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ABSTRACT

The importance of using low supply voltage for analogue circuit has enormously

increased in recent past. The recent trend shows that a supply voltage can be degraded

until 1.5 V. Low power consumption also important to increase the battery life, the

packaging density and circuit reliability. CMOS op amp technology today can have

power consumption lower than 200 uW. The objective of this project is to design low

supply voltage and low power consumption CMOS operational amplifier.

Low supply voltage op amp with 1.6 V has been successfully designed. The design was

using bulk-driven PMOS transistors as an input differential of the op amp. The

compensation capacitor was also used to control the power consumption. The op amp is

capable of producing low power consumption of 20 uAV. The layout was design using

0.35 urn technology and have gone through DRC and LVS check. Software Virtuoso

Schematic Capture and Virtuoso Spectre Circuit Simulator from cadence have been used

for schematic capture and design simulation. For layout design, DRC and LVS check,

softwere Calibre from Mentor Graphic have been used.
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CHAPTER 1

INTRODUCTION

1.1. Background of Study

An operational amplifier, usually referred to as an "op-amp", is a DC-coupled high-gain

electronic voltage amplifier with differential inputs and, usually, a single output. In its

ordinary usage, the output of the op-amp is controlled by negative feedback which,

because ofthe amplifier's high gain, almost completely determines the output voltage for

any given input.

The operational amplifier was originally designed to perform mathematical operations

by using voltage as an analogue of another quantity. This is the basis of the analogue

computer where op-amps were used to model the basic mathematical operations

(addition, subtraction, integration, differentiation, and so on). However, an ideal

operational amplifier has many applications beyond mathematical operations [7].

Op amps were originally developed in the vacuum tube era, where they were used in

analog computers. Op amps are now normally implemented as integrated circuits (ICs),

though versions with discrete components are used when performance beyond that

attainablewith ICs is required[7]. Figure 1shows an image of vacuum tube era op amp.

The first integrated op amp available is the bipolar Fairchild uA709 in the late 1960. It

was rapidly out of date by the 741, which has better performance and is more stable and

easierto use. Introducing design based on FETon late 1970and MOSFET on early 1980

have rapidly increased the performance of op amp [7]. Integrated circuit based on the

MOSFET is called CMOS.



CMOS is currently the most widely used IC technology for both analog and digital as

well as combined analog and digital technology (or mixed-signal) applications. CMOS

technology has rapidly embraced the field of analog integrated circuit, providing low

cost, high performance solutions and rising to dominate the market. While silicon

bipolar and III-IV devices still find recess application, only CMOS processes have

emerged as a viable choice for integration for today's complex mixed signal systems [5].

Figure 1: Vacuum tube op amp

According to Moore's Law, engineers can double the number of transistor on a chip

every two years, largely by shrinking the size of existing transistor. Adding more

transistors allows engineers to increase performance or integrate new functions [8]. It

can also reduce power. Moore pointed out in his original paper that the doubling of the

number of components on an integrated circuit was due to three factors. First, and most

significant, half of the increase is derived from improvement in lithographic resolution.

Second, 25% of the increase is due to larger chip sizes, made possible by enhanced

manufacturing techniques and better lithography. Third, the remaining 25% is due to

innovation, such as more creative techniques for forming the components,



predominantly transistors, on a chip. These three factors are the driving forces behind

the trend for increasing the number of components on a chip [11]. With today's

technology that can scale down channel length to 0.1 um, low dc supply voltage is

required [5], Figure 2 shows the growth of transistors in Intel CPU's according to

Moore's Law
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Figure 2: Growth oftransistor for Intel CPU's accordingto Moore's law [8]

1.2. Problem Statement

Packaging a large number of devices on the same IC chip require a very small device

dimensions. Today CMOS process technologies are capable of producing devices with

0.1um channel length. Such small devices need to operate with dc voltage supplies close

to 1 V [5]. Typical supply voltage used in analog circuit today is 2.5 - 3 V [3]. But the

latest trend suggested that supply voltage can go down to 1.5 V and may less even [1],

[3], In my project, I will design the op amp that can operate with supply voltage in the

range of 1 - 1.75 V.



Low power consumption is crucial to support such large component density. Low power

consumption is important to ensure battery lives longer. The power consumption can be

minimized by either reduced supplyvoltage or supply current. But the transistor noise is

dependent on current. For current, there is certain limit of reduction. The best approach

is by reducing supply voltage. The recent technology has reported that the power

dissipationcan be reduced till 200 uW [2]. For my design, the power consumption must

be lowered than 200 u-W.

1.3. Objective and Scope of Study

The objective of this project is to design CMOS op amp that has the following

characteristics, low supply voltage below 1.75 V and low power consumption below 200

uW. The specification for the op amp must be defined first before designing the

schematic. The important specifications are load capacitance, DC gain, unity gain

frequency, phase margin, input common mode range and many more. The schematic

will be designed based on the specification define earlier. The schematic drawn will then

be simulated using software Virtuoso Schematic Editor and Virtuoso Spectre Circuit

Simulator from Cadence.

The second part of the project is to design the layout of the op amp based on the

schematic drawn before. The layout then will undergo the verification processes which

are Design Rule Check (DRC) and Layout Versus Schematic (LVS) check. The layout

design is then extracted. These procedures are performed using software Calibre from

Mentor Graphic. The other objective of this project is to expose the author to the

completed IC design flow process starting from the specification, design, validation,

layout, verification until extraction.



CHAPTER 2

LITERATURE REVIEW AND THEORY

2.1. Low Voltage Op Amp

As CMOS technology continue to shrink in size, the supply voltage, threshold voltage

and minimum channel length also decrease. The two critical problems in low supply

voltage design are providing rail-to-rail common mode input range and output swing.

The reduced in supply voltage also decrease circuit performance like bandwith and

input/output swing. Reduction in supply voltage also will reduce the power

consumption. Based on the references [1], [2], and [3], the lowest voltage supplied

designed for the analog signal was 1.5 V.

My objective is to produce low voltage op amp in the range of 1-1.75 V. In an

operational amplifier, when aiming for low supply voltage operation, the most critical

part is to design the input stage. Due to this, I will adopt the design in reference [1]

which is using the bulk-driven input. Figure 3 shows the MOSFET which is driven by

the bulk.

The operation of bulk-driven MOSFET is of depletion type. The gate-source voltage is

set to a value sufficient to turn on the transistor. Input voltage is then applied to the bulk

terminal of the transistor to modulate the current flow through the resistor. The

advantage of the bulk-driven device over a gate-driven device is that the threshold

voltage limitation disappears and both positive and negative bias voltage is possible.

This is especially important in analog circuits where the dynamic range of the signal

should be maximize with respect to the supply voltage in order to maximize the

performance of the circuit [1].
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Figure 3: Cross section of a bulk driven MOSFET

There are also some drawbacks of bulk-driven devices compared to gate-driven devices,

such as smaller transconductance (gmb instead of gm) because of smaller control

capacitance of the depletion layer, larger parasitic capacitance to the substrate, which

results in lower ft, and higher input referred noise, because of smaller transconductance

[!]•

2.2. Low Power Op Amp

I will adopt the design in reference [2] to obtain low power consumption. This design

employs the Miller effect by connecting a compensation capacitor Cc across the high

gain stage. A design procedure for this typeof op amp can be found in [9]. The value of

compensation capacitor effect the noise error and power consumption. Decreasing the

compensation capacitor causes reduced in power consumption but increases the noise

level [2]. However, due to unintentional feed-forward path through the miller capacitor,

a right halfplane zero is also created and the phase margin is degraded. Such a zero can

be removed if a proper nullifying resistor is inserted in series with the Miller capacitor

[9].



