
SMART TRAFFIC LIGHT

By

MUSLIM BIN MUSTAP A

FINAL PROJECT REPORT

Submitted to the Electrical & Electronics Engineering Programme
in Partial Fulfillment of the Requirements

for the Degree

Bachelor of Engineering (Hons)
(Electrical & Electronics Engineering)

Universiti Tek:nologi Petronas

Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

© Copyright 2007

by

Muslim bin Mustapa, 2007

Approved by,

CERTIFICATION OF APPROVAL

Smart Traffic Light

By

Muslim bin Mustapa

A project dissertation submitted to the

Electrical & Electronics Engineering Programme

Universiti Teknologi PETRONAS

in partial fulfillment of the requirement for the

Bachelor of Engineering (Hons)

(Electrical & Electronics Engineering)

~~~ 
(MrSNo~hikin bt Yahya) 

UNIVERSITI TEKNOLOGI PETRONAS 

TRONOH, PERAK 

June 2007 

I 



CERTIFICATION OF ORIGINALITY 

This is to certifY that I am responsible for the work submitted in this project, that the 

original work is my own except as specified in the references and acknowledgements, 

and that the original work contained herein have not been undertaken or done by 

unspecified sources or persons. 

MUSLIM BIN MUSTAPA 

11 



ABSTRACT 

In this report a fuzzy logic model of traffic light controller at an intersection of two 

streets has been designed with an aim to improve the performance and offer flexibility of 

the traffic flow through the intersection. Fuzzy logic model of a traffic light controller 

have a lot of advantages against the conventional traffic light that is using fixed cycle 

time. One of the advantages is the ability to adjust the cycle time depending on the 

number of cars waiting behind the traffic light instead of fixed cycle time that used by the 

conventional traffic light. 

This project is divided into two main parts that are the fuzzy logic toolbox and the traffic 

light circuit. The fuzzy logic toolbox is used to develop fuzzy logic system to generate 

the most accurate extension time for the traffic light to response to the number of cars 

waiting behind the traffic light. The traffic light circuit is used to control the light 

sequence based on the inputs received from sensors. 

In the traffic light circuit, there are eight incremental sensor used to count numbers of car 

arrived and leaving the intersection. Each junction will have two incremental sensors. 

The incremental sensor was developed by using PIC16F84. From the incremental sensor 

it will send the data counted to another circuit to compute numbers car left at the junction 

by subtracting the data from second incremental sensor with data from the first 

incremental sensor. Then the data will be sent to another circuit that will compute the 

average number of cars at both intersections. From this circuit, it will send the data to the 

traffic light circuit that will decide the time extent based result obtained from MA TLAB. 

This method had increased the traffic light efficiency compared to the conventional 

traffic light. 

lll 



ACKNOWLEDGEMENT 

First of all, I would like to express my gratitude to Allah s.w.t to make my project run smoothly 

as planned for the entire final year. I also would like to express my appreciation to the supervisor, 

Mrs Azrina for her guidance and encouragement to complete the project. Great thanks to other 

lecturers of Electrical & Electronics Engineering. Big thanks also go to all laboratory technicians, 

especially to Mrs Siti Hawa and Mrs Siti Fatimah for their great support and helpful assistance. 

I would like also like to express a special thank to my family for their priceless supports, 

encouragements, constant love, valuable advices and their understanding. And also bunch of 

thanks to all my colleagues for the supports to this project. 

Finally, million thanks to all parties who had contributed directly or indirectly to the success of 

this project. 

Thank You 

MUSLIM BIN MUSTAPA 

Electrical and Electronics engineering 

Universiti Teknologi PETRONAS 

iv 



TABLE OF CONTENTS 

ABSTRACT ................................................................................................................... iii 

ACKNOWLEDGEMENT ............................................................................................ iv 

LIST OF FIGURES ..................................................................................................... vii 

LIST OF TABLES ....................................................................................................... vii 

LIST OF EQUATIONS .............................................................................................. viii 

LIST OF APPENDICES ............................................................................................ viii 

CHAPTER 1: INTRODUCTION ................................................................................. 1 

1.1 Background of study ...................................................................................... 1 

1.2 Problem Statement ......................................................................................... 2 

1.3 Objective and Scope of Work ........................................................................ 3 

1.3.1 Objectives .................................................................................... 3 

1.3.2 Scope of study .............................................................................. 4 

CHAPTER 2: LITERATURE REVIEW I THEORY ................................................. 5 

2.1 Traffic light specification ............................................................................... 5 

2.2 Project block diagram .................................................................................... 7 

2.3 Fuzzy Logic ............................................................................................. 9 

2.3.1 Fuzzification ................................................................................ 9 

2.3.2 Rule Evaluation .......................................................................... JO 

2.3 .3 Defuzzification ........................................................................... 11 

2.4 MATLAB ............................................................................................... 11 

2.5 Simulink ................................................................................................. 12 

2.6 Microcontroller ...................................................................................... 12 

v 



2.7 PIC C Compiler. ....................................................................................... 13 

2.8 WARP 13 Programmer. .............................................................................. 14 

CHAPTER3: METHODOLOGY .............................................................................. 15 

3.1 Flow chart of the Smart Traffic Light Project ............................................. 15 

3.1.1 Implementation of the fuzzy logic system in MATLAB ........... 16 

3.1.1.1 FIS Editor ....................................................................... J7 

3.1.1.2 Membership Function Editor ......................................... 17 

3.1.2 Fuzzy Logic system testing ........................................................ 17 

3 .1.2.1 Fuzzy Logic system testing using Simu1ink .................. 18 

3 .1.2.1 Fuzzy Logic system testing using Ru1e Editor .............. 18 

3.1.3 Circuit development ................................................................... 18 

3.1.3.1 C code programming development for microcontroller 18 

3.1.3.2 Hardware development.. ................................................ 19 

3.1.4 Circuittesting ............................................................................. 19 

3.1.5 Integrating the circuit with fuzzy logic system .......................... 19 

3.2 Tools required ............................................................................................. 20 

CHAPTER 4: RESULTS AND DISCUSSION ........................................................ 21 

4.1 MATLAB simu1ation ................................................................................... 21 

4.2 Simulink Simulation .................................................................................... 27 

4.3 C code programming and circuit development.. .......................................... 29 

CHAPTER 5: CONCLUSIONS AND RECOMMENDATION .............................. 34 

5.1 Conclusions ................................................................................................. 34 

5.2 Recommendation ........................................................................................ 35 

REFERENCES ........ ................................................................................................... 36 

APPENDICES ............................................................................................................ 37 

VI 



LIST OF FIGURES 

Figure 1: Traffic light junction illustration ....................................................... 6 

Figure 2: Fuzzy system .............................................................................. 7 

Figure 3: Project block diagram .................................................................... 8 

Figure 4: Flow chart of the Smart Traffic Light Project ....................................... 15 

Figure 5: FIS Editor window ...................................................................... 21 

Figure 6: Membership Function Editor window (CarsBehindRed) ........................... 22 

Figure 7: Membership Function Editor window (CarsBehindGreen) ........................ 23 

Figure 8: Membership Function Editor window (TimeExtent) ............................... 23 

Figure 9: Rule Editor Window ..................................................................... 24 

Figure 10: Rule Viewer Window .................................................................. 25 

Figure 11: Simulink blocks to test the fuzzy logic system ..................................... 27 

Figure 12: Input 1- Cars behind green ............................................................ 28 

Figure 13: Input 1- Cars behind red ............................................................... 28 

Figure 14: Output- Time extension ................................................................ 29 

Figure 15: Counter circuit schematic .............................................................. 30 

Figure 16: Traffic Light circuit schematic ...................................................... .31 

Figure 17: Part of the circuit schematic .......................................................... 32 

Figure 18: Counter circuit constructed ........................................................... 33 

Figure 19: Traffic light circuit constructed ...................................................... 33 

Figure 20: Final product. ........................................................................... .33 

LIST OF TABLES 

Table 1: Cars behind red ............................................................................ 10 

Table 2: Cars behind green ........................................................................• 10 

Table 3: Time extension (seconds) ................................................................ lO 

Vll 



Table 4: Rules set for this project. ................................................................ 11 

Table 5: Tools required ............................................................................. 20 

Table 6: Outputs generated from rule Viewer Window ........................................ 26 

North: Number of cars 

South: Number of cars 

East: Number of cars 

West: Number of cars 

Number of cars on East-West 

Number of cars on North-South 

LIST OF EQUATIONS 

l.la ......................................................... 6 

l.lb .......................................................... 6 

l.lc ......................................................... 6 

I .I d ......................................................... 6 

1.2 .......................................................... 7 

1.2b ......................................................... 7 

LIST OF APPENDICES 

