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ABSTRACT 

To produce large scale hydrogen production, it requires adequate and efficient risk 

control. For decades, fault tree analysis was the most widely used tool for risk 

assessment for industrial sector generally and hydrogen infrastructure particularly in 

terms of risk and consequences associated to it. The limitation to this tool is it tends 

to be static and do not develop over time which can give unreliable estimation of 

risk. 

The purpose of this project is to study the suitability and efficiency of dynamic 

Bayesian Networks in terms of projecting the risk probability failure that develop 

over time for hydrogen infrastructure as the alternative of the fault tree analysis. In 

this study, only the risk probability failure is covered without further exploration on 

the consequences of the risk. The process involved by the conversion of fault tree to 

Bayesian Networks model by using appropriate framework. Then, the conditional 

probability table is assigned to each node where the numbers of CPT depend on the 

numbers of relationship between nodes. Finally the temporal reasoning is done to 

show the time-invariant between each node and the beliefs is updated to get the 

results. 

The ways of inference use for this study are filtering and smoothing. The results 

show that generally, the OR gates contribute to higher risk probability compare to 

AND gates. Besides that, the probability for hydrogen activities increase from year to 

year with the assumption the accident did not happen the previous year. In addition, 

the instantaneous release incident is relatively low and unlikely to happen compare to 

the continuous release. 
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1.0 INTRODUCTION 

1.1 Background Studies 

When the issue about the future of our energy supply is rise, particularly in 

connection with renewable energy sources, hydrogen is considered as a 

suitable energy carrier. Hydrogen proves to be the most environmentally 

friendly energy carrier because the only waste gas released when using it is 

water vapour. Unlike fossil fuels such as crude oil or natural gas, hydrogen 

will never run out because hydrogen is the element most commonly found in 

nature. Besides, the stored hydrogen can be used both to generate electricity 

or directly as a fuel which makes it highly suitable for stationary as well as 

mobile applications. However, it is important to notice that hydrogen is not 

an energy source by itself because it must be obtained from water or 

hydrocarbons by separation. 

In addition, applications of hydrogen in energy sectors especially for road 

vehicle and household uses are a promising avenue that can lead to an 

increased use of hydrogen infrastructure. Hydrogen used in fuel cells or as a 

fuel in an internal combustion engine would result in reduced pollution. A 

rapid development of end-use technologies of hydrogen today will put 

hydrogen close as a future energy carrier and fuels. A significant increase of 

hydrogen use as an energy carrier is only possible if the risks of an accident 

in a production plant, during storage, transport, or end-use are controlled in 

order to avoid an increase of risk to the public as compared with well 

established procedures. 

For a long time, hydrogen was use in the chemical, manufacturing and utility 

industries which are predominantly operated by experienced people. 

However, when dealing with a large-scale hydrogen production, it may create 

safety issues due to lack of knowledge since it is still in the early stage and 

not many trained people have the experienced on hydrogen technologies. 
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In order to make hydrogen available at a large-scale, an infrastructure 

covering the following steps must be built up: production, transportation, 

storage, filling station, and end-use. Furthermore, the possibility of handling 

incidents may occur in many places and therefore it is reasonable to 

determine the safety technological conditions and associated operating 

procedures for the realization of the hydrogen infrastructure at an early stage 

Besides that, for hydrogen infrastructure to become commercial in the future, 

it requires adequate risk control by establishing efficient risk estimation 

method. Since the technologies of hydrogen infrastructure is still in the 

development stage, it really need judgement in terms of risk measured so that 

the investors will have more confidence to invest on the hydrogen 

infrastructure. 

1.2 Problem Statement 

For decades, fault tree and event tree analysis has been widely used and 

commonly applied modelling tools in risk failure analysis particularly on the 

hydrogen i..~frastructure. Ho\vever, it is sometimes fou..Tl.d challenging to make 

this traditional approach sufficiently transparent since the results obtained 

tend to be static and do not develop over time. Besides that, in terms of risk 

failure estimation, it always involved with probability and uncertainty and for 

timlt tree, it do not have the ability needed to deal with this uncertainty. This 

can lead to the results being underestimate or overestimate. Therefore, this is 

the goal of the present work in which Dynamic Bayesian Networks (DBN) is 

proposed as the tool for risk estimation that is time-invariant and used to 

evaluate the risks failure quantitatively, to identify possible weak points, and 

to make suggestions for improvement. 

1.3 Objectives 

The main objective of this study is to develop and establish the safety 

modelling tool for the safe use of hydrogen as an energy carrier by using 

Dynamic Bayesian Networks which describe the risk failure estimate in time 

varying pattern. 
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1.4 Scopes of Study 

The main scope of this study is to mapping the fault tree diagram of hydrogen 

infrastructure to Dynamic Bayesian Networks model by assigning appropriate 

temporal reaso!ling in order to estimate the risk over time_ Other scopes of 

study for this project are: 

a) To understand the principle of Bayesian Networks and Dynamic 

Bayesian Networks 

b) To select the most suitable modelling software tool that can deal with 

Dynamic Bayesian Networks 

c) To suggest maintenance action based on the risk failure estimate 
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2.0 LITERATURE REVIEW and/or THEORY 

2.1 Fault Trees 

Fault Tree Analysis (FTA) is a very popular and diffused technique for the 

dependability modelling and evaluation of large, safety-critical systems [1 ,2]. 

The technique is based on the identification of a particular undesired event to 

be analysed (e.g. system failure) called the Top Event (TE). The construction 

of the Fault Tree (FT) proceeds in a top/down fashion which starts from the 

TE to their causes until failures of basic components or events are reached. 

The FT works on the following assumptions: 

i) Events are binary events (working/not-working); 

ii) Events are statistically independent; 

iii) Relationship between events and causes are represented by logical 

AND and OR gates. 

Appendix 1 shows a typical fault tree; it consists of events corresponding to 

functional or hardware failures connected with edges indicating causal 

propagation of failures from component failures to subsystem functional 

failures. The leaf events of a FT, typically representing component failures 

are often annotated with reliability values. The inner events of a FT to which 

multiple lower level events are connected by edges are annotated with logic 

operations and are referred to as gate events [3]. The logic operations specifY 

the conditions of the lower level failures which are connected with edges to 

the higher level events. The most common operation is OR gate which means 

that any failure at the lower level will result in a failure at the higher level. 

