SMART TRAFFIC LIGHT

By

MUSLIM BIN MUSTAPA

FINAL PROJECT REPORT

Submitted to the Electrical & Electronics Engineering Programme
in Partial Fulfillment of the Requirements
for the Degree

Bachelor of Engineering (Hons)
(Electrical & Electronics Engineering)

Universiti Teknologi Petronas
Bandar Seri Iskandar
31750 Tronoh
Perak Darul Ridzuan

© Copyright 2007

by
Muslim bin Mustapa, 2007

CERTIFICATION OF APPROVAL

Smart Traffic Light

By
Muslim bin Mustapa

A project dissertation submitted to the
Electrical & Electronics Engineering Programme
Universiti Teknologi PETRONAS
in partial fulfillment of the requirement for the
Bachelor of Engineering (Hons)

(Electrical & Electronics Engineering)

Approved by,

UNIVERSITI TEKNOLOGI PETRONAS
TRONOH, PERAK
June 2007

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the
original work is my own except as specified in the references and acknowledgements,
and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

MUSLIM BIN MUSTAPA

il

ABSTRACT

In this report a fuzzy logic model of traffic light controller at an intersection of two
streets has been designed with an aim to improve the performance and offer flexibility of
the traffic flow through the intersection. Fuzzy logic model of a traffic light controller
have a lot of advantages against the conventional traffic light that is using fixed cycle
time. One of the advantages is the ability to adjust the cycle time depending on the
number of cars waiting behind the traffic light instead of fixed cycle time that used by the
conventional traffic light.

This project is divided into two main parts that are the fuZzy logic toolbox and the traffic
light circuit. The fuzzy logic toolbox is used to develop fuzzy logic system to generate
the most accurate extension time for the traffic light to response to the number of cars
waiting behind the traffic light. The traffic light circuit is used to control the light

sequence based on the inputs received from sensors.

In the traffic light circuit, there are eight incremental sensor used to count numbers of car
arrived and leaving the intersection. Each junction will have iwo incremental sensors.
The incremental sensor was developed by using PIC16F84. From the incremental sensor
it will send the data counted to another circuit to compuie numbers car left at the junction
by subtracting the data from second incremental sensor with data from the first
incremental sensor. Then the data will be sent to another circuit that will compute the
average number of cars at both intersections. From this circuit, it will send the data to the
traffic light circuit that will decide the time extent based result obtained from MATLAB.
This method had increased the traffic light efficiency compared to the conventional
traffic light.

iil

ACKNOWLEDGEMENT

First of all, I would like to express my gratitude to Allah s.w.t to make my project run smoothly
as planned for the entire final year. I also would like to express my appreciation to the supervisor,
Mrs Azrina for her guidance and encouragement to complete the project. Great thanks to other
lecturers of Electrical & Electronics Engineering. Big thanks also go to all laboratory technicians,
especially to Mrs Siti Hawa and Mrs Siti Fatimah for their great support and helpful assistance.

I would like also like to express a special thank to my family for their priceless supports,
encouragements, constant love, valuable advices and their understanding. And also bunch of

thanks to alt my colleagues for the supports to this project.

Finally, million thanks to all parties who had contributed directly or indirectly to the success of
this project. |

Thank You

MUSLIM BIN MUSTAPA
Electrical and Electronics engineering
Universiti Teknologi PETRONAS

iv

TABLE OF CONTENTS

ABSTRACTcooeeeerieirueevasresessesirsesssassssastassssarssssessasessessssensssmasestessessanesssasssessene iii
ACKNOWLEDGEMENTcsecieeisetsencsees st taartesests e ae e s ensnesssns iv
LIST OF FIGURESoootieveeetcrerteeesssesensesasesssnaesessasesesessansassessasssenssseseesees vii
LIST OF TABLESooteevietieererirrese e sesnssabeberssbessosssserastessrssnsrsssssessssssssessans vii
LIST OF EQUATIONS ... crceecentinncsasessaseconestesessesasseseesanseesseseasasenssn viii
LIST OF APPENDICESoo ittt sensrresserusessssnisssinsseressassessasrosasossass viii
CHAPTER 1: INTRODUCGTION.......cooiiirrrerreitenesteeseanerennsissssessasessssesaesaesosns 1
1.1 Background of StUAYcovvveiiiririntreniicnrrsine sttt censsssssssssnss 1

1.2 Problem Statement..........ooeoveeeerencerrririieetresiessersessssessenneaersessosseserasensssnes 2

1.3 Objective and Scope of WorK.....cveveeiineinnciiiiiccnreereie s, 3

131 ODJECLVES e ceetirecoierteiaeentresrreseseessnsrsnrsssrasansessssesnssssssssissassoss 3

1.3.2 Scope Of STUAYcomricreiirrirenrcenrse et srassss s e saesaseecsens 4

CHAPTER 2: LITERATURE REVIEW/ THEORYccooocmmeiereerreeceeneesaon, 5
2.1 Traffic light specification...........covecmeeinrcninennressnss s s seenense 5

2.2 Project Block GIaZIammo...ccirnereicririrennssesessrssssesessesneensssssssssrassassssesasssenens 7

2.3 Fuzzy Logic.......coovunens e etetettetesteseeteareatenteaeesatete e st estet e e b antasanasensnenn S

2.3.1 FuzzZifiCationoveeveeeeiecreee e stcreree e reesere ettt e ce e eanens 9

2.3.2 Rule EvaIUation........cccovviiioiieienicnectescsenn e sssiss e sssesenn 10

2.33 DefUzZification.ccvuiiiiecirrec e s ea e e 11

24 MATLAB. ...t ereeecnesse st et essassaes s nssesseseesessssastentas 11

2.5 SIMUIDK. .. ovenitit e et et e aen 12

2.6 MIcrocontroller.........ooeiniiiiit ittt e e 12

2.7 PIC CCOMPIETL.... ...ttt e e e e rerna e eae e es e ere s s eneranan 13

2.8 WARP 13 PrOgramimer.. ... ccoereereiiirineeesrssvasssessssssusssevenssessnssserssssssserssass 14
CHAPTER 3: METHODOLOGYooieecenenterestescetcrenaestssarssssesessessssssnns 15
3.1 Flow chart of the Smart Traffic Light Projectc.courmvenevcmnnciencennncene 15

3.1.1 Implementation of the fuzzy logic system in MATLAB........... 16

3.1.1.1 FIS BdIOT et errctceetsisesse s s s esve e enane. 17

3.1.1.2 Membership Function EAItorcccovvevvvervecccconvarennnes 17

3.1.2 Fuzzy Logic System teSting......c.ccovrerecrvernivernrensnseeresessrereeniesnnes 17

3.1.2.1 Fuzzy Logic system testing using Simulink 18

3.1.2.1 Fuzzy Logic system testing using Rule Editor 18

3.1.3 Circuit development.............covcorrereneccvnvinneiense e 18

3.1.3.1 C code programming development for microcontroller 18

3.1.3.2 Hardware developmentcccovereennceniecrnvccnincreennnnas 19

3.1.4 CircUI teSTME .. oveeertriririeerresererseieeseseessesenesessassesessseeesesssssasnens 19

3.1.5 Integrating the circuit with fuzzy logic system.........coccevverennene. 19

3.2 TOOIS TEQUITEM ..o veeeereeriirieceereessnsae st ares et rbenebe bbb n s smne 20
CHAPTER 4: RESULTS AND DISCUSSIONcooccvinmrrreimceseeerereeresveressones 21
4.1 MATLAB SIMUIALION.......ccoiioveiirrrrccrmnirrinisrsnsseseseesnsnasesseseseasesesseserssnsrasserees 21

4,2 Simulink SImMUIAtionccorveierieinieirrecees et aees 27

4.3 C code programming and circuit development...........ocoevveeueenreerrrerrnrerenenes 29
CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONccoocvvvirnnene. 34
5.1 CONCIUISIONS ..oiierit criertriereece et ecree et ebaess e srsrs st s ae b sstnsssesearssnsessraressnenans 34

5.2 Recommendationcc.ecceecreeeriereniinierteiesereessisesssesresnearessessesessesrensssesasenee 35
REFERENCES cociniiiiie itrteesiacieiasnssenssssserssssssssesesessssensssstmssssssesestesssssessasassses 36
APPENDICES oiiiriires cerretrcesecteostitssnsesesesessessssssssessssssossasssesessssessssssssanssas 37

vi

LIST OF FIGURES

Figure 1: Traffic light junction illustration..............ocooiiiiiii i 6
Figure 2: FUZZY SYSIeM. L. tuiie ettt e e e et e ene e enenaens 7
Figure 3: Project block diagram..........ocoviiiniiiiiiiiiiii e 8
Figure 4: Flow chart of the Smart Traffic Light Project...........c.cooieiiiiiiiiinininnnns .15
Figure 5: FIS EditOr WinAOW.coeiuitiiiiiiiirtiiiienieeneieneaenaeeraeneaeneaaeesesnens 21
Figure 6: Membership Function Editor window {CarsBehindRed)........................... 22
Figure 7: Membership Function Editor window (CarsBehindGreen).............c..ceeoe 23
Figure 8: Membership Function Editor window (TimeExtent)..............ccccovveenennn.n. 23
Figure 9: Rule EAHOr WIBAOW. ... -.ov- v vseverssseeoeeseereeseoeeeeoeeeeeees s oo 24
Figure 10: Rule Viewer WINdOW........oooiiiiiiiiiiiinirisieieisie e emeene e aeaeaeaans 25
Figure 11: Simulink blocks to test the fuzzy logic system...........c.coovveivinireneninnn., 27
Figure 12: Input 1- Cars behind green...........coviiiiiiiiiiniiiiiere e eneaens 28
Figure 13: Input 1- Cars behind red............coooooiiiiiiii 28
Figure 14: Output- Time eXteNSION.o.iiiitiiiiiiiii i e creaeaaeraneaeenaaes 29
Figure 15: Counter circuit schematic...........covuiiiieiiiiiiinin et 30
Figure 16: Traffic Light circuit schematic.........c.coiuiiiiiiiiiiiiiiiei e, 31
Figure 17: Part of the circuit SChematicooovviiriiiiiiiiii e, 32
Figure 18: Counter circuit constructed.o, 33
Figure 19: Traffic light circuit constructed...........c.ooiiiiiiiiiiiii e 33
Figure 20: Final product...... ..o e e 33
LIST OF TABLES
Table 1: Cars behind red......coooiiiiiiiiii e e 10
Table 2: Cars behind green.........cocviiiriiiiriiiiii et aa s .10
Table 3: Time extension (SECONAS)......ccuitemiiuiireriieiirriiiiaeiaeen e rinanreaaennaans 10

vii

Table 4: Rules set for this Project.coi v eeriniiioririier et e e e e e eaeens 11

