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ABSTRACT

The high content of carbon dioxide in the natural gas is a major concern in harnessing

the natural gas. This is due to the acidity of the carbon dioxide which will impose

problem to the extraction, production and transportation of the natural gas. Cryogenic

separation of carbon dioxide from natural gas is proposed to separate carbon dioxide

from the high carbon dioxide content natural gas using the dynamic packed bed. An

effective separation between the carbon dioxide and methane can be obtained using the

cryogenic packed bed. This separation is possible due to the difference in dew and

sublimation points of carbon dioxide and methane. This is because, due to the

sublimation point of carbon dioxide which is -78.5°C which is at higher temperature

than methane, which is -182°C, the carbon dioxide will deposit on the packing material

at temperature below its sublimation point. Carbon dioxide is depositing on the packing

material by the transfer of the cold energy which is stored in the packing material. The

carbon dioxide molecule is cooled form the transfer of energy from the cold material

(packing material) to the hot material (carbon dioxide) and deposited onto the packing

material. Methane will not be deposited and will flow freely out of the bed as there are

empty spaces inside the packed bed. Mathematical analysis was performed to better

understand the separation characteristic of carbon dioxide from methane and

experiments are to be carried out for cryogenic C02 capture. From the mathematical

analysis, the mass deposition rate of the carbon dioxide is found out to be increasing

sharply as the concentration of carbon dioxide increases. The dynamic behavior of the

packed bed is described using the one dimensional plug flow model.
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CHAPTER 1

INTRODUCTION

1.1.Background Study

It is important to know that the consumption of natural gas worldwide is forecasted to

increase by more than 90 per cent by year 2030 (Malaysia, 2011).As of currently, there

are 25 power plants in Malaysia that is operated using the natural gas compared with

only 1 power plant in 1984.This shows the increasing demand of natural gas. However,

the depleting natural gas reserve is of worldwide concern. Moreover, the new

uneconomic field has high CO2 content ranging from 12% to 40% (Malaysia, 2011), and

the CO2 content in the Malaysian natural gas which can reach up to 80%. Besides that

according to (Hart & Gnanendran, 2009) the LaBarge gas field in SW Wyoming (USA)

which has 65% of CO2 was discovered in 1963, but the production of the field is

delayed until 1986 due to high CO2 concentration. The high content of CO2 may cause

corrosion problem in extraction, transportation, production of the natural gas (S.A.

Enbenezer, 2005). Besides that, C02 also poses a threat to the environment as it is one of

the major greenhouse gases (Fleay, 2002).Therefore, efficient separation of CO2 is a

must. It is important to research for technologies that can be easily applied in the

offshore platform due to the limitations that must be complied with the offshore

platform such as lack of space and materials.

Therefore, it is suggested to perform the cryogenic separation of CO2 from natural gas.

This is because; this method is suitable for the separation ofhigh content of CO2(Hart &

Gnanendran, 2009). Other method such as the amine scrubbing is only suitable for CO2

content from 3% to 25% (Keskes, Adjiman, Galindo, & Jackson, 2006) because the

degree of absorption is restricted to the fixed stoichiometry of the chemical reaction.

While membrane process possesses high potential for a wide range of CO2 content, it is

1



prone to rupture at high pressure and may cause other operational problem. This is not

tolerable in the offshore platform due to location and cost of operation. Slight problem

that can delay the production may cause billions to be lost. Besides that the application

of the cryogenic separation process is simples and can eliminate the need for solvent

regeneration. The separation method using the dynamic packed bed for simultaneous

separation of CO2 and H2O from natural gas is proposed to separate the high CO2

content in the natural gas.

1.2.Problem Statement

The project is carried out to study the characteristic of separation of C02 from natural

gas using the recently develop technology for the separation of CO2 from flue gas. The

cryogenic dynamic packed bed is an interesting model that can be studied to be used for

the separation of C02 from natural gas. This is because; the technology is employing the

cryogenic condition to separate the CO2 without applying any absorbent. This is a good

point to be noted as the regeneration of the absorbent will consume a lot of energy thus

require higher cost (Davidson & Kelly, 2004). As it is just recently developed, the

technology is not tested using the natural gas as feed. Therefore, it will be beneficial if

the technology is tested to be suitable to be used for the separation of CO2 from natural

gas.

However, the problem statement for this project is closely related to the problems of

using the cryogenic separation process. According to (Song, Kitamura, Li, &

Ogasawara, 2012a), the drawback of the cryogenic separation process include the

plugging of the system by ice which will then require more cost for dehydration of the

feed stream before entering the cryogenic separation system. Thus extra cost needs to be

invested for separate removal of water.



1.3.0bjectives

The objective of this project is listed as follows:

• Preliminary research for cryogenic separation using dynamic packed bed for

separation of C02 and CH4 in natural gas.

• To investigate the space and time variation of weight fraction and mass

deposition ofCO2 in the packed bed using mathematical analysis.

1.4.Scope of study

The scope of this project is as a preliminary research on the cryogenic CO2 capture using

dynamically operated packed beds technology by (M. J. Tuinier, et al., 2010) in

simultaneous separation of CO2 and H2O from natural gas. The project is focusing on

the capture cycle where the cryogenic separation using dynamic packed bed for

separation of CO2 and H2O from natural gas is investigated. Besides that, it is also

important to investigate the separation characteristic of CO2 and H2O from natural gas in

the capture cycle. During the study, mathematical analysis on the mass deposition of

CO2 during the separation is performed. Besides that, experimental study will also be

carried out to obtain the match and verification of simulation results. The designing and

procuring for the experiment is also carried out to obtain all the needed equipment as

this project is still in the early stages and not much equipment is available for cryogenic

experiment.



CHAPTER 2

LITERATURE REVIEW

2. LITERATURE REVIEW

There are plenty ofprocess and method currently used, developed or under development

around the world to solve the problem of separating the CO2 from the desired end

product. The technologies involved in the CO2 separation is adsorption, absorption,

cryogenic and membrane (Song, Kitamura, Li, & Ogasawara, 2012b). Some of these

method or processes can be applied to the separation of C02 from natural gas with

further modifications. There are plenty of problems related to C02 separation or capture.

This includes high energy consumptions due to the need to regenerate the absorbents

used or due to the need to recompressed the flue gas streams for operations at elevated

pressure (M.J. Tuinier, M. van Sint Annaland, G.J. Kramer, & J.A.M. Kuipers, 2010).