Also common is AND gate operation which needs all the failure of the lower 

level to occur to result the failure of higher level. The component reliability 

values and FT structure make it possible to evaluate system reliability. 
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2.2 Bayesian Networks (BN) 

Bayesian Networks (BN), also known as probabilistic networks (PN) or belief 

networks or causal networks is a well-established tool for the representation 

of domains involving uncert~;TJ. relations among a group of random variables. 

It is a graphical model that is represented as a Directed Acyclic Graph (DAG) 

where each node in DAG is representation of objects and events that are 

usually termed variables or states. Causal relations between nodes are shown 

by drawing an arc or edges between them. The edge wiii be directional, 

leading from the cause variable to the effect variable [4]. 

Fig. 1: Simple Bayesian Networks 

Figure 1 illustrates simple BN. From the figure, the edge point from the 

parent to children for example from Ht to At and Ht to Dt. Here, Ht is the 

parent of At and Dt and At and D1 itself are the children of Ht. So, it can be 

concluded that At and Dt are conditionally independent and the state of At 

and Dt depend on the variable Ht. 

Probability theory is based on three basic a.,"{ioms: 

i) 0 ::; P(X) ::; 1; 

ii) P(X) = 1 if and only if X is certain; 

iii) If X andY are mutually exclusive, then P(X U Y) = P(X) + P(Y). 

And a fundamental rule of probability calculus: 

P(X, Y) = P(XIY)P(Y) (1) 

Where P(X, Y) is the probability of the joint event X n Y. 
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Based on above fundamental rule, the Bayes' rule is call out for computing 

posterior probability (P(XIY) ), given the prior one (P(X)) and the likelihood 

P(YIX) that Y will materialize if X is true; 

P(Y!X)P(X) 
P(X!Y) = P(Y) (2a) 

Here X represent hypothesis while Y represents evidence and P(Y) denotes 

normalizing factor which can be determined by; 

P(Y) = P(Y!X)P(X) + P(Y!-X)P( -X) (2b) 

Which can be computed by requiring that P(XIY) and P(-XIY) sum to unity. 

If X and Y are conditionally independent of each other like in Figure 2, the 

following term can be used; 

P(XIZ, Y) = P(X!Z) (3) 

BN can be thought of as a knowledge base [5], which explicitly represents 

our beliefs about the elements in the system and the relationships that exist 

between these various elements of the system. The purpose of such 

knowledge base is to infer some belief or to make conclusions about some 

processes or events in the system. If there is no link between two nodes, that 

indicates independence between them given that the value of their parents are 

known. There is also one rule associated with independence: If a node is 

observed, then the parents become dependent since the child value is 

explained away by the parents. Such rule is known as explaining away [6]. In 

addition to the network topology and for purposes of preserving the 

computational ability, the prior probability for each state of a root node is 

required. 

One important property of the BN is that the graph can be considered as 

representing the joint probability distribution for all the variables. The chain 

rule is used to express this joint probability as the product of the conditional 

probabilities that need to be specified for each node. The chain rule is given 

below; 
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n 

P(Xi, .... ,Xn) = n P(XiiPa(Xi)) (4) 
i=1 

Where Pa(Xi) is the parent set of a node X. Taking the graph as a whole, the 

conditional probabilities, the structure of the BN and joint probability 

distribution can be used to determine the marginal probability or likelihood of 

each node holding one of its state. This procedure is called marginalisation. 

The power of the belief calculations in BN comes to light whenever we 

change one of these marginal probabilities. The effects of the observation are 

propagated throughout the network and in every propagation step the 

probabilities of different neighbouring nodes are updated. According to [7], 

in simple networks the marginal probabilities or likelihood of each state can 

be calculated from the knowledge of the joint distribution using the product 

rule and Bayes' theorem. 

Therefore, for defining the whole structure of a BN, we must specify the 

Conditional Probability Distribution (CPD) of each node that has parents and 

as mentioned before, prior probability of a root nodes need to be specified. 

2.2.1 Conditional Probability Table (CPT) 

The quantitative part of the BN is represented by the assignment of the 

conditional probability distributions to the nodes. Each node in a BN has a 

CPT that defmes the conditional probability distributions (CPD) of the 

represented discrete random variables. The entries in the CPTs tell the 

probabilities of a hidden node given its parents. 

A potential problem of using CPTs for defining the conditional probability 

distribution is their size. The size of the CPT of variable Xi E X depends on 

the nwnber of slates ri of the variable and !he nwnber of slates ri of each 

parent Xi E Pa(Xi) as follows; 

size(CPT)i = T;. n 1j (5) 
r 1=r(XjEPa(X;)) 

From the equation, the size of CPTs grows exponentially with the nwnber of 

parents 
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2.2.2 Inference 

In BN, one significant characteristic is that the conditional dependencies 

between variables can be inferred by visually inspecting the network's graph. 

Thus, we can divide set of BN nodes into non-overlapping subsets of 

conditional independent nodes. This decomposition is important when doing 

the probability inference. 1lference is t.':ie task of computing the probabiliry of 

each state of a node in a BN when other variables are known. To perform 

inference, one must be familiar with beiief propagation. It is the action of 

updating the beliefs in each variable when observations are given to some of 

the variables. As also stated in [8], inference is the task of efficiently 

deducing the belief distribution over a particular subset of random variables 

given that we know the states of some other variables in the network. 

Generally, variables in BN ca..11 be divided into groups depending on their 

position in BN and taking into account the meaning of real world state that 

they represents including their observabiliLy. Consider the partition; 

a.'ld L = N + M denote two subsets as the sets of hidden and observed 

variables respectively. Let UK be an arbitrary subset of Z. The goal of 

inference is to find the conditional probability distribution function (pd1) over 

U given the observed variables Y which can be written as Pr(UKIY); 

If UK£: Y, we can easily find that pdf is trivially equal to; 

n~rur .IY) = nk "(uk - yk' .. ,~,~~~ ox = 1 "M v = () anri ov = () oth~~·"se ..._..._\ K1 llk:=lu "' J n.o..._~.._~ U .._IV..._ .n.. v ..._...._U.n.. v .. ...,..._ ...... 