Table 5: Tools FeqUITEd.eveien e e e e e e nees e 20
Table 6: Outputs generated from rule Viewer Window..........cooiieiiiiiiiiiaiiiiinnnnn., 26
LIST OF EQUATIONS
North: Number of cars | USSR UOUPPPPOPPPRU 6
South: Number of cars | N L T PP PEITP P 6
East: Number of cars S O PSPPI 6
West: Number of cars LEde e e e 6
Number of cars on East-West | PP 7
Number of cars on North-South L 2D e 7
LIST OF APPENDICES
Appendix 1: Microcontroller codescoviiiiiiiiiiiiiiiiier e 37
Appendix 2: Datasheet PICIOF877.......cvivniiiiiiiiiiiiiiiiir e 48
Appendix 3: Datasheet PICIOF84A ..o e 51

viil

CHAPTER 1

INTRODUCTION

1.1 Background of study

As the number of cars has increased rapidly the traffic in big city seems to be busier.
Everyone will rush to get in time. Efficient traffic light play important role to make sure
the traffic is smooth so that user can plan their time well. Inefficient traffic light will raise
a lot of problems such as traffic jam, time wasting and mental stressed for the user and

increase the air pollution.

Conventional traffic light is not compatible anymore because the sequence is controlled
by using fixed time value [1]. This is where smart traffic light is introduced to solve the
traffic problem. A lot of method has been developed by the traffic light vendors to
increase the efficiency of the traffic light such as timer based with fuzzy logic control
using sensor, automatic control by using camera based detection and manual control by

using remote control based on camera monitoring. [2][3]

One of the smart traffic light systems is using fuzzy logic [1]. In this project, traffic light
using fuzzy logic will be developed to increase the efficiency of the traffic light system.
Fuzzy logic has rapidly become one of the most successful of today's technologies for
developing sophisticated control systems. The reason for which is very simple. Fuzzy
logic addresses such applications perfectly as it resembles human decision making with
an ability to generate precise solutions from certain or approximate information. It fills an
important gap in engineering design methods left vacant by purely mathematical
approaches (e.g. linear control design), and purely logic-based approaches (e.g. expert

systems) in system design.

While other approaches require accurate equations to model real-world behaviors, fuzzy
design can accommodate the ambiguities of real-world human language and logic.. It
provides both an intuitive method for describing systems in human terms and automates

the conversion of those system specifications into effective models.

The use of fuzzy logic in this smart traffic light is to determine the most efficient time
extension for each traffic light cycle based on the information of the number of cars

obtained from the incremental sensor located at each junction.

1.2 Problem statement

Recently conventional traffic light has several disadvantages that lead to the reducing in
efficiency and reliability of traffic light system. One of the disadvantages is during traffic
jam or peak traffic hour, the traffic light could not response accurately in controlling the
time extension for the traffic light cycle because the conventional traffic light is using fix
time cycle. The other disadvantage of the conventional traffic light is that it has no
synchronization with other nearest traffic light that will lead in to the traffic jam. For an
example the distance between two traffic lights is 20 meters and the first traffic light is
having green while the second traffic light is having red on the same direction. This could
lead to the traffic jam during peak hour because the cars queue behind the second traffic
light will reach up to the first traffic light. Cars behind the first traffic light need to wait
until the second traffic light to have the green light to move forward.

A lot of factors must be considered in designing the traffic light system such as the
location of the traffic light junction, distance of the nearest traffic light junction and the
capacity of car using the junction during day and night. The designer should consider all
of the factors before designing the traffic light system. However, conventional .traffic

light does not meet all of this consideration anymore.

Currently smart traffic light such as fuzzy logic has been used to overcome the
disadvantages of the conventional traffic light. Beside of having fix timing for -the
conventional traffic light, it is better to reduce or extent the time based on the number of
cars on each junctions. Sometimes it would be better to pass more cars at the green
interval if there are not so many cars waiting behind the red light. On the other hand it
would be better to change the green light to red light sooner if there less car at the green
interval and many cars waiting behind the red light. This will increase the efficiency of
the traffic light. There are no exact mathematical models to make the decision whether to
extent or reduce the time. By using fuzzy logic it is relatively easy to determine the near
optimal changing of lights for each situation. Fuzzy logic system was found to have good

performance compared to human and conventional method {1].

This project will focuses on designing a traffic light using fuzzy logic to determine the
time extension for the traffic light junction. The traffic light will be modeled for an
intersection of two streets. The design has been implemented using eight incremental
sensors that will increment the counts when car passed over it. It will count the number of
cars on the street in the range of the allocated sensors. Then it wills decide the time

extension based on number of cars in each street.

1.3 Objective and scope of study

1.3.1 Objectives

The objectives of this project are:
o To develop fuzzy logic system by using fuzzy logic tool box in MATLAB.
o To develop circuit that can collect data from the traffic light junction and send it
to MATLAB software.
¢ To integrate fuzzy logic system with circuit developed to form a real time smart
traffic light system.

1.3.2 Scope of study

The scope of this project includes the implementation of the fuzzy logic using MATLAB
to develop the decision making system for the smart traffic light. Apart from that,
Simulink is used to link the toolbox with external circuit and test the developed traffic
light system.

Microchip’s microcontroller PIC16F877 and PIC16F84 were used to develop the external
circuit. The external circuit was developed to count the number of cars arrived and leaved
the traffic light junction, get the total number of cars at each junction and send the data to
MATLAB. When the data had been processed, MATLAB will send the data back to the

external circuit. Then the external circuit will response to the data received.

The microcontroller used were developed using the C programming codes. PIC C

Compiler is used to compile the C programming code to hex file.

CHAPTER 2

LITERATURE REVIEW AND THEORY

2.1 Traffic light specification

Traffic light implemented in this project is shown in Figure 1. It consists of four junctions
such as north, west, south and east. In designing the traffic light, there are some

assumption needs to be made:

i) The junction is an isolated four-way junction with traffic coming from the
north, west, south and east directions;

1t} When traffic from the north and south moves, traffic from the west and east
stops, and vice versa;

iii) No right and left turns are considered;

iv) The fuzzy logic controller will observe the density of the north and south

traffic as one side and the west and east traffic as another side;

There are eight incremental sensors labeled as Sx (x=1, 2, 3, 4, 5, 6, 7, 8) as shown in
Figure 1. The first sensor will count number of cars that reach the intersection and the
latter one will count number of cars that pass the traffic lights. Every time car passes the
sensor, it will increment its value by one. The amount of cars behind the traffic light will

be the value different between two sensors.

35 North
East West
Distance=D
- » South
- » /o @ .
36 =
37 S8 (O) Lo Distance =D
o) 'y
'\\ &)
o~ o
54 53
NEE 0
-/ N * Distance=D *
Distance =D
M s1

Figure 1: Traffic light junction illustration

The distance D in Figure 1 will determine the amount of car that will be waiting behind
the traffic light. In this project the distance used is 40 meters. One car is estimated to be 5

meter long hence maximum number of cars can be between the sensors is 7 cars. Number

of cars behind the traffic light is determined by using the equations shown below:

North: Number of cars = S5 - S6
South: Number of cars = 81 - S2
East: Number of cars = S7 — S8
West: Number of cars = S3 — S4

All the odd sensors (S1, 83, S5, §7) will count the number of cars arrived at the junction
while the even sensors (S2, 84, S6, S8) will count number of car leaving the junction.
Number of cars left behind the traffic light will be obtained by subtracting the number of

l.1a
1.1b
l.lc
1.1d

cars arrived at the junction with the number of cars leaving the junction.

Equations shown below are used to get the total number of cars on the street.

Number of cars on East-West = (S7 — S8) + (S3 — 54) 1.2a
Number of cars on North-South = (85 — S6) + (S1 - §2) 1.2b

The sum from the equation above will be the input parameters to the fuzzy logic that will
be categorized as:

V) Cars behind red light

vi) Cars behind green light

The overall picture of how the system work is illustrated in Figure 2. Number of cars
from north, south, east and west junction will be the input to the fuzzy decision making
system. Based on the input the fuzzy system will decide the time extension for the current
traffic light cycle.

Cars from north—————»
Cars from south———» Need for Sv:;;?l};;ng —»Yest o
Cars from east =——————} Fuzzy Decision | change

Cars from west

Figure 2: Fuzzy system

2.2 Project Block Diagram

The complete system of this project is shown in the project block diagram in Figure 3.
There are 8 blocks that represent the incremental sensor, 4 blocks represent the
subtraction circuit, 2 blocks represent addition circuit, 1 block represent Fuzzy Logic
system in MATLAB and 1 block represent the traffic light circuit. All of the incremental
sensors were developed by using PIC16F84 and the other circuits including the
subtraction, addition and traffic light circuit were developed usingPIC16F877.

