DESIGNING SOLAR POWER SYSTEM FOR OFFSHORE PLATFORM

By

FADHILA BINTI MOHAMMAD

FINAL REPORT

Submitted to the Electrical & Electronics Engineering Programme in Partial Fulfillment of the Requirements for the Degree Bachelor of Engineering (Hons) (Electrical & Electronics Engineering)

> Universiti Teknologi Petronas Bandar Seri Iskandar 31750 Tronoh Perak Darul Ridzuan

© Copyright 2007 by Fadhila Binti Mohammad, 2007

CERTIFICATION OF APPROVAL

DESIGNING SOLAR POWER SYSTEM FOR OFFSHORE PLATFORM

by

Fadhila Binti Mohammad

A project final report submitted to the Electrical & Electronics Engineering Programme Universiti Teknologi PETRONAS in partial fulfillment of the requirement for the Bachelor of Engineering (Hons) (Electrical & Electronics Engineering)

Approved:

Ir. Perumal Nallagownden Project Supervisor

UNIVERSITI TEKNOLOGI PETRONAS TRONOH, PERAK

June 2007

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the original work is my own except as specified in the references and acknowledgements, and that the original work contained herein have not been undertaken or done by unspecified sources or persons.

Fadhila Binti Mohammad

ABSTRACT

A solar power system is designed for offshore platform in order to supply power to DC loads such as emergency lighting, VHF radio, remote terminal unit, well head control panel, multiphase flow meter, fire and gas panel, marine lantern, and fog horn system. In this project, the main objective is to design, analyze and sizing the solar power system for DC loads at offshore platform. This project will be beneficial for oil and gas industries in installing their offshore platform because by using the solar power system, they can actually reduce the cost of the project in terms of supplying the DC power. A study concerning the economics of solar versus generators as a choice of power was conducted. The study considers all costs involved: modules, mounting structure, pumps, miscellaneous components, installation, operation, maintenance, yearly inspection, component replacement and salvage value. The study concludes that, the use of solar power is more reliable in terms of cost and minimum environment impact. The solar power system will be installed at a new minimum facilities wellhead platform. A common perception about solar energy is that it is expensive, but it is just the installation cost that is quite higher compared to others power supply. For an investment that will last for twenty years or more, solar power systems are very cost effective. There is almost no running cost and the replacement costs of some equipments such as batteries only occurs once in every few years. The concern is not only in solar panel, but includes battery storage system. The project is completed by designing, choosing, calculating and verifying the designed systems.

ACKNOWLEDGEMENTS

First of all, a deepest gratitude is expressed to my Final Year Project supervisor, Ir. Perumal Nallagownden for giving me such a good guidance and continuous support all the way through the duration of Final Year Project. Without all his guidance and persistent help this dissertation would not have been possible.

I also would like to express my deepest appreciation to Ir. Abdul Rahman Mohamed, Senior Electrical Engineer, Ranhill Worley Parsons Sdn. Bhd. for helping me and guiding me besides sharing his knowledge and experience throughout my project.

I would like to thank to the EE Final Year Project Committee and people that directly or indirectly assisted the successful completion of my Final Year Project. Lastly, I would like to thank my friends and family for their love and support throughout my final year.

TABLE OF CONTENTS

CERTIFICATION OF APPROVAL	iii
CERTIFICATION OF ORIGINALITY	iv
ABSTRACT	v
ACKNOWLEDGEMENTS	vi
LIST OF TABLES	ix
LIST OF FIGURES	x
LIST OF ABBREVIATIONS	xi
CHAPTER 1 INTRODUCTION	1
1.1 Background of Study	1
1.2 Problem Statement	2
1.2.1 Problem Identification	2
1.2.2 Significant of the Project	3
1.3 Objectives and Scope of Study	3
CHAPTER 2 LITERATURE REVIEW	5
2.1 Introduction	5
2.2 Photovoltaics System Components	7
2.2.1 Solar Panel	
2.2.2 Battery System	9
2.2.3 Charge Controller	11
2.3 Advantages of photovoltaics system	12
CHAPTER 3 METHODOLOGY/PROJECT WORK	13
3.1 Design and Sizing of Solar Power System	14
3.1.1 Load Estimation	14
3.1.2 Battery Sizing	16
3.1.3 Solar Panel Sizing	17
CHAPTER 4 RESULTS AND DISCUSSION	19
4.1 Study of Power Supply Choices	19
4.2 Solar Power System	21
4.3 Solar Panel	22
4.4 Battery	23
4.5 Electrical Load List	25

<i>4 6</i> D	attan Sining	26
	attery Sizing	
	6.1 Electrical System (System I)	
	6.2 Instrumentation and Telecommunication System (Sy	,
	6.3 Instrumentation and Telecommunication System (Sy	-
4.	6.4 Navaids System (System III)	28
4.7 S	olar Array Sizing	
4.	7.1 Electrical System (System I)	29
	7.2 Instrumentation and Telecommunication System (Sy	
	7.3 Instrumentation and Telecommunication System (Sy	ystem IIB)
4.	7.4 Navaids System (System III)	30
4.8 S	ystem Block Diagram	
4.	8.1 Electrical System (System I)	31
4.	8.2 Instrumentation and Telecommunication System (Sy	ystem IIA)
4.	8.3 Instrumentation and Telecommunication System (System)	ystem IIB)
	8.4 Navaids System (System III)	
	CLUSION AND RECOMMENDATION	
	Conclusion	
	Recommendation	
	endix A Single Line Diagram	
	endix B Insolation Data	
	endix C Sunica.Plus Battery Catalogue	
11	endix D Shell PowerMax [™] Solar Modules Catalogue	
App	endix E Calculation Sheets	43

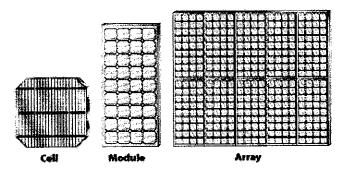
LIST OF TABLES

Table 1 : Comparisons of Three options of Power Choice	20
Table 2 : Comparison of three types of solar panels	23
Table 3 : Comparison of different battery types	24
Table 4 : Electrical Load List for each system	25

.

LIST OF FIGURES

Figure 1 : Characteristics of two similar cells connected in series
Figure 2 : Characteristics of two similar cells connected in parallel
Figure 3 : I-V Characteristics of a solar cell at varied solar intensities
Figure 4 : Typical P-V Characteristics of a solar cell at different temperatures
Figure 5 : Typical P-V characteristics of a PV cell at different temperatures9
Figure 6 : Nickel Cadmium battery Cycle Life versus Depth of Discharge
Figure 7 : Lead Acid battery Cycle Life versus Depth of Discharge
Figure 8 : Project Flowchart13
Figure 9 : World Solar Insolation Map
Figure 10 : Block Diagram for Electrical System (System I)
Figure 11 : Block Diagram for Instrumentation and Telecommunication System (System IIA)
Figure 12 : Block Diagram for Instrumentation and Telecommunication System (System IIB)
Figure 13 : Block Diagram for Navaids System (System III)


LIST OF ABBREVIATIONS

AC	-	Alternating current
Ah	-	Ampere-Hour
DC	-	Direct current
DOD	-	Depth of Discharge
LVD	-	Low Voltage Disconnect
LVDH	-	Low Voltage Disconnect Hysteresis
NiCad	-	Nickel Cadmium
PV	-	Photovoltaic
RTU	-	Remote Terminal Unit
SCADA	-	Supervisory Control and Data Acquisition
SOC	-	State of Charge
VR	-	Voltage Regulation
VRH	-	Voltage Regulation Hysteresis
VRLA	-	Valve Regulated Lead Acid

CHAPTER 1 INTRODUCTION

1.1 Background of Study

Photovoltaic systems convert light energy directly to electrical energy. The basic photovoltaic or solar cell typically produces only a small amount of power. To produce more power, cells can be interconnected to form modules, which can in turn be connected into arrays to produce yet more power. Because of this modularity, PV systems can be designed to meet any electrical requirement, for power needs ranging from milliwatts to megawatts.

They can be used to provide power for applications as small as a wristwatch to as large as an entire community. They can be used in centralized systems, such as a generator in a power plant, or in dispersed applications, such as in rural area which is not readily accessible to utility grid lines.

A solar energy technology potentially suitable for use in offshore ocean environments includes photovoltaic technology. The hot environment, in the middle of the sea is just perfect for installation of solar power system.

The solar power system will be installed on the offshore platform situated approximately 150 km southwest of Hazira in the Gulf of Khambat, offshore Gujarat Province, India. This platform is a new minimum facilities wellhead platform (named as MTA Platform) located at the Mid Tapti Field Gas reserves. The MTA wellhead platform shall normally be unmanned. The MTA wellhead platform is designed based on minimum facilities concept. The unmanned minimum facilities wellhead platform shall be designed without the need of AC power .The solar panel will supply the DC power to several DC loads. During normal operation, which is unmanned operation, the only permanent power envisioned will be solar cells. During manned operation, the platform power supply shall be provided by Portable Diesel Engine Generator for the normal loads such as AC lighting system, receptacles, helideck lighting and charger for solar battery system. The solar power system shall be designed to meet the load requirements for MTA platform.

1.2 Problem Statement

1.2.1 Problem Identification

A study concerning the economics of solar versus generators as a choice of power was conducted. The study considers all costs involved: modules, mounting structure, pumps, miscellaneous components, installation, operation, maintenance, yearly inspection, component replacement and salvage value. The study concludes that, the use of solar power is more reliable in terms of cost and minimum environment impact. As for installation at offshore platform, the solar panel can be the best power source for some of the loads while decreasing the overall cost of offshore platform. In this project, a solar photovoltaic system will be designed to supply the DC loads requirements for offshore platform. The photovoltaic module shall be able to produce the required power to the loads.

1.2.2 Significant of the Project

The cost of installing and maintaining the offshore platform is a gigantic cost. There were some ways in reducing the overall cost while at the same time did not affect the productivity of the process. If the diesel engine generator that normally be used at offshore platform can be replaced by solar power system, then the industry should give opportunity to solar power system to prove that it also can be useful for oil and gas industry. The solar power system can be used at unmanned offshore platform that require a small amount of power supply. For continuous loads such as emergency lighting, remote terminal unit, wet gas flow meter, fire and gas detection system panel, navigational aids lantern, and fog horn system, it is best to choose solar power system rather than generator. Even though the initial cost of installing the solar power is high, but the maintenance cost is minimal and we can say its maintenance free. So, for an offshore platform, which is an investment that will last for 20 years and more, it is advisable to use the solar power system. This project is significant in supplying electricity to the DC loads for offshore platform from the solar module rather than the generator.

1.3 Objectives and Scope of Study

The objectives of designing solar power system for offshore platform are:

- To identify the most suitable type of solar power system for MTA Platform
- To design a solar power system that meets the DC power requirements of MTA Platform
- To determine the optimum type and size of solar panel required for above system
- To calculate the battery capacity for above system

In designing the solar power system for offshore platform, there are several things need to be done and taken into consideration. Before designing the solar power system, the total load requirements at the platform have to be identified and determined. The solar panel is being designed and sized in accordance with the total load requirement. Each photovoltaic solar panel array will consist of required number of individual panels. The solar panel will connected in suitable series-parallel combinations to obtain the required voltage and current rating with the aim of meeting the system requirements. The solar modules shall have suitable encapsulation and sealing arrangement to protect the cells from the environment. The arrangements of the solar panels also have to be considered to utilize the minimum space on the platform.

Designing the solar power system includes designing solar array and other electrical equipments such as battery, solar regulator, and inverter (if needed). The battery will store the power generated during the day and can be used to supply the load when bad weather condition (cloudy days) and during night. The battery banks shall be charged from the surplus power available from the solar panel array when the sunlight is available and will supply the solar electric power from the solar panel when the sunlight is inadequate under cloudy condition and during nights. But, if overcharging occurs, it will damage the battery and the system. Therefore, to prevent solar panel from overcharging the battery when it is full charged, the charge controller will be designed along with the system. The charge controller will regulate the charge of the battery, regulate the distribution voltage and monitor the battery charging current from the solar panel. It will disconnect the battery from solar panel when it is full charged.

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction

The photoelectric effect which is the fundamental principles in photovoltaic was discovered in 1839 by Becquerel when light was incident on an electrode in an electrolyte solution. Thirty-eight years later, in 1877, Adams and Day observed the effect in solids while working with selenium. After the discovery of photoelectric effect, several pioneers such as Schottkey, Lange, and Grandahl did researches with selenium and copper oxide. In 1954, researchers at RCA and Bell Laboratories reported achieving efficiencies of about 6 percent by using devices made of p and n types of semiconductor. Further researches were made resulted in improvements in the photovoltaic devices. [1]

Photovoltaic (PV) or solar cells are semiconductor devices that convert sunlight into direct current (DC) electricity. Groups of PV cells are electrically configured into modules and arrays, which can be used to charge batteries, operate motors, and to power any number of electrical loads. A typical silicon PV cell is composed of a thin wafer consisting of an ultra-thin layer of phosphorus-doped (N-type) silicon on top of a thicker layer of boron-doped (P-type) silicon. An electrical field is created near the top surface of the cell where these two materials are in contact, called the P-N junction. When sunlight strikes the surface of a PV cell, this electrical field provides momentum and direction to light-stimulated electrons, resulting in a flow of current when the solar cell is connected to an electrical load.

Photovoltaic cells are connected electrically in series and/or parallel circuits to produce higher voltages, currents and power levels. When similar cells are connected in series, it will increase the output voltage while maintaining the output current, as shown in figure below (*refer Figure 1*). Whereas, when connected in parallel; it will increase the output current and maintaining the output voltage, as shown in figure below (*refer Figure 2*).

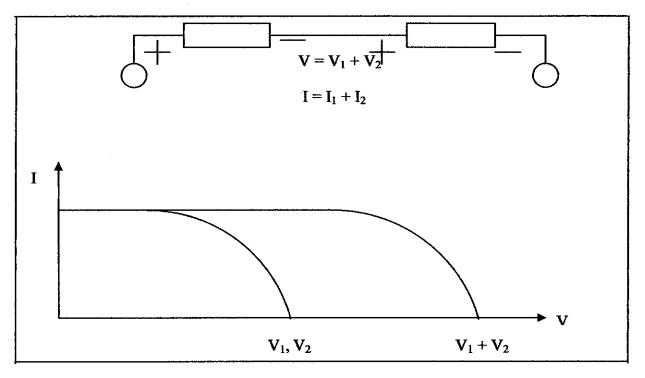


Figure 1 : Characteristics of two similar cells connected in series

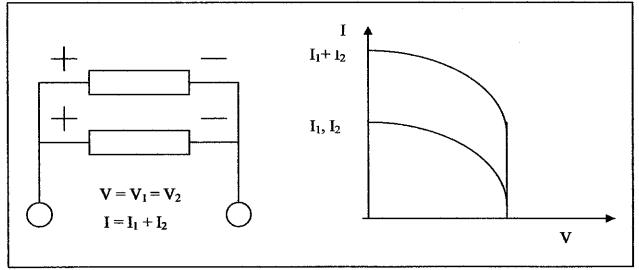


Figure 2 : Characteristics of two similar cells connected in parallel

Photovoltaic modules consist of PV cell circuits sealed in an environmentally protective laminate, and are the fundamental building blocks of PV systems. Photovoltaic panels include one or more PV modules assembled as a pre-wired, field-installable unit. A photovoltaic array is the complete power-generating unit, consisting of any number of PV modules and panels.

2.2 Photovoltaic System Components

Solar cells or solar panels are not the only components of a photovoltaic system. The photovoltaic system consists of a number of other parts to form a complete system. Other than solar panels as the main component, solar power system includes energy storage, power conditioning and maybe a supplementary or back-up generator to form a hybrid system.

