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ABSTRACT

Soft sensors are used broadly in the industries to predict the process variables which

are not measurable by sensors. The objective of this project is to develop a data-

driven soft sensor using Moving Window approach with the selective regression

techniques and to evaluate and validate the advantages and performances of Moving

Window approach over the traditional soft sensor models. Time invariant and

stationary process conditions are those assumptions made in developing soft sensors,

and these assumptions causes degradations and limitations to the soft sensors in

estimating process variables. Degradations of soft sensors are caused by process

shift, catalyst performance lost and et cetera. Besides that, the restrictions of sensors

in estimating difficult-to-measure variablesand the delays during the laboratory tests

have becomeone of the factors in developing soft sensor. This paper presentsa study

regarding the multivariate statistical process control techniques that can be used in

developing soft sensors such as Least Square Regression method, Partial Least

Square Regression method and Principle Component Analysis. The scope of study

for theproject includes understanding the concept andwhat are the adaptive schemes

available to construct the soft sensors. Besides that further research on Moving

Window approach together with MSPC techniques will be carried out which can be

adapted into the adaptive models to develop the soft sensors. Systematic approach

will be presented through this project in using Moving Window approach to

construct the soft sensors and this includes an analysis of an appropriate case study

where the approach can be implemented.

Keywords: Multivariate Statistical Process Control techniques, Least Square

Regression method, Partial Least Square Regression method and Principle

Component Analysis
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1.1 Background

CHAPTER 1

INTRODUCTION

Sensors can be classified as instruments, which aid the technical personnel to observe

the trend or pattern of specific processes in the industries. Sensors are converters that

measure physical quantities or parameters and convert it into signals; these signals

can be read by personnel or controller. Apparently, sensors incapable in giving

sufficient information regarding the difficult-to-measure variables such as

concentration (Gonzalez, 1999). In order to curb that, soft sensors are developed

based on correlations between difficult-to-measure and easy-to-measure variables

(Okada, 2011). Figure 1.1 shows the concept of soft sensor.

Database

Pressure. I
. Concentration

Temperature

Easy-to-measure Difficult-to-measure j

Modeling

Input ^- Model k^ Output
Plant i

_ Soft sensor -^ — - _
Pressure. ,-,
_ • -*l. Concentration
Temperature

.-J ~L^ControI Online j
LProcess.J : estimation |y

Figure 1.1: Basic Concept of Soft Sensor (Okada, 2011).

However, soft sensors tend to deteriorate due to modifications in the state of

chemical plants, catalyst performance loss, sensor and process drift and et cetera

(Kaneko. H &Funatsu.K, 2011). The rate of deterioration of soft sensors can be

categorized into three main mechanisms which are gradual deterioration, instant

deterioration and rapid deterioration. For example, poor catalytic performance and

shift in the internal temperature cause gradual deterioration; in contrast to rapid

degradation which happens due to sudden change in the raw material. On the other

hand, regular maintenance ofthe plant will cause the degradation ofthe soft sensor to

happen instantly (Kaneko. H &Funatsu.K, 2011). As a result, it could tarnish the

performance of soft sensors in estimating the process variables. The suggested

1



solution to handle such a situation is by updating the soft sensor model to handle the

variations in the process characteristics. Updating the soft sensor models can be done

using two main approaches which are first-principle models and data-driven models

(Liu. J etal, 2008). However first-principle models could be fuzzy because of the

complexity which requires a lot of effort and time to develop or either it could be

very simple to be accurate and precise in predicting the values. Data-driven models

can provide reasonably accurate information which uses regression methods such as

PCR (Principle Component Regression), PLS (Partial Least Square) and CCR

(Canonical Coordinates Regression). There are soft sensors which being developed

using nonlinear models such as ANN (Artificial Neural Network), SVM (Support

Vector Machines) and KPLS (Kernel Partial Least Square). After analysis of these

tools/techniques, appropriate technique will be selected in order to be adapted into

the adaptive schemes or approaches to be used in updating the soft sensors.



1.2 Problem Statement

It has been assumed that the industrial processes are stationary and time-invariant;

these assumptions have led to development of static soft sensor models or also

known as traditional soft sensors. But the time-variant and dynamic

characteristics of industrial processes violate the assumptions, and as a result the

static soft sensor models are incapable in estimating the process variables (He &

Yang, 2007). The time-variant and non-stationary characteristics of the industrial

processes have resulted in thedegradation of the soft sensors. Quality of theproducts

hasbeenmaintained by using online sensors andby performing laboratory tests. The

malfunctions of the sensors where it could not gain information on parameters in

determining the quality of the products and also significant delays during

laboratory tests (data processing) have unable the personnel to determine the

quality of theproduct instantaneously (Liu. J etal, 2008).

1.2.1 Problem Identification

• Existence of gap between data acquisition from plant, data processing and

process control

• Inability of thesoft sensors to estimate theprocess variables accurately inall

conditions

• Deterioration of soft sensors by some factors

1.2.2 Significant of the Project

• The data acquisition from the plant can be done instantaneously which can

lead to estimation of difficult-to-measure variables

• The adaptive model can adopt to the changes oftheplant's characteristics and

enablethe soft sensor to provideaccurate estimations

1.3 Objectives

There are two main objectives to be achieved at theendof thisproject, suchas:

• To develop data-driven soft sensors using Moving Window approach with the

selective regression techmque.

• To evaluate advantages ofMoving Window approach over thetraditional soft

sensor models



1.4 Scope of Study

Theresearch for this projectwill be on understanding the concept of soft sensors and

what are the multivariate statistical process control methods are available to be

adapted into the adaptive schemes/models to avoid the degradation of the soft

sensors. An appropriate case study will be selected from the literature. This includes

understanding the concept of Moving Window approach associated with

mathematical equations, which will be translated into a prograrnming language (e.g.

MATLAB coding). Basedon the casestudy, it is possible to observe the performance

of Moving Window approach in re-constructing the soft sensor model.

1.5 Relevancy and Feasibility of the Project

Relevancy

• Related to the area ofAdvanced Process Control and Optimization.

Feasibility

• Approximately thetimeframe to complete the FYP 1&2 is 8 months

• Usage of available software (MATLAB and HYSYS) in UTP enables for the

completion

• Besides that usage of SIMCA-P software by Umetrics enables the

development of soft sensormodel within a shortperiodof time



CHAPTER 2

LITERATURE REVIEW

To study regarding this topic, several researches, journal and conference papers

are reviewed. Soft sensor models are extensively used for prediction of quality

measurements which normally determined through irregular sampling and offline

analysis ((Lin, Knudsen, & Jorgensen, 2007). The research that have been carried out

can be divided mainly into 2 components or criteria which are regarding the

availability of types of Multivariate Statistical Process Control methods or

techniques and also about the adaptive models to re-construct the soft sensor to be

used for chemical processes.

Primarily for the multivariate statistical process control techniques that have

been applied in the industries so far can be divided into 2 main groups which are

first-principle method and data-driven method (Liu. J etal, 2008).The widely used

method will be data-driven method which comprises Principal Component Analysis

(PCA), Partial Least Square (PLS) and Canonical Coordinates Regression (CCR)

because of the accuracy of the information given by this method compare to first-

principle method which require lots of effort and time to develop due to its

complexity. All the algorithms are studied in order to understand the working

principle of the techniques. The selected algorithms are PCAand PLS, where further

analysis is done to compare the performance of both techniques in the adaptive

models for the soft sensors. Basically PCA can be said the simpler version of the

PLS method where it minimizes the usage of many parameters and also simpler

technique where it analyzes the recorded variables directly (Wang et al., 2005).The

main objective of PCA is to identify the outliers in the observations besides reveal

the relationships between observations and variables. According to Jeng (2010), PCA

is used to remove the collinearity and noise between the variables and reserve vital

information of the original data. PCA technique is used widely in process monitoring

and inability in adapting the time varying characteristic of the process has been the

major drawback for PCA (Lu. Bet al., 2009). On the other hand, PLS method isused

widely in modeling a softsensor. PLS method canbe saida method thatrelates the X

(input) and Y variables (output) by a linear multivariate modeling and computation



will be carried out using the traditional regression calculations (Kaneko & Funatsu,

2011).

Secondly is all about the adaptive models for the soft sensor development by

using the appropriate multivariate statistical process control (MSPC) methods.