The separation process must be able to reduce the amount of C02 to a desirable level

which is different for each country. However, the level of CO2 and other contaminant or

more commonly known as the specs for the natural gas pipeline is less than or equal to

2% to 4 % of C02 and less than 4ppm of H2S (Hart & Gnanendran, 2009). This

specification must be complied to ensure smooth transportation of natural gas as high

content of the acid gases such as CO2 and H2S will corrode the pipeline. Besides that,

high concentration of acid gases will also hinder the production and extraction of the

natural gas. Therefore efforts are taken to research for technology that are suitable to be

used to separate the acid gases from the natural gas. For example, several methods

involving cryogenic separation of CO2 is developed and published. However, the

process is not extensively studied to the high cost of refrigeration (Davidson & Kelly,



2004). Even more so, researchers are not giving up on the idea of cryogenic separation

of CO2 from natural gas. This is prominent in the previous and recent work published

which is focusing on solving the problem related to the cryogenic separation technology

using different method. Such work done by Tuinier M.J., and et al., suggest exploiting

the cold duty at the site to counter the expensive refrigeration which is used in the

cryogenic process. This will significantly reduce the high energy consumption needed

in the process. Moreover, the cryogenic process can dismiss the use of absorbents thus

eliminating the need to regenerate the absorbents. Regenerating the absorbents is a

costly process due to the high energy required.

Currently there are a few novel processes implementing the use of cryogenic condition

in separating the C02 from the flue gas or natural gas. The first technology that is to be

reviewedhere is a cryogenic separation technology recently published which is the work

done by (M. J. Tuinier, et al., 2010) titled: Cryogenic C02 Capture Using Dynamically

Operated Packed Beds. This technology makes use of the difference in the dew point

and sublimation point which will enable the separation of CO2 from flue gas. It is

important to note that, desublimation or deposition is the phase change from gaseous

form to the solid phase which is in contra with the term sublimation which means phase

change from solid phase to gaseous phase. The plugging problem often occur in the

cryogenic separation technology is minimized as the C02 is desublimated or deposited

onto the packing material, thus the gas can flow freely without obstruction using the

technology. M. J. Tuinier, et al., 2010 had used packed bed column filled with spherical

glass particles which acts as the deposition particle for the C02 to avoid the plugging of

the column. As the solid C02 is deposited onto the packing material, there will be empty

spaces or void spaces for the gases to flow to the end of the bed. This is shown in the

figure 1. Finally the solid CO2 that are captured inside the bed must be recovered

outside of the bed; therefore, a pure gaseous CO2stream is then fed into the column. The

pure gaseous CO2 will increase the partial pressure of CO2 and this will allow the solid

C02 to melt into liquid form and to be collected in a liquid form.



Figure 1: Solid C02formed on the packing material (M.J. Tuinier, et al., 2010)

M. J. Tuinier, et al., 2010 had stated in their published paper that there are 3 stages in

operating the dynamic bed. The first stage is the cooling stage followed by the capture

stage and finally ended with the recovery stage. In each stage, the feed stream to the

dynamic bed is different, such as that the feed stream for the first stage is the liquid

nitrogen where the bed is cooled down to the cryogenic temperature. The second stage,

the mixed gaseous stream of C02and flue gas is fed. In the capture stage, the C02and

water is captured in the packed bed. The captured C02 and water is recovered in the

recovery stage where the pure gaseous CO2 is fed into the column. The figure 2 shows

the mass deposition as well as the axial temperature profile for the cooling stage, capture

stage and recovery stage. Detail explanation on the process will be discussed in the next

part of this report. The process is a batch process. However, the later work of the same

technology makes use of three beds operated in parallel. The cryogenic C02 capture

using dynamically operated packed bed is the reference technology that is going to be

further researched in this project using mixture of carbon dioxide and methane gasses

but with the same objective to capture CO2,
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Figure 2: Schematicaxial temperature and corresponding mass deposition profiles for

the capture (a), recovery (b), and cooling (c) cycle respectively.

However, in the work titled Design Of A Cryogenic CO2 Capture System Based On

Stirling Coolers by Song, et al., 2012a a different approach is taken in capturing the

CO2. This is because the feed stream is first separated into three flows, namely

condensate water, dry ice and residual gas. In the first step, the pre-cool process

removes the water from the feed stream by condensing the water through the condensing

pipe. This solves the problem of plugging and the rest of the uncondensed gas flow to

the freezing tower where CO2 is desublimated or deposited and scraped to the storage

column. The whole process is done at atmospheric pressure. The clean gas exits the

system from the gas outlet. The whole process is better described in the figure 3 below:
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Figure 3: Schematic diagram forcryogenic C02 capture system based on Stirling coolers

Song, et al., 2012a reported that the problem of plugging is avoided as the CO2 is

captured or deposited onto the heatexchanging surface and scraped by the spinning rod

and collected in the storage column where the C02 is keep at the cryogenic temperature

in the solid form.

Besides that, there are a few of the cryogenic separation technology that has already

been applied for commercial application. For example, Ryan Holmes method,

Controlled freeze zone (CFZ) method, Cryocell method, Sprex method and Twister

technology (Panahi, 2011). As previously mention, the cryogenic separation of CO2 is

usually plagued with the problem of plugging by the freezing of substance. Another

technology addressing the problem of C02 freezing during the cryogenic distillation is

the Controlled Freeze Zone or CFZ™ developed by the Exxon in the 1980's (Northtrop

& Valencia, 2009). The column is divided into three operational zones. The top zone is

the conventional distillation column while the middle is the controlled freeze zone

(CFZ). The bottom of the column is also a conventional distillation column (Panahi,

2011) as in figure 4. The technology key point is to control and confine the C02 to a

section of the distillation column. The freeze CO2 will fall into the melt tray while

methane will be vaporized. Thus the C02 is collected as a liquid. The process is

advantageous as all of the sulfur containing compound is collected with the C02.

Therefore, higher purity of methane is also possible using this technology. The CFZ

technology had already been commercialized by Exxon's at Shute Creek Treatment



Facility in LaBarge, Wyoming (ExxonMobil, 2010) in July 2011 (Panahi, 2011) .

According to (ExxonMobil, 2010), the plant that is able to process up to 14 million

standard cubic feet per day with the objective to show the ability ofthe CFZ technology

to meet or exceed the specification of sales gas. However, this technology is not suitable

foroffshore application dueto its large footprint.

A^

t—^g—» cqf

Figure 4: Operational zones of the CFZ technology

Moreover, another commercialized cryogenic separation technology is Ryan Holmes

method which is invented by Arthur S. Holmes and James S. Ryan at Koch Process

Systems, United States in 1982. The key point of this method is to add solid preventing

agents with a freezing temperature below the condenser temperature for example the n-

butane (Keskes, et al., 2006) to the solids potential zone of cryogenics distillation

column. The addition of the agent will move the liquid composition away from the

freezing point. This method is most commonly used in the processing plants.