2.2.1 Solar Panel

Solar panel converts the photoelectric effect to electricity and comes in different types and ratings. There are two main factors that determine any solar electric panel's output which are the solar irradiance, and operating temperature. For a given solar cell area, the current generated is directly proportional to solar irradiance (S). Thus, as the sun's brightness increases the output voltage and power decreases as temperature increases. The voltage of crystalline cells decreases about 0.5 percent per degree centigrade temperature increase. Therefore, arrays should be mounted in the sunniest place (no shading) and kept as cool as possible by ensuring air can move over and behind the array.

The photovoltaic cell is directly proportional to the solar intensity, and the I-V curves at different intensities are given in figure below (refer Figure 3) [10].

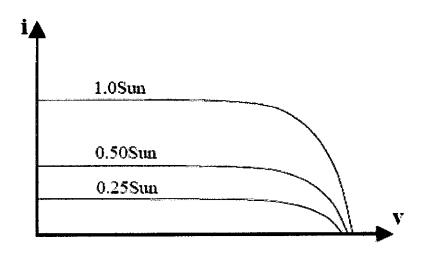


Figure 3 : I-V Characteristics of a solar cell at varied solar intensities

As temperature increases, the band gap of the intrinsic semiconductor shrinks, and the open circuit voltage (Voc) decreases following the p-n junction voltage temperature dependency. This can be seen from the curves below (*refer Figure 4*) [10].

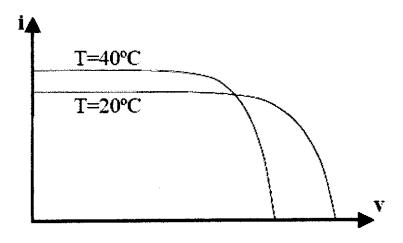


Figure 4 : Typical P-V Characteristics of a solar cell at different temperatures

The typical P-V plots at two different temperatures are shown in figure below (*refer* Figure 5) to illustrate the change in output power verses voltage due to a small rise in temperature [10].

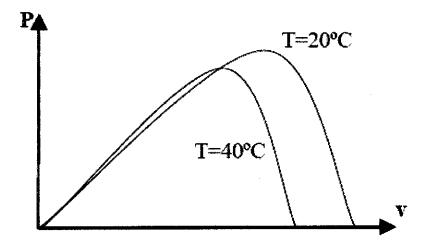


Figure 5 : Typical P-V characteristics of a PV cell at different temperatures

2.2.2 Battery System

To store electricity from solar panels, battery storage system will be needed. Solar panels charge the batteries during daylight hours and the batteries supply the power when it is needed, often at night and during cloudy weather. The battery for solar power system usually is from deep cycle battery. This type of battery is different from a conventional battery, as it is designed to be more tolerant of the kind of ongoing charging and discharging. The battery for solar power system usually has features such as high charging efficiency, good cycle life even for deep discharge, extended life expectancy, and maybe maintenance free. All of the features are important to ensure the battery can supply the power needed in case of cloudy days or during night.

The two most common types of rechargeable batteries in use are lead-acid and alkaline such as nickel cadmium. Lead acid batteries have plates made of lead, mixed with other materials, submerged in a sulphuric acid solution while nickel cadmium batteries have plates made of nickel submerged in a solution of potassium hydroxide [9]. A nickel-cadmium battery has a greater recharge cycle life than a lead-acid battery (*refer Figures 6 and 7*). Nickel-cadmium batteries can be discharged and

recharged more times than lead-acid batteries before battery cell failure occurs. Recharge cycle life for a lead-acid battery is primarily a function of how deeply it is discharged and how long it is left in that state before recharging. Typically, and depending on other conditions of use, a nickel-cadmium battery can be charged and discharged over twice as many times as a lead-acid battery. In addition, if a lead-acid battery is left for several days with a discharge of 80% or more, it may be permanently damaged and unsuitable for further use. A nickel-cadmium battery can be stored in a fully discharged condition without any detrimental effects.

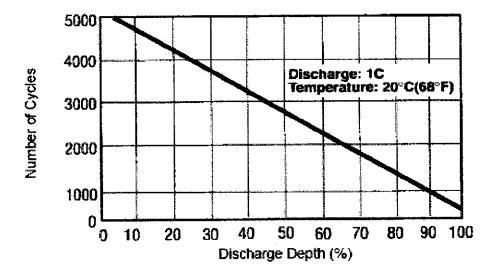


Figure 6 : Nickel Cadmium battery Cycle Life versus Depth of Discharge

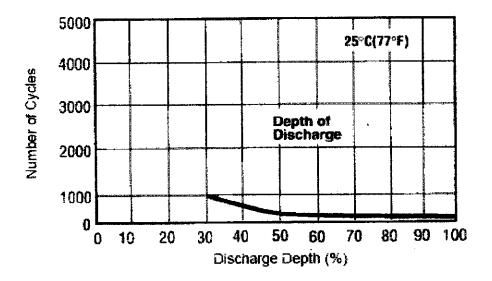


Figure 7 : Lead Acid battery Cycle Life versus Depth of Discharge

2.2.3 Charge Controller

Charge controller main function is to fully charge a battery without permitting overcharge or reverse current flow at night or during cloudy days. Charge controllers block reverse current and prevent battery overcharge. Some controllers also prevent battery over discharge and protect from electrical overload. The charge controller is placed between the solar module and the battery. When the battery has received enough charge, the charge controller will withhold further charging. If a solar array is connected to batteries with no overcharge protection, the battery lifetime will be shortened and load availability will be decreased. There are four basic charge controller set points [11]:

- Voltage regulation set point: The maximum voltage that a controller allows the battery to reach. At this point a controller will either discontinue battery charging or begin to regulate the amount of current delivered to the battery.
- Voltage regulation hysteresis: The voltage span or difference between the VR set point and the voltage at which the full current is reapplied. The greater this voltage span, the longer the array current is interrupted from charging the battery. If the VRH is too small, then the control element will oscillate, including noise and possibly harming the switching element or any loads attached to the system.
- Low voltage disconnect: The voltage at which the load is disconnect from the battery to prevent over discharge. The LVD defines the actual allowable maximum depth of discharge and available capacity of the battery.
- Low voltage disconnects hysteresis: The voltage span or difference between the LVD set point and the voltage at which the load is reconnected to the battery. The proper LVDH selection for a given system will depend on the battery chemistry and size, and PV and load currents.

2.3 Advantages of photovoltaic system

Photovoltaic systems have several advantages over conventional power-generating technologies. Photovoltaic systems can be designed for a variety of applications and operational requirements, and can be used for either centralized or distributed power generation. Solar energy from sun can delivers free energy, and has virtually no environmental impact such as no noise emission and no pollution is created from operating Photovoltaic systems. It is modular and thus flexible in terms of size and applications. In general, PV systems that are well designed and properly installed require minimal maintenance and have long service lifetimes.

CHAPTER 3

METHODOLOGY/PROJECT WORK

The structure/procedure for the whole project is as follows:

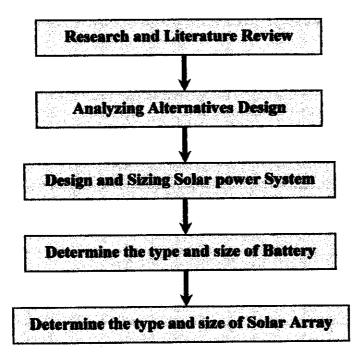


Figure 8 : Project Flowchart

In completing the project, the above flow chart was followed to ensure the smoothness of the project. First, the literature review and research on solar power system was done based on books, journal and other references to obtain a better understanding of the selected area. The research is focused on the solar panels, battery storage system, and power conditioning as the main components in solar power system. Based on the research done, the designing stage was done comprising the size and type of solar panel, and battery storage system.

3.1 Design and Sizing of Solar Power System

In designing and sizing solar power system, steps involved consists of load estimation, battery sizing, solar energy requirement, and number and size of solar panels.

3.1.1 Load Estimation

The estimation of loads and load profile are important in designing solar power system since the system will be sized to satisfy the demand of the loads. For this project, the loads use can be obtained from single line diagram (*refer appendix A*). The loads identified for MTA Platform are:

i. Emergency Lighting

In the event of an emergency situation requiring building evacuation, emergency lighting guide occupants to the nearest path of way out, helps prevent injury and plays a key role in the smooth, quick, successful passage of occupants to safety.

ii. VHF Radio

The VHF radio used to communicate between the offshore personnel and the onshore personnel or with others. The VHF radio is used when there is personnel at the platform and if some information or data need to be transmitted to the other personnel.

iii. Remote Terminal Unit

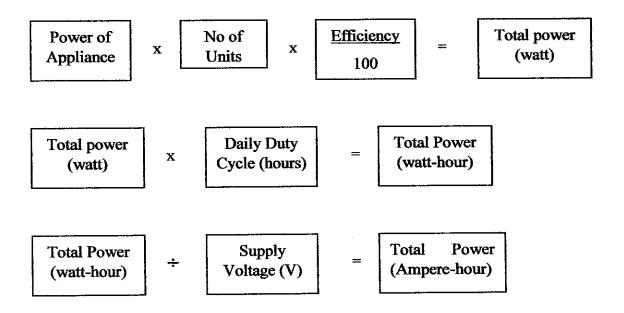
Remote terminal units (RTU) collect data automatically and connect directly to sensors, meters, loggers or process equipment. They serve as slave units to supervisory controllers or supervisory control and data acquisition (SCADA) masters. Remote terminal units are located near the monitored process and transfer data to the controller unit on command. Intrinsically safe remote terminal units are designed to

operate safely in hazardous environments. Devices with weather tight enclosures are designed to prevent the ingress of moisture, dust or other environmental contaminants. If needed, redundant RTU will be used. Redundant RTUs are complete remote terminal units that contain all of the transceivers, encoders, and processors needed for proper functioning in the event that a primary RTU stops working. The RTUs are designed for process monitoring

iv. Wellhead Control Panel

Wellhead control is a convenient lever-operated accessory incorporating a 4-way valve and catcher device. Mounted on the wellhead, the control valve permits easy pump in, pump out and retrieval operations where hydraulic type pumps are installed down hole. A wellhead control is used to control the pressure within the wellhead. A wellhead is part of an oil well which terminates at the surface where petroleum or gas hydrocarbons can be withdrawn.

v. Multiphase Flow Meter


The multiphase flow meter used to measure oil, gas and water flow rates to increase flexibility in well completion option. Use of a multiphase flow meter is used to help to maximize oil output and improve reservoir management. It has also served as a check on production testing and allocation. By using a multiphase flow meter, accurate real time data of well production can be obtain and the effects of changing the operating parameters of an individual well can be reviewed. By using the data acquired, the changes in the flow of the oil, gas and water can be monitored and if anything happens, the specific solution can be used immediately.

vi. Fire and Gas Panel

A Fire and Gas System is mainly concerned with detection, annunciation and mitigation of fire and/or gas hazards. It must perform this function without itself creating further hazards. Fire and Gas Systems typically have the following basic components and sub-systems; detectors, barriers, input units, logic/control system,

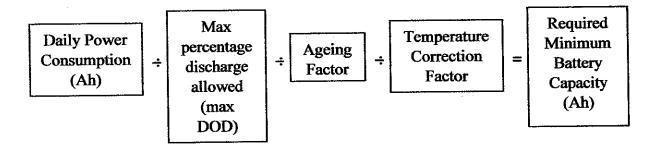
annunciation/displays, audible alarms, manual controls, interface to other safety systems, output units, and actuators

The total power requirements then can be obtained from the loads listed. The load usage profile can be determined by knowing the power of each loads and the duty cycle used per day. The basic equations used in estimating loads:

3.1.2 Battery Sizing

The battery will be charged from the surplus power available from the solar panel array when the sunlight is available and provide electricity during the nights or for periods with low or no insolation such as cloudy days. In sizing the batteries, the autonomy times which is the number of full days that a fully charged battery can supply power to the specified load, without any charging by solar modules [2], had to be determined.

The design criteria for the designing the batteries are as follows:


• Battery configuration per system - 1 x 100%

•	Nominal voltage	-	24 V DC
•	Ageing degradation	-	10%

There are a design allowances that has to be followed during the battery sizing and in order to choose the best battery that suits the requirements. The design allowances for battery sizing are as follows:

- 10% allowance for battery ageing effects
- 20% maximum depth of discharge for daily load cycle
- 80% maximum depth of discharge during autonomy period
- 7% loss allowances for battery recharge, inefficiency and float charge
- 0.1% loss allowances for battery self-discharge

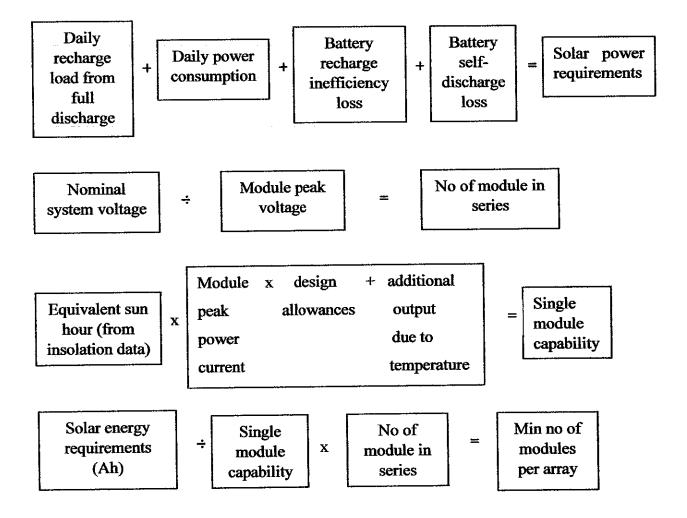
The required minimum battery capacity per battery system can be calculated from:

3.1.3 Solar Panel Sizing

The solar panel array is designed based on insolation data at specific location. The insolation data at Mumbai High, coordinates 19° 07'N, 72° 51'E is attached in appendix section (*refer Appendix B*). The sizing of solar panel is based on the worth insolation data which occur on August with 3.86 kWh/m²/day.

In the calculations of the solar array, the following design criteria will be applied:

- Solar array per system 1 x 100%
- Nominal voltage 12 V


• Worst case insolation - 3.86 kWh/m²/day

The following design allowances will be applied in sizing the solar panel:

٠	Degradation over life span	-	15%
٠	Alignment/Tilt errors	-	2%
٠	Fouling	-	1%
٠	Cell mismatch	-	2%
٠	Losses (solar controller/cables)	-	3%

The total design allowances that will be applied are 23%. This design allowance will be used in calculating the size of array.

The calculations involved are:

CHAPTER 4 RESULTS AND DISCUSSION

4.1 Study of Power Supply Choices

The study had been done to compare the power choices at MTA platform. There were three options that has been considered which are:

- Option 1: Solar Power as primary source and back up Diesel Engine Generator
- Option 2: Micro turbine Generator as primary source and back up Diesel Engine Generator
- Option 3: Gas Engine Generator as primary source and back up Diesel Engine Generator

In option 1, the solar power will be the permanent power during unmanned operation and diesel engine generator will supply power to AC loads during manned operation. During unmanned operation, only the DC loads will be operating, hence the solar power will supply power to the DC loads.

In option 2, the micro turbine generator will provide permanent source of power to the loads while diesel engine generator will be a standby source. The micro turbine generator will operate as $1 \times 100\%$ scheme and the diesel engine generator also will operate as $1 \times 100\%$ scheme.

In option 3, gas engine generator will provide primary power source to the loads and

diesel engine generator will act as standby power source. The gas engine generator will operate as $1 \times 100\%$ scheme and the back up diesel engine generator also will operate as $1 \times 100\%$ scheme.

All three options were analyzed in terms of costs, reliability, availability, environmental impact, safety, operability, maintainability, and noise emission. The comparisons of three options were summarized in a table below (*refer Table 1*).