Furthermore, soft sensor which been developed using traditional method of MSPC

have some shortcomings where the models couldnot accommodate the deviation of

the process due to time-variant factor of the process where it interprets the slow

changes of the process as faults (Bo & Xianhui, 2011) and increases the number of

false alarms (He & Yang, 2007). Furthermore, the inferential model developedusing

PCA or PLS algorithms degrade due to existence of outliers and abnormal

observations (Lin, Knudsen, & Jorgensen, 2007).Solution for the stated problem

above are givenby some of the researches who suggested a largenumber of adaptive

PCA or PLS algorithms as shownbelow (Bo & Xianhui,2011):

• (Svante, 1994) suggested Exponentially Weighted Moving Average (EWMA)

filter using PCA method.

• (Cervantes.V et al., 2000) suggested Recursive-PCA algorithm

• (Choi et al., 2006) introduced a forgetting factor into Recursive-PCA

algorithm.

• (Wang et al., 2005) proposed a FastMoving Window-PCA algorithm.

• (Liu et al., 2009) suggested variable Moving Window-PCA algorithm

For this research paper, Moving Window model will be used and PLS algorithm is

chosen after some analyses. Generally the principle of operation of Moving Window

model is the window will be moving or sliding along the data, as the new data will be

adapted into the window and newprocess model will be generated while discarding

the oldest data which no longer representing the current process. Figure 2.1 shows

the concept of Moving Window model. For process monitoring purposes, mainly

Moving Window approach will be used along with PCA algorithms. According to

Wang et al., 2005, most suitable approach for process monitoring will be

combination of Moving Window and Recursive with PCA algorithms. This is

because the Moving Window techmque willupdate the window withnewdatapoints

and discard the old data points, on the other hand, recursive technique will help the



computation by updating the process model using the former model rather than

developing it from the original data points.

Window it time ftep i WMuwhntfi: m, Owrtaprtacm-AJ
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Figure 2.1: Basic Concept of Moving Window Model.

There is drawback using conventional method of Moving Window approach where

the usage ofconstant number ofsamples (window size) influents the predictability of

the process variables. Constant length of window will cause problem when the

window has to cover larger number of data in order to calculation in predicting the

variable Y (difficult-to-measure variables) (Wang et at, 2005). There are some

papers which arguing and discussing about variable Moving Window length by

combining the advantages of both Recursive model and Moving Window model for

the soft sensor development (Wang et al., 2005). On the other hand, recursive

technique also can be complex due to time varying processes in the industries and

selection of forgetting factor is difficult without an aforementioned knowledge

(Wang et al., 2005).



3.1 Introduction

CHAPTER 3

METHODOLOGY

First step is identifying the type of algorithms available for the soft sensor

development and analyze the mathematical model/equations behind thosetechniques.

Right after that, the appropriate algorithm will be selected to be adapted into the

models/approaches to observe the performance of each model. This will be done by

translating the mathematical equations into computer codes using MATLAB. Next,

an appropriate case study will be selected after reviewing the journals and

modeling/simulation will be done for the selected case study and hence data required

will be fitted into Moving Window approach. Validation of the soft sensor model

will be carried out to analyze and observe the performance of the developed soft

sensor. Figure 3.1 shows the flow chart for the methodology as explained above.

Steps 1 to 6 addresses the Objective #1 which been mentioned in earlier chapter

whereassteps 7 to 9 addresses the Objective #2 ofthe project.

1) Literature Review

2) Identification ofAppropriate MSPC Algorithm/ Technique

3) Selective ofappropriate case study

4) Modelling &Simulation ofthe case study

5) Data generation for soft sensordevelopment

6) Soft sensor development using Moving Window approach

7) Validationofthe soft sensor model

9) Evaluationof the performance of the model

Figure 3.1: Flow chart of the projectmethodology.



3.2 Model Development

The typical methodology ofsoft sensor development is shown in Figure 3.2 below.

Selection of historical
data from plant database

Outlier detection and data
filtering

Model Structure and
regressor selection

Model Estimation

Model Validation

Figure 3.2: Block diagram of soft sensor designing.

Selection of historical data from the plant will be the first step in developing soft

sensor. The historical data must represent the whole system dynamic and the high

frequency disturbances should be removed. After the data is selected, second step

will be carried out where the missing data or outliers will be detected and these

phenomena can be causedby faults in measurements or in the instruments or unusual

disturbances. Outliers are values which deviate from the ranges of measured values

and processingdata with outliers can affect the qualityof soft sensors. Strategies that

can be used in detecting the outliersare by using 3o~ edit rule, Jolliffeparameters and

residual analysis of linear regression (Fortuna et al., 2006). Besides existence of

abnormalities in the historical data, the data measured in the process industries are

also strongly co-linear. The two methods to deal the co-linearity is by transforming

the input variables into a new reduced space with less co-linearity as it is done in the

case of PCA or PLS (Kadlec et al., 2009). Figure 3.3 shows the outlier detected in a

spectroscopy process. After the second step(pre-processing the data), third stepwill

be carried out which is model structure and type of regression selection where

appropriate MSPC technique will be selected. Then the model will be estimated and

finally the performance ofthe model will be validated.



0 12 3 4 5 6 7

C (%) determinedby NIR spectroscopy

Figure 3.3: Example of outlier detected in spectroscopy experiment.

Based on the research that has been carried out, few of Multivariate Statistical

Process Control (MSPC) techniques are identified to be used in the project. The

techniques which are being studied are Least Square Regression Analysis, Partial

Least Square Regression Analysis and Principle Component Analysis.

3.3 Regression Analysis

Generally regression analysis can be said as a method that comprises many modeling

techniques in finding the relationship between one dependent variable with one or

more independent variables. By using regression analysis, the characteristics of a

dependent variable can be identified by analyzing the independent variables.

Application of regression analysis focuses more on prediction and forecasting

purposes especially for an industry which deals with processing and production

activities where the quality of the product need to be computed andestimated using

those variables. Figure 3.4 summarizes the types of regression method available and

can be used for the project. Specifically for this semester studies on Linear Least

Square Analysis, Partial Least Analysis and Principle Component Analysis have

been performed.
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Figure 3.4: Types ofRegression Analysis.

3.3.1 Least Square Regression Analysis

As mentioned above, Least Square is one of the methods in Regression analysis.

Least square regression method is one of the ways to derive a curve which minimizes

the discrepancy between the data points and the curve. On the other word, least

square analysis can minimize the sum of squares of the deviations between the actual

data and the estimated data. Least square analysis can be divided into 3 main

categories which are:

Figure 3.5: Categories of Least Square Regression Analysis.

3,3JJ Linear Least Square Regression Analysis

This analysis can be said as the simplest in Least Square Regression where a straight

line is fitted to a set of paired observations. Equation below shows the general

expression of linear least square regression:

y = a0 + atx + e (1)

11



In the equation above, e represents the error between the actual value taken from the

process and the value estimated by the mathematical function above. On the other

hand, ao and ai represent the intercept and the slope respectively. Derivations below

shows the procedures to minimize the sum of squares/discrepancybetween the actual

data and estimated values (curve).

From the Equation (1): e = y —a0 —axx

1U ei = Ef=i tt - 2*.i("o - aixO (2)
n n

Sum of squares,Sr= y e2 = > \yi(measured) —y((predicted)]2
i=± i=l

Sr = Zf=i(yi - a0 - alXi)2 (3)

In order to minimize the sum of squares, the partial derivations of the Equation (3) is

set to be zero:

g=-2Z(yi-a0-alXi) (4)

g=-2Z[(yi-a0-a1xi)xi] (5)
Equation (4) and (5) are further expanded and with an assumption of:

y a0 = na0

Eyi = na0 + a12xi (6)

ZyiXi = a0i;Xi + a1Zxi2 (7)

Equation (6) is multiplied with2 xt and Equation (7) is multiplied withn:

Syilx^naoSxi + aiQlxO2 (8)

n £ ViXj = na0Xx* + na42 Xi2 (9)

Equation (8) and (9) can be solved simultaneously to get the values of the parameter:

= nSytSxt-£yi£xi (10)

a0 = y-a!X (11)

12

, Sr
Standard deviation for regression line, Sy/X = _



Example below illustrates the analysis of linear least square regression method by

using the equations which been derived above:

Case Study 1

Fit a straight line to the x and y values in the table below. Compute the total standard

deviation, standard error of the estimate and the correlation coefficient for the data.