In addition an emerging technology using the cryogenic separation technology that had

already been applied commercially is the Twister technology which is first

commercialized in Bintulu, Malaysia in 2004 (Panahi, 2011) for dehydration of sour

gas. However, amine absorption process is needed to purify the outlet of twister to the

required specifications. Due to its compact size, it is suitable to be applied at offshore

platform.



2.1.Process Principle

The theory involving cryogenic separation process involves the knowledge on the

cryogenics which means temperatures colder than -100 °C. The process principle is that

the freezing temperature of pure C02 is -78.5°C at latm (Hart & Gnanendran, 2009).

Besides that, it is important to know that the freezing temperature of C02 is directly

related to the volumetric concentration ofC02 in the gas mixture (Clodic, 2002). At the

triple point ofC02 (5.2atm, -56.6°C), C02 will turn into solid phase from the gas phase.

C02 melting point is -78.5°C and boiling point is -57°C at latm. While methane melting

point is -183°C and boiling point is -162°C. As this project focuses on the separation of

water and C02, it should be noted that the freezing point of water is 0°C and may be

lower if there are impurities in the water.

The data for the phase equilibria ofC02 - methane system that is crucial in designing

the cryogenic separation system can be obtained from various sources. The most

commonly known sources is the article published by (Donnelly & Katz, 1954). The

article provides extensive data on the equilibria inthe C02- methane system. One ofthe

graph published in the article provide a suitable operating region for this project's

proposed cryogenic separation technology of C02 from methane. The graph is

represented as in figure 5:
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Figure 5: Pressure-temperature relations for carbon dioxide-methane system
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Figure 5 shows the "two-phase equilibria for the pure components, three-phase

equilibria for the liquid-vapor-solid carbon dioxide and bubble point and dew point line

on the vapor and liquid surfaces at designated composition" (Donnelly & Katz, 1954).

This graph is a mean to determine the corresponding phase compositions at any

temperature and pressure for which vapor and liquid coexist. The constant pressure draft

for the same data is shown in figure 6 below where the operating condition of the

system is suggested to be in the range of -62.2°C (-80°F) to -81°C (-115°F) for the

pressure of45.78 bar. The temperature range suggested is from the analysis ofthe graph

provided in this report. However, this project will focus on the separation characteristic

ofmethane and carbon dioxide at atmospheric pressure (1 bar), therefore, the optimum

working pressure and temperature of the system will be determine with more research

and experimentation. This is because as a preliminary research, the hypothesis whether

the C02 will be desublimated ordeposited onto the packing material istested first. If this

hypothesis works, then more research will be done to optimize this technology.

0 •'* •"> .30 .<0 JIO ,90 .TO .80 -SO

Figure 6: Temperature-composition section system at 673 psia
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A phase equilibrium data obtained from ICON simulation is also represented here for

the same pressure as the graph in figure 7. The figure 5, figure 6 and figure 7 are good

sources in determining the operating condition of the system of the carbon dioxide from

methane. However, the analysis from the mathematical modeling and experimentation

result will help to verify the data obtain from these sources.

C02 /CH4 Phase Diagram (673 psia)
80 1 -j f . f j j 1 j i
60 -

20 -
LL.

"jjr o -
3 -20 -
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H -80 -

# Liquid Phase (Experimental)

-100 - ® Vapor Phase (Experimental)

-140 -

() 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 ]L

Phase Composition - mol fraction of Carbon Dioxide

Figure 7: Carbon dioxide - methane system phase diagram for pressure of 673 psia

Referring to the scope and objective of the project, the capture stage is to be explained

in this paragraph. In the capture cycles (M. J. Tuinier, et al., 2010), after the packing

material is cooled by the liquid nitrogen flow in the cooling cycles. The gas mixture is

fed into the system and heat up the packing material as the mixtures is cooled down to a

pointwhen the H20 is condensed. As condensation takes place, equilibrium temperature

is achieved and a condensed front of H20 will move toward the end of the bed.

However, more hot gas mixture is entering the packed bed at the inlet at the same time,

thus the bed is heated from the equilibrium temperature to the inlet temperature. This

will create an evaporating front ofH20 which will move towards the end of the bed. The

situation is pictured as a moving condensed front followed by the moving evaporated

front ofH20. Besides that, the remaining gas mixture is cooled down until the C02 starts

to de sublimate and a newequilibrium temperature is reached. As the mixtures of gas is

12



added at the inlet ofthe packed bed, the fronts ofsublimating and de sublimating ofC02
is created and moving to the outlet ofthe packed bed. As the C02 start to breakthrough,
the bed is switched to a regeneration cycle. In regeneration cycle, a pure gaseous C02
flow is introduced into the packed bed to recover the frosted C02. At high C02 partial
pressure, C02 loading capacity ofthe solvent is higher. After all the C02 is captured, the

bed is switched back to cooling cycles. The simplified description ofthe process can be
viewed as the flue gas is feed into the packed bed, water will be condensed at the hotter

region while the C02 will be desublimated at the colder region. The bed will be

continuously fed with the flue until C02 starts to breakthrough and the bed is switched

to a recovery stage. In the recovery stage, puregaseous C02 is feed intothe bed in order

to capture the C02 that is desublimated on the packing material. At the end of the

recovery stage, waterwill be left in the bed and it will evaporate and can be flushed out

ofthe bed easily. The whole process is represented in the schematic diagram from figure
8. From the explanation, the concept of the process is consisting of sublimation and
desublimation .As stated earlier, sublimation is the phase change from solid gas while
desublimation ordeposition is the phase change from gas to solid.

Capture step Recover* •.••;•

F'ue gas in

igastn

H>o Qcc

Figure 8: Schematic illustration ofthe process concept: (a) and (b) during the capture
step, (c) and (d) duringthe recovery step.

The advantage of this process is that the problem of water turned into ice usually

encountered in cryogenic separation (S.A. Enbenezer, 2005) is prevented. Therefore,

water is not necessarily needed to be completely removed from the gas mixtures.
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Moreover, the maximum possible C02 capture is achieved if the column is operating at

the optimum condition.

2.2.Characterization of feed and product

Characterization of feed and product is to be done using the gas chromatograph in order

to obtain the standard calibration curve for methane and carbon dioxide. Figure 9

(FONSECA, 2012) show an example of the peaks that can be obtained as a result from

gas chromatograph. Available graph on the gas chromatograph calibration data for

methane and carbon dioxide isrepresented in the figure 10 and figure 11 (Stepan, 2009)

Gas Standard

TCD Detection

0.xygsn;

Carbon

Carbon
Dioxide

!H!