No.	Criteria	Option 1: Solar Power, back up Diesel Generator	Option 2: Micro turbine, back up Diesel	Option 3: Gas Engine Gen., back up Diesel Engine	Remarks
1	Reliability	Solar power supply is considered a very reliable source	Engine Gen. Quite reliable, but not much information is available since it is quite new in market	Gen. Very reliable since the gas engine unit is proven a reliable machine	
2	Availability	High availability as the sun is always available	High availability. Fuel gas is always available	High availability. Fuel gas is always available	Option 1 & 2 require fuel gas treatment
3	Minimum Environmental Impact	Zero emission	Low NOx emissions	Low emission engine type can be specified	
4	Safety	Low personnel risk. Very safe	Medium personnel risk due to less frequent visit	High personnel risk due to frequent visit	
5	Operability	Very easy to operate	Easy to operate	Easy to operate	
6	Maintainability	Very low maintenance. Battery replacement every 20 years	Low maintenance. - 7500 hours between service interval	High maintenance. - 100-500 hours for service interval	
			- 40000 hours between overhaul	- 4000 hours for overhaul interval	

 Table 1
 : Comparisons of Three options of Power Choice

			The micro turbine is air- cooled, air- lubricated and has only one moving part. There are no fluids (no oil, no coolant) to change	Requires motor oil for lubricant and glycol/water for coolant	
7	Noise	Zero noise emission	70dBa at 10m	Noisy	
8	Total Cost	Medium cost ~USD753.02k	High cost ~USD818.6k	Low cost ~USD717k	

Table 1 shows that in terms of cost, Option 3 has the higher cost and may not be considered as a power choice at MTA Platform. For overall criteria, Option 1 which is solar power with diesel engine generator as back up power source has more advantages especially in terms of maintainability, operability, safety, minimum environmental impact, and noise emission. Therefore, Option 1 is being chosen as the power supply at minimum facilities platform, MTA Platform.

4.2 Solar Power System

The continuous DC power at the platform will be supplied by solar power obtained from solar panels. Due to huge size of the loads, there were 4 separate systems namely:

- System I : Electrical Emergency Lighting system
- System IIA : Instrumentation and Telecommunication Power system
- System IIB : Instrumentation and Telecommunication Power system
- System III : Marine Navaids system

Each system has their own loads and will use separate solar panels to power them. The loads for solar power system for four systems consists of emergency lighting, VHF radio, remote terminal unit and microwave radio, wellhead control panel, multiphase flow meters, fire and gas panel, navaids lanterns, foghorn and fog detector. The single line diagram shows all the loads connected to the solar panels (*refer Appendix A*). The load listed in the single line diagram then being analyzed and total up to obtained the total load requirement for the solar power system.

4.3 Solar Panel

The main component of solar power system is of course the solar panel itself. There were different types of solar panels with each of them has different technologies. Basically, the solar electric panels are made from silicon and were divided into three main category based on how they are manufactured. The technologies used to manufacture mono-crystalline, poly-crystalline and amorphous silicon is differs from each other.

Mono-crystalline or (single crystal) technology are cut from a crystal that has grown in only one plane or (one direction). Single crystalline are more expensive to manufacture and typically have a slightly higher efficiency than poly-crystalline cells which results in smaller individual cells and a slightly smaller module.

On the other hands, poly-crystalline or (multi-crystalline) technology is cut from a crystal that grows in multiple directions. Poly-crystalline solar cells typically have a slightly lower efficiency resulting in larger individual cells and a slightly larger module.

There is a new technology in the solar cell technologies which is Amorphous or thin film technology that would offer a reduction in the cost of manufacturing solar modules. Thin film or amorphous technology has a lower efficiency rating so thus panels that are manufactured from this process tend to be substantially larger in size requiring a greater roof area for a typical installation. But it is a new technology that is not really established yet. The comparison of these three types of solar panels is being summarized in the table 2 below *(refer Table 2)*.

Туре	Mono-crystalline Silicon	Poly-crystalline Silicon	Amorphous Silicon
Efficiency	15 - 18 %	13 - 15 %	5 - 8 %
Performance	Remains fairly constant during the first few months	Remains fairly constant during the first few months	Lose about 25% of their output during the first few months of use
Prices	Higher	Higher	Lower

Table 2: Comparison of three types of solar panels

Based on comparisons of three types of solar panels, it is clear that mono-crystalline silicon is the best choice in designing solar power system that will last for 20 years. Even though the price is higher compared to others, it will give better performance as it has the highest efficiency among others.

4.4 Battery

The other main component of the solar power system besides solar panels is the batteries. There were several types of batteries in the market that can be used in the industry. The major types of batteries available in the market nowadays are vented/flooded Lead Acid, Valve Regulated Lead Acid (VRLA), Vented/Flooded Nickel Cadmium and Semi-Sealed/Low-Maintenance Nickel Cadmium. Each of these types has it own unique advantages and disadvantages when being considered for a particular application. The comparison of these types is presented in the Table 3 below (*refer Table 3*).

Table 3 : Comparison of different battery types

Battery type	Advantages	Disadvantages
Vented/Flooded	Low initial purchase cost	Require regular
Lead Acid	• 10-20 year design life	maintenance to replace
	options is available	water losses during
	• Less sensitive to	normal operation
	temperature, compared to	Special handling
	VRLA	requirements required for
		hazardous liquid's
		• Damaged if discharged to
		zero volts
Valve Regulated	Low initial purchase cost	Recommended operation
Lead Acid	Minimal maintenance	temperature 20-25°C –
(VRLA)	required	battery life halved for
	• 5,10 & 15 year design life	every 10°C above 25°C
	options available	• Battery state if charge can
		only be determined by
		external monitoring circuit
Vented/Flooded	• 20 years design life	High initial purchase cost
Nickel Cadmium	Suitable for extreme	Require regular
	temperatures	maintenance to replace
	Mechanically and	electrolyte losses during
	electrically very robust	normal operation
	Can be restored to near	Special ventilation
	full capacity after being	requirements required to
	discharged to zero volts	disperse gases produced
		during normal operation
Semi-sealed/Low-	20 years design life	High initial purchase cost
maintenance	Minimal maintenance	Special shipping/handling
Nickel Cadmium	required	requirements due to
	Suitable for extreme	hazardous nature of
	temperatures	materials used
	• Can be restored to near	• High disposal cost at end

full capacity after being	of life
discharged to zero volts	

For this project, the battery type chosen was the low-maintenance nickel cadmium battery. It is due to low maintenance cost and it is suitable for extreme temperatures which happen at offshore platform.

4.5 Electrical Load List

In sizing the solar array, the first thing is to determine the power consumption demand. A list of equipments and the power wattage of the equipments is determined. All the data for the equipments used is summarized in the load list (refer Table 4).

	<u>Voltage</u>	<u>Op.</u>	Averaged		
		Power	Loads		
	V DC	W	Hrs/day	Wh/day	Ah/day
Emergency Lighting	24	220	14	3080	128.3
Total Load per 24hr cycle		220		3080	128.3
Design Margin		at 0%	+	0	0
Design load per 24hr cycle		220		3080	128.3

Table 4	: Electrical Load List for each system
---------	--

Instrumentation and Telecommunications Power (System IIA)						
	Voltage	<u>Op.</u>	Averaged			
		Power	Loads			
	V DC	W	Hrs/day	Wh/day	Ah/day	
RTU & microwave radio	24	316	24	7584	316	
Wellhead control panel	24	8	24	192	8	
VHF radio	24	140	0.857	120	5	
Total Load per 24hr cycle		464		7896	329	

Design margin	At 0%	0	0
Design load per 24hr cycle	464	7896	329

	Voltage	<u>Op.</u>	Averaged		
		Power	Loads		
<u></u>	V DC	W	Hrs/day	Wh/day	Ah/day
Multiphase Flow Meters	24	180	24	4320	180
Fire and Gas Panel	24	175	24	4200	175
Total Load per 24hr cycle		355		8520	355
Design margin		At 10%		852	35.5
Design load per 24hr cycle		390.5	n	9372	390.5

Marine Navaids (System III)						
	Voltage	<u>Op.</u>	Averaged			
		Power	Loads			
	V DC	W	Hrs/day	Wh/day	Ah/day	
Navaids Lantern	24	10.6	16	169.6	7.067	
Fog Horn	24	37.06	24	889.4	37.06	
Fog Detector	24	5.56	24	133.4	5.56	
Total Load per 24hr cycle				1192	49.69	
Design margin	<u> </u>	At 0%		0	0	
Design load per 24hr cycle		<u> </u>		1192	46.69	

The data for the load list above is obtained from the single line diagram and from calculation. After the load list is obtained, the next step is to size battery for each system according to the chosen battery type which is nickel-cadmium battery.

4.6 Battery Sizing

The battery sizing was done based on Sunica.plus nickel-cadmium battery. The nickel cadmium battery was chosen based on performance over lead acid battery. It has

resistant to over and under charging and complete discharge and it also can achieve up to 8000 cycles at 15% depth of discharge during its 20 years life. The catalogue for the chosen battery type is being attached in appendix section (refer Appendix C). The details calculation for each system is being attached in appendix section (refer Appendix E)

4.6.1 Electrical System (System I)

For Electrical System (System I), the calculation is done based on 14 hours autonomy period. The summary of battery sizing for System I is as follows:

Average daily load = 128.3 Ah (from load list)

Required minimum battery capacity per battery system = 191.6 Ah

Actual selected battery capacity = 213 Ah C₅ (based on battery catalogue)

Solar energy requirements = 21.3 Ah/day

4.6.2 Instrumentation and Telecommunication System (System IIA)

For System IIA, the calculation is done based on 7 days autonomy period. The summary of battery sizing for System IIA is as follows:

Average daily load = 329 Ah (from load list) Required minimum battery capacity per battery system = 3442 Ah Actual selected battery capacity = 4400 Ah C_{120} (based on catalogue) Solar energy requirements = 474.4 Ah/day

4.6.3 Instrumentation and Telecommunication System (System IIB)

For System IIB, the calculation is done based on 7 days autonomy period. The summary of battery sizing for System IIB is as follows:

Average daily load = 390.5 Ah (from load list) Required minimum battery capacity per battery system = 4085.4 Ah Actual selected battery capacity = 4400 Ah C_{120} (based on catalogue) Solar energy requirements = 562.2 Ah/day

4.6.4 Navaids System (System III)

For Navaids System (System III), the calculation is based on 7 days autonomy period. The summary of battery sizing for System III is as follows:

Average daily load = 49.7 Ah (from load list) Required minimum battery capacity per battery system = 519.8 Ah Actual selected battery capacity = 645 Ah C₁₂₀ (based on catalogue) Solar energy requirements = 86.2 Ah/day

4.7 Solar Array Sizing

The solar array sizing was done based on Shell PowermaxTM Ultra SQ85-P solar modules. All of the calculations for solar array are based on the insolation data for Mumbai High for worst month (August). Below is the world insolation map used in sizing the solar array (*refer Figure 9*).

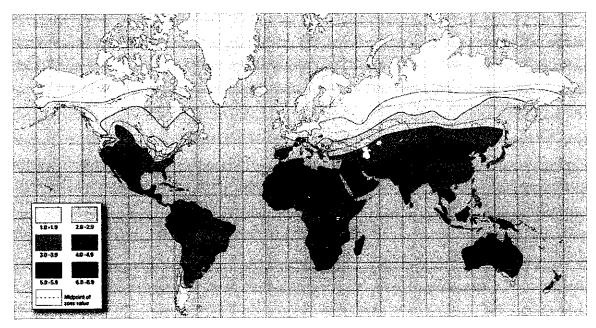


Figure 9 : World Solar Insolation Map

The Insolation data for Mumbai High is being attached in appendix section (refer Appendix B). The catalogue for chosen solar modules is being attached in appendix section (refer Appendix D). The details calculation of solar array sizing is being attached in appendix section (refer Appendix E).

4.7.1 Electrical System (System I)

The summary of solar array sizing for System I is as follows:

Daily load energy = 21.34 Ah No of series module connections per array = 2 Minimum no of modules per array = 2.79 modules Selected no of modules per array = 4 Capability of array = 30.59 Ah/day

4.7.2 Instrumentation and Telecommunication System (System IIA)

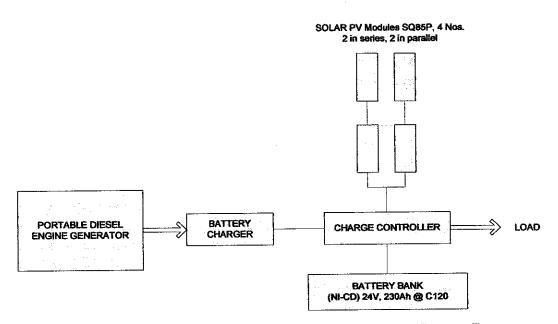
The summary of solar array sizing for System IIA is as follows:

Daily load energy = 474.36 Ah No of series module connections per array = 2 Minimum no of modules per array = 62.03 modules Selected no of modules per array = 62 Capability of array = 474.09 Ah/day

4.7.3 Instrumentation and Telecommunication System (System IIB)

The summary of solar array sizing for System IIB is as follows:

Daily load energy = 562.21 Ah No of series module connections per array = 2 Minimum no of modules per array = 73.52 modules Selected no of modules per array = 74 Capability of array = 565.85 Ah/day


4.7.4 Navaids System (System III)

The summary of solar array sizing for System III is as follows:

Daily load energy = 86.25 Ah No of series module connections per array = 2 Minimum no of modules per array = 11.28 modules Selected no of modules per array = 12 Capability of array = 91.76 Ah/day

4.8 System Block Diagram

System block diagram shows the interconnection of components in solar power system. For each four systems, namely Electrical System (System I), Instrumentation and Telecommunication System (System IIA), Instrumentation and Telecommunication System (System IIB) and Navaids System (System III), the interconnection is the same but the number of solar panels and battery capacity is differs. The number of solar panels and battery capacity for each system is obtained from calculation earlier.

4.8.1 Electrical System (System I)

Figure 10 : Block Diagram for Electrical System (System I)

4.8.2 Instrumentation and Telecommunication System (System IIA)

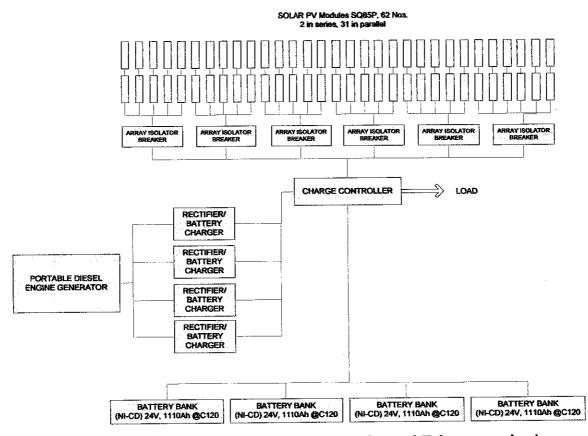


Figure 11 : Block Diagram for Instrumentation and Telecommunication System (System IIA)

4.8.3 Instrumentation and Telecommunication System (System IIB)

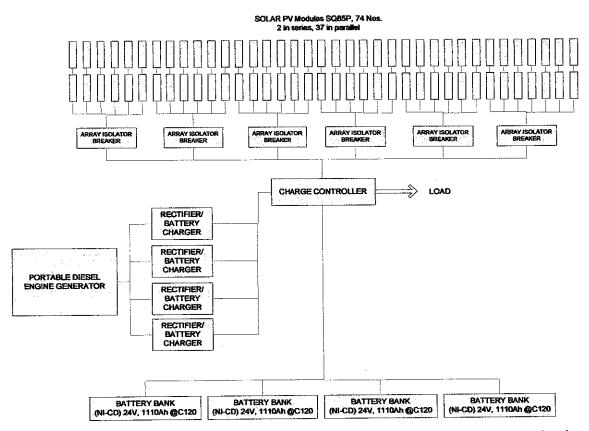


Figure 12 : Block Diagram for Instrumentation and Telecommunication System (System IIB)

4.8.4 Navaids System (System III)

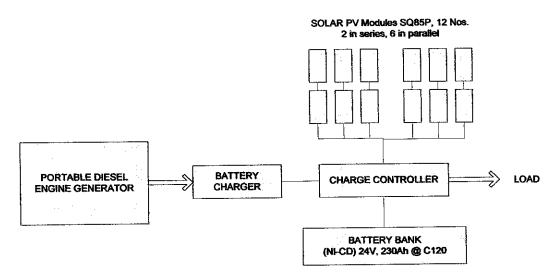


Figure 13 : Block Diagram for Navaids System (System III)

CHAPTER 5 CONCLUSION AND RECOMMENDATION

5.1 Conclusion

The solar power system designed is reliable and practical as it is designed with real loads used in offshore platform. The hybrid solar power system is identified to be the most suitable type of solar power system to be installed at offshore platform, specifically MTA Platform. The hybrid solar power system consists of solar panel as a photovoltaic generator, battery as storage system, charge regulator as power conditioning unit and portable diesel generator as back-up power supply. The permanent power during normal operations will be solar panels to supply power to DC loads while during manned operation portable diesel generator will supply power to the AC loads.