Other than that, APPENDIX A shows the MATLAB coding for the Linear Least

Square Regression analysis

Table 3.1: Computations for an error analysis of the linear fit

n = 7

£yi*< =H9.5
Yxt2 = 140

(]>\)2 =784

By substituting the values into Equation(10), the value ofajis known:

7(119.5) - (28)(24)

fll = 7(140) - 784 =°'83929

By substituting the respective value into Equation (11), value of ao is known:

a0 = 3.48571 - (0.83929)(4) = 0.07143

The least squares fit line is: y = 0.07143 + 0.83929 x

The standard deviation ofthe data against the mean will be:

ioizz)!=1.9457
y ' n-1

Xi yi

1 0.5

2 2.5

3 2

4 4

5 3.5

6 6

7 5.5

13



9911Sr =2^(yi ~a0- %*i)2 = 2.

x Jn-2
= 0.7735

5 —5
Error reduction percentages2 = -^-—- x 100 = 86.6 %

7

6
y = 0.8393x + 0.0714

R2 = 0.8683

5

4

3

2

1

0

(

^f
^^*^*

/*^S^^

) 1 2 3 4 5 6 7 8

x(i)

Figure 3.6: Graphical presentation of Linear Least Square Regression analysis.
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3,3,1,2 Multiple Linear Least Square Regression Analysis

Similar like linear least square regression analysis, the objective of multiple linear

least square regression analysis is to minimize the sum of squares of the discrepancy

between the actual data and the values predicted by the model. In multiple linear

regressions, the dependent variable (y) not only dependent to single variable (x) but

it may depend on many independent variables. Here for the computation of multiple

linear least square regressions, all the independent variables which contributes to the

estimation of dependent variable will be take in account. Equation below shows the

general equation for multiple linear regressions:

y = a0 + aiXj + a2x2 + a3x3 + - + akxk + e (12)

The sum of squares of the Equation (12) is shown in the equation below:

Hi ei = HU tt - SLi(a0 - alXli - a2x2i akX|d)2 (13)

In order to reduce the sum of squares, the partial derivation for the Equation (13) is

set to be zero:

dSr dSr dSr
r r r =o

daQ da± dak

The partial derivation equations can be expanded with an assumption:

2 a0 = naQ. The expanded equations can be expressed in the form of matrix for

detail understanding about the equations:

yxki **• 2-iXki2~iXki

aQ

i"k\
= [ i ]

To solve the equations involve in multiple linear regression method, Gauss

Elimination method can be used unlike in linear regression method where the

equations can be solve simultaneously (involve only 2 equations).

SrStandard deviation for regression line,Sy/X = ———

The case study below shows the application of multiple linear least square regression

method in analyzing the data:

15



Case Study

Use multiple linear least square regression method to fit the data below. Example of

MATLAB coding can be referred at APPENDIX B & C:

Table 3.2: Computations for an error analysis of the multiple linear fit

Xl *2 y

0 0 5

2 1 10

2.5 2 9

1 3 0

4 6 3

7 2 27

By setting the partial derivations of each term in the general equation, the equations

obtained are converted into matrices as shown below:

/ <*ii ? *K y xu y xu y *2i

y x2i y xu y x2i y *2* y %2\

a0

a1

a2J

Ysx2iyi
By computing all the terms as shown in the matrices above, following solution is

obtained for the case study:

6 16.5 14]ra°i r 54 i

16.5 76.25 48 % = 243.5

14 48 54J UzJ Lioo J

6a0 + 16.5at + 14a2 = 54

16.5a0 + 76.25at + 48a2 = 243.5

14a0 + 48a! + 54a2 = 100

(14)

(15)

(16)

By using gauss elimination, the equations above is solved and the solution for the
case study is y - 5 + 4 xi - 3 X2
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3.3.2 Partial Least Square Regression Analysis

PLS basically means the Projections to Latent Structures by means of Partial Least

Squares. PLS generally finds the linear regression model by projecting the predicted

variables and the observable variables into a new space. The data have to be pre-

processed before using PLS modeling because PLS gives accurate prediction when

the data are symmetrically distributed and contained fairly constant "error variance".

The data will be centered and scaled to unit variance before using PLS for the

analysis. In PLS the covariance between the score vector is maximize while the sum

of squares is minimize by using the least square method. Furthermore, PLS gives

higher predictive power than the multiple linear least square methods. Generally PLS

contains the two equations as shown below (Kaneko & Funatsu, 2011):

X = TP' + E (17)

y = Tq' + f (18)

The X-loading matrix = P GR™1

The Y-loading matrix -q GRlxl

X residual matrix =E E R™"1

Y residual matrix =f e R™*1

1is the number of components

Above equations shows the equations of PLS model whereas below equations shows

the regression model for PLS:

y = Xb + constant (19)

b = W(P'W)-V (20)

X-weight matrix = W e Rnxl

Regression coefficient vector = b e R71*1

The basics of PLS is explained in the illustrations below where the amount of

response used is 1 (M=l). Before the data is implemented into PLS, it is first treated

as mentioned above. First the data will be scaled to be plotted because if the two

variables are plotted with similar scale, the data might be spread in any of the axis

(e.g. vertical axis). To avoid such a situation, the data will be scaled where one axis

will be compressed whereas the other axis will be zoomed (expanded). There are
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many types of scaling but the most used will be unit variance (UV) scaling. After

scaled the variables, the second part of pre-processing procedure will be carried out

which is mean centering. Mean centering the average value of the each data will be

subtracted from the data. Figure 3.7 shows the variables that been pre-treated with

UV scaling and mean-centering, resulted in equal iength" and mean value zero.

A

A = UVscalmg
B = mean centering

B

Figure 3.7: Plots ofvariables after mean-centering and unit variance scaling.

1. PLS basically finds the linear or polynomial relationship between the

dependent (y) variables and independent (x) variables.

Y = f(x) + E

X = predictor variables

f (x) = linear or polynomial function

Predictors

S3

Response

S3 K
M

K R
O O

X
+2

y
sr &
<D q>
&2 &a

s N
o

N

Figure 3.8: Matrix representation ofX and Y variables.

2. The main objectives of PLS is to approximate the X and Y spaces precisely

and maximize the correlation between X and Y. These objectives can be

achieved by:

X = (1 x X) + TP' + E
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Y=(lxY) + UC' + F

U = T + H (inner relation where the coefficient is 1)

T = matrix of scores that summarizes the X variables

W = matrix of weights expressing the correlation between X and U(Y)

U - matrix of scores that summarizes the Y variables

C = matrix ofweights expressing the correlation between Y and T(X)

ESF,H = matrices of residuals

Case Study

The case study of the Partial Least Square Regression analysis is performed using

MATLAB by taking data on biochemical oxygen demand which is stored in

moore.mat padded with noisy versions of the predictors to introduce correlations.

Figure below shows the results obtained through the analysis using MATLAB. The

size of the y matrix is (20 x 1) where the number of response is 1 whereas the

numbers of observations are 20. On the other hand, the size of x matrix is (20 x 5)

where the numbers of predictors are 5 whereas the numbers of observations are 20 as

well.
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Figure 3.9: Graph ofpercentage variance explained in the response as a function of
the number of components.

Selection of number of components in PLS is a decisive step. The figure below

shows the correlation between the fitted and observed responses bycomputing the r2

value which is approximately 0.8421.
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Figure 3.10: Scatter plot shows correlation between the fitted and observed
responses.

Furthermore the number of components is increased to 6 components where the

weights of the ten predictors in each of the six components show that the two of the

components (the last two) describes the majority of the variance in X:

Figure 3.11: Plot ofweights of the 10 predictors in each of the 6 components versus
the predictors (K).

Finally a plot of the mean squared errors concludes that as few as 2 components may

provide a satisfactory model and Figure 12 shows the mean squared errors plot:

x 10

-e— MSE Predictors

o MSE Response

0_4

0.2

--&- -a

2 3 4
Number of Components

Figure 3.12: Plot ofmean squared errors.
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3.5 Tools Required

The tools required to accomplish this simulation project will be as shown below:

Table 3.4: Tools Required for the Research
TOOLS DESCRIPTION

MATLAB • it used to study and analyzethe regression techniques such as

linear regression, multilinear regression, partial least square

regression and principal component analysis.

HYSYS • Used to perform modification on the simulation of separation

acetone from 2-propanol process.

• Studied the effect of independent variables (input variables) on

the dependent variable (output variable).

• Generated data which is required for SIMCA-P software in

developing soft sensor model based on PLS algorithm.

SIMCA-P • Used to study the correlation between the input and output

variables based on PLS algorithm.

• Performed PCA analysis in order to find any outliers in the

imported data.

• Used to develop soft sensor model based on PLS algorithm by

applying MovingWindowapproach on the generateddata.

• Performed validation ofthe soft sensor in predicting the y

variable with higher precision.
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CHAPTER 4

CASE STUDY: BINARY DISTILLATION COLUMN

4.1 Introduction

This chapter will discuss about the data analysis of the case study which been

simulated in the HYSYS software. Separation of binary mixture of Acetone and 2-

Propanol in distillation column (BDC) is selected as the case study of the project.