The Miller effect describes the fact that a capacitance between input and output of an

amplifier is multiplied by a factor of (1 - Av% where Av is the voltage gain of the

amplifier. Since, intuitively, a gain represents a voltage multiplication between points,

any capacitor across these points will charge and discharge with a current which is

multiplied by (1 - Av). In an amplifier with a negative gain, this effectively increases the

apparent capacitance by a factor of (1 - [Av |) [12].

Consider an inverting amplifier with the voltage gain Av, thus V2 = -AvVi. Impedance 23

added between the input and output of the amplifier will exhibit the Miller effect. The

input current is given by

T Vi - V2
Jl = 72a (2.1)

And the input impedance is

7 Vi ViZ:1 z3

Using Z3 = (JcoC) ~~!, the resulting input impedance is

z [m ju;C(l~A»). (2.3)

This means that the capacitance is effectively multiplied by the factor (1 - Av).

2.3. Basic Circuit in CMOS Op Amp

Basically all op amps have same the same subcircuit inside it which consists of current

mirror, differential amplifier and class AB output stage. The basic characteristics of the

subcircuit used in this project will be explained.



2.3.1. Differential Amplifier

A differential amplifier is a type of an amplifier that multiplies the difference between

two inputs by some constant factor (the differential gain). A differential amplifier is the

input stage of operational amplifiers. Figure 4 shows the differential amplifier formed

from two identical transistor put in sideway as shown in the transistor M3 and M4..

While most differential amplifier circuits use two separate voltage supplies, the circuit

can also operate using one voltage supply. A number of input signals are possible:

1. If an input signal is applied to either input with the other input connected

to the ground, the operation is referred to as "single-ended"

2. If two opposite polarity input signal are applied, the operation is referred

to as "double-ended"

3. If the same input is applied to both inputs, the operation is called

"common mode"

In single ended operation, a single input signal is applied. However, due to the common-

drain connection, the input signal operates both transistors, resulting an output from both

sources.

In double-ended operation, two input signals are applied, the difference of the input

resulting in outputs from both sources are produced. This is due to the difference signal

applied to both inputs.

In common-mode operation, the common input signal results in opposite signal at each

source. These signals canceling each other so that the resulting output signal is zero. As

a practical matter, the opposite signals do not completely cancel and a small signal

results.



The main feature of the differential amplifier is the very large gain when opposite

signals is applied to the inputs as compared to the very small gain resulting from

common inputs. Given two inputs •'in and vin, a practical differential amplifier gives an

output Vout:

V z / (2.4)

where Ad is the differential-mode gain and Ac is the common-mode gain.

The common-mode rejection ratio is usually defined as the ratio between differential-

mode gain and common-mode gain:

CMRR - 41
Ac (2.5)

From the above equation, we can see that as Ac approaches zero, CMRR approaches

infinity. The higher the resistance of the current source, Re, the lower Ac is, and the better

the CMRR. Thus, for a perfectly symmetrical differential amplifier with Ac = 0, the

output voltage is given by,

Vo„t = Al(Kn ~~ Kn) (2.6)

2.3.2. Current Mirror

The function of current mirror is to provide a constant current. The constant current is

obtained from an output current, which is the reflection or mirror of a constant current

developed on one side of the circuit. The circuit requires that the transistor have identical

gate-source voltage drops [4].
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Figure 4: Subcircuit ofdifferential amplifier and current mirror

The structure consisting of M5 and M6 in Figure 4 is a basic current mirror. In general

case, the devices need not be identical. The current equation can be written as:

m3 ' *w oxK y5v vs thJ
(2.7)

/ a=1/2*mC (WIL)AV -FJ (2.8)
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Obtaining

*I
m3

(2.9)

The key property of this topology is that it allows precise copying of current with no

dependence on process and temperature. The ratio of Im4 and Im3 is given by the ratio of

device dimensions, a quantity that can be controlled with reasonable accuracy.

2.3.3. Class AB Output Stage

Figure 5 shows the structure of class AB amplifier. Class AB amplifier functions like

combination of class A and class B amplifier. Class AB used complementary transistor

instead of class B which used one transistor only. Each transistor is amplified halves of

the signal and recombined later at the output. Such a circuit behaves as a class A

amplifier in the region where both devices are in the linear region. However the circuit

cannot strictly be called class A if the signal passes outside this region, since beyond that

point only one device will remain in its linear region and the transients typical of class B

operation will occur.

11
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2.4. The Design Op Amp

The complete op amp with bulk driven is shown in Figure 6. In this case an n-well

CMOS process been chosen, so that the bulk driven is of PMOS type. By applying the

input signal to the bulk terminal of the input transistor, the threshold voltage limitations

disappear. Other advantage is to minimize the current consumption and input referred

noise. The large channel length in input stage results in large output impedance of the

input stages which increases the gain but decrease the bandwidth of the op amp [1].

12
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Figure 6: The design op amp

The R-C Miller compensation is used to provide the stability of the op amp. The

compensation capacitor is connected between the output of the input stage and the

output stages in order to achieve a single low frequency higher than the gain bandwidth

product. Resistor is included to transform the right half-plane zero that arises from the

feedforward signal path through the compensating capacitor into high frequency left half

plane zero [3].
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2.5. Layout Design

Integrated circuit layout, alsoknown IC layout or IC mask layout is the representation of

an integrated circuit in terms of planar geometric shapes which correspond to the

patterns of metal, oxide, or semiconductor layers that make up the components of the

integrated circuit [13].

When using a standard process, where the interaction of the many chemical, thermal,

andphotographic variables are known andcarefully controlled, the behaviorof the final

integrated circuit depends largely on the positions and interconnections of the geometric

shapes. A layout engineer's job is to place and connectall the components that make up

a chip so that they meet all criteria.

The layout must pass a series of checks in a process known as verification. The two most

common checks in the verification process are Design Rule Checking (DRC), and

Layout Versus Schematic (LVS). When allverification is complete the data is translated

into an industry standard format, typicallyGDSII, and sent to a semiconductor foundry.

Theprocess of sendingthis data to the foundry is called tapeout due to the fact the data

used to be shipped out on a magnetic tape. The foundry converts the data into another

format and uses it to generate the photomasks used in a photolithographic process of

semiconductor device fabrication [13].

2.6. Design Rule Check (DRC)

The created mask layout must conform to a set ofdesign rules, in order to ensure a lower

probability of fabrication defect. Thisrule is knownas DesignRule Check (DRC). DRC

is a major step during physical verification of the design, which also involves Layout

Versus schematic (LVS). DRC used for this project is provided in the Appendix C.

14



Design rules are specific to a particular semiconductor manufacturing process. A design

rule set specifies certain geometric and connectivity restrictions to ensure sufficient

margins to account for variability in semiconductor manufacturing processes, so as to

ensure that most of the parts work correctly.

The main objective of design rule checking (DRC) is to achieve a high overall yield and

reliability for the design. If design rules are violated the design may not be functional.

