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ABSTRACT 

 

This main objective of this project is to develop a mathematical model for 

determining the optimal design of distillation sequencing for olefin production. The 

mathematical model with optimization procedure for the integration of olefin flow from 

refinery to a petrochemical plant is based on a process flowsheet superstructure 

representation that embeds all possible alternatives for the distillation sequencing. The 

model formulation includes material balances with fixed split fractions and logical 

constraints for representing design specifications and structural specifications based on 

engineering knowledge and past design experience and heuristics. Additionally, big-M 

logical constraints relating the continuous variables of flowrates to the binary 0–1 

variables of column existence are incorporated. In this work, the intermediate 

superstructure representation is adopted to represent the distillation sequencing for 

olefin production because it has been shown to provide good computational 

performance in obtaining the global optimal solution (Caballero and Grossmann, 1999).  

The optimization model is investigated using different feedstock; ethane from Ethylene 

Polyethylene (M) Sdn. Bhd (EPEMSB) and naphtha from University of Manchester‟s 

Process Integration (2005). By using different feedstocks, the computational results 

yield the same optimal sequencing. Furthermore, The the optimal distillation 

sequencing with this model formulation is validated with the existing olefin plant. It is 

proved that the optimal distillation sequencing is consistent with the common heuristic 

in process plant synthesis.  The optimization model is also investigated using integer 

cuts in order to check that they agree or conform to the heuristic for distillation 

sequencing.  It is proved that the optimum solution has the least total mass flow rate. 
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CHAPTER 1 

 

INTRODUCTION 
 

1.1. Background Of Study 

 

The goal of conceptual design (process synthesis) is the identification of best flow sheet 

structure system that must carry out for a specific task, such as conversion of raw 

material into a product or separation of a multi component mixture. To accomplish this 

goal, many alternatives design must be considered. There are three major approaches 

for determining an optimal topology or configuration of a petrochemical plant: 

  

1) The heuristic and evolutionary approach 

Heuristic method proposed by douglas relies on intuition and engineering 

knowledge. This method uses the „onion diagram‟ approach where it considers 

the critical equipment like the reactors before progressing to the separation units 

and finally to heat transfer units. Douglas‟s method enables flow sheet structures 

to be determined at near optimal solution and at a faster time. (douglas, 1988) 

 

2) Thermodynamic targets and physical insight approach (linnhoff et all., 1993) 

This method exploits the basic physical principles such as thermodynamics like 

pinch technology. This approach yields designs that features high energy 

efficiency and often near optimal solutions. 

 

3) Algorithmic approach (Grossmann, 1996) 

The algorithmic approach uses mathematical programming techniques. The 

formulation is based upon a superstructure that represents all possible process 
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flow sheets.  It includes the simultaneous and rigorous considerations of all 

factors. 

 

The study is aimed at exploring the third approach which is the algorithm approach to 

obtain the methodology for an optimal naphtha separation topology design. 

 

1.2. Problem Statement 

The problem addressed in this study can be stated as follows: given are the availability 

and composition olefin feedstock, product demands, coefficient for fixed cost and 

variable cost, and availability of process units in terms of different choices of task and 

equipment, and the interconnections among them. The problem in this study is to 

synthesize the optimal flow sheet distillation sequence and satisfies the criteria of cost. 

 

The basic assumptions made in this study are: 

1. Each distillation column performs a simple split. (i.e. One feed and two products)  

2. Each distillation column performs a sharp separation ( i.e. a component appears 

entirely on its own as a products; product is 100% pure component) 

 

1.3. Objectives 

This main objective of this research is to develop a Mixed-Integer Linear program 

(MILP), whose solution will determine the optimal design of distillation sequences for 

producing olefins. The main variable in the proposed modeling approach are: (1) the 

flow rates of the material streams; (2) the selection of the process units to be selected 

and the interconnectivities among the selected units that give rise to their sequence. In 

order to achieve the main objective, the following sub-objectives are formed. 

 

1. To consider a suitable superstructure representation for olefin production such as 

STN, SEN, and intermediate; 
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2. To derive a mathematical programming model with discrete and continuous 

variables to predict an optimum flow sheet design that includes linear mass balances 

and constraints for the selection of the alternative routes for the olefin production;  

3. To solve the optimization model for optimal separation sequences for olefin 

production using modeling language interface GAMS (general algebraic modeling 

language); 

 

1.4. Scope 

The scope of the research is to formulate a mixed integer liner programming model 

(MILP)) for olefin production. The scope for final year project 1 (fypI) is to develop the 

suitable superstructure for olefin production, formulate the linear mass balance, and 

develop logical constraints. The scope for final year project II (fypII) is to model the 

MILP model in GAMS and validate the results obtained with literature review. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1   OLEFIN FEEDSTOCK 

The typical feedstocks for petrochemical industry for olefin production are ethane, 

propane, naphtha and gas oil. Regardless of the feedstock, olefin production is a 

gigantic destroyer of energy, an enormous heat sink. Olefin production is very energy 

intensive (Hatch and Matar, 1981). 

 

The gaseous feedstocks for ethylene production are ethane, propane, and n-butane, in 

various mixtures and proportions of these compounds (Hatch and Matar, 1981). The 

advantage of ethane as a feedstock is a high ultimate yield combined with a minimum 

of coproducts. The ultimate yields of ethylene is about 80% based on the ethane is being 

recycled to extinction (Hatch and Matar, 1981).For propane feedstock, it gives a lower 

ethylene yield and a larger quantity of coproducts than ethane feedstock (Figure Table 

1). 

 

The major liquid feeds/feedstock for olefins production are light virgin naphtha, full 

range naphtha, reformer raffinate, atmospheric gas oil, vacuum gas oil, resids, and crude 

oil. The feedstock are usually cracked with lower residence times and higher 

temperatures and with higher steam dilution ratios than is used for gas feedstocks 

(Hatch and Matar, 1981). The advantage of naphtha over gas feestocks is the wider 

spectrum of coproducts (Figure Table 1).The important olefins and aromatics used for 

production in chemical industry are ethylene, propylene, butadiene, BTX. Thus, we 

wish to obtain a variety of copoducts. Figure Table 1 shows that as feedstocks progress 
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from ethane through heavier fractionation with lover H2 content, the yield of ethylene is 

reduced and the variety of coproducts are increased. 
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Table 1 Typical yield of feedstocks in olefin production 

 
Petrochemicals: Olefin 

Typical yields are: 

 Feedstocks 

 
Ethane  

(wt %) 

Propane  

(wt %) 

Naphtha  

(wt %) 

Gas Oil  

(wt %) 

H2 3.6 1.3 0.8 0.6 

CH4 4.2 24.7 15.3 10.6 

C2H2 0.2 0.3 0.7 0.4 

C2H4 48.2 34.5 29.3 24.0 

C2H6 40.0 4.4 3.8 3.2 

C3H4 

1.3 

0.3 1.1 1.0 

C3H6 14.0 14.1 14.5 

C3H8 10.0 0.3 0.4 

1.3-C4H6 

1.6 3.7 

4.8 4.7 

C4H8 4.2 4.5 

C4H10 0.3 0.1 

Pyrolysis 

Gasoline 
0.9 5.9 21.0 18.4 

Fuel Oil - 0.9 3.8 17.6 

 

(retype) Figure 1  Typical yield of feedstocks in olefin production 

 

An olefins plant, which utilizes a liquid feedstock, requires an additional pyrolysis 

furnace for cracking coproduct ethane and propane and an effluent quench exchanger. 

Formatted: Caption, Centered, Line spacing: 
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Formatted: Left, Line spacing:  single
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Formatted: Not Highlight
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This is followed by an oil quench and a primary fractionator for fuel oil separation. In 

contrast, a gas cracker requires a simple direct-contact water quench tower off the 

cracking unit. A liquid feed cracker also contains a propylene tower and a 

methylacetylene removal unit. A unit for first stage hydrotreating of pyrolysis gasoline 

may also be included (Hatch and Matar, 1981). 
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2.2  Petrochemical Industry in Malaysia 

The availability of hydrocarbon feedstocks from indigenous oil and gas has led to the 

development of the petrochemical industry. the two ethane crackers in kertih which use 

ethane from the six GPPs in Kertih and Tok Arun provide feedstock for the 

polyethylene plants, acetic acid plant and DOW PETRONAS ethylene derivatives 

complex. Condensates from the GPPs also provide feedstock to the aromatic plant in 

Kertih for the production of paraxylene and benzene. 

 

Propane from the GPPs is the raw material for the propane dehydrogenation plant in 

Gebeng. This provides feedstock to the polypropylene and MTBE plants and also to the 

BASF Petronas highly integrated propylene derivatives complex for the production of 

acrylics, oxo alcohols, butanediol, butylacrylates, plasticizers and tetrahydrofurane. 

 

Titan‟s integrated operation in Pasir Gudang-Tanjung Langsat, Johor includes a naphtha 

cracker which provides feedstock for its own production of polypropylene, polyethylene 

and aromatics. It also provides feedstock for the production of ethylene vinyl acetate 

(EVA). Naphtha is available from the petroleum refineries and Shell‟s middle distillates 

synthesis (MDS) plant in Bintulu, Sarawak. However a large proportion of the naphtha 

requirement is still being imported.  
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Figure 1Figure 2 Production of Petrochemical Feedstock (as at January 2005) (MIDA, 2005) 
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2.3 OVERVIEW ON PROCESS DESCRIPTION OF NAPHTHA CRACKING 

The optimization-based mathematical model for the integration of flow from a refinery 

to a petrochemical plant is based on a process flowsheet superstructure representation 

that embeds all possible alternatives for the design of an olefin plant.  

2.3.1 CRACKING OR PYROLYSIS SECTION 

The primary process step in producing olefins from hydrocarbon feeds is thermal 

cracking, usually referred to as pyrolysis. This process converts the feed to lower 

molecular weight hydrocarbons at relatively high temperature and low pressure. Light 

naphtha is supplied to the cracker plant from storage tank via pumps. Pyrolysis is the 

heart of steam cracker. The naphtha feed is first entered to the convection section, 

where preheated to 650C with a series of heat exchanger at the convection section. The 

naphtha is then vaporized with superheated steam and is passed into long, narrow tubes, 

which are made of chromium nickel alloys (ren et al., 2006). Recycle ethane and 

propane streams are mixed in the gas feed header while recycle C4 (hydrocarbon with 

four carbon atoms) are mixed preferentially with the fresh naphtha in the liquid feed 

header. Any excess of C4 will go to the gas feed header. 

 

The cracking reactions take place mainly in the radiant section of the furnace, where the 

naphtha is cracked into smaller molecules via a free radical mechanism in the absence 

of catalyst. The free radicals lead to the formation of light olefins in gaseous state. The 

tubes in the radiant section are externally heated to 750-900
o
C (up to 1100

o
C) by fuel 

oil or gas fired burners (Ren et al., 2006). Dilution steam is added to reduce the 

hydrocarbon partial pressure to promote the production of olefins and minimize the rate 

of coke deposition. Periodic decoking is required to remove coke which accumulates 

gradually in the radiant coils and quench exchangers. The furnaces will be steam or air 

decoked when the tube metal temperature approaches its design limit. 

 

Depending on the severity, naphtha is cracked into smaller molecules via a free radical 

mechanism in the absence of catalyst. Thus, the olefins are in the gaseous state. After 
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leaving the furnace, the hot gas mixture is subsequently quenched in the transfer line 

exchangers (TLE) to 550 – 650C or lower to 400
o
C (Ren et al., 2006). Super high 

pressure (SHP) steam is generated (500 °c and 105 kg/cm²g) and is used in the turbine 

driver for the cracked gas compressor. Rapid cooling is necessary to avoid secondary 

reactions which convert valuable products to heavier materials that tend to cause fouling 

in the exchangers. The steam generation pressure is set so that the tube wall temperature 

is high enough to prevent condensation of hydrocarbon in the TLE‟s.  

 

2.3.2 PRIMARY FRACTIONATION, COMPRESSION AND QUENCH 

SYSTEM 

Primary fractionation applies to the liquid feedstock of naphtha and gas oil feed only. In 

the primary fractionation section, gasoline and fuel oil streams (rich in aromatics) are 

condensed and fractionated. While this liquid fraction is extracted, the gaseous fraction 

is desuperheated in the quench tower by a circulating oil or water stream. The gaseous 

fraction is then passed through four or five stages of gas compression with temperatures 

at approximately 15-100
 o

C, then cooling and finally cleanup to remove acid gases, 

carbon dioxide and water. Most of the dilution steam is condensed, recovered and 

recycled. Product of  primary fractionation are fuel il and BTX or aromatic gasoline 

which consists benzene, toluene, and xylene. The problem faced with compression is 

fouling with cracked gas compressors and after coolers. The build–up of polymers on 

the rotor and internal will leads to energy losses as well as mechanical problems. Wash 

oil and water used to reduce fouling (Ren et al., 2006). 

 

Furnace effluent gas is cooled further by direct contact with circulating quench oil and 

fractionated in a quench oil tower to remove the heavy fraction. This quench oil 

material is stripped to control flash point and sent to storage as fuel oil product. The 

overhead from the quench oil tower will enter the quench water tower. Most of the 

dilution steam condenses in this tower, along with a portion of the gasoline fraction. 
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2.3.3 CAUSTIC WASHING & DRYING  

The caustic wash tower is installed to remove hydrogen sulphide, mercaptans, and 

carbon dioxide formed during the cracking process. These acid gases are removed from 

the cracked gas for the following purposes: 

 

1. to meet product quality requirements on the ethylene and propylene products 

2. to protect downstream catalytic operations, since some acid gas components are 

known to be catalyst poisons 

3. to avoid corrosion 

4. to avoid the possible formation of carbon dioxide ice within the cold process 

systems. 

 

The caustic solution used in this process is caustic soda (sodium hydroxide). After four 

stages of compression, the acid gases of the cracked gas are removed by scrubbing the 

gas with circulating caustic solution in the caustic tower. The tower consists of three 

sections, only two of which provide the caustic scrubbing of the cracked gas. The 

middle and bottom sections are circulated with strong and weak caustic solutions, 

respectively. The top section is the water wash section, which washes the treated 

cracked gas to prevent caustic carryover into the downstream equipment. 

 

Removal of acid gas at this point in the process allows all of the C4 and lighter 

hydrocarbons to be desulfurized together, eliminating the necessity to clean individual 

product streams. Overhead gas from the caustic tower is cooled with propylene 

refrigerant. The condensate is pumped forward to the high pressure (HP) depropanizer 

via the liquid dryer unit. Essentially, complete removal of water is necessary to prevent 

freeze-ups in subsequent low temperature equipment. 

 

2.3.4 PRODUCT RECOVERY AND FRACTIONATION SECTON  

This is essentially a separation process through distillation, refrigeration, and extraction. 

Equipment includes chilling trains and fractionation towers, which include refrigeration, 

demethanizer, deethanizer and others which shown in Figure 4. 
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i. Depropanizer 

The dried gases are cooled and fed to the HP depropanizer, which separates the feed 

into an overhead vapor essentially free of C4 and heavier material and a bottoms 

product essentially free of C2 (hydrocarbon with two carbon atoms) and lighter 

material. Tower overhead vapor is compressed in the fifth stage of the cracked gas 

compressor. Net bottom flows to the low pressure (LP) depropanizer. The LP 

depropanizer produces a raw C3 (hydrocarbon with three carbon atoms) liquid distillate 

which is sent to C3 hydrogenation and a bottom stream which flows to the Debutanizer. 

 

ii. Acetylene Removal 

Gas from the fifth stage of the cracked gas compressor is catalytically hydrogenated to 

remove acetylene. The reactor feed gas may either be cooled or heated, depending on 

the age and activity of the catalyst. Catalyst life is expected to be at least three years 

between regeneration. Three catalyst beds are used, with inter-cooling between beds to 

limit the temperature rise per bed. Essentially, all acetylene is converted to ethylene and 

ethane. Some of the methylacetylene and propadiene is converted to propylene. a spare 

reactor is not required because on-line regeneration is not required. Effluent from the 

reactor is cooled and dried in a secondary dryer to remove any trace quantities of water. 

Dried gas is cooled and partially condensed to provide reflux for the hp depropanizer. 

 

iii. Demethanizer 

The effluent gas from the hydrogenation reactor is chilled by exchange with ethane 

recycle and successively colder levels of propylene and ethylene refrigeration. Liquids 

separated in the chilling train are fed to appropriate trays in the demethanizer 

prefractionator and demethanizer, according to composition. The prefractionator 

separates C3 and heavier material from C2 and lighter. The overhead vapor from the 

prefractionator, which contains essentially no C3 material, is sent to the demethanizer. 