Initially, the simulation model is generated using the calculated operating conditions

as shown below and a dynamic mode was chosen to run the model in order to extract

the data for further analysis.

Distillation column is a unit operation used to physically separate the mixtures based

on the volatility of the components in the mixtures. There are three types of

distillation processes which are Batch Distillation, Continuous Distillation and

Azeotropic Distillation. The case study for this project is carried out in a continuous

distillation which separates the Acetone and 2-Propanol. Below shows the schematic

diagram ofthe selected distillation column:

FEED

TOP PRODUCT

RECYCLE

BOTTOM

PRODUCT

STEAM

TOP PRODUCT

OUTLET

STEAM

OUTL

=1

ix>
BOTTOM i

PRODUCT OUTLET

Figure 4.1: Schematic diagram ofthe distillation column.
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Figure 4.2: Snapshot ofthe distillation column in the lab.

4.2 Analysis of the Distillation Column

As the simulation generated in HYSYS software encountered few problemswhere it

did not separate the components efficiently, analysis is performed on the simulation

to identify the root of problem. Manual calculation is performed to calculate the

theoretical values of the operating conditions of the distillation column for this

specific case study.

4.2.1 Determination of Column Operating Conditions

To identify the theoretical values of the operating conditions, Fenske-Underwood-

Gilliland method is chosen because ease of calculation and the method can be used

for binary mixture. First of all the heavy and light key components are determined

based on the objective of the separation where approximately 98% purity if Acetone

is expected as the top product.

More volatile component : Acetone

Less volatile component : 2-Propanol

For further calculations the bubble point and dew point of the streams are determined

using the following equation:

24



Bubble point: V y, =V Kjxf =1.0 Dew point: V Xj =V ~ =1.0

Here the value of Pi is the partial pressure of the individual component which will be

determined by Antoine Equation:

B
Antoinne Equation: log P —A- -r-—-

Table below summarizes the respective Antoine parameters for the components

which present in all the streams. The value of the Antoine parameter below is

applicable for Pressurein mmHg and Temperature in degreeCelsius.

Table 4.1: Antoine parameters for the components

No. Component Antoine Coefficients

A B C

1 Acetone 7.2316 1277.0300 237.2300
2 2-Propanol g,ng2 1580.9200 219.6200

Table below summarizes the temperature estimated using the above method for the

feed, bottom and top streams of the distillation column (Calculation summary is

shown in APPENDIX D).

Table 4.2: Summary ofthe estimated stream temperature
COMPONENT T (°C) BUBBLE POINT DEW POINT

Feed (Liquid Feed) 76.740 1.000
Top (Vapor form) 65.048 - 0.9999
Bottom (Liquid form) 82.475 1.000 -

4.2.2 Calculation of Minimum Number of Stages

The equation used to calculate the minimum number of stages is as shown below:

log N M
m" IogaLK

due - average relative volatility of the light key with respect to heavy key

xLk = light key mole fraction

xhk - heavy key mole fraction

d = distillate (top product)

b = bottom product

The respective values of relative volatility and mole fractions are substituted into the

equation for calculating the minimum number of stages and the answer obtained is:

Nmin = 4.8930-5 stages
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4.2.3 Minimum Reflux Ratio

In an operating column the effective reflux ratio will be increased by vapor

condensed within the column due to heat leakage through the walls. Equation

below is used to determine the minimum reflux ratio for the column:

z = l-q

q = thermal condition that depends on the condition ofthe feed

xi,f = the molar fraction ofthe component i in the feed

Basically the value of the theta should lie in between the values of relativity

volatility of the light and heavy key. The feed is assumed to be saturated liquid

(q-1) as it tends to decrease the minimum reflux ratio relative to a vaporized

feed.

Table 4.3: Summary ofthe theta calculation

Component a(feed) x(f) a(feed)*x(f) a(feed)-0 Underwood

Acetone

2-Propanol
1.0000 0.3000 0.3000 0.3109

0.4164 0.7000 0.2915 -0.2727

Sum

0.9650

-1.0687

-0.1037

Value of theta, 0 = 0.68913 (0.4164 < 6 < 1.0000)

The second equation in order to find the minimum reflux ratio is shown below:

«iX|,d

i cti-8

ai - relative volatility ofthe component, with respect to heavy key component

Rm= minimum reflux ratio

Xi, d = molar fraction ofcomponent, I in the tops at minimum reflux

= Rm + lLm

Table 4.4: Summary for the minimum reflux ratio calculation

Component a(d) y(d) a(d)*y(d) a(d)-9 Underwood

Acetone 1.0000 0.9000 0.9000

2-Propanol 0.3612 0.1000 0.0361
0.3109 2.8951

0.3612 0.1000

Rm + 1 2.9951

Minimum reflux ratio, Rm =1.9951
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4.2.4 Estimate Optimum Reflux Ratio and Actual Number of Stages

Generally the reflux ratio and the number of theoretical stages should be greater than

the minimum values that have been calculated in the early sections, this is to ensure

the separation between the 2 key components is efficient. According to the rule of

thumb, the valueR is determined based on the following equation:

R = (1.2 1.5)Rm here factor of 1.5 is chosen to find the R value

R = 2.9927-3.00

An importantshortcutmethodto determine the theoretical number of stages required

for an operating reflux ratio, R is the empirical correlation of Erbar-Maddox

correlation shown in below figure. This correlation is believedto give highly reliable

predictions which give the ratio of number of stages required to the number of total

reflux, as a function of the reflux ratio with the rninimum reflux ratio as a parameter.

According to the graph, the value obtained is:

Nm
„ = 0.63 and Nm = 9 stages
N

Nm
N = —— = 14.2118-15 stages including reboiler

U.6J

Table below summaries the operating conditions of the distillation column which

was generated in the HYSYS software to separate Acetone and 2-Propanol:

Table 4.5: Summary ofthe Design Operating Conditions
PARAMETERS DESIGN VALUES

Height
Diameter

5500 mm

150 mm

Number of Trays (Actual)
Type of Trays
Tray Spacing
Feed Tray Location
Column Pressure

15

Bubble Cap
350 mm

7

101.32 kPa

Column Temperature
Reflux Ratio

76.74 C

3.0

The calculated design operating conditions were taken as input to HYSYS model

which was run under dynamic mode. The following shows the summary of the

parameters determined by the user to analyze the model:

Logger Size (# Sample) : 4320
Integration Time : 1440 minutes
Sample Interval : 20 seconds
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4.3 Model Setback

Before the model was used to perform testing, certain steady state problems were
solved first. Those were:

PROBLEM

Mole fraction of

acetone in top product
stream was not 98%

purification

Fluctuation in the feed

flow controller (FIC-
feed)
Tray efficiency was
too low (6%)

Reflux ratio was very
small

CONSEQUENCES

Efficient separation does not occur
which incapable to reach the
objective of the separation
(complete separation ofacetone
from 2-propanol)
Affect other parameters such as
composition ofthe products and
feed flow rate

In able to reach the desired

composition ofacetone in top
product stream due to low column
efficiency

Limited amount of flow back to the

column (inefficient separation)

SOLUTIONS

Performed step input change
on process variables such as
reflux flow rate, steam flow
rate, and feed flow rate

Modified the tuning
parameter ofthe controller
(K.andTi)

Increased the column

efficiency up to 85%

Performed changes to the
reflux flow rate, feed flow
rate and steam flow rate until

desired reflux ratio is

achieved (3.0)

Table 4.6: Steady State Operating Parameters
PARAMETER

Feed Flow Rate

Reflux Flow Rate

Distillate Flow Rate

Bottom Flow Rate

Steam Flow Rate

Reflux Ratio

Mole Fraction ofAcetone (Top Product)
Mole Fraction of 2-Propanol (Top Product)
Reboiler Duty

STEADY STATE VALUES

0.6646 kmol/h

1.0511 kmol/h

0.1974 kmol/h

0.4677 kmol/h

1.001 kmol/h

5.325

0.9843

0.0269

40 720kJ/hr

The modified simulation was used as the steady state model to perform step changes

in the following input variables:

• Feed Flow Rate, kmol/h • Feed Temperature, °C

• Steam Flow Rate, kmol/h • Reflux Flow Rate, kmol/h

Figure 4.3 shows the snapshot of the PFD of the model generated in the HYSYS

software for separation of Acetone and 2-Propanol whereas Figure 4.4 shows the

method ofstep changes which been performed to the input variables:
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Figure 4.3: Generated model of the case study in HYSYS software.