The solar power system designed meets the DC load requirements at the MTA Platform as the design is based on the real situation of the platform using the real data. The total DC load required at the MTA Platform is 21540 watt-hour per day or 897.49 Ampere-hour per day for all four systems. The designed solar power system was sized based on the loads required. The design is reliable as it is designed to be able to supply the loads with solar energy which is abundant in supply and does not require much maintenance and can supply energy for up to 14 hours for System I and 7 days for System IIA, System IIB and System III during low insolation.

The solar panel used in this solar power system is from mono-crystalline type which is higher in efficiency compared to other types of solar panels such as poly-crystalline or amorphous thin film. The solar panels were sized based on Shell PowerMaxTMUltra 85-P solar modules. Shell PowerMaxTMUltra 85-P solar module contains 36 series connected 125mm x 125mm mono-crystalline solar cells which can generate a peak power of 85 watts at 17.2 volts. The number of solar panels calculated for each system are; System I – 4, System IIA – 62, System IIB – 74, System III – 12, which total up to 152 number of solar panels. Array capability for each system is capable of supplying the loads needed.

The storage system for this solar power system use battery from nickel cadmium type. The correct choice of battery energy storage is crucial in order to ensure the efficiency of the solar power system. This solar power system needs battery storage system that withstand absolute reliability with minimal maintenance, operations with erratic charging conditions, good cycling ability that can have 20 years design life. The battery was sized based on Sunica.plus nickel cadmium battery. From the calculation, the battery capacity obtained for each system are; System I – 213 Ah, System IIA – 4400 Ah, System IIB – 4400 Ah, System III – 645 Ah. From calculations and based on Sunica.plus battery catalogue, System I uses cell type of SUN+230, System IIA and System IIB use SUN+1110 cell type and System III uses SUN+645. All selected battery capacity is able to provide power to the loads during low insolation for the specified autonomy period.

5.2 Recommendation

Based on works performed, there are some recommendations for future studies and further improvement of the system. A user friendly design tool program can be done in order to ease the calculation instead of Microsoft Excel. The program can be used as a guide in designing solar power system for offshore platform. The new user can just simply use the program to have an overview and size of solar panel and battery required for specified requirement. The user can just simply insert the loads required and choose the type of solar panel or battery required and no need to worry about the calculation as the program will do it for the user. In this case, it will be much simpler and easy for user instead of using the Microsoft Excel Spreadsheet. The AC system can also be included in the system as an addition to DC loads. If AC loads is to be added to the system, a separate inverter must be included in order to convert the DC power produced by solar panel to AC power needed by the loads.

REFERENCES

[1] D. Yogi Goswami, Frank Kreith, and Jan F. Kreider, "Photovoltaic," in *Principles of Solar Engineering*, Taylor & Francis, 1999, pp. 411-439

[2] PETRONAS Technical Standards, Design and Engineering Practice (Core), "Solar Power Systems," *PTS 33.65.60.30*, January 2005

[3] How Solar Cells work, < <u>http://science.howstuffworks.com/solar-cell2.htm</u>>

[4] Solar Power System Sizing <<u>http://www.solar4power.com</u>>

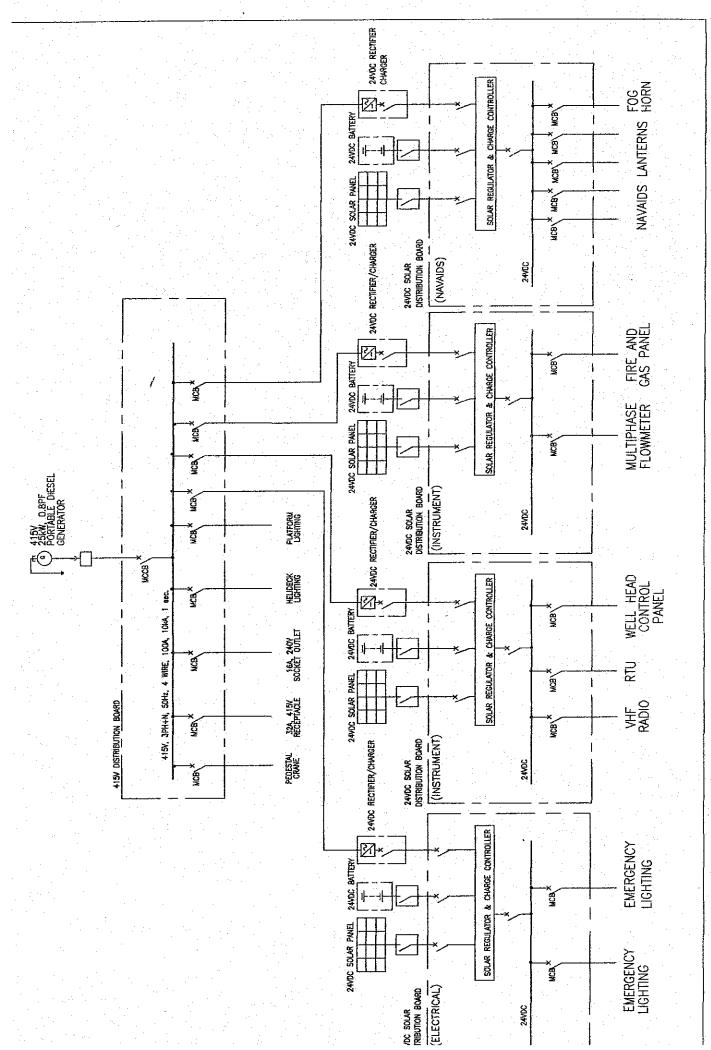
[5] Tasman Energy, Solar Intro <<u>http://www.tasmanenergy.com.au</u>>

[6] Solar Power Answers, < <u>http://www.solar-power-</u>

answers.co.uk/solar_cell_types.html>

[7] Shell Solar PowerMaxTM Solar Modules for off-grid market catalogue, 1st Edition 2005, Shell Solar Industries, <<u>www.shell.com/solar</u>>

[8] Sunica.plus Ni-Cad batteries catalogue, Saft Industrial Battery Group, April 2004 Edition, <<u>www.saftbatteries.com</u>>


[9] Northern Arizona Wind & Sun, "Battery types used in solar electric systems" < http://www.windsun.com/Batteries>

[10] Tomas Markvart, "Solar Cells", in Solar Electricity, John Wiley & Sons, Ltd., 2000, pp. 43-45

[11] Steve Harrington, Ktech Corporation and James Dunlop, "Battery charge controller characteristics in photovoltaics system", Florida Solar Energy Center

APPENDICES

APPENDIX A SINGLE LINE DIAGRAM

OVFRALL SINCLE LINE DIACRAM

	1	1	.		
1. J.					
	· · ·		-		
1.1		Γ	ΡŢ		
	유물()-레		i i		1.14
			1		
•			a r⊢		
- 1 -	38-14	Ľ	FI :	(04Z1~d)	
	* 골!ㅋ!ㅋ!	1	Ι.		
		<u>ا - ا</u>	•	$x_{1} \in \mathbb{C}^{n} \times \mathbb{C}$	•
		.	<u>⊧</u> ą	(3111-9)	<u> </u>
	\$8(2C)	· ·	ı I	(3111-9)	
	- 312121	÷ -	[·	· · ·	
1200		Į	1 ·		
			ł.,		
11			1 .	· ·	
			,		
	K X	ŀ	HCN		
			FI 🔶	(FIII-d)	
· · ·	₹ <u>₹</u> ±C	Γ.	. .	<u> </u>	
		1		1997 - 1997 -	122
÷	₹× ?		 #~-		
	ASED		7	(I-1113)	
1.1	성장[그) 내		· · · '	· · · · · ·	
	······································			11 A.A.	· · · ·
	agent.		Ê		
×	무종(~~~~~		1		
0-100M					
ໍ້			ł۲.		
Ō	5 T T	· ·	•	<u>(III-T)</u>	
1	- 31263	. 1	4		
2	~ ~	.	· ·	· .	
	******		≓ ?–	(0111-1)	· · · ·
1-	332C	i i	d.	<u></u>	
<u></u>					
<u> </u>	1				
0	g 04	1.1			
		-	- - -	(5011-7)	
. .		-	- 17-	<u>(1117</u>)	
Ŭ.		•	- 77-	(111-1)	
			2 		· · · · · · · · · · · · · · · · · · ·
	کر × ک			<u>(2011-1</u>)	· · · · · · · · · · · · · · · · · · ·
		-	<u>17</u>		
	S S S S S S S S S S S S S S S S S S S		1 7	<u>(@11-1</u>)	
	کر × ک		1 7	<u>(@11-1</u>)	
			1 7	<u>(@11-1</u>)	
	S S S S S S S S S S S S S S S S S S S		1 7		
			1 7	<u>(@11-1</u>)	
			1 7	<u>(@11-1</u>)	
			1 7	<u>(@11-1</u>)	
			1 7	<u>(@11-1</u>)	
			1 7	<u>(@11-1</u>)	
			1 7	<u>(@11-1</u>)	
			1 7	() () () () () () () () () () () () () (
			1 7	() () () () () () () () () () () () () (
			1 7	(911-7) (201-7)	
			1 7	() () () () () () () () () () () () () (
			1 7	(911-7) (201-7)	
			1 7	(911-7) (201-7)	
			1 7	(2011-7) (2011-7) (2011-7)	
			1 7	(911-7) (201-7)	
			1 7	(2011-7) (2011-7) (2011-7)	
			1 7	(2011-7) (2011-7) (2011-7)	
			1 7	(811-7) (2011-7) (2011-7)	
			1 7	(2011-7) (2011-7) (2011-7)	
			1 7	(811-7) (2011-7) (2011-7)	
			1 7	(811-7) (2011-7) (2011-7)	
			1 7	(-118) (-118) (-118) (-118)	
11154, Jähning, Soha, 4 WINE, 1000, 1604, 1 640.			1 7	(811-7) (2011-7) (2011-7)	

2 19345 NO 1,200

RC-121A-2 240VAC/24VDC RECTIFIER/CHARGER

RC-121A-1 240VAC/24VDC RECTIFIER/CHARGER

240VAC/24VDC RECTIFIER/CHARGER

2 - 13A, 240V SWITCH SOCKET OUTLET (ELECT/INSTR. ROOM & BUNK HOUSE) 2 - 16A, 240V Ex'e' SOCKET OUTLET (MAIN & CELLAR DECK)

SPARE

RC-120

SPARE

1 – EXHAUST FAN (BUNK HOUSE) 2 – 150 HPS LIGHT 1 – 1×18W FLUORESCENT LIGHT 9 – 2×36W FLUORESCENT LIGHT

(ELECT/BATTERY ROOM & BUNK HOUSE)

AC: I MADS

11 - 150W HPS LAMP 1 - 400W HPS FLOODLIGHT 4 - 2x36W FLUORESCENT LIGHT

12 - 150W HPS LAMP 1 - 400W HPS FLOODLIGHT

11 - 150W HPS LAMP 1 - 400W HPS FLOODLIGHT

SPARE

11 - HELIDECK PERIMETER LIGHTING (YELLOW) 3 - 50W FLOODLIGHT

13 - HELIDECK PERIMETER LIGHTING (YELLOW) 1 - 50W FLOODLIGHT

PEDESTAL CRANE (MAIN DECK) 5kW POWER SUPPLY

32A, 415V RECEPTACLE (CELLAR DECK)

32A, 415V RECEPTACLE (MAIN DECK)

DISTREBUTION BOARD ē

IDIERARD

0011-3)

ć	12 v	
	2921) 2921	
	87 × ×	
	≥¶±L]	
	<u>*</u>	1
	2 PA	
,	<u>₽</u> × ×	
	29 E E	
. • ,	<u>}</u>	• • • • •
	29.2A	
	₩ ₩	
	¥22E	(unite-a)
	8 5	
4		
	108 108 2 2 2 2 2	
	232 1 1	
	180 100 100 100 100 100 100 100 100 100	
	180 100 100 100 100 100 100 100 100 100	
(04, 10k4, 1 ate:	180 100 100 100 100 100 100 100 100 100	
MITE, 1004, 1004, 1 acc.	180 100 100 100 100 100 100 100 100 100	
Solds, 4 WIRE, 10004, 1004, 1 are.	180 100 100 100 100 100 100 100 100 100	
244444, 56445, 4 Mitte, 10004, 1004, 1 aze.	180 100 100 100 100 100 100 100 100 100	
4554, 304444, 50445, 4 Mitte, 1004, 1044, 1 acc.		
455V, 3PH+H, 50Ht, 4 MIRE, 100A, 10MA, 1 are.		

SPARE

SPARE

SPARE

SPARE

SPARE

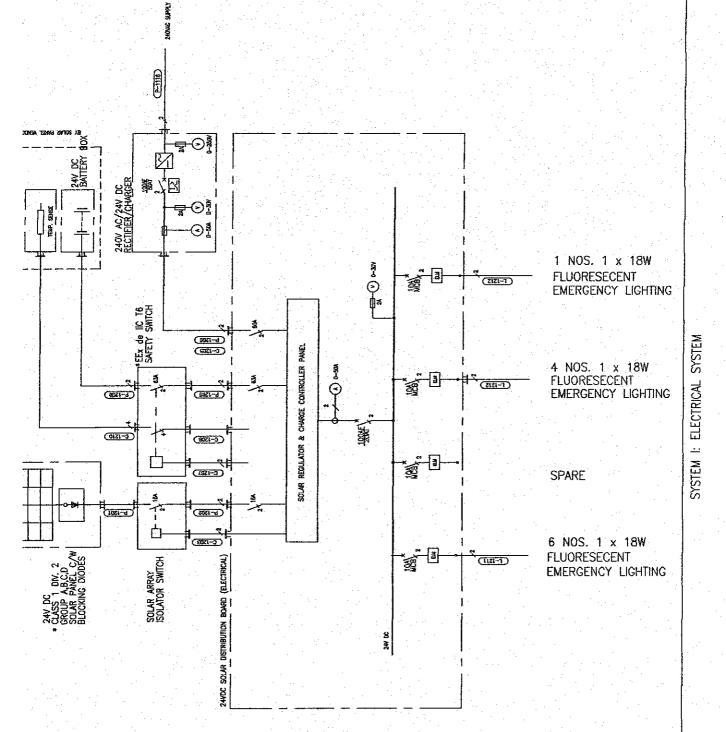
RC-122 240VAC/24VDC RECTIFIER/CHARGER AC LOADS (cont.)