A nontrivial case arises when UK £: X. The desired pdf can now be obtained 

using the famous Bayes rule; 

,... Pr(Uk, Y) 
Pr\_UKjY) = Pr(Y) 

Pr(Uk, Y) 

Luk Pr(Uk, Y) 
(6) 

It can be conciuded that it is sufficient to find the joint pdf Pr(UkiYJ and then 

marginalize over Uk . Moreover, the joint pdf over Uk and Y is obtained by 

marginalizing Pr(Z) over the set of hidden variables X\ UK; 
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Pr(UkiY) = I Pr(x, Uk, Y) = 
xEX\Uk 

I Pr(Z) 
XEX\Uk 

(7) 

Inference in arbitrary BN is in general NP-hard [9]. However, there are 

special cases of BN topologies that allow for more efficient inference 

algorithm. Inference can be done by: 

i) Exact probability propagation in a singly connected net'vVork. To do 

this, network need to be transform into singly connected structure; 

ii) Approximate inference (Monte Carlo inference technique, inference 

by ancestral simulation, Gibbs sampling, Helmholtz machine 

inference, variation inference technique, etc.). 

2.2.3 Learning 

Sometimes, it often happens that the conditional probabilities are not known 

throughout the network. In order to overcome this problem, some learning 

techniques need to be employ to be able to complete the missing beliefs in the 

network. According to [8], the role of learning is to adjust the parameters of 

the BN so that the pdfs defmed by the network sufficiently describes 

statistical behaviour of the observed data. 

Let M be a parametric BN mode! with parameters e of the probability 

distribution defined by the model. Let Pr(M) and Pr(91M) be the prior 

distributions over the set of models and the space of parameters in these 

model respectively. Given some observed data assumed to have been 

generated by the model as defined by the goal of learning in BN, the e 
parameters have to be estimate such that the posterior probability of the 

model given data zi become maximized; 

(8) 

To make the equation above in more appropriate form, it is assumed that the 

pdf of the parameters of the model, Pr(91M) is highly peak around maximum 

likelihood (ML) estimates of those parameters. Thus, the equation is 

transformed into; 
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Where the ML estimate eML for a given model M is obtained from next term; 

8ML = argmax!ogPr(Zd8) (10) 

In addition, consider a case where not all of the variables Z in the model of a 

BN M are observed (represented by X). For this case, the goal of learning is 

describe as follows; 

{j = argmaxlog I P(Y,XIB) (11) 
X 

Where P denotes specific joint pdf defined by the network and alternatively, 

the cost function defined can be minimizing as; 

](8) = -log I P(Y,XI8) (12) 
X 

2.3 Dynamic Bayesian Networks (DBN) 

A BN is useful for problem domains where the state of the world is static. In 

such a world, every variable has a single and fixed value. Unfortunately, this 

assumption of a static world is not always sufficient. A Dynatnic Bayesia11 

Networks (DBN) which is the extension of BN with time dimension can be 

used to n1odel dynmnic systen1 [1 0]. 

2.3.1 Network Structure 

Firstly, dynamic extension does not mean that the network structure or 

parameters changes dynamically but that a dynamic system is modelled. A 

DBN is a directed acyclic graphical model of a stochastic process. It consists 

of time-slices (or time-steps) with each time-slice containing its own 

variables. A DBN is defined as the pair (B~,R>) where B1 is a BN that defines 

the prior or initial state distribution of the state variables P(Z1) [11]. 

Typically, Z1 = (U~oX~oY1) represents the input, hidden and output variables of 

the model. R> is a two-slice temporal BN (2TBN) that defines the transition 

model P(ZtiZt-1) as follows: 
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N 

P(ZtiZt-1) = n P(Zi jPa(zt)) (13) 
i""'1 

Where Zi is the 1-th node at time t and could be a component of Xt. Yt. or U1• 

Pa(ZD are the parents of Zi which can be in the same or the previous time­

slice. The nodes in the first slice of the 2TBN network do not have 

parameters associated with them. The nodes in the second slice do have a 

CPT. The structure repeats and the process is stationary, so the parameters for 

the slices t = 2,3, ... remain the same. This means that the model can be fully 

described by only giving the first two slices. In this way, an unbounded 

sequence length can be modelled using a finite number of parameters. The 

joint probability distribution for a sequence of length T can be obtained by 

unrolling the 2TBN network. 

Figure 2: Extension ofBN (Fig. 2) to 2TBN 

T N 

"'"' '- nnprzi IP rzi)) r ~"1-T 1 - ~ t a\ t (14) 
t;;;l i=l 

11 



2.3.2 Inference 

In the DBN, only a subset of states can be observed at each time slice. So, all 

the unknown states in the network need to be calculated. This is done by 

i11£erence. The problem of inference in DBN can be represented as the 

problem of fmding Pr(XJ"-1 1YJ-1) where YJ"-1 denotes a finite set ofT 

consecutive observations, r(i- 1 
- {yo,Yh·····YT-d and XJ"- 1 is lhe sel of the 

corresponding hidden variables XJ"-1 = {x~,xz, .... ,XT-d· Figure 3 shown 

graphical representation of this problem. The shaded circle indicates the 

states that need to be estimate (x1) based on observations y1 

Figure 3: Inference in DBN 

There exist several tvays of performing Inference on DB]'.!. The most 

common types of inference are discussed below: 

1) Forward propagation 

We will used a,(x1) to denote t.l:!e fonvard probability distribution that 

describes the joint probability observations gathered upon time t and 

at timet; 

Ut(Xt) = Pr(YJ, Xt) (15) 

if we rely on network structure (Figure 3), it can be concluded that 

with the initial condition ao(xo) = Pr(xo) 
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One of the interesting results of forward propagation is the term for 

likelihood of the observation data sequence Yrf-1
. From the definition 

of the forward factor a1(x1) in equation (15), it can be determine that: 

The probability of the observation sequence is proportional to the 

forward factor of the last hidden state. The probability from equation 

(17) can also be used to determine how well different DBN models 

corresponds to a data sequence in the framework of maximum 

likelihood estimation. 