10 12

Number ofData

Figure 4.4: Method of step change on the input variables.

Conclusively, separation of acetone from the 2-propanol process is taken as the case

study for the project and the operation conditions for the process were calculated

before the simulation is run in HYSYS software to generate data. The input variables

(feed flow rate, steam flow rate, reflux flow rate and feed temperature) were varied

in the range of ±10% based on the method shown in Figure 4.4 and the

corresponding data is recorded to study the impact of each input variable on the

output variable and statevariable. The generated data is usedinto SIMCA-P software

to observe the correlation between the variables before due to some process drifts.

This analysis is further explained in following chapter.
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5.1 Testing Data

CHAPTERS

RESULTS AND DISCUSSION

As explained in previous chapter, the calculated parameters of the operation

conditions were used to perform simulation of the case study in HYSYS. Studies on

the generated data are performed with an objective of knowing the relationship

between the ranging input variables on the output variable (mole fraction ofacetone).

The impact of input variables on the output variable (mole fraction of acetone) and

also on the state variable (temperature profile of the trays in BDC) were studied

initially in this chapter. The state variable also been observed in this research because

changes in the state variable will also indicate the changes in the output variable, this

is explained in a mathematical function below:

x ~ Ax + Bu and y —Cx

where x = variation in the state of the column

X = state variable and u = input variable

A, B, C = coefficients and y = output variable

As indicated in the equation above, variation in the state of the column not only

includes the input variables (feed flow rate, steam flow rate, feed temperature and

reflux flow rate) but also the state variable (temperature profile of the trays). Below

shows the results of the analyzed data and this analysis covers the impact of varying

input variables on the output variable and also on the state variable. Furthermore,

PLS software provided by SIMCA-P is used to further data analysis.

5.1.1 Effect ofVarying Feed Flow Rate

~0;99

-4-2024

Percentage Change in Feed Flow Rate

Figure 5.1: Relationship between Mole Fraction Acetone (Top) and Feed Flow Rate
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Interpretation: As evident in Figure 5.1, the variation on the mole fraction is larger from

the range of-10% up to the steady state condition. The feed reached its optimum separation

(optimum purification) where further increment in the feed flow rate will not affect the mole

fraction of acetone. The non-linearity characteristic of the variable can be observed where

the output variable is not directly proportional to the input variable. Trays temperatures of

BDC also taken into consideration for each step input change.

-90-

-4-2024
Percentage Change in Feed Flow Rate

10

Tray 15

Tray 14

Tray 13

Tray 12

Tray 11

Tray 10

Tray 9

Tray 8

Tray 7

Tray 6

Tray 5

Tray 4

Tray 3

Tray 2

Trayl

Figure 5.2: Relationship between Temperature of the Trays and Feed Flow Rate

Observation: Conclusively, the trays temperatures corresponded to the changes in the feed

flowrate. The feed entersthe distillation column at Tray 7 andtemperature profile differs for

the entire trays. The graph concludes that Tray 7 went through drastic change in the

temperature due to the changes in feed flow rate. Trays in the stripping section of the

distillationcolumn exhibits lesser variations in the temperatureprofile. However, the case is

different in the rectifying section where the temperature profile changes drastically.

5.1.2 Effect ofVarying Steam Flow Rate

^-2024

Percentage Change in Steam Flow Rate

10

Figure 5.3: Relationship between Mole Fraction Acetone (Top) and Steam Flow Rate
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Interpretation: In Figure 5.3, the variation of steam flow rate from 0% to 10% gave drastic

affect to the mole fraction of acetone compared to the variation of steam flow rate from -

10% to 0%. The less purity of acetone is obtained as the steam flow rate increases because of

decrement in the reflux flow rate (decrement in flow of the fluid back to the column).

-10 -8-6-4-2 0 2 4

Percentage Change in Steam Flow Rate

10

Tray 15

Tray 14

Tray 13

Tray 12

Tray 11

Tray 10

Tray 9

Tray 8

Tray 7

Tray 6

Tray 5

-Tray 4

Tray 3

Tray 2

Trayl

Figure 5.4: Relationship between Temperature of the Trays and Steam Flow Rate

Observation: The most affected tray due to the changes in the steam flow rate is Tray 10

where the temperature difference between the variations is larger than other trays (18.96 °C).

Tray 15 was least affected by the changes in the steam flow rate with the temperature

difference of 4.10 °C. Trays in the stripping section of the distillation column went through

less variation compared to trays in the rectifying section. Rectifying section is where the

concentrationof acetone increases in liquid and vapor. On the other hand, strippingsection is

where the mole fraction of acetone decreases in liquid and vapor. The BDC operates under

colder condition when the supply of steam decreases and vice versa.

5.1.3 Effect ofVarying Reflux Flow Rate

QS&

-10 -8-6-4-2 0 2 4

Percentage Change In Reflux Flow Rate

10

Figure5.5: Relationship between Mole Fraction Acetone (Top) and Reflux Flow Rate
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Interpretation: Figure 5.5 reveals the drastic change of mole fraction of acetone

from the range of-10% till 0% of reflux flow rate. Furthermore, acetone reached its

optimum concentration when the reflux flow rate is varied from 0% to 10% and

considerably the process has reached its optimum separation (optimum purification).

Further increment in the percentage change in reflux flow rate, the mole fraction will

not change in a larger amount because the changes almost reach stability (optimum).

There is non-linearity characteristic existed in the relationship between input variable

(reflux flow rate) and output variable (mole fraction of acetone). As the project

emphasis on developing soft sensor for time-varying factor, reflux flow rate can be

taken as the input variable or independent variable due to its effective impact on the

mole fraction ofacetone and also the non-linearity characteristic.

^o-

-10 -8 -6-4-2 0 2 4

Percentage Change in Reflux Flow Rate

10

Tray 15

Tray 14

Tray 13

Tray 12

Tray 11

Tray 10

Tray 9

Tray 8

Tray 7

Tray 6

Tray 5

Tray 4

Tray 3

Tray 2

Trayl

Figure 5.6: Relationship between Temperature of the Trays and Reflux Flow Rate

Observation: Convincingly, the temperature profile of the trays responded to the

changes in the reflux flow rate. The most affected tray was the feed tray (Tray 7)

where the slope of the graph is larger compared to others. The temperature profile

differs for rectifying section (Tray 8 till Tray 15) and stripping section (Tray 1 till

Tray 6). Trays in the stripping section of the distillation column displays smaller

variations in the temperature profile meanwhile in the rectifying section, the

temperature profile exhibits larger variations.
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5.1.4 Effect ofVarying Feed Temperature
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Figure 5.7: Relationship between Mole Fraction Acetone (Top) and Feed
Temperature.

Interpretation: Effect of percentage change in feed temperature on mole fraction of

acetone is inverse compared to feed flow rate and reflux flow rate. In Figure 5.7, the

variation of steam flow rate from 0% to 10% gave drastic affect to the mole fraction

ofacetone compared to the variation of steam flow rate from -10% to 0%. Separation

of acetone from 2-propanol reached its optimum when the feed temperature was

decreased from the steady state condition. The feed temperature was not varied more

than the range of ±10% because it can cause the column to operate under extreme

conditions (hot or cold condition). Conclusively, the feed temperature gives a prior

effect on mole fraction ofacetone. For each step input change, the trays temperatures

are taken for analysis and below shows the result obtained from the analysis.

-6-4-2 0 2 4 6

Percentage Change in Feed Temperature

Figure 5.8: Relationship between Temperature of the Trays and Feed Temperature
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Observation: As observed in Figure 5.8, the most affected tray was the feed tray

(Tray 7) where the slope of the graph is larger compared to others. The temperature

profile differs for all the 15 trays. Trays in stripping section (tray 1 till tray 6) did not

go through much variation in the temperature profile compared to the trays in

rectifying section (tray 8 till tray 15). From the analyses oftrays temperature profiles,

the impact ofeach tray on mole fraction ofacetone can be determined. Convincingly,

tray 8 till tray 15 gave larger impact on the concentration of acetone and as a result

those data can be used as an input variable in developing correlation between

independent variables and dependent variable.

Upon the analysis, the selected data is used to develop correlation between input

variables and output variables using PLS algorithm. SIMCA-P software established

by Umetrics AB is used to develop the model.
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5.2 Data Analysis

5.2.1 Development of Model

In SIMCA-P, predictors (x) and dependent variable (y) are specified earlier in order

to find relationship between those variables by PLS algorithm. Table below shows

the selected Predictors (x) and Dependent variable (y) for the separation of acetone

from 2-propanol process.