The prefractionator bottom is sent to the deethanizer. The demethanizer makes a sharp 

separation between methane and ethylene. 
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iv. Deethanizer & C2 splitter systems 

The deethanizer separates the feed into C2 and C3. The net overhead, consisting 

principally of ethylene and ethane, is taken as a liquid to a C2 splitter, while the net 

bottom is fed to C3 hydrogenation. The C2 splitter is a single tower operated at low 

pressure and temperature. Two feeds enter the tower; an ethylene rich vapor stream 

from the demethanizer and the overhead liquid product from the deethanizer. 

 

The C2 splitter makes a sharp separation between ethylene and ethane. The ethylene 

product is pumped to high pressure, heated, and delivered to storage as a vapor product. 

If required, approximately 70% of the nameplate ethylene production can be subcooled 

and sent out entirely as a liquid product. Ethane bottom from the splitter is pumped and 

vaporized by exchange with demethanizer feed, and recycled to the cracking furnaces. 

 

v. C3 hydrogenation, C3 splitter, Debutanizers Systems 

Raw C3 from the deethanizer bottom and LP depropanizer overhead are catalytically 

hydrogenated to remove methylacetylene and propadiene. Methylacetylene and 

propadiene are converted to propylene. 

 

Hydrogenated C3 are pumped to the C3 splitter which consists of two towers: a stripper 

and a rectifier. The overhead from the stripper is fed to the rectifier. Light ends, a result 

of the hydrogenation reaction, are removed in the pasteurizing section of the rectifier. 

Propylene is condensed and returned as reflux. Reflux for the stripper is obtained from 

the bottom of the rectifier. The rectifier overhead is condensed by cooling water. The 

polymer grade propylene product is taken off as a liquid side draw. A propane rich 

stream is removed as a vapor product from a location two trays above the bottom of the 

stripper to be recycle cracked in the furnaces. The net bottom liquid is recycled back to 

the LP depropanizer to remove any green oil produced in the C3 hydrogenation unit. 

 

The debutanizer receives a liquid feed from the LP depropanizer bottom. A separation is 

made between C4 and C5 (hydrocarbon with five carbon atoms). The overhead is 
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condensed against cooling water. LP steam provides reboiler heat. The net overhead 

product is sent to the C4 hydrogenation unit and the bottom is combined with the 

distillate stripper bottom, cooled and sent to the pyrolysis gasoline hydrogenation unit. 

 

vi. C4 and Pyrolysis & Hydrogenation Unit 

The C4 hydrogenation unit selectively converts butadiene to butenes using high purity 

hydrogen. The unit consists of a single fixed-bed catalytic reaction system. The C4 

product stream is recycle cracked in the cracking furnaces. 

 

The pyrolysis gasoline hydrogenation unit is a one-stage catalytic reaction system to 

selectively hydrogenate diolefins and styrenic compounds. A stabilizer removes 

dissolved lights and a rerun tower removes gums from the gasoline product. 

 

vii.  Olefin Cracking Process 

Based on UOP (2004), the Olefin Cracking process converts C4 to C8 olefins to 

propylene and ethylene at high propylene and ethylene ratio.See Figure 32, the Olefin 

Cracking Process features fixed bed reactors operating at temperatures between 500 and 

600 
0
C and pressures between1 to 5 bar gauge. The process utilizes a proprietary 

zeolitic catalyst and provides high yields of propylene. The catalyst minimizes the 

reactor size and operating costs by operating at high space velocities and high 

conversions and selectivities without requiring an inert diluent stream. A swing reactor 

system is used for catalyst regeneration. Separation facilities depend on how the unit is 

integrated into the processing system.  
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Figure 3 Figure 2 Description of Olefin Cracking Process
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2.5 Overview of Process Description of Ethane Cracking 

A typical ethane cracker has several identical pyrolysis furnaces in which fresh ethane 

feed and recycle ethane are cracked with steam as a diluent. The outlet temperature is 

usually in the 850 
o
C range. The furnace effluent is quenched in a heat exchanger and 

further cooled by direct contact in a water quench tower where the diluent steam is 

condensed. The water is recycled to the pyrolysis furnace. The cracked gas is 

compressed, acid constituents are removed, and the purified gas dried (Hatch and 

Matar, 1981). 

 

Hydrogen and methane are removed from the pyrolysis products in the demethanizer, 

The product stream is hydrogenated to remove acetylene, or the acetylene is separated 

as a product. Ethylene is separated in the ethylene tower from the unreacted ethane and 

higher boiling products. The ethane is recycled to extinction. The other products are 

separated and either sold, burned as fuel, or absorbed into a refinery operation (Hatch 

and Matar, 1981). 

 

 

The liquid feedstocks are usually cracked with lower residence times and higher 

temperatures and with higher steam ratios than is used for gas feedstocks. The reaction 

section of the plants is essentially same as with the gas feedstocks but the design of the 

convection and quenching section are different (Hatch & Matar, 1981). An olefin plant 

which utilizes a liquid feedstock requires an additional pyrolysis furnance for cracking 

co product ethane and propane and an effluent quench exchanger. This is followed by 

an oil quench and a primary fractionator for fuel oil separation. In contrast, a gas craker 

requires a simple direct-contact water quench tower off the cracking unit. A liquid feed 

cracker also contains a propylene tower and a methylacetylene removal unit. A unit for 

first stage hydrotreating of pyrolysis gasoline may be included (Hatch & Matar, 1981). 

. 
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(redraw) Figure 4Figure 3  A typical flow sheet of naphtha cracking plant (Ren,et al,2006) 
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CHAPTER 3 

 

Methodology 

 

In general, the mathematical programming approach to process synthesis and design 

activities and problems consists of the following four major steps (Grossmann, 1990; 

Floudas, 1995, pp. 233.234; Novak et al., 1996): 

 

1. Development of the superstructure to represent the space of topological alternatives 

of the naphtha flow to petrochemical plant configuration; 

2. Establishment of the general solution strategy to determine the optimal topology from 

the superstructure representation of candidates; 

 If model is largely linear, simultaneous solution strategy is used. 

 If model is non-linear, sequential solution strategy is used (i.e. 1
st
 stage, 

solve NLP (fix binary variables), 2
nd

 stage, solve MILP using NLP 

solution). 

3. Formulation or modeling of the postulated superstructure in a mathematical form that 

involves discrete and continuous variables for the selection of the configuration and 

operating levels, respectively; and 

4. Solution of the corresponding mathematical form, i.e., the optimization model from 

which the optimal topology is determined. 

 

The block diagram of the four major steps mentioned above is shown in Figure 54. 

 

 

 

 



22 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 5 Figure 4 Steps in mathematical programming approach to process synthesis and design 

problems (Grossman, 1990; Floudas, 1995; Novak et al., 1996) 
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3.1 MILP Objective Function 

In order to formulate a MILP program for this problem, it is important to devise an 

objective function which can be used to compare different alternatives. Thus, the 

objective function is to minimize the project cost, which is made up of capital expenses 

and operating expenses. This cost can be approximated by a function of the form of (1). 

 

CAPEX OPEXk k k k

k COL k COL

Cost y F
 

            (1) 

 

 Where  FC = Fixed cost associated with the column  

   V = Slope of line relating the column cost  

   Fk = stream flow rate associated with the column, k with process unit i 

 CAPEX = Capital Expenses  

       OPEX = Operating Expenses  

         yk= Binary variable denoting the existence or nonexistence of column k 

 

This objective function is subject to two types of constraints. Material balance 

constraints describe the permissible routes by which material may flow from one 

column in the superstructure to another. The second type of constraints which is 

integrality constraints, ensure consistency between the continuous variables and binary 

variables.  The data of installed capital cost and operating cost are taken from Meyers 

(2005)( see Table 12). 

Table 221 Ethylene Production Cost Components
a,b

 

Location N.E Asia/ 

W.Europe 

Middle East United States 

Feedstock Naphtha Ethane Ethane 

Feedstock Cost ($/t feed) 320
c
 62

d
 317

e
 

Net Feedstock Cost
f
 ($/t C2H4) 55 68 266 

Energy Cost ($/ t C2H4) 194 16 140 

Fixed Cost
g
 ($/t C2H4) 66 56 51 

Total Production Cost ($/t C2H4) 315 140 457 

Contract sales Price ($/t C2H4)  650-700 

a
Amortazation costs for capital investment are excluded. 
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b
Cost basis: first quarter 2004 

c
N.E.Asia/W.Europe naphtha cost = approx. $37.5/bbl (130% crude price) 

d
Middle East ethane cost = $1.25/MMBtu 

e
United States ethane cost = $ 5.45/MMBtu natural gas + $1.0/MMBtu extraction cost 

f
Net feedstock cost = feedstock cost – price of total nonethylene co-products 

g
Fixed cost include labour, supervision, maintenance, insurance , overhead. 
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3.2 Logical Constraints 

 

The propose procedure to develop the logical relationships in the model is as below: 

 

1. Associate Boolean Variables with every note in the model. 

Boolean variables Y is used to represent the existence of all the units (Un) in the 

superstructure while Z is used to represents the splitters, mixer, sources and sinks. 

 

a. Mixer: 

Mixes two or more streams, no other unit operation is involved 

b. Splitter: 

Splits a stream into multiple streams, no other unit operation is involved. 

c. Unit: 

Including units that perform a change in compositions, pressure and 

temperature in the output streams, e.g. reactor, distillation columns. 

d. Sources and sinks: 

Inlet and outlet of the process flowsheet. 

 

2. Develop relationships between Boolean variables (Figure 65). 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 Figure 6 Nodes in the graph of a superstructure: (a) mixer; (b) splitter; and (c) Un 

component. 
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a. Mixer: 

m a b

m c

Z Y Y

Z Y

 


 

If 
a b mY Y Z   and 

c mY Z  are also valid, then the relations can be written 

as 
a b mY Y Z   and

c mY Z , respectively. 

b. Splitter: 

s a

s b c

Z Y

Z Y Y



 
 

If 
a sY Z and b c sY Y Z   are also valid, the relations can be written as 

s aZ Y  and 
s b cZ Y Y   respectively. 

c. Units 
nu U : 

...

...

u a b n

u a b m

Y Y Y Y

Y Y Y Y

  

  
 

 

3. User specification 

User specifications limit on the unit selection and also take into account of the 

availability of the feed streams. The basic relation of Boolean Variable, Y with linear 

inequalities of binary variable, y is given in Table 23. 

 

 

 

 

 

 

 

 

 

 

 



27 

Table 332 Constraint representation of logical relations as algebraic linear inequalities 

(Adapted     from Raman and Grossmann (1991) and Williams (1999)) 

 

Logical 

operator 

Logic 

proposition 

Logical  Boolean 

expression 

Representation as 

algebraic integer linear 

inequality/equality 

constraint 

Logical OR  Y1  Y2    Yr y1 + y2 +  + yr ≥ 1 

    

Logical AND  Y1  Y2    Yr y1 ≥ 1 

y2 ≥ 1 

 
yr ≥ 1 

    

Implication Y1  Y2 is logically 

equivalent to Y1  Y2 

Y1  Y2  

21

21

21

0

11

yy

yy

yy







 

    

Equivalence Y 1 if and only if Y 2 

(Y 1  Y 2)  (Y 2  Y 1) 

which can also be written 

as: Y1  Y2 

(Y 1  Y 2)  (Y2  Y1) y1 = y2 

    

Exclusive OR 

(EOR) 

Exactly one of the 

variables is true 
Y1   Y2      Yr y1 + y2 +  + yr = 1 

    

Classification Q = {Y1, Y2, …, Yr} 

Q is true if any of the 

variables inside the 

brackets are true 

 yq = y1 + y2 +  + yr 

 

The systematic procedure to convert a logical expression into its corresponding 

conjunctive normal consists of applying the following three steps to each logical 

proposition (Raman and Grossmann, 1991): 

1. replace the implication by its equivalent disjunction: 

1 2 1 2;Y Y Y Y    

2. move the negation inward by applying DeMorgan‟s Theorem: 

 

 

1 2 1 2

1 2 1 2

;

;

Y Y Y Y

Y Y Y Y

    

    
 

3. recursively distribute the “OR” over the “AND” by using the following equivalence:  

     1 2 3 1 3 2 3Y Y Y Y Y Y Y       
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3.3  Switching Constraints 

 

To ensure that the non-existence of a process unit results in the corresponding input 

flowrates to the unit assuming the value of zero, we consider the formulation of big-M 

logical constraints to impose the relations between the continuous variables, which in 

our case represent the flowrates of the streams, and the discrete binary 0–1 variables, 

which denote the existence of the streams and process units.  

 

The general formulation of the big-M logical constraints is given by: 

 

 k k kF M y        (2) 

 

where Fk = total flowrate of an input stream for process unit k in kg/day, 

 Mk = maximum capacity of process unit k 

 yk = existence or non existence of process unit k. 

 

We could see that when yi = 0 (unit does not exist), then the constraint (2) becomes: 

 

 0kF    (3) 

but flowrate variables are either zero or takes on positive values, so equation (3) 

becomes Fk = 0, which stipulates the condition of zero input flowrate into a non-existing 

unit. When yk = 1 (unit exists), then the constraint (2) becomes: 

 k kF M              (4) 

which means that the input flowrate is bounded from above by the value of the big-M 

constant. Here, it is clear that a suitable value for the big-M constant is the maximum 

capacity of the unit.  

 

For example equation (5), if the maximum capacity of a distillation column is equals to 

100 m
3
, then the big-M logical constraint for that unit becomes  

  3100 mk kF y    (5) 
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This constraint (4) is usually written for the input flowrate because it can be related to 

the output flowrates through the material balances. 

 

The big-M logical constraints are also sometimes termed as switching constraints in the 

literature (Rardin, 1998, p. 558). As mentioned, the main function of the switching 

constraints is to enforce the condition that no output flow exists if the unit does not 

exist. By extension, these constraints can be written as i ≤ Mizi to relate the stream 

flowrate to the binary variable zi denoting the existence of the stream itself (instead of 

the unit from where it is produced). In our proposed approach, this is written for each 

column with the big-M constant, taken to be an arbitrarily large number, 1000, which it 

acts as an upper bound for the corresponding feed flow rate of the initial mixture. 

 

3.4  Linear Material Balances 

 

According M.J.Andrecovich and A.W. Westerbeurg (1985), material balance 

constraints relate material flows into and out of columns in the superstructure. Each 

column separates its feed into two products streams whose amounts are related to the 

feed flow by equation (6) 

(1 )

k D k

k B k D k

D F

B F F



 



  
         (6) 

 

Where D is the split fraction of the feed to column,k which leaves in the distillate and 

B  is the split fraction that leaves in the bottoms.  The constraint is written for each 

product produced by columns in the structure must equal to the amount of that 

intermediate product fed to columns which further separate the product. That is 

 

   0
m m

k k k

k PS k FS

F F m IP
 

           (7) 

 

Where mPS  is the set of all columns which produce a given intermediate product m as 

distillate or bottoms, mFS  is the set of all columns having intermediate product m as 
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feed, F  is the total flow rate to a column, IP is the set of all intermediate products, and 

  is the split fraction relating distillate or bottoms flows to feed flows. This constraint 

(7) is written for each intermediate product. 

 

A similar expression is necessary for the feed to the distillation system: 

 

   
F

k TOT

k FS

F F


           (8) 

 

Refer to equation (8), the total feed to the system must equal the sum of the feeds to all 

columns which process some portion of the feed stream. 
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CHAPTER 4 

 

OPTIMIZATION MODEL FORMULATION 
 

Due to time constraint, the project scope is narrowed down to the separation subsystem 

of the superstructure. An alternative superstructure representation that is proposed by 

Caballero and Grossmann (1999), termed simply as the intermediate representation is 

employed to represent the separation subsystem. In this project, intermediate 

superstructure representation was used for the distillation sequencing for olefin 

production. 

 

4.1 Intermediate Superstructure Representation 

 

Intermediate representation possesses the characteristics between the state–task network 

(STN) and the state–equipment network (SEN) superstructure representation. 