Appendix 1: Microcontroller codes .............................................................. 3 7 

Appendix 2: Datasheet PIC16F877 .............................................................. .48 

Appendix 3: Datasheet PIC16F84A ............................................................. 51 

viii 



CHAPTER I 

INTRODUCTION 

1.1 Background of study 

As the number of cars has increased rapidly the traffic in big city seems to be busier. 

Everyone will rush to get in time. Efficient traffic light play important role to make sure 

the traffic is smooth so that user can plan their time well. Inefficient traffic light will raise 

a lot of problems such as traffic jam, time wasting and mental stressed for the user and 

increase the air pollution. 

Conventional traffic light is not compatible anymore because the sequence is controlled 

by using fixed time value [1]. This is where smart traffic light is introduced to solve the 

traffic problem. A lot of method has been developed by the traffic light vendors to 

increase the efficiency of the traffic light such as timer based with fuzzy logic control 

using sensor, automatic control by using camera based detection and manual control by 

using remote control based on camera monitoring. [2)[3] 

One of the smart traffic light systems is using fuzzy logic [1]. In this project, traffic light 

using fuzzy logic will be developed to increase the efficiency of the traffic light system. 

Fuzzy logic has rapidly become one of the most successful of today's technologies for 

developing sophisticated control systems. The reason for which is very simple. Fuzzy 

logic addresses such applications perfectly as it resembles human decision making with 

an ability to generate precise solutions from certain or approximate information. It fills an 

important gap in engineering design methods left vacant by purely mathematical 

approaches (e.g. linear control design), and purely logic-based approaches (e.g. expert 

systems) in system design. 

1 



While other approaches require accurate equations to model real-world behaviors, fuzzy 

design can accommodate the ambiguities of real-world human language and logic. It 

provides both an intuitive method for describing systems in human terms and automates 

the conversion of those system specifications into effective models. 

The use of fuzzy logic in this smart traffic light is to determine the most efficient time 

extension for each traffic light cycle based on the information of the number of cars 

obtained from the incremental sensor located at each junction. 

1.2 Problem statement 

Recently conventional traffic light has several disadvantages that lead to the reducing in 

efficiency and reliability of traffic light system. One of the disadvantages is during traffic 

jam or peak traffic hour, the traffic light could not response accurately in controlling the 

time extension for the traffic light cycle because the conventional traffic light is using fix 

time cycle. The other disadvantage of the conventional traffic light is that it has no 

synchronization with other nearest traffic light that will lead in to the traffic jam. For an 

example the distance between two traffic lights is 20 meters and the first traffic light is 

having green while the second traffic light is having red on the same direction. This could 

lead to the traffic jam during peak hour because the cars queue behind the second traffic 

light will reach up to the first traffic light. Cars behind the first traffic light need to wait 

until the second traffic light to have the green light to move forward. 

A lot of factors must be considered in designing the traffic light system such as the 

location of the traffic light junction, distance of the nearest traffic light junction and the 

capacity of car using the junction during day and night. The designer should consider all 

of the factors before designing the traffic light system. However, conventional. traffic 

light does not meet all of this consideration anymore. 

2 



Currently smart traffic light such as fuzzy logic has been used to overcome the 

disadvantages of the conventional traffic light. Beside of having fix timing for the 

conventional traffic light, it is better to reduce or extent the time based on the number of 

cars on each junctions. Sometimes it would be better to pass more cars at the green 

interval if there are not so many cars waiting behind the red light. On the other hand it 

would be better to change the green light to red light sooner if there less car at the green 

interval and many cars waiting behind the red light. This will increase the efficiency of 

the traffic light. There are no exact mathematical models to make the decision whether to 

extent or reduce the time. By using fuzzy logic it is relatively easy to determine the near 

optimal changing oflights for each situation. Fuzzy logic system was found to have good 

performance compared to human and conventional method [I]. 

This project will focuses on designing a traffic light using fuzzy logic to determine the 

time extension for the traffic light junction. The traffic light will be modeled for an 

intersection of two streets. The design has been implemented using eight incremental 

sensors that will increment the counts when car passed over it. It will count the number of 

cars on the street in the range of the allocated sensors. Then it wills decide the time 

extension based on number of cars in each street. 

1.3 Objective and scope of study 

1.3.1 Objectives 

The objectives of this project are: 

• To develop fuzzy logic system by using fuzzy logic tool box in MATLAB. 

• To develop circuit that can collect data from the traffic light junction and send it 

to MATLAB software. 

• To integrate fuzzy logic system with circuit developed to form a real time smart 

traffic light system. 

3 



1.3.2 Scope of study 

The scope of this project includes the implementation of the fuzzy logic using MATLAB 

to develop the decision making system for the smart traffic light. Apart from that, 

Simulink is used to link the toolbox with external circuit and test the developed traffic 

light system. 

Microchip's microcontroller PIC16F877 and PIC16F84 were used to develop the external 

circuit. The external circuit was developed to count the number of cars arrived and leaved 

the traffic light junction, get the total number of cars at each junction and send the data to 

MATLAB. When the data had been processed, MATLAB will send the data back to the 

external circuit. Then the external circuit will response to the data received. 

The microcontroller used were developed using the C programming codes. PIC C 

Compiler is used to compile the C programming code to hex file. 

4 



CHAPTER2 

LITERATURE REVIEW AND THEORY 

2.1 Traffic light specification 

Traffic light implemented in this project is shown in Figure 1. It consists of four junctions 

such as north, west, south and east. In designing the traffic light, there are some 

assumption needs to be made: 

i) The junction is an isolated four-way junction with traffic coming from the 

north, west, south and east directions; 

ii) When traffic from the north and south moves, traffic from the west and east 

stops, and vice versa; 

iii) No right and left turns are considered; 

iv) The fuzzy logic controller will observe the density of the north and south 

traffic as one side and the west and east traffic as another side; 

There are eight incremental sensors labeled as Sx (x=l, 2, 3, 4, 5, 6, 7, 8) as shown in 

Figure 1. The first sensor will count number of cars that reach the intersection and the 

latter one will count number of cars that pass the traffic lights. Every time car passes the 

sensor, it will increment its value by one. The amount of cars behind the traffic light will 

be the value different between two sensors. 

5 



S5 I North 

East +West 

Distance =D 

~) 
0 

S6 I 
South 

I S7 I I S8 I Distance =D 

~ 01 
'J 

!~) 0 
I S2 

(o IS4 I S31 

o, IO 
r-/ '-:::: Distance=D 

Distance= D 

I Sl 

Figure 1: Traffic light junction illustration 

The distance D in Figure 1 will determine the amount of car that will be waiting behind 

the traffic light. In this project the distance used is 40 meters. One car is estimated to be 5 

meter long hence maximum number of cars can be between the sensors is 7 cars. Number 

of cars behind the traffic light is determined by using the equations shown below: 

North: Number of cars= S5- S6 

South: Number of cars = S 1 - S2 

East: Number of cars= S7- S8 

West: Number of cars = S3 - S4 

l.la 

l.lb 

l.lc 

l.ld 

All the odd sensors (Sl, S3, S5, S7) will count the number of cars arrived at the junction 

while the even sensors (S2, S4, S6, S8) will count number of car leaving the junction. 

Number of cars left behind the traffic light will be obtained by subtracting the number of 

cars arrived at the junction with the number of cars leaving the junction. 

6 



Equations shown below are used to get the total number of cars on the street. 

Number of cars on East-West= (S7- S8) + (S3- S4) 1.2a 

Number of cars on North-South = (S5 - S6) + (S 1 - S2) 1.2b 

The sum from the equation above will be the input parameters to the fuzzy logic that will 

be categorized as: 

v) Cars behind red light 

vi) Cars behind green light 

The overall picture of how the system work is illustrated in Figure 2. Number of cars 

from north, south, east and west junction will be the input to the fuzzy decision making 

system. Based on the input the fuzzy system will decide the time extension for the current 

traffic light cycle. 

Cars from north 

Cars from south 

Cars from east 

Cars from west 

2.2 Project Block Diagram 

Need for 

Fuzzy Decision change 

Figure 2: Fuzzy system 

Switching 
~ value 

Yes/No 

The complete system of this project is shown in the project block diagram in Figure 3. 

There are 8 blocks that represent the incremental sensor, 4 blocks represent the 

subtraction circuit, 2 blocks represent addition circuit, 1 block represent Fuzzy Logic 

system in MATLAB and 1 block represent the traffic light circuit. All of the incremental 

sensors were developed by using PIC16F84 and the other circuits including the 

subtraction, addition and traffic light circuit were developed usingPIC16F877. 

7 



Traffic Light 
circuit 

Incremental sensor 
circuit (Sl) 

Incremental sensor 
circuit (S2) 

Incremental sensor 
circuit (S3) 

Incremental sensor 
circuit (S4) 

Incremental sensor 
circuit (S:5) 

Incremental sensor 
circuit (S6) 

Incremental sensor 
circuit (S7) 

Incremental sensoc 
circuit (S8) 

External Circuit 

Fuzzy Logic 
inMATLAB 

Figure 3: Project block diagram 

The traffic light will start with giving green light to North-South street and giving red to 

East-West street. The incremental sensor will count the number of cars in 5 seconds. 

Then it will send the data to the subtraction circuit to get the number of cars at each 

junction. The data then will be sent to the addition circuit to get the total number of cars 

on North-South street and East-West street. After obtaining the total number of cars on 

each street, the data will be sent to the Fuzzy Logic system for the extension time 

decision making. When the decision has been made, the data will be sent to the traffic 

light circuit. 

8 



2.3 Fuzzy Logic 

The project uses fuzzy logic toolbox to make the decision for the time extension. The 

reason of using fuzzy logic in the decision making is because it can control nonlinear 

system that would be impossible to model mathematically and it processes user defined 

rules that will be the standard to the target control system. It can be modified and 

adjusted easily to improve or alter the system performance. 

Fuzzy logic theory was found by Professor Lofti Zadeh at thee University of California in 

1965. He proposed a paradigm shift that first gained acceptance in the Far East and its 

successful application has ensured its adoption around the world. A paradigm is a set of 

rules and regulations which defines boundaries and tells us what to do to be successful in 

solving problems within these boundaries. The development of fuzzy set theory from 