To meet this goal of improving die yields, DRC has evolved from simple measurement

and Boolean checks, to more involved rules that modify existing features, insert new

features, and check the entire design for process limitations such as layer density. A

completed layout consists not only of the geometric representation of the design, but

also data that provide support for manufacture of the design. While design rule checks

do not validate that the design will operate correctly, they are constructed to verify that

the structure meets the process constraints for a given design type and process

technology [10].

2.7. Layout Versus Schematic (LVS)

The Layout Versus Schematic (LVS) determines whether a particular integrated circuit

layout corresponds to the original schematic or circuit diagram of the design. A

successful DRC ensures that the layout conforms to the rules required for faultless

fabrication. However, it does not guarantee if it really represents the circuit you desire to

fabricate. This is where an LVS check is used. The LVS netlist is provided in appendix

D.

LVS check recognizes the electrical components of the layout, as well as the

connections between them, and compares them with the schematic or circuit diagram

[14].

15



LVS Checking involves following three steps:

1. Extraction: The software program takes a database file containing all the layers

drawn to represent the circuit during layout. It then runs the database through

many logic operations to determine the semiconductor components represented

in the drawing by their layers ofconstruction. It then examines the various drawn

metal layers and finds how each ofthese components connects to others.

2. Reduction: During reduction the software generates a netlist representation ofthe

layout database.

3. Comparison: The extracted layout netlist is then compared to the netlist taken

from the circuit schematic. If the two netlists match, then the circuit passes the

LVS check. At this point it is said to be "LVS clean."

In most cases the layout will not pass LVS the first time requiring the layout engineer to

examine the LVS software's reports and make changes to the layout. Typical errors

encounters during LVS include:

1. Shorts: Two or more wires that should not be connected together have been and

must be separated.

2. Opens: Wires or components that should be connected are left dangling or only

partially connected. These must be connected properly to fix this.

3. ComponentMismatches: Components ofan incorrect type have been used.

4. Missing Components: An expected component has been left out of the layout.

5. Property Errors: A component is the wrong size compared to the schematic.

16



2.7. Design Specification

Thespecification of the op amp is defined beforethe schematic design is performed. The

important specification dataare provided in Table 2. These values are obtained from the

recent trend of op amp nowadays [1], [2], [3], [9] and [15].

Table 1: Specification ofCMOS op amp

Electrical parameters Expected value

Supply voltage (V) 1- 1.75

Load capacitance: Cl(pF) 5-10

DC gain: A0 (dB) >50

Unity-gain frequency: Fu(MHz) >1

Phase margin: 0m (deg) 65

Slew rate: SR (V/fisec) +5/-5

Input common range: ICMR (V) +1/-1

2.7.1. Supply Voltage

While most digital circuit use a single polarity power supply, (e.g., VDd and ground),

many analog circuits, especially op amps, are powered by a dual polarity power supply

(e.g., VDD, VSs and ground). By convention, VDd is positive relative to ground (e.g.,

+1V) and Vss is negative relative to ground (e.g., -IV). The use of dual polarity power

supplies allows us to center ac signals at ground and build circuits capable of generating

signals that swing above and below ground by a few volts [16]. [15] Has design supply

voltage till 1.75V and [1], has reported that the supply voltage can go down till 1 V

supply voltage. My objective is to design the supply voltage in the range of this two, 1-

1.75V.

17



2.7.2. Load Capacitance

In real circuit,op amp's output will drivesome othercircuitor instrument either on-chip

or off-chip. The addition of another circuit will load the op amp with some capacitance

and resistance. This can be representing in simulationby adding capacitor and resistor in

parallel to the op amp output. For driving the gate of a CMOS transistor (a typical on-

chip load), the load is purely capacitive, no need to add the load resistor [15]. From

design in [2], and [9], the expected loadcapacitance is in range of 5 - 10pF.

2.7.3. DC Gain

The open loop gainofan operational amplifier is the gain obtained when no feedback is

used the circuit. Openloop gain is usually exceedingly high; in fact, an ideal operational

amplifier has infinite open loop gain. Normally, feedback is applied around the op-amp

so that the gain of the overall circuit is defined andkept to a figure which is more usable.

Normally people aimto obtain higher than80 dB. For 1 V supply voltage in [1], the gain

is 44.6 dB. My objective is to obtain the gain higherthan 50dB.

2.7.4. Unity Gain Frequency

Unity gain frequency of the amplifier is the frequency at which the gain drops to one, or

0 dB. It indicates the highest usable frequency. It is important because it equals the

gainbandwidth product. It is such frequency of operation for a device where the gain of

thecomponent drops to unity. The unity gain frequency [1] is 1.3 MHzwhile in [2] is 5

MHz. For this design, the specification for the unity gain frequency is higher than 1

MHz.

18



2.7.5. Phase Margin

In electronic amplifiers, phase margin is the difference, measured in degrees, between

the phase angle of the amplifier's output signal and -360°. In feedback amplifiers, the

phase margin is measured at the frequency at which the gain drops to one, or 0 dB.

Based on [1], [2] and [3], the phase margin specifies is 65°.

2.7.6. Slew Rate

The speed of the amplifier is often limited by large-signal effects such as slew rate. Slew

rate is the maximum speed at which an op amp can charge or discharge its load for all

possible input signals. Based on [2], the predicted slew rate is -5 to +5 V/|isec.

2.7.7. Input Common Mode Range

Ideally, an op amp should work the same regardless of the dc levels of the input

voltages. Only the difference in two voltages between the two inputs should affect the

output. But, real circuit never behave this well. Input common mode range (ICMR) is

the range of input voltage where the circuit has a gain of approximately one. The

specification for the ICMR is -1 to +1 V.

19



CHAPTER 3

METHODOLOGY AND PROJECT WORK

3.1. Procedure

The first step in designing the op amp is to define the specification required for the

design. In industry, this specification is defined by the customer. From this specification,

the architecture for the op amp will be proposed. Then, the conceptual design will be

done by hand calculation. To optimize the design, the schematic then simulate was

simulated using cadence software. Once the simulation is done, the layout of the op amp

was drawn. After that, the layout design will be resimulated until verification and

extraction process are successful. The complete process of op amp IC design is shown in

Figure 7.

3.2. Tool Required

The tools that will be used for this project are cadence IC design software for schematic

capture and circuit simulation and Mentor Graphic for layout design, layout verification

and extraction. The detail for the software used is provided in Table 2.

Table 2: Process Vs the software used

Process Software

Schematic capture Virtuoso Schematic Editor

Circuit simulation Virtuoso Spectre Circuit Simulator

Layout design, Verification and extraction Mentor Graphic Calibre
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Define the specification

Schematic capture

Layout design

Layout extraction

Post-layout simulation

Figure 7: Flowchart ofthe project
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CHAPTER 4

RESULTS AND DISCUSSION

The schematic design has been simulated with Virtuoso Spectre Circuit Simulator

software from Cadence while layout have been designed, verified and extracted using

the Mentor Graphic Calibre software. The result of simulation have been obtained and

shown in Table 3.