RC-121B-4 240VAC/24VDC RECTIFIER/CHARGER

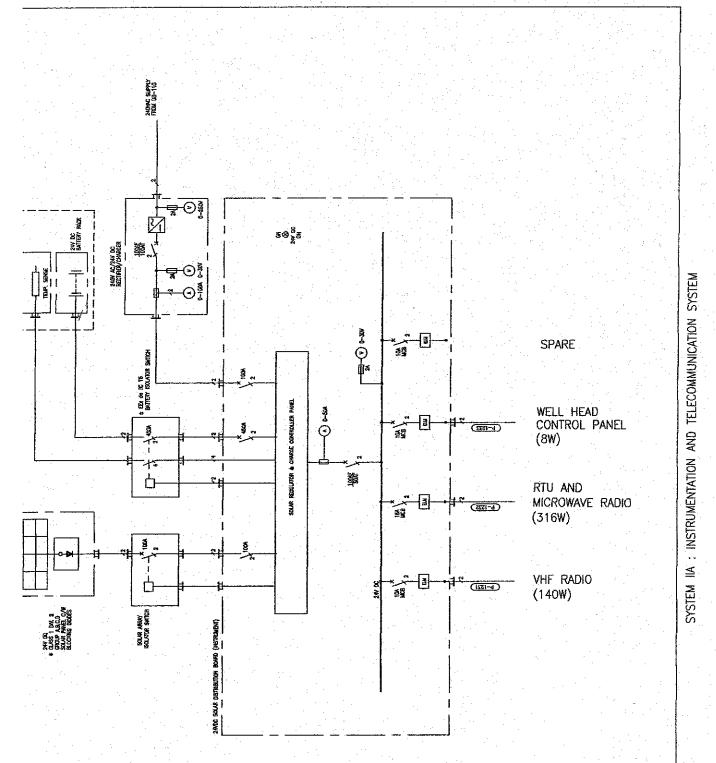
RC-121B-3 240VAC/24VDC RECTIFIER/CHARGER

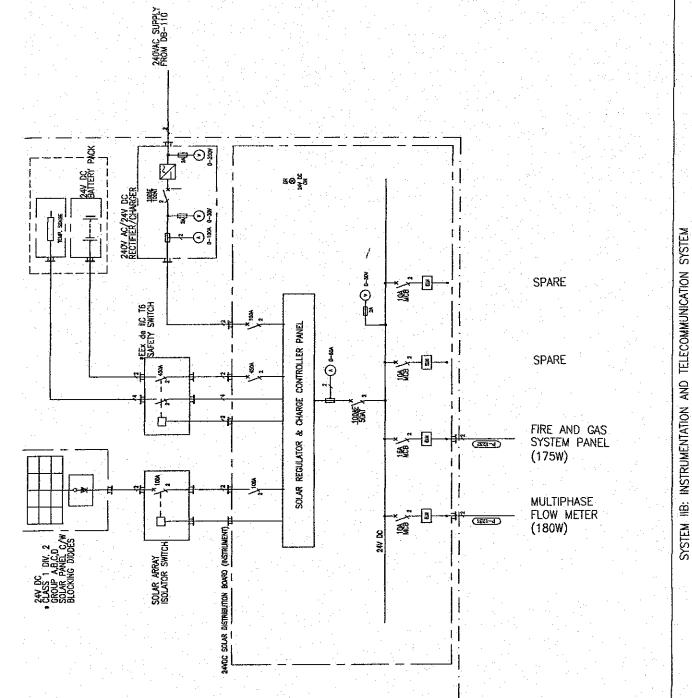
RC-121B-2 240VAC/24VDC RECTIFIER/CHARGER

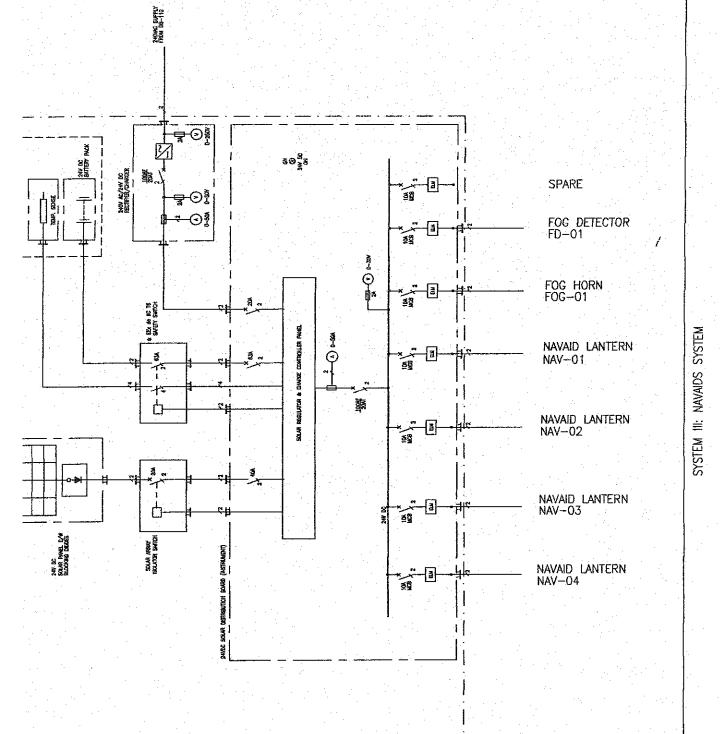
RC-121B-1 240VAC/24VDC RECTIFIER/CHARGER


RC-121A-4 240VAC/24VDC RECTIFIER/CHARGER

RC-121A-3 240VAC/24VDC RECTIFIER/CHARGER

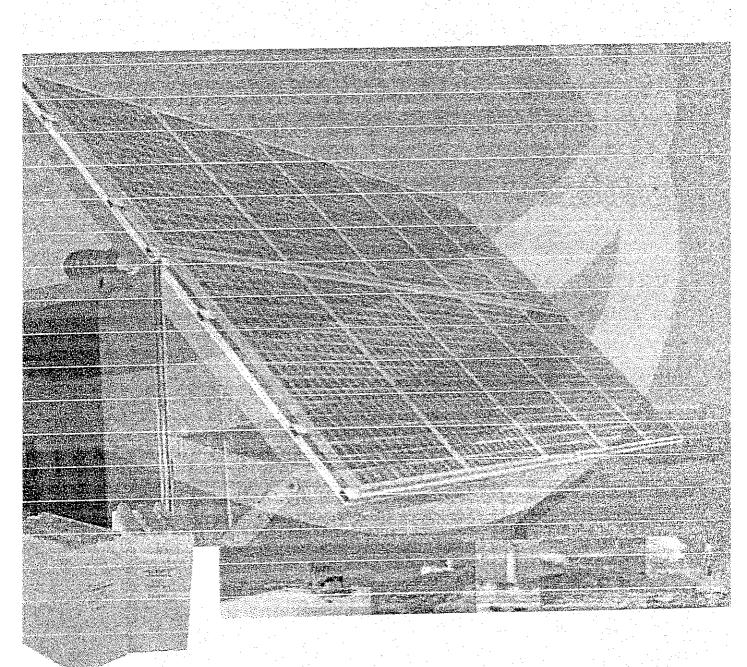

I LIJEHS MOBIL LHOD


Ĩ


418Y DISTREUTION BOARD

an an tha an Anna Anna an Anna

APPENDIX B INSOLATION DATA

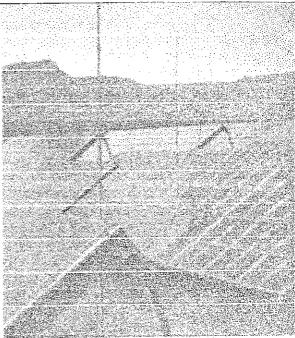

MONTH	INSOLATION (10° SOUTH FACING) (KWH/M²/DAY)
JANUARY	5.64
FEBRUARY	6.13
MARCH	6.64
APRIL	6.90
МАҮ	6.78
JUNE	4.88
JULY	4.09
AUGUST	3.86
SEPTEMBER	4.55
OCTOBER	5.58
NOVEMBER	5.98
DECEMBER	5.49

APPENDIX C

SUNICA.PLUS BATTERY CATALOGUE

41

nica.plus Ni-Cd batteries cended capability for challenging photovoltaic conditions



erformance yond conventional limits

ted in the most punishing environments, photovoltaic ations experience conditions for energy storage that only oughest battery can survive.

• the particular needs photovoltaic applications...

- cycling at variable state of charge (SOC) and depth of discharge (DOD)
- operation with erratic charging
- conditions
- wide temperature fluctuations
- absolute reliability with minimal maintenance
- unpredictable demands in isolated locations
- physical and mechanical abuses
- complex patterns of shallow and
- deep discharges

...the specialised solution is Sunica.plus Ni-Cd batteries...

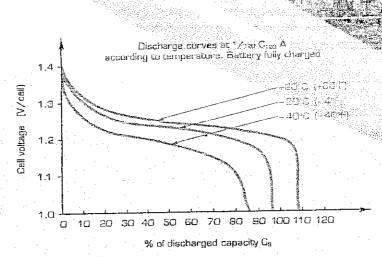
Saft nickel-cadmium batteries are proven in the field of photovoltaics and are specified for their very broad capability and total reliability in uncertain conditions.

- corrosion-free steel internal
- construction, unaffected by
- alkaline electrolyte
- electrochemically stable during charge and discharge (no plate degradation)
- Iow life cycle cost
- 99.9% of metals used are recycled, safeguarding the environment

...for performance beyond the lead acid limit

- resistant to over- and undercharging, and complete discharge
 - no premature capacity loss sulphation – when cycled at low state of charge
- operates at temperatures lower than -20°C (-4°F) with no risk of freezing electrolyte

eliability anargy storage renatined


erates in extremes temperature

I.plus generally operates an temperatures of to +50°C (-4°F to +122°F) in tolerate extremes of to +70°C (-58°F to +158°F). relation in temperatures -20°C (-4°F), a special blyte with higher density is

-cadmium active materials n stable when cycling during tates of charge and do not active mass during deep Sunica plus operates with

isk of sudden death late degradation or sulphation e than 80% of capacity for a al 120 hour discharge at C (-40°F)

20% decrease in life at +30°C 3°E), vs. 50% reduction for acid

潮道 的话,随时这些话道

performs at any state of charge...

table alkaline electrolyte in Sunica plus does not change during charge ischarge. It continues to operate irrespective of the charge leval and is acted by accidental overcharge, deep discharges or inversion. During itical winter months the charge efficiency is close to 100%.

achieves 8000 cycles at i% depth of discharge

20°C (+68°F), Sunica plus nickel-cadmium batteries can achieve -

to 8000 cycles at 15% Ith of discharge during its 20 rs life good cycling ability in unstable photovoltaic conditions, even at partial state of charge

unica.plus is now

a heritage of long life, ole, low maintenance ow life cycle cost ions, Saft Sunica.plus innovation in battery nology for photovoltaics.

signed specifically for this application

4

3

2

1

a plus features Saft's highly ant internal gas recombination et plate technology – meets 2259 – and electrode design, used for photovoltaic pations. These features, plus ently safe Ni-Cd, provide the naintenance service vital in jed locations.

re than 4 years maintenancee intervals without topping-up, pending upon application puirements

npatible with all current stovoltaic charge regulators proved cycling ability Optimised for practical reliability

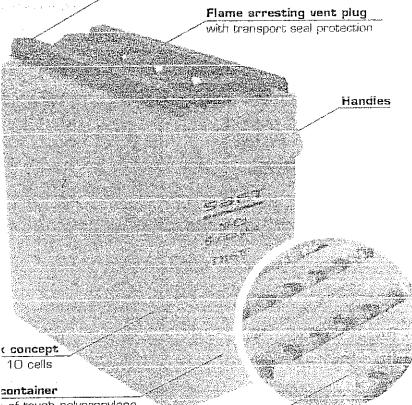
- robust construction withstands heavy treatment
- unaffected by fluctuating climatic conditions
- e resistant to electrical abuses
- integrated handles mean easy handling
- easy to install, simple block construction

Sunica plus

Sunica

1.50 V

Typical water replenishment (years) +20°C (+68°F)


1.55 V

Constant voltage charge (V)

1.60 V

obustness iaranteed by design

Terminal covers to prevent external short-circuits

of tough polypropylene

mated integral water filling system

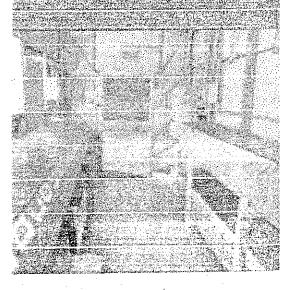
automated integral water filling m is available as an option for a.plus cell types 185 Ah to 1110 Ah.

The main benefits of the system are: # centrally monitors levels

- tops up accurately and efficiently when necessary
- enables gases generated to be evacuated outside the battery room

years low life cycle cost product

nbination of factors add up to give a predictably low life cycle cost.

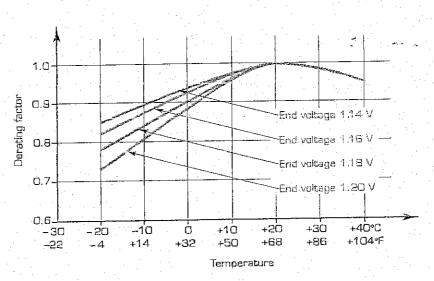

maintenance safe technology 1 life time

- easy to install
- 12 months storage filled and charged, ready for immediate commissioning

20 years operation, typically cycling at an average 15% DOD, Saft a plus will rapidly repay initial battery investment and overall photovoltaic n costs through autonomous operation and total reliability.

Miniciae Alexandra Serven Annees

Natala a dalla and the rear a second fills Calification and Calification Construction of the second s Classific and the state of the ះ ទាមពីចុះត្រាះ Chargy; Matensur 2019 - In Alarchell Environment (and - jalente Antenna Alercia de la Alvia Alta de La construcción de la construcción de la construcción de la construcción de 에 (소리나라) (구(히 이 아이)) 我们的属于A.A.A.E.通知A.A.E.系统


full range of solutions r a world of photovoltaic needs

HE STORE																						
	an a												el station		化中							
	MING VIE																	i e ils. Nes dati		fit. j. it		
》。 15	45 45	43 43	405	2529 15.9	2505.00 195	1993年1月11日 7.68		1999 AN	<u>. 1170-18</u>	88 88	9.46	113 4 49	137 5.39	1 1 E	12.6.38	212.8	.95 e	97 9 93	281 1	03 3	a	7.08
90 90	90	85	405	15.9	195	7.68				121	4:78	157 6 18	192 7 56	5 25	19 B 96	300 1	1.8 3	36. 13.2	371 1	46 4	9	10.8
105	105	100	405	15.9	195	7.68				157	6.18	205 8 97	252 9.92	1. 3C	3C 11.E	396)	564	44 17 E		6	2	19.Z
140	140	126	405	15.9	195	7,68				157	6 19	205 8.07	252 9 92	1 30	ja 11 B	1 396 1	5.6			8	7	14.B
188	185	171	405	15.9	195	7.68				193	7.60	253 9.96	312 12 3	i 3.	72 14					в	4	19,5
130	230	213	405	15.9	195	7,68		159	6,26	232	5 13	305 12.0	377 14 B		- 1941 1- 1940 1- 1940		510~: 影像:			9	9	21.8
275	275	256	405	35.9	195	7 66		183	7 21	268	10.8	353 /19 9	437 17 2							1	:5	25.4
320	320	300	405	15.9	195	7.88		228	8.99	338	12.2									1	1.1	33,3
370	370	941	405	15.9	195	7.68		252	9.92	372	14.7									11	3:9	37.0
415	415	384	405	15.9	195	7.68	146 5 7	278	11 O											11	1.3	40.4
460	460	427	405	15,9	195	7,68	159 6.2	304	12.0											्र इ.स.).B	43.7
505	505	465	405	15.9	195	7.68	171 6.7	1 328	13.0											P	4	47 2
8 88 555 555	555	512	465	15.8	195	7.68	183 7.2	353	13 9											2	1.0	50.7
345	645	637	405	15.G	195	7,68	219 8.6													21	3.2	62.2
735	735	682	405	15.9	195	7.68	244 9.6	I												3	េខ	69,0
6599 V244 9 30 2	830	768	405	15.9	195	7.68	266 10	9												з	15	78.1
920	920	853	405	15.9	195	7.68	304 12.0	1												3	9.6	87.3
1110	1110	1024	405	15.9	195	7.69	352 13.9													4	3.0	101

a.plus complies with IEC 62259 standard.

ating factor according to temperature and end voltage

ypical solar application with ys or more backup time

performance

ly charged cells after a constant current charge according to IEC 62259 standard.