Hydrogen

V„

Chw>se«IS**ifltM

Figure 9: Example of peaks from gaschromatograph

900
;£ftc as$47<z,cott

800 y= 15.604*+ 7.9088

700
Rz~ 0.9975

,- 600
o
o

E 5Q0
TO

S 400
<

1 300
CL

200 5^
100

Q

to -1001 0 10 20 30 40 50

Concentration, %

Figure 10: Calibration curve for methane
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10'

«w

y=2.4519x + 11423
R2= 0.9978

10 20 30

Concentration, %

S£«Ci)SS*«f.CflH

40 50

Figure 11: Calibration curve for Carbon Dioxide

These are the example of calibration curve for the carbon dioxide and methane.

However, the author is also generating the calibration curve for the sample analysis for

experimentation result.

2.3.Mathematical Model

The mass transfer processes in the dynamic packed bed is investigated using the ID

plug flow model. The variable associated with the equations is shown inthe figure 12:
Az

^i.gXn atTjn

Mass

Deposited= mi

toUg.out at Tout

Packing with

diameter = (L

Figure 12: Schematic diagram ofpacked bed with axial flow.

The model equation is for the one dimensional pseudo-homogenous model which is

obtained from M. J. Tuinier, et al., 2010:
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Component mass balances forthe gas phase:

d<»i,g d(oii9 d ( do)ig\ . ^ ,
EgPaTT " ~psvs ~dV~ +Tl \p9Defr~~di~) ~mias+ ^.g2,m'l'as

Energy balance (gas and solidphase):

(."„ P3cv,3 +Ps(l- sg )CV,S) £ =-eg pgCp,g ft +%{Xeff S) - 2^m;as Ah,

Mass deposition rate:

m« =g{yi,sP-pnmi +01 ifyUsP <pr
Where: g = mass deposition rate constant, s/m

: p = pressure, Pa

: Gas-solid equilibrium,
(QQOT n

10.257 ^~+4.08 In T- 2.2658xl0-27T)
The model is used to analyze the axial temperature and the mass deposition profiles in

the bed. Moreover, the dynamic behavior ofthe bed may also be described using the one
dimensional plug flow model provided above. The details about the terms used in the

equation are provided in the nomenclature section. The model will be solved and the

result is provided in the result and discussion section.
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3.1.Simulations of dynamic packed bed

3.1.1 Assumptions

The mathematical analysis was done based on several assumptions:

• Assuming that the operation is an adiabatic operation and the heat losses to the

environment are small. Besides that it is assumed that a uniform velocity profile

exists in the absence of radial temperature and concentration gradients. This

allows that only the axial temperature and concentration profiles are considered.

• It is assumed that the possible heat transfer limitations between the solid packing

and the bulk of the gas phase were accounted for via effective axial heat

dispersion (pseudo-homogeneous model).

• It is assumed that mass deposition and sublimation rate of CO2 is proportional to

the local deviation from the phase equilibrium, taking a reasonably short

equilibration time constant (g), which was assumed to be independent of

temperature. The rate of sublimation of previously deposited C02 was assumed

to approach a first order dependency on the mass deposition when this mass

deposition approached zero.

The equation is solved by solving each coefficients and acquiring the some properties

from the experimental data. Moreover, computer software which is known as Maple is

used to generate the curve from the equation after solving for each coefficient.

3.1.2 Model Equations Analysis

The model equation analysis was done based on the properties as in figure 13:

% CH4=0.3

% CO2=0.7
L= 0.46m

Figure 13: Packed bed properties

With ; dp = particle diameter = 0.01 m

Detail solution is shown in the result and discussion part.

18

D= 0.0418m



3.2. Experimental Study on the Cryogenic CO2 Capture Using Packed Bed.

The experiment is divided into several smallerexperiments to obtain certain parameters

for the data analysis. The apparatus and equipment needed for the experiment is shown

in figure 14, 15,16,17,18 below:

Packed

bed

without

insulation

I Liquid

Nitrogen

Dewar

Figure 14: The experimental set up for the cryogenic separation of CO2 and CH4 from

natural gas with the gas cylinders and the liquid nitrogen Dewar.
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The equipment and apparatus shown in figure 14 is connected to the obtain a complete

setup of packed bed with the liquid nitrogen Dewar at one end and a CO2 supply at the

other end. As shown in the figure 15.
Liquid

>"" Ntrogen

Figure 15:Complete setup of the cryogenic capture ofC02

Figure 16: Gas Chromatography Flame Ionization Detector: SHIMADZU GC-20101

with the item code: GC-CE-04
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Figure 17: Gas sampling bag containing pure C02, pure CH4 and a mixture of 60% C02
and 40% CH4.

•*••?? '*" '" ••' *ij+v*t *•••

Figure 18: Micro syringe for sample extraction

3.2.1. Experiment 1: Calibration Curve for the C02 and CH4 Mixture Using Gas

Chromatograph

1. Thegaschromatography to be used is the GasChromatography Flame Ionization

Detector: SHIMADZU GC-20101 with the item code: GC-CE-04.

2. The gaschromatography is turned on and the temperature of the oven is set to be

60°C. 30 minutes is needed to obtain the desired temperature. The other

parameter of the gas chromatograph is shown in the appendix.

3. Thesetting must be thesame for every sample that need to be analysed later.

4. The pure C02, pure CH4 and a known mixture of C02 and CH4 are collected

from the gas cylinder into 3 separate gas sampling bag.

5. The septum of each bag is punctured bythe micro syringe and 2mm3 of gases is

extracted from the bag and injected into the injection port of gas

chromatography.

6. Each of the gas is analysed and a calibration curve is obtained from the analysis.
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3.1.2 Experiment 2: Obtaining the Void Fraction and Physical Properties of the

Bed

Introduction

The pipe and marbles that are to be used for the experiment of the cryogenic separation

of CO2 from natural gas must be calibrated to ensure smooth operation lateras well as to

determine certain parameters thatmust beknown during the experiment.

Objective

To calibrate the apparatus are to be used for the cryogenic separation of the CO2 from
natural gas and to obtain the dimensions of the apparatus.

Methodology

1. The apparatus are cleaned using a cleaning powder and wipe dry.

2. The P.V.C tape is applied to the thread of the pipes to ensure no leakage during

the experiment.

3. The pipe is connected and the bottom of the pipe is closed using the cap.

4. Stainless steel wool is inserted to the bottom of the pipe. The volume of the pipe

occupied by the stainless steel wool is marked at the pipe.

5. Known volume of water is poured into the pipe until it is full. The volume of

water, Ve is recorded as.

6. The water is poured out and the pipe is drained to remove water residue.

7. Marble is inserted into the pipe and finally the stainless steel wool is inserted at

the top. The height of the pipe occupied by the marble is marked at the pipe.

8. Known volume of water is poured into the pipe. The volume of water, Vm with

marble is recorded.