4.1. Schematic Result

The results of simulation are listed in table 3. The positive supply voltage, VDd is set to

0.8 V while VSs is set to -0.8 V. The op amp is capable of operating at 1.6 V supply

voltage. This value had satisfied the project objective which is operate the op amp with

supply voltage in the range of 1 -1.75 V. This has been verified by setting the op amp to

function as a basic unity gain buffer. Figure 8 shows the plot for transient response of

input and output waveforms. The figure shows that the output waveform follows the

input waveform closely.
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Table 3: Simulated results of a 1.6 V op amp

Electrical parameters Value

Supply voltage (V) 1.6

DC gain: A0 (dB) 23

Unity-gain frequency: Fu (MHz) 0.1

Phase margin: 0m (deg) 69

Positive slew rate: SR (V/usec) 0.125

Negative slew rate: SR (V/|isec) 0.15

Input common range: CMR (mV) -250 to 700

Common mode rejection ration: CMRR
(dB)

57.62

Power consumption (uW) 20

Figure 8: Graph of input and output waveform function as unity gain
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Input common mode range (ICMR) was also measured when the op amp function in

unity gain mode. ICMR specify over what range of common mode voltage the

differential amplifier continues to sense and amplify the difference signal with same

gain. Ideally, the op amp should work the same regardless of the DC level of input

stages. The ICMR obtained is in range of -250 mV to 700 mV* very much smaller

compared to specify value which is -1 V to 1 V range. This value much lower is because

of the effect of reduced the power supply. The ICMR is important because it determine

if the output of a stage can interface with the input of another different or similar stage.

Figure 9 shows the plot output voltage versus input voltage to measure ICMR.

The frequency response of the op amp is shown in Figure 10. The measurement is taken

when the op amp is in differential mode with one of the input is grounded. The open

loop gain, AD obtained is 23 dB. This value is small compared to specify value which is

50 dB. Increase the power supply will increase the gain, but this will not satisfied the

project objective. Reduce the (W/L) of input stage also will increase the gain but at the

expense, other characteristics will be distorted. The unity gain frequency, the frequency

at which the gain drop to one or zero dB is 0.1 MHz. The phase margin at 0.1 MHz is

69°. It is important for phase margin to have a value greater than 0° in order to make

sure that the amplifier are theoretically stable. It is desirable to have a phase margin ofat

least 45°, with 60° is preferable in most situation. Therefore, the phase margin obtained

is very close to specify value, 65° and preferable value. An amplifier with lower phase

margin will ring for longer and an amplifier with more phase margin will take a long

time on the initial rise.
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Figure 9: Graph ofICMR
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Common mode gain measures how much the output changes in response to a change in

the common mode input level. Ideally common mode gain of an op amp is zero. The

amplifier should ignore the common mode level and amplify only the differential mode

signal. Common mode rejection ratio (CMRR) is defined as the differential mode gain

divided by the common mode gain. Common mode gain obtained is -34.3 dB like shown

in Figure 11 and differential gain is 23 dB. Subtracting these two values will give

CMRR of 57.3 dB. Ideally an amplifier should have an infinite CMRR. Practically, most

designer will aim for CMRR > 60 dB. A high CMRR is important in applications where

the signal of interest is represented by a small voltage fluctuation superimposed on a

(possibly large) voltage offset, or when relevant information is contained in the voltage

difference between two signals.

The speed of amplifier often limited by large signal effect such as slew rate. Slew rate is

the maximum rate at which the output voltage of an operational amplifier changes for a

square-wave or step-signal input. To measure slew rate, the op amp must be configure as

unity gain buffer. The slew rate obtain are 0.125 V/usec for positive slew rate and 0.15

V/usec for negative slew rate. The graph of slew rate is shown in Figure 12.

The power consumption was measured when op amp was configured as unity gain

buffer and both the inputs were set to ground. The total power dissipation is given by the

equation:

?=KdiddWssiss\ (41)

Where;

7^=Wm1+/M2 (4-2)

JDD =!-25 +2-514 +2-524 =6.288/^4

ISS-IM0+IM5+IM6 +IM7 <43>

7^=1.25 +1.257 +1.257 +2.524 =6.288/^
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So,

/, = 0.6*6.288//+0.6*6.288// = 20.1215//JF

From the simulation, the current obtained were Idd=Iss^6.288 uA. From the calculation,

the power consumption obtained was 20 uW. Most low power op amp work in the weak

inversion region in order to reduce the dissipation. It was seen that a low power could be

obtained at the expense of frequency response and other desirable characteristics.
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4.2. Layout Design

After developing the schematic of the design, the next step is to create a layout. A layout

describes the mask from which the design will be fabricated. The layers in a layout

describe the physical characteristics of the device and have more details than a

schematic. Therefore, layout verification ofthe design is critical. The layout design used

0.35um technology using software Calibre from Mentor Graphic. The design has

successfully undergone the DRC and LVS check. Figure 13 shows the complete view of

layout design and Figure 14 shows only the transistor view of layout design. The layout

after DRC check is shown in Figure 15 while the layout after LVS check is shown in

Figure 16.
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Figure 13: Full layout view
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CHAPTER 5

CONCLUSION AND RECOMMENDATION

5.1. Conclusion

The low voltage and low power CMOS op amp have been successfully designed and

simulated. The simulated result shows that this op amp can properly function as low as

1.6 V supply voltage. Power consumed by this design is 20 uW. The use of bulk-driven

input transistor make it possible to design low voltage and low power op amp. Both

these value have satisfied the project objective which is obtained low supplyvoltage and

low powerconsumption op amp. The gain of the op amp is 23 dB, unity gain frequency

is 0.1 MHz. thephase margin obtained is 69°. The load capacitance used was 10 pF. The

layout design for the schematic has been performed using 0.35 um technology. The

layout design hassuccessfully undergone theDRC andLVS check.

5.2. Recommendation

All the result obtained have satisfied the define specification except the open loop which

is 23 dB. Theopen loop gain can be increase by increase the supply voltage. Reduce the

(W/L) of the input stage also will increase the gain but at expense, other characteristics

will be distorted. Furthermore, this design also can be fabricate in smaller technology to

obtain a better result. The next process afterthis is tape out. If budget and equipment is

available, this op amp is ready to be tape out.
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APPENDICES

APPENDIX A

SCHEMATIC NETLIST

.subckt CMOS_AMP_SCH

*

* Globals.

.global VSS VDD

Rl M$9 N$214 hr 1.4k

CI NS214 VOUT notchedrow 250f

MN3 VOUT N$9 VSS VSS n L=5u W=100u
MP5 VOUT NS5 VDD VDD p L=5u W=100u
MN2 N$9 M$7 VSS VSS n L=20u W=400u
MK1 N$7 N$7 VSS VSS n L=20u W=400u
MP4 KS9 VSS NS8 VIN2 p L=20u W=400u
MP3 N$7 VSS K$8 VINl p L=20u W=400u
MP2 K$8 N$5 VDD VDD p L=5u W=100u
MP1 VSS NS5 VDD VDD p L=5u W=50u