 

For STN, the tasks and states are defined while the equipment assignment is generally 

unknown (See Figure 67).For SEN, tasks and equipment are defined while the 

assignment of tasks to equipment must be determined (Yeomans and Grossmann, 

1999)(See Figure 87).In distillation sequencing problem, both SEN and STN are 

extreme cases because the number of columns is equal to the number of tasks for STN 

while the number of columns in SEN is the minimum necessary to perform the 

separation. Table 3 4 shows the comparison between STN and SEN. 

 

Referring to Figure 89, the number of columns in intermediate representation is in 

between these two extreme separations/cases (Caballero and Grossmann, 1999).Hence, 
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intermediate representation superstructure will involve less number of equations 

compared to STN representation superstructure. Intermediate representation has shown 
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a good performance in reaching the global optimal solution (Caballero and Grossmann, 

1999). Note also that for intermediate representation, both mixers and splitters are 

“single choice”, that is, only one input stream from the mixer or only one output stream 

from the splitter takes a non-zero value (i.e., a value different from zero). A contribution 

of this work pertaining to systematic superstructure generation is on how we 

demonstrate that the intermediate representation of Caballero and Grossmann (199) can 

be readily and conveniently extended to include the representation of reactors (in this 

case, the catalytic hydrogenation reactor, the methyl acetylene and propadiene reactor 

(MAPD), the C4 hydrogenation reactor, and the gasoline hydrogenation reactor (which 

is basically a hydrotreater). 
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Figure 67 STN Representation for a mixture of four components (Caballero & Grossmann, 1999) 
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Figure 8 7 SEN Representation for a mixture of four components (Caballero & Grossmann, 1999) 
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Figure 9 8 Intermediate Representation for a mixture of four components(Caballero & Grossmann, 

1999) 
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Table 443 Comparison between STN and SEN 

  
 STN SEN 

Characteristic 

Concerned with the selection of 

tasks, leaving the equipment 

assignment (or selection) to a second 

stage 

Concerned with the selection of 

equipment, leaving the selection (or 

assignment) of tasks to a second 

stage 

 

 

    Number of Columns 

No. of columns = no. of tasks No. of  columns = minimum 

necessary to perform the separation 

(in the case that we are considering 

(N – 1) columns)) 

 

Difference 

One task one equipment (OTOE) 

Each task is assigned to a single 

equipment unit. If a task can be 

executed by two different 

equipments, the tasks will have to be 

redefined to distinguish one from the 

other. 

 

Tradeoff between the smaller 

combinatorial problem for 

equipment selection and the 

increasing problem complexity in 

the state definition 
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a M e t h a n e  ,  C H 4

b H y d r o g e n  ,H 2

c E t h a n e ,  C 2 H 6

d E t h y l e n e  ,  C 2 H 4

e A c e t y l e n e  ,  C 2 H 2

f P r o p a n e  ,  C 3 H 8

g P r o p y l e n e ,  C 3 H 6

h P r o p a d i e n e  ,  C 3 H 4

j B u t a d i e n e ,  1 ,3 - C 4 H 6

k C 4 s  ,  B u t e n e  &  B u t a n e

l P y r o l y s i s  G a s o l i n e

m F u e l  O i l

O l e f i n  F e e d s t o c k

 
Figure 109  Intermediate Representation of Distillation Sequencing for Olefin Production
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Figure 9 shows the intermediate representation of distillation sequencing for olefin 

production. The project scope is narrowed down to the product recovery or fractionation 

section. There are a few alternatives involved in the superstructure. 

 

1. The first unit C1 consider different cuts : 

 Demethanizer – remove the light end first 

 HP depropanizer – use when the propane and heavier are main cracked 

feed. 

 Debutainzer – employs indirect sequence. 

 

2.  Different method to remove/separate acetylene from the stream: 

 Extractive distillation (task C4) 

 Catalytic hydrogenation reactor/ acetylene reactor ( task R1) – improve the 

quality of specific product, e.g. upgrade the chemical grade ethylene to 

polymer grade ethylene. 

 

3. Different method to remove /separate butadiene from mixed C4s mixture 

 Extractive distillation (task C12) 

 Catalytic hydrogenation reactor (task R3) – covert the butane and butane 

into butadiene. 

 

4. ATOFINA/UOP Olefin Cracking Process (UOP, 2004) can be used to convert 

the heavy end product C4 to C8 olefin to propylene and ethylene at high 

propylene to ethylene ratio. 

 When integrated naphtha steam cracker the yield of propylene is increased 

dramatically for the same total naphtha flowrate. 
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4.34.2 Linear Material Balances 

 

According Andrecovich and Westerberg (1985), material balance constraints relate 

material flows into and out of columns in the superstructure. Each column separates its 

feed into two products streams whose amounts are related to the feed flow by equation 

(2) 

(1 )

k D k

k B k D k

D F

B F F



 



  
         (2) 

 

Where D is the split fraction of the feed to column,k which leaves in the distillate and 

B  is the split fraction that leaves in the bottoms.  The constraint is written for each 

product produced by columns in the structure must equal to the amount of that 

intermediate product fed to columns which further separate the product. That is 

 

   0
m m

k k k

k PS k FS

F F m IP
 

           (3) 

 

Where 
mPS  is the set of all columns which produce a given intermediate product m as 

distillate or bottoms, mFS  is the set of all columns having intermediate product m as 

feed, F  is the total flow rate to a column, IP is the set of all intermediate products, and 

  is the split fraction relating distillate or bottoms flows to feed flows. This constraint 

(3) is written for each intermediate product. 

 

A similar expression is necessary for the feed to the distillation system: 

 

   
F

k TOT

k FS

F F


           (4) 
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Refer to equation (4), the total feed to the system must equal the sum of the feeds to all 

columns which process some portion of the feed 

stream. 

In order to reduce the size and complexity of the MILP model for olefin 

production, there are a few assumptions are made. Below are the 

assumptions: 

 

a. Use linear constant-yield material 

balances 

b. 100 percent recoveries (then for each column, 

we can determine a priori, the 

fractions of the total feed that are recovered at the top and at the bottoms) 

 

For each column, the calculation (95) procedure to obtain the split fractions is as 

follows (Figure 1110): 

 

 

 

,

,

,

,

,top

,

,

,

k top

k

k bottom

k

i C

k

i C

i C
k bottom

i C

Xi feed

Xi

Xi feed

Xi









 

 








                                     (95)   

Wwhere ,Xi feed  = mole fraction of component i in the initial mixture, 

                kC    = set of component in the feed  

              ,k topC  = set of components in the top or overhead, 

 ,k bottomC = set of components in the bottom of column k 

     

 

 

 

 

 

 

,k topi C

k

,k bottomi C

,

ki C

Xi feed


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,k topi C

k

,k bottomi C

,

ki C

Xi feed



 

 

 

 

 

 

 

 
Figure 5511  Module for total flow with sharp split 

 

As an example, consider the mass compositions from University of Manchester‟s 

Centre for Process Integration (2005), the corresponding split fraction are shown in 

Table 45. 

 
Table 554Split fraction based on mass composition from University Manchester’s Centre for 

Process Integration (2005) 

 
Split fraction based on mass composition from University of Manchester‟s Centre for Process Integration 

(2005) 

0.9618

0.0382

TotalFeed

TotalFeed

a l

m

 

 
 

3

3

0.4246

0.5754

C a

C a

c e

f l





 

 
 

 

4

4

0.9793

0.0207

C a

c d

e
C a

 

 
 

1

1

0.1682

0.8318

C a

C a

a b

c l





 

 
 

3

3

0.5768

0.4232

C b

C b

c e

f k





 

 
 

4

4

0.9893

0.0107

C b

C b

ad fh

e

 

 
 

1

1

0.7387

0.2613

C b

C b

a h

f l





 

 
 

3

3

0.8413

0.1587

C c

C c

c h

j k





 

 
 

4

4

0.9858

0.0142

C c

C c

cd fh

e

 

 
 

1

1

0.7806

0.2194

C c

C c

a k

l

 

 
 

1

1

0.9793

0.0207

R a

R a

c d

e

 

 
 

5

5

0.2488

0.7512

C a

C a

a b

cd fh





 

 
 

2

2

0.2155

0.7845

C a

C a

a b

c k





 

 
 

1

1

0.9893

0.0107

R b

R b

ad fh

e

 

 
 

5

5

0.6811

0.3189

C b

C b

c d

f h





 

 
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2

2

0.8632

0.1368

C b

C b

a h

f k





 

 
 

1

1
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0.0142

R c

R c

cd fh

e
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 
 

5

5
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C c
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a d

f h




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 
 

2

2
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0.1245

C c

C c

a h

j k




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 
 

6

6 0.3272

0.6728
C

a b
C

c d





 

 
 

7

7

0.6811

0.3189

c d
C

f h
C





 

 
 

8

8

0.3384

0.6616

f h
C a

j l
C a





 

 
 

8

8

0.6250

0.3750

f h
C b

j k
C b





 

 
 

9

9

0.3069

0.6931

j k
C

j k
C





 

 
 

 

 

For initial node in the network we have Equation (106), 

 

 TotalFeed Quench TotalFeed Oil TOTFEEDa l mF F     (106) 

 

TotalFeed Quench TotalFeed Oil TOTFEEDa l mF F                            

  (10) 

 

For the remaining nodes in the network, mass balances for each intermediate product 

arewas considered. Based on the split fractions of recoveriesy sections calculatedgiven 

in Table 45, the mass balances for each intermediate product is as listed in 

follows(Table 56, as obtained from the following general constraint:): 

 

 

 0

m m

k k k

k PS k FS

F F m IP
 

      (103) 

 

where PSm is the set of all columns that produce a given intermediate product m as 

distillate or bottoms, FSm is the set of all columns having intermediate product m as 

feed, and IP is the set of all intermediate products. 

 

Table 665 Mass balance for each intermediate product 

 
Mass balances for each intermediate product 

1. Intermediate (a-b) which is produced in C1a, C2a, C6 and C5a and directed to PSA. 
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1 1 2 2 6 6 5 5 0a b a b a b a b
C a C a C a C a C C C a C a PSAF F F F F          

2. Intermediate (c-l) which is produced in C1a and directed to C3a. 

1 1 3 0c l
C a C a C aF F    

3. Intermediate (a-h) which is produced in C1b,C2b and C2c and directed to R1b and C4b. 

1 1 2 2 2 2 1 4 0a h a h a h
C b C b C b C b C c C c R b C bF F F F F         

4. Intermediate (f-l) which is produced in C1b and C3a and directed to C8a. 

1 3 3 81 0f l f l
C b C a C a C aC b F F F      

5. Intermediate (a-k) which is produced in C1c and directed to C2a, C2b and C2c. 

1 1 2 2 2 0a k
C c C c C a C b C cF F F F      

6. Intermediate (l) which is produced in C1c and C9 and directed to R4. 

1 1 9 9 4 0l l
C c C c C C RF F F     

7. Intermediate (c-k)  which is produced in C2a and directed to C3b and C3c 

2 2 3 3 0c k
C a C a C b C cF F F     

8. Intermediate (f-k)  which is produced in C2b and C3b and directed to C8b 

2 3 82 3 0f k f k
C b C b C bC b C bF F F      

9. Intermediate (j-k)  which is produced in C2c, C3c, C8b, and C9 and directed to C12 

2 2 3 3 8 9 9 128 0j k j k j k j k
C c C c C c C c C b C C CC bF F F F F          

10. Intermediate (c-e)  which is produced in C3a and C3b and directed to R1a and C4a 

3 3 3 3 1 4 0c e c e
C a C a C b C b R a C aF F F F       

11. Intermediate (c-h)  which is produced in C3c and directed to R1c and C4c 

3 3 1 4 0c h
C c C c R c C cF F F     

12. Intermediate (c-d)  which is produced in R1a,C4a,C6,C7 and C5b and C3b and directed to C10 

1 1 4 4 6 6 7 7 5 5 10 0c d c d c d c d c d
R a R a C a C a C C C C C b C b CF F F F F F            

13. Intermediate (ad-fh)  which is produced in R1b and C4b and C3b and directed to C5a and C5c 

1 4 5 51 4 0ad fh ad fh
R b C b C a C cR b C bF F F F       

14. Intermediate (cd-fh) which is produced in R1c, C4c and C5a and directed to C7. 

1 1 4 4 5 5 7 0cd fh cd fh cd fh
R c R c C c C c C a C a CF F F F        

15. Intermediate (a-d)  which is produced in C5c and directed to C6 

5 5 6 0a d
C c C c CF F    

16. Intermediate (f-h)  which is produced in C5b, C5c,C7,C8a and C8b and directed to R2 

5 5 5 7 7 8 8 8 25 8 0f h f h f h f h f h
C b C c C c C C C a C a C b RC b C bF F F F F F            

17. Intermediate (j-l)  which is produced in C8a and directed to C9 and OCU 
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8 8 9 0j l
C a C a C OCUF F F     

 

 

 

4.2 3  Logical Constraints on Design Specifications, Interconnectivity 

Relationships and Switching Constraints 

 

Logical constraints are developed for the intermediate representation superstructure in 

Figure 10 9 for the following purposes: 

 to relate the continuous variables with the binary 0–1 variables, specifically to 

ensure that the non-selection of a process unit results in corresponding zero 

flowrates of the input and output streams associated with the process unit; 

 to stipulate design specifications based on engineering knowledge and past design 

experience; and 

 to enforce interconnectivity relationships among the states and tasks nodes in the 

superstructure. 

The logical constraints and switching constraints are also developed for the entire 

Intermediate superstructure representation and they are included in Table 6 7 and Table 

78. 

 

The following notations and definitions are used in constructing these constraints: 

Yi: Boolean variable with value true denoting the existence of a process unit i (including 

mixers and splitters) and values false denoting its non-existence; 

yi: binary variable associated with their corresponding Boolean variables with value 

equals to one (1) denoting the existence of a process unit i (including mixers and 

splitters) and value equals to zero (0) denoting its non-existence; 

Fj: flow rate variable of a state (or material stream) j; and 

Mi: maximum capacity of a process unit i to represent the upper bound on its outlet flow 

rate in stream j. 

 

Note that in this work, we have found it desirable to only consider the selection of the 

process units; thus, we have omitted the modeling of the stream selection in the logical 



47 

constraints. The same reason has been stressed in Raman and Grossmann (1993), which 

goes on to assert that this is indeed commonly the case in problems of similar nature. 

 

Tables 6 7 and 78, present the logical constraints on design specifications and logical 

constraints on interconnectivity relationships (structural specifications) respectively for 

the feed and cracking subsystem. Logical constraints on design specifications are 

needed especially for distillation columns (and reactors) in which selection of a single 

task that takes place in the column needs to be made. 
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Table 776 Logical constraints on design specifications (DS) for the separation subsystem using intermediate representation 

 

 Logic proposition on design specification Logical expression and clauses Integer linear inequality 
    

DS1  Select only one from among: 

 demethanizer (task C1a) 

 HP depropanizer (task C1b) 

 debutanizer (C1c)  

1 1 1

| | |

C a C b C c

a b c l a h f l a k l
Y Y Y

    
   1 1 1

| | |
1C a C b C c

a b c l a h f l a k l
y y y

    
    

    

DS2 From among the demethanizer (C2a), HP depropanizer (C2b), 

and debutanizer (C2c), select none or only one (note: none of the 

task for C2 column can be selected because there is provision for 

it to be bypassed in the superstructure) 

C2a C2b C2c
a b c k a i f k a i j k

Y Y Y
     

   C2a C2b C2c 1
a b c k a i f k a i j k

y y y
     

    

    

DS3 Select only one or none of the deethanizer (C3a, C3b) or 

debutanizer (C3c). 

3 3 3

| | |

C a C b C c

c e f l c e f k c i j k
Y Y Y

     
   3 3 3

| | |
1C a C b C c

c e f l c e f k c i j k
y y y

     
    

    

DS4 Catalytic hydrogenation reactor (R1) converts acetylene to ethane 

and ethylene. Components entering R1 depend on constraint DS1, 

i.e., whether HP depropanizer or debutanizer is selected upstream. 

(note that this might be a redundant constraint; this condition 

might have been enforced by other constraints)  

1 1 1

| , | , |

R a R b R c

c d e a d f h e c d f h e
Y Y Y

    
   1 1 1

| , | , |
1R a R b R c

c d e a d f h e c d f h e
y y y

    
    

    

DS5 Extractive distillation column (C4) separates acetylene from the 

other components. As in previous, components entering C4 

depend on the unit selected upstream.  