s / h = hours

				End vo	ltage ≓	1.14 V						ar the method lates to	End volt	age =	1.16 V	ed to the se		a de la comunicación de la comunica Comunicación de la comunicación de l
			N. N. S. S.		3,4 H							ielsija		1000				
11086 5	0.94	0.64	0.48	0.39	EE.D	0.26	0.25	0.22	. 0,20	0.92	0,63	0.47	0.39	0.33	0.28	0.25	022.	0:20
o	1.86	1.26	0.95	0.77	0.65	0.56	0.49	. <mark>0</mark> 44	0:40	162.	1,25	0.94	0.77	0.64	0.56	0.49	0.44	0.40
05	.2.19	1,49	1 11	0.90	0.76	0.66	0.58	0.52	0.47	2 15	1.47	1 10	0.90	0.76	. 0.65	0,58	0.52	0.47
40	2.60	1.90	1 43	1 15	0.98	0.65	0.74	0.66	0.60	2.75	188	1.41	1.15	0.97	0.84	б 7 4 .	0.66	- 0 .68
85	3.74	2.54	1.91	1.54	1.31	1.13	0.99	0.89	0.80	3.67	2.52	1,89	1.54	1,29	112	-099	.0.89	0.60
30	4.66	3.17	2.57	1.92 :	1.63	1,41	1.23	1,10	0.99	457	3 14	2.95	1,92	161	1.39.	1.23	1,10	0:99
:75	6.6C	3.80	2.85	2 30	1,96	1 89	148	1.33	1 19	5.49	377	,2.83	2.90	1:94	1.68	1.48	. 1.33	1019
12d	8.56	4.46	3.34	2.70	2.29	1.98.	1.73	1.56	1.40	6.44	4.42	3,31	2.70	2.27	1.96	1.73	1,56	. 1.40
170	7.46	5.07	3.80	3.07	2.60	2.25	1.97	1.77	1:59	.732	5.02	3.77	3.07	2.58	-2.23	1.97	4.77	1.69
115	8,40	5,71	4.26.	3.46	2,93	2.54	5.55	1,99	1.79	8.24	5:85	4.24.	3 46	,2:91	2.51	.e.22	1.99	479. 179
160	9.34	6.35	4 76	3.84	3.26	::2.82	2.47	2:21	1.99	9.16	6.29	4.71	3.84	3:23	2.80	-2.47	221	1.99
:05	10.26	6.97	5.23	4.22	3.58	3 10	271	2.43	2.19	10.06	6.90	6.18	4.22	3 56	3.07	271	2:43	2.19,
:55	11.20	7.61	5.71	4.6.1	3.94	3,38	2.96	2.65	2.39	i 10.99.	7.54	5 65	4.61	3.86	3.35	2.96	2.65	-2:39 2:79
:45	13.06	8.87	6.65	5.37	4:56	3,94	3.45	3.10	2.79	12.81	879	, 6,59	5.37	4,52	3.91	3.45	3.10	
/35	14.92	10.14	760	6.14	5/21	4 51	3 94	3.54	3.18	14:63	.10.04	. 7.53	. 6.14	5.16	4:47	. 3 94	3.54%	3.58
30	16.80	11.41	8.56	6.91	5.87	5:07	4:44	3,98	3.58	16.48	41.33	8.48	6.91	5.81	5.03	4,44	3.98	3.98
120	18.66	12.68	9.51	7.68	6.52	5.64	4.93	4 42	3 98	18 20	12.58	9.42	7.68	6 46	5.59	4.93.	4 42	
1110	22.40	15,52	1141	9.25	7.82	6:77	5,92	5,31	4.78	21-97	15.08	11,01	9.22	7.75	6.70	5.02	5.31	4,78
	₽~30.682 C		10.00		a en ser sen				an a	an an an Anna Anna Anna Anna Anna Anna An an Anna an Anna an Anna an Anna Anna				1.1				

ļ			Ē	nd volt	age = 1	.18 V							ind volt	age = 1	.20 V	20 7 212		
45	668 48 92 0.89	0,62	8.45.88 0.47	20:38 0:38	6286 (0.32	0.2B	0.24	0.22	0:20	0:82	0.57	0.43	0.36	0.31	0.27	0,24	0.21	0.19
90	1.75	1:22	0.93	0,76	0.64	0:55	G 48	0:43	0.39	1.61	1.13	086	0.71	0.81	0.53	0.46	0.42	038
105	2.06	1.43	1.09	0.99	0.75	0,65	0.57	0.51	0.46	1.90	1.33	1.01	0 83 -	0.72	0,62	0.55	0.49	0.44
140	2,64	1.83	1,40	1.14	0.96	0.B3	0.73	0.65	0.59	2,43	1.71	1 29	1.07	: 92.0X	0,79	0.70	0.63	0.57
185	9.53	2.45	1 87	1.52	1,28	1.11	0.97	0.87	0.78	a.24	2.28	1,79	1.43	1.22	1.06	0.94	0.84	D 76
230	4.39	3:05	2 33	1.90	1,60	1:59	5 1, 2 1	1.08	0.98	4.04	2.84	2,15	178	1.52	1.32	1.16	1.05	0,84
275	5.28	9.66	2.60	2.28	1,92	1.86	1.45	1,30	1.17	4 85 🔅	3,41	2.59	E13	183	158	1,40	1.26	61.13
320	6.19	4.29	3,28	2.68	2.25	1.95	1,70	1.53	1.38	5,69	4.00	3.03	2.50	2.15	1.86	1.64	1.47	1098 1098
370	7.03	4.88	3.73	3.04	2.56	2.21	1,94	1.74	1:56	6.46	4.55	g 45 😳	2.84	2.44	- 2,11	7.85	1.67	1.51
415	7.92	5.49	4.20	3:42	2,89	2.49	2.1B	1.98	1.76	7 28	5.12	3.88 ·	B.20	275	2.38	210	1,984	1.70
460	8.61	6.11	4.67	3:81	3 20	2.77	2.42	2.17	196	8.10	5.69	4,31	3.58	3.05	2.64	2,34	2.10	188
505	9.67	6.71	5,13	4,18	8 52	3.04	2,68	2.39	2:15	889	6.25	474	3.91	3.35	2.90	2.56	2,30	2:07
555	10.56	7.32	5,60	4.57	3.B4	3:32	2,91	2.61	2.35	9.71	6.83	5.17	4.27	3.86	(3,17).	5 BO ;	e.51	M21262
645')	12.31	8:54	6:53	5,32	4.48	3.87	3.38	3.04	2.74	11,32	7.96	. 6 D3	4 98	427	3470	3.26	2.93	2.64
735	14.07	9.76	7.46	6.08	5 12	4 42	3.97	3.47	9 13.	12,93	9.09	6.89	568	4.66	4.22	3.73	9.35	3.01
830	15.84	10.99	8.40	6,85	5.76	4,98	4 35	3.91	3.52	14,56	10,24	7.76	6.40	́ 6.49 ¦	4 75	4.20	. a 77	. 9 <u>39</u> 1.
920	17 59	12.20	9.33	7.61	6,40	5,53	4.84	4.34	3,91	16,17	11.37	8.62	7,11	6.10	5.28	4.66	4,19	3.77 J
1110		14.65	(1,20	9,13	7.68	6.64	5.81	5.21	4.69	19.41	13.65	1035	8,53	5,82	. 6.34	5.60	5.03	462

ng ind the optimum battery solution by calculating -

I load

1/temperature derating factor 1/charge derating factor*

requested design margin

rent value to select in the performance table

pical value is 90% when using the recommended charge voltage

東京の市場の目的

สนอบไทยอาเมต์อนสราชสอ

nitted to a clean environment

akes seriously its responsibility to safeguard the environment. verst sites worldwide, more than 95% of metals contained in the battery are recycled. This process safeguards valuable natural Y

resources and is a service to customers that Saft will continue \bigcirc to offer for future generations.

To locate the nearest collection site, visit www.saftbatteries.com

sales dpt,

3 1 49 93 19 18 3 1 49 93 19 56

tina a Alcalina, 4 Aires 4 11 4334 9034/35 4 11 4342 5024

រាំខែ Istralia Pty Ltd. Hills 1 2 9674 0700 1 2 9620 9990

а n GmbH, Wien 3 1 617 40 60 3 1 617 40 60/40

elgium SA, Brussels 2 2 529 6543 12 2 529 6449

ábrica de Sistemas de Energia Ltda.), aulo 5 11 6100 6304 55 11 6100 6338

la Please contact USA office

io Toro V. Representaciones, go 6 2 220 2353 36 2 229 4946

rading 16 21 5866 7935 36 21 5866 6403

Republic erak a.s.,

420 281 080 120 420 281 080 119

ark upply A/S oed 45 45 82 50 90 45 45 82 54 40

istrial Battery Group rue Sadi Carnot 70 Bagnolet – France -33 1 49 93 19 18 +33 1 49 93 19 64

w.saftbatteries.com

Finland HansaBattery Dy.

Espoo tel +358 9 260 65 292 fax +358 9 260 65 299

France Division France, Bagnolet tel +33 1 49 93 19 18 fax +33 1 49 93 19 64

Germany Saft Batterien GmbH, Nurnberg tel +49 911 94 174-0 fax +49 911 426 144

Hong Kong Saft Ltd. Kowloon tel +852 2796 99 32 fax +852 2798 06 19

India sub continent Export sales dot. Sweden tel +46 491 680 00 fax +46 491 681 80

Italy Saft Batterie Italia S.r.I., Segrate (Milano) tel +39 02 89 28 07 47 fax +39 02 89 28 07 82

Japan Sumitoma Corp., Tokyo tel +81 3 5144 9082 fax +81 3 5144 9267

Korea Enersys Korea Co. Ltd. Kyunggi-Do tal +82 2501 0033 fax +82 2501 0034

Mexico Troop y Companie, SA de CV, Mexico tel +52 55 50 82 10 30 fex +52 55 50 82 10 39

Middle East Saft Nife ME Ltd, Limassol, Cyprus tel +357 25 820040 fax +357 25 748492 Netherlands Saft Batteries B.V., Haarlem tal +31 23 750 5720 fax +31 23 750 5725

Norway Norway Saft AS, Osteras tel +47 6716 4160 fax +47 6716 4170

Russia ZAO Alcatel, Moscow tel +7 095 937 0967 fax +7 095 937 0906

Singapore Saft Batteries Pte Ltd, Singapore tel +65 6512 1500 fax +65 6749 7282.

Snain Saft Baterias S.L. San Sebatian de los Reyes tel +34 916 59 34 80 fax +34 916 59 34 90

Sweden Saft AB, Oskarshamn tel +46 491 580 00 fax +46 491 681 80

Switzerland Statron AG, Mägenwil tel +41 62 887 4 887 fax +41 62 887 4 888

United Kingdom Saft Ltd, Harlow tej +44 1279 772 550 fax +44 1279 420 909

USA Saft America Inc., North Haven (CT) tel +1 203 239 4718 fax +1 203 234 7598

Telecom applications Valdosta (GA) tel +1 229 245 2854 fax +1 229 247 8486

Venezuela Corporación INTELEC C.A., Caracas tel +58 212 9631122

Doc Nº 21521.2 - 0404 Edition: April 2004

Data in this document is subject to change without notice and becomes contractual only after written confirmation

Photo credit: Cathy Archbould, Creatas, Photodisc, Saft, Studiologe.

Société anonyme au capital de 31 944 COO 🚝 RCS Bobigny B 383 703 B73

Prepared by Arthur Associates Limited.

nica.plus Ni-Cd batteries allation and operating instructions

tant recommendations

r allow an exposed flame or k near the batteries cularly while charging.

r smoke while performing any ation on the battery.

protection, wear rubber gloves, sleeves, and appropriate sh goggles or face shield.

electrolyte is harmful to skin eyes. In the event of contact skin or eyes, wash immediately plenty of water. If eyes are sted, flush with water, and in immediate medical attention.

ove all rings, watches and r items with metal parts before king on the battery.

insulated tools.

d static electricity and take sures for protection against tric shocks.

harge any possible static tricity from clothing /or tools by touching an :h-connected part "ground" ire working on the battery.

aceiving the shipment

the battery immediately upon I. Do not overturn the package. the packages and cells for port damage.

attery is shipped filled and ed, and is ready for immediate

port seals are located under the each vent, they must be removed to mounting. attery must never be charged the plastic transport seals in as this is dangerous and can a permanent damage.

toráge

the battery indoors in a dry, cool location (0°C to +30°C / F to +86°F) and well ventilated a on open shelves.

ige of a filled battery at eratures above +30°C (+86°F) result in loss of capacity. This can a much as 5% per 10°C (18°F) e +30°C (+86°F) per year.

ot store in direct sunlight or se to excessive heat. Sunica plus batteries are supplied filled with electrolyte and charged, they can be stored in this condition for maximum 12 months.

Never drain the electrolyte from the cells.

- When deliveries are made in cardboard boxes, store without opening the boxes.
- When deliveries are made in plywood boxes, open the boxes before the storage. The lid and the packing material on top of the cells must be removed.

3. Installation

3.1. Location

Install the battery in a dry and clean room. Avoid direct sunlight and heat. The battery will give the best performance and maximum service life when the ambient temperature is between +10°C to +30°C / +50°F to +86°F.

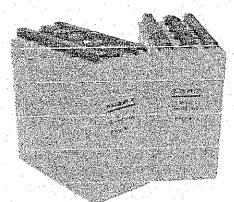
3.2. Ventilation

During the last part of charging, the battery is emitting gases (oxygen and hydrogen mixture). At normal float charge, the gas evolution is very small but some ventilation is necessary. Note that special regulations for ventilation may be valid in your area depending on the application.

3.3. Mounting

Verify that cells are correctly interconnected with the appropriate polarity. The battery connection to load should be with nickel plated cable lugs.

Recommended torques for terminal bolts are:


• M 6	= 11	± 1.1	N.m
- M 8	= 20	75	N.m
• M 10	= 30	± 3	N.m

The connectors and terminals should be corrosion-protected by coating with a thin layer of anti-corrosion oil. Remove the transport seals and close the vent caps.

If a central water filling system is used as an option, refer to the corresponding installation and operating instructions sheet.

3.4. Electrolyte

When checking the electrolyte levels, a fluctuation in level between cells is not abnormal and is due to the different amounts of gas held in the separators of each cell. The level should be at

least 15 mm above the minimum level mark and there is normally no need to adjust it.

Do not top-up prior to initial charge.

4. Commissioning

A good commissioning charge is 🐁 important. Charge at constant current is preferable.

4.1. Cells stored up to 8 months: A commissioning charge is normally not required and the cells are ready for immediate use. If full performances are necessary immediately, a commissioning charge as mentioned in section 4.2. is recommended.

4.2. Cells stored more than6 months and up to 1 year:A commissioning charge is necessary.

Verify that the ventilation is adequate during this operation.

- charge at constant current for 16 h with the current in the Table A.
 Note that at the end of the charge period, the individual cell voltage may rise up to 1.85 V/cell.
- In case constant current charging is not providing, it is possible to achieve this with a constant voltage by using a high voltage level, minimum 1.65 V/cell for 30 hours with the same current limit as in the Table A. When the charger maximum voltage setting is too lew to supply constant current charging, divide the battery into two parts to be charged individually at constant current In the case of remote areas, where the only charger available is the photovoltaic array, the battery should be connected to the system with no connected load and no voltage limit. The battery should then be charged in good sunshine conditions. During this operation, the Ah charged shall be in the magnitude of 1.6 time the rated capacity, and, in order to limit the risk of electrolyte overflow, it is recommended not to exceed the charge current value specified in the Table A.

nica.plus Ni-Cd batteries

larging in service

notovoltaic airray converts solar ince into DC electrical power at a itermined range of voltages aver sufficient solar radiation is ble. Unlike a main connected n, the output from a photovoltaic is variable and, to obtain the ifficiency from the system, it is normal to have some form of a control.

hain technics for charging the ies are generally used in voltaic systems.

are those which have a ant voltage limitation based on VM technics and those with al voltage steps charging where attery, by switching means, is ing up to a high pre-set voltage ; or float threshold), then drops aver voltage level (battery nect threshold) and then back high pre-set voltage and so on.

nmended charging voltages for a l photovoltaic application sized for s or more back up time:

e of constant voltage limitation VM regulator system or similar] pat: 1.50 V/cell

post (not mandatory): 1.65 V/cell

e of regulators based on the tching principle: tost threshold (not mandatory):

65 V/cell bat threshold: 1.55 V/cell attery reconnect threshold:

45 V/cell wer back-up time, the values

to be increased depending of the equirement. Consult the facturer.

se in warm areas, a temperature ensation on the charge voltage is commended.