.ends CMOS AMP SCH



APPENDIX B

LAYOUT NETLIST

* SPICE NETLIST
***************************************

.SUBCKT via

** N=l EP=0 IP=0 FDC=0

.ENDS

***************************************

.SUBCKT nwell_contact
** N=2 EP=0 IP=0 FDC=0

.ENDS
***************************************

.SUBCKT cmos_amp_sch VDD VSS
** K=25 EP=2 IP=32 FDC=10

MO VSS 4 2 VSS H L=4e-07 W=6e-07 AD=1.24e-12 AS=1.12e-12 $X=-35000 $Y=1000 $D=1
Ml 4 4 VSS VSS N L=4e-07 W=6e-07 AD=1.12e-12 AS=1.24e-12 $X=-26000 $Y=1000 $D=1
M2 6 2 VSS VSS N L=4e-07 W=6e-07 AD=1.12e-12 AS=1.12e-12 $X=147000 $Y=2000 SD=1
M3 VDD 1 7 VDD P L=4e-07 W=6e-07 AD=1.24e-12 AS=1.12e-12 SX=-31000 $Y=66000 $D=0
M4 VSS 1 VDD VDD P L=4e-07 W=6e-07 AD=1.12e-12 AS=1.24e-12 $X=-22000 $Y=66000 $D=0
M5 6 1 VDD VDD P L=4e-07 W=6e-07 AD=1.12e-12 AS=1.12e-12 $X=2130G $Y=66500 $D=0
M6 4 VSS 7 9 P L=4e-07 w=6e-07 AD=1.12e-12 AS=1.12e-12 $X=89300 $Y=70250 $D=0
M7 2 VSS 7 10 P L=4e-07 W=6e-07 AD=1.12e-12 AS=1.12e-12 $X=157300 $Y=71200 $D=0
R8 2 8 1292.86 $X=1000 $Y=-35000 $D=3

C9 6 8 2.50042e-13 $X=-310500 $Y=-69000 $D=2

.ENDS
*** ************************************
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APPENDIX C

DESIGN RULE CHECK (DRC) RULE

// ADK v3.0

//

// MOSIS Scalable CMOS Submicron Design Rules (as of Rev. 7.3 with half lambda rules)

//

// TSMC 0.35 u parameters for double-poly, 4-level metal process: SCN4ME

UNIT LENGTH u

UNIT CAPACITANCE ff

UNIT RESISTANCE ohm

UNIT TIME ns

INCLUDE "$ADK/technology/ic/process/layers_tsmc035"

DRC_0 = EXTENT
BULK = SIZE DRC 0 BY 1.0

PSUB

DIFF

PDIFF

NDIFF

NWTIE

PSUBTIE =

GATES

NGATE

PGATE

BULK

ACTIVE

DIFF

DIFF

NDIFF

PDIFF

POLY

GATES

GATES

NOT

NOT

AND

AND

AND

AND

AND

AND

AND

NWELL

POLY

P_PLUS_SELECT
N_PLUS_SELECT
NWELL

PSUB

ACTIVE

N_PLUS_SELECT
P PLUS SELECT

SGATES = SIZE GATES BY 2

GPOLY = POLY AND SGATES

FPOLY = POLY NOT GPOLY

dfcnt = CONTACT_TO_ACTIVE INSIDE DIFFUSED_RESISTOR
dfcnto = size dfcnt by 2
dfrs = dfr NOT dfcnto

psdt = pdiff not poly
nsdt = ndiff not poly
PSRCDRN = psdt not dfrs
NSRCDRN = nsdt not dfrs

pres =

respin =

HR

HR_j>in =

CAP

CAP pin =

POLY and P_PLUS_SELECT
POLY and N PLUS SELECT

ELECTRODE AND HI_RES_IMPLANT
ELECTRODE NOT HI RES IMPLANT

POLY AND ELECTRODE

METAL1 AND ELECTRODE

SELECT = N_PLUS_SELECT OR P_PLOS_SELECT
BOTH_CONTACT = CONTACT_TO_POLY OR CONTACT_TO_ACTIVE
ACT_CONTACT = CONTACT_TO_ACTIVE OR CONTACT
POL_CONTACT = CONTACT_TO_POLY OR CONTACT

CONNECT METAL3 METAL4 BY VIA3

CONNECT METAL2 METAL3 BY VIA2

CONNECT METAL1 METAL2 BY VIA

CONNECT METAL1 POLY BY CONTACT_TO_POLY
CONNECT METAL1 POLY BY CONTACT

CONNECT METAL4 METAL4.PORT

CONNECT METAL3 METAL3.PORT

CONNECT METAL2 METAL2.PORT

CONNECT METAL1 METAL1.PORT

CONNECT POLY
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CONNECT METALl HR_pin by CONTACT_TO_ELECTRODE
CONNECT METALl CAP_pin by CONTACT_TO_ELECTRODE
CONNECT METALl pres by CONTACT_TO_POLY
CONNECT METALl respin by CONTACT_TO_POLY

CONNECT METALl ACTIVE by CONTACT_T0_ACTIVE DIRECT
CONNECT METALl N_WELL P_WELL by CONTACT_TO_ACTIVE DIRECT
CONNECT METALl ACTIVE by CONTACT DIRECT

CONNECT METALl NJffELL P_WELL by CONTACT DIRECT

//

// Mask ICtrace Rules

//
CONNECT METALl NSRCDRN PSRCDRN BY CONTACT_TO_ACTIVE mask
CONNECT METALl NSRCDRN PSRCDRN BY CONTACT mask

CONNECT PSRCDRN PSUB mask

CONNECT NSRCDRN NWELL mask

CONNECT N_PLUS__SELECT mask
CONNECT P_PLUS_SELECT mask
CONNECT NPLUS mask

CONNECT PPLUS mask

VIRTUAL CONNECT NAME VSS

VIRTUAL CONNECT NAME Ring_VSS
VIRTUAL CONNECT NAME VDD

VIRTUAL CONNECT NAME Ring_VDD
VIRTUAL CONNECT NAME GND

VIRTUAL CONNECT NAME ground

//
// Technology specific information.

//

//

// ICtrace Device Definitions

//

DEVICE MP PGATE POLY(G) PSRCDRN (S) PSRCDRN (D) NWELL(B) (S D) NETLIST MODEL p

[
prop w, 1, AS, AD
w = ( perim_co(pgate,s) + perim_co(pgate,d) ) * 0.1 // factor is .5 * lambda
1 = ( perim(pgate) - perim_co(pgate,s) - perim_in{pgate,s) - perim_co(pgate,d)

perim_in(pgate,d) ) * 0.1
AS = area(S) * 0.04

AD = area(D) * 0.04

3

DEVICE MN NGATE POLY{G) NSRCDRN(S) NSRCDRN(D) PSUB(B) (S D) NETLIST MODEL n

[
prop w, 1, AS, AD
w = ( perim_co(ngate,s) + perim_co(ngate,d) ) * 0.1 // factor is .5 * lambda
1 = ( perim(ngate) - perim_co (ngate, s) - perim_in (ngate, s) - perim_co (ngate, d)

perim__±n(ngate,d) ) * 0.1
AS = area(S) * 0.04

AD = area(D) * 0.04

]

DEVICE C CAP POLY CAP_pin (POS NEG) [0.03456 0]

//DEVICE R pres respin respin [7.9]

DEVICE R HR HR_pin HR_pin [50.9]