Table 5.1: Selected Dependent Variable and Predictors
Dependent Variable (Y) Mole Fraction ofTop Product (Acetone)
Predictors (X) Feed Temperature Reflux Molar Flow Rate

Feed Molar Flow Rate Steam Molar Flow Rate
Tray 1 Temperature Tray 9 Temperature
Tray 2 Temperature Tray 10 Temperature
Tray 3 Temperature Tray 11 Temperature
Tray 4 Temperature Tray 12 Temperature
Tray 5 Temperature Tray 13 Temperature
Tray 6 Temperature Tray 14 Temperature
Tray 7 Temperature Tray 15Temperature
Tray 8 Temperature

As mentioned in Chapter 3, the generated data from HYSYS need to be pre-

processed before import into SIMCA-P. Usage of raw data can cause an unequal

spread of data in the scatter plot and the results would only reveal the deviation in

one of the inputvariable (imbalance weightage of inputvariables on outputvariable).

As a solution, the input variables were pre-treated using Unit Variance Scaling

(UV) and mean-centering method. UV scaling provides an equal variance for all the

variables via:

• Standard deviation for each variable is calculated (Sk)

• Obtained the scaling weight, (1/Sk)

• Each observation ofthe variables is multiplied with the scaling weight

Moreover, the scaled data will be mean-centered to improve the interpretability of

the model. Here, the averagevalue of each scaledvariablewill be computedand then

subtracted from the data. After the pre-processing step, all the variables listed in

Table 5.1 were given equal importance/weightage and can be used for further

analysis and to develop the model. Below diagrams shows the analysis performed in

developing soft sensor model using Moving Window approach by PLS algorithm.
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Number of Variables

Figure 5.9: R2 value vs. Number ofVariables.

Initially, the model is developed by importing all the input variables generated from

the HYSYS into SIMCA-P software. The PLS algorithm in SIMCA-P will identify

the number of variables which gives larger impact on the output variable (mole

fraction of acetone) and useful in predicting the y variable in future. The variables

which are not affecting much on the y variable will be discarded one by one until

higher accuracy model is obtained in predicting the mole fraction of acetone. As

shown in Figure5.9, fourteen models were developed with differentnumber of input

variables (some of variableswere discarded due to its less contribution on y variable)

in order to study the accuracy and precision of the model in estimating the mole

fraction of acetone (y-predicted = y-observed). Table 5.2 shows the summary of the

chosen cases to develop the PLS model:

Table 5.2: Selected Cases to develop the PLS Model
CASE Number ofVariables

1 19 variables

2 10 variables

3 5 variables

The accuracy of the model is studied by referring to the R2 value of the regression

line (Y-Predicted vs. Y-Observed). R value basically provides info about the

goodness of fit of the model and it measures how good the regression line can

guesstimate the actual data points. Model with higher R2 value is selected as the

inferential model which will be used in studying the effect of Moving Window

approach where few data points will be discarded and new set of data points will be

added into the window (frame).
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PLS Model of Case 1

Initially, the PLS model is developed by using all the 19 process variables as the

predictors and 1 dependent variable and the results obtained are shown below:

Findings_NewNew.M1 (PLS)
YPradlLast comp.Kdl - Master Comp Mote Frac (Acetone))/YVar(d1 - Master Comp Mole Frac (Acetone))

y=rx+3.116e-008
R2=0.99

0.82 0.B3 0.84 fl.B5 0.86 0.87 0.88 0.B9 0.90 0.81 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

YPred[2Kd1 - Master Comp MoleFrac (Acetone]}

BKSEE - 0.00400367

Figure 5.10: Regression line for the original data

FindingsJMewNew.MI (PLS)
CoeffCS[Last comp.](d1 - Master Comp Mole Frac (Acetone))

Va ID(Primary)

S1UCA-P11 -7/31/SQ1211:58:59 Mi

KMCA-P11 - 7/31/201211:58:10 Al

Figure 5.11: Coefficient Plot for the Original data

Interpretation: The R2 shows the value of0.99 but as observed inFigure 5.10, there

are lots of data points which are away from the regression line. Furthermore, the

Coefficient Plot in Figure 5.11 reveals the contribution ofeach variable on estimating

the y-output (mole fraction of acetone). The model can be modified by excluding
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some of the variables which do not affect much the mole fraction of acetone such as

feed flow rate, feed temperature, reflux flow rate, steam flow rate, and temperature

profile of tray 1,3*4,5 and 6.

PLS Model of Case 2

FifHJings_NewNe«.M1 (PLS)
YPred[Last comp.]((31 -Master Comp Mote frac (Acetone))/War(ri1 -Master Comp Mole Frac (Acetone)}

0.82 0.83 0.34 0

1—t—i—t—i—i—*—i—i—i—i—i—i—i—i—i—i—i—i—i—i—\—i—(—i—(_

0.30 0.91 0.92 0.93 0.94 0.95

YPi^lidl -Master Comp Mole Frac (Acetone))

HKSEE = 0.00247031

0.97 0.98 0.99

SHaP11-7;31ffi0121:07:55Pfc

Figure 5.12: Y-Predicted vs. Y-observed plot after excluding 9 ofthe variable

Findings_NewNew.M1 (PLS)
CoeffCSjLast comp.](d1 - Master Comp Mole Free (Acetone))

Va ID (Primary)
9MCM* 11 -mifflOIS 1:07:19 H.

Figure 5.13: Coefficient Plot for the 10 variables.

Interpretation: Figure 5.12 shows the reconstructed regression line after removal of

nine variables which the variation does not affect the mole fraction of acetone. The

new R2 shows the value of0.9962, increased from the previous model. Compared to

previous model, this model could predict better the y-output as can be seen the data

points in Figure 5.12, are brought closer to the regression line. On the other hand,

Figure 5.13, proves that all the selected variable do give an effective impact on the
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mole fraction of acetone. But the model can be transformed to a better version by

removing certain variables such as temperature profile oftray 2, 7,10,11 and 12 due

to smaller contribution on acetone's concentration. The main objective is to develop

a model that can estimate the y-output (Y-Predicted) with higher accuracy so that the

y-predicted by the model can reflect the y-actualofthe process.

PLS Model of Case 3

R 0.95

£ 0.90

5 0.85

Findii.g5_NewNew.M1 (PLS)
YPred[Last comp.](d1 - Master Comp Mole Frac (Acetone))/YVar(d1 - Master Comp Mote Frac (Acetone))

y=rx+1.609fr008
R2=0.9997

Ml 0.92 0.93 094 0.95 0.!

YPrdf2](d1 -Master Comp Mole Frac (Acetone}}

HKSS = 0.000693306

0.97 0.98 0.99

SKCfrP 11-7/31/2012123:12PI

Figure 5.14: Y-Predicted vs. Y-observed plot after excluding 14 ofthe variable.

RnrJings_NewNew.M1 (PLS)
Coeffesjlflst comp.]{d1 -Master Comp Mole Frac (Acetone))
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3IMCAf 11 - 7/31/2012132:55 PI

Figure 5.15: Coefficient Plot for the 5 variables

Interpretation: After removal fourteen variables, the model developed can be said

satisfactory with the R2 value of 0.997 (almost reaching 1.0) and as observed in

Figure 5.14, almost all the data points are on the regression line. The equation

obtained from Figure 31 is y = x + (1.609 x 10"8) ~ y = xand this indicates that

y predicted is similar with y observed. Additionally, Figure 5.15 reveals the

coefficient plot for the selected variables where the coefficients refer to the pre-
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processed input variables (UV scaling and mean centered) and output variable (UV

scaling and not mean centered). Convincingly, all the variables gave almost equal

contribution on mole fraction ofacetone and from the coefficient plot the PLS model

can be written as regression model as shown below:

y = yaverage + %& + &

where F - model error and for this successful model the error is almost to the value

of zero and it is omitted from the equation

X = input variables (independent variables)

B - coefficient of the respective input variables

Y, Y average = mole fraction ofacetone

The regression model for the successfully developed model is as shown below:

xD = 24.3825 + [-0.0524 -0.1038 -0.291 -0.2917 -0.2817]

T8
T9

Tib

LTi5

where Tj = Tray temperature ofthe selected trays in BDC

xD = mole fraction of acetone in top product

As the developed model focuses on data generated when the efficiency of BDC is

0.85, it accommodates the time-invariant data only. In order to prove the model can

be used for estimation of y-output for time-varying data, more data are generated

from HYSYS by varying the efficiency of the column because efficiency reflects the

characteristic of the column.
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5.2.2 Validation of the Model

Findings_4 82012 OriginaLMI (PLS)
YPredfLast comp.](d1 - MasterCompMote Frac (Acetone))/YVartd1 - MasterCompMote Frac (Acetone))

0.95

£ 0.90

5 0.85

y=1Vl609e-008
R2=0-9997

0.82 0.83 0.84 0.85 0.86 0.87 0.8B 0.89 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

YPred[2j(d1 • MasterCompMole Frac(Acetone))

RHSEE = 0.000699303
SIMCA-P 11 - 8/3/2012 3:59:53 Pfc

Figure 5.16: Regression Line Plot for the Model including New Set ofData.
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Figure 5.17: R2 Value for the New Set ofData (3 Data Points).