conventional bivalent set theory is a paradigm shift. Bivalent set of theory is limiting a 

humanistic problem mathematically.[4] 

Fuzzy decision processing is divided into three parts [I]: 

i) Fuzzification 

ii) Rule Evaluation 

iii) Defuzzification 

2.3.1 Fuzzification 

This step consists of dividing each input parameter into a set of overlapping membership 

functions [5]. The range and shape of each membership function will be defined and 

labeled. In this project the car density behind the red and green light has been divided 

into the following membership function [1] shown in Table I and 2: 

9 



Table 1: Cars behind red 

Label Range -
Low [0,21 

Medium [1 ,3] 
Hiah !2,61 

Heavy [5,7] 

Table 2: Cars behind green 

Label Ranae 
Low [0, 1] 

Medium [0,3) 
Hioh [1,5] 

Heavy [4,7) 

The output function which is the time extension has been divided into the following 

membership function shown in Table 3: 

Table 3: Time extension (seconds) 

Label 

2.3.2 Rule Evaluation 

First rules are formulated using AND and OR operators. The format used is if then else. 

For an example if cars behind red are low AND cars behind green are low the time 

extension is short. Since there are 2 inputs and each have 4 membership functions, 

therefore the can be 4x4= 16 rules. The rules set in this project are shown in Table 4 

below: 

10 



Table 4: Rules set for this project 

No. Rules 
1 If (cars behind red is low) AND (cars behind green is low) then (time extent is short) 
2 If (cars behind red is medium) AND (cars behind green is low) then (time extent is short) 
3 If (cars behind red is high) AND (cars behind green is low) then (time extent is short) 
4 If (cars behind red is chaos) AND (cars behind green is low) then (time extent is short) 
5 If (cars behind red is low) AND (cars behind green is medium) then (time extent is medium) 

If (cars behind red is medium) AND (cars behind green is medium) then (time extent is 
6 medium) 
7 If (cars behind red is high) AND (cars behind green is medium) then (time extent is short) 
8 If (cars behind red is chaos) AND (cars behind green is medium) then (time extent is short) 
9 If (cars behind red is low) AND (cars behind green is high) then (time extent is long) 
10 If (cars behind red is medium) AND (cars behind green is high) then (time extent is long) 
11 If (cars behind red is high) AND (cars behind green is high) then (time extent is long) 
12 If (cars behind red is chaos) AND (cars behind areen is hiahl then (time extent is medium) 
13 If (cars behind red is low) AND (cars behind green is chaos) then (time extent is very long) 

If (cars behind red is medium) AND (cars behind green is chaos) then (time extent is very 
14 long) 
15 If (cars behind red is hiahl AND (cars behind areen is chaos) then (time extent is lonal 
16 If (cars behind red is chaos) AND (cars behind green is chaos) then (time extent is long) 

MIN_MAX algorithm has been used to calculate the rule strengths. This algorithm is 

widely used because it is relatively simple to implement on a computer. The MIN-MAX 

algorithm deals with one rule at the time and uses only a few memory bytes. 

2.3.3 Defuzzification 

This step is the process converting the fuzzified input into crisp output [ 5). This process 

is done by the MA TLAB software based on the rules evaluation. 

2.4MATLAB 

MATLAB stands for matrix laboratory. It integrates computation, visualization, and 

progranuning in an easy-to-use environment where problems and solutions are expressed 

in familiar mathematical notation. Graphical user interface (GUI) is provided for different 

type of applications. The user friendly environment can help the user to decrease the 

11 



development time. There are a lot of support document that can help the user to 

understand the theory that lies behind the application. [5] 

There is a Fuzzy Logic Toolbox in MATLAB software. Fuzzy Logic Toolbox is a 

collection of functions built on the MATLAB numeric computing environment. It 

provides tools to the user to create and edit fuzzy inference systems within the framework 

of MATLAB [5]. The fuzzy systems can be integrated into simulations with Simulink. 

This toolbox provides graphical user interface (GUI) tools to assist the user to design the 

system. The toolbox provides three categories of tools: 

i) Command line functions 

ii) Graphical interactive tools . 

iii) Simulink blocks and examples 

2.5 Simulink 

Simulink is a software package for modeling, simulating, and analyzing dynamic 

systems. It supports linear and noulinear systems, modeled in continuous time, sampled 

time, or a hybrid of the two [5]. 

There are 2 purposes of using Simulink in this project that are: 

i) Testing the system by inserting random input 

ii) Connecting Fuzzy Logic toolbox with the traffic light circuit 

2.6 Microcontroller 

Microcontroller is a set of microprocessor system that consists of central processing unit, 

memory, input/output ports and timer [2]. It is a complete system in a single chip and 

able to perform simple various tasks to replace the high end microprocessor system. 

12 



The microcontroller that will be used in this project is PIC16F877 and PIC16F84. The 

manufacturer is the Microchip. The chips are small and consume very low power and 

have a high reliability. It can be programmed either by using its own assembly language 

or C programming code. 

The microcontroller PIC16F84 is a high performance RISC (reduced set instruction 

computer) single-cycle microcontroller equipped with 13 input/output pins. It has 68 

bytes of data RAM, 64 bytes of data EEPROM, 14 bit wide instruction word, and 8 bit 

wide data bytes that enable the chip to perform various command and instruction.[6] 

The microcontroller PIC16F877 is also a high performance RISC (reduced set instruction 

computer) single-cycle rnicrocontroller equipped with 33 input/output pins. It has 8K x 

14 words of FLASH Program Memory, 368 x 8 bytes of Data Memory (RAM), 256 x 8 

bytes of EEPROM Data Memory, 14 bit wide instruction word, and 8 bit wide data 

bytes.[7] 

2.7 PIC C Compiler 

PIC C Compiler is second party software that was developed to compile C programming 

code for the Microchip rnicrocontroller. The Microchip Company only produces MPLAB 

software to program the PIC by using assembly language. The PIC C Compiler will 

compile the C programming code and produces hex file that can be read by the 

microcontroller.[2] 

13 



2.8 WARP 13 Programmer 

WARP 13 programmer is used to load the hex file into the microcontroller. The hex code 

is the machine code for the microchip microcontroller. WARP 13 has the ability to erase 

all the machine codes that already loaded in the microcontroller, blank, verify, read and 

programmed the microcontroller. It can verify some setting that being done in the 

programming code such as the clock setting, and some special feature such as fuses. 

WARP 13 is really simple and easy to be used. 

14 



CHAPTER3 

METHODOLOGY 

3.1 Flow chart of the Smart Traffic Light Project 

i 
Go back to the 

system 
implementatton step 

No 

Go back to the 
circuit development 

step 

T 

Go back to the 
integrating step 

No 

( Begin 

l 
Implementation of 

• the fuzzy logic 
system in MATLAB 

l 
Fuzzy Jogic system 

testing 

! • 

-----------oes the fuzzy logic syste 
meet the requirement 

Yes 

Circuit 
development 

Circuit 
testing 

l 

Yes 

Integrating the circuit 
with fuzzy logic system 

through parallet port 

l 
----oes lt work a~ 

expec~-------

IYes 

Figure 4: Flow chart of the Smart Traffic Light Project 

15 



As shown in Figure, 4 there are 5 steps taken to complete this project. The first step is to 

develop the fuzzy logic system using the configuration set in Chapter 2. When completed 

developing the fuzzy logic system, it will be tested using two methods that will be 

explain later. If the system met the requirement, the next step can be implemented that is 

to start developing the circuit. If the system does not meet the requirement, the first step 

must be implemented again. 

The circuit development step is divided into two parts that are C code programming 

development and hardware development which will be explained later. If the circuit 

works as expected, next step can be implemented that is to integrate the fuzzy logic 

system with the circuit. If the circuit does not work as expected, the circuit development 

step needs to be implemented again. 

The final step is to connect the developed circuit with the fuzzy logic system. If the final 

step work as expected hence the project is completed and if it is no, the fmal step need to 

be implemented again. 

3.1.1 Implementation of the Fuzzy Logic System in MATLAB 

There is some useful information provided by in MATLAB need to be read before 

starting the fuzzy logic system development. There two methods of developing the fuzzy 

logic systems that is: 

i) By using the GUI 

ii) By using the command line 

It is better to develop the fuzzy logic system by using GUI because it can save times and 

easy to alter. There are three GUI windows need to be set in completing the fuzzy logic 

system development that is: 

i) FIS (Fuzzy Inference System) editor 

ii) Membership function editor 

iii) Rule editor 

16 



3.1.1.1 FIS editor 

The FIS editor will be the main window. Numbers of input and output can be set in FIS 

editor. The main setting for the system will be set in this window such as the 

configuration of the AND method, OR method, Aggregation, Implication and 

Defuzzification [ 5]. Labeling the input, output and the system name is done in this 

window. 

3.1.1.2 Membership function editor 

The membership function editor will be the window to input all the membership function 

being set early in the theory part. The right type of membership function need to be 

selected here. The input parameter can be set by changing the value in the space provided 

in the window. Final step was to label all the parameter inserted. 

3.1.1.2 Rule editor 

The rule editor window is used to set the rules based on the input and output parameter 

being set previously. These rules depend on human judgment There two methods used in 

the rule editor that if AND, then and if OR, then [5]. The weight of each rule can be set 

based on the system designed. The system designed can be tested by using the rule 

viewer window just by inserting random input. 

3.1.2 Fuzzy Logic system testing 

There are two method can be used to test the fuzzy logic system. The first one is by using 

the rule editor window and the second one by using the Simulink. 

17 



3.1.2.1 Fuzzy Logic system testing using Simulink 

Simulink consist of various blocks that represent various function. Some manuals on 

basic block function provided in MA TLAB need to be read first. The blocks used in 

simulating the fuzzy logic system developed are: 

i) Random number block: used to generate random number as the input 

ii) Mux: to select input to the fuzzy logic controller 

iii) Scope: to view the generated input and output 

iv) Fuzzy logic controller: to integrate the fuzzy logic system being developed 

with other block 

There some basic configuration setting needs to be change in the configuration parameter 

so that the simulation could be successful. 

3.1.2.2 Fuzzy Logic system testing using Rule Editor Window 

Rule Editor Window can be used to test the fuzzy logic system. There is a slot provided 

for the user to key in any random input. After entering the input, it will automatically 

give the output result. 

3.1.3 Circuit development 

The circuit development step is divided into two that are c programnung code 

development and hardware development. 

3.1.3.1 C code programming development for microcontroUer 

The C code programming development was break down into four parts: 

i) Incremental sensor program: to count the number of car passing through it 

ii) Subtraction program: to get the number of cars at each junction 

iii) Addition program: to get the sum of cars on each street 

18 



iv) Traffic light program: to control the traffic flow based on the decision 

received from MATLAB. 

The programming development break down will ease the process of developing and 