Incremental sensor
circuit (81)

Subtractien
circuit: '

Incremental sensor -
circuit (52) Addition
circuit

Incremental sensor
circuit (83)

Subtraction
circuit

Incremental sensor

™ cireuit (54
Traffic Light | |
circuit -
Incremental sensor

cirenit (85}

Subtraction
circuit

Incremental sensor
cirenit (56} " Addition
circuit

Incremental sensor

circuit {S7) _ :
Subtraction
: ' gircutt
Incremental —
M i:if:zit(;& e
External Circuit
Time Number
extent Fuzzy Logic ’ of cars
in MATLAB

Figure 3: Project block diagram

The traffic light will start with giving green light to North-South street and giving red to
East-West street. The incremental sensor will count the number of cars in 5 seconds.
Then it will send the data to the subtraction circuit to get the number of cars at each
junction. The data then will be sent to the addition circuit to get the total number of cars
on North-South street and East-West street. After obtaining the total number of cars on
each street, the data will be sent to the Fuzzy Logic system for the extension time
decision making. When the decision has been made, the data will be sent to the traffic
light circuit.

2.3 Fuzzy Logic

The project uses fuzzy logic toolbox to make the decision for the time extension. The
reason of using fuzzy logic in the decision making is because it can control nonlinear
system that would be impossible to model mathematically and it processes user defined
rules that will be the standard to the target control system. It can be modified and

adjusted easily to improve or alter the system performance.

Fuzzy logic theory was found by Professor Lofti Zadeh at thee University of California in
1965. He proposed a paradigm shift that first gained acceptance in the Far East and its
successful application has ensured its adoption around the world. A paradigm is a set of
rules and regulations which defines boundaries and tells us what to do to be successful in
solving problems within these boundaries. The development of fuzzy set theory from
conventional bivalent set theory is a paradigm shift. Bivalent set of theory is limiting a

humanistic problem mathematically.{4]

Fuzzy decision processing is divided into three parts [1]:
1) Fuzzification
ii) Rule Evaluation
iii} Defuzzification

2.3.1 Fuzzification

This step consists of dividing each input parameter into a set of overlapping membership
functions [5]. The range and shape of each membership function will be defined and
labeled. In this project the car density behind the red and green light has been divided
into the following membership function [1] shown in Table 1 and 2:

Table 1: Cars behind red

Label Range |
Low [0,2]
Medium [1,3]
High [2,6]
Heavy 16,7]

Table 2: Cars behind green

Label | Range |
Low [0.1]
Medium [0,3]
High [1,5]
Heavy [4,7

The output function which is the time extension has been divided into the following

membership function shown in Table 3:

Table 3: Time extension (seconds)

Label Range
Short [0,3]
Medium [1,6]
Long £3,8]
Very long {6,101

2.3.2 Rule Evaluation

First rules are formulated using AND and OR operators. The format used is if then else.
For an example if cars behind red are low AND cars behind green are low the time
extension is short. Since there are 2 inputs and each have 4 membership functions,
therefore the can be 4x4=16 rules. The rules set in this project are shown in Table 4

below:

10

Table 4: Rules set for this project

No. Rules :

If (cars behind red is low) AND (cars behind green is low) then (time extent is short

If (cars behind red is medium) AND (cars behind green is low) then (time extent is short)

If (cars behind red is high) AND {cars behind green is low) then (time extent is short)

If (cars behind red is chaos) AND (cars behind green is low) then (time extent is short)

s {0 N =

If (cars behind red is low) AND (cars behind green is medium) then (time extent is mediurn)

If (cars behind red is medium) AND {cars behind green is medium) then (time extent is
medium)

6
7 If (cars behind red is high) AND (cars behind green is medium) then (time extent is short)
8 If (cars behind red is chaos) AND {cars behind green is medium) then (time extent is short)

g If (cars behind red is low) AND (cars behind green is high) then (time extent is long)

10 If (cars behind red is medium) AND (cars behind green is high) then (time extent is long)

1 If {cars behind red is high) AND (cars behind green is high) then (time extent is long)

12 If (cars behind red is chaos) AND (cars behind green is high) then (time extent is medium)

13 If (cars behind red is low) AND (cars behind green is chaos) then (time extent is very long)

If {cars behind red is medium) AND (cars behind green is chaos) then (time extent is very
14 long)

18 If (cars behind red is high) AND (cars behind green is chaos) then (time extent is long)

16 If (cars behind red is chaos) AND (cars behind green is chaos) then (time extent is long)

MIN_MAX algorithm has been used to calculate the rule strengths. This algorithm is
widely used because it is relatively simple to implement on a computer. The MIN-MAX

algorithm deals with one rule at the time and uses only a few memory bytes.

2.3.3 Defuzzification

This step is the process converting the fuzzified input into crisp output [5]. This process
is done by the MATLAB software based on the rules evaluation.

2.4 MATLAB

MATLAB stands for matrix laboratory. It integrates computation, visualization, and
programming in an easy-to-use environment where problems and solutions are expressed

in familiar mathematical notation. Graphical user interface (GUI) is provided for different

type of applications. The user friendly environment can help the user to decrease the

11

development time. There are a lot of support document that can help the user to
understand the theory that lies behind the application. [5]

There is a Fuzzy Logic Toolbox in MATLAB software. Fuzzy Logic Toolbox is a
collection of functions built on the MATLAB numeric computing environment. It
provides tools to the user to create and edit fuzzy inference systems within the framework
of MATLAB [5]. The fuzzy systems can be integrated into simulations with Simulink.
This toolbox provides graphical user interface (GUI) tools to assist the user to design the

system. The toolbox provides three categories of tools:

i) Command line functions
i) Graphical interactive tools -
iii) Simulink blocks and examples

2.5 Simulink
Simulink is a software package for modeling, simulating, and analyzing dynamic
systems. It supports linear and nonlinear systems, modeled in continuous time, sampled
time, or a hybrid of the two [5].
There are 2 purposes of using Simulink in this project that are:
i) Testing the system by inserting random input
ii) Connecting Fuzzy Logic toolbox with the traffic light circuit
2.6 Microcontroller -
Microcontroller is a set of microprocessor system that consists of central processing unit,

memory, input/output ports and timer [2]. It is a complete system in a single chip and

able to perform simple various tasks to replace the high end microprocessor system.

12

The microcontroller that will be used in this project is PIC16F877 and PIC16F84. The
manufacturer is the Microchip. The chips are small and consume very low power and

have a high reliability. It can be programmed either by using its own assembly language

or C programming code.

The microcontroller PIC16F84 is a high performance RISC (reduced set instruction
computer) single-cycle microcontroller equipped with 13 input/output pins. It has 68
bytes of data RAM, 64 bytes of data EEPROM, 14 bit wide instruction word, and 8 bit
wide data bytes that enable the chip to perform various command and instruction.[6]

The microcontroller PIC16F877 is also a high performance RISC (reduced set instruction
computer) singie-cycle microcontroller equipped with 33 input/output pins. It has 8K x
14 words of FLASH Program Memory, 368 x 8 bytes of Data Memory (RAM), 256 x 8
bytes of EEPROM Data Memory, 14 bit wide instruction word, and 8 bit wide data
bytes.[7]

27PICC Compiler

PIC C Compiler is second party software that was developed to compile C programming
code for the Microchip microcontroller. The Microchip Company only produces MPLAB
software to program the PIC by using assembly language. The PIC C Compiler will
compile the C programming code and produces hex file that can be read by the

microcontroller.[2]

13

2.8 WARP 13 Programmer

WARP 13 programmer is used to load the hex file into the microcontroller. The hex code
is the machine code for the microchip microcontroller. WARP 13 has the ability to erase
all the machine codes that already loaded in the microcontroller, blank, verify, read and
programmed the microcontroller. It can verify some setting that being done in the
programming code such as the clock setting, and some special feature such as fuses.
WARP 13 is really simple and easy to be used.

14

CHAPTER 3
METHODOLOGY

3.1 Flow chart of the Smart Traffic Light Project

S implementation of
[e e " the fuzzy logic
| system in MATLAB
Go back to the ‘L
systaem
implemeantation step:

Fuzzy logic system
testing

¥
|
| I
i

Ses the fuzzy logic systa
meet the requirement

Yes

i devealopment
Go back . to the

circuit devetopment i
step Circuit
Y testing

|

]

i

; MNo /E@e\mﬂ\
\W

l Yes

Integrating the cirGuit

i with fuzzy logic system
: ! _ through paratlel port

Go back to the !

integrating step

|
[
E: k'

T —
No /ﬁ{su/@k as
expected

Tquea-s
oamplete
the project

Figure 4: Flow chart of the Smart Traffic Light Project

15

As shown in Figure, 4 there are 5 steps taken to complete this project. The first step is to
develop the fuzzy logic system using the configuration set in Chapter 2. When completed
developing the fuzzy logic system, it will be tested using two methods that will be
explain later. If the system met the requirement, the next step can be implemented that is
to start developing the circuit. If the system does not meet the requirement, the first step

must be implemented again.

The circuit development step is divided into two parts that are C code programming
development and hardware development which will be explained later. If the circuit
works as expected, next step can be implemented that is to integrate the fuzzy logic
system with the circuit. If the circuit does not work as expected, the circuit development

step needs to be implemented again.

The final step is to connect the developed circuit with the fuzzy logic system. If the final
step work as expected hence the project is completed and if it is no, the final step need to

be implemented again.