Interpretation: Adaptation of the model to time-varying factor of the process is

checked by validating it with different set of data. Changes in the efficiency of the

trays also change the characteristic of the column which reflects the time varying

factor. Essentially three test run is performed for efficiency of 0.95, 0.75 and 0.65

without varying any of the x variables. Prediction of new observations is performed

by importing the new set of data into prediction set of the developed model in

SIMCA-P. The raw data was pre-processed before estimating the y variable by fitting
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it into the model. The predicted values of y-variable (mole fraction of acetone) did

notvary much from theobserved values from the simulation. The R2 values obtained

after fitting the new three set of data are 0.995. This verifies the developed soft

sensor model deteriorate with time varying factor of the process and can't

accommodate the variation in the process by predicting or estimating the difficult-to-

measure variable (concentration of acetone) with less precision. This validation is

performed by adding new set of observation into the existing model and without

discarding any ofthe observation. Figure 5.17, shows the R2 value for the new set of

data decreases to 0.6946 which proves the data did not fit perfectly on the line (Y-

predicted not equal to Y- observed). This is because the developed model can't

accommodate the time-varying phenomena of the process. Considerably it portraits

the conventional soft sensor which still uses the historical data which no longer

represent the current process condition and it tries to accommodate the time-varying

data of the process. New sets of models are developed by applying the concept of

Moving Window and the results are as shown below.

5.2.3 Development of Models based on Moving Window Approach

FindingsJ 8 2012 (ExJ old data).M1 (PLS)
YPredlLast comp.Kdl - Master Comp Mole Frac (Acetone))/YVar(d1 - Master Comp Mole Frac (Acetone))

2 0.95+

£ 0.90
o

O

^ 0.65

y=1*x-9.4G1e-0Q8
R2=0 9997

H 1 I—I 1 1 1 1 1-

0.82 0.83 0.84 0.85 0.86 0.37 0.88 0.89 0.90 0.91 0.93 0.93 0.94 0.95 0.96 0.97 0.98 0.99

YPred[2](d1 - Master Comp Mole Frac (Acetone))

RH3EE = 0.000724856
SiMCA-P11 - 8/3/2012 4:10:40 Pit

Figure 5.18: Model 1 by Discarding 1 Data Point.
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Findings_4 8 2012(Ex_2 old data).M1 (PLS)
YPredlLast comp](d1 - Master Comp MoteFrac (Acetone))/YVar(d1 - Master Comp Mote Frac (Acetone))

0.82 0.83 0.64 OSS 0.86 0.87 0.88 0.89 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

YPred[2](d1 - MasterCompMoleFrac (Acetone))
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Figure 5.19: Model 2 by Discarding 2 Data Points.

Findings_4 8 2012(Ex_3 old data).M1 (PLS)
YPred[Lastcomp.](d1 - Master Comp Mote Frac (Acetone))/YVar(d1 - MasterComp MoleFrac (Acetone))

0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9O 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

YPred[2]fd1 - MasterCompMole Frac (Acetone))
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Figure 5.20: Model 3 by Discarding 3 Data Points.

Interpretation: Moving Window approach was applied on the developed model

with the generated data (different efficiency of trays). The numbers of variables are

fixed (temperature profile of tray 8, 9, 13,14 and 15). For the first trial, the moving

window will discard 1 observation from the frame and include 1 new observation

(data generated for tray efficiency of 0.95) and perform the PLS computation. The

new R2 for the regression line is 0.9997 which proves the data fitted perfectly and y-

predicted equal to y-observed. The similar procedures were carried out by discarding

2 and 3 observations alternately and the number of observation is fixed (84

observations). As observed in Figure 36, 37 and 38, the models can estimate the mole

fraction of acetone with higher precision and accuracy. Conclusively, soft sensor

model is developed which can accommodate the time varying factor of the process.

Furthermore, Moving Window approach is used in the computation on estimating the

output variable by discarding the historical data which no longer represent the

process can be successfully applied on the developed soft sensor model.
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Overwhelmingly, this chapter discussed about the data analysis of the project, from

the point data is generated in HYSYS software until the soft sensor model is

developed and validated using SIMCA-P software. From the research, it is proven

that variables such as feed flow rate, steam flow rate, reflux flow rate, feed

temperature, and reflux ratio and temperature profile of trays give an effect on the

mole fraction/composition of the products. Due to this effect, a mathematical model

can be built relating those variables with the composition of the products. This

mathematical model can be used in estimating the product quality instantaneously

without an effort of taking infrequent sampling to be tested in the laboratory which

eventually changes the quality of the product caused by significant time delay. Input

variables which affect the mole fraction as mentioned above are taken as predictors

(X) while the composition ofacetone is taken as the dependent variable. By using the

PLS software provided by SIMCA-P; the mathematical model will be created using

the generated data from HYSYS. After analysis, it is verified that soft sensor model

with the highest accuracy (R2 value of 0.9997) can be developed by using only five

predictors, which gave larger impact on the dependent variable. Decrement of

predictors from nineteen variables to five variables, helped to reduce the computation

load to the model and can provide a faster response on estimating the y-variable.

Moreover, the developed model is validated by importing time varying data and

observed the accuracy of the model via R value. Time varying factor can be

represented by changing the characteristic of the column (changingthe efficiencyof

the trays). The accuracy of the model is managed to maintain as the R2 value is

approximately 0.9997 even though time varying data is introduced into the model.

This proves the developed model can perform well under non-stationary and time

varying process. Finally, the Moving Window approach is introduced via discarding

few data points and adapting new data points into the window (frame) by

maintaining the size of the frame (N) to be 84 observations. The developed models

could provide higher accuracy and precision in estimating the mole fraction of

acetone with R2 value approximately 0.9991 to0.9997.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

From the studies and research that have been carried out, the project's purposes have

been identified and sufficient information regarding soft sensors has been collected.

Besides that the availability of types of MSPC algorithms/techniques have been

identified where widely used algorithm for developing a soft sensor will be PLS

(Partial Least Square) and PCA (Principle Component Analysis) method. The

concept and mathematical algorithm of those techniques are identified and studied.

Other than that, studies have been carried out in identifying the types of adaptive

models to be used in order to develop the soft sensor by adapting the algorithm and

example of those models are Moving Window, Linear Recursive, Non-linear

Recursive, Time Difference and Just-In-Time are identified. For this paper, Moving

Window model will be used and the performance of this model will be monitored

using MATLAB Software. The separation of acetone from 2-propanol process is

studied and analyzed thoroughly where data were generated by using HYSYS

software to be used in developing the soft sensor model. Firstly the simulation of the

case study is corrected to give the preferred values of the composition and meet the

objective of the project. After that, test run have been performed to the simulation by

using step change method to the selected manipulated variables which are Feed Flow

Rate, Steam Flow Rate, Feed Temperature and Reflux Flow Rate. The data was later

analyzed to identify the effect of the independent variable on the dependent variable,

so that the correlation between the data can be understood for development of

inferential model which will be used for soft sensor modeling. The extracted data is

used in SIMCA-P software to develop the correlation between the input and output

variables by using PLS algorithm. The inferential model developed in SIMCA-P

software represents the soft sensor and it was validated by importing new

observations into the model which varies with time (by changing the characteristic of

the column) and analyzed the y predicted value. Besides that Moving Window

approach have been applied on the model by discarding one old observation and

fixed the size of the frame to be 84 observations. Successfully model which can

predict the difficult-to-measure variable instantaneously and represent the current

process have been develop for the separation ofacetone from 2-propanol process.
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6.2 Recommendations

In this project, soft sensor model based on Moving Window approach is developed

which, adapts the time-varying factors of the process. Further research can be done in

studying the development of the soft sensor model based on different approach such

as Time Difference, Just-In-Time and et cetera, which might provide a more accurate

and precise model in estimating the difficult-to-measure variables. Besides that, the

developed model can be implemented in the control system of the selected case study