4 4 4

| , | , |

C a C b C c

c d e a d f h e c d f h e
Y Y Y

    
   4 4 4

| , | , |
1C a C b C c

c d e a d f h e c d f h e
y y y

    
    

    

DS6 At most two of the tasks for similar categories of tasks involving 

the catalytic reactor R1 or column C4 can be selected 

 1 4

| |

1 4

, | , |

1 4

, | , |

2

2

2

R a C a

c d e c d e

R b C b

a d f h e a d f h e

R c C c

c d f h e c d f h e

y y

y y

y y

 

   

   

 

 

 

 

DS7 Select at most one from among demethanizer (C5a), deethanizer 

(C5b), and depropanizer (C5c). 

 5 5 5

| , | |
1C a C b C c

a b c d f h c d f h a d f h
y y y

      
    

    

DS8 

 

Select only one or none from among LP depropanizer (C8a) and 

C8b 

8 8

| |

C a C b

f h j l f h j k
Y Y

   
  8 8

| |
1C a C b

f h j l f h j k
y y

   
   

    

DS9 At most two tasks can be selected between C4 hydrogenation 

reactor R3 and extractive distillation column C12 

 3 12

| |
2R C

j k j k
y y   
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The logical constraints on structural specifications are categorized intoto two groups or /sections are categorized into: 

 

(1) lLogical constraints on structural specifications that involve the overhead and bottom products (Table 7a8a); 

 

(2) lLogical constraints on structural specifications that involve the feed or /inlet to the columns (Table 87b) 

, which is similar to the      constraints on sequence of task of columns as employed by(refer to Floudas and Paules (1988)., p. 538) 

 

 

 

Table 887(a) Logical constraints on structural specifications for interconnectivity relationships for the separation subsystem using intermediate 

representation which involve the overhead and bottom products 

 
Logic proposition on structural specification Algebraic constraint (integer linear) 

  

Overhead products from the demethanizer (C1a) go to the pressure swing absorber (PSA); bottom 

products go to the deethanizer (C3a). 
1 PSA 3

| | |

C a C a

a b c l a b c e f l
Y Y Y

   
   

OR express the logical statement in the following way: 

From the demethanizer (C1a): 

 the overhead products go to the pressure swing absorber (PSA); 

 the bottom products go to the deethanizer (C3a). 

 

PSA C1a
| |

C3a C1a
| ,|

0

0

a b a b

c e f l a b

y y

y y 

 

 
 

  

From the HP depropanizer (C1b): 

 the overhead products go to either the catalytic hydrogenation reactor (R1b) or extractive 

distillation column (C4b) 

1 4 1

, | , | |

8 1

| |

0

0

R b C b C b

a d f h e a d f h e a h f l

C a C b

f h j l a h f l

y y y

y y

     

   

  

 
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 the bottom products go to the LP depropanizer (C8a). 

 

   

1 1 4 8

| , | , | |

1 1 4 1 8

| , | , | | |

C b R b C b C a

a h f l a d f h e a d f h e f h j l

C b R b C b C b C a

a h f l a d f h e a d f h e a h f l f h j l

Y Y Y Y

Y Y Y Y Y

       

         

  

       

 

Overhead products from debutanizer (C1c) go to demethanizer (C2a), depropanizer (C2b) or 

debutanizer (C2c). Bottom products go to gasoline hydrogenation reactor (R4). 

 

   

1 2 2 2 4

| | | |

1 2 2 2 1 4

| | | | |

C c C a C b C c R

a k l a b c k a h f k a i j k l

C c C a C b C c C c R

a k l a b c k a h f k a i j k a k l l

Y Y Y Y Y

Y Y Y Y Y Y

      

       

   

      
  

 

2 2 2 2

| | 1 9|10,11 |

4 1

|

0

0

C a C b C c C c

a b c k a h f k a i j k

R C c

l a k l

y y y y

y y

      



   

 
 

Overhead products from demethanizer (C2a) go to pressure swing absorber (PSA). Bottom 

products go to deethanizer(C3b)  or debutanizer (C3c).  

 

   

2 3 3

| | | |

2 2 3 3

| | | | |

C a PSA C b C c

a b c k a b c e f k c e j k

C a PSA C a C b C c

a b c k a b a b c k c e f k c e j k

Y Y Y Y

Y Y Y Y Y

     

       

  

       

2

| |

3 3 2

| | |

0

0

PSA C a

a b a b c k

C b C c C a

c e f k c e j k a b c k

y y

y y y

 

     

 

  
 

Overhead products from depropanizer (C2b) go to catalytic hydrogenation reactor (R1b) or 

extractive distillation column (C4b). Bottom products go to depropanizer (C8b). 

 

   

2 1 4 8

| , | , | |

2 1 4 2 8

| , | , | 1 9|6 11 |

C b R b C b C b

a h f k a d f h e a d f h e f h j k

C b R b C b C b C b

a h f k a d f h e a d f h e f h j k

Y Y Y Y

Y Y Y Y Y

       

         

  

     
 

 

1 4 2

, | , | |

8 2

| |

0

0

R b C b C b

a d f h e a d f h e a h f k

C b C b

f h j k a h f k

y y y

y y

     

   

  

 
 

Overhead products from depropanizer (C2c) go to catalytic hydrogenation reactor (R1b) or 

extractive distillation column (C4b). Bottom products go to extractive distillation column (C12)  

   

   

2 1 4 12

| , | , | |

2 1 4 2 12

| , | , | | |

C c R b C b C

a h j k a d f h e a d f h e j k

C c R b C b C c C

a h j k a d f h e a d f h e a h j k j k

Y Y Y Y

Y Y Y Y Y

     

       

  

     
 

 

1 4 2

, | , | |

12 2

| |

0

0

R b C b C c

a d f h e a d f h e a h j k

C C c

j k a h j k

y y y

y y

     

 

  

 
 

Overhead products from the deethanizer (C3a) go to the catalytic hydrogenation reactor (R1a) or 

extractive distillation column (C4a). Bottom products go to depropanizer (C8a). 

 

   

3 1 4 8

| | | |

3 1 4 3 8

| | | | |

C a R a C a C a

c e f l c d e c d e f h j l

C a R a C a C a C a

c e f l c d e c d e c e f l f h j l

Y Y Y Y

Y Y Y Y Y

     

       

  

     
 

1 4 3

| | |

8 3

| |

0

0

R a C a C a

c d e c d e c e f l

C a C a

f h j l c e f l

y y y

y y

   

   

  

 
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Overhead products from the deethanizer (C3b) go to the catalytic hydrogenation reactor (R1a) or 

extractive distillation column (C4a). Bottom products go to depropanizer (C8b). 

 

   

3 1 4 8

| | | |

3 1 4 3 8

| | | | |

C b R a C a C b

c e f k c d e c d e f h j k

C b R a C a C b C b

c e f k c d e c d e c e f k f h j k

Y Y Y Y

Y Y Y Y Y

     

       

  

     
 

 

1 4 3

| | |

8 3

| |

0

0

R a C a C b

c d e c d e c e f k

C b C b

f h j k c e f k

y y y

y y

   

   

  

 
 

Overhead products from debutanizer (C3c) go to catalytic hydrogenation reactor (R1c) or 

extractive distillation column (C4c). Bottom products go to extractive distillation column (C12) or 

C4 hydrogenatioan reactor (R3). 

   

   

3 1 4 12 3

| , | , | | |

3 1 4 3 12 3

3 9|10,11 , | , | 3 9|10,11 | |

C c R c C c C R

c h j k c d f h e c d f h e j k j k

C c R c C c C c C R

c d f h e c d f h e j k j k

Y Y Y Y Y

Y Y Y Y Y Y

     

     

   

      
 

 

1 4 3

, | , | |

12 3 3

| | |

0

0

R c C c C c

c d f h e c d f h e c h j k

C R C c

j k j k c h j k

y y y

y y y

     

 

  

  
 

Products from catalytic hydrogenation reactor (R1a) go to ethylene splitter (C10). 
1 10

| |

1 10

| |

R a C

c d e c d

R a C

c d e c d

Y Y

Y Y







 
 

 

10 1

| |
0C R a

c d c d e
y y


   

Products from catalytic hydrogenation reactor (R1b) go to demethanizer (C5a) or depropanizer 

(C5c). 
1 5 5

, | | , |

1 5 5

, |5 | , |

R b C a C c

a d f h e a b c d f h a d f h

R b C a C c

a d f h a b c d f h a d f h

Y Y Y

Y Y Y

      

      

 

  
 

 

5 5 1

| , | , |
0C a C c R b

a b c d f h a d f h a d f h e
y y y

      
    

Products from catalytic hydrogenation reactor (R1c) go to demethanizer (C5b). 
1 5

, | |

1 5

, | |

R c C b

c d f h e c d f h

R c C b

c d f h e c d f h

Y Y

Y Y

   

   



 
 

 

5 1

| , |
0C b R c

c d f h c d f h e
y y

   
   

Overhead products of extractive distillation (C4a) go to ethylene splitter (C10). 
4 10

| |

4 10

| |

C a C

c d e c d

C a C

c d e c d

Y Y

Y Y







 
 

 

10 4

| |
0C C a

c d c d e
y y


   

Overhead products from extractive distillation (C4b) go to demethanizer (C5a) or depropanizer 

(C5c). 

5 5 4

| , | , |
0C a C c C b

a b c d f h a d f h a d f h e
y y y

      
    
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 

4 5 5

, | | , |

4 5 5

, | | , |

C b C a C c

a d f h e a b c d f h a d f h

C b C a C c

a d f h e a b c d f h a d f h

Y Y Y

Y Y Y

      

      

 

  
 

 

(NOTE: Boolean variable for column C5b 5

3,4|6 9

C bY


 is not considered in the logic proposition 

because it does not involve components 1 and 2.) 

Overhead products from extractive distillation (C4c) go to deeethanizer (C5b) 
4 5

, | |

4 5

, | |

C c C b

c d f h e c d f h

C c C b

c d f h e c d f h

Y Y

Y Y

   

   



 
  

 

5 4

| , |
0C b C c

c d f h c d f h e
y y

   
   

Overhead products demethanizer (C5a) go to pressure swing absorber (PSA). Bottom products go 

to deethanizer (C7). 

   

5 7

| , | |

5 5 7

| , | | , |

C a PSA C

a b c d f h a b c d f h

C a PSA C a C

a b c d f h a b a b c d f h c d f h

Y Y Y

Y Y Y Y

    

       

 

    
 

 

5

| | ,

7 5

| | ,

0

0

PSA C a

a b a b c d f h

C C a

c d f h a b c d f h

y y

y y

  

    

 

 
 

Overhead products demethanizer (C5b) go to ethylene splitter (C10). Bottom products go to 

methyl acetylene & propadiene reactor (R2). 

   

5 10 2

| |

5 10 5 2

| | |

C b C R

c d f h c d f h

C b C C b R

c d f h c d c d f h f h

Y Y Y

Y Y Y Y

  

    

 

    
 

 

10 5

| |

2 5

3,4|6 9

0

0

C C b

c d c d f h

R C b

f h

y y

y y

 

 

 

 
 

Overhead products depropanizer (C5c) go to demethanizer (C6). Bottom products go to methyl 

acetylene & propadiene reactor (R2). 

   

5 6 2

| , |

5 6 5 2

| , | | ,

C c C R

a d c d f h a b c d f h

C c C C c R

a d c d f h a b c d a d c d f h f h

Y Y Y

Y Y Y Y

     

        

 

    
 

 

6 5

| | ,

2 5

| ,

0

0

C C c

a b c d a d c d f h

R C c

f h a d c d f h

y y

y y

    

   

 

 
  

 

Overhead products of demethanizer (C6) go to pressure swing absorber (PSA) and the bottom 

product go to ethylene splitter (C10). 

   

6 10

| | |

6 6 10

| | | |

C PSA C

a b c d a b c d

C PSA C C

a b c d a b a b c d c d

Y Y Y

Y Y Y Y

 

   

 

    
 

 

6

| |

10 6

| |

0

0

PSA C

a b a b c d

C C

c d a b c d

y y

y y

 

 

 

 
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Overhead product from deethanizer (C7) go to ethylene splitter (C10) and bottom product go to 

methyl acetylene & propadiene reactor (R2). 

   

7 10 2

| |

7 10 7 2

| | |

C C R

c d f h c d f h

C C C R

c d f h c d c d f h f h

Y Y Y

Y Y Y Y

  

    

 

    
 

 

10 7

| |

2 7

|

0

0

C C

c d c d f h

R C

f h c d f h

y y

y y

 

  

 

 
 

 

Overhead products from depropanizer (C8a) go to methyl acetylene & propadiene reactor (R2). 

Bottom products will either got to debutanizer (C9) or olefin cracking unit (OCU). 

 

   

8 2 9

| |

8 2 8 9

6 9|10 12,14 18 | |

C a R C OCU

f h j l f h j k l j l

C a R C a C OCU

f h f h j l j k l j l

Y Y Y Y

Y Y Y Y Y

    

       

  

     
 

 

2 8

|

9 8

| |

0

0

R C a

f h f h j l

C OCU C a

j k l j l f h j l

y y

y y y

  

   

 

  
 

Overhead products from depropanizer (C8b) go to methyl acetylene and propadiene reactor (R2). 

Bottom products will either go to C4 hydrogenation reactor (R3), extractive distillation (C12)  

 

   

8 2 3 12

| | |

8 2 8 3 12

| 6 9|10 11 | |

C b R R C

f h j k f h j k j k

C b R C b R C

f h j k f h j k j k

Y Y Y Y

Y Y Y Y Y

  

    

  

     
 

 

2 8

|

3 12 8

| | |

0

0

R C b

f h f h j k

R C C b

j k j k f h j k

y y

y y y

  

 

 

  
 

Products from methyl acetylene and propadiene reactor (R2) go to propylene splitter (C11) (note: 

equivalence relation is used in the logical statement because involving single choice decision) 

   

2 11

|

2 11 2 11

| |

R C

f h f g

R C R C

f h f g f h f g

Y Y

Y Y Y Y



 



   
 

 

11 2

|

2 11

|

0

0

C R

f g f h

R C

f h f g

y y

y y





 

 
 

Overhead products from debutanizer (C9) will either go to C4 hydrogenation reactor (R3) or 

extractive distillation (C12). Bottom products go to gasoline hydrogenation reactor (R4). 

 

   

9 3 12 4

| | |

9 3 12 9 4

| | | |

C R C R

j k l j k j k l

C R C C R

j k l j k j k j k l l

Y Y Y Y

Y Y Y Y Y



 

  

     
 

 

3 12 9

| | |

4 9

|

0

0

R C C

j k j k j k l

R C

l j k l

y y y

y y





  

 
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Table 78(b) Logical constraints on structural specifications that involve inlet/feed to columns 

 
Logic proposition on structural specification Algebraic constraint (integer linear) 

The inlet of demethanizer (C2a), depropanizer (C2b), and debutanizer (C2c) is the overhead 

product of debutanizer (C1c). 

     

2 2 2 1

| | | |

2 1 2 1 2 1

| | | | | |

C a C b C c C c

a b c k a h f k a h j k a k l

C a C c C b C c C c C c

a b c k a k l a h f k a k l a h j k a k l

Y Y Y Y

Y Y Y Y Y Y

      

        

  

       
 

1 2

| |

1 2

| |

1 2

| |

0

0

0

C c C a

a k l a b c k

C c C b

a k l a h f k

C c C c

a k l a h j k

y y

y y

y y

  

  

  

 

 

 

 

  
The inlet of deethanizer (C3a) is the bottom product of demethanizer (C1a). 

3 1

| |

3 1

| |

C a C a

c e f l a b c l

C a C a

c e f l a b c l

Y Y

Y Y

   

   



 
 

 

1 3

| |
0C a C a

a b c l c e f l
y y

   
   

The inlet of deethanizer (C3b) or debutanizer (C3c) is the bottom product of demethanizer (C2a). 