9. The experiment is repeated for 5 times.

10. The void fraction of the pipe is calculated.
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3.1.3 Experiment 3: Obtaining the Heat Transfer Coefficient of the Bed

Introduction

Heat transfer across the pipe can be known from experimental procedure. The pipe that

are to be used for the experiment of the cryogenic separation of C02 from natural gas

must be calibrated to ensure smooth operation later as well as to determine certain

parameters that must be known during the experiment.

Objective

To determine the heat transfer coefficient across the pipe for the experiment of the
cryogenic separation of CO2 from natural gas to better understand the heat transfer of
the pipe.

Methodology

1. The packed bed is secured inside a 4" pipe for insulation. This is to create a

vacuum space to reduce the heat loss from the packed bed.

2. The temperature probes is secured in position.

3. The 4" pipe is wrapped in the rubber insulation called Hypalon for safety

purposes as well as to minimise heat loss from the packed bed.

4. Tubing is connected from the liquid nitrogen Dewar to the end of the packed

bed.

5. The valve at the liquid nitrogen Dewar is open slowly and liquid nitrogen is

supplied into the packed bed.

6. After the temperature of the packed bed reaches -50°C, the liquid nitrogen

supply is stopped and the stop watch is started.

7. The temperature of the packed bed is taken every 10 seconds for 1 minute and

every 1 minute after the first minute.

8. The temperature is recorded and analysed.
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3.1.4 Experiment 4: Cryogenic C02 Capture

Figure 20 shows the schematic diagram for the setup of the main experiment.

co2 Liquid Nitrogen

Gas Cylinder Cryogenic

Packed Bed

w

Sampling

port
Column

Figure 19: Experimental setup of cryogenic C02 separation

Due to the time constraint as well as lack of suitable equipment, the experiment is done

at the atmospheric pressure.

The procedure of the experiment is as follows:

a. The equipment, cylinder and liquid nitrogen Dewar is connected using suitable

fittings as in the figure 19.

b. The dynamic packed bed column temperature is cooled down to the cryogenic

temperature with the range of (-80°Cto -100 °C) using a liquid nitrogen supply

system.

c. The flow of the liquid nitrogen is stopped after it reaches -110 °C and the C02 is

supplied to the packed bed.

d. Temperature along the bed is taken for every 3 minutes.

e. The temperature profile along the bed is observed.

f. The sample is collected at the end of the column to be analysed using the gas

chromatograph (GC).

The variables for the experiment to be noted are:

• Temperature profile.

• Velocity of the moving front computed from experiment data.

• Concentration of the outlet stream at inlet and outlet and at Tin and Tout
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CHAPTER 4

RESULT AND DISCUSSION

4 RESULT AND DISCUSSION

4.1 Simulations of dynamic packed bed

4.1.2 Analysis of Model Equation for Component Mass Balance and ( Simulation of

Dynamic Packed Bed)

To describe the mass deposition rate with respect to temperature as well as the component

mass balance and the energy balance for the process, mathematical analysis was carried

out. The analysis on the model equation was done based on these bases:

100 liter of C02 and CH4 mixture of 70% C02 and 30% CH4.

100 liter mixture contain 70 liter C02

70
mass of C02 = rr~- moles = 3.125 moles = 137.5#

100 liter mixture contain 30 liter CH4

30
mass of CH4 = —— moles = 1.34 moles = 21Ag

Total mass of gas mixture = 21.4 + 137.5 = 158.9 g
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Conditionsand quantities used in numerical studies;

Table 1: Conditions and coefficients values used in the numerical studies

Conditions or Coefficients

li-uipu;iiiii-i' of yas mixture 17|
1'ii-^iiit "l"«;i\ mixiuiv |/'|
I low i.iu- n|«as mixture |r/|

Diameter of hcd |l)|

Diameter of particle \dr\
I>l-iinjI\ (if particle |/>s|

Densil\ of i»as iiii.vlure «02 & (II i) (pflf
SuperHci:il \clncil\ \v(} \

lied \oid fraction \vf} \
\ iscusiix |//|

Effective bed conductivity [ //,„,; () |
Heat capacity of CH.-( and CO;mixture [CpJ

Mixture thermal conductivity [ /y]
Enthalpy change related to phase change of C02 [Ahg£]

Component mass balancefor thegas phase:

Values

: ">'_^" m.

1.H2 x 10 •'»?'/.,•
/' n."\ .i.

'< til hi

" Vi " /..< .i-

i.4d k;: m

''•'•"' /'. \

il.tiiillli I . 1 |.\.S" n,

1 \s mk

U.'JJ'jJ.k^k
0.lH~2 v. mk

5.682xl05J/kg

hPa- dt

d (oig d ( d (Oia•j-m;'a5+ o)iig2^mlas (1)

Solving for each coefficient in the mass and energybalanceequation:

Volume ofbed, VBed:

VBed = nr2h = nx0.02Q9m2xOA6m = 6.312 x 10~4m3

Density ofgas, pg:

Volume of gas, Vt

PqVi = P2V2
Ti T2

1 * Vi _ 1 * 100/
298 K~ 273 K

Vi = 109.16/
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mass
Density, pg =—

w volume

n . 158-9 9 9 kg

Superficial velocity, vg:

_ Volumetric flow rate ofgas
8 Cross sectional area

3

1.82 x 10~4 —

v*= ..(oW =ai33m/5
Effective diffusion coefficient, Deff\

J . 0.73 0.5

Calculatingfor Reynolds number, Re:

Re =
PgVgdp

From the equation for Reynolds number calculations, we need to know the gas mixture

viscosity. The Herning &Zipperer equation is used to calculate the gas mixture viscosity:

JXnjMft

Where;

rt = volume ratio of component i, rCOz = 70 andrCH —30

\it = Absolute or dynamic viscosity of component i,

\iCo2 = 0.0001493 poise and \ach ~ 0.0001114 poise
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M( = Molar mass of component i,MCOz = 44 andMCH = 16

Tci = Critical temperature of component i, TCOz = 304Kand TCH^ = 190.3 K

Nowputting the values into theHerning & Zipperer equation:

70 X0.0001493 XV44 X304 + 30 X0.0001114 xV(16 X190.3)
H =

70 xV44 x304 + 30 xV(16 x 190.3)

N.S
u. = 0.0001114 poise = 0.00001114-

m^

Nowputting all known values in Reynolds number equation:

1.46x0.133x0.01

Re= 0.0000X44 =134'85

Schmidt Number, Sc, is a dimensionless parameter representing the ratio of diffusion of

momentum to the diffusion ofmass in a fluid. For gases, Sc -0.7

Putting allthe values into the diffusion coefficient equation to obtain Deff\

D.„ =0.133W- 0.01 mL^j+ °j7x0j637
\ °'63711+ 134.85*0.;