2) Backward propagation 

Conditional probability of observations from time t+ 1 until the last 

observations at time T -1 conditioned on the values of the state at time 

t is describe as backward probability distribution: 

We can infer the next relation from the backvvTard factor definition: 

Pt-1 (xt-1) = L PtCxt) Pr(xtlxt-1) Pr(yt!xt) (19) 
Xt 

With fJr(Xt_1) = 1 as the tinal value. 

3) Smoothing 

Given the expressiOns for forward and backward probability 

propagation (factors), one can come out to the smoothing for 

inference and learning in the DBN. It is form from the equation (17) 

and (19): 

_ r-1 _ at(xt)fic(xc) 
YtXt- Pr(xtiY0 ) - ~ ( ){3 ( ) (20) 

,t.,x, at Xt t Xt 

where yJx,) is the smoothing operator. These terms is used for easier 

calculation of probability values of node's state from neighbouring 

nodes, and for distributing tllis evidence to neighbouring nodes. 
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4) Prediction 

Another interesting inference problem deals with predicting future 

observations or hidden states based on the past observation data. 

Namely, a prediction of hidden states in the next time slice can be 

described as the following inference calculation task of Pr(xt+1 IY~) 

or Pr(yt+liY~). It is easy to show that: 

And also in the same way we can write: 

2.3.3 Learning 

A representation of real world problems by a DBN structure often requires 

introduction of several nodes which conditional probabilities cannot be 

exactly determined. Even the expert knowledge catmot offer us solution for 

some conditional relationship in particular domain. In such situation, it is 

essential to learn ti'lls CPDs. This process is complex and is based on the 

Expectation Maximisation (EM) algorithm for DBN. The joint probability 

distribution is described below: 

T-1 T-1 

logPr(XJ', v[-118) =I logPr(xtiXt-1) + L logPr(yt!Xt) + logPr(Xo) (23) 
t=l t=O 

Where e denotes the model parameter vector. The maximisation step now 

intends to fmd parameters e that satisfy next condition: 

aB(P,Q) 
ae 

T-1 T-1 '\' a log Pr(x,, x,_1) '\' a log Pr(y,x,) a log Pr(x0) _ 

f..- < ae > + f..- < ae > + ae - 0 
t=l t=O 

(24) 

This learning problem can be expressed through a gradient-based learning 

procedure. It can be equivalently used and is implemented to perform 

.1. . f aB(P,Qj 
uti tzation o next term ao . 

14 



2.4 DBN Extension Formalism 

In the original definition [111, a DBN is defined as the pair (BloB.>) where Bt 

is the prior or initial state distribution of the state variables· P(Zt). B_>· is a 

2TBN t.hat defines the tr~nsition model P(Zt!Zt.J). Ollly the nodes in the 

second time-slice of the 2TBN have a conditional probability distribution. 

However, there is some limitation to this definition. One of them is that it is 

only possible to model first-order Markov processes. Another one is that 

when unrolling the network for inference, every node is copied to every time­

slice even if it has a constant value for all time slices. Finally, although it is 

possible to introduce a different initial state using the B, part of the 

definition, it is not possible to define a different ending state, which can be 

useful for modeling variables that are only interesting after the end of the 

process. 

For this project, only the second observations is used for the extension of the 

DBN formalism since all the variables is treat as first-order Markov processes 

and there are no nodes that is constant through time and had different ending 

state. 

2.4.1 Temporal Plate and Contemporal Nodes 

By using original definition by Murphy's, every node is copied to every time­

slice when unrolling the DBN for inference. For nodes that have constant 

value at every time slice, this is a real waste of memory and computational 

power. 

To represent the notion of nodes that are constant for every time-slice 

graphically, graphical model theory that was originally developed 

independently by both Spiegelhalter and Buntine [17] inspired the notion of a 

plate. In the original definition, the plate stands for N independent and 

identically distributed (i.i.d) replicas of the enclosed model. Similar way was 

decided for DBN. However, the plate was originally introduced without the 

notion of temporal arcs. So, it has been extended to include temporal arcs 

which introduce the concept of temporal plate. 
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By defmition, temporal plate can be defmes as the area of the DBN that holds 

the temporal information of the network. It contains the variables that 

develop over time (and are going to be unrolled for inference) and it has an 

index that denotes the sequence length T of the process. The part of the DBN 

that is going to be unrolled is represented within the temporal plate, so all 

variables with temporal arcs need to be inside the temporal plate. Variables 

outside the temporal plate carmot have temporal arcs. The length T of the 

process is denoted as an index. All not outside the temporal plates are not 

copied during unrolling but their arcs are. The temporal arcs are set to the 

appropriate nodes in the future time-slices according to their temporal order. 

The temporal plate has the effect that no matter how many time-slices the 

DBN is unrolled to, the nodes outside the temporal plate are unique. During 

unrolling, the unique node itself is not copied but its outgoing arcs are copied 

to the corresponding nodes in all time-slices. This is useful for modeling 

variables in the network that remain constant over time, for instance the 

gender of a patient. We will call these nodes contemporal nodes . 

.... --- --- ..... 
I \ 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
\ 5 I 
'---"(a) ___ / (b) 

Figure 4: (a) The visualization of a second-order DBN with one contemporal variable. The 

temporal plate holds the part ofthe network that is unrolled for inference while the 

contemporal node is stored outside the temporal plate. The index of temporal plate denotes 

that the DBN is going to be unrolled fort= 5 time-slices. (b) The unrolled DBN for 5 time­

slices. 

Therefore, a contemporal node is a node outside the temporal plate whose 

value remains constant over time. It can have children inside the temporal 

plate but no parents. 
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2.5 Software 

In this section, libraries and modelling tools that support temporal reasoning 

for DBN are discussed. The software with DBN functionality that is currently 

on the market can be divided into two classes: softwt~re that have a GUI a..11.d 

software that does not have GUI. The software with GUI is mostly 

commercial and is relatively easy to use for a user vvit.1. only average 

knowledge of BN. The software without GUI is mostly academic oriented 

which means that it is a result of research in the area of (D)BN. Academic 

oriented is very flexible but this can make the application to specific 

problems very time consuming. In this chapter, only the software tools that 

are public domain are covered. 