3.1.1 Implementation of the Fuzzy Logic System in MATLAB

There is some useful information provided by in MATLAB need to be read before
starting the fuzzy logic system development. There two methods of developing the fuzzy
logic systems that is:

i) By using the GUI

i) By using the command line

It is better to develop the fuzzy logic system by using GUI because it can save times and
easy to alter. There are three GUI windows need to be set in completing the fuzzy logic
system development that is:

i) FIS (Fuzzy Inference System) editor

ii) Membership function editor

iii) Rule editor

16

3.1.1.1 FIS editor

The FIS editor will be the main window. Numbers of input and output can be set in FIS
editor. The main setiing for the system will be set in this window such as the
configuration of the AND method, OR method, Aggregation, Implication and
Defuzzification [5]. Labeling the input, output and the system name is done in this

window.
3.1.1.2 Membership function editor

The membership function editor will be the window to input all the membership function
being set early in the theory part. The right type of membership function need to be
selected here. The input parameter can be set by changing the value in the space provided

in the window. Final step was to label all the parameter inserted.
3.1.1.2 Rule editor

The rule editor window is used to set the rules based on the input and output parameter
being set previously. These rules depend on human judgment. There two methods used in
the rule editor that if AND, then and if OR, then [5]. The weight of each rule can be set
based on the system designed. The system designed can be tested by using the rule

viewer window just by inserting random input.
3.1.2 Fuzzy Logic system testing

There are two method can be used to test the fuzzy logic system. The first one is by using
the rule editor window and the second one by using the Simulink.

17

3.1.2.1 Fuzzy Logic system testing using Simulink

Simulink consist of various blocks that represent various function. Some manuals on
basic block function provided in MATLAB need to be read first. The blocks used in
simulating the fuzzy logic system developed are:

i) Random number block: used to generate random number as the input

ii) Mux: to select input to the fuzzy logic controller

iii) Scope: to view the generated input and output

iv) Fuzzy logic controller: to integrate the fuzzy logic system being developed

with other block

There some basic conﬁguratiori_setting needs to be change in the configuration parameter

- 30 that the simulation could be successful.
3.1.2.2 Fuzzy Logic system testing using Rule Editor Window
Rule Editor Window can be used to test the fuzzy logic system. There is a slot provided
for the user to key in any random input. After entering the input, it will automatically
give the output result.

3.1.3 Circuit development

The circuit development step is divided into two that are ¢ programming code

development and hardware development.
3.1.3.1 C code programming development for microcontroller
The C code programming development was break down into four parts:
i) Incremental sensor program: to count the number of car passing through it

i) Subtraction program: to get the number of cars at each junction

iii) Addition program: to get the sum of cars on each street

18

iv) Traffic light program: to control the traffic flow based on the decision
received from MATLAB.

The programming development break down will ease the process of developing and

debugging the code.

3.1.3.2 Hardware development

In this step, all of the microcontroller used will be connected together to complete and

test the circuit.

3.1.4 Circuit testing

All the codes developed need to be tested in the hardware. There are some basic settings
in the microcontroller need to be discovered so that it will work well as expected. The
circuit testing was done separately for each part to ease the debugging process.

3.1.5 Integrating the circuit with fuzzy logic system though parallel port

In this final step the tested circuit will be connected to the fuzzy logic system through the
parallel port.

19

3.2 Tools required

This project required integration of software and hardware to produce the desired model.

The following table shows the components used:

Table 5: Tools required

No | Hardware No | Software
1 | Microcontrolier PIC16F84 1 | MATLAB 7.0
2 | Microcontrolier PIC16F877 2 | PIC C Compiler
3 | Breadboard 3 1 WARP 13
4 | 4 MHz crystal oscillator
5 | LED

20

CHAPTER 4
RESULTS AND DISCUSSION

4.1 MATLAB simulation

The MATLAB simulation for fuzzy logic system is the most important part of this project
where it will be the point to measure the level of smartness of the traffic light system that
will be designed. The more precise the output generated the more effictent the traffic
light will be.

The accuracy of the output generated will depend on the configuration set in three main
GUI windéws_ stated in the Chapter 3. The main window for the FIS editor is shown in
Figure 5 below.

7 FIS Editor: TrafficLightModified

Figure 5: FIS Editor window

All of the main configurations are set in this window. The project was saved as

TrafficLight as shown in Figure 5. The Mamdani’s fuzzy inference method was used

21

in this project instead of Sugeno. The main difference between Mamdani and Sugeno
is that the Sugeno output membership functions are either linear or constant. The
reason of selecting Mamdani to be the fuzzy inference method is because it is
intuitive, widespread acceptance and well suited to human input [5]. The
configuration for the AND method, OR method, implication, aggregation, and
defuzzification are set as shown in Figure 5 because the algorithm used in this project
is MIN-MAX algorithm.

The input and output can be added in this window. There are two inputs and one
output used for these projects that are CarsBehindRed, CarsBehindGreen and
TimeExtent as shown in Figure 5. To configure the setting for the input and output,

Membership Function Editor window as shown in Figure 6 need to opened.

- Membership Function Editor: TrafficlightModified

File Edit View
FIS Variables N . Membership functionplets PItFPORiS: | 161 |
o - low medium "h ' : heay
DX VAR ! " ki
Y -
arsBehindR#heExdent ; i
[! {
Ww,_.“ﬁJ : .. S
prsBehindGreen
b - 1 . j EA— [
7 input varieble "CarsBehindRed” -
Current Vatiable _ | Current Membership Function (cick on MF to select) -
lvpe . 0 it o T“’e e)
Dy Rargs | (o7 T |
Readv .

Figure 6: Membership Function Editor window (CarsBehindRed)

22

The membership function of the input (CarsBehindRed), input (CarsBehindGreen). and
the output (TimeExtent) is set as shown in Figure 6, F1gure 7 and Flgure 8

‘ Membershlp Function Editor: TraffchlghtModiﬁed
File Edit View

FIS Variables

PrsBehindGreen

- R i 3) el '
4 o -:‘ i =

i

rnput vanable “CarsEehthrean

Currert verisble. - 0 Hcurrent Memhersmp Functlon (cﬂck on i to seiect)

Tyne . nput

|Roe = @A oo

| Dy Range | o7) [N

Figure 7: Membershlp Function Editor window (Ca:sBehdereen)

. Membership Functlon Editor: Trafflcl}ghtModlﬁ_ed : . '_) r‘|rmf>(|
File Edit view - : : : S

- . e oot poirts: |1
FIS Variabies : Membership function plots P e E 181

(0

‘Shqn - Medium jLong _ o ';Vewi.ong

:ar;;Behlnd?MBExta:ﬂ

rsBehindGresn

§ T % ;
i b 3 4 b

B output vartable "TlmeEx:ent

b
o b

| cuitrant verisbie 25._2 R P ':QCurrantMamhafsﬁpFunetlon(cﬁck nnWtase!wt)

TimeEstent . || MName

Type o oudpat o f|TYPe R
| Rainge . | [Foram= (o153

| Selected veriakile *TimeExtent .

Figure 8: Membership Function Editor window (TimeExtent)

23

All of the setting shown in Figure 6, 7 and 8 are based on the parameter set in Chapter 2.
All the type of membership function used is using triangular type named as trimf [5].
Except for the heavy membership function in both inputs and VeryLong membership
function in the output are using trapezoidal type named as trapmf [5]. The parameters of
each membership function can be set by inserting the value at “Params” box provided in
the GUI. The range is set referring to the minimum and maximum value of the inputs and
output.

The next step is to set the rules for the fuzzy logic system based on the membership
function set before. The Rule Editor window is shown in Flgure 9.

’ Rule Lditor: Trafﬁ(:LtghtModlfled

ER1. 1T : _-.df-‘E:Er"hINli‘ Greet is) ther (Timsb ‘t-—nt = Shorty £1)

L]i2.if ¢ Behmdﬂad Es meehum) and (CarsBehindGreen is low) then (TimeExtert is Short) (1} .

R]3 it (Carssehmdﬁed is high) and (CarsBehindGreen is low) then (TimeExtent is Short) {1) ’ ’ i
| 14. #f (CarsBehindRed Is hoavy) and (CarsBehindGraen is tow) then (TimeExtent is Shor) (1) - e

: |5 if (CarsBehindRed is low) and {CarsBehindGresn is medsum) then (TimeExtent is Medium) (1) ;
1 6. If (CarsBerindRed is madium) and (CarsBehindGreen is medium) then (TimeExtert is Mediumy {1)

7. If (CarsBehindRed is high) and {CarsBehindGreen is medium) then (TimeExtert is Short) (1) i

8. If (CarsBehindRed is heavy) and (CarsBehindGreen is medium] then (TimeExtent is Short) (1}

119. If (CarsBehindRed is low) and {CarsBehindGreen is high) then (TimeExtent is Long) (1)

110, 1 (CarsBehindRed is madium) and (CarsBehindGreen is high) then (TimeExtert is Long) (1)

111 If (CarsBehindRed is high} and (CarsBehindGreen is high) then {TimeExtert is Long) (11

2. If (CarsBehindRed is heavy) and (CarsBehindGraen is high) then ¢{TimeExient is Medium) (13

1 3. If (CarsBehindRed is low) and (CarsBehindGreen is heavy) then (TimeExtent is VeryLong) (13

“4. If (CarsBehindRed is medium) and (CarsBehindGreen is heavy) then (TimeExtent is WaryLong) (1) :

| M5, if (CarsBehindRed is high) and (CarsBehindGreen is heavy} then (TimeExtent is Longy (1) - sionf

| 116. i (CarsBehindRed is heavy) and (CarsBehindCreen is heavy) then (TimeExdert is Long) (1) ¥
it o e . S T Them .
' CarsBehinidGreen : : o TimeExtert is
P . e e . e
mediuim o - o o jMedium
hicgh . . Long |
heavy :) . - Meryl.ong ST
inane ‘ : none
|Oeet o Ceet oo R o 2
or
@and g | peeterue ” Add rule][Changemta]
1| Fis Mame: TrefficLightiigdified . T ' —=
: o T . . [Help ” Close .]