2

Deff = 0.000987321 —
u s

Specific solid surface area per unit bed volume, as:

up

^=^(i-a637)=2i7-8S
Mass Deposition Rate, m,:

™: = g(yiiSP-p?) ifyirSP >pf

m>3(yi>sP-pr)^^j ifyi,sP<P?
Where: g —mass deposition rate constant, s/m= 1.0e-06s/m
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: P = pressure, Pa = 101.3/cPa

: Gas-solid equilibrium,

„ , . / 3082.7P?o20O =exp (10.257 — +4.08 In T- 2.2658*10~2r

Mass deposition rate was calculated for different concentrationofC02 at different

temperature and is shown in the table 2 below:

Table 2: Mass deposition rate at different temperature for different CO2 concentration:

yco2 Vcoz VC02 YC02 YC02 YC02 VC02 YC02 YC02

n 2 n* n-1 n c n c 0-7 09. po a

• T(C) lJJKj PcaO') mi" mi" rni" rni mi nr. -Til" nu" mi'

-5U 223.15 69411/.85 - - -

-60 213.15 377681.50
- -

- -

-70 203.15 191074.71
- 1 -

-

i

-80 193.15 88913.42
-

• "1 ' -1 1 IlL, , , ,
-90 183.15 37559.25

1 [i •
'•

-100 173.15 14173.01 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

-110 163.15 4683.12 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

-120 153.15 1321.44 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

-130 143.15 308.41 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

-140 133.15 57.12 0.02 0.03 0.04 0.05 0.06 3XGXy 0.08 0.09 0.10

-150 123.15 7.95 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

-160 113.15 0.77 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

-170 103.15 0.05 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

From the data in the table 2, mass deposition rate for 70 % C02 and 30 % CH4at -140°C

m[ = 0.7

Peclet numberfor axial heat dispersion, Pe(

Pe1 C-n

2p -24
, Pa = 0.17 + 033exp~ite

X-p

-24

Pa = 0.17 + 0.33expT34^5 = 0.4462
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2(0.4462)

1 - 0.4462
Peax = - - . •L = 1.6114

Prandtl number, Pr:

Cpgx u 2.188 x 0.0000144

Pr=^T=—mm—=0-00183
Gasto particle heat transfercoefficient, Nu:

Nu^{l~ lteg +5£J)(1 +0.7 Re0-2 pA) +(l.33 - 2Asg +1.2 e*)Re°-7Pr?

Nu =[(7 - 10(0.637) +5(0.637)2 )(1 +0.7 (0.637)02 (0.00183)l)
4- (1.33 - 2.4(0.637) + 1.2 (0.637)°-2)0.6370-7(0.00183)1

Nu = 2.6673

Effective axial heatdispersion in a transient packed bed(Vortmeyer andBerninger,
1982), Xeff:

RePrXg Re2Pr2Ag
*eff —^bedtO H 7T HPeax 6(1-eg)Nu

„ , , 134.85x0.00183x0.0172 134.852*0.001832* 0.0172
Aeff = 1 w/mk H 1

/; 1.6114 6(1-0.637)2.6673

Thus, component mass balancefor the gas phase:

Putting thecalculated coefficient for thecomponent mass balance for the gas phase and we

will get this equation which is solved using computer software.

Component massbalancefor thegas phase becomes:

d a)ia d to,- n ( d 2a>; n\
0.93002—-^ = -0.19418—-^+ 1.44e - 3 a 1>9 - 26.2514

o t d z \ d z2 J

Energybalancefor gas and solidphase becomes:

(63O.7)^=-O.OO98f +-i(3.70)-333.6

The curve obtained for the mathematical analysis is presented in figure 20 and figure 21.

For the internal boundary boundary condition for component mass balance:
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At: z = 0 , (Dco2ig = 70

t = 0 , &>co2j5 = 70

Assuming all of C02 is captured;

At: z = 1, wco2<5 - 0

C02percentage at t = 0. 0.1. 0.5, 1. 2
70 -i

60-

50-

40"

Percentage C02 (<*»)

30-

20-

10-

o-l

t=0.5s t= Is x= 2s

t • 1 ' r

0.2 0.4 0.6 O.S

Dimensionless space coordinate .2

t=0s t=0.1s

Figure 20: The curve generated for thechange in percentage ofC02 in thez direction for
the different time.
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Figure 21: The curve generated from energy balance for change in temperature of packed
bed in the z direction for different time.

The graph in figure 20 shows the different mass fraction of C02 for different time (t) at

different location (z). From the graph, we can see that there is no deposition of C02 at any

location in the bed at time 0 minutes. This is shown by the straight line which is

representing the samefraction of the C02 as in the inlet. This is because the C02 flow has

just been introduced into the packed bed. However, as the time increase, we can see that

there are more C02 deposited in the packed bed. The dotted line in the graph represent the

mass fraction of C02 is the boundary condition is not set for only until z - 1. The dotted

line is can be studied experimentally.

The graph in figure 21 shows the changein temperature of packed bed in the z directionfor

different time. The graph shows that for shorter time the feed gas spent in the packed bed,

the smaller the change in the temperature of the packed bed. This is due to shorter time for

the feed gas to contactwith the packingmaterial for heat transferto occur.
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Finally at time 2 minutes, the mass fraction of C02 in the gas mixture is 0. This means that

all C02 is deposited in the packed bed. However, this is the solution that is obtained from

simulation results.

4.1.3 Analysis of the Mass Deposition Rate

The mass deposition rate was calculated and the result obtained is shown in the table 2. A

mass deposition rate versus temperature graph was generated in figure 22:
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Figure 22: Mass deposition rate versus temperature
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The curve obtained for different concentration of C02 shows the mass deposition rate for

the higher concentration of C02 is higher. This shows a potential that the cryogenic

separation using the dynamicpacked bed is suitablefor separation of high concentration of

C02 from the natural gas. Moreover, as the concentration of C02 increases, the slope is

steeper, thus slight temperature change will affect the mass deposition rate. Therefore, it is

important to make use of this and work on the small temperature range in order to find the

optimum working temperature rather that to work on the broader temperature range which

will be more time consuming.
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Besides that, the amount of C02 deposited increases as the temperature decreases.

However, for temperature 163.15 K (-110°C) and above, the deposition rate is almost

constant. Therefore, it is decided to perform the experiment in the range of 193.15 K

(80°C) to 163.15 K (110°C). This is because, the C02 started to be deposited at the
temperature of 80°C.