(separation of acetone from 2-propanol). Through this recommended action, the

model can be further validated of its accuracy by changing not only its efficiency but

some other parameters and variables as well. Furthermore, various types of case

studies can be used in developing the model such as absorbers, which also requires

similar input variables as discussed in this project. Finally, the developed model can

be used in the pilot plants where the performance of the soft sensor can be validated

with actual plant data, and further improvement can be made so that it can be

released in the market.
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APPENDICES

APPENDIX A: MATLAB Coding for Linear Least Square Regression Analysis

% PROGRAM LREGES

% A LINEAR REGRESSION PROGRAM

% READ NUMBER OF DATA SETS, DATA OF X AND Y

n=input ( '\nEnter number data:');
forirow=l:n

x(irow)=input ( ' \nEnter value of x:r);
y (irow)^input ( 'Enter value of y: ');
end

% COMPUTE SUMMATION TERMS

sumx^O.0;

sumy=0.0;
sumx2=0.0;

sumxy=0.0;
for i=l:n

sumx=sumx+x (i);

sumy~sumy+y(i) ;
sumx2=sumx2+x (i) *x (i);
sumxy=sumxy+x(i) *y(i);
end

% SOLVE FOR COEFFICIENTS

det=n*sumx2-sumx*sumx;

A0= (sumy* sumx2 -sumxy*sumx) /diet;
Al= (n*sumxy-sumx*sumy)/det;
fprintf('\nCOEFFICIENT A0=%14.6e',A0)
fnrintff \nCOF,FFTCTF,NT AT =%1 4 . 6e ' . Al )

Enter number data:6

Enter value of x:10

Enter value of y:2.2

Enter value of x:15

Enter value of y:4.6

Enter value of x:20

Enter value of y:4.2

Enter value of x:25

Enter value of y: 7. 0

Enter value of x:30

Enter value of y: 6. 6

Enter value of x:35

Enter value of y:9.2

COEFFICIENT A0== 1.904762e-003

COEFFICIENT Al== 2.502851e-001»
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APPENDIX B: MATLAB Coding for Gauss Elimination

function x — gauss (n,a,b)
% FORWARD ELIMINATION: PERFORM ACCORDING TO THE ORDER OF

'PRIME' FROM 1 TO

% N-l

forip = 1:n-l

% LOOP OVER EACH EQUATION STARTING FROM THE ONE THAT

CORRESPONDS WITH THE

% ORDER OF 'PRIME' PLUS ONE

forie - ip+l:n
ratio = a(iefip) /a (ipfip)

% COMPUTE NEW COEFFICIENT OF THE EQUATION CONSIDERED
foric = ip+1:n

a(ie,ic) = a(iefic) - ratio*a (±p,ic) ;
end

b(ie) = b(ie) - ratio*b(ip) ;
end

% SET COEFFICIENT ON LOWER LEFT PORTION TO ZERO:

forie = ip+1:n
a(iefip) = 0. ;
end

end

% BACK SUBSTITUTION

% COMPUTE SOLUTION OF THE LAST EQUATION
x(n) = b(n)/a (n,n) ;

% COMPUTE SOLUTIONS FROM EQUATION N-l TO 1

forie = n-l:-1:1

sum = 0.;
foric = ic+l:n

sum = sum + a(ie,ic) *x(ic) ;
end

x(ie) = (b(ie) - sum) /a (ie,ie) ;
end
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APPENDIX C: MATLAB Coding for Multiple Linear Least Square Regression
Analysis

% PROGRAM MREGRES

% A MULTIPLE LINEAR REGRESSION PROGRAM

% READ NUMBER OF DATA SETS N

% NUMBER OF INDEPENDENT VARIABLES K

% AND DATA OF X(I,K) AND Y (I)

fid = fopenCdata.dat', 'r') ;
n = fscanf (fid, ' %f ,1) ;
k - fscanf (fid,'%f',l);

x = fscanf (fid,'%f , [3 6]);
x = x ';

y = fscanf (fid, ' %f , [n]} ;
b =zeros (k+l,k);
a =zeros (k+1,k+1);

% COMPUTE SQUARE MATRIX ON LHS AND VECTOR ON RHS OF SYSTEM

EQUATIONS

% CALL SUBROUTINE FOR SOLVING SYSTEM EQUATIONS

for 1=1:n

forir=l:k+l

ifir==l

fr-1.;

end

ifir>l

fr=x(i,ir-l) ;

end

foric^l:k+l

ific=:=l

fc=l.;

end

ifiol

fc=x(i,ic~l);

end

a(ir,ic) = a(ir,ic) + fr*fc;
end

b(ir)=b(ir)+fr*y(i) ;
end

end

kpl = k+1;
xx=gauss(kpl, a, b);
fprintf('\ncoefficient of fitted function are:')
for i = l:k+l

iml=i-l;

fprintf ('\n A(%ld) = %13. 7e' ,iml ,xx(i) ) ;
end
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ratio =

1

ratio =

1

ratio =

0.5000

coefficient of fitted function are.

A(0) « 6.0000000e+000

A(l) «* 3.5000000e+000

A(2) = 3.0000000e+000»
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APPENDIX C: MATLAB Coding for Partial Least Square Regression Analysis

loadmoore

y = moore (: ,6) % Response
XO = moore (:,1:5); % Original predictors
XI = X0+10*randn(size(X0)) % Correlated predictors
X ~ [X0,X1]

[XL,yl,XS,YS,beta,PCTVAR] - plsregress(X,y,10)
plot (1:10 , cumsum (100*PCTVAR (2 , :) ) , '-bo')
xlabel('Number of PLS components')
ylabel('Percent Variance Explained in y')
[XL,yl,XS,YS,beta,PCTVAR,MSE,stats] = plsregress(X,y,6)
yfit = [ones(size(X,l),1) X]*beta;
plot(y,yfit, 'o')

TSS = sum ( (y-mean (y) ). *2)
RSS = sum((y-yfit) .A2)
Rsquared - 2 - RSS/TSS

plot (1:10,stats. W, 'o- ')
legend({'cl', 'c2 ', 'c3','c4 ' , 'c5 ', 'c6'}, 'Location ', 'NW')
xlabel ('Predictor')
ylabel('Weight ')
[axes,hi,h2] = plotyyfO:6,MSE(1,:),0:6,MSE(2,:))
set(hl, 'Marker', 'o')

set(h2, 'Marker', 'o')

legend('MSE Predictors ','MSE Response')
xlabel ( 'Number of Components')

stats =

W: [10x6 double]

T2: [20x1 double]

Xresiduals: [20x10 double]

Yresiduals: [20x1 double]

TSS =

5.0679

RSS =

0.7728

Rsquared =

0.8475

axes =

170.0011 172.0013

hi =

171.0039

h2 =

173.0018
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APPENDIX D: Calculations for Binary Distillation Column

Table D.l: Dew Point Calculations for Top Product Stream
DEW POINT CALCULAT1ONS

TOP PRODUCT

Temperature 65.048 C

Pressure 863.300 mmHg

COMPONENT A B C
Psat (Antoinne

Equa)

Vapor
Pressure

(mmHg)
Ki=Pi/P yd yd/Ki

Acetone 7.2316 1277.0300 237.2300 3.0069 1016.0491 1.1769 0.9000 0.7647

2-Propanol 8.1182 1580.9200 219.6200 2.5646 366.9826 0.4251 0.1000 0.2352

1.0000 0.9999

Table D.2: Bubble Point Calculations for Bottom Product Stream

BUBBLE POINT CALCULATIONS

BOTTOM PRODUCT

Temperature 82.475 C

Pressure 863.300 mmHg

COMPONENT A B C
Psat (Antoinne

Equa)

Vapor
Pressure

(mmHg)
Ki = Pi/P xb Ki*xb

Acetone 7.2316 1277.03 237.23 3.2372 1726.6496 2.0001 0.1000 0.2000

2-Propanol 8.1182 1580.92 219.62 2.8850 767.3953 0.8889 0.9000 0.8000

1.0000 1.0000

Table D.3: Bubble Point Calculations for Feed Stream

BUBBLE POINT CALCULATIONS (FEED)

FEED (Liquid Feed)

Temperature
76.740 C

Pressure 863.300 mmHg

COMPONENT A B C
Psat (Antoinne

Equa)

Vapor
Pressure

(mmHg)
Ki = Pi/P xf Ki*xf

Acetone 7.2316 1277.03 237.23 3.1642 1459.6124 1.6907 0.3000 0.5072

2-Propanol 8.1182 1580.92 219.62 2.7837 607.7750 0.7040 0.7000 0.4928

1.0000 1.0000
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Figure D.l: Erbar-Maddox Correlation (Erbar and Maddox, 1961)
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