 

 

   

3 3 2

| | |

3 3 2

| | |

3 3 2

| | |

3 2 3 2

| | | |

C b C c C a

c e f k c h j k a b c k

C b C c C a

c e f k c h j k a b c k

C b C c C a

c e f k c h j k a b c k

C b C a C c C a

c e f k a b c k c h j k a b c k

Y Y Y

Y Y Y

Y Y Y

Y Y Y Y

     

     

     

       

 

  

  

    

 

 

 
2 3

| |

2 3

| |

0

0

C a C b

a b c k c e f k

C a C c

a b c k c h j k

y y

y y

   

   

 

 
 

The inlet of catalytic hydrogenation reactor (R1a) is either from demethanizer (C3a) or 

demethanizer (C3b). 
1 3 3

| | ||

1 3 3

| | ||

R a C a C b

c d e c e f l c e f l

R a C a C b

c d e c e f l c e f l

Y Y Y

Y Y Y

    

    

 

  
 

 

3 3 1

| || |
0C a C b R a

c e f l c e f l c d e
y y y

    
    

The inlet of catalytic hydrogenation reactor (R1b) is either from depropanizer (C2b) , debutanizer 

(C2c) or HP depropanizer (C1b). 
1 2 2 1

, | | | |

1 2 2 1

, | | | |

R b C b C c C b

a d f h e a h f k a h j k a h f l

R b C b C c C b

a d f h e a h f k a h j k a h f l

Y Y Y Y

Y Y Y Y

       

       

  

   
 

2 2 1 1

| | | , |
0C b C c C b R b

a h f k a h j k a h f l a d f h e
y y y y

       
     

 

 

 

 

The inlet of catalytic hydrogenation reactor (R1c) is from debutanizer (C3c). 3 1

| , |
0C c R c

c h j k c d f h e
y y

   
   
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1 3

, | |

1 3

, | |

R c C c

c d f h e c h j k

R c C c

c d f h e c h j k

Y Y

Y Y

   

   



 
 

 

The inlet of extractive distillation (C4a) is either from deethanizer (C3a) or deethanizer (C3b). 
4 3 3

| | |

4 3 3

| | |

C a C a C b

c d e c e f l c e f k

C a C a C b

c d e c e f l c e f k

Y Y Y

Y Y Y

    

    

 

  
 

 

3 3 4

| | |
0C a C b C a

c e f l c e f k c d e
y y y

    
    

The inlet of extractive distillation (C4b) is either from depropanizer (C2b), debutanizer (C2c) or 

HP depropanizer (C1b). 
4 2 2 1

, | | | |

4 2 2 1

, | | | |

C b C b C c C b

a d f h e a h f k a h j k a k l

C b C b C c C b

a d f h e a h f k a h j k a k l

Y Y Y Y

Y Y Y Y

      

      

  

   
  

2 2 1 4

| | | , |
0C b C c C b C b

a h f k a h j k a k l a d f h e
y y y y

      
     

The inlet of extractive distillation (C4c) is from debutanizer (C3c). 
4 3

, | |

4 3

, | |

C c C c

c d f h e c h j k

C c C c

c d f h e c h j k

Y Y

Y Y

   

   



 
 

 

3 4

| , |
0C c C c

c h j k c d f h e
y y

   
   

The inlet of demethanizer (C5a) or depropanizer (C5c) is either from catalytic hydrogenation  

reactor (R1b) or extractive distillation (C4b).  
5 5 1 4

| , | , | , |

5 5 1 4

| , | 1 4,6 9|5 1 4,6 9|5
( ) ( )

C a C c R b C b

a b c d f h a d f h a d f h e a d f h e

C a C c R b C b

a b c d f h a d f h

Y Y Y Y

Y Y Y Y

        

        

  

   
 

 

1 4 5

, | , | | ,

1 4 5

, | , | |

0

0

R b C b C a

a d f h e a d f h e a b c d f h

R b C b C c

a d f h e a d f h e a d f h

y y y

y y y

      

     

  

  
 

The inlet of deethanizer (C5b) is either from catalytic hydrogenation  reactor (R1c) or extractive 

distillation (C4c).  
5 1 4

| , | , |

5 1 4

| , | , |

C b R c C c

c d f h c d f h e c d f h e

C b R c C c

c d f h c d f h e c d f h e

Y Y Y

Y Y Y

     

     

 

  
 

 

1 4 5

, | , | |
0R c C c C b

c d f h e c d f h e c d f h
y y y

     
    

The inlet of demethanizer (C6) is from depropanizer (C5c). 
6 5

| |

6 5

| |

C C c

a b c d a d f h

C C c

a b c d a d f h

Y Y

Y Y

   

   



 
 

 

5 6

| |
0C c C

a d f h a b c d
y y

   
   

The inlet of deethanizer (C7) is from demethanizer (C5a). 5 7

| , |
0C a C

a b c d f h c d f h
y y

    
   
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7 5

| | ,

7 5

| | ,

C C a

c d f h a b c d f h

C C a

c d f h a b c d f h

Y Y

Y Y

    

    



 
 

 

The inlet to depropanizer (C8a) is either from deethanizer (C3a) or HP depropanizer (C1b). 
8 3 1

| | |

8 3 1

| | |

C a C a C b

f h j l c e f l a h f l

C a C a C b

f h j l c e f l a h f l

Y Y Y

Y Y Y

     

     

 

  
 

 

3 1 8

| | |
0C a C b C a

c e f l a h f l f h j l
y y y

     
    

The inlet to depropanizer (C8b) is either from deethanizer (C3b) or HP depropanizer (C2b). 
8 3 2

| | |

8 3 2

| | |

C b C b C b

f h j k c e f k a h f k

C b C b C b

f h j k c e f k a h f k

Y Y Y

Y Y Y

     

     

 

  
 

 

3 2 8

| | |
0C b C b C b

c e f k a h f k f h j k
y y y

     
    

The inlet of olefin cracking unit (OCU) is either from depropanizer (C8a) or depropanizer (C8b). 
8 8

| |

8 8

| |

OCU C a C b

j l f h j l f h j k

OCU C a C b

j l f h j l f h j k

Y Y Y

Y Y Y

    

    

 

  
 

 

8 8

| |
0C a C b OCU

f h j l f h j k j l
y y y

    
    

The inlet of MAPD(R2) is from either from C7, C5b, C5c, C8a or C8b. 

 
2 7 5 5 8 8

| | | | |

2 7 5 5 8 8

| | | | |

R C C b C c C a C b

f h c d f h c d f h a d f h f h j l f h j k

R C C b C c C a C b

f h c d f h c d f h a d f h f h j l f h j k

Y Y Y Y Y Y

Y Y Y Y Y Y

          

          

    

     
 

 

7 5 5 8 8 2

| | | | |
0C C b C c C a C b R

c d f h c d f h a d f h f h j l f h j k f h
y y y y y y

          
       

The inlet to pressure swing absorber (PSA) is either from demethanizer (C1a), demethanizer 

(C2a), demethanizer (C5a) or demethanizer (C6). 
1 2 5 6

| | | | , |

1 2 5 6

| | | | , |

PSA C a C a C a C

a b a b c l a b c k a b c d f h a b c d

PSA C a C a C a C

a b a b c l a b c k a b c d f h a b c d

Y Y Y Y Y

Y Y Y Y Y

        

        

   

    
 

 

1 2 5 6

| | | , | |
0C a C a C a C PSA

a b c l a b c k a b c d f h a b c d a b
y y y y y

        
      

The inlet of debutanizer (C9) is from depropanizer (C8a). 
9 8

| |

9 8

| |

C C a

j k l f h j l

C C a

j k l f h j l

Y Y

Y Y

  

  



 
 

 

8 9

| |
0C a C

f h j l j k l
y y

  
   

The inlet to ethylene splitter (C10) is either from catalytic hydrogenation reator (R1a), extractive 

distillation (C4a), depropanizer (C5) or demethanizer (C6) or deethanizer (C7). 

1 4 5 6 7 10

| | | | | |
0R a C a C b C C C

c d e c d e c d f h a b c d c d f h c d
y y y y y y

       
     
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10 1 4 5 6 7

| | | | | |

10 1 4 5 6 7

| | | | | |

C R a C a C b C C

c d c d e c d e c d f h a b c d c d f h

C R a C a C b C C

c d c d e c d e c d f h a b c d c d f h

Y Y Y Y Y Y

Y Y Y Y Y Y

       

       

    

     
 

 

The inlet of C11 is from MAPD (R2) 
11 2

|

11 2

|

C R

f g f h

C R

f g f h

Y Y

Y Y







 
 

 

2 11

|
0R C

f h f g
y y


   

The inlet to C4 hydrogenation reactor (R3) is either from debutanizer (C9), depropanizer (C8b), 

debutanizer (C3c) . 

 

3 9 8 3

| | | |

3 9 8 3

| | | |

R C C b C c

j k j k l f h j k c h j k

R C C b C c

j k j k l f h j k c h j k

Y Y Y Y

Y Y Y Y

    

    

  

   
 

 

9 8 3 3

| | | |
0C C b C c R

j k l f h j k c h j k j k
y y y y

    
     

The inlet to extractive distillation (C12) is either from debutanizer (C9), depropanizer (C8b), 

debutanizer (C3c) or debutanizer (C2c). 
12 9 8 3 2

| | | | |

12 9 8 3 2

| | | | |

C C C b C c C c

j k j k l f h j k c h j k a h j k

C C C b C c C c

j k j k l f h j k c h j k a h j k

Y Y Y Y Y

Y Y Y Y Y

      

      

   

    
 

 

9 8 3 2 12

| | | | |
0C C b C c C c C

j k l f h j k c h j k a h j k j k
y y y y y

      
      

The inlet of gasoline dehydrogenation reactor (R4) is either from debutanizer (C9) or debutanizer 

(C1c). 
4 9 1

| |

4 9 1

| |

R C C c

l j k l a k l

R C C c

l j k l a k l

Y Y Y

Y Y Y

 

 

 

  
 

 

9 1 4

| |
0C C c R

j k l a k l l
y y y

 
    
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4.4 Switching Constraints 

To ensure that the non-existence of a process unit results in the corresponding input 

flowrates to the unit assuming the value of zero, we consider the formulation of big-M 

logical constraints to impose the relations between the continuous variables, which in 

our case represent the flowrates of the streams, and the discrete binary 0–1 variables, 

which denote the existence of the streams and process units.  

 

The general formulation of the big-M logical constraints is given by: 

 

 k k kF M y        (7) 

 

where Fk = total flowrate of an input stream for process unit k in kg/day, 

 Mk = maximum capacity of process unit k 

 yk = existence or non existence of process unit k. 

 

We could see that when yi = 0 (unit does not exist), then the constraint (7) becomes: 

 

 0kF    (8) 

but flowrate variables are either zero or takes on positive values, so equation (8) 

becomes Fk = 0, which stipulates the condition of zero input flowrate into a non-existing 

unit. When yk = 1 (unit exists), then the constraint (7) becomes: 

 k kF M              (9) 

which means that the input flowrate is bounded from above by the value of the big-M 

constant. Here, it is clear that a suitable value for the big-M constant is the maximum 

capacity of the unit.  

 

For example equation (7), if the maximum capacity of a distillation column is equals to 

100 m
3
, then the big-M logical constraint for that unit becomes  

  3100 mk kF y    (8) 
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This constraint (7) is usually written for the input flowrate because it can be related to 

the output flowrates through the material balances. 

 

The big-M logical constraints are also sometimes termed as switching constraints in the 

literature (Rardin, 1998, p. 558). As mentioned, the main function of the switching 

constraints is to enforce the condition that no output flow exists if the unit does not 

exist. By extension, these constraints can be written as i ≤ Mizi to relate the stream 

flowrate to the binary variable zi denoting the existence of the stream itself (instead of 

the unit from where it is produced). In our proposed approach, this is written for each 

column with the big-M constant, taken to be an arbitrarily large number, 1000, which it 

acts as an upper bound for the corresponding feed flow rate of the initial mixture. 

 

Table 998 Switching constraints for the separation subsystem using intermediate representation 

Task/Process Unit Switching Constraint 

C1 C1 C1
1

1 C1
C1

1 C1
C1

a a
C a

C b b
b

C c c
c

F M y

F M y

F M y







 

 

C2 C2 C2
C2

C2 C2
C2

C2 C2
C2

a a
a

b b
b

c c
c

F M y

F M y

F M y







  

 

C3 C3 C3
C3

C3 C3
C3

C3 C3
C3

a a
a

b b
b

c c
c

F M y

F M y

F M y







  

 

R1 R1a R1
R1

R1b R1
R1

R1c R1c
R1

a
a

b
b

b

F M y

F M y

F M y







 

C4 C4 C4
C4

C4 C4
C4

C4 C4
4

a a
a

b b
b

c c
C c

F M y

F M y

F M y






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The complete formulation of the optimization model for the distillation sequences for 

olefin production is summarized as followspresented as below: 

 

C5 C5 C5
C5

C5 C5
C5

C5 C5
C5

a a
a

b b
b

c c
c

F M y

F M y

F M y







 

 

C6 C6 C6
C6F M y  

 

C7 C7 C7
C7F M y  

 

C8 C8 C8
C8

C8 C8
C8

a a
a

b b
b

F M y

F M y




 

 

R2 R2 R2
R2F M y  

 

C9 C9 C9
C9F M y  

 

C10 C10 C10
C10F M y  

 

C11 
6|7

2 C11
8,9 6,7 C11
RF M y   

 

R3 R3 R3
R3F M y  

 

C12 C12 C12
C12F M y  

 

Pressure Swing Absorber 

(PSA) 

PSA PSA
PSAF M y  

 

Olefin Cracking Unit (OCU) OCU
OCU OCUF M y  

 

R4 4 4
R4

R RF M y  
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 

 

min CAPEX OPEX

s.t

0 material balances for each intermediate product

big-  logical constraints

     1                          

F

m m

k

F

k k k k

k COL k COL

k TOT

k FS

k k k

k PS k FS

k k

k

k FS

Z y F

F F

F F m IP

F M y k COL M

y

 



 



 



   

  



 



 



 

  (logical constraints on leading columns)

1                            (logical constraints on intermediate columns)

          0 logical constraints on structural specifications

m m

k

k m

k k

k PS k FS

y

y y



 



 



 

          0 or 1             ky k COL  

 

 

The decision variables in this formulation are the binary variable, yk  and the flowrates 

to each column, Fk. 
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CHAPTER 5 

 

COMPUTATIONAL EXPERIMENTS AND DISCUSSIONS ON 

NUMERICAL RESULTS 

 

To demonstrate the implementation of the proposed model formulation for determining 

the optimal separation sequence, we consider different olefin feedstock as the feed 

compositions and by utilizing the method of integer cuts constraints. 

 

5.1 Comparison of distillation sequencing using different olefin feedstocks 

 

Three cases of different olefin feedstock are evaluated using our proposed model 

formulation. 

 

5.1.1 Case 1: Ethane feedstock from Ethylene Polyethylene (M) Sdn. Bhd 

(EPEMSB) 

Table 10109 Typical yields of ethane feedstock from EPEMSB 

 

 

 

 

 

 

 

 

 

 

Feed Composition of Ethane Yield  

No: Group of Compounds Typical Yields (wt %) 

a Methane , CH4 24.56 

b Hydrogen ,H2 0.65 

c Ethane, C2H6 27.91 

d Ethylene , C2H4 41.83 

e Acetylene , C2H2 0.32 

f Propane , C3H8 0.22 

g Propylene, C3H6 1.12 

h Propadiene/ Methylacetyl , C3H4 0.02 

j Butadiene, 1,3-C4H6 1.23 

k C4s , Butene & Butane 0.35 

l Pyrolysis Gasoline 1.67 

m Fuel Oil 0.12 
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This feed composition of ethane yield from EPEMSB as shown in Table 9 10 is tested 

in our optimization model. The optimum distillation sequence from the result is shown 

in Figure 1211. 
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Figure 12 6 Optimal flowsheet distillation sequence for Ethane Feedstock from EPEMSB 
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Figure 13  Flowsheet configuration for Ethylene Polyethylene (M) Sdn. Bhd., which uses ethane as 

the feedstock 

 

Compared to the distillation column sequence of the existing configuration of the 

ethylene plant of Ethylene Polyethylene (M) Sdn. Bhd (Figure 13)., which uses ethane 

as its feedstock, the optimal distillation sequence obtained from our computational 

experiments differs only in that the Pressure Swing Absorption (PSA) is also selected.  

 

The optimal solution is in agreement with the following three common heuristic 

guidelines for distillation sequencing in accordance with Douglas et al. (1985): 

Heuristic 1. Remove the lightest component first and; 

Heuristic 2. Remove the most plentiful component first; and 

Heuristic 3: perform difficult separation last. 

 

The optimal solution follows hHeuristic 1 as the first column is the demethanizer, which 

removes the lightest components of hydrogen and methane first. This is known as the 

direct sequence, which requires less energy as the light material (hydrogen and 
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methane) is vaporized once in the direct sequence. In another way, it requires less 

minimum vapor flow rate for reboiler duty and condenser duty.  