4.1.4 Experimental Study On The Cryogenic C02 CaptureUsing Packed Bed

Data gathered from experiment:

Experiment 1: Calibration Curve for the C02 and CH4 Mixture Using Gas

Chromatograph

The results for experiment 1 is shown in the appendix titled, result of Experiment 3:

Obtaining the Calibration Curve for the C02 and CH4 Mixture Using Gas Chromatograph.

One of the curvesgenerated from GC is shownin figure 23.

Intensity

40000-
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20000-

'

10000-
1
i
I

i
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\
1
\

{ 1 2

. |,.,,

3

i j.i.

A 5

Peak# Ret.Time Area Height Cone. Units Name
1 2A46 30663.30 17242.20 40.0000 % Methane

2 2.776 32048 SS 12450.S4 60.0000 % Carbon Dioxide

Total 62712,18 100.0000

Figure 23: Result from a known sample analysis using gaschromatograph
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Thedata obtain from GC for various concentration of C02 and CH4 is used to generate the

calibration curve for the quantitative analysis of gas mixture sample. Thecalibration curves

obtained are shown in figure 24 and 25:
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Figure 24: Calibration Curve for Carbon Dioxide
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Figure 25: Calibration Curve for Methane
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Discussion

The data obtain from the calibration ofthe gases using the gas chromatograph is important

in evaluating and analyzing the unknown outlet sample from the packed bed. As shown

from the graph, the retention time for carbon dioxide and methane is different. The

retention time for carbon dioxide is around 2.776 minute while the retention time for

methane is 2.446 minute. This difference in retention time will allow for qualitative

analysis of the unknown sample. The calibration curve obtain from the gas chromatograph

however is useful in quantitative analysis of the unknown sample. The external standard is

used in the quantitative analysis of the gas using gas chromatograph. The R- squared

coefficient obtained from both calibration curve is closer to 1.0, thus the calibration curve

is fit to be used for quantitative analysis ofthe unknown gas mixture sample.

However, caremust be taken that the operation and system performance of the GC is stable

and consistent. This includes the injection amount, split ratio, oven temperatures, pressures,

detector set points, etc. Figure 23 and figure 24 below show the condition of the oven as

well as certain parameters that are used for characterization ofC02 and CH4.

Figure 26: Thecondition set for the gas chromatography
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Figure 27: The condition set for the gas chromatography (oven)

Experiment 2: Obtaining the Void FractionandPhysical Properties ofthe Bed

Void Fraction, e^

Void fraction is the measure of the empty spaces in the material. The void fraction

calculated here is the measure of the empty spaces in the packed bed. The void fraction of

the bed is calculated using the formula shown below.

Void fraction
Volume of empty space, Ve

Volume with packing, Vm

The result is presented in the table below:

Table 3

luX'i

Bed Void Fraction

1 ri.il

\„iml>
V, (ml)

\md

Ira*,lion.;...

i

lux"

(.X.S

\ 4 \ , N-5, „, / • -
1096 1086 1088

700 682 700 693.5
Mini 0.648 0.622 0.645 0.637

Based on the table the avergage void fraction of the pipe is 0.637.
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Properties of the packed bed

Table4: Cryogenic Packed BedProperties
_

Packed Bod Properties

Length bed, L 0.46 m

Diameter bed, D 0.0418 m

Volume of bed, Vbeci 0.000645 m

Bed void fraction, e. 0.637

Density ofpacking material, ps 2562 kg/nr

Volume ofpacking material,Vs 0.000002 m

Diameter of packing material, df 10 mm

Massof packing material, mr 5.124 g

Discussion

The experiment is repeated several times to obtain the average void fraction of the

bed as to get more accurate data. The void bed fraction is obtained to be 0.637. Besides

that, data about the properties of the packed bed is also obtained and recorded for future

use. The bed void fraction is important in the dynamic packed bed as the empty spaces will

be the pathway for the methane gas to flow out of the bed while the C02 isto bedeposited

on the packing material.
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Experiment 3: Obtaining theHeat Transfer Coefficient oftheBed

The result for experiment 3 is represented in the graph in figure 28 for the study of the heat

loss to the surrounding of the system.

Temperature Vs Time

Time (min)

50
T inlet

T outlet

f outside

Figure 28: Study oftheheat loss to thesurrounding ofthesystem.

The graph shows the temperature profile of the bed after the liquid nitrogen supply is

stopped: T inlet refers to the temperature probes located closest to the liquid nitrogen

supply while the T outlet refers to the temperature probes located further away from the

liquid nitrogen supply. T outside refers to the temperature probes located at the outer shell

of the 4" pipe which is usedas insulation to the cooled packed bed. As we can see fromthe

graph, the temperature of the packed bed dropped rapidly right after the liquid nitrogen

supply is stopped. However, the temperature of the packed bed dropped slowly after the

rapid drop which is after 10s. This may be due to the system not reaching stability yet.

Thus right after 10s, the temperature dropped rapidly. However, we are trying to see the

heat loss to the surrounding of the system from this experiment, and we can say that the

heat loss is minimal due to the slow dropped in the temperature outside of the 4" pipe. It

should be noted that the temperature of the surrounding is 23.5°C and the heat of the

outside of the system is 22.8 which is very close to the temperature of the surrounding.
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Therefore, the 4" pipe as well as the Hypalon (chlorosulfonated polyethylene (CSPE)

synthetic rubber (CSM)) that is used to insulate the pipe is doing a good job in reducing the

heat or cold loss to the surrounding. This is due to Hypalon ability to withstand extreme

temperature as well as insulating ability.

Experiment 4: CryogenicSeparation ofCO2

The temperature profile obtained from experiment 4 is shown in the graph in figure 29

below:
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Figure 29: Temperature profile for the CO2 capture using packed bed.

From the graph, Tl corresponds to the thermometer probes closet to the inlet of liquid

nitrogen supply. T2 refers to the thermometer probes located at the end of the packed bed

furthest from the liquid nitrogen supply. T3 refers to the thermometer probes located in the

middle of the packed bed and T4 refers to thermometer probes located inside the 4" pipe.

The location of the probes is shown in the figure 30.

42



T,

N,
0.23m 0.23m

•>!<:
R

- - 0.46m -

Figure 30: The location of the thermometer probes

The graph shows the slow increase of the temperature of the packed bed after the C02 is

supplied to the packed bed. This is due to the very low temperature of the bed at the time.

However, as the time increases, the temperature of the bed is increasing faster. This is due

to the loss of "cold" or the transfer of heat from the higher temperature C02 to the very low

temperature of the packed bed. However the graph is not able to show the mass deposition

of C02 in the packed bed as we need to have more temperature probes along the bed to see

the better temperature profile.