debugging the code. 

3.1.3.2 Hardware development 

In this step, all of the microcontroller used will be connected together to complete and 

test the circuit. 

3.1.4 Circuit testing 

All the codes developed need to be tested in the hardware. There are some basic settings 

in the microcontroller need to be discovered so that it will work well as expected. The 

circuit testing was done separately for each part to ease the debugging process. 

3.1.5 Integrating the circuit with fuzzy logic system though parallel port 

In this final step the tested circuit will be connected to the fuzzy logic system through the 

parallel port. 

19 



3.2 Tools required 

This project required integration of software and hardware to produce the desired model. 

The following table shows the components used: 

Table 5: Tools required 

No Hardware No Software 

1 Microcontroller PIC16F84 1 MATLAB 7.0 

2 Microcontroller PIC16F877 2 PIC C Compiler 

3 Breadboard 3 WARP13 

4 4 MHz crystal oscillator 

5 LED 

20 



CHAPTER4 

RESULTS AND DISCUSSION 

4.1 MATLAB simulation 

The MATLAB simulation for fuzzy logic system is the most important part of this project 

where it will be the point to measure the level of smartness of the traffic light system that 

will be designed. The more precise the output generated the more efficient the traffic 

light will be. 

The accuracy of the output generated will depend on the configuration set in three main 

GUI windows stated in the Chapter 3. The main window for the FIS editor is shown in 

Figure 5 below. 

FIS Ed1tor· TrafftclightModif1ed r:lt"QJ~ 
File Edit View 

(rnsrndMi) 

FIST""" 

· o..n:emvariebla 

Name 

Type . -
Help 

Figure 5: FIS Editor window 

TimeExlent 

-
:··~~lndR~.... 
107] 

All of the main configurations are set in this window. The project was saved as 

TrafficLight as shown in Figure 5. The Mamdani's fuzzy inference method was used 

21 



in this project instead of Sugeno. The main difference between Mamdani and Sugeno 

is that the Sugeno output membership functions are either linear or constant. The 

reason of selecting Mamdani to be the fuzzy inference method is because it is 

intuitive, widespread acceptance and well suited to human input [5]. The 

configuration for the AND method, OR method, implication, aggregation, and 

defuzzification are set as shown in Figure 5 because the algorithm used in this project 

is MIN-MAX algorithm. 

The input and output can be added in this window. There are two inputs and one 

output used for these projects that are CarsBehindRed, CarsBehindGreen and 

TimeExtent as shown in Figure 5. To configure the setting for the input and output, 

Membership Function Editor window as shown in Figure 6 need to opened. 

Membership Function Editor: TrafficlightModified GJLQJLEJ 
File Edit View 

FIS Variables 

arsBehindRiilheExtent 

~ ~=-~J 
rsBehindGreen 

Current VOiiioble 

Type -DioPI&YRonge 

Reedy 

n' 

CarsBeld.med 

inPut 

i_[_o __ ?]_ 

[0 7] 

Membership function plots plot points: : 1 81 .. i 
high heavy 

input V8tiable "CarsBehindRed" 

, Curi-ent ~ship FunCtion (click on MF to select) 

Nflri'le 

Type 

Pnms 

Help 

low 

: trimf 
'-·--

Close 

_____ _) 

Figure 6: Membership Function Editor window (CarsBehindRed) 

22 



The membership function of the input (CarsBehindRed), input (CarsBehindGreen) and 

the output (TimeExtent) is set as shown in Figure 6, Figure 7 and Figure 8 

Membership Function Editor: TrafficlightModified ~~~ 
File Edit View 

FIS Variables 

... 1~:rbll•Extent 
rsBehlndGreen 

Current Variable 

Name CarSBehindGreen 

Type Input 

llllembership function plots plot points: t 81 
,----------"""'-=~c-=ci 

heavy . 

,, 
input: variable "CarsBehlndGreen .. 

c....---hip Function (click on MF to select) 

Nome 

Type 

Params [00.51] 

Help 

low 

trlmf 

Close 

Figure 7: Membership Function Editor window (CarsBehindGreen) 

Membership Function Editor: Trafficl ightModified ~~[15l~ 
File Edit Vlew 

FIS Variables 

[ZX]IIIJ 
ar~eaheExtent 

rsBehlndGreen 

Type 

I 
I I 

'> ,;;; 

i 
i 

Short 

Membership function plots plot points: 1· ·· · ·1a~ __ ! 
.... ·-----~---·· ---- .. -----,---..... ___ -l 

Long VeryLong i 

'! J-:-....... -f':_-.,..--4~-...,.---,--¥;_-.,--~--__ ..,_,-_ ----i.L 
.3 '3 '':1 

output variable "TimeExtent" 

TlmeExlent Nome Short 

output 
Type trfmt 

Params 

Help 

Figure 8: Membership Function Editor window (TimeExtent) 

23 



All of the setting shown in Figure 6, 7 and 8 are based on the parameter set in Chapter 2. 

All the type of membership function used is using triangular type named as trimf [5]. 

Except for the heavy membership function in both inputs and VeryLong membership 

function in the output are using trapezoidal type named as trapmf [5]. The parameters of 

each membership function can be set by inserting the value at "Params" box provided in 

the GUI. The range is set referring to the minimum and maximum value of the inputs and 

output. 

The next step is to set the rules for the fuzzy logic system based on the membership 

function set before. The Rule Editor window is shown in Figure 9. 

is high) and (CarsBehindGreen is low) then (TimeExtent is Short) 
. If (CarsBehlndRed is heavy) and (CarsBehlndGreen is tow) then (TimeExlenl: is Short) (1) 
If (CarsBehindRed is low) and (CarsBehindGreen is medium) then (TimeExtent is Mecfun) (1) 

. If (GarsBehindRed is medium) and (CarsBehindGreen is medium) then (TimeExtent is Medium) (1) 

. If (CarsBehlndRed is high) and (CsrsBehindGreen is medium) then (TimeExtent is Short) (1) 

. If (CarsBehlndRed is heavy) and (CarsBehindGreen is medium) then (TimeExf:ent is Short) (1) 
i9.1f (CarsBehinc:IRed is low) and (CarsBehindGreen is high) then (TirneExtent is Long) (1) 
j1 0. If (CarsBehindRed is medium) and (CarsBehindGreen is high) then (TimeExt:enl: is Long) (1) 
[11 . If (CarsBehindRed is high) end (CsrsBehindGreen is high) then (TimeExtent is Long) (1) 
i12. If (CarsBehlndRed Is heavy) and (CarsBehindGreen is high) then (TimeExtent is Medium) (1) 
!13. If (CarsBehindRed is low) and (CarsBehindGreen is heavy) then (TimeExtent is Verylong) (1) 
~14. t1 (CarsBehindRed Is medium) and (CarsBehinciGreen is heavy) then (TimeExt:ent is Verylong) (1) 
!15. ff (GarsBehindReclls high) and (CersBehindGreen is heavy) then (TimeExtent is Long) (1) 
t!_§,_lf.C~!!'~D~-~ .!~-~Yl.~- (~r~~f'IJngg;~--~ J~~:!.YlJh~_(Ti!Y_!~~__is _l,~~_g) (1) 

If and 

CarsBehlndRed is C&rsBehindGreen 

Then 

TlmeExtent is 

Dnot 

Comection 

Qor 

~ 

~- ... i medium 
high 

1
heavy 
!none 

Dnot 

Weight: 

v 

j Delete rule II Add rule 

Figure 9: Rule Editor Window 

24 

~!§~1!!11~!!1·• ... : 
!Medium i 
Long 
Verylong 
;none 

v 

Dnot 

II Close 



There are overall of 16 rules being set for this project. In this window, rules can be added 

by clicking the "Add rule" button and deleted by clicking the "Delete rule" button 

provided. To add the rule, one of the membership function from each input and output is 

selected and the connection between the input must be set either OR or AND. Then the 

"Add rule" button is pressed and the rule added will appear at the bottom of the window. 

When all of the rules have been set, the next step was to test the fuzzy logic system. Rule 

Viewer window shown in Figure 10 was used to test the fuzzy logic system. There is a 

box provided to set the input as shown in figure 10. The input that going to be tested is 

inserted in that box and the enter button was pressed to generate the output. The output is 

shown at the bottom right of the window labeled as TimeExtent . 

. Rule Viewer: TrafficlightModified [;J~rg) 
File Edit View Options 

CarsBehindRed = 2 CarseehindGreen = 7 TimeExten! = 8.47 

1 //"-...,,. .. \ 

2 

3 .--- ·"'- _j l\ 
4 / 

., 
5 ." 
6 
7 / - ----~---... 

a 
9 .r -..... , 

10 

11 / ~ ....... ~_ I 
12 

13 /,- ~ ..... , 

14 / 1"-
15 ~--- ~-. 

16 

lhW i[~nc·_~__: J 11-p<lirts:. Cioi_:JII~: GDI rlgtd lldowniGJ l 
I~ .v-TrafloCugl~, 16 rwes ru~::':::$HOI~p=::;=l :;:1 =~C:.=Ios:::;:e==;lr I 

. 

Figure 10: Rule Viewer Window 

The value tested need to be entered one by one to check the output generated by the fuzzy 

logic system. All the outputs generated are shown in Table 6. 

25 



Table 6: Outputs generated from rule Viewer Window 

nme extent Rounded 
Cars behind red Cars behind Qreen (seconds) (seconds) 

1 1 2.72 3 
1 2 3.5 4 
1 3 4.17 4 
1 4 4.5 5 
1 5 4.69 5 
1 6 5.5 6 
1 7 5.5 6 
2 1 2.53 3 
2 2 3.5 4 
2 3 4.03 4 
2 4 4.39 4 
2 5 4.82 5 
2 6 5.5 6 
2 7 5.5 6 
3 1 2.72 3 
3 2 3.5 4 
3 3 4.17 4 
3 4 4.5 5 
3 5 4.69 5 
3 6 5.5 6 
3 7 5.5 6 
4 1 2.53 3 
4 2 3.5 4 
4 3 4.03 4 
4 4 4.39 4 
4 5 4.82 5 
4 6 5.5 6 
4 7 5.5 6 
5 1 2.72 3 
5 2 3.14 3 
5 3 3.81 4 
5 4 4.17 4 
5 5 4.3 4 
5 6 5.5 6 
5 7 5.5 6 
6 1 1.5 2 
6 2 1.5 2 
6 3 3.47 3 
6 4 4 4 
6 5 4.27 4 
6 6 5.5 6 
6 7 5.5 6 

26 



4.2 Simulink Simulation 

The next step was to test the fuzzy logic system using the Simulink. Simulink is a 

software package for modeling, simulating, and analyzing dynamic systems. It supports 

linear and nonlinear systems, modeled in continuous time, sampled time, or a hybrid of 

the two. Instant access to all the analysis tools in MA TLAB is provided, so that results 

can be analyzed and visualized.[S] 

Random 
Number 

Random 
Number1 

Soope1 

FUZZV' logio 
Controller 

Scope2 

Soope 

Figure 11: Simulink blocks to test the fuzzy logic system 

The Simulink blocks developed are shown in Figure 11. The random number block is 

used to generate random number ranging from 0 to 7 to be the input. Scope 1 and Scope 2 

are used to view the generated input. Both block of the random input are connected to the 

multiplexer before entering the fuzzy logic controller block. This is because the fuzzy 

logic controller box cannot receive 2 inputs at one time. Multiplexer need to be added so 

that the fuzzy logic controller will be able to receive more than two inputs. The Scope is 

used to view the generated output that is the extended time. 

27 



Figure 12: Input 1- Cars behind green 

Figure 13: Input 1- Cars behind red 

28 



Figure 14: Output- Time extension 

Figure 12 and 13 are the generated input from the random input generator and Figure 14 

is the output from the fuzzy logic system. The output obtained from the Simulink 

simulation is different from the output obtained from the Ru1e Editor window. This is 

because the inputs in the Rule Editor Window are all round number where the input from 

Simu1ink simu1ation are mixed of round number and fraction number. The Simu1ink 

simulation was done to test the system capability and to observe the output generated. 

4.3 C code programming and circuit development 

The development of the C code programming must be parallel with the development of 

the circuit because the connection of the circuit will depend on the C programming code 

developed for the circuit. The schematics ofthe circuit developed are shown in Figure 15, 

16 and 17. The circuit is break down into small part to simplify the explanation. The one 

shown in Figure 16 is part of the complete circuit that will do the counting job. The 

counting job will start from the incremental sensors that will count the number of cars 

pass trough it up until getting the total number of cars on each street. 

29 



Then the total number of cars on each street will be sent to the MATLAB. But due to the 

time constraint, the integrating part of the circuit with MATLAB software could not be 

completed. As an alternative, all the generated output values obtained in Table 6 will be 

programmed inside the PIC16F877 of the traffic light circuit schematic. The result 

obtained is still the same either the circuit obtained the output directly from MA TLAB or 

the output have been programmed inside the PIC16F877. The only disadvantages is that 

the parameter set for the membership function could not be alter instantly if the output 

have been programmed inside the chip. The PIC 16F877 need to be reprogrammed to alter 

the membership function because the changes of the membership function will generate 

different output. 

From 

From traffic 
light circuit 

•1 •-'Dii~C 

(2) To 
traffic light 

;~ :2r- another 