Figure 9: Rule Editor Window

24

There are overall of 16 rules being set for this project. In this window, rules can be added
by clicking the “Add rule” button and deleted by clicking the “Delete rule” button
provided. To add the rule, one of the membership function from each input and output is
selected and the connection between the input must be set either OR or AND. Then the
“Add rule” button is pressed and the rule added will appear at the bottom of the window.

When all of the rules have been set, the next step was to test the fuzzy logic system. Rule
Viewer window shown in Figure 10 was used to test the fuzzy logic system. There is a
box provided to set the input as shown in figure 10. The input that going to be tested is

inserted in that box and the enter button was pressed to generate the output. The output is

shown at the bottom right of the window labeled as TimeExtent. o

hido dified

i-. . GersBehindGre | Tmebxert =847
P . o R Ir/\\

I
. .
b I

: Y

YRRV S NS R
%

O pmy -y = e aal] o
:) g
/.‘ /.\‘ |
. -+ "
f
. ' 3

Figure 10: Rule Viewer Window

The value tested need to be entered one by one to check the output generated by the fuzzy

logic system. All the outputs generated are shown in Table 6.

25

Table 6: Outputs generated from rule Viewer Window

{Cars behind red

Cars behind green

Time extent
(seconds)

Rounded
(seconds)

1

2.72

3.5

417

4.5

469

5.5

5.5

2.53

3.5

4.03

4.39

4.82

5.5

5.5

2.72

3.5

417

4.5

4.69

5.5

55

2.53

3.5

4.03

4.39

4.82

5.5

55

272

3.14

3.81

4.17

43

55

5.5

1.5

1.5

3.47

4.27

5.5

DR |HO|DOB|n|n|(nfCr|on (& | fh DDA WIWWIWWW|[WININININ (N (NN (=] s

~N|O|o [WiIN|aNB O | (WD N AW N2 [~N{D [P |WIN |~ DO [P WM~ |G O B0 [N |-

5.5

DIM{d|WININIOIO |Md|BIWWwWOOOTAR MR AR O MMM WA IAIW

26

4.2 Simulink Simulation

The next step was to test the fuzzy logic system using the Simulink. Simulink is a
software package for modeling, simulating, and -analyzing dynamic systems. It supports
linear and nonlinear systems, modeled in continuous time, sampled time, or a hybrid of
the two. Instant access to all the analysis tools in MATLAB is provided, so that results

can be analyzed and visualized.[5]

_ E
Scoped
_\N{ double
Random _)
Number :—:liﬂ_.-_zm_ double) I
double " Scope
Fuzzy Logic
Cantroller
Random
Number1
L
Scope?

Figure 11: Simulink blocks to test the fuzzy logic system

The Simulink blocks developed are shown in Figure 11. The random number block is
used to generate random number ranging from 0 to 7 to be the input. Scope 1 and Scope 2
are used to view the generated input. Both block of the random input are connected to the
multiplexer before entering the fuzzy logic controller block. This is because the fuzzy
logic controller box cannot receive 2 inputs at one time. Multiplexer need to be added so
that the fuzzy logic co_ntroller will be able to receive more than two inputs. The Scope is

used to view the generated output that is the extended time.

27

Figure 13: Input 1- Cars behind red

28

"' change scope

CENEER

Figure 14: Qutput- Time extension
Figure 12 and 13 are the generated input from the random input generator and Figure 14
is the output from the fuzzy logic system. The output obtained from the Simulink
simulation is different from the output obtained from the Rule Editor window. This is
because the inputs in the Rule Editor Window are all round number where the input from
Simulink simulation are mixed of round number and fraction number. The Simulink

simulation was done to test the system capability and to observe the output generated.

4.3 C code programming and circuit development

The development of the C code programming must be parallel with the development of
the circuit because the connection of the circuit will depend on the C programming code
developed for the circuit. The schematics of the circuit developed are shown in Figure 15,
16 and 17. The circuit is break down into small part to simplify the explanation. The one
shown in Figure 16 is part of the complete circuit that will do the counting job. The
counting job will start from the incremental sensors that will count the number of cars

pass trough it up until getting the total number of cars on each street.

29

Then the total number of cars on each street will be sent to the MATLAB. But due to the
time constraint, the integrating part of the circuit with MATLAB software could not be
completed. As an alternative, all the generated output values obtained in Table 6 will be
programmed inside the PIC16F877 of the traffic light circuit schematic. The resuit
obtained is still the same either the circuit obtained the output directly from MATLAB or
the output have been programmed inside the PIC16F877. The only disadvantages is that
the parameter set for the membership function could not be alter instantly if the output
have been programmed inside the chip. The PIC16F877 need to be reprogrammed to alter
the membership function because the changes of the membership function will generate

different output.

Wy

22 . From waffic
i light circuit

(1) To traffic
light circuit

T 1

) To
traffic light
circuit

{]

]

From
another
subtract IC

Figure 15: Counter circuit schematic
The counter circuit schematic is shown in Figure 15. The sensors are represented by the

two switches Sl and S2 shown in Figure 15. The sensors are connected to ground

because the input pins are set as active low. IC1 and IC4 are using PIC16F84 which are

30

connected to the sensor. It will count the number of cars that pass through the sensor
when the enable pin RBO that is active low is set to low. When the enable pin RBO0 is high
it will send the data to IC3 that is PIC16F877. The RBO pin is controlled by the traffic
light circuit pin Al. The IC3 will subtract the number of cars detected by S1 from 82 to
get the total number of cars behind the traffic light. When the enable pin at IC2 that is
active low is set low, the data will be sent to IC2 that is PIC 16F877 to calculate average
number of cars on each street. The unconnected port on RCO to RC3 shown in Figure 13
should be connected to the same circuit like the one connecting the IC1, IC3 and IC4 as
shown in Figure 17. This mean that there will 8 PIC16F84 are used to connect to the
sensor, 4 PIC16F877 used to get the number of cars behind each traffic light and 2 PIC
16F877 used to get the total number of cars on each street.

The unconnected port RDO to RD3 will be connected to the traffic light circuit to send the
data as shown in Figure 17.

. Lo
VIS R
el PR f b "";;;‘

B

.

Figure 16: Traffic Light circuit schematic

31

The traffic light circuit will receive the data though port RBO to RB3 and RCO to RC3
from the counter circuit as shown in Figure 16. Then it will change time extension based
on the output generated by MATLAB that have been programmed inside the PIC161'877.
There are 6 LEDs that consist of 2 green, 2 red, and 2 yellow color to represent the traffic
light on the East-West and the North—West street. |

1|||:|||
n

TETTTTTT ;I el
i

]
e
It
S
|

FITFITTT JITTITTA

1

_+ .
= 1

FTTT Ul !!! TTTT

1
T I TTTTTT

It

I
Ll i

llllll'ﬂl INLE]

{RKLARL
I—I
__‘_.._.__...‘_“I

Figure 17: Part of the circuit schematic

The programming codes are divided into four parts. There first part is for the sensor using
PIC16F84a, second part is for the subtraction using PIC16F877, third part is for the
addition using PIC16F877 and the final part is the traffic light using PIC16F877.All the

programming codes are shown in Appendix 1.

32

Figure 19: Traffic light circuit constructed

The constructed circuits are shown in Figure 18 and 19. For the time being the circuits

were constructed on the breadboard to simplify the debugging step.

Switch

Figure 20: Final product

Figure 20 shows the final product of this project. The switches represent the sensor.
There are 8 switches being used to represent 8 incremental sensors. The circuits were

hidden in the box.

33

CHAPTER 5

CONCLUSIONS AND RECOMMENDATION

5.1 Conclusion

The main objective of this project is to build a prototype of smart traffic light using fuzzy
logic. The C code programming and the circuit had been developed and tested to obtain
the best result. The smart traffic light wills count the number of cars by using the sensor
allocated at each junction. the total number of cars will be sent to the subtraction circuit
to find the total number of cars behind each traffic light. The result will be sent to the
addition circuit to find the total number of cars on the East-West and North-South streets.
Then the total number of cars will be sent to the traffic light circuit to decide the time

extent by comparing the total number of cars on each street.

The cycle time extent will depend on the number of cars waiting behind the traffic light.
Basically when the number of cars behind the red light are higher compare to the number
of cars behind the green light, the time extent will be smaller and vice versa. The best
time extents were generated from MATLAB based on the rules being set. Based on the

generated values, the programming codes and circuits were developed.
The smartness of this traffic light is that it cans response to the traffic condition based on

the information received from the sensor. This had increased the traffic light efficiency

compared to the conventional traffic light.

34

5.1 Recommendation

There are a lot of features can be added to this traffic light to increase its level of
smartness. One of the features could be added is using different time cycle system
depending on the traffic condition. For an example during peak hour, the time cycle

system used will be different from the normal hour.