As mention earlier, C02 is supplied at the other end of the packed bed which is closest to

T2. The C02 is supplied in a laminar flow with flow rate 0.00033 m3/s and 0.00004 m3/s

for case 2. C02 is supplied in a laminar flow so as to increase the mass deposition rate of

C02 This is because, laminar flow increase the contact of the gas with the packing.

The sample taken from the outlet of the packed bed was analyzed using gas

chromatograph. The result is shown in figure 31 for case 1 and 32 for case 2. The sample

analysis is provided in the table 5. Figure 31 shows that there are 64.38% of C02 that

escaped the packed. This means that only 35.62% of C02is captured in the packed bed for

case 1. However, for case 2, the result shows that all of the C02 is able to be captured by

the packed bed. This is due to the slower flow rate of feed during case 2 which gives more

time for the C02 to contact with the packing material.
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Table 5: Result from experiment cryogenic C02 capture using packed bed

( t) •fliiw.".-.: • #• - •
• < C) Ann. rail1

(Mil-(in "*) il miii) (.itiui \ < i

12 n it "',,( l\J1 linii-SaiiiplL
iiinki (•'••.]i.iUi-n (inin)

Case 1 0.00033 20 i -90 -62 -79 -16 64.38 1

Case 2 0.00004 2.32 i -90 -55 -70 -1.3 0 3

C02 % at the inlet = 100%

AnaSysis Oafe »Sfc Tinae : J4/OS.-2Q12 3:51-28 PM

Sampie Niairae : •LJnjsnciwii 1
Sample ID

S.siiiple Imibmaaitioai

: C:'-.GC*ci>^io»i'i>ata''t201"2.'tigi,ira''3yira 3G1 ..god
: G:\OOsoliJib.3m^X^t»C!0r2\3yirBView curve OS)OSOS.gcsu

K ,....,....

Peak* F.ct.Tinie Aieo fieigtit CCa*c. Units JJame
1 I. .223 115G.27 199 15 O.OOOO

2 2-73-4 3-42S2..S-* 12759.91 <WL3S3S mole W, Carixrai Dicotide

Figure 31: Gas Chromatography result for case 1,
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Analysis Daf« &z Time

Samplr Name
Sample ID

: 14/0S-'2OU 3:58:15 PM

; C02 sample 2

: G:\GCMiAucMMkM3ataV20t l\*esr Ol.gcm

soooo-

40000-

3DQOO-

20000-

1OOOO—

.

Figure 32: Gas Chromatograph result for case 2

The temperature profile for the experiment cryogenic C02 capture using packed bed is

shown in figure 33. The figure shows that the temperature of the packed bed in increasing

rapidly after feed is introduced into the system compared with the temperature profile of

the packed bedheating naturally. This is dueto the transfer of heat from the relatively hot

feed gas to the cold packing material. Compared with the situation where the packing

material is heating up naturally.
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Figure 33: TefTlperature profile for theC02 capture usiiig packed bed with bedcomposite

cooling & capture data.
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CHAPTER 5

5 CONCLUSION AND RECOMMENDATION

5.1 RECOMENDATION

Further optimization and intensification work to enable the use of this technology for

offshore application. Besides that, the process is in batch process, therefore, it is best if the

process can be converted to the continuous process to ease the application as well as to

increase yield and reduce time. Moreover, more experimentation should be done to validate

and get a good match with the simulation result. This is because, due to time and

equipment constraint, the experiments are not able to be carried out fully which is an issue

in the early stages of the project. However, it is recommended to carry out the experimental

study using the fabricated experimental apparatus that is used in this project so as to save

time.

Moreover, it is recommended to provide a guideline to students on the person in charge to

several ofequipment and apparatus needed for the laboratorywork so that, less time is used

to locate the right person and more time is used worthily.
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5.2 CONCLUSION

The simulation study shows that the C02 is deposited in the bed as the mass fraction of

C02 is decreasing with time. Besides that, from the figure 21: mass deposition rate vs

temperature, we can see that the higher the concentration of C02, the higher the mass

deposition rate of C02 This indicates that the potential for the high concentration of C02 to

be captured in the packed bed is high for the higher concentration of C02. Moreover,

cryogenic packed bed system used for the experimental study is able to contain the "cold"

(extreme low temperature) by minimizing the transfer of heat from the surrounding to the

system. Thus, this cryogenic packed bed is suitable to be used for experimental study of

cryogenic C02 capture as well as for further experimental study. The calibration curve

obtained from the characteristic of C02 is an essential source for the further sample

analysis for the experimental study of cryogenic C02 capture which is related to C02 and

CH4. Currently it is not possible to simulate the dynamic packed bed experimentally. Thus,

the data for the separation of C02 using the dynamic packed bed can be obtained only from

the simulation.

As a conclusion, the project to be carried out is a recent technology, more research work

need to be done in order to assess the system. Besides that, it is suggested to carry out the

experiment for the variation of temperature and pressure to determine the optimum

operating condition of the system that is suitable for the C02 - methane system as the

current published work is done on the separation of C02 from flue gas.
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APPENDIX

Result for Experiment 3: Obtaining the Calibration Curve for the C02 and CH4

Mixture Using Gas Chromatograph

Sample Name
Sample ID

Data Name
MethodName

Intensity
50000-

40000-

30000-

20000-

10000-

: Carbon dioxide

C:\GCsohitim'\Data\2012lsyira,s>ira Ot.gcd
C:M3Csolution©ata\2012\s^ira\calibratioii.gan

Peak# Ret.Time Area Height Cone. Units Name

I 2.761 52192.07 16882.16 100.0000 % Carbon Dioxide

Total 52192.07 100.0000

Figure 1: Calibration Curve for pure Carbon Dioxide
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Sample Name
Sample ID

Data Name
Method Name

Intensity
5000O

40000-

30000-

20000-

10000-

: Methane

•C:\GCsoliition5Data\2012\s\ira\sytra 02-gcd
C:\GCsoIutim^3ta\2012\^ra\calibraiion.gcm

Peakrf Set.Time Area Height Cone, Units Name

1 2.437 71275.9S 35852.40 100.0000 % Methane

Total 71275.98 100.0000

Figure 2: Calibration Curve for pure Methane
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Sample Name
Sample ID

Data Name
Method Name

Intensity
50000-

40000-

30000-

20000-

10000-

Peafcff Ret.Tnne

1 2.446

2 2.776

Total

:60%CO2 + 40%CH4

C:\GCsoi»tion^Data\2012\syira^s>ira 03.gcd
C:\C7CsoIution'©at3\2012\^ir3\caHbration.gcm

Area Height Cone. Units Name

30663.30 17242.20 40.0000 % Methane

32048.SS 12450.S4 60.0000 % Carbon Dioxide

62712. IS 100.0000

Figure 3: Calibration Curve for 40% Methane and 60% Carbon Dioxide
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