~~~~~~=s=oo=m=a=IC==L_,_~~~~---1====T========~ 
Figure 15: Counter circuit schematic

The counter circuit schematic is shown in Figure 15. The sensors are represented by the

two switches S1 and S2 shown in Figure 15. The sensors are connected to ground

because the input pins are set as active low. IC1 and IC4 are using PIC16F84 which are

30

connected to the sensor. It will count the number of cars that pass through the sensor

when the enable pin RBO that is active low is set to low. When the enable pin RBO is high

it will send the data to IC3 that is PIC16F877. The RBO pin is controlled by the traffic

light circuit pinAl. The IC3 will subtract the number of cars detected by S1 from S2 to

get the total number of cars behind the traffic light. When the enable pin at IC2 that is

active low is set low, the data will be sent to IC2 that is PIC 16F877 to calculate average

number of cars on each street. The unconnected port on RCO to RC3 shown in Figure 13

should be connected to the same circuit like the one connecting the IC1, IC3 and IC4 as

shown in Figure 17. This mean that there will 8 PIC16F84 are used to connect to the

sensor, 4 PIC16F877 used to get the number of cars behind each traffic light and 2 PIC

16F877 used to get the total number of cars on each street.

The unconnected port RDO to RD3 will be connected to the traffic light circuit to send the

data as shown in Figure 17.

I i !'Jij .
-1----------~~~~-----

1 'Us
L _______ ~_:_i ~-l'l::,.;>f~-· -----j

cxH'Ji;

Figure 16: Traffic Light circuit schematic

31

The traffic light circuit will receive the data though port RBO to RB3 and RCO to RC3

from the counter circuit as shown in Figure 16. Then it will change time extension based

on the output generated by MATLAB that have been programmed inside the PIC16F877.

There are 6 LEDs that consist of 2 green, 2 red, and 2 yellow color to represent the traffic

light on the East-West and the North-West street.

t
- I _: E

''~" .
~

- t=: ~ = =
:= ~

. l RIJ.'

= ~ - ~' . -- .
= =

~

m
I

'""'

IT ·~

'T'
~ "- . 1::.

c-- fit -
r- . -- n 1;;1;::,

= ;;:-·

l
E

- f= _- .
~

= . -
t=:: II cr:;;

c-

f

Figure 17: Part of the circuit schematic

The programming codes are divided into four parts. There first part is for the sensor using

PIC16F84a, second part is for the subtraction using PIC16F877, third part is for the

addition using PIC16F877 and the final part is the traffic light using PIC16F877.All the

programming codes are shown in Appendix I.

32

Figure 18: Counter circuit constructed

Figure 19: Traffic light circuit constructed

The constructed circuits are shown in Figure 18 and 19. For the time being the circuits

were constructed on the breadboard to simplifY the debugging step.

Figure 20: Final product

Figure 20 shows the final product of this project. The switches represent the sensor.

There are 8 switches being used to represent 8 incremental sensors. The circuits were

hidden in the box.

33

CHAPTERS

CONCLUSIONS AND RECOMMENDATION

5.1 Conclusion

The main objective of this project is to build a prototype of smart traffic light using fuzzy

logic. The C code programming and the circuit had been developed and tested to obtain

the best result. The smart traffic light wills count the number of cars by using the sensor

allocated at each junction. the total number of cars will be sent to the subtraction circuit

to find the total number of cars behind each traffic light. The result will be sent to the

addition circuit to find the total number of cars on the East-West and North-South streets.

Then the total number of cars will be sent to the traffic light circuit to decide the time

extent by comparing the total number of cars on each street.

The cycle time extent will depend on the number of cars waiting behind the traffic light.

Basically when the number of cars behind the red light are higher compare to the number

of cars behind the green light, the time extent will be smaller and vice versa. The best

time extents were generated from MA TLAB based on the rules being set. Based on the

generated values, the progranuning codes and circuits were developed.

The smartness of this traffic light is that it cans response to the traffic condition based on

the information received from the sensor. This had increased the traffic light efficiency

compared to the conventional traffic light.

34

5.1 Recommendation

There are a lot of features can be added to this traffic light to increase its level of

smartness. One of the features could be added is using different time cycle system

depending on the traffic condition. For an example during peak hour, the time cycle

system used will be different from the normal hour.