//
// ICextract Rule Definitions

//

IV



capacitance order POLY METALl METAL2 METAL3 METAL4 direct mask

capacitance intrinsic METAL4 [0.0004 0.0026]

capacitance intrinsic METAL3 [0.0003 0.0100]
capacitance intrinsic METAL2 [0.0006 0.0060]

capacitance intrinsic METALl [0.0011 0.0090]
capacitance intrinsic POLY [0.0044 0]

capacitance crossover METAL4 METAL3 [0.0032 0..0096 0]

capacitance crossover METAL4 METAL2 [0.0013 0..0068 01

capacitance crossover METAL4 METALl [0.0007 0..0052 0]

capacitance crossover METAL4 POLY [0.0005 0..0046 0]

capacitance crossover METAL3 METAL2 [0.0032 0..0106 0]

capacitance crossover METAL3 METALl [0.0012 0..0070 0]

capacitance crossover METAL3 POLY [0.0008 0..0056 0]

capacitance crossover METAL2 METALl [0.0030 0..0100 0]

capacitance crossover METAL2 POLY [0.0014 0..0074 0]

capacitance crossover METALl POLY [0.0043 0..0124 0]

resistance sheet METAL4 [0.04 0]

resistance sheet METAL3 [0.07 0]

resistance sheet METAL2 [0.07 0]

resistance sheet METALl [0.07 0]

resistance sheet POLY [8.9 0]

resistance sheet HRjpin [50.9 0]

resistance sheet PSRCDRN [144.2> 0]

resistance sheet NSRCDRN [81.1 0]

resistance •connection METALl POLY [6.9 0]

resistance >connection METALl METAL2 [1.26 0]

resistance •connection METAL2 METAL3 [1.39 03

resistance iconnection METAL3 METAL4 [1.26 0}

resistance iconnection METALl PSRCDRN [120.0 0]

resistance iconnection METALl NSRCDRN [61.4 0]

resistance iconnection METALl HR pin [33.7 0]

mask

mask

mask

mask

mask

mask

//

// END OF TECHNOLOGY SPECIFIC INFORMATION

//

// ICrules Rule Definitions

//

subcont = EXT CONTACT_TO_ACTIVE (active) < 2 ABUT == 0 OVERLAP OPPOSITE
wellcont = EXT CONTACT TO ACTIVE (active) < 2 ABUT = 0 OVERLAP OPPOSITE

bad_active_area { @ Active area must be covered by a select
x = active NOT PJ?LUS_SELECT
x NOT N_PLUS_SELECT

}

bad_contact_poly { @ Contact to poly must consist of poly, CONTACT_TO_POLY, and METALl
CONTACT_TO_POLY NOT INSIDE poly
CONTACT_TO_POLY NOT INSIDE METALl

}
bad_contact_ELECTRODE { @ Contact to ELECTRODE must consist of ELECTRODE,
CONTACT_TO_ELECTRODE, and METALl

CONTACT_TO_ELECTRODE NOT INSIDE ELECTRODE
CONTACTJTO_ELECTRODE NOT INSIDE METALl

}

bad_contactractive { @ Contact to active must consist of active, CONTACT_TO_ACTIVE, and
METALl

CONTACT_TO_ACTIVE NOT INSIDE active
CONTACT_TO_ACTIVE NOT INSIDE METALl

}
bad_contact_gate { @ Contact to poly may not be on gate region.

CONTACT_TO_POLY AND active

}
bad_via {@ Via must consist of METALl, via, and METAL2

via NOT INSIDE METALl

via NOT INSIDE METAL2

}
bad via2 {@ Via2 must consist of METAL2, via2, and METAL3



via2 NOT INSIDE METAL2

via2 NOT INSIDE METAL3

}
bad_via3 {@ Via3 must consist of METAL3, via3, and METAL4

via3 NOT INSIDE METAL3

via3 NOT INSIDE METAL4

}

select_overlap { @ Overlap of N+ and P+ not allowed
AND P_PLUS_SELECT N__PLUS_SELECT

}
bad_nwell { @ Nwell must have well contact

x = ACT_CONTACT AND nwtie
nwell NOT ENCLOSE K

}
bad_psubstrate { @ Psubstrate must have a substrate contact

x = ACT_CONTACT AND psubtie
psnb NOT ENCLOSE x

}
bad_pgate { @ P-type gate must not be in psubstrate

pgate AND psub

}
bad_ngate { @ N-type gate must not be in nwell

ngate AND nwell

}
bad_port { @ Port must be completely covered with Metal

METALl.PORT NOT INSIDE METALl

METAL2.PORT NOT INSIDE METAL2

METAL3.P0RT NOT INSIDE METAL3

}
DRC1_1 { @ N-Well width = 12L

INT nwell < 12 SQUARE REGION SINGULAR

}
DRC1_2 { @ N-well spacing (different potential) = 18L

EXT nwell < 18 NOT CONNECTED SQUARE REGION SINGULAR

}

DRC2_1 { @ Active area width = 3L
INT active < 3 SQUARE REGION

}
DRC2_2 { @ Active area spacing = 3L

EXT active < 3 SQUARE REGION

}
DRC2_3 { @ Source/Drain Active to Well Edge = 6L

EXT nwell ndiff < 6 SQUARE REGION SINGULAR

ENC pdiff nwell < 6 ABUT = 0 OVERLAP SQUARE REGION SINGULAR

}
DRC2_4 { @ Substrate/Well Contact, Active to Well Edge = 3L

ENC ndiff nwell < 3 ABUT = 0 OVERLAP REGION SINGULAR

EXT nwell pdiff < 3 REGION SINGULAR

}
DRC3_1 { @ Poly width = 2L

INT poly < 2 SINGULAR

}
DRC3_2 { @ Poly spacing = 3L

EXT poly < 3 SINGULAR

}
DRC3_3 { @ Gate poly overlap of active = 2L

pgate TOUCH psrcdrn == 1
ngate TOUCH nsrcdrn == 1
ENC active poly < 2 ABUT = 0 SQUARE REGION

)
DRC3_4 { @ Active overlap of gate poly = 3L

ENC poly active < 3 ABUT == 0 SQUARE REGION

}
DRC3_5 { @ Field poly to active = 1L

EXT poly active < 1 SQUARE REGION ABUT == 0

!
DRC4.lp {

nxtor = NSRCDRN OR GATES

ENCLOSURE GATES nxtor < 3

VI



} // nselect overlap of gate

DRC4.In {

pxtor = PSRCDRN OR GATES

ENCLOSURE GATES pxtor < 3
} // pselect overlap of gate

DRC4.2 {

ENCLOSURE ACTIVE SELECT < 2 ABUT == 0 OVERLAP SINGULAR

} // select overlap of active
// use of both selects implies space

DRC4.3p {
ENCLOSURE CONTACT_T0_ACTIVE P_PLUS_SELECT < 1 ABUT == 0 OVERLAP SINGULAR
} // pselect overlap of actcont

DRC4.3n {

ENCLOSURE CONTACT_TO_ACTIVE N_PLUS_SELECT < 1 ABUT == 0 OVERLAP SINGULAR
} // nselect overlap of actcont

DRC4.4pW { INTERNAL PJ?LUS_SELECT < 2 } // width
DRC4.4pS {

EXTERNAL P_PLUS_SELECT < 2 NOT CONNECTED
} // space

DRC4.4nw { INTERNAL N_PLUS_SELECT < 2 } // width
DRC4.4ns {

EXTERNAL N_PLUS_SELECT < 2 NOT CONNECTED
} // space

DRC4.4np { AND N_PLUS_SELECT P_PLUS_SELECT } // p and n selects overlap

DRC5_1 { @ Contact to poly size exactly 2L X 2L
NOT RECTANGLE C0NTACT_TO_POLY = 2 BY == 2

}
//
// This rule is violated in MOSIS pads. This rule set utilizes the half
// lambda grid rules. Therefore, to ignore the violation, a new layer
// (PADS) has been introduced to ignore this violation if present.