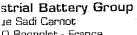
se in cold areas, a temperature ensation is recommended to use the charge acceptance. ecommended value is: mV/°C/cell (-1.4 mV/°F/cell) ng from +20°C (+68°F).

Table A:

Geli type	Rated Capacity 5 h - 1.00 V C. Ah	Nominal Capacity 120 n - 1.00 V C _{rus} Ah Ah	Charging Current 0.1 C, A A	Max: quantity of water to be added in cc	Cell Terminal
SUN ⊕ 45	43	45	4.3	190	M 6
SUN	85	90	8.5	280	M 8
SUN ⊕ 105	100	105	10	380	M 10
SUN @ 140	128	140	13	360	M 10
SUN @ 185	171	165	17	500	M 10
SUN ⊕ 230	213	230	21	590	M 10
SUN @ 275	256	275	26	700	M 10
SUN ⊕ 320	300	320	30	860	2 x M10
SUN @ 370	341	370	34	1000	2 x M10
SUN 🕀 415	384	415	38	1100	2 x M10
SUN	427	460	43	1200	2 x M10
SUN ⊕ 505	469	505	47	1300	2 x <u>M</u> 1D
SUN @ 555	512	555	51	1400	2 x M10
SUN ⊕ 649	597	645	60	1700	3 x M10
SUN @ 735	682	735	68	1900	3 x M10
SUN	768	830	77	2100	3 x M10
SUN ⊕ 920	853	920	85	2400	4 x M10
SUN ⊕ 1110	1024	1110	102	2600	4 x M10
			1. Sec. 1. Sec		and the second second

6. Periodic Maintenance

In a correctly designed standby application, Sunica plus requires the minimum of attention.


However, it is good practice with any system to carry out an inspection of the system once per year or at the recommended topping-up interval period to ensure that the charging system, the battery and the ancillary electronics are all functioning correctly.

- When this system service is carried out, it is recommended that the following actions should be taken:
- cell electrolyte levels should be checked visually to ensure that the level is above the minimum and if necessary the cells should be topped up. Use only distilled or deionized water (see Table A for the quantity of water per cell).
- the batteries should also be checked for external cleanliness, and if necessary cleaned with a damp brush using water. Do not use a wire brush or solvents of any kind. Vent plugs can be rinsed in clean water if necessary.

 all the connectors must be tight. The connectors and terminal bolts should be corrosion-protected by coating with a thin layer of anti-corrosion oil.

7. Environment

To protect the environment all used batteries must be recycled. Contact your local Saft representative for further information.

0 Bagnolet - France 33 1 49 93 19 18 33 1 49 93 19 64

saftbatteries.com

Doc Nº 21522.2 - 0604

Data in this document is subject to change without notice and becomes contractual only after written confirmation.

Société anonyme au capital de 31 944 000 € RCS Sobigny 8 383 703 873

Pragma - Printed in France - 3k

APPENDIX D

SHELL POWERMAX[™] SOLAR MODULES CATALOGUE

HEOMORE COLORING OUTCES

erMax[™] is a new range of ile, high performance solar proth designs created specifically 1 applications

erMax^{IM}Ultra 85-P and 80-P contain 36 series cannected 25mm mono-crystalline solar cells, 1 generate a peak power of 85 and at 17:2 and 16.9V respectively.

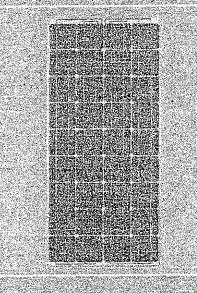
lications ertificates

PowerMax™Ultra 85-P and 80-P neet the following requirements:

215 ing 1703 proved ifety Class 2 (pending)

hell Solar modules are produced 01:2000 certified factories

-ci-Murranties'


wer for 25 years (category D), workmanship 2 years

ill Solar Limited Warranty

odules

Shell PowerMax^M Uhro SQ85-P/30-P

Terrand 219

ELECTRICAL EQUIPMENT, CHECK WITH YOUR INSTALLER

Due to continuous research and product improvement the specifications in this Product Information Sheet are subject to change without ratice. Specifications can vary slightly, for installation and operation instructions, see the applicable menuals. No rights can be derived from this Product Information Sheet and Shell Solar assumes no fierbility whatsever connected to or resulting from the use of any information contained herein.

References in this Product Information Sheet to Shell Solar' are to companies and other organisational entities within the Royal Duict/Shell Group of Companies that are engaged in the photovoltais solar energy business; Shell Solar was set up in 1999 and has its principal office in Amsterdam, the Netherlands

The Shell PowerMax^m advantage

Exceptional Performance

- High efficiency: crystalline silicon solar cell technology: enhanced by TOPS™ and new silicon nitride anti-reflection coatings.
- One of the industry's leading energy yields in a wide variety of climates.
- Products rated on fully stabilized initial power so you get the power you pay for

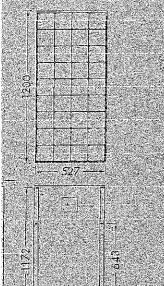
Proven Reliability

- Module design proven over 30 years of held operations with reliability in excess of 99.9%
- Extended limited power warranties backed by a company you carr trust.
- UL 1703, IEC 61215, FM and TUV Safety Class 2 certifications.

Safety by Design

- Suitable for high snow and wind loads
- UL fire safety class C

Easy to install


- Conduit ready junction box
- 12 mounting holes per product;
 4 grounding holes
- 20A series fuse rating

ell PowerMax[™] Ultra SQ85-P/80-P otovoltaic Solar Modules

onical fications

and corrosion-resistant anodized i frame ensures dependable ice, even under harsh weather i. Pre-drilled mounting holes are for ease of installation.

nsions (in/mm)	47.2x	20.8/1200x527
Junction box	(in/mm)	2.2/56
: junction box	(in/mm)	1.3/34
:g)		16.7/7.6
уре	Pro	oCharger™ IP44
iize (in/mm)	5x4.4x1.	8/130x110x50

n box allows for easy field nt of diodes.

tion instructions, please Shell Solar Installation and uctions.

Electrical Characteristics

Data at Standard Test Conditions (STC)

STC: irradiance level 1000W/m², spectrum AM 1.5 and cell temperature 25°C.

	PowerMax™	Ultra 80-P	Ultra 85-P
Raied power [W]	Pr .	80	65
Peak power* [W]	P _{mpp} *	80	85
Module efficiency [%]	η	12.7	ī 3 .4
Maximum system voltage	Vsys	600V (UL)/715V (TÜV)	600V (UL)/715V (TÜV)
Peak power voltage [V]	V _{npp}	16.9	17.2
Peak power current [A]	I _{mpp}	4.76	4.95
Open circuit voltage [V]	Y _{oc}	21.8	22.2 🚑
Short circuit current [A]	lsc	5.35	5.45
Series luse rating [A]	l _{fuse}	20	20
Minimum peak power [W]	P _{mpp min}	76	80.75
*Tolerance on Peak Power [%]	%	+/-5	+/-5

* The abbreviation 'mpp' stands for Maximum Power Point.

Typical Data at Nominal Operating Cell Temperature (NOCT) conditions

NOCT: irradiance level $800W/m^2$, spectrum AM 1.5 , wind velocity 1m/s, $T_{amb} 20^{\circ}$ C.

Temperature [°C] TNOCT	45.5	45.5
Mpp power [W] Papp	59	63
Mpp voltage [V]	15.8	16.4
Open circuit voltage [V] V _{oc}	20.0	20.1
Short circuit current [A]	4.20	4:25

Temperature coefficients

α P _{mpp} [%/°C]			-0,43	·	-0,43
α V _{mpp} [mV/°C]			-72.5		-72.5
α l _{sc} [mA/°C]		1	1.4		• 1.4 •
α V _{oc} [mV/°C]	· · · .	er e set	-64.5		-64.5
			······································		

Typical data at low irradiance

The relative reduction of module efficiency at an irradiance of 200W/m² in relation to 1000W/m² both at 25°C cell temperature and spectrum AM 1.5 is 8%.

For further information on all Shell Solar products contact: Shell Solar Industries LLP 4650 Adhor Lane, Camarillo, CA 93012, USA +1 805 432 6800 Fox +1 805 388 6395 solarsales@shell.com www.shell.com/solar

V1/PowerMax/Off-Grid12V/80-P/85-P/US/04/05

Sheil Salar GmbH Domagkir: 34, 80807 Munich; Germany +49, 89, 45234 0 - Fax +49, 89, 45234 100 solarinfo@shell.com

APPENDIX E CALCULATION SHEETS

Load list for solar power system

sctrical Emergency Lighting (System I)

۶m O.	Description	Type of supply (V)	Unit load (watt)	Load quantity	Efficiency (%)		Total load (watt)		Daily duty cycle in hrs	Total load (Wh/day)	Total load (Ah/day)
1	Fluorescent emergency lighting	24	18	11	90		220		14	3080	128.3
	Total load per 24hr cycle Design Margin Design Load per 24hr cycle					at	220 0 220	%		3080 0 3080	128.3 0 128.3

strumentation and Telecommunication Power (System IIA)

m	Description	Type of	Unit load (watt)	Load quantity	Efficiency (%)		Total load (watt)	Daily duty cycle in hrs	Total load (Wh/day)	Total load (Ah/day)
0.		supply (V)	(watt)	quartity	(70)	-	(Wall)	CYCIO III III S	(evinday)	U-1/241/7
1	RTU and microwave radio	24	316	1	100		316	24	7584	316.0
2	Wellhead control panel	24	8	1	100	1	8	24	192	8.0
	VHF Radio (crane)	24	140	1	100		140	0.857	120	5.0
	Total load per 24hr cycle						464		7896	329.0
	Design Margin					at	0 %		0	0
	Design Load per 24hr cycle						464		7896	329.0

strumentation and Telecommunication Power (System IIB)

em Description	Type of supply (V)	Unit load (watt)	Load quantity	Efficiency (%)		Total load (watt)		Daily duty cycle in hrs	Total load (Wh/day)	Total load (Ah/day)
1 Multiphase Flow Meters 2 Fire and Gas Panel	24 24	30 175		100 100		180 175		24 24		180.0 175.0
Total load per 24hr cycle Design Margin Design Load per 24hr cycle					at	355 10 390.5	%		8520 852 9372	35.5

arine Navaids (System III)

em 10.	Description	Type of supply (V)	Unit load (watt)	Load quantity	Efficiency (%)		Total load (watt)		Daily duty cycle in hrs	Total load (Wh/day)	Total load (Ah/day)
1	Navaids Lanterns Fog Horn Fog Detector	24 24 24	2.65 37.06 5.56	1	100 100 100		10.6 37.06 5.56		16 24 24		37.06
	Total load per 24hr cycle Design Margin Design Load per 24hr cycle					at	53.22 0 53.22	%		1192 0 1192	0

Battery Sizing For System I

Equipment design calculation basis

•••				
Nominal system voltage	Vs	=	24 Vdc	
Battery system capacity, % of total system requirements	Rb	=	100 %	
Autonomy period	ts	=	14 hours	
Ageing factor for battery capacity	kage	=	0.91 p.u.	
Temperature correction factor for battery performance	kT	=	1 p.u.	
remperature contection racion for patienty performance	N 1	-	i p.u.	
Load data and derating				
Average daily load	Qd1	=	128.3 Ah	(from load list)
Voltage regulator efficiency	Ŋ	=	92 %	, ,
Average daily power consumption	Qd = Qd1/n	=	139.5 Ah	
Attrace day porter concernation				
Battery system sizing				
Assumed daylight hours per day	td	1 12	10 hours	
No of hours for which load is supplied by battery	(24-td)	Ŧ	14 hours	
Total load demand over discharge period	Qs	=	139.5 Ah	
Average discharge current per battery	id' = Qs/ts	=	9.96 A	
Maximum percentage discharge allowed (max DOD)	kd3	=	80 %	
monart herocradio anorardo anorar france o - t				
Required min battery capacity per battery system	Qb'=Qd/kd3/kage/kT	=	191.6	
Actual selected battery capacity	Qb	=	213 Ah (C5)	
Achieved system capability	Ob/Ob' *100	=	111 %	
Achieved autonomy	Qb/Qd*kd3/100*ts*kage*kT	æ	15.56 hours	
Achieved autonomy				
Battery utilisation from initial nominal capacity				
Distribution load per night cycle		#	139.5 Ah	
Actual overnight depth of discharge	Qd1 = Qd/Qb*kT*100	=	65.49 %	
Actual autonomy period, without derating	tsact = Qb/Qd*kT*ts	=	21.38 hours	
Actual mutanoning period, manout oceaning				
Battery utilisation from aged capacity				
,,,				
Actual overnight depth of discharge	Qd1act = Qd1'/kage	=	71.97 %	
Actual autonomy period to 100% discharge	tsact' = tsact*kage	=	19.45 hours	
Notadi detorioni portodi la notio Coertaigo				
Solar Power Requirements				
-				
Minimum time to recharge from specified DOD	Tch	Ŧ	7 days	
Distribution load per discharge cycle		₽	139.5 Ah	= 19.93 Ah per day
Battery recharge inefficiency loss at 7 % of cycle	Qbloss = Qd*7%	=	9.8 Ah	= 1.39 Ah per day
Daily battery self-discharge loss at 0.01 % of battery	Qbdisch = Qb*0.01%*Tch	≐	0.1491 Ah	= 0.02 Ah per day
Total average solar energy requirements		H	149.4 Ah	= 21.34 Ah per day

tery Sizing For System IIA

lipment design calculation basis

ninal system voltage		Vs	=	24 Vdc
tery system capacity, % of total system requirements		Rb	=	100 %
onomy period		ts	æ	7 days
sing factor for battery capacity		kage	=	0.91 p.u.
nperature correction factor for battery performance		kT	=	1 p.u.
liperature concession factor for battery performance		N4	-	1 p.u.
ıd data and derating				
ware daily load		Qd1	=	329.0 Ah (from load list)
erage daily load			=	92 %
tage regulator efficiency		η Qd = Qd1/η	=	357.6 Ah
rage daily power consumption		Qu - Quint	-	557.0 All
teria 1 - Battery system sizing - daily load cycle				
sumed daylight hours per day		td	=	8 hours
of hours for which load is supplied by battery		24-td	Ŧ	16 hours
rage daily per battery load discharge		Qbd = (24-td)/24*Rb/100*Qd	==	238.4 Ah
kimum percentage discharge allowed		Kd1	=	20 %
tery size requirement		Qbd' = Qbd/(kd1/100)/kage/kT	=	1310 Ah
teria 2 - Battery system sizing - full discharge cycle				
ly load demand on battery without solar array		Qs = Rb/100*Qd	Ξ	357.6 Ah
rage battery discharge current		ld = Qs/(24-td)	=	22.4 A
al battery load demand over discharge period		Qbs = Qs*ts	=	2503.3 Ah
ximum percentage discharge allowed (max DOD)		kd3	±	80 %
tery size for max DOD from 100% charge		Qbc = Qbs [*] /(kd3/100)/kage/kT	4	3439 Ah
•				
quired minimum battery capacity per battery system		Qb'=Max(Qbd,Qbc)	=	3439 Ah
tual battery capacity		Qb	=	4440 Ah (C128)
nieved system capability at specified autonomy of 7	days	Qb/Qb' *100	=	129.1 %
nieved autonomy			=	9.04 days
Itery utilisation from initial nominal capacity				
1. No. 1. No. 1. Same de marca de Calado en castra		QdLn = Qd*(24-td)/24	E	238.4 Ah
tribution load per night cycle		Qd1' = QdLn/(Qb*kT)*100	=	5.37 %
tual overnight depth of discharge		$t_{sact} = Qb^*kT/Qd$	-	12.42 days
tual autonomy period without derating				12.42 Gayo
ttery utilisation from aged capacity				
tual overnight depth of discharge		Qd1act = Qd1%kage	=	5.90 %
tual autonomy period		tsact' = tsact*kage	z	11.3 days
lar Power Requirements				
		Tab	=	28 days
nimum time to recharge from specified DOD		Tch	=	238.4 Ah
ily night-time distribution load		QdLn		
ily day-time distribution load		Qd' = td/24*Qd	=	119 Ah per daylight cycle
ttery recharge inefficiency loss at 7 % of cycle		Qbloss = 7% *QdLn	=	16.7 Ah per night cycle
ily battery self-discharge loss at 0.1 % of battery		Qbdisch = 0.1%*Qb	-	4.44 Ah per 24 hours
ily system energy requirements		Qd" = Qd+Qbloss+Qbdisch	=	378.7 Ah per 24 hours
ttery capacity to be recharged		Qbs' = Qs*ts	=	2503.3 Ah
ttery recharge inefficiency loss at 7 % of cycle		Qbloss' = 7%*Qbs'	=	175.2 Ah
ily recharge load from full discharge		Qchr = (Qbs'+Qbloss')/Tch	=	95.66 Ah
tal average solar energy requirements per 24 hour		Qchr + Qd"	H	474.4 Ah
			=	144 %
			-	· • • •