 

The optimal solution also follows the Hheuristic 2 as the bottom of demethanizer goes 

to deethanizer in order to remove the most plentiful components first, which is C2s at 

the top and C3s above at the bottom of the task Depropanizer (C3a). Besides that, the 

optimal solution also performs the difficult separation last which is consistent with the 

Hheuristic 3.,e.g. propylene fractionator and ethylene fractionator. 
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5.1.2 Case 2: Naphtha Composition from University of Manchester’s Centre for 

Process Integration (CPI) (2005) 

 

Table 111110 Typical yields of naphtha feedstock taken from University of Manchester’s Centre 

for Process Integration CPI (2005) 

 

Feed Composition of Naphtha Cracking Yield from UMIST 

No: Group of Compounds Typical Yields (wt %) 

a Methane , CH4 15.3 

b Hydrogen ,H2 0.8 

c Ethane, C2H6 3.8 

d Ethylene , C2H4 29.3 

e Acetylene , C2H2 0.7 

f Propane , C3H8 0.3 

g Propylene, C3H6 14.1 

h Propadiene , C3H4 1.1 

j Butadiene, 1,3-C4H6 4.8 

k C4s , Butene & Butane 4.5 

l Pyrolysis Gasoline 21 

m Fuel Oil 3.8 

 

Theis feed composition of typical naphtha typical yield as reported by from University 

of Manchester‟s Centre for Process Integration or University of Manchester‟s Centre for 

Process IntegrationCPI, for short, (2005) iswhich shown in Table 10 11 andis tested in 

our optimization model. The optimum distillation sequencing using this naphtha 

feedstock from University of Manchester‟s Centre for Process Integration (2005) 

produces from the optimal flowsheetresult is shown in Figure 1412. 
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Figure 14 

Figure 7  Optimal flowsheet for distillation sequencing using naphtha composition from University of Manchester’s Centre for Process 

Integration (2005) 
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Figure 15 8 Flowsheet Configuration from Titan Petrochemicals (M) Sdn. Bhd 
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Figure 16  9  The C-E Lummus process for the cracking of naphtha or gas oil for the production of ethylene (Hydrocarbon Processingatch & 

Matar, 1975) 
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The optimal distillation sequence obtained from our computational experiments using 

naphtha composition from University of Manchester‟s Process Integration (2005) is 

different from Titan Petrochemical (M) Sdn. Bhd. However, the optimal distillation 

sequence obtained from our model formulation using naphtha composition from 

University of Manchester‟s Process Integration (2005) has the same demethanizer at the 

up front s the C-E Lummus process fro the cracking of naphtha for the production of 

ethylene. The different for C-E Lumus from optimal distillation sequencing solution are 

without the unit of PSA and debutanizer (Figure 16). 

The optimal distillation sequence obtained from our computational experiments using 

the CPI naphtha composition is compared against the configuration of Titan 

Petrochemical (M) Sdn. Bhd, which uses a similar feedstock of liquid naphtha. The 

major difference is that Titan‟s configuration uses a high pressure (HP) depropanizer at 

the front-end. According to Meyer (2005, p. 6.60), a front-end depropanizer is used 

when propane and heavier materials are the primary cracked feed. 

 

On the other hand, our optimal configuration based on CPI‟s naphtha composition as 

the feed has demethanizer at the front-end, similar to the C-E Lummus naphtha cracking 

process configuration for ethylene production. However, compared to our configuration, 

the C-E Lummus topology does not include an acetylene reactor, a a PSA., and an 

MAPD reactor. 

 

For the Titan Petrochemicals (M) Sdn.Bhd (Figure 15), the distillation configuration is 

different by using depropanizer at the front end. According to Meyer (2005), front end 

depropanizer is used when propane and heavier material is the primary cracked feed. 

 

From theIt is seen from our computational results that both forms of feed composition 

of typical gaseous ethane feedstock ,(such as that of EPEMSB) and typical using 

feedstock of ethane from EPEMSB and feedstock ofliquid naphtha feedstock (such as 

that of CPI (2005)) from University of Manchester‟s Process Integration (2005) 

generatesyield the same optimal configuration or topology of distillation sequencing. 
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5.2. Optimal and Suboptimal Distillation Sequences using Integer Cuts 

 

 

By incorporating  using integer cuts, we can obtain the second best,  and the third best, 

and subsequent “suboptimally best”  distillation configurationssolutions from the 

MILPan integer program. According to Floudas and Paules (, 1988),, it is important to 

consider the restriction of the branch and bound enumeration tree for the solution of an 

integer program is important in the solution of mathematical formulation. From, the 

integer cuts, wWe can thus compare the solutions in terms of the annualized cost and 

the total mass flow rate. Integer cut is a 

 type of weak integer cut that could be derived are the ones that will ensure that those 

previously considered integer combinations cannot be encountered again. For the case 

when the integer combination is an element of some unit hypercube (i.e., binary 

variables), the following well-known integer cut will perform the above tasks. 

Lemma (Duran and Grossmann, 1986), Given any integer combination  with index sets 

, s.t. |B
i
| + |NB

i
| = m, the integer constraint will be violated only by yi and no other yk ¹ y

i
. 

Note that |B
j
| is the number of terms in the first summation. 

  

5.2.1 Case 1: Ethane feedstock from Ethylene Polyethylene (M) Sdn. Bhd 

(EPEMSB) 

 

Table 121211 Integer Cut for Ethane Gas Feedstock from EPEMSB 

 

Ethane Gas Feedstock 

 Best Solution 
Flowrate 

 (ton/hr) 

2
nd

 Best 

Solution 

Flowrate 

 (ton/hr) 

3
rd

  Best 

Solution 

Flowrate 

 (ton/hr) 

Distillation 

Sequenceing 

C1a 998.9 C1a 998.8 C1a 998.80 

C3a 746.803 C3a 746.803 C3a 746.803 

PSA 251.997 PSA 251.997 PSA 251.997 

R1a  700.576 C4a 700.576 R1a  700.576 

C8a 46.227 C8a 46.227 C8a 46.227 

R2 13.679 R2 13.679 R2 13.679 
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C11 13.679 C11 13.679 C11C12 13.67915.845 

C10 697.423 C10 697.423 C10R4 697.42316.704 

OCU 32.548 OCU 32.548 C9C11 32.54813.679 

    C12C10 15.845697.423 

    R4C9 16.70432.548 

Total Mass 

Flowrate 

(ton/hr) 

 

3501.832Total 

Mass Flow 

(ton/hr) 

 

3501.832Total 

Mass Flow 

(ton/hr) 

 

 

3534.281 

Total Mass 

Flow (ton/hr) 

  3501.832  3501.832  

 

3534.281 

 

 

 

Table 11 12 listsshows the optimal and suboptimal distillation sequences integer cuts 

for the feed composition of ethane gas feedstock forrom EPEMSB. The optimal 

solution and second2
nd

 best solution involvesshow lowerthe least total mass flow rate 

(3501.831 ton/hr) compared to
 
the third 3

rd
 best solution, which is consistent with the 

heuristic of selecting the sequence with minimum total mass flow rate.  

 

By incorporatingtroducing appropriate integer cuts as constraints in the model 

formulation, task R1a (acetylene catalytic hydrogenation reactor) is selected in the 

optimal solution  while the task C4a (extractive distillation) is selected in the second 

best solution. According to John McKketta and William Aaron (1984) in the 

authoritative McKetta‟s Encyclopedia of Chemical Processing and Design, if 

economically attractive, the acetylene may be recovered by extractive distillation. In 

most cases, it is simply hydrogenated to ethylene and ethane, which involves less 

equipment and a higher production of ethylene. 

 

Formatted Table

Formatted: Font: Not Italic



79 

 

5.2.2 Case 2: Naphtha Composition offrom University of Manchester’s 

Centre for Process IntegrationCPI (2005) 

 

Table 131312 Integer cuts for naphtha liquid feedstock from University of Manchester’s Centre for 

Process Integration (2005) 

 

Naphtha Liquid Feedstock 

 
Best 

Solution 

Flow 

(ton/hr) 

2
nd

 Best 

Solution 
Flow(ton/hr) 

3
rd

 Best 

Solution 
Flow (ton/hr) 

Distillation 

Sequenceing 

C1a 961.80 C1a 961.80 C1a 961.80 

C3a 800.025 C3a 800.025 C3a 800.025 

PSA 161.775 PSA 161.775 PSA 161.775 

R1a  339.709 R1a 339.709 R1a 339.709 

C8a 460.316 C8a 460.316 C8a 460.316 

R2 155.785 R2 155.785 R2 155.785 

C11 155.785 R4 211.061 R4R3 211.06193.470 

C10 322.674 C12 93.470 R3R4 93.470211.061 

OCU 304.531 C11 155.785 C11 155.785 

  C10 332.674 C10 332.674 

  C9 304.531 C9 304.531 

Total Mass 

Flowrate 

(ton/hr) 

 

3662.4Total 

Mass Flow 

(ton/hr) 

 

3976.931Total 

Mass Flow 

(ton/hr) 

 

3976.931Total 

Mass Flow 

(ton/hr) 

  3662.4  

 

3976.931 

 

 
3976.931 

 

 

 

Table 12 13 lists the optimal and suboptimal distillation sequences for the feed 

composition of  shows the integer cuts for naphtha liquid feedstock from University of 

Manchester‟s Centre for Process Integration CPI (2005).  The optimal sequence for the 

naphtha has the least total mass flow compared to the than 2
nd 

second best and third3
rd

 

best solutions, although the two best suboptimal solutions share the same mass flowrate. 

However, note that the process design textbook by Biegler, Grossmann, and Westerberg 

(1997) has reported an example in which  

 

Referring to Andrevoich and Westerburg (1985) who developed the superstructure 

which has network of four components, also shown that the 3
rd

 third best solution has a 
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lower total mass flow rate (2250 kmol/hr) than the second 2
nd

 best solutisolution.on 

(2400 kmol/hr). 

`
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5.3 Computational Experiments 

 

Table 134 summarizes the problem size and statistics on the performance of 

computational experiments conducted in this work. 

 

Table 141413 Model size and cComputational statistics of problem sizeperformance 

  

 

  

REMARKS ON COMPUTATIONAL EXPERIMENTS 

 

Solution of the MILP model using GAMS/CPLEX that does not account for the split 

flows between selections of parallel tasks will select task R1c in its optimal sequence.  

Also, Aassumption on 100% recovery is not accurate and impacts on the 

computational results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Type of model Mixed-integer linear programming (MILP) 

Solver for MILP CPLEX 

No. of continuous variables 35 

No. of binary variables 79 

No. of constraints 142 

No. of iterations 24 
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CHAPTER 5 

 

CONCLUDING REMARKSSIONS & RECOMMENDATIONS FOR 

FUTURE WORK 
 

5.1. CONCLUDING REMARKS 

 

The In conclusion, iintermediate representation superstructure hais been employedused 

to represent the optimization approaches and strategies for distillation separation for 

olefin production. According to Caballero and Grossman (, 1999), the intermediate 

representation superstructure has shown a good performance in reaching the global 

optimal solution. Furthermore, intermediate representationthis  superstructure form will 

involves less number of equations compared to STN representation superstructure. 

 

A MILP model has been developed by representing the discrete and continuous 

variables for distillation sequencing for olefin production. By using different feedstocks, 

the computational results yield the same optimal sequencing. The optimal solution 

obtained is further validate by the most common heuristic which is the selection of 

column sequencing with least total mass flow rate. 

 

 

5.2. RECOMMENDATIONS FOR FUTURE WORK 

 

An immediate future work is to conduct more rigorous computational experiments in 

order to investigate the governing parameter, i.e., the most important parameter(s) that 

determines the selection of the optimal distillation sequence. Feed composition does not 

appear to be the governing parameter. The logical constraints could be a probable 

Comment [sufen1]:  
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governing constraint that is too restrictive in its formulation, although more work is 

required to validate this preliminary hypothesis. 

 

 

A more representative model could be developed by incorporating thermodynamic 

limitations on the operating process conditions such as temperature and pressure and the 

inclusion of important physical parameters such as relative volatility in distillation 

column separation. As well, there are merits in considering the real-life features of 

ethylene plants such as the operations involving drying and chilling train at the front-

end. 

 

A more rigorous of objective function by considering the raw material cost, capital 

investment, production cost and profitability for the olefin production process in order 

to justify the feasibility of the olefin production. 

 

Consideration of demand and supply constraints should be taken into account in the 

future work in order to integrate with the production planning and scheduling. 
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APPENDICES I 

 
GAMS CODE (Ethane/Naphtha)) 

; 

 
GAMS Rev 146  x86/MS Windows                            06/03/06 22:29:18 Page 1 
: Naphtha Separation 
C o m p i l a t i o n 
 