//

DRC5_2 { @ Poly overlap for contact = 1.5L
x = CONTACT_TO_POLY NOT PADS
ENC x poly < 1.5 ABUT == 0 SQUARE REGION OVERLAP

}
DRC5_3 { @ Contact to poly spacing = 3L

EXT CONTACT_TO_POLY < 3 SINGULAR SQUARE

)
DRC5_4 { @ Contact to active space to gate of transistor = 2L

EXT CONTACT_TO_POLY gates < 2 ABUT = 0 REGION SINGULAR

}
DRC6_1 { @ Contact to active exactly 2L X 2L

NOT RECTANGLE CONTACTJTO_ACTIVE == 2 BY == 2

}

//
// This rule is violated in MOSIS pads. This rule set utilizes the half
// lambda grid rules. Therefore, to ignore the violation, a new layer
// (PADS) has been introduced to ignore this violation if present.

//

DRC6_2 { @ Active overlap for contact = 1.5L
x = CONTACT_T0_ACTIVE NOT PADS
ENC X active < 1.5 ABUT == 0 OVERLAP REGION

}
DRC6_3 { @ Contact to active spacing = 3L

EXT CONTACT_TO_ACTIVE < 3 SINGULAR SQUARE REGION

}
DRC6_4 { @ Contact to active space to gate of transistor = 2L

EXT CONTACT_TO_ACTIVE gates < 2 ABUT == 0 SQUARE REGION SINGULAR

)
DRC7_1 { @ Metall width = 3L

INT METALl < 3 SINGULAR

}
DRC7_2 { @ Metall spacing = 3L

EXT METALl < 3 SINGULAR

I
DRC7_3 { @ Metall overlap of contact to poly or contact to active = 1L

ENC BOTH_CONTACT METALl < 1 ABUT == 0 SQUARE REGION

}
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DRC7_4 { @ Metall spacing = 6L if width > 10L
widem = METALl WITH WIDTH > 10

thinm = METALl WITH WIDTH <= 10

EXT widem < 6 SINGULAR

EXT widem thinm < 6 SINGULAR

}

DRC8_1 { @ Via size exactly 2L X 2L
x = NOT RECTANGLE via == 2 BY == 2

x OUTSIDE overglass

}
DRC8_2 { @ Via spacing = 3L

EXT via < 3 SINGULAR SQUARE REGION

}

DRC8_3 { e Via overlap by METALl = 1L
ENC via METALl < 1 ABUT == 0 SQUARE REGION

}

DRC9_1 { @ Metal2 width = 3L
INT METAL2 < 3 SINGULAR

}
DRC9_2 { @ Metal2 spacing = 3L

EXT METAL2 < 3 SINGULAR

1
DRC9_3 { @ Metal2 overlap of via = 1L

ENC via METAL2 < 1 ABUT == 0 SQUARE REGION

}
DRC9_4 { @ Metal2 spacing = 6L if width > 10L

widem = METAL2 WITH WIDTH > 10

thinm = METAL2 WITH WIDTH <= 10

EXT widem < 6 SINGULAR

EXT widem thinm < 6 SINGULAR

}
DRC11_1 { @ ELECTRODE width = 7L ON CAP

INT CAP < 7 SQUARE REGION SINGULAR

}
DRC11_2 { @ ELECTRODE spacing = 3L ON CAP

EXT CAP < 3 SQUARE REGION SINGULAR

}

DRC11_3 { @ Poly overlap of ELECTRODE = 5L
ENC CAP poly < 5 ABUT == 0 SQUARE REGION OVERLAP

}
DRC11_4 { @ ELECTRODE spacing to active or well = 2L

EXT ELECTRODE active < 2 SQUARE REGION SINGULAR

EXT ELECTRODE nwell < 2 SQUARE REGION SINGULAR

}

DRC11_5 { e ELECTRODE spacing to Contact to Poly = 6L
EXT CAP CONTACT_TOJ?OLY < 6 SQUARE REGION SINGULAR

}
DRCll_sel { @ Capacitor and Select may not intersect

x = poly TOUCH cap

y = ELECTRODE TOUCH cap

z = x OR y

z AND N_PLUS_SELECT
z AND P__PLUS_SELECT

}

DRC12_1 { @ ELECTRODE width = 2L
x = ELECTRODE NOT cap

EXT X < 2 SQUARE REGION SINGULAR

}
DRC12_2 { @ ELECTRODE spacing = 3L

EXT ELECTRODE < 3 SQUARE REGION SINGULAR

}

DRC13_1 { @ Contact to ELECTRODE size exactly 2L X 2L
NOT RECTANGLE CONTACT_TO_ELECTRODE == 2 BY == 2

}
DRC13_2 { @ Contact to ELECTRODE spacing = 3L

EXT CONTACT_TO_ELECTRODE < 3 SQUARE SINGULAR

}
DRC13_3 { @ ELECTRODE overlap for contact = 3L ON CAP PLATE

x = cap AND CONTACT_TO_ELECTRODE
ENC x ELECTRODE < 3 ABUT == 0 SQUARE REGION OVERLAP

}
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DRC13_4 [ @ ELECTRODE overlap for contact = 2L NOT ON CAP PLATE
x = CONTACTJTO_ELECTRODE NOT cap
ENC x ELECTRODE < 2 ABUT == 0 SQUARE REGION OVERLAP

}
DRC13_5 ( @ Contact to ELECTRODE space to Poly or Active = 3L

EXT CONTACT_TO_ELECTRODE poly < 3 SQUARE REGION SINGULAR
EXT CONTACT_TO_ELECTRODE active < 3 SQUARE REGION SINGULAR

}

DRC14_1 ( @ Via2 size exactly 2L X 2L
X = NOT RECTANGLE via2 == 2 BY = 2

x OUTSIDE overglass

}
DRC14_2 [ @ Via2 spacing = 3L

EXT via2 < 3 SINGULAR SQUARE REGION

}
DRC14_3 { @ Via2 overlap by METAL2 = 1L

ENC via2 METAL2 < 1 ABUT == 0 SQUARE REGION

}
DRC15_1 { @ Metal3 width = 3L

INT metal3 < 3 SINGULAR

}
DRC15_2 { @ Metal3 spacing = 3L

EXT metal3 < 3 SINGULAR

}
DRC15_3 { @ Metal3 overlap of via2 = 1L

ENC via2 metal3 < 1 ABUT = 0 SQUARE REGION

}
DRC15_4 { @ Metal3 spacing = 6L if width > 10L

widem = METAL3 WITH WIDTH > 10

thinm = METAL3 WITH WIDTH <= 10

EXT widem < 6 SINGULAR

EXT widem thinm < 6 SINGULAR

}
DRC21_1 { @ Via3 size exactly 2L X 2L

x = NOT RECTANGLE via3 = 2 BY = 2

x OUTSIDE overglass

}
DRC21_2 { 8 Via3 spacing = 3L

EXT via3 < 3 SINGULAR SQUARE REGION

}
DRC21_3 { @ Via3 overlap by METAL3 = 1L

ENC via3 METAL3 < 1 ABUT == 0 SQUARE REGION

}

DRC22_1 { @ Metal4 width = 6L
INT metal4 < 6 SINGULAR

}
DRC22_2 { @ Metal4 spacing = 6L

EXT metal4 < 6 SINGULAR

J
DRC22_3 { @ Metal4 overlap of via3 = 2L

ENC via3 metal4 < 2 ABUT == 0 SQUARE REGION

J
DRC22_4 { @ Metal4 spacing = 12L if width > 10L

widem = METAL4 WITH WIDTH > 10

thinm = METAL4 WITH WIDTH <= 10

EXT widem < 12 SINGULAR

EXT widem thinm < 12 SINGULAR

}

//

// Miscellaneous

//

TEXT LAYER METALl.PORT

TEXT LAYER METAL2.PORT

TEXT LAYER METAL3.PORT

TEXT LAYER METAL4.PORT

ATTACH METALl.PORT METALl mask
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ATTACH METAL2.PORT METAL2 mask

