ _Tnot[!] ‘

BLANK _ 715]

BLANK DISPLAY[14]

BLANK DISPLAY[13]

" BLANK_DISPLAY[12]

Output

BLANK DISPLA Y8 ]

BLANK DISPLAY[II] | 64 -
BLANK DISPLAY{I0] | 65 -
BLANK DISPLAY[9] | 67 -

68 -

MAX_DIGIT (MSD)

(Routed on
PCB)
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F-10 Mode-Select Switches, De-bouncers & Clock Buffer

Signal ' Expan. Input/Output Device
Type Pin Hole / - Connector
Interconnection
Wﬁﬁf% G e W
35 39 SPDT switch on extra
Input 36 40 veroboard ww
CInput f| - MANUAL AUTE: A8 bl MAKES W

From HLT of Cont/ Seq

R it b Tl e

BLANK DISPLAYII3]

BLANK DISPLAY[14]

BLANK DISPLAY[13]

Output

BLANK DISPLAY[12] | 63 -
BLANK DISPLAY[11] | 64 -
BLANK DISPLAY[I0] | 65 -
BLANK DISPLAY[9] | 67 -

~B

BLANK_DISPLAY[8]

MAX_DIGIT (MSD)

{Routed on
PCB)
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APPENDIX G
PHOTOS OF MODULAR SAP-1 PROTOTYPE

FIGURE 20: Modular SAP-1 prototype, picture 2
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