 
   3    
   4    
   5  
*========================================================================
= 
      ===== 
   6  *Declaration of Sets 
   7  
*========================================================================
= 
      ===== 
   8  SETS 
   9  *the set of all tasks in superstructure 
  10    
  11  T        Set of Task 
  12  / 
  13  OIL_Fractionator 
  14  QUENCH_Fractionator 
  15  FEED 
  16  C1a,C1b,C1c 
  17  C2a,C2b,C2c 
  18  C3a,C3b,C3c 
  19  PSA 
  20  R1a,R1b,R1c 
  21  C4a,C4b,C4c 
  22  C8a,C8b 
  23  R2,R3,R4 
  24  C12,C11,C10,C9,C7,C6 
  25  OCU 
  26  C5a,C5b,C5c 
  27    
  28  / 
  29    
  30  U        Set of Unit-Equipment-Column associated with different task 
  31  / Formatted: German (Germany)
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  32  C1,C2,C3,C4,R1,R2,R3,R4,C8,C12,PSA,C10 
  33    
  34  / 
  35    
  36    
  37  S        Set of intermediate products (or streams or components) 
  38  / 
  39  al,m,ab,cl,ah,fl,ak,l,ck,fk,jk,ce,ch,cd,ad_fh,cd_fh,ad,fh,jl 
  40  / 
  41    
  42    
  43  pm(T,S)                           ! maps tasks to "Intermediate Product" s 
      treams( column produced) 
  44  / 
  45  (C1a,C2a,C6,C5a).ab 
  46  (C1b,C2b,C2c).ah 
  47  C1a.cl 
  48  (C1b,C3a).fl 
  49  C1c.ak 
  50  (C1c,C9).l 
  51  C2a.ck 
  52  (C2b,C3b).fk 
  53  (C2c,C3c,C8b,C9).jk 
  54  (C3a,C3b).ce 
  55   C3c.ch 
  56  (R1a,C4a,C6,C7,C5b).cd 
  57  (R1b,C4b).ad_fh 
  58  (R1c,C4c,C5a).cd_fh 
  59  C5c.ad 
  60  (C5b,C5c,C7,C8a,C8b).fh 
  61  C8a.jl 
  62    
  63    
  64  / 
  65    
  66    
  67  fm(T,S)                  !Set maps Unit to "Intermediate Product Feed" Str 
      eams- COlumn Directed 
  68  / 
  69  PSA.ab 
  70  (R1b,C4b).ah 
  71  C3a.cl 
  72  C8a.fl 
  73  (C2a,C2b,C2c).ak 
  74  R4.l 
  75  (C3b,C3c).ck 
  76  C8b.fk 
  77  (C12,R3).jk 
  78  (R1a,C4a).ce 
  79  (R1c,C4c).ch 
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  80  C10.cd 
  81  (C5a,C5c).ad_fh 
  82  (C7,C5b).cd_fh 
  83  C6.ad 
  84  R2.fh 
  85  (C9,OCU).jl 
  86    
  87    
  88  / 
  89    
  90    
  91  task_producing_IP(T,S)   !Set for Logical Constraints for Structural task  
      producing intermediate products 
  92  / 
  93  (C1a,C2a,C6,C5a).ab 
  94  C1c.ak 
  95  C1a.cl 
  96  C2a.ck 
  97  (C3a,C3b).ce 
  98  (C1b,C2b,C2c).ad_fh 
  99  C3c.cd_fh 
 100  C5c.cd 
 101  R2.fh 
 102  (C3a,C1b).fl 
 103  C8a.jl 
 104  (R1a,C4a,C7,C6,C5b).cd 
 105  (C9,C1c).l 
 106    
 107    
 108  / 
 109    
 110    
 111  IP_feed_to_task(T,S)    !Set for Logical Constraints for Structural Spec-F 
      eed Source(From) 
 112  / 
 113  PSA.ab 
 114  C2a.ak 
 115  C2b.ak 
 116  C2c.ak 
 117  C3a.cl 
 118  C3b.ck 
 119  C3c.ck 
 120  (C4a,R1a).ce 
 121  (C4b,R1b).ad_fh 
 122  (C4c,R1c).cd_fh 
 123  C6.cd 
 124  C11.fh 
 125  C8a.fl 
 126    
 127  (C9,OCU).jl 
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 128  C10.cd 
 129  R4.l 
 130    
 131  / 
 132    
 133    
 134  outlet_column(T,S) 
 135  / 
 136  PSA.ab,C3a.cl 
 137  (R1b,C4b).ah,C8a.fl 
 138  (C2a,C2b,C2c).ak,R4.l 
 139  (C3b,C3c).ck 
 140  C8b.fk 
 141  C12.jk 
 142  (R1a,C4a).ce 
 143  (R1c,C4c).ch,(R3).jk 
 144  C10.cd,(C5a,C5c).ad_fh,C5b.cd_fh 
 145  R2.fh,C6.ad 
 146  (OCU,C9).jl 
 147    
 148    
 149    
 150  / 
 151    
 152  column(T,S) 
 153  / 
 154  C1a.(ab,cl) 
 155  C1b.(ah,fl) 
 156  C1c.(ak,l) 
 157  C2a.(ab,ck) 
 158  C2b.(ah,fk) 
 159  C2c.(ah,jk) 
 160  C3a.(ce,fl) 
 161  C3b.(ce,fk) 
 162  C3c.(ch,jk) 
 163  (C4a,R1a).(cd) 
 164  (C4b,R1b).(ad_fh) 
 165  (C4c,R1c).(cd_fh) 
 166  C5a.(ab) 
 167  C5b.(cd,fh) 
 168  C5c.(ad,fh) 
 169  C6.(ab,cd) 
 170  C7.(cd,fh) 
 171  C8a.(fh,jl) 
 172  C8b.(fh,jk) 
 173  C9.(jk,l) 
 174    
 175    
 176  / 
 177    
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 178    
 179    
 180  ; 
 181    
 182    
 183    
 184  ALIAS (S,S1); 
 185  AlIAS (T,T1); 
 186  
*========================================================================
= 
      ====== 
 187  *Declaration of Parameters for rest of model 
 188  
*========================================================================
= 
      ====== 
 189  PARAMETER 
 190    
 191  M(T)   Big M Constant-1000 is the upper bound as it corresponds to the fee 
      d flow rate of the intial mixture; 
 192    
 193  M(T)=1000; 
 194    
 195  PARAMETER 
 196    
 197  spltfrc(T,S)       Split Fraction maps to unit to Intermediate Product str 
      eams 
 198  / 
 199  QUENCH_FRACTIONATOR.al   0.9988, 
 200  OIL_FRACTIONATOR.m       0.0012, 
 201  C1a.ab          0.2523, 
 202  C1a.cl          0.7477, 
 203  C1b.ah          0.9798, 
 204  C1b.fl          0.0202, 
 205  C1c.ak          0.9833, 
 206  C1c.l           0.0167, 
 207  C2a.ab          0.2566, 
 208  C2a.ck          0.7434, 
 209  C2b.ah          0.9883, 
 210  C2b.fk          0.0117, 
 211  C2c.ah          0.9839, 
 212  C2c.jk          0.0161, 
 213  C3a.ce          0.9381, 
 214  C3a.fl          0.0619, 
 215  C3b.ce          0.9596, 
 216  C3b.fk          0.0404, 
 217  C3c.ch          0.9783, 
 218  C3c.jk          0.0217, 
 219  C4a.cd          0.9955, 
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 220  C4b.ad_fh       0.9967, 
 221  C4c.cd_fh       0.9955, 
 222  C5a.ab          0.2617, 
 223  C5a.cd_fh       0.7383, 
 224  C5b.cd          0.9808, 
 225  C5b.fh          0.0192, 
 226  C5c.ad          0.9858, 
 227  C5c.fh          0.0142, 
 228  R1a.cd          0.9955, 
 229  R1b.ad_fh       0.9967, 
 230  R1c.cd_fh       0.9955, 
 231  C8a.fh          0.2959, 
 232  C8a.jl          0.7041, 
 233  C8b.fh          0.4633, 
 234  C8b.jk          0.5367, 
 235  C6.ab           0.2655, 
 236  C6.cd           0.7345, 
 237  C9.jk           0.4868, 
 238  C9.l            0.5132, 
 239  C7.cd           0.9808, 
 240  C7.fh           0.0192 
 241    
 242    
 243  / 
 244    
 245  *Ethylene Production = 450 kT/year 
 246  Fixed_Cost(T)        Fixed Cost per year (for ethane: 56 $ per ton C2H4 in 
       Middle East) 
 247  Operating_Cost(T)    Operating Cost or total production cost(140 $ per ton 
       C2H4 in Middle East) 
 248  ; 
 249    
 250  Fixed_Cost(T) = 56000;    #(in unit of $/year) 
 251  Operating_Cost(T) = 140000; 
 252  ; 
 253    
 254    
 255    
 256  
*========================================================================
= 
      ====== 
 257  *Define scalar quantities for rest of model 
 258  
*========================================================================
= 
      ====== 
 259    
 260  SCALARS 
 261    
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 262  TOTFEED  total feed flow rate(feedstock in tonnage) to superstructure   /1 
      000/ ; 
 263  *646 
 264    
 265  
*========================================================================
= 
      ====== 
 266  *Declaration of variables 
 267  
*========================================================================
= 
      ====== 
 268  VARIABLE 
 269  Z        Objective function 
 270    
 271  ; 
 272    
 273  BINARY VARIABLES 
 274  Y(T)      Columns selection in superstruture associated with T Tasks(exist 
      ance Or Non-existance) 
 275  ; 
 276    
 277  POSITIVE VARIABLES 
 278  F(T)      Flow Rate of selected T task associated with S streams 
 279  Fraction(T) 
 280  ; 
 281    
 282  
*========================================================================
= 
      ====== 
 283  *Declaration of Equations 
 284  
*========================================================================
= 
      ====== 
 285  *for material balances around unit, mixers, splitters 
 286  *for logical constraitns on design specifications, structural specificatio 
      ns. 
 287  *for switching constraints 
 288    
 289  EQUATIONS 
 290  OBJECTIVE        Objective function 
 291  TotalFeed, Oil,Feed_Column 
 292  Initial_FEED     Initial Column_Feed to superstructure 
 293    
 294  MB_Unit          Material Balances for Unit 
 295  MB_C11 
 296    
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 297    
 298    
 299  *SPLIT1,SPLIT2,SPLIT3,SPLIT4,SPLIT5,SPLIT6,SPLIT7,SPLIT8 
 300    
 301  DS1 
 302  DS2 
 303  DS3 
 304  DS4 
 305  DS5 
 306  DS6a,DS6b,DS6c 
 307  DS7, 
 308  DS9 
 309  DS8 
 310    
 311    
 312    
 313  Inlet(T,S)         Inlet Condition 
 314  InletC5a,InletC5b,InletC5c,InletC7,InletR2,InletC8b 
 315    
 316  STRUCTURAL_SPEC_LC(T,S)  Overhead & Bottom 
 317  SP_C5a 
 318  BigM             Big M Logical Constraints-Switching Constraints with T ta 
      sks 
 319  *INTEGER_CUT_1 
 320  *$ontext 
 321  *CUTS_2nd_Optimum 
 322  *CUTS_3rd_Optimum 
 323  *$offtext 
 324  ; 
 325    
 326  ********Objective Function************************************************ 
      ****** 
 327  *OBJECTIVE..     Z=E= SUM(T, Capital_Cost(T)*SUM(T,F(T)); 
 328  OBJECTIVE..      Z=E= SUM(T,Fixed_Cost(T)*Y(T)) + SUM(T,Operating_Cost(T)* 
      F(T)); 
 329    
 330    
 331    
 332  *Initial Feed to Superstructure 
 333    
 334  TotalFeed..      TOTFEED =E= spltfrc('QUENCH_FRACTIONATOR','al')*F('QUENCH 
      _FRACTIONATOR') + spltfrc('OIL_FRACTIONATOR','m')*F('OIL_FRACTIONATOR'); 
 335    
 336    
 337  Oil..            F('OIL_FRACTIONATOR')=E= (TOTFEED-F('FEED'))/ spltfrc('OI 
      L_FRACTIONATOR','m'); 
 338  *Cannot find the flow rate of Oil Fractionaor 
 339    
 340  Feed_Column..    spltfrc('QUENCH_FRACTIONATOR','al')*F('QUENCH_FRACTIONATO 
      R')-F('FEED')=E=0; 
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 341    
 342  Initial_FEED..   F('FEED') =E= F('C1a')+ F('C1b')+F('C1c'); 
 343    
 344    
 345  *Unit/Task 
 346  MB_Unit(S)..    SUM(T$pm(T,S), spltfrc(T,S)*F(T)) =E= SUM(T $ fm(T,S),F(T) 
      ); 
 347    
 348  MB_C11..         F('R2')=E=F('C11'); 
 349    
 350    
      SPLIT1..     F('R1c') =E= Fraction('R1c')*spltfrc('C3c','ch')*F('C3c'); 
        
      SPLIT2..     F('C4c') =E= Fraction('C4c')*spltfrc('C3c','ch')*F('C3c'); 
        
      SPLIT3..     F('R1b') =E= Fraction('R1b')*(spltfrc('C1b','ah')*F('C1b') +  
      spltfrc('C2b','ah')*F('C2b') + spltfrc('C2c','ah')*F('C2c')); 
        
      SPLIT4..     F('C4b') =E= Fraction('C4b')*(spltfrc('C1b','ah')*F('C1b') +  
      spltfrc('C2b','ah')*F('C2b') + spltfrc('C2c','ah')*F('C2c')); 
        
      SPLIT5..     F('R1a') =E= Fraction('R1a')*(spltfrc('C3a','ce')*F('C3a') +  
      spltfrc('C3b','ce')*F('C3b')); 
        
      SPLIT6..     F('C4a') =E= Fraction('C4a')*(spltfrc('C3a','ce')*F('C3a') +  
      spltfrc('C3b','ce')*F('C3b')); 
        
      SPLIT7..     F('R3')=E= Fraction('R3')*(spltfrc('C2c','jk')*F('C2c') + spl 
      tfrc('C3c','jk')*F('C3c') + spltfrc('C8b','jk')*F('C8b') + spltfrc('C9','j 
      k')*F('C9')); 
        
      SPLIT8..     F('C12')=E= Fraction('C12')*(spltfrc('C2c','jk')*F('C2c') + s 
      pltfrc('C3c','jk')*F('C3c') + spltfrc('C8b','jk')*F('C8b') + spltfrc('C9', 
      'jk')*F('C9')); 
 368    
 369    
 370  *Only One Task is selected for Every unit 
 371  DS1..     Y('C1a')+ Y('C1b')+Y('C1c')=E=1; 
 372    
 373  *No more than 1 process allowed( none or 1 process selected) 
 374  DS2..     Y('C2a')+ Y('C2b')+Y('C2c')=L=1; 
 375  DS3..     Y('C3a')+ Y('C3b')+Y('C3c')=L=1; 
 376  DS4..     Y('R1a')+ Y('R1b')+Y('R1c')=L=1; 
 377  DS5..     Y('C4a')+ Y('C4b')+Y('C4c')=L=1; 
 378    
 379  *More than 1 process allowed( None, 1 or 2 process selected) 
 380    
 381  DS6a..    Y('R1a')+ Y('C4a')=L=2; 
 382  DS6b..    Y('R1b')+Y('C4b')=L=2; 
 383  DS6c..    Y('R1c')+ Y('C4c')=L=2; 
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 384    
 385  *No more than 1 process allowed( none or 1 process selected) 
 386  DS7..     Y('C5a')+ Y('C5b')+ Y('C5c')=L=1; 
 387  DS8..     Y('C8a')+ Y('C8b')=L=1; 
 388    
 389  *More than 1 process allowed( None, 1 or 2 process selected) 
 390    
 391  DS9..     Y('R3')+ Y('C12')=L=2; 
 392    
 393    
 394  *Big-M Logical Constraints 
 395  BigM(T)..      F(T)=L=M(T)*Y(T); 
 396    
 397  *Limit Choice of Overhead & Bottom 
 398  STRUCTURAL_SPEC_LC(T,S)$column(T,S)..   SUM(T1 $ outlet_column(T1,S), Y(T1 
      ) )- Y(T) =G= 0; 
 399    
 400  SP_C5a..                                Y('C7')-Y('C5a') =G=0; 
 401    
 402    
 403  *Inlet Condition 
 404  Inlet(T,S) $ IP_feed_to_task(T,S)..     SUM( T1 $ task_producing_IP(T1,S), 
       Y(T1) ) - Y(T) =G= 0; 
 405    
 406  InletC5a..                              Y('C4b')+Y('R1b')-Y('C5a')=G=0; 
 407  InletC5b..                              Y('C4c')+ Y('R1c') -Y('C5b')=G=0; 
 408  InletC5c..                              Y('C4b')+Y('R1b')-Y('C5c')=G=0; 
 409    
 410  InletC7..                               Y('C5a')-Y('C7')=G=0; 
 411  InletR2..                               Y('C5b')+Y('C5c')+Y('C7')+Y('C8a') 
      +Y('C8b')-Y('R2')=G=0; 
 412    
 413  InletC8b..                             Y('C3b')+Y('C2b')-Y('C8b')=G=0; 
 414    
 415  *Integer Cuts to obtain second best solution 
 416  *CUTS_2nd_Optimum..                     Y('OIL_Fractionator') + Y('QUENCH_ 
      Fractionator')+ Y('FEED')+Y('C1a') + Y('C3a')+Y('PSA')+Y('R1a')+Y('C8a')+Y 
      ('R2')+Y('C11')+Y('C10')+Y('OCU')=L= 11 ; 
 417    
 418  *Integer Cuts to obtain 3rd best solution 
 419  *CUTS_3rd_Optimum..                     Y('OIL_Fractionator') + Y('QUENCH_ 
      Fractionator')+ Y('FEED')+Y('C1a')+ Y('C3a')+ Y('PSA')+Y('C4A')+Y('C8a')+Y 
      ('R2')+Y('C11')+Y('C10')+Y('OCU')=L=11 ; 
 420    
 421    
 422  *Integer Cuts to obtain second best solution 
 423  *Cuts(k)..                sum(T, sign(ycolk(T,k)-0.5)*Y(T)) =l= sum(T,ycol 
      k(T,k)) - 1; 
 424    
 425    
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 426  *sum(i,sign(ycolk(i,k)-0.5)*ycol(i)) =l= sum(i,ycolk(i,k)) - 1; 
 427  *INTEGER_CUT_1..     Y('OIL_Fractionator') + Y('QUENCH_Fractionator') + Y( 
      'FEED') + Y('C1c') + Y('C2a') + Y('C3c') + Y('C5b') + Y('PSA') + Y('R1c')  
      + Y('C4c') + Y('R2') + Y('R3') + Y('R4') + Y('C10') + Y('C11') + Y('C12')  
      + Y('C13') =L= 15; 
 428    
 429    
      Y('C13')-Y('R4')=G=0;            directed      SP 
      Y('R4')-Y('C13')=G=0;            inlet of C13 
        
      Y('C14')-Y('C13')=G=0;           bottom         SP 
      Y('C13')-Y('C14')=G=0;           inlet of C14 
        
      Y('C15')-Y('C14')=G=0;           bottom        SP 
      Y('C14')-Y('C15')=G=0;           inlet of C15 
        
      Y('C16')-Y('C15')=G=0;           bottom         SP 
      Y('C15')-Y('C16')=G=0;           inlet of C16 
        
      Y('R5')-Y('C16')=G=0;            top         SP 
      Y('C16')-Y('R5')=G=0;            inlet of R5 
        
      Y('C17')-Y('R5')=G=0;           directed       SP 
      Y('R5')-Y('C17')=G=0;           inlet of C17 
        
      Y('C18')-Y('C17')=G=0;           bottom       SP 
      Y('C17')-Y('C18')=G=0;           inlet of C18 
        
      Y('C18')-Y('C19')=G=0;           inlet C19 
      Y('C20')-Y('C19')=G=0;                SP 
        
      Y('C19')-Y('C18')=G=0;     overhead          SP 
      Y('C20')-Y('C18')=G=0;     bottom              SP 
        