ry Sizing For System IIB

pment design calculation basis

nal system voltage	Vs	-	24 Vdc
ry system capacity, % of total system requirements	Rb	=	100 %
nomy period	ts	=	7 days
ig factor for battery capacity	kage	æ	0.91 p.u.
perature correction factor for battery performance	kT	=	1 p.u.
seraure contection racion for battery performance	κ.		1 p.u.
l data and derating			
age daily load	Qd1	=	390.5 Ah (from load list)
ge regulator efficiency	η	=	92 %
age daily power consumption	$Qd = Qd1/\eta$	=	424.5 Ah
ria 1 - Battery system sizing - daily load cycle			
med daylight hours per day	td	. =	8 hours
f hours for which load is supplied by battery	24-td	=	16 hours
age daily per battery load discharge	Qbd = (24-td)/24*Rb/100*Qd	=	283.0 Ah
num percentage discharge allowed	Kd1	=	20 %
ry size requirement	Qbd' = Qbd/(kd1/100)/kage/kT	ш	1555 Ah
ria 2 - Battery system sizing - full discharge cycle			
load demand on battery without solar array	Qs = Rb/100*Qd	=	424.5 Ab
age battery discharge current	id = Qs/(24-td)	=	26.5 A
U i i	Qbs' = Qs*ts	=	2971.2 Ah
battery load demand over discharge period mum percentage discharge allowed (max DOD)	kd3	=	80 %
ry size for max DOD from 100% charge	Qbc = Qbs'/(kd3/100)/kage/kT	=	4081 Ah
sy size for max DOD from 100% charge			
vired minimum battery capacity per battery system	Max(Qbd,Qbc)	=	4081 Ah
al battery capacity	Qb	Ŧ	4440 Ah (C120)
eved system capability at specified autonomy of 7 days		=	108.8 %
eved autonomy		=	7.6 days
ery utilisation from initial nominal capacity			
the star band your window average	QdLn = Qd*(24-td)/24	=	283.0 Ah
ibution load per night cycle	Qd1' = QdLn/(Qb*kT)*100	=	6.37 %
al overnight depth of discharge	tsact = Qb*kT/Qd	=	10.46 days
al autonomy period without derating	(Saul - Cab All Cab		10,40 dujo
ery utilisation from aged capacity			
al overnight depth of discharge	Qd1act = Qd1'/kage	=	7.00 %
al autonomy period	tsact' = tsact*kage	÷	9.5 days
ır Power Requirements			
mum time to recharge from specified DOD	Tch	=	28 days
y night-time distribution load	QdLn	=	283.0 Ah
y day-time distribution load	Qd' = td/24*Qd	Ξ	141 Ah per daylight cycle
ery recharge inefficiency loss at 7 % of cycle	Qbloss = 7% *QdLn	E	19.8 Ah per night cycle
y battery self-discharge loss at 0.1 % of battery	Qbdisch = 0.1%*Qb	=	4.44 Ah per 24 hours
y system energy requirements	Qd" = Qd+Qbloss+Qbdisch	=	448.7 Ah per 24 hours
ery capacity to be recharged	Qbs' = Qs*ts	Ξ	2971.2 Ah
ery recharge inefficiency loss at 7 % of cycle	Qbloss' = 7%*Qbs'	₽	208.0 Ah
y recharge load from full discharge	Qchr = (Qbs'+Qbloss')/Tch	=	113.54 Ah
al average solar energy requirements per 24 hour	Qchr + Qd"	3	562.2 Ah

= 144 %

ttery Sizing For System III

uipment design calculation basis

dipitoin acougo concentration acore			
minal system voltage	Vs	=	24 Vdc
ttery system capacity, % of total system requirements	Rb	=	100 %
•••		=	7 davs
tonomy period	ts		
eing factor for battery capacity	kage	=	0.91 p.u.
mperature correction factor for battery performance	кТ	=	1 p.u.
ad data and derating			
	0.14	_	an material discussion of the state
erage daily load	Qd1	=	49.7 Ah (from load list)
Itage regulator efficiency	η	=	92 %
erage daily power consumption	Qd = Qd1/ŋ	=	54.0 Ah
st fime newsr concumption	Qd1	=	15.4 Ah
y-time power consumption		=	38.6 Ah
jht-time power consumption	Qd2	-	30.0 All
iteria 1 - Battery system sizing - daily load cycle			
oursed davlight hours per dav	td	=	8 hours
sumed daylight hours per day	ia 24-ta	=	16 hours
of hours for which load is supplied by battery			
erage daily per battery load discharge	Qbd = (24-td)/24*Rb/100*Qd	=	38.6 Ah
iximum percentage discharge allowed	Kd1	=	20 %
Ittery size requirement	Qbd' = Qbd/(kd1/100)/kage/kT	Ħ	212 Ah
iteria 2 - Battery system sizing - full discharge cycle			
Kring F - Driffely system sizing for droomings of the			
ily load demand on battery without solar array	Qs = Rb/100*Qd	=	54.0 Ah
erage battery discharge current	ld = Qs/(24-td)	æ	3.4 A
tal battery load demand over discharge period	Qbs' = Qs*ts	=	378.1 Ah
ximum percentage discharge allowed (max DOD)	kd3	=	80 %
Ittery size for max DOD from 100% charge	Qbc = Qbs'/(kd3/100)/kage/kT	=	519 Ah
Rery Size for max DOD from 100 % charge			010 / 11
quired minimum battery capacity per battery system	Max(Qbd,Qbc)	Ħ	519 Ah
:tual battery capacity	Qb	=	645 Ah (C120)
		=	124.2 %
	•	=	8.7 days
hieved autonomy			0.7 days
ittery utilisation from initial nominal capacity			
attilution load nor night cycle	QdLn = Qd*(24-td)/24	Ŧ	36.0 Ah
stribution load per night cycle		=	5.58 %
tual overnight depth of discharge	Qd1" = QdLn/(Qb*kT)*100		
tual autonomy period without derating	tsact = Qb*kT/Qd	=	11.94 days
ittery utilisation from aged capacity			
•			0.40 %
tual overnight depth of discharge	Qd1act = Qd1/kage	=	6.13 %
stual autonomy period	tsact' = tsact*kage	=	10.9 days
star Power Requirements			
	Tch	=	14 days
inimum time to recharge from specified DOD			38.6 Ah
ally night-time distribution load	QdLn	=	
ally day-time distribution load	Qd ⁺ = td/24*Qd	=	18 Ah per daylight cycle
attery recharge inefficiency loss at 7 % of cycle	Qbloss = 7% *QdLn	=	2.7 Ah per night cycle
aily battery self-discharge loss at 0.1 % of battery	Qbdisch = 0.1%*Qb	Ξ	0.645 Ah per 24 hours
aily system energy requirements	Qd" = Qd+Qbloss+Qbdisch	Ħ	57.4 Ah per 24 hours
attery capacity to be recharged	Qbs' = Qs*ts	Ξ	378.1 Ah
attery recharge inefficiency loss at 7 % of cycle	Qbloss' = 7%*Qbs'	×	26.5 Ah
ally recharge load from full discharge	Qchr = (Qbs'+Qbloss')/Tch	=	28.89 Ah
	Qchr + Qd"		86.2 Ah
stal average solar energy requirements per 24 hour	NEUTII - NEU		
		=	174 %

Battery Sizing Summary

Design Load

	System I	Electrical	=	128.3 Ah/day
	System IIA	RTU/ Wellhead Control Panel/VHF Radio	=	329 Ah/day
	System IIB	Multiphase Flow Meter/Fire & Gas Panel	=	390.5 Ah/day
	System III	Navaids	=	49.69 Ah/day
Batte	ry Size			
	System I	Electrical	=	213 Ah
	System IIA	RTU/ Wellhead Control Panel/VHF Radio	=	4440 Ah
	Oystein IIA			
	System IIB	Multiphase Flow Meter/Fire & Gas Panel	-	4440 Ah

Solar Energy Requirement

~

System I	Electrical	=	21.34 Ah/day
System IIA	RTU/ Wellhead Control Panel/VHF Radio	Ħ	474.4 Ah/day
System IIB	Multiphase Flow Meter/Fire & Gas Panel	=	562.2 Ah/day
System III	Navaids	=	86.25 Ah/day

ectrical Solar Array System Sizing

ad Data

minal system voltage	Vr	=	24 Vdc
ily load energy	Q	=	21.34 Ah

odule data

arranted minimum power ominal load current up to peak power voltage	Pmpp Impp	=	85 W 4.95 A
imperature performance factor of efficiency	K _r		0.43 A/°C
Idititonal output due to Temperature correction	K _τ /100 x (T _a -25)	=	0.1505 A
ominal voltage	Vn	=	12 V

plar & Array sizing Data

uivalent sun hours (Note 1)	ESH	=	3.86 kWh/day/mi
of series module connections per array	Ns=Vr/Vn	=	2
ell temperature (Note 2)	Tia	=	60 °C
jeing, degradation, alignment, tilt and fouling factor (Note 3)	kr	=	0.77
ngle module capability	Imod=[Impp*kr+(Kt/100 x (Ta-25))] *ESH	=	15.2933 Ah/day
in no of modules per array	Nmin = Q/Imod*Ns	=	2.79 modules

ray capability

ected no of modules per array	Nact		4
apability of array	QA1 = Nact/Ns*imod	=	30.5866 Ah/day
alculated system capability at actual load		=	143.3 %

otes:

)	Based on insola	ation data	for worst month	(August)
---	-----------------	------------	-----------------	----------

Average daily maximum for August)

9

15 % for degradation 2 % for mis-alignment 1 % for fouling

2 % cell mismatch

3 % wiring/cabling losses

m IIA Solar Array System Sizing

Data

ial system voltage	Vr	=	24 Vdc
pad energy	Q	H	474.40 Ah

le data

inted minimum power	Pmpp	=	85 W
al load current up to peak power voltage	limpp	=	4.95 A
erature performance factor of efficiency	κ _τ	=	0.43 A/°C
onal output due to Temperature correction	K _T /100 x (T _a -25)	=	0.1505 A
ial voltage	Vn	=	12 V

& Array sizing Data

alent sun hours (Note 1)	ESH	=	3.86 kWh/day/m ²
series module connections per array	Ns=Vr/Vn	=	2
mperature (Note 2)	Та	=	60 °C
), degradation, alignment, tilt and fouling factor (Note 3)	kr	=	0.77
module capability	Imod = [Impp*kʀ+(Kɪ/100 x (Ta-25))] *ESH	Ξ	15.2933 Ah/day
of modules per array	Nmin = Q/Imod*Ns	=	62.04 modules

capabilty

ed no of modules per array	Nact	=	62
vility of array	QA1 = Nact/Ns*Imod	=	474.0929 Ah/day
ated system capability at actual load		=	99.9 %

Based on insolation data for worst month (August) Average daily maximum for August

15 % for degradation
2 % for mis-alignment
1 % for fouling
2 % cell mismatch
3 % wiring/cabling losses

em IIB Solar Array System Sizing

Data

inal system voltage	Vr	11	24 Vdc
load energy	Q	ath.	562.25 Ah

ule data

anted minimum power	Pmpp	=	85 W
inal load current up to peak power voltage	Impp	=	4.95 A
perature performance factor of efficiency	K _T	=	0.43 A/°C
itonal output due to Temperature correction	K _T /100 x (T _a -25)	=	0.1505 A
inal voltage	Vn	=	12 V

r & Array sizing Data

valent sun hours (Note 1)	ESH	=	3.86 kWh/day/m²
f series module connections per array	Ns=Vr/Vn	=	2
temperature (Note 2)	Та	=	2° 0 9
ng, degradation, alignment, tilt and fouling factor (Note 3)	kr	=	0.77
e module capability	Imod=[Impp*kR+(Kт/100 x (Ta-25))] *ESH	=	15.2933 Ah/day
to of modules per array	Nmin = Q/Imod*Ns	=	73.53 modules

y capabilty

oted no of modules per array	Nact	=	74
ability of array ulated system capability at actual load	QA1 = Nact/Ns*imod	=	565.8528 Ah/day 100.6 %
Unated System capability at actual load			

S.

Based on insolation data for worst month (August) Average daily maximum for August

15 % for degradation

2 % for mis-alignment

1 % for fouling

2 % cell mismatch

3 % wiring/cabling losses

em III Solar Array System Sizing

| Data

inal system voltage	Vr	=	24 Vdc
load energy	Q	<u>~</u>	86.25 Ah

ule data

anted minimum power	Pmpp	=	85 W
inal load current up to peak power voltage	Impp	=	4.95 A
perature performance factor of efficiency	K,	=	0.43 A/°C
titonal output due to Temperature correction	K _T /100 x (T _a -25)	=	0.1505 A
inal voltage	Vn	=	12 V

r & Array sizing Data

valent sun hours (Note 1)	ESH	=	3.86 kWh/day/m²
f series module connections per array	Ns=Vr/Vn	Ξ	2
temperature (Note 2)	Та	=	3° 00
ng, degradation, alignment, tilt and fouling factor (Note 3)	kr	#	0.77
le module capability	Imod=[Impp*kr+(Kt/100 x (Ta-25))] *ESH	=	15.2933 Ah/day
no of modules per array	Nmin = Q/Imod*Ns	#	11.28 modules
no of moduloo por anay			

y capabilty

cted no of modules per array	Nact	=	12 91. 7599 Ah/day
ability of array	QA1 = Nact/Ns*imod	-	•
ulated system capability at actual load		=	106.4 %

\$...

XS:

. Based on insolation data for worst month (August)

Average daily maximum for August

15 % for degradation

2 % for mis-alignment

1 % for fouling

2 % cell mismatch

3 % wiring/cabling losses

Solar Array Sizing Summary

Solar Energy Requirements

	System I	Electrical	=	21.34 Ah/day		
	System IIA	RTU/ Wellhead Control Panel/VHF Radio	=	474.40 Ah/day		
	System IIB	Multiphase Flow Meter/Fire & Gas Panel	=	562.25 Ah/day		
	System III	Navaids	=	86.25 Ah/day		
No of Solar panels						
	System I	Electrical	=	4 Nos		
	System IIA	RTU/ Wellhead Control Panel/VHF Radio	=	62 Nos		
	System IIB	Multiphase Flow Meter/Fire & Gas Panel		74 Nos		
	System III	Navaids	=	12 Nos		
		TOTAL	Ξ	152 Nos		
Array Capability						
	System I	Electrical	=	30.59 Ah/day		
	System IIA	RTU/ Wellhead Control Panel/VHF Radio	=	474.09 Ah/day		
	System IIB	Multiphase Flow Meter/Fire & Gas Panel	=	565.85 Ah/day		
	System III	Navaids	=	91.76 Ah/day		