35

REFERENCES

[1] Dr. Devinder Kaur, Elisa Konga, Esa Konga "Fuzzy Traffic Light Controller" IEEE

Journals

[2] Barnett, Cox & O'cul1, Embedded C Programming and the Microchip PIC, Thomson

Delmar Leming, 2004

[2] http://www.ameinfo.com/85148.html

[3] http://www.manilatimes.net/others/special/2002/dec/17/20021217spel.html

[4] Zader Lotfi "Knowledge Representation in Fuzzy Logic" IEEE Journals

[5] Fuzzy Logic Toolbox for use with MATLAB, Fuzzy Logic Toolbox User's Guide,

Mathworks Inc., 1997

[6] PIC16F84A Data Sheet, Microchip, Microchip Technology Inc, 2001

[7] PIC16F877 Data Sheet, Microchip, Microchip Technology Inc, 2001

36

APPENDIX I

37

Programming code for the sensor circuit

#include<!6f84a.h>
#use delay(clock'=4000000)
#fuses XT, NOWDT
int inc, num;
void main(void)
(

while(I)
(

inc =0;

port_ b _pullups(TRUE);
set_tris _a(OxOO);
set_ tris _ b(Oxff);

output_ a(OxOO);

}
}

while(!input(PIN _ BO))
{

}

if(!input(PIN _ B I))
{
delay_ ms(500);
while(!input(PIN _ B!));

inc++;
delay_ms(500);

num =inc;
}

output_ a(num);

Programming code for the subtraction circuit

#include< 16f877 .h>
#use delay(clock=4000000)
#fuses XT, NOWDT, NOL VP
int a, b, sub;
void main(void)
{

while(I)
{

}
}

set_tris _ b(Oxft);
set_tris_c(Oxft);
set_tris_d(OxOO);

output_ d(OxOO);
a=input_ b();
b=input_ c();
sub= a-b;
output_ d(sub);

Programming code for the addition circuit

#include<l6f877a.h>
#use delay(clock=4000000)
#fuses XT, NOWDT, NOL VP
int a, b;
void main(void)
{

while(I)
{

set tris b(Oxft);
set tris c(Oxff);
set_ tris _ d(OxOO);

a=input_ b();
b=input_ c();

output_d(a +b);

}
}

Programming code for the traffic light circuit

#include <16F877.h>
#use delay(clock=4000000)
#fuses XT,NOWDT,NOL VP
#use fiXed _io(d _outputs= PIN_ D7 ,PIN_ D6,PIN _OS ,PIN_ D4,PIN _ D3,PIN _ D2,PIN _ Dl,PIN _DO)
#use fast_io(A)

#use fast_io(B)

#use fust_io(C)

int time_ extent();

void main()
{

while(!)
{

has the green

set_tris _ a(OxOO);
set tris b(Oxff);
set_ tris _ c(Oxff);
set_ tris _ d(OxOO);

//output_low(PIN _DO);
//output_high(PIN_Dl);
//output_low(PIN _D2);

//output_ high(PIN _ D3);
I /output_low(PIN _ D6);
//output_low(PIN _ 07);

output_ d(OxOA);
delay_ ms(2000);

//output_high(PIN_DO);
I /output_low(PIN _ D I);
//output_low(PIN_D2);

//output_low(PIN_D3);
//output_low(PIN _ D6);
//output_high(PIN_D7);

output_d(Ox2J);
output_low(PIN _AI);
delay_ ms(5000);

//initially start with east-west and west-east has the yellow
//REDEW&WE
//YELLOW EW & WE
//GREENEW & WE

//REDSN &NS
//YELLOW SN & NS
//GREEN SN & NS

//east-west, west-east has the red and south-north, north-south

//REDEW&WE
//YELLOW EW & WE
//GREEN EW & WE

//REDSN &NS
//YELLOW SN & NS
//GREEN SN & NS

time_ extent();
ontput_ high(PIN _AI);

//output_high(PIN_DO);
//output_low(PIN_Dl);
//output_low(PIN _ 02);

//output_low(PIN_D3);
//output_high(PIN_D6);
//output_low(PIN _ 07);

output_d(Oxll);
delay_ ms(2000);

//south-north and south-north has the yellow

/IREDEW&WE
//YELLOWEW & WE
//GREEN EW & WE

/IREDSN &NS
//YELLOW SN & NS
//GREEN SN & NS

II south-north, north-south has the red and west-east, east-west
has the green

}
}

//output_low(PIN _DO);
//output_low(PIN_Dl);
//output_high(PIN _ 02);

//output_high(PIN_D3);
//output_low(PIN _ 06);
//output_low(PIN _ 07);

output_ d(OxOC);

output_low(PIN _A I);
delay_ms(5000);
time_ extent();

output_ high(PIN _A I);

int time_ extent(void)
{

/IREDEW&WE
//YELLOWEW & WE
//GREEN EW & WE

/IREDSN &NS
//YELLOW SN & NS
//GREEN SN & NS

if((input_b()=O) && (input_c()-O))
return 0;

else iQ(input_b()=O) && (input_c()===l))
{ delay_ ms(2000);

retumO;
}

else if((input_b()==O) && (input_c()--2))
{ delay_ ms(2000);

return 0;
}

else it((input_b()~) && (input_c()=3))
{ delay_ ms(3000);

return 0;
}

else it((input_ b()==O) && (input_ c()==4))
{ delay_ ms(4000);

return 0;
}

else it((input_b()==O) && (input_c()==5))
{ delay_ms(4000);

return 0;
}

else it((input_b()~) && (input_c()=6))
{ delay_ ms(5000);

return 0;
}

else it((input_b()=O) && (input_c()=7))
{ delay_ ms(5000);

return 0;
}

else it((input_b()=l) && (input_c()=O))
{

return 0;
}

else it((input_b()==!) && (input_c()=l))
{ delay_ ms(3000);

return 0;
}

else if((input_b()=l) && (input_ cO 2))
{ delay_ms(4000);

return 0;
}

else it((input_b()=I) && (input_c()=3))
{ delay_ ms(4000);

return 0;
}

else it((input_b()=l) && (input_c()==4))
{ delay_ms(5000);

return 0;
}

else if((input_b()=l) && (input_c()=5))

{ delay_ms(5000);
return 0;

}

else if((input_b()=l) && (input_c()=6))
{ delay_ms(6000);

return 0;
}

else if((input_b()=l) && (input_c()=7))
{ delay_ms(6000);

return 0;
}

else if((input_b()--2) && (input_ co--O))
{

return 0;
}

else if((input_b()=2) && (input_c()=l))
{ delay_ ms(3000);

return 0;
}

else if((input_b()=2) && (input_c()=2))
{ delay_ms(4000);

return 0;
}

else if((input_b()=2) && (input_c()=3))
{ delay_ms(4000);

return 0;
}

else if((input_b()=2) && (input_c()=4))
{ delay_ms(4000);

return 0;
}

else if((input_b()=2) && (input_c()=5))
{ delay_ms(5000);

return 0;
}

else if((input_b() 2) && (input_c()=6))
{ delay_ms(6000);

return 0;
}

else if((input_b()--2) && (input_c()=7))
{ delay_ms(6000);

return 0;
}

else if((input_b()==3) && (input_c()=O))
{

return 0;
)

else if((input_b()=3) && (input_c()=l))
{ delay_ ms(3000);

return 0;
}

else if((input_b() 3) && (input_ cO 2))
{ delay_ms(4000);

return 0;
}

else if((input_b()==3) && (input_c()--3))
{ delay_ms(4000);

return 0;
}

else if((input_b()=3) && (input_ cO 4))
{ delay_ms(5000);

return 0;
}

else if((input_b()=3) && (input_c()==5))
{ delay _ms(5000);

return 0;
}

else if((input_ b()=-3) && (input_ c()=6))
{ delay_ms(6000);

return 0;
}

else if((input_b()=3) && (input_c()==7))
{ delay_ms(6000);

return 0;
}

else if((input_b()==4) && (input_c()==O))
{

return 0;
)

else if((input_b()==4) && (input_c()=l))
{ delay_ms(3000);

return 0;
}

else if((input_b() 4) && (input_c()=2))
{ delay_ms(4000);

return 0;

}

else if((input_b()=4) && (input_c()-~3))
{ delay_ms(4000);

return 0;
}

else if((input_b()==4) && (input_c()--4))
{ delay _ms(4000);

return 0;
)

else if((input_b()==4) && (input_c()=S))
{ delay_ms(SOOO);

return 0;
}

else if((input_b()==4) && (input_c()--6))
{ delay_ms(6000);

return 0;
}

else if((input_b()--4) && (input_c()=7))
{ delay_ms(6000);

return 0;
}

else if((input_b()=S) && (input_c()==O))
{

return 0;
)

else if((input_b()=S) && (input_c()=l))
{ delay_ms(3000);

return 0;
}

else if((input_b()=S) && (input_c()=2))
{ delay_ ms(3000);

return 0;
}

else if((input_b()==S) && (input_c()=-3))
{ delay_ms(4000);

return 0;
}

else if((input_ b()=5) && (input_ c()--4))
{ delay_ ms(4000);

return 0;
)

else if((input_b()=5) && (input_c()=S))
{ delay_ms(4000);

return 0;
}

else if((input_b()===S) && (input_c()===6))
{ delay_ms(6000);

return 0;
}

else if((input_b()==S) && (input_c()==7))
{ delay_ms(6000);

return 0;
}

else if((input_b()==6) && (input_c()=O))
{

return 0;
}

else if((input_b()=6) && (input_c()===l))
{ delay_ms(2000);

return 0;
}

else if((input_b()=6) && (input_c()=2))
{ delay_ms(2000);

return 0;
}

else if((input_b()=6) && (input_c()=3))
{ delay_ ms(3000);

return 0;
}

else if((input_b()=6) && (input_c()=~4))
{ delay_ms(4000);

return 0;
}

else if((input_b()===6) && (input_c()=5))
{ delay_ms(4000);

return 0;
}

else if((input_ b()=6) && (input_ c()=6))
{ delay_ms(6000);

return 0;
}

else if((input_b()=6) && (input_c()=7))
{ delay_ms(6000);

return 0;
}

}

else if((input_b()=7) && (input_c()==O))
{

return 0;
)

else if((input_b()=7) && (input_c()=l))
{ delay_rns(2000);

return 0;
}

else ift(input_b()=7) && (input_c()-2))
{ delay_ms(2000);

return 0;
}

else ift(input_b()=o=7) && (input_c()=3))
{ delay_ms(3000);

return 0;
}

else ift(input_b()==7) && (input_c()=4))
{ delay_ ms(4000);

return 0;
}

else ift(input_b()=7) && (input_c()-5))
{ delay _ms(4000);

return 0;
}

else if((input_b()=7) && (input_c()=6))
{ delay_ms(6000);

return 0;
}

else ift(input_b()=7) && (input_c()=7))
{ delay_ms(6000);

return 0;
}

APPENDIX II

48

~
MICROCHIP PIC16F84A

18-pin Enhanced FLASH/EEPROM 8-Bit Microcontroller

High Performance RISC CPU Features:

Only 35 single word instructions to team
• All instructions single-cycle except for program

branches which are two-cycle
Operating speed: DC - 20 MHz clock input

DC - 200 ns instruction cycle
1024 words of program memory
68 bytes of Data RAM
64 bytes of Data EEPROM
14-b~ wide instruction words
8-bit wide data bytes
15 Special Function Hardware registers
Eight-level deep hardware stack
Direct, indirect and relative addressing modes
Four interrupt sources:

External RBO/INT pin
- TMRO timer overflow

PORTB<7:4> interrupt-on-change
- Data EEPROM write complete

Peripheral Features:

13 110 pins with individual direction control
High current sink/source for direct LED drive
- 25 mA sink max. per pin
- 25 mA source max. per pin
TMRO: 8-bit timer/counter w~h 8-bit
programmable prescaler

Special Microcontroller Features:

10,000 erase/write cycles Enhanced FLASH
Program memory typical
10,000,000 typical erase/wrfle cycles EEPROM
Data memory typical
EEPROM Data Retention > 40 years
In-Circuit Serial Programmingm (ICSP"')- via
two pins
Power-on Reset (POR), Power-up Timer (PWRT),
Oscillator Start-up Timer (OST)

• Watchdog Timer (WDT) w~ ~own On-Chip RC
Oscillator for reliable operation
Code protection
Power saving SLEEP mode
Selectable oscillator options

© 2001 Microchip Technology Inc.

Pin Diagrams

PDIP, SDIC

RA3-
RA4!TOCKI

MC'i:R
Vss-

SSOP

RA2-
RA3-

RA4ffOCKI-

M'CCR-
Vss-
Vss-

RBOIINT-
RB1-
RB2-
RB3-

-RA1
-RAO
-OSC1/CLKIN

- OSC2/CLKOUT
-voo
-RB7
-RB6
-RB5

-RB4

-RA1
2 -RAO·

3 - OSC1/CLKIN
4 - OSC2/CLKOUT

-voo
-voo

1 -RB7

-RB6
-Res-
-RB4

CMOS Enhanced FLASH/EEPROM
Technology:

Low power, high speed technology
Fully static design
Wide operating voltage range:
- Commercial: 2.0V to 5.5V
- Industrial: 2.0V to 5.5V
Low power consumption:

< 2 mA typical @ 5V, 4 MHz
- 15 ~typical@ 2V, 32kHz

< 0.5 ~typical standby current@ 2V

05350078-page 1

;,IC16F84A

ABLE 1-1: PIC16F84A PINOUT DESCRIPTION

Pin Name
PDIP SOIC SSOP 1/0/P Buffer

Description No. No. No. Type Type

)SC1/CLKIN 16 16 18 I ST/CMOS(3) Oscillator crystal input/external clock source input.

)SC2/CLKOUT 15 15 19 0 - Oscillator crystal output. Connects to crystal or
resonator in Crystal Oscillator mode. In RC mode,
OSC2 pin outputs CLKOUT, which has 1/4 the
frequency of OSC1 and denotes the instruction
cycle rate.

IACLR 4 4 4 liP ST Master Clear (Reset) input/programming voltage
input. This pin is an active low RESET to the device.

PORTA is a bi-directionaiiiO port.
~0 17 17 19 1/0 TTL

~1 18 18 20 110 TTL

~A2 1 1 1 110 TTL

~A3 2 2 2 110 TTL

~A4/TOCKI 3 3 3 110 ST Can also be selected to be the clock input to the
TMRO timer/counter. Output is open drain type.

PORTB is a bi-directional 110 port. PORTB can be
software programmed for internal weak pull-up on
all inputs.

'l.BO/INT 6 6 7 110 TTL/ST(1) RBO/INT can also be selected as an external
interrupt pin.

~B1 7 7 8 110 TTL

'l.B2 8 8 9 110 TTL

'l.B3 9 9 10 1/0 TTL

RB4 10 10 11 110 TTL Interrupt-on-change pin.

RB5 11 11 12 110 TTL Interrupt-on-change pin.

RB6 12 12 13 110 TTLJsT<2l Interrupt-on-change pin.
Serial programming clock.

RB7 13 13 14 110 TTLIST(2) Interrupt-on-change pin.
Serial programming data.

1/ss 5 5 5,6 p - Ground reference for logic and 1/0 pins.
1/oo 14 14 15,16 p - Positive supply for logic and 110 pins.

Legend: 1- mput 0 - Output 110 = Input/Output P - Power
- = Not used TTL = TTL input ST = Schmitt Trigger input

~ote 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.
2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.
3: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.

lS35007B-page 4 © 2001 Microchip Technology Inc.

APPENDIX III

51

MICROCHIP PIC16F87X
28/40-Pin 8-Bit CMOS FLASH Microcontrollers

Devices Included in this Data Sheet:

PIC16F873
PIC16F874

PIC16F876
PIC16F877

Microcontroller Core Features:

High performance RISC CPU
• Only 35 single word instructions to leam

All single cycle instructions except for program
branches which are two cycle
Operating speed: DC- 20 MHz clock input

DC - 200 ns instruction cycle
Up to 8K x 14 words of FLASH Program Memory,
Up to 368 x 8 bytes of Data Memory {RAM)
Up to 256 x 8 bytes of EEPROM Data Memory
Pinout compatible to the PIC16C73B/74B/76/77
Interrupt capability {up to 14 sources)
Eight level deep hardware stack
Direct, indirect and relative addressing modes
Power-on Reset {POR)
Power-up Timer {PWRT) and
Oscillator Start-up Timer {OST)
Watchdog Timer {WDT) with its own on-chip RC
oscillator for reliable operation
Programmable code protection
Power saving SlEEP mode
Selectable oscillator options
low power, high speed CMOS FLASH/EEPROM
technology
Fully static design
In-Circuit Serial Programming'" {ICSP) via two
pins

• Single 5V In-Circuit Serial Programming capability
In-Circuit Debugging via two pins
Processor read/write access to program memory
Wide operating voltage range: 2.0V to 5.5V
High Sink/Source Current: 25 mA
Commercial, Industrial and Extended temperature
ranges
low-power consumption:

< 0.6 mA typical @ 3V, 4 MHZ
20 JlA typical @ 3V, 32 kHz
< 1 JlA typical standby current

© 2001 Microchip Technology Inc.

Pin Diagram

PDIP

MC'LRNPP- 1
RAO/ANO- 2

RA1/AN1- 3
RA2JAN2NREF~ -

RA3/AN3NREF-t -
RA4FTOCKI - 6

RA51AN4/SS -

REOIRD/AN5 -
RE1/WRJAN6 - g

RE2JCS/AN7 -
Voo-

- RB7/PGD
- RB6fPGC
-RB5
-RB4
- RB3/PGM
-RB2
-RB1

- RBO/INT
-voo
-vss
- RD7/PSP7

Vss- - RD6/PSP6
OSC1/CLKIN- - ROSIPSP5

OSC2/CLKOUT - - RD4JPSP4
RCOIT10SOfT1CKI - - RC71RX/DT
RC1fT10SI/CCP2- - RC61TX/CK

RC2/CCP1 - - RC5/SDO

RC31SCKISCL - - RC4/SDI/SDA
RDOJPSPO - - RD31PSP3

R01/PSP1 - - RD2/PSP2
'-----r

Peripheral Features:

TimerO: 8-bit timer/counter with 8-bit prescaler
Timer1 : 16-btt timer/counter wtth prescaler,
can be incremented during SLEEP via external
crystal/clock
Timer2: 8-bit timer/counter with 8-bit period
register, prescaler and postscaler
Two Capture, Compare, PWM modules
- Capture is 16-bit, max. resolution is 12.5 ns
- Compare is 16-bit, max. resolution is 200 ns
- PWM max. resolution is 10-bit
1 0-btt multi-channel Analog-to-Digital converter
Synchronous Serial Port {SSP) with SPim {Master
mode) and 12C m {Master/Slave)
Universal Synchronous Asynchronous Receiver
Transmitter {USART/SCI) with 9-bit address
detection
Parallel Slave Port {P~ 8-bits wide, with
external RD, WR and CS controls {40/44-pin only)
Brown-out detection circuttry for
Brown-out Reset {BOR)