35

REFERENCES

[1] Dr. Devinder Kaur, Elisa Konga, Esa Konga “Fuzzy Traffic Light Controller” IEEE

Journals

[2] Barnett, Cox & O’cull, Embedded C Programming and the Microchip PIC, Thomson
Delmar Lerning, 2004

[2] hitp://www.ameinfo.com/85148. html

[3} http://vwww.manilatimes.net/others/special/2002/dec/17/20021217spel .himl

{41 Zader Lotfi “Knowledge Representation in Fuzzy Logic” IEEE Journals

[5] Fuzzy Logic Toolbox for use with MATLAB, Fuzzy Logic Toolbox User’s Guide,
Mathworks Inc., 1997

[6] PIC16F84A Data Sheet, Microchip, Microchip Technology Inc, 2001

[7] PIC16F877 Data Sheet, Microchip, Microchip Technology Inc, 2001

36

APPENDIX 1

37

Programming code for the sensor circuit

#include<16£84ah>""""
#use delay(clock=4000000)
ffuses XT, NOWDT

int in¢, num;

void main{void)

{

port_b_pullups(TRUE);
set_iris a(0x00);
set_tris_b(0xft);

while(1)
{

inc = 0;
output_a(0x00);

while(linput{PIN_B0Y)

if(linput(PIN_B1))

{
delay ms(500);
while(linput(PIN B1));

inc++;
delay ms(500);

num = inge;

}

output_a(num);

Programming code for the subtraction circuit

#include<16f877 h>

#use delay(clock=4000G00)
#tuses XT, NOWDT, NOLVP
int a, b, sub;

void main{void)

{

set_tris_b(0xfY);
set_tris_c(Oxff);
set_tris_d(0x00);

while(1)
{
output_d(0x00);
=input_b();
b=input_c(};
sub = a-b;
output_d(sub);
}
H

Programming code for the addition circuit

#nclude<16£377a.h>

#use delay(clock=4000000)
#fuses XT, NOWDT, NOLVP
int a, b;

void main(void)

{
set_tris_b(0xff);

set_tris_c{Oxff);
set_tris_d(0x00);

while(1)
{

a=input_b();
b=input_c();

output_d(a + b);

}
}

Programming code for the traffic light circuit

#include <16F877.h>

ftuse delay(clock=4000000)
#fuses XT,NOWDT,NOLVP
#use fixed_io(d_outputs=PIN_D7,PIN_D6,PIN D5,PIN D4,PIN_D3,PIN_D2,PIN_DI,PIN_D0)

#use fast_io(A)
#use fast io(B)

#use fast_io(C)

int time _extent(};

void main()

{

while(1)

{

has the green

set_tris_a(0x00);
set_tris_b(0xff);
set_tris_c(Oxft);
set_tris_d(0x00);

foutput low(PIN_D0);

/foutput_high(PIN_D1);

ffoutput_low(PIN_D2),

ffoutput_high(PIN_D3);

floutput_low(PIN_D6);
Houtput_low(PIN_D7);

output_d(0x0A);
delay_ms(2000);

/foutput_high(PIN_DO0);

Houtput_low(PIN_D1);
Hloutput_low(PIN_D2);

/foutput_low(PIN D3);
Houtput_low(PIN_D6);

/foutput_high(PIN_D7);

output_d(0x21);
output_low(PIN_Al);
delay_ms(5000);

/finitially start with east-west and west-east has the yellow
//RED EW & WE

/YELLOW EW & WE

//GREEN EW & WE

//RED SN & NS
NYELLOW SN & NS
//GREEN SN & NS

/east-west, west-cast has the red and south-north, north-south

//RED EW & WE
/YELLOW EW & WE
//GREEN EW & WE

//RED SN & NS
/YELLOW SN & NS
//GREEN SN & NS

time_extent();
ouiput_high(PIN_Al);

//south-north and south-north has the yellow

Jloutput_high(PTIN_D0); /RED EW & WE
/foutput_low(PIN_D1); //YELLOW EW & WE
floutput_low(PIN_D2); //GREEN EW & WE

/output_low({PIN_D3); //RED SN & NS
ffoutput_high(PIN_D6);, /YELLOW SN & NS
/foutput_low(PIN_D7); //GREEN SN & NS

output d(0x11};
delay_ms(2000),

/1 south-north, north-south has the red and west-east, east-west
has the green
Houtput_low(PIN_D0); /REDEW & WE
ffoutput_Jow(PIN D1}, /YELLOWEW & WE
ffoutput_high(PIN_D2};, //GREEN EW & WE

/foutput_high(PIN_D3); //RED SN & NS
ffoutput_low(PIN D6}, //YELLOW SN & NS
ffoutput_low(PIN_D7); //GREEN SN & NS

output_d(0x0C);

output_low(PIN_A1);
delay ms(5000);
time_extent();

output high(PIN Al);

int time_extent(void)

{

if{(input_b(}==0) && (input_c()==0))
return 0;

else if{(input_b()=—=0) && (input_c()—1))
§ delay_ms(2000);

return 0;
}

else if((input_b()==0) && (input_c()==2}))
{ delay_ms(2060);

return 0;

}
else if{(input_b()==0) && (input_c()—=3))
{ delay_ms(3000); :

return 0;
}
else if((input_b()==0} && (input_c()==4))
{ delay_ms{4000);

retum 0;
}
else if{(input_b()==0) && (input_c()}==5))
{ delay _ms{4000);

return O;
}
else if{ (input_b()==0) && (input_c()==6))
{ delay_ms(5000);

return 0;
3
else iff(input_b()==0} && (input_c()==7))
{ delay ms(5000);

return 0;
1

else if{(input_b()==1) && (input_c()==0))
{

return 0;
H
else if{(input_b()==1) && (mnput_c()==1))
{ delay ms(3000);

return 0;
}
else if((input_b()==1) && (input_c()==2))
H delay _ms(4000);

return 0,
}
else if{(input_b()=1) && (input_c()==3))
{ delay_ms(4000);

return 0,
¥
else if{(input_b()=1) && (input_c(}==4))
{ delay ms(5000);

return 0;
}

else if{(input_b(O==1) && (input_c(}==15))

{ delay _ms(5000);

return 0;
e
else if((input_b()=1) && (input_c()==6))
{ delay_ms(6000);
return 0;
}
else if{(input_b()==1} && (input_c()==7))
{ delay _ms(6000);
return 0;
}

else if{(input_b(==2) && (input_c{}==0))
{

return 0;
}
else if{(input_b()==2) && (input_c()==1))
{ delay_ms(3000);

return O;
}
else iff(input_b()==2) && (input_c(}=2))
{ delay_ms(4000);

return 0;
}
else if((input_b()==2) && (input_c()==3))
{ detay ms(4000);

return 9,
}
else if{(input_b(==2) && (input_c()==4))
{ delay_ms(4000);

return 0;
}
else if{(input_b()==2) && (input_c(}==5))
§ delay ms(5000),

return 0;
}
else if{(input_b()==2) && (input_c(}==6))
{ delay_ms(6000);

return 0;
}
else if((input_b()==2) && (input_c()==7))
{ delay ms(6000);

return 0;

}

else if((input_b()==3) && (input_c()==0))
{ , !

return O;
}
else if{(input_b()==3) && (input_c()==1))
{ delay_ms(3000);

return 0;
}
else if{(input_b()=3) && (input_c()==2))
{ delay_ms(4000);

return 0;
}
else if{(input_b()==3) && (input_c()==3))
{ delay_ms(4000);

return 0;
H
else if({input_b()==3) && (input_c()==4))
{ delay_ms{5000);

return 0;
]
else if{{input_b()==3) && (input_c{)=5))
§ delay ms(3000);

return 0;
¥
else if{(input_b()==3) && (input_c()==6))
{ delay ms(6000);

return 0;
}
else if{(input_b()==3) && (input_c(}==7))
{ delay_ms(6000);

return {;
$

else if((input_b()==4) && (input_c()==0))
{

return Q;
}
else if{(input_b()>=4) && (input_c()==1))
{ delay ms(3000);

return O;
}
else if{(input_b()=4) && (input_c(}==2))
{ delay ms(4000);

return 0;

}
else if{(input_b0O=—4) && (input_c(==3))

i delay ms(4000);
return 0
H
else if{(input_b()==4) && (input_c()}==4))
{ delay_ms(4000);
return 0;
}
else if{(input_b()=—4) && (input_c(}==3))
{ delay _ms(5000);
return O
3
else if{(input_b(}=4) && (input_c()==6))
{ delay ms{6000);
retumn Q;
}
else if{{input_b()==4) && (input_c()==7H
i delay_ms(6000);
return Q;
}

else iff(input_b()}==5) && (input_c()}==0))
{

return 0;
}
else if((input_b()=3) && (input c()==1))
{ delay_ms(3000);
return 0;
}
else if{(input_b()==5) && (input_c(}==2))
{ delay ms(3000);
return 0;
}
else if{(input_b()==3) && (input_c()==3))
{ delay_ms(4000);
return 0;
}
else if{(input_b()}==5) && (input_c()==4))
{ delay_ms(4000);
' return 0;
}

else if{(input_b()=>5) && (input_c(}=>5))
{ delay ms(4000);

return 0;

}
else if{(input_b()==5) && (input_c()==6))
{ delay_ms(6000);
return 0
H
else if{(input_b()==5) && (input_c()==7)}
{ delay_ms{6000);
return 0;
H

else if((input_b()==6) && (input_c()==0))
{

return 0;
}
else if{(input_b()==6) && (input_c(}=1))
{ delay ms(2000);

return Q;
}
else if{(input_b()==6) && (input_c()==2))
{ delay ms(2000); :

return (;
¥
else if((input_b()==6) && (input_c()==3))
£ deiay_ms(30060);

return 0;
}
else if{{input_b()==6) && (input_c()==4))
{ delay _ms(4000);

return 0;
}
else if{(input_b()==6) && (input_c()==5))
{ delay_ms(4000);

return 0;
3
else if{(input b()==6) && (input_c()==6})
§ delay ms(6000);

return O;
}
else if(({input b()==6) && (input_c()==7))
H delay_ms(6000);

return O;