2.5.1 DBN Modelling Tools 

I) GeNie 2.0 

GeNie is the BN software toolkit developed by the Decision System 

Laboratory of the University of Pittsburgh. It has two modes: a modelling 

mode for designing the BN and a validation mode for inference. In the 

modelling node, it is possible to add temporal arcs to a BN to indicate that the 

parent node of the two nodes is in the previous time-slice. Only first-order 

Markov model can be designed this way. Temporal arc have different colour. 

The user needs to specifY the initial state and the temporal probabilities of the 

nodes. After specification, the validation mode can be selected to follow the 

changes of the system over time by browsing between time steps after setting 

the number of time-slice. The DBN model created using this tool can be 

uuroll graphically. 

2) BayesiaLab and Netica 

BayesiaLab and Netica are also the modelling tools that both support 

temporal reasoning and have a Graphical User Interface (GUI). BayesiaLab is 

developed by the French company Bayesia [12] while Netica is a product of 

Norsys which is located in Canada [13]. However, the use of these programs 

is not further explained due to tl1em being a license domain and cannot be 

freely downloaded. 
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2.5.2 DBN Libraries 

Three libraries exist that have DBN functionality and are freely 

downloadable. All three have a work-in-progress status which means ·that 

much fl.mctionality is missing and/or has to be tested and optimized. 

1) Bayes Net Toolbox (BNT) for Matlab 

The BNT is an attempt to build such a free, open-source, and easy-to-extend 

library that can be used for research purposes. Until the introduction of BNT 

for Matlab [14], the field lacked a free general purpose software library that 

able to handle many different variants of graphical models, inference and 

learning technique. The author chose to implement the library in Matlab 

because of the ease of handling Gaussian random variables. It is still widely 

used today but it will not be easy for someone who has little knowledge in 

Matlab and BN particularly to create the code. Besides, much functionality 

still needs to be added to make it a real general purpose tool such as Bayesian 

modelling, online inference and learning, prediction, more approximate 

inference algorithm and tree-structured CPDs. Moreover, the scripting part 

that is needed to do and implement a model in the BNT can be really difficult. 

2) Graphical Models Toolkit (GMTK) 

The GMTK is a freely-available and open-source toolkit ,;vritten in C++ that 

is specialized in developing DBN-based automatic speech recognition (ASR) 

systems. The G!-vfTK has a number of features t~at c&J. be used for a large set 

of statistical models. These features include several inference techniques, 

continuous observation variables and discrete dependency specifications 

between discrete variables. Besides that, the DBN model needs to be 

specified in a special purpose language. In this language, a DBN is specified 

as a template that contains several time-slices. 

2.5.3 Choice of Modeling Tool Software 
After reviewing the pros and cons of the available software, GeNie 2.0 has 

been selected as the modeling tool software for this project due to it user­

friendly which provide GUI and also one do not need to have deep 

knowledge of DBN in order to use it. 
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3.0 METHODOLOGY I PROJECT WORKS 

Figure 5 summarizes the methodology of the prQject works that is central to this 

study with theFT (with reliability data) as the existing databases supply 

Dynamic Bayesian 

Networks Diagnostic Model 

Con:versio» Softw:are 
'•'•',-'•- .,_ -----' ',·· ''' ' ' 

Phase 1: FT to BN 

Figure 5: Block diagram ofFT to DBN conversion process 

Conceptually, it is straightforward to convert a FT into a BN. One only needs to re­

draw the nodes and connect them while correctly enumerating reliabilities data. 

However, in practice this is not easy especially for large systems. The difficulty 

arises predominantly due to the different utilization and development focus: FT A 

deals in "truth, whereas BN deal in "observations of the truth". Thus, the conversion 

process requires a certain degree of semantic checking and adjustment. The 

following defines the conversion of FT to diagnostic BN in 3 phases as shown in 

Figure 3. First theFT is used to create the structure and parameters of the BN. The 

conversion process requires that the FT meet two basic assumptions which are 

commonly adhered to in FT creation: 

i) The leaf nodes (event nodes) of the tree are statistically independent i.e. each 

node occurs in the tree only once and two different nodes that represent 

exclusive failures modes of the same component (e.g. valve failed open and 

valve failed close) are connected with an XOR gate node, 
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ii) The FT nodes are interconnected by links so that they form a directed tree. 

Thus, for every two nodes there is a unique path connecting them - loops are 

not permitted. 

3.1 Phase 1: FT to BN Conversion 

These steps need to be specify for the frrst phase of conversion using FT to 

create the structure and parameters of the BN: 

I) Create nodes of the BN as follows: 

a) For each node in the FT, create a node in the BN, 

b) Set the BN node name and identifier using t.'lose provided in 

the fault tree. If there are no unique identifiers available in the 

FT, then create them, 

c) Assign to each BN node two states e.g. "Failed" and "OK". 

The former is the failure state whereas the latter represents a 

nominal condition. If different state names are defined, use 

those, 

d) Leaf nodes of the FT become ranked nodes of the BN i.e. the 

nodes whose failure modes are displayed in GUI in the list of 

failures ranked by probability, 

e) The topologies need to start from the parents (ranked nodes) to 

children (up events). 

2) Create links of the BN as follows: 

a) Connect the nodes in the BN with links as they are connected 

in theFT, 

b) The direction of the connections in BN should be equivalent to 

the direction up the FT i.e. from leaves (events) to gates above 

them and from them to the gates above etc. up to the root gate. 

Thus the event nodes, which are leaf nodes of the FT will 

become the root nodes of the BN, 

c) The graphical models need to clearly shown the dependencies 

between each node and if the two nodes are conditionally 

independent, no links is connected between them. 
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3.2 Phase 2: Assign Conditional Probability Table (CPT) 

1) Define BN parameters (probabilities) as follows: 

a) The root nodes of the BN (i.e. ranked nodes), which are the 

event nodes of FT, require prior probability of the failure 

which is assigned to the failure state ("Failed"). The prior 

probability of the "OK" state is computed as its complement. 