DS30292C-page 1

PIC16F87X

TABLE 1-1: PIC16F873 AND PIC16F876 PINOUT DESCRIPTION

Pin Name

OSC1/CLKIN

OSC2/CLKOUT

MCLRNPP

RAO/ANO

RA1/AN1

RA2/AN2NREF·

RA3/AN3NREF+

RA4rTOCKI

RA5/SS/AN4

RBO/INT

RB1

RB2

RB3/PGM

RB4

RB5

RB6/PGC

RB7/PGD

RCOrT10SOrT1CKI

RC1rT10SIICCP2

RC2/CCP1

RC3/SCK/SCL

RC4/SDIISDA

RCS/SDO
RC6/TX/CK

RC7/RX/DT

Vss

Voo

Legend: I= input

DIP SOIC
Pin# Pin#

9 9

10 10

1 1

2 2

3 3

4 4

5 5

6 6

7 7

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

11 11

12 12

13 13

14 14

15 15

16 16
17 17

18 18

8, 19 8, 19

20 20

0 =output
-=Notused

UO/P Buffer
Type Type

I ST/CMOSI31

0 -

liP ST

110 TTL

110 TTL

110 TTL

110 TTL

110 ST

110 TTL

110 TTusrt11

1/0 TTL

110 TTL

110 TTL

110 TTL

110 TTL

1/0 TTUSTI21

1/0 TTusrt21

1/0 ST

1/0 ST

1/0 ST

1/0 ST

110 ST

110 ST

110 ST

110 ST

p -
p -
110 = inpuUoutput
TTL = TTL input

Description

Oscillator crystal inpuUextemal clock source input.

Oscillator crystal output. Connects to crystal or resonator in
crystal oscillator mode. In RC mode, the OSC2 pin outputs
CLKOUT which has 1/4 the frequency of OSC1, and denotes
the instruction cycle rate.

Master Clear (Reset) input or programming voltage input. This
pin is an active low RESET to the device.

PORTA is a bi-directional I/O port.

RAO can also be analog inputO.

RA 1 can also be analog input1.

RA2 can also be analog input2 or negative analog
reference voltage.

RA3 can also be analog input3 or positive analog
reference voltage.

RA4 can also be the clock input to the TimerO
module. Output is open drain type.

RA5 can also be analog input4 or the slave select
for the synchronous serial port.

PORTB is a bi-directional 110 port. PORTB can be software
programmed for internal weak pull-up on all inputs.

RBO can also be the external interrupt pin.

RB3 can also be the low voltage programming input.

Interrupt-on-change pin.

Interrupt-on-change pin.

Interrupt-on-change pin or In-Circuit Debugger pin. Serial
programming clock.

Interrupt-on-change pin or In-Circuit Debugger pin. Serial
programming data.

PORTC is a bi-directional I/O port.

RCO can also be the limer1 oscillator output or limer1
clock input.

RC1 can also be the Timer1 oscillator input or Capture2
inpuUCompare2 output/PWM2 output.

RC2 can also be the Capture1 inpuUCompare1 output/
PWM1 output.

RC3 can also be the synchronous serial clock inpuUoutput
for both SPI and 12C modes.
RC4 can also be the SPI Data In (SPI mode) or
data 110 (12C mode).

RC5 can also be the SPI Data Out (SPI mode).

RC6 can also be the USART Asynchronous Transmit or
Synchronous Clock.

RC7 can also be the USART Asynchronous Receive or
Synchronous Data.

Ground reference for logic and 1/0 pins.

Positive supply for logic and 110 pins.

P;; power
ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.
2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.
3: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.

© 2001 Microchip Technology Inc. DS30292C-page 7

)IC16F87X

A.BLE 1-2: PIC16F874 AND PIC16F877 PINOUT DESCRIPTION

Pin Name

JSC1/CLKIN

)SC21CLKOUT

ACLRNPP

~0/ANO

~1/AN1

~/AN2NREF-

~3/AN3NREF+

~4ffOCKI

~5/SS/AN4

~BO/INT

RB1

RB2

RB3/PGM

RB4

RB5

RB6/PGC

~87/PGD

Legend: I =input

DIP PLCC
Pin# Pin#

13 14

14 15

1 2

2 3

3 4

4 5

5 6

6 7

7 8

33 36

34 37

35 38

36 39

37 41

38 42

39 43

40 44

0 = oulput
-=Not used

QFP
Pin#

30

31

18

19

20

21

22

23

24

8

9

10

11

14

15

16

17

UOIP Buffer
Type Type

I ST/CMOS14l

0 -

liP ST

110 TIL

110 TIL

110 TIL

110 TIL

110 ST

110 TIL

110 Tiusri1>

110 TIL

110 TIL

110 TIL

110 TIL

110 TIL

110 Tiusr12l

110 TTUSTi2l

110 = ~npuUoulput
TIL=TILinput

Description

Oscillator crystal input/external clock source input.

Oscillator crystal oulpul. Connects lo crystal or resonator
in crystal oscillator mode. In RC mode. OSC2 pin oulputs
CLKOUT which has 1/4 the frequency of OSC1, and
denotes the instruction cycle rate.

Master Clear (Reset) input or programming voltage input
This pin is an active low RESET to the device.

PORTA is a bi-directionaiiiO port.

RAO can also be analog inputO.

RA 1 can also be analog input1.

RA2 can also be analog input2 or negative
analog reference voltage.

RA3 can also be analog input3 or positive
analog reference voltage.

RA4 can also be the clock input to the TimerO timer/
counter. Output is open drain type.

RA5 can also be analog input4 or the slave select for
the synchronous serial port.

PORTB is a bi-directionaiiiO port. PORTB can be soft-
ware programmed for internal weak pull-up on all inputs.

RBO can also be the external interrupt pin.

RB3 can also be the low voltage programming input.

lnterrupt.-on-change pin.

Interrupt-on-change pin.

lnterrupt.-on-change pin or In-Circuit Debugger pin.
Serial programming clock.

Interrupt-on-change pin or In-Circuit Debugger pin.
Serial programming data.

P;;: power
ST =Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as an external interrupt.
2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.
3: This buffer is a Schmitt Trigger input when configured as general purpose 110 and a TIL input when used in the Parallel

Slave Port mode (for interfacing to a microprocessor bus).
4: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.

lS30292C-page 8 © 2001 Microchip Technology Inc.

PIC16F87X

TABLE 1-2: PIC16F874 AND PIC16F877 PINOUT DESCRIPTION {CONTINUED)

Pin Name

RCOIT1 OSOfT1 CKI

RC1/T10SIICCP2

RC2/CCP1

RC3/SCKISCL

RC4/SDIISDA

RC5/SDO

RC61TX/CK

RC7/RX/DT

RDO/PSPO

RD1/PSP1

RD2/PSP2

RD3/PSP3

RD4/PSP4

RD5/PSP5

RD6/PSP6

RD7/PSP7

REO/RD/AN5

RE1/WRIAN6

RE2/CS/AN7

Vss

Voo

NC

Legend: I = onput

DIP PLCC
Pin# Pin#

15 16

16 18

17 19

18 20

23 25

24 26

25 27

26 29

19 21

20 22

21 23

22 24

27 30

28 31

29 32

30 33

8 9

9 10

10 11

12,31 13,34

11,32 12,35

- 1,17,28,
40

0 =output
-=Not used

QFP
Pin#

32

35

36

37

42

43

44

1

38

39

40

41

2

3

4

5

25

26

27

6,29

7,28

12,13,
33,34

UO/P Buffer
Type Type

110 ST

110 ST

110 ST

1/0 ST

110 ST

1/0 ST

1/0 ST

110 ST

1/0 STmLI3)

110 STmLI3)

1/0 STmLI3)

110 STmLI3)

110 STmLI3)

110 STmLI3)

110 STmLI3)

1/0 STmLI3)

1/0 STmLI3)

1/0 STmLI3)

1/0 STmLI3)

p -
p -

-

1/0 = onput/output
TTL = TTL input

Description

PORTC is a bi-directional 1/0 port.

RCO can also be the limer1 oscillator output or a
1imer1 clock input.

RC1 can also be the Timer1 oscillator input or
Capture2 input/Compare2 outpuUPWM2 output.

RC2 can also be the Capture1 input/Compare1
output!PWM1 output.

RC3 can also be the synchronous serial clock input/
output for both SPI and 12C modes.

RC4 can also be the SPI Data in (SPI mode) or
data 1/0 (12C mode).

RC5 can also be the SPI Data Out (SPI mode).

RC6 can also be the USART Asynchronous Transmit
or Synchronous Clock.

RC7 can also be the USART Asynchronous Receive
or Synchronous Data.

PORTO is a bi-directional I/O port or parallel slave port
when interfacing to a microprocessor bus.

PORTE is a bi-directional 1/0 port.

REO can also be read control for the parallel slave
port, or analog inputS.

RE1 can also be write control for the parallel slave
port, or analog inputS.

RE2 can also be select control for the parallel slave
port, or analog input7.

Ground reference for logic and 1/0 pins.

Posnive supply for logic and 1/0 pins.

These pins are not internally connected. These pins
should be left unconnected.

P=power
ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as an external interrupt.
2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.
3: This buffer is a Schmitt Trigger input when configured as general purpose 1/0 and a TTL input when used in the Paraltel

Slave Port mode (for interfacing to a microprocessor bus).
4: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.

© 2001 Microchip Technology Inc. DS30292C-page 9

