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ABSTRACT

Soft sensors are used to estimate the process variables that are hard to measure online
in a process unit but the predictive accuracy of the estimation will deteriorate due fo
certain reasons. The reasons are usually due to the changes of plant state, catalyst
performance loss, sensor or process drift and scale deposition. In order to overcome
the degradation of the soft sensors due to process drift, time difference of process
variables is proposed to use for the predictive model. The objective of this paper is to
develop data-driven soft sensors with time difference of process variables and to
evaluate its advantages over traditional static soft sensors. The modeling technique
used for this approach is Partial Least Squares (PLS) method. Partial least squares
method is a numerical method based on multiple regression. The main purpose of
PLS is to predict a set of dependent variables from a set of independent variables or
predictors. In this paper, a binary distillation column is selected as a case study and
its virtual plant is built in Hysys environment. In the simulation, the input variables
such as feed temperature, reflux flow rate, feed flow rate and steam flow rate are
varied and the output data are captured with time. In addition, different sets of data
were formed with various time differences in the variables. Those data are used to
develop the soft sensor model using PLS technique in SIMCA-P software. The
performance of the model is evaluated and compared with the conventional soft
sensor. Based on the results, the predictive ability of the developed model is higher

than the static conventional model.
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CHAPTER 1

INTRODUCTION

1.1 Background of study

In the industry, various sensors are used to detect the process variables such as
temperature, flow rate, pressure and etc and respond to it. Previously, researches
build the predictive models by using the data measured and stored in the process
industry (Petr Kadlec, er al., 2009). This predictive model is built because, it will
take longer time to get the result of variable which is difficult to measure online. For
example, in a process plant, in order to maintain the concentration variable, the
measurement of it need to be updated but, it will take longer time to get the result. In
order to save the time, this predictive model is created to estimate the process
variable which is hard to measure online. This predictive model is called as Soft
Sensors. The term soft sensor comes from two word which is software and sensor
which shows it is a combination of these both software and sensor. Soft sensors are
used to estimate the process variables that are hard to measure online. They use the
available input data such as temperature, pressure or flow rate from the process unit
to predict the output data. The output data is also known as objective variable such as

concentration, density, melt flow rate and etc.

There are two types of soft sensor which are model-driven and data-driven. Model-
driven is basically based on First Principle Models (FPM) and it mainly describes the
physical and chemical background of the process. For instance, exothermal equation,
energy balances, and mass-preservation principles. Apart of that, model-driven soft
sensors focus more on the ideal steady-state of the processes and it is not suitable for
transient state. Unlike the model-driven model, data-driven model describes the
actual process conditions in a proper approach and suitable for the transient state.
There are several concepts or approaches developed for this soft sensor to increase
the prediction accuracy such as Time Difference models, Just in Time models and
Moving Window models. These models are developed using the modelling
techniques. For instance, the most famous modelling techniques used are Principle
Component Analysis (PCA), Partial Least Squares (PLS), Arificial Neural
Networks, Neuro-Fuzzy Systems and Support Vector Machines (SVR). All these



concepts enable better sampling, save time and money compare to the expensive

sensors which need high maintenance.

1.2 Problem Statement

Modeling a soft sensor which gives the predicted value accurately is not a simple
task. This is because, the predicted value will deteriorate when the catalyzing
performance loss, state of chemical plant changes, sensor and process drift and etc.
The difference between sensor and process drift is sensor drift occur due to variation
in the measuring devices while process drift caused by the transformation of the
process of external process conditions. For instance, the external process condition is
the weather influence where indirectly it might affect the purity of input material and
also the catalyst deactivation. This is called as the degradation of soft sensor models.
It will be difficult to identify the cause of the abnormal situation in the plant if the
degradation is not solved. Furthermore, during the transient periods the conventional
soft sensors are not accurate in predicting the quality variable. This is because, the
conventional soft sensors predicts more accurate in the steady state condition where
it will not be affected by drift in that process. In order to overcome this problem,
time difference of process variable approach is developed. Constructing the model
using this approach, leads to higher predictive accuracy because the data are
represented as the time difference. Eventually the predicted value cannot be affected
by the drift if the time difference of process variable approach is used.

1.3 Objectives

The objectives of the project are:

1  To develop data-driven soft sensors with time difference of process variables.

2 Toevaluate its advantages over traditional sofi sensor models.



1.4 Scope of study

This study involves the time difference of process variables approach for developing
soft sensors. Since the soft sensor is data-driven, an appropriate case study will be
selected from the literature. This study will be carried out through simulation of the
case study.

1.5 Relevancy of Project

Development of soft sensor is one of the active researches in the area of process
control. In addition, the author also focuses on the most common computational
learning techniques applied for the Soft Sensor modeling such as Least-Square

regression.

1.6 Feasibility of Project

Since the scope of the project is limited to simulation studies, the project is feasible.
This is because, the simulations that need to be used for this project is SIMCA-P and
Hysys, which is available in the UTP lab so there is no wastage of money and time

by purchasing the software.



CHAPTER 2

LITERATURE REVIEW

Soft sensors are precious tools in various industrial backgrounds for the application
of process plant. For example, oil and gas refineries, chemical plants, food
processing industry, power plants, paper industry, nuclear plants, urban and
industrial pollution monitoring. They are used to solve a number of different
problems such as measuring system back-up, what-if analysis, real-time prediction
for plant control, sensor validation and fault diagndsis strategies. (Luigi Fortuna, ef
al., 2007).

Figure 2.1: Chemical Plants.

By using soft sensors, y-values, objective variable can be estimated by explanatory
variables X that can be easily measured online. The explanatory variable is also
known as predictor, for instance in a process unit, the variables can be temperature,
pressure, flow rate and etc. Meanwhile, the objective variable is the predicted
variable which is needed for online measurement such as product concentration;
density, melt flow rate and other variable which is hard to measure by hardware
instantaneously. Moreover the process can be controlled easily and promptly by
using the estimated values. (Okada, et al., 2011).

2.1 Modeling Approach

There are few approaches can be used to develop the soft sensor models such as

moving window (MW) model, distance based just-in-time (JIT) model and time
4



difference (TD) model. MW model is constructed with the latest data while JIT
model is constructed with data where distances to predict data are smaller than those
of other data. According to (Kaneko & Funatsu, 2011), he concluded the

characteristic of these approaches as following:

Table 2.1: Summary of characteristic of model approaches.

Type of model approach Characteristic

Time Difference Suitable when the shift of y-values or x-
values occurs

Moving Window Suitable for gradual change of the slope
ofxandy.

Just-In-Time Suitable for instant changes of slope of x
andy.

4

¢ : training data J

O :new data

— : asoft sensor

-
-
-

{a) Sluft of y-values (3 Shift of x-values {¢) Clange of the slope

Figure 2.2: Classification of the degradation of a linear soft sensor model. (Kaneko &
Funatsu, 2011).

Unlike those approaches, ‘Time difference model’ is based on time difference of
explanatory variable, x and objective variable, y. Time difference model can be used
when the process unit is in non steady-state condition because during that condition
the abnormal data can be detected. Unlike the traditional procedure, the predictive
value will be inaccurate during non steady state condition. This is because, in the
traditional procedure, it cannot detect the abnormal data accurately since the
regressions used are linear regression model. Besides that, a time difference model
can adjust shifts of both y-values and x-values becauée it attains the same effect as a
bias update. (Kaneko & Funatsu, 2011