ATTACH METAL3.P0RT METAL3 mask

ATTACH METAL4.P0RT METAL4 mask

PORT LAYER TEXT METALl.PORT

PORT LAYER TEXT METAL2.PORT

PORT LAYER TEXT METAL3.PORT

PORT LAYER TEXT METAL4.PORT

LVS FILTER sch_filter_direct_open OPEN SOURCE DIRECT
LVS FILTER sch_filter_direct_short SHORT SOURCE DIRECT
LVS FILTER sch_filter_mask_open OPEN SOURCE MASK
LVS FILTER sch_filter_mask_short SHORT SOURCE MASK
LVS FILTER lay_filter_direct_open OPEN LAYOUT DIRECT
LVS FILTER lay_filter_direct_short SHORT LAYOUT DIRECT
// Filter out all Voltage and Current sources from LVS reports
LVS FILTER v OPEN

LVS FILTER i OPEN

LVS FILTER e OPEN

LVS FILTER f OPEN

LVS FILTER g OPEN

GROUP CONTINUOUS_DRC
DRC3_1
DRC3_2
DRC7_1
DRC7_2
DRC9_1
DRC9_2
DRC15_1
DRC15_2
DRC22_1
DRC22 2
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APPENDIX D

LAYOUT VERSUS SCHEMATIC (LVS) NETLIST

##################################################

## ##
## CALIBRE SYSTEM ##

## ##
## LVSREPORT ##

## ##

##################################################

REPORT FILE NAME:

LAYOUT NAME:

SOURCE NAME:

('cmos_amp_sch')
RULE FILE:

CREATION TIME:

CURRENT DIRECTORY:

USER NAME:

CALIBRE VERSION:

cmos_amp_sch. lvs.report
cmos_amp_sch.lay.net {' cmos_amp_j5Ch')
/home/student/cmos_amp_sch/tsmc035a/cmos_amp_sch_tsmc035a. spi

/home/student/_tsmc035.rules_
Mon Apr 16 11:07:53 2007
/home/student

student

V2004.3 9.21 Thu Sep 30 11:25:17 PDT 2004

#

# #

# #

#

OVERALL COMPARISON RESULTS

###################

# #

# CORRECT #

# #

* *

\ /

*****************************************************************************************

*********************

CELL SUMMARY

*****************************************************************************************

*********************

Result

CORRECT

Layout

cmos amp sch

Source

CMOS AMP SCH

*****************************************************************************************

*********************

LVS PARAMETERS

*****************************************************************************************

*********************

o LVS Setup:

// LVS COMPONENT TYPE PROPERTY

// LVS COMPONENT SUBTYPE PROPERTY

// LVS PIN NAME PROPERTY

// LVS POWER NAME

// LVS GROUND NAME

LVS RECOGNIZE GATES ALL

XI



LVS IGNORE PORTS NO

LVS CHECK PORT NAMES NO

LVS BUILTIN DEVICE PIN SWAP YES

LVS ALL CAPACITOR PINS SWAPPABLE NO

LVS DISCARD PINS BY DEVICE NO

LVS SOFT SUBSTRATE PINS NO

LVS INJECT LOGIC NO

LVS EXPAND UNBALANCED CELLS YES

LVS EXPAND SEED PROMOTIONS NO

LVS PRESERVE PARAMETERIZED CELLS NO

LVS GLOBALS ARE PORTS YES

LVS REVERSE WL NO

LVS SPICE PREFER PINS NO

LVS SPICE SLASH IS SPACE YES

LVS SPICE ALLOW FLOATING PINS YES

LVS SPICE ALLOW UNQUOTED STRINGS NO

LVS SPICE CONDITIONAL LDD NO

LVS SPICE CULL PRIMITIVE SUBCIRCUITS NO

LVS SPICE IMPLIED MOS AREA NO

// LVS SPICE MULTIPLIER NAME

LVS SPICE OVERRIDE GLOBALS NO

LVS SPICE REDEFINE PARAM NO

LVS SPICE REPLICATE DEVICES NO

LVS SPICE STRICT WL NO

// LVS SPICE OPTION

LVS STRICT SUBTYPES NO

LAYOUT CASE NO

SOURCE CASE NO

LVS COMPARE CASE NO

LVS DOWNCASE DEVICE NO

LVS REPORT MAXIMUM 50

LVS PROPERTY RESOLUTION MAXIMUM 32

// LVS SIGNATURE MAXIMUM

// LVS FILTER UNUSED OPTION

// LVS REPORT OPTION

LVS REPORT UNITS YES

// LVS NON USER NAME PORT

// LVS NON USER NAME NET

// LVS NON USER NAME INSTANCE

// Reduction

LVS REDUCE SERIES MOS NO

LVS REDUCE PARALLEL MOS YES

LVS REDUCE SEMI SERIES MOS NO

LVS REDUCE SPLIT GATES YES

LVS REDUCE PARALLEL BIPOLAR YES

LVS REDUCE SERIES CAPACITORS YES

LVS REDUCE PARALLEL CAPACITORS YES

LVS REDUCE SERIES RESISTORS YES

LVS REDUCE PARALLEL RESISTORS YES

LVS REDUCE PARALLEL DIODES YES

// Filter

LVS FILTER sch_filter_direct_Open OPEN SOURCE DIRECT
LVS FILTER sch_filter_direct_short SHORT SOURCE DIRECT
LVS FILTER sch_filter_mask_open OPEN SOURCE MASK
LVS FILTER sch_filter_mask_short SHORT SOURCE MASK
LVS FILTER lay_filter_direct_open OPEN LAYOUT DIRECT
LVS FILTER lay_filter_direct_short SHORT LAYOUT DIRECT
LVS FILTER v OPEN

LVS FILTER i OPEN

LVS FILTER e OPEN

LVS FILTER f OPEN

LVS FILTER g OPEN

CELL COMPARISON RESULTS ( TOP LEVEL )

Xll



# # #
# CORRECT #

# #

###################

LAYOUT CELL NAME:

SOURCE CELL NAME:

# #

# #

#

NUMBERS OF OBJECTS

cmos__amp_sch
CMOS AMP SCH

Layout

2

Source

2

Component Type

Ports:

Nets: 10 10

Instances: 3

5

1

1

3

5

1

1

MN (4 pins)
MP (4 pins)

C (2 pins)
R {2 pins)

Total Inst: 10 10

* *

\ /

*****************************************************************************************

*********************

INFORMATION AND WARNINGS
*****************************************************************************************

*********************

Matched

Layout

2

Matched

Source

2

Unmatched

Layout

Unmatched

Source

Component

Type

Ports: 0 0

Nets: 10 10 0 0

Instances: 3

5

1

1

3

5

1

1

0

0

0

0

0

0

0

0

MN(N)

MP(P)

C(NOTCHEDROW)

R(HR)

Total Inst: 10

o Initial Correspondence Points:

Ports: VDD VSS

10

*****************************************************************************************

*********************

SUMMARY

*****************************************************************************************

*********************

Total CPU Time: 0 sec

Total Elapsed Time: 0 sec
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