}

else i{(input_b()==7) && (input_c()==0))
{

return 0;
}
else if{(input_b()=7) && (input_c()}==1))
§ delay_ms(2000);

return 0;
}
else if{(input_b()=—7) && (input c()==2))
{ delay ms(2000);

return O}
¥
else if{(input_b()=7) && (input_c()==3))
{ delay_ms(3000);

return (;
¥
else if{ (input_b(==7) && (input_c()=4))
{ delay_ms(4000);

return (;
}
else if{(input_b(==7) && (input_c()==5))
H delay_ms(4000);

return 0;
}
else if{(input_b()==7) && (input_c()==6))
{ delay_ms(6000);

return Q;
}
else if{(input_b(}==7) && (input_c()==T)H
{ delay_ms(6000);

return 0;

}

APPENDIX I

48

MICROCHIP

PIC16F84A

18-pin Enhanced FLASH/EEPROM 8-Bit Microcontroller

High Performance RISC CPU Features:

-

Only 35 single word instructions 1o learn

Al instructions single-cycle except for program
branches which are two-cycle

Operating speed: DC - 20 MHz clock input
DC - 200 ns instruction cycle

1024 words of program memory

68 bytes of Data RAM

64 bytes of Data EEPROM

14-bit wide instruction words

8-bit wide data bytes

15 Special Function Hardware registers

Eight-level deep hardware stack

Direct, indirect and relative addressing modes

Four interrupt sources:

- External RBO/INT pin

~ TMRO timer overilow

- PORTB<7:4> interrupt-on-change

- Data EEPROM write complete

Peripheral Features:

13 1/O pins with individual direction control
High current sink/source for direct LED drive
- 25 mA sink max. per pin

- 25 mA saurce max. per pin

TMRO: 8-bit timer/counter with 8-bit
programmable prescaler

Special Microcontroller Features:

.

10,000 eraselwrite cycles Enhanced FLASH
Program memory typical

10,000,000 typical erase/write cycles EEPROM
Data memory typical

EEPROM Data Retention > 40 years

in-Circuit Seriat Programming™ (ICSP™) - via
two pins

Power-on Reset (POR), Power-up Timer (PWRT),
Oscillator Start-up Timer (OST)

Watchdog Timer (WDT) with its own On-Chip RC
Oscillator for reliable operation

Code protection
Power saving SLEEP mode
Selectable oscillator options

Pin Diagrams

PDIP, SOIC
RA2 =[]l ~ 18] = RA?
RA3 =[] 2 17[] == RAD
RAHTOCKI ~—=[13 = 16[]=—OSCI/GCLKIN
MCIR—[]4 @ 15[]— OSC2/CLKOUT
ves—=[5 @ t4]—vop
RBO/INT =—=[16 ® 13=—RB7
Rgt -—[]7 » {2[]=—RBG
RB2 -—=[]8 11 [] == RBS
RB3 ~—[]9 10[] <—= RB4
SS0P
RAZ [t 20fT—— RAI
RA3 -+—=[12 18] =—» RAG
RA4TOCK! =—=[1 3 o 18[1-—— OSCI/CLKIN
MCIR —[4 Q 17{]— 0SC2ACLKOUT
(1T p—— 1 % 461] =+——Vbn
VE§ wms [1 6 ® 15[]=— VoD
REOANT =17 > 14[]<-—=RB7
RB1 -—[]8 13[] =—» RB6
RB3 ~=[]110 11[] «—= RB4

CMOS Enhanced FLASH/EEPROM
Technology:

= Low power, high speed technology -
« Fully static design
* Wide operating voltage range:
- Commercial: 2.0V to 5.5V
- Industrial: 2.0V to 5.5V
= Low power consumption:
- <2 mA typical @ 5V, 4 MHz
- 15 pA typical @ 2V, 32 kHz
- < 0.5 pA typical standby current @ 2V

© 2001 Microchip Technology Inc.

DS35007B-page 1

2IC16F84A

ABLE 1-1: PIC16F84A PINOUT DESCRIPTION
. PDIP | SOIC | SSOP | L/O/P Buffer .
Pin Name No. No. No. Type Type Description
JSC1/CLKIN 16 16 18 I ST/ICMOS® | Oscilator crystal input/external clock source input.
JISC2/CLKOUT! 15 15 19 o] — Oscillator crystal output. Connects to crystal or
resonator in Crystal Oscillator mode. In RC mode,
OSC2 pin outputs CLKOUT, which has 1/4 the
frequency of OSC1 and denotes the instruction
cycle rate.
WCLR 4 4 4 1P ST Master Clear (Reset) input/programming voltage
input. This pin is an active low RESET to the device.
PORTA is a bi-directional /O port.
RAD 17 17 19 1o TTL
A1 18 18 20 I1Q TTL
A2 1 1 1 1o TTL
RA3 2 2 2 ifo TTL
IAATOCKI 3 3 3 IO ST Can also be selected to be the clock input to the
TMRO timer/counter. Output is open drain type.
PORTB is a bi-directional I/Q port. PORTB can be
software programmed for internal weak pull-up on
all inputs.
RBO/INT 6 6 7 wo | TTST) RBO/NT can also be selected as an externa
interrupt pin. :
RB1 7 7 8 o TTL
RB2 8 8 9 o TTL
RB3 9 g9 10 f/a] TTL
RB4 10 10 11 1o TTL interrupt-on-change pin.
RB5 1 1 12 170 TTL interrupt-on-change pin.
RB6 12 12 13 18] TTL/STR) interrupt-on-change pin.
Serial programming clock.
RB7 13 | 13 14 o | TTUST@ Interrupt-on-change pin.
Serial programming data.
vss 5 5 5,6 P — Ground reference for logic and /O pins.
VDD 14 14 15,16 P — Positive supply for logic and I/O pins.
Legend: i=input O = Output IO = Input/Output P = Power
~— = Not used TTL = TTL input ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.
2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.
3: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.

)S35007B-page 4

© 2001 Microchip Technalogy inc.

APPENDIX IIT

51

MICROCHIP

PIC16F87X

28/40-Pin 8-Bit CMOS FLASH Microcontrollers

Devices Inciuded in this Data Sheet:

» PIC16F873 + PIC16F876
» PIC16F874 « PIC16F877

Microcontroller Core Features:

-

High performance RISC CPU
Only 35 singte word instructions to leam

All singte cycle instructions except for program
branches which are two cycle

Operating speed: DC - 20 MHz clock input
DC - 200 ns instruction cycle

Up to 8K x 14 words of FLASH Program Memory,
Up to 368 x 8 bytes of Data Memory (RAM)
Up to 256 x 8 bytes of EEPROM Data Memory

Pinout compatible to the PIC16C73B/74B/76/77
tnterrupt capabiity (up to 14 sources)

Eight level deep hardware stack

Direct, indirect and relative addressing modes
Power-on Reset (POR)

Power-up Timer (PWRT) and

Oscillator Start-up Timer (OST)

Watchdog Timer (WDT) with its own on-chip RC
oscillator for reliable operation

Programmable code protection
Power saving SLEEP mode
Selectable oscillator options

lL.ow power, high speed CMOS FLASH/EEPROM
technology

Fully static design

In-Circuit Serial Programming™ (ICSP) via two
pins

Single 5V In-Circuit Serial Programming capability
In-Circuit Debugging via two pins

Processor read/write access to program memory
Wide operating voltage range: 2.0V to 5.5V

High Sink/Sotrce Current: 25 mA

Commercial, Industriai and Extended temperature
ranges

Low-power consumption:

~ < 0.6 mA typical @ 3V, 4 MHz
- 20 pA typical @ 3V, 32 kHz

- <1 pA typical standby current

Pin Diagram
PDIP

U 40 [] =—= RBI/PGD
39 [] =— RBE/PGC
38] =+—= RB5

37 [] «+—= RB4

[] s RBIPGM
35 [] = RB2

34 [] =—+ RB1

33 (] =—= RBO/JNT
32 [=— vop

31 [] e Vg3

30 L} -=—= RD7/PSP7
20 [} +— RD&/PSPS
28 ['] «—= RDS/PSPS
27 [-a——» RD4PSP4
98 [] e RCTMX/DT
28 [} - RCBMT/CK
24 [] - RCHSDHO
23 {] = RC4/SDKSDA
29 [w—a RD3/PSP3
21 [] =+—» RDZ/PSP2

MCLRIVER e [
RAG/AND =[]
RA1AN1 w— [

RAHAN2VREF- w—- []
RASANIVREF+ - [
RAATOCK! -a—am]
RASIANS/SS w—sm [
REO/RD/ANS -]
RE1WRIANE «—-]
RE2/CS/ANT [}

VDD ——e- [

VSS e [

OSCHCLKIN ~—mete]
OSCACLKOUT ammm[]
RCOT10SOTCK! a—-[]
RCATOSICCP2 w—]
RC2/CCP1 - []
RCYSCK/SCL w—u[]
RDUPSPO =[]
RDAPSP =—n-[]

@ N m AW N .
&

o
=

B2aiaaiamsd
PIC16F877/874

Peripheral Features:

« Timer0Q: 8-bit timer/counter with 8-bit prescaler

+ Timer?: 16-bit timer/counter with prescaier,
can be incremented during SLEEP via external
crystal/ciock

« Timer2: 8-bit timer/counter with 8-bit period
register, prescaler and posiscaler

+ Two Capture, Compare, PWM modules
- Capture is 16-bit, max. resolution is 12.5 ns
- Compare is 16-bit, max. resolution is 200 ns
- PWM max. resolution is 10-bit

= 10-bit multi-channel Analog-to-Digital converter

« Synchronous Serial Port (SSP) with SPI™ (Master
mode) and I2C™ (Master/Stave)

» Universal Synchronous Asynchronous Receiver
Transmitter (USART/SCI) with 9-bit address
detection

+ Parallel Slave Port (PSP} 8-bits wide, with
external RD, WR and CS controls (40/44-pin only)

+ Brown-out detection circuitry for
Brown-out Reset (BOR)

® 2001 Microchip Technology Inc.