If the prior probability is not available, a default component 

tailure rate with a tixed time horizon can be applied. Failure 

rate can also be computed from other reliability parameters, 

e.g. /.. = 1 I MTTF, where MTTF stands for mean time to 

failure., 

b) All the nodes of BN that are not root nodes require CPT. The 

CPT is created using zeros and one and implements the logic 

operation performed by the gate e.g. AND or OR where Noisy 

OR probability tables are used for the latter to reduce the 

number of node linkage parameters i.e. with n connections, the 

Noisy OR probability table is only of order n, versus order n2 

for conventional probability table. More discussion of Noisy 

OR can be seen on [16], 

c) Pay attention to the number of parents connected to the 

children as an increase will require high number of CPTs. So, 

try to reduce as much as possible to avoid complexity of CPTs. 
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3.3 Phase 3: BN to DBN Model (Assign Temporal Reasoning) 

1) In order to extend the BN to DBN, temporal reasoning need to be 

applied to the structure model: 

a) Identify for each node whether it is contemporal, temporal, or 

terminal conditions, 

b) For variables that change over time, temporal condition is 

assigned to them and for variables that do not develop over 

time but the failures data is bring to every time slices, 

contemporal condition is assigned, 

c) Define for every node whether the "Failed" state in the next 

time slices is dependent on the "Failed" state in the current 

time slice i.e. the "Failed" state at time slices t and t+ 1 are 

probabilistically dependent if only the order of the dependence 

is 1. 

d) The temporal arcs to the nodes itself suggest that the variables 

also change with time aside from influencing the beliefs of 

other nodes. 

e) If there are any observations or evidence for some variables, it 

need to be defined before the model is updated 

3.4 Updated Beliefs 

After the temporal reasoning has been assigned and all the evidences have 

· been entered; the model beliefs are ready to be updated "and unroll over the 

required time slices. Then, the results wi.l! show the distribution of the 

variables changes over time. 
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4.0 CASE STUDY BACKGROUND 

The database of the FT is taken from [15] as the background study for this 

project of hydrogen infrastructure in DBN. The databases include the entire 

FT diagram for hydrogen activities and the reliability data. Due to t.'1e time 

constraint on this project, only two activities of hydrogen infrastructure are 

considered which are the hydrogen production and hydrogen storage. 

4.1 Hydrogen Production 

4.1.1 System Description 

The study considers a solar hydrogen plant situated at Neunburg vorm Wald, 

Germany. It is a hydrogen production plant using solar energy to 

electrochemically decompose water in an electrolyser to obtain hydrogen and 

oxygen. In the electrolysis of water, the electric current is passed through an 

electrolyte solution of water and potassium hydroxide or alkali, decomposing 

the water into its constituent elements hydrogen and oxygen. Hydrogen is 

formed in the cathode and oxygen in the anode. A diaphragm separates the 

two cells to keep two gases from recombining into water. The produced 

hydrogen is then stored in a pressurized vessel. Energy input required to 

produce one cubic meter of hydrogen is about 5 KWh [18, 19]. Figure 6 

shows a layout of the overall facility from the aerial photograph. 

Figure 6: The solar hydrogen plant in Neunburg vorm Wald, Germany 

23 



4.1.2 GH2 Storage 

The high pressure hydrogen tank of the plant stores the largest hydrocarbon 

inventory of 5000 Nm3 compared to other components. It may be the largest 

contributor to societal risk as assessed in this study. Therefore, the study is 

focused on the two horizontal cylindrical high-pressure hydrogen storage 

(figure 7) with an operating pressure of 3 lVIPa at arnbient temperature. The 

tank is filled directly from the water electrolysis in the plant generated from 

the two low-pressure electrolysers requiring subsequent compression of the 

product gases. 

Figure 7: GH2 storage at the solar-hydrogen plant [20] 

Appendix 2 shows a simplified piping and instrumentation diagram of the 

high-pressure storage. The tank is filled from electrolysers continuously 

during the day (e.g. 200/year) through filling valve, V7 and V13. The filling 

process is stopped when the set point at the pressure control valve, PCV -19 is 

reached. Pressure indicator and alarms (PIA) are installed to measure and 

indicate pressure levels of the tank and its piping system. The tank PIAs are 

equipped with pressure switch or transmitter for remote controllers (e.g. 

alarm). If the operator fails to observe PIAs or to respond to the alarm the 

tank pressure increases rapidly and the tank is overfilled. To protect against 

overpressure, each tank is equipped with two pressure safety valves (SV s) 

and a rupture disk (RD). One of the SVs is operated exchangeable at the 

relative pressure of 3.3 MPa. The SVs will automatically re-close if the tank 

pressure returns to the operating pressure. The rupture disks (RD-1 and RD-2) 

are provided in case the safety valves should fail. 
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The ultimate overpressure protection of the tank is provided by stopping the 

filling line automatically. It is performed by a safety shut-off (PCV -20) which 

is actuated by PSH signal. The gas is withdrawn from the tank through 

withdrawal valve V12. The required output pressure is determined by setting 

pressure at the pressure control (i.e. high pressure = PCV -16, low-pressure = 

PCV-17). 

Table 1: Most important capacities and dimensions of the GH2 storage 

H2 Storage/Lines Dimension Capacity 

1. High-pressure vessel L = 9.8 m, D- 2.8 m, 2 x 2500 Nm3 (*) 

Vuseful =50m3 30 bar (400 kg) 

2. Input line 50.8 mm (2 in) 30 Nm3/h 

3. Output line 50.8 mm (2 in) 30 Nm% 

Source: Messer Griesheim GmbH, Linde AG; (*) m3 H2 at 15"C, and I bar (NTP) 

4.2 Hydrogen Storage 

The study focuses on liquid hydrogen (LH2) storage situated in the Vonburg­

Ingolstadt-Refinery (RVI) as a representative example. The LH2 storage is 

used to store liquid hydrogen produced from the hydrogen liquefaction plant. 

The LH2 is delivered to the consumers through an LH2 tanker truck. 