        
      Y('C18')+Y('C19') -Y('C20')=G=0;    inlet of C20 
        
      Y('C21')-Y('C20')=G=0;           directed       SP 
      Y('C20')-Y('C21')=G=0;          inlet of C21 
        
 465    
 466  ; 
 467    
 468    
 469    
 470  MODEL NAPHTHA 
 471  / 
 472  ALL 
 473    
 474  /; 
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 475    
 476  *Intial values and bound are given to avoid getting stuck at an infeasible 
       point wen the NLP solver starts up 
 477    
 478    
 479  F.up(T)=TOTFEED; 
 480  Y.up(T)=1; 
 481    
 482    
 483  Fraction.LO(T) = 0.00; 
 484  Fraction.UP(T) = 1.00; 
 485    
 486    
 487  *OPTION 
 488  OPTION 
 489  *MINLP = BARON 
 490  MIP = CPLEX 
 491  *MINLP = SBB 
 492  *MINLP = DICOPT     # DICOPT returns infeasible solution to this problem 
 493  LIMROW = 0 
 494  LIMCOL = 0 
 495  ; 
 496    
 497    
 498    
 499    
 500    
 501  SOLVE NAPHTHA USING MIP MINIMIZING Z 
 502  ; 
 503    
 504  DISPLAY Z.L, Y.L, F.L; 
 
 
COMPILATION TIME     =        0.010 SECONDS      3 Mb  WIN223-146 Nov 21, 2006 
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GAMS Rev 146  x86/MS Windows                            06/03/06 22:29:18 Page 2 
: Naphtha Separation 
Model Statistics    SOLVE NAPHTHA Using MIP From line 501 
 
 
MODEL STATISTICS 
 
BLOCKS OF EQUATIONS          28     SINGLE EQUATIONS          134 
BLOCKS OF VARIABLES           3     SINGLE VARIABLES           69 
NON ZERO ELEMENTS           419     DISCRETE VARIABLES         34 
 
 
GENERATION TIME      =        0.010 SECONDS      4 Mb  WIN223-146 Nov 21, 2006 
 
 
EXECUTION TIME       =        0.020 SECONDS      4 Mb  WIN223-146 Nov 21, 2006 
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GAMS Rev 146  x86/MS Windows                            06/03/06 22:29:18 Page 3 
: Naphtha Separation 
Solution Report     SOLVE NAPHTHA Using MIP From line 501 
 
 
               S O L V E      S U M M A R Y 
 
     MODEL   NAPHTHA             OBJECTIVE  Z 
     TYPE    MIP                 DIRECTION  MINIMIZE 
     SOLVER  CPLEX               FROM LINE  501 
 
**** SOLVER STATUS     1 NORMAL COMPLETION          
**** MODEL STATUS      8 INTEGER SOLUTION           
**** OBJECTIVE VALUE        910746413.5937 
 
 RESOURCE USAGE, LIMIT          0.240      1000.000 
 ITERATION COUNT, LIMIT        24         10000 
 
GAMS/Cplex    Nov 27, 2006 WIN.CP.CP 22.3 032.035.041.VIS For Cplex 10.1 
Cplex 10.1.0, GAMS Link 32  
 
Solution satisfies tolerances. 
 
MIP Solution:    910746413.593735    (24 iterations, 0 nodes) 
Final Solve:     910746413.593724    (0 iterations) 
 
Best possible:   910682452.747934 
Absolute gap:        63960.845801 
Relative gap:            0.000070 
 
 
                       LOWER     LEVEL     UPPER    MARGINAL 
 
---- EQU OBJECTIVE       .         .         .        1.000       
---- EQU TotalFeed  -1000.000 -1000.000 -1000.000 -1.160E+8       
---- EQU Oil        8.3333E+5 8.3333E+5 8.3333E+5   756.998       
---- EQU Feed_Colu~      .         .         .         .          
---- EQU Initial_F~      .         .         .    -4.908E+5       
 
  OBJECTIVE  Objective function 
  Initial_FEED  Initial Column_Feed to superstructure 
 
---- EQU MB_Unit  Material Balances for Unit 
 
         LOWER     LEVEL     UPPER    MARGINAL 
 
ab         .         .         .    -1.400E+5       
cl         .         .         .    -4.220E+5       
ah         .         .         .         .          
fl         .         .         .    -3.214E+5       
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ak         .         .         .         .          
l          .         .         .         .          
ck         .         .         .         .          
fk         .         .         .         .          
jk         .         .         .         .          
ce         .         .         .    -2.794E+5       
ch         .         .         .         .          
cd         .         .         .    -1.400E+5       
ad_fh      .         .         .         .          
cd_fh      .         .         .         .          
ad         .         .         .         .          
fh         .         .         .    -2.800E+5       
jl         .         .         .    -1.400E+5       
 
                       LOWER     LEVEL     UPPER    MARGINAL 
 
---- EQU MB_C11          .         .         .    -1.400E+5       
---- EQU DS1            1.000     1.000     1.000      .          
---- EQU DS2            -INF       .        1.000      .          
---- EQU DS3            -INF      1.000     1.000      .          
---- EQU DS4            -INF      1.000     1.000      .          
---- EQU DS5            -INF       .        1.000      .          
---- EQU DS6a           -INF      1.000     2.000      .          
---- EQU DS6b           -INF       .        2.000      .          
---- EQU DS6c           -INF       .        2.000      .          
---- EQU DS7            -INF       .        1.000      .          
---- EQU DS9            -INF       .        2.000      .          
---- EQU DS8            -INF      1.000     1.000      .          
 
---- EQU Inlet  Inlet Condition 
 
             LOWER     LEVEL     UPPER    MARGINAL 
 
C2a.ak         .         .        +INF       .          
C2b.ak         .         .        +INF       .          
C2c.ak         .         .        +INF       .          
C3a.cl         .         .        +INF       .          
C3b.ck         .         .        +INF       .          
C3c.ck         .         .        +INF       .          
PSA.ab         .         .        +INF       .          
R1a.ce         .         .        +INF       .          
R1b.ad_fh      .         .        +INF       .          
R1c.cd_fh      .         .        +INF       .          
C4a.ce         .        1.000     +INF       .          
C4b.ad_fh      .         .        +INF       .          
C4c.cd_fh      .         .        +INF       .          
C8a.fl         .         .        +INF       .          
R4 .l          .         .        +INF       .          
C11.fh         .         .        +INF       .          
C10.cd         .         .        +INF       .          
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C9 .jl         .        1.000     +INF       .          
C6 .cd         .        1.000     +INF       .          
OCU.jl         .         .        +INF       .          
 
                       LOWER     LEVEL     UPPER    MARGINAL 
 
---- EQU InletC5a        .         .        +INF       .          
---- EQU InletC5b        .         .        +INF       .          
---- EQU InletC5c        .         .        +INF       .          
---- EQU InletC7         .         .        +INF       .          
---- EQU InletR2         .         .        +INF       .          
---- EQU InletC8b        .         .        +INF       .          
 
---- EQU STRUCTURAL_SPEC_LC  Overhead & Bottom 
 
             LOWER     LEVEL     UPPER    MARGINAL 
 
C1a.ab         .         .        +INF       .          
C1a.cl         .         .        +INF       .          
C1b.ah         .         .        +INF       .          
C1b.fl         .        1.000     +INF       .          
C1c.ak         .         .        +INF       .          
C1c.l          .         .        +INF       .          
C2a.ab         .        1.000     +INF       .          
C2a.ck         .         .        +INF       .          
C2b.ah         .         .        +INF       .          
C2b.fk         .         .        +INF       .          
C2c.ah         .         .        +INF       .          
C2c.jk         .         .        +INF       .          
C3a.fl         .         .        +INF       .          
C3a.ce         .         .        +INF       .          
C3b.fk         .         .        +INF       .          
C3b.ce         .        1.000     +INF       .          
C3c.jk         .         .        +INF       .          
C3c.ch         .         .        +INF       .          
R1a.cd         .         .        +INF       .          
R1b.ad_fh      .         .        +INF       .          
R1c.cd_fh      .         .        +INF       .          
C4a.cd         .        1.000     +INF       .          
C4b.ad_fh      .         .        +INF       .          
C4c.cd_fh      .         .        +INF       .          
C8a.fh         .         .        +INF       .          
C8a.jl         .         .        +INF       .          
C8b.jk         .         .        +INF       .          
C8b.fh         .        1.000     +INF       .          
C9 .l          .         .        +INF       .          
C9 .jk         .         .        +INF       .          
C7 .cd         .        1.000     +INF       .          
C7 .fh         .        1.000     +INF       .          
C6 .ab         .        1.000     +INF       .          
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C6 .cd         .        1.000     +INF       .          
C5a.ab         .        1.000     +INF       .          
C5b.cd         .        1.000     +INF       .          
C5b.fh         .        1.000     +INF       .          
C5c.ad         .         .        +INF       .          
C5c.fh         .        1.000     +INF       .          
 
                       LOWER     LEVEL     UPPER    MARGINAL 
 
---- EQU SP_C5a          .         .        +INF       .          
 
---- EQU BigM  Big M Logical Constraints-Switching Constraints with T tasks 
 
                       LOWER     LEVEL     UPPER    MARGINAL 
 
OIL_Fractionator        -INF       .         .         .          
QUENCH_Fractionator     -INF       .         .         .          
FEED                    -INF     -1.200      .         .          
C1a                     -INF     -1.200      .         .          
C1b                     -INF       .         .    -3.443E+5       
C1c                     -INF       .         .    -3.508E+5       
C2a                     -INF       .         .         .          
C2b                     -INF       .         .         .          
C2c                     -INF       .         .         .          
C3a                     -INF   -253.197      .         .          
C3b                     -INF       .         .         .          
C3c                     -INF       .         .         .          
PSA                     -INF   -748.003      .         .          
R1a                     -INF   -299.424      .         .          
R1b                     -INF       .         .         .          
R1c                     -INF       .         .         .          
C4a                     -INF       .         .         .          
C4b                     -INF       .         .         .          
C4c                     -INF       .         .         .          
C8a                     -INF   -953.773      .         .          
C8b                     -INF       .         .         .          
R2                      -INF   -986.321      .         .          
R3                      -INF       .         .         .          
R4                      -INF       .         .         .          
C12                     -INF       .         .         .          
C11                     -INF   -986.321      .         .          
C10                     -INF   -302.577      .         .          
C9                      -INF       .         .         .          
C7                      -INF       .         .         .          
C6                      -INF       .         .         .          
OCU                     -INF   -967.452      .         .          
C5a                     -INF       .         .         .          
C5b                     -INF       .         .         .          
C5c                     -INF       .         .         .          
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                       LOWER     LEVEL     UPPER    MARGINAL 
 
---- VAR Z              -INF  9.1075E+8     +INF       .          
 
  Z  Objective function 
 
---- VAR Y  Columns selection in superstruture associated with T Tasks(existance 
            Or Non-existance) 
 
                       LOWER     LEVEL     UPPER    MARGINAL 
 
OIL_Fractionator         .        1.000     1.000 56000.000       
QUENCH_Fractionator      .        1.000     1.000 56000.000       
FEED                     .        1.000     1.000 56000.000       
C1a                      .        1.000     1.000 56000.000       
C1b                      .         .        1.000 -3.443E+8       
C1c                      .         .        1.000 -3.508E+8       
C2a                      .         .        1.000 56000.000       
C2b                      .         .        1.000 56000.000       
C2c                      .         .        1.000 56000.000       
C3a                      .        1.000     1.000 56000.000       
C3b                      .         .        1.000 56000.000       
C3c                      .         .        1.000 56000.000       
PSA                      .        1.000     1.000 56000.000       
R1a                      .        1.000     1.000 56000.000       
R1b                      .         .        1.000 56000.000       
R1c                      .         .        1.000 56000.000       
C4a                      .         .        1.000 56000.000       
C4b                      .         .        1.000 56000.000       
C4c                      .         .        1.000 56000.000       
C8a                      .        1.000     1.000 56000.000       
C8b                      .         .        1.000 56000.000       
R2                       .        1.000     1.000 56000.000       
R3                       .         .        1.000 56000.000       
R4                       .         .        1.000 56000.000       
C12                      .         .        1.000 56000.000       
C11                      .        1.000     1.000 56000.000       
C10                      .        1.000     1.000 56000.000       
C9                       .         .        1.000 56000.000       
C7                       .         .        1.000 56000.000       
C6                       .         .        1.000 56000.000       
OCU                      .        1.000     1.000 56000.000       
C5a                      .         .        1.000 56000.000       
C5b                      .         .        1.000 56000.000       
C5c                      .         .        1.000 56000.000       
 
---- VAR F  Flow Rate of selected T task associated with S streams 
 
                       LOWER     LEVEL     UPPER    MARGINAL 
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OIL_Fractionator         .     1000.000  1000.000      .          
QUENCH_Fractionator      .     1000.000  1000.000 -1.158E+8       
FEED                     .      998.800  1000.000      .          
C1a                      .      998.800  1000.000      .          
C1b                      .         .     1000.000      .          
C1c                      .         .     1000.000      .          
C2a                      .         .     1000.000 1.7592E+5       
C2b                      .         .     1000.000 1.4000E+5       
C2c                      .         .     1000.000 1.4000E+5       
C3a                      .      746.803  1000.000      .          
C3b                      .         .     1000.000 4.0808E+5       
C3c                      .         .     1000.000 1.4000E+5       
PSA                      .      251.997  1000.000      .          
R1a                      .      700.576  1000.000      .          
R1b                      .         .     1000.000 1.4000E+5       
R1c                      .         .     1000.000 1.4000E+5       
C4a                      .         .     1000.000 7.219E-12       
C4b                      .         .     1000.000 1.4000E+5       
C4c                      .         .     1000.000 1.4000E+5       
C8a                      .       46.227  1000.000      .          
C8b                      .         .     1000.000 2.6972E+5       
R2                       .       13.679  1000.000      .          
R3                       .         .     1000.000 1.4000E+5       
R4                       .         .     1000.000 1.4000E+5       
C12                      .         .     1000.000 1.4000E+5       
C11                      .       13.679  1000.000      .          
C10                      .      697.423  1000.000      .          
C9                       .         .     1000.000      EPS        
C7                       .         .     1000.000 2.8269E+5       
C6                       .         .     1000.000 2.8000E+5       
OCU                      .       32.548  1000.000      .          
C5a                      .         .     1000.000 1.7664E+5       
C5b                      .         .     1000.000 2.8269E+5       
C5c                      .         .     1000.000 1.4398E+5       
 
 
**** REPORT SUMMARY :        0     NONOPT 
                             0 INFEASIBLE 
                             0  UNBOUNDED 
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GAMS Rev 146  x86/MS Windows                            06/03/06 22:29:18 Page 4 
: Naphtha Separation 
E x e c u t i o n 
 
 
----    504 VARIABLE Z.L                   =  9.107464E+8  Objective function 
 
----    504 VARIABLE Y.L  Columns selection in superstruture associated with T T 
                          asks(existance Or Non-existance) 
 
OIL_Fractionator    1.000,    QUENCH_Fractionator 1.000 
FEED                1.000,    C1a                 1.000 
C3a                 1.000,    PSA                 1.000 
R1a                 1.000,    C8a                 1.000 
R2                  1.000,    C11                 1.000 
C10                 1.000,    OCU                 1.000 
 
 
----    504 VARIABLE F.L  Flow Rate of selected T task associated with S streams 
 
OIL_Fractionator    1000.000,    QUENCH_Fractionator 1000.000 
FEED                 998.800,    C1a                  998.800 
C3a                  746.803,    PSA                  251.997 
R1a                  700.576,    C8a                   46.227 
R2                    13.679,    C11                   13.679 
C10                  697.423,    OCU                   32.548 
 
 
 
EXECUTION TIME       =        0.010 SECONDS      3 Mb  WIN223-146 Nov 21, 2006 
 
 
USER: course license                                 S060628:0842AL-WIN 
      Phd course about mathematical programming                  DC5953 
      License for teaching and research at degree granting institutions 
 
 
**** FILE SUMMARY 
 
Input      C:\Documents and Settings\leesufen\Desktop\May_FYP\Ethane_EPMS_24May. 
           gms 
Output     C:\Documents and Settings\leesufen\My Documents\gamsdir\projdir\Ethan 
           e_EPMS_24May.lst 
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APPENDICES II 
 
 
 

GAMS CODE (NAPHTHA) 
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