DS30292C-page 1

PIC16F87X

TABLE 1-1: PIC16F873 AND PIC16F876 PINOUT DESCRIPTION

o SOIC vore Buffer

Pin Name Pin# Pintt Type Type Description
OSC1/CLKIN 9 9 ! ST/ICMOS®} | Oscillator crystal inputiextemal clock source input.
OSC2/CLKOUT 10 10 o —_ Oscillator crystal output. Connects to crystal or resonator in

crystal oscillator mode. In RC mode, the OSC2 pin outputs
CLKOUT which has 1/4 the frequency of OSC1, and denotes
the instruction cycle rate.

MCLRNPP 1 1 P ST Master Clear (Reset) input or programming voltage input. This
pin is an active low RESET to the device.

PORTA is a bi-directional /O port.

RAO/ANO 2 2 o TTL RAD can alsc be analog inputQ.

RA1/AN1T 3 3 ifO TTL RA1 can aiso be analog input?.

RA2/AN2/VREF- 4 4) TTL RAZ2 can also be analog input2 or negafive anaiog
reference voltage.

RAJANINVREF+ 5 5 rle) TTL RAJ can also be analog input3 or positive analog
reference voltage.

RA4/TOCKI 6 6 o ST RA4 can also be the clock input to the TimerQ
madule, Qutput is open drain type.

RAS/SSIAN4 7 7 {0 TTL RAS can also be analog input4 or the slave select

for the synchronous serial port.

PORTB is a bi-girectional /O port. PORTB can be software
programmed for internat weak pull-up on all inputs.

RBO/INT 21 21 1o TTLSTY RBO can also be the external interrupt pin.

RB1 22 22 o TTL

RB2 23 23 o TTL

RB3/PGM 24 24 [8] TTL RB3 can atso be the low vollage programming input.

RB4 25 25 o] TTL Interrupt-on-change pin.

RBS 26 26 o TTL Interrupt-on-change pin.

RB6/PGC 27 27 10 TTL/STE interrupt-on-change pin or In-Circuit Debugger pin. Serial
programming clock.

RB7/PGD 28 28 o) TTL/STE Interrupt-cn-change pin or in-Circuit Debugger pin. Serial
programming data.

PORTC is a bi-directional 1O port.

RCO/T1080/T1CKI 1" 11 18] ST RCO can aiso be the Timer1 osciilator output or Timer4
clock input.

RCA/T1QSICCP2 12 12 1o ST RC1 can also be the Timer1 oscillator input or Capture?2
input’‘Compare2 ouiput/PWM2 output.

RC2/CCP1 13 13 HO ST RC2 can also be the Capture1 input/‘Compare1 output/
PWM1 output.

RC3/SCK/SCL 14 14 Q 57 RC3 can aiso be the synchronous serial clock input/output
for both SP1 and {2C modes.

RC4/SDV/SDA 15 15 WO ST RC4 can also be the SPI Data In (SPI mode) or
data /O (12C mode).

RC5/SDO 16 16 fia] ST RC5 can also be the SPI Data Out (SPI mode).

RCB/TX/CK 17 17 1o ST RCE can also be the USART Asynchronous Transmit or
Synchronous Clock.

RCTIRX/DT 18 18 11O ST RC7 can also be the USART Asynchronous Receive or
Synchronous Data.

Vss 8,19 8, 19 P — Ground reference for logic and YO pins,

VoD 20 20 P — Positive supply for logic and /O pins.

Legend; |=input O = output /O = inputfoutput P = power

— = Not used TTL = TTL input ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the extemal interrupt.
2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.
3: This buffer is a Schmitt Trigger input when configured in RC osciltator mode and a CMOS input otherwise.

L T ——
© 2001 Microchip Technology Inc. DS30292C-page 7

?IC16F87X

ABLE 1-2: PIC16F874 AND PIC16F877 PINOUT DESCRIPTION

DIP | PLCC | QFP | IO/P Buffer

Pin Name Pinkt | Ping Pintt | Type Type Deascription
ISC1/CLKIN 13 14 30 t | sTiIcMOSH! | Osciliator crystat input/external clock source input.
ISC2/CLKOUT 14 15 3 o] - Oscitlator crystal output. Connects to crystal or resonator

in crystal osciliator mode. In RC mode, OSC2 pin outputs
CLKOUT which has 1/4 the frequency of 0SC1, and
denotes the instruction cycle rate.

ACLRNPP 1 2 18 e ST Master Clear (Reset)} input or programming voitage input.
This pin is an active iow RESET to the device.

PORTA is a bi-directional I/C port.

RAD/ANO 2 3 19 o TTL RAO can also be analog inputD.

AT/ANT 3 4 20 110 TTL RA1 can aiso be analog inputl.

A2IANZ/VREF- 4 5 21 1o TTL RAZ can also be analog input? or negative
analog reference voltage.

RAZIANIVREF+ 5 6 22 e} TTL RA3 can also be analog input3 or positive
analog reference voltage.

AATOCK! 6 7 23 o 8T RA4 can also be the clock input to the Timer0 timer/
counter. Qutput is open drain type.

RA5/SS/ANA 7 8 24 e} TTL RAS can also be analog inputd or the siave select for

the synchronous serial port.

PORTB is a bi-directional O port. PORTB can be soft-
ware programmed for internal weak pull-up on all inputs,

IBOANT 33 3 8 o | TrsTH RBO can also be the extemal interrupt pin.

RB1 34 37 9 e} TTL

RB2 35 38 10 10 L

RB3PGM 36 39 11 1o TTL RB3 can aiso be the low voltage programming input.

RB4 37 41 14 18 TTL Interrupt-on-change pin.

RBS 38 42 15 WO TTL Interrupt-on-change pin.

REG/PGC 39 43 16 Vo TTLISTR Interrupt-on-change pin or In-Circuit Debugger pin.
Serial programming clock.

RB7/PGD 40 44 17 WO TTL/STIR Interrupt-on-change pin or in-Circuit Debugger pin.
Serial programming data.

Legend: | =input G = output IO = inpuVoutput P = power

— = Not used TTL =TTL input ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as an external interrupt.
2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.
3: This buffer is a Schrnitt Trigger input when configured as generai purpose /O and a TTL input when used in the Parallel
Stave Port mode {for interfacing to 2 microprocessor bus).
4: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.

" U T T
)S30292C-page 8 ® 2001 Microchip Technology Inc.

PIC16F87X

TABLE 1-2: PIC16F874 AND PIC16F877 PINOUT DESCRIPTION (CONTINUED)

. DIP PLCC QFP | LIOP Buffer .
Pin Name Pint | Pinit Pin# | Type Type Description
PORTC is a bi-directional I/C port.
RCO/T1OSO/MICKI | 15 16 32 HO ST RCO can aiso be the Timer1 osciltator output or a
Timert clock input.
RC1/T10SKHCCP2 16 18 35 o ST RC1 can also be the Timer1 oscillator input or
Capture2 input/Compare2 output/PWi2 output.
RC2/CCP1 17 19 36 o] ST RC2 can also be the Capture1 input/Compare
output/PWM1 output.
RC3/SCK/SCL 18 20 37 J18] 8T RC3 can aiso be the synchronous serial clock input/
output for both SPI and 12C modes.
RC4/SDI/SDA 23 25 42 o 8T RC4 can also be the SPI Data in {SPl mode) or
data /0 (C mode).
RC5/SDO 24 26 43 WO ST RCS can also be the SPI Data Out (SPI mode).
RC6/TX/CK 25 27 44 o ST RCH6 can aiso be the USART Asynchronous Transmit
or Synchronous Clock.
RCT/IRX/OT 26 29 1 o ST RC7 can also be the USART Asynchronous Receive
or Synchronous Data.
PORTD is a bi-directionat /O port or parallel slave port
when interfacing to a microprocessor bus.
RDO/PSPO 19 21 a8 o | staTLe
RD1/PSP1 20 22 39 vo | STATL®
RD2/PSP2 21 23 40 o | sTATL®
RD3/PSP3 22 24 41 o] sTTL®
RD4/PSP4 27 30 2 o | sTT®
RDS/PSP5 28 31 3 o | sTmL®
RD6/PSPE 29 32 4 W | stTATL®
RD7/PSPT 30 33 5 1o STTTL® _
PORTE is a bi-directional /O port,
REO/RD/ANS 8 9 25 o | STTTL® REO can also be read control for the parallel slave
port, or anaiog input5.
RE1/WR/ANG 9 10 26 o | sTATLe RE1 can also be write control for the parailel slave
port, or analog input6.
RE2/CSIANT 10 1 27 10 STATLE RE2 can also be select conitrol for the paraliel slave
port, or analog input7.
Vss 1231 | 1334 6,29 P — Ground reference for logic and I/O pins.
Ve 11,32] 12,35 7.28 P — Positive supply for togic and I/O pins.
NC — | 1,17.28, | 1213, — These pins are not infernally connected. These pins
40 33,34 shouid be left unconnected.
Legend: |=input O=output {0 = inputfoutput P = power
— = Not used TTL = TTL input 8T = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as an external interrupt.
2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.
3: This buffer is a Schmift Trigger input when configured as general purpose /O and a TTL input when usad in the Paraltel
Slave Port mode {for interfacing to a microprocessor bus).
4: This buffer is a Schmitt Trigger input when configured in RC osciliator mode and a CMOS input otherwise.

© 2001 Microchip Technology Inc. D830292C-page 9