H2Feed 

Reline f)' 
Raw gas 

Compression 

liquefaction 

LH2Tank 

capacity 270000 1 

GH2Trailer 

MachienaiY building 

lH2 Tanker 

Figure 8: Process flow diagram ofthe liquefaction plant [21] 
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4.2.1 System Description 

The Linde liquefaction plant (Figure 8) mainly consists of compressor units, - - - - - -

pressure swing adsorption (PSA) purification, liquefier, and LH2 tank. The 

hydrogen rich raw gas is supplied from the RVI refinery and has pressures 

varying between 0.9-1.4 MPa. The gas is then compressed to about 2.1 MPa 

and is clea..ted in PSA purification Ut1its. The gas is further purified by lo\v 

temperature and liquefied into para-hydrogen [21]. 

The liquefaction process which is designed for a flow rate of 180 kglh is 

based on the Claude cycle. The necessary refrigeration is provided at three 

temperatures levels using: LN2 (from 300K to 80K), expansion turbine (80K 

to 30K), and Joule Thomson (JT) valve (30K to 20K). The cooling down 

process from ambient to LN2 temperature levels is operated manually for 

about 5 hours. Once the LN2 temperature is reached the operating mode of 

50% or 100% LH2 can be selected from the monitor screen and the process 

control system starts automatically. The steady state liquefaction is achieved 

after a further 3 hours. Opening the JT valve and hence liquefaction capacity 

is controlled by the outlet temperature of the third turbine. 

The liquid hydrogen is then stored in a horizontal vacuum insulated tank at -

253°C having a capacity of 270 000 litres. The tank can store hydrogen for 

several weeks without significant vaporization [21]. The whole plant is 

operated and controlled by a central process control system (PCS). 

Figure 9: Hydrogen liquefaction plant in Germany [21] 

26 



4.2.2 LH2 Storage 

The LH2 storage mainly consists of a horizontal cylindrical cryogenic tank 

with a capacity of270 000 litres (17 000 kg ofLH2) at temperature of -253°C 

and pressure of 0.13 MPa, pressure building circuits and piping system. 

Appendix 5 shows a simplified P&ID of the system. The LH2 tank is filled 

directly from a liquefaction plant. It is equipped with the level indicator (LI), 

level switch (LSHL) and a trip switch (LSH) at successively higher levels. It 

has two independent shutoff valves V -1 and V -3, both of which are operator 

actuated. The LI is simply an indicator which transmitted to control room. 

The LSHL is connected to an audible/light alarm and LSH to an automatic 

trip system and close main valve of the plant (PCV-40). 

The tank pressure is maintained by a pressure building circuit which mainly 

consists of a coil (ambient evaporator, D) and its pressure regulator (PCV-I). 

The circuit vaporizes liquid hydrogen from the bottom of the tank and sends 

hydrogen in the gas phase to the tank (top). Operation of the circuit is 

controlled by the PCV-I triggered by PIC-I based on the tank pressure (low) 

obtained and transmitted by pressure transmitter (PT). When the pressure in 

the tank is lower than the set point of the PCV -1, then the circuit is working. 

In order to protect the tank against overpressure, two pressure safety valves 

(SV-1, SV-2) are installed. One of the safety valves is operated exchangeable 

at relative pressure of 0.143 tvfPa. Additionally, tlie PCV -2 is used as the 

secondary pressure relief devices. The operation of the PCV -2 is similar to 

the PCV -1 but it opens if the tank pressure is high. In addition, the tank is 

equipped with pressure switches (PIS and PSHL) used to protect the tank 

against excessive lower pressure. The PSHL activates the PCV-3 to close in 

case of the pressure is very low. 

Table 2: The most important capacity and dimension of the LH2 storage 

Components Dimension Capacity 

1. LH2 tank Horizontal cryogenic tank V = 270 000 litres (I 7 000 kg) 

2. Liquid lines Diameter of I01.6 mm (4 in)* 180 kg/h 

3. Vapourlines Diameterofl01.6mm(4in)* 180kg/h 

Source: Linde AG; (*) estimated value 
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5.0 RESULTS AND DISCUSSION 

The fault trees [22] indude. t..he sub-fault trees representing the insta_r1ta11eous 

and continuous (both in liquid and vapour phases) release of hydrogen from 

the containment systems which describe the hydrogen production and 

hydrogen storage activities. The sub-fault trees include in this project are as 

foilows: 

1) Continuous release ofhydrogen from GH2 tank in the production plant 

(Case G1.2) 

2) h1stanta..~eous release of hydrogen from LH2 tai'Jc at depot (Case G2.1) 

3) Instantaneous release of hydrogen in liquid phase from LH2 tank at depot 

(Cast: G2.2) 

4) Continuous release of hydrogen in vapour phase from LH2 tank at depot 

(Case G2.3) 

The methodology explained in Chapter 3 has been implemented in the BN 

modelling software GeNie 2.0 which unrolls the DBN over the required 

number of time slices. For example, 10 time-slices represents 10 years. For 

all the results shown, the posterior probability failure shown will just describe 

the failure probability of top event for every case in order to show the 

significant probability failure. For each sub-fault trees, the numbers of time­

slices assign to each of them depend on the complexity of the fault tree. 

Complex FT require low time-slice because higher time-slice will make the 

network structure too complex and the task to update the beliefs will be 

impossible. 

For the analysis purpose, the computation using the GeNie 2.0 modeling tool 

software is based on the temporal reasoning assigned to every parent nodes 

with the order of 1 since the assumption made is that for all the events that 

happen in the future, the probability failure during that time is estimate based 

on the probability failure on the previous year. 
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5.1 Probability Failure Distribution for System Failure (Top Event) at Time 
t for all cases 

r 
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Table 3: Probability failure distribution for system failure at timet for all cases 

The graph showed the probability failure distribution for system failure at time t for 

all cases of hydrogen production and hydrogen storage without maintenance. For the 

overall observation, it is observed that for all cases, the probability failure increase 

from year to year but not in a linear way. Besides that, case G2.3 is the case that 

reach I 00% probability failure faster compared to other cases which occur on year 59 

followed by case Gl.2 with 99.5% on year 100 and case Gl.2 with 97.7% on year 

I 00. Case G2.l is the case with the longest period of time to reach I 00% failure 

probability with the failure probability at year 100 only reaches 65.83%. The 

selection of the level of probability failure depend on the company's policy in terms 

of dealing with risk failure and also based on the principle of as low as practicably 

possible (ALARP) so that to avoid unexpected incidents. For all cases, the 

probability failure at 30%, 50%, and 80% is observed. 

In maintenance aspect, the personnel can decide the level offailure that will be used 

as the critical point in order to start performing maintenance. If the personnel decide 

that the critical limit to be 30% of probability failure, then they can observe on what 

year the 30% level is reached. With this information, the maintenance can be 

performed the year before the probability failure reach 30%. The same goes to the 
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probability failure of 50% and 80%. This information also helps to increase the 

operation reliability and effectiveness. In addition, with better decision making on 

scheduling the maintenance for the operation, it can save a lot of maintenance cost 

and therefore increase the profitability. The maintenance that is supposed to be 

performed for every consecutive year can now be reduced. 

For case 01.2 which is the continuous release of hydrogen from t.he OH2 tank at the 

production plant, it is observed that for the probability failure to reach 30%, it 

happened on year 9 while for the 50% probability failure, it occurred on year 16. The 

80% probability failure is reached on year 33. Based on this information, the time it 

takes for the system to reach 50% faiiure is i 6 years which wiii give the personnei 

more than enough time to identify potential measure for maintenance as well to 

identify critical events that contribute more to the top event. On the other hand, for 

case 02.1, instantaneous release of hydrogen from LH2 tank at depot, it is observed 

that the probability failure reach 30% on year 42 and 50% probability failure on year 

69. For 100 years observation, the probability failure for the system did not reach 

80% so as the probability failure only reach 65.83%. Based on the information 

obtain, it takes 42 years for the system to reach 50% probability failure. So, the 

failure risk is quite low for this case among other case. Next, for case 02.2 which is 

the instantaneous release of hydrogen in liquid phase from LH2 tank at depot, it is 

observed that for the 30% probability failure, it happened on year 11 and year 20 for 

50% probability failure followed by year 44 for 80% probability failure. For the last 

case which is the continuous release of hydrogen in vapour phase from LH2 tank at 

depot (case 02.3), it takes 4 year for the system to reach 30% probability failure 

followed by 50% probability failure on year 6 and 80% probability failure on year 

11. 

Based on the probability failure results of the study model, OH2 storage has a lower 

accident frequency compared with the LH2 storage. The reason is that the LH2 

introduces more potential hazards than the one in OH2 (i.e. cryogenic liquid 

hazards). All these may contribute to modes of potential failure and result in great 

contributions to the overall release frequency. 
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The loss of containment events (LOCs) of hydrogen storages and transportation 

considered in the QRA study include: continuous and instantaneous release. From 

the results, probability of occurrence per year of the instantaneous release is low 

compared to continuous release. The instantaneous release of hydrogen mainly 

results from a catastrophic failure of tank storage (e.g. tank rupture), and release the 

all inventory contents. Tank rupture is mainly caused by tank overpressure (with the 

contribution of more than 50%), followed by external events and spontaneous events. 

In case of LH2, there is an additional incident that may contribute to the tank rupture 

i.e. tank under-pressure. All hydrogen storages are equipped with redundant safety 

protection against lank overpressure such as pressure relief valves and rupture disks. 

The tank overpressure may lead to tank rupture if all pressure relief devices fail 

close. The tank overpressure is mainly caused by tank overfilling, loss of vacuum (in 

case of LH2 only), external fire, internal explosion, overheating of the pressure 

building circuits (in case of LH2 only) and so on. The continuous release gave the 

greatest contribution to the loss of containment event in this study. It is mainly 

caused by tank leakage. Although the tank leakage event may be considered as a rare 

event but it may result severe damage to the environment. In case of LH2 storage, an 

additional release may be resulted from pressure building circuit (PBC) failure. In 

addition, for the failure risk obtain, the result will be more effective if the 

maintenance variables is included as the joint probability for the system which means 

the results obtain will take into consideration the maintenance action. 
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6.0 CONCLUSION AND RECOMMENDATION 

6.1 Relevancy to the Objectives 

Bayesian Networks approaches have become increasingly popular in risk 

study. It permits the combination of disparate information streams including 

historical data, expert knowledge and opinion, and noisy observations which 

make it more reliable to deal with uncertainty compare to the traditional fault 

tree. However, to further explore the uniqueness of BN, Dynamic Bayesian 

Networks is used to show more clearly the relationship between the 

probability failures with time. Until now, lot of study adapt the DBN 

approach. So, it is also believe that it is also well suited to hydrogen 

infrastructure modeling. 

6.2 Expected Outcome 

The risk failure study done on the hydrogen activities shown that the GH2 

storage gives lower probability failure compare to LH2 storage. Besides that, 

this study also proof that instantaneous release is more unlikely to happen 

compare to the continuous release. The probability failure for all case studies 

showed an increase from year to year since the data available try to project 

the future data instead of playing with the past data. Besides that, with the 

information on failure risk over time, it is convenience to decide the 

prevention measure based on personnel opinion on managing the risk failure. 

6.3 Future Works for Expansion and Continuation 

In order to produce more reliable results, the reliability data for basic events 

should be more accurate. In addition, the future works should also focus on 

building DBN model based on the past history in order to identify threshold 

level/time which require additional action before it probability failure rise. 

Besides that, the scope should be enlarge to include all the hydrogen activities 

that contribute to the hydrogen economy so that the outsider can have 

absolute look on the potential of hydrogen economy. The most important is to 

include maintenance variable as the joint probability in the system so that the 

results obtain will be more similar to the real life situation. 
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APPENDIX 

Appendix 1: Fault Tree for Continuous Release of Hydrogen for GH2 Tank in Production Plant [22] 
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Fig, G1.2. GH2 Tank at Production Plant 
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FIG. G2.2Tff2Slorage at Depot 

FAULT TREE DIAGRAM 
Continuous Release of Hydrogen in Liquid Phase 
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i FIG. G2.3 LH2 Storage at Depot 
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Appendix 9: Simplified P&ID of the GH2 storage 
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Appendix 10: Simplified P&ID of the LH2 storage 
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GH2Tank II 
2500 Nm3 Capacity; 

30 bar, 2o~c 

P. &.I DIAGRAM 

U t2Tank at a liquefadi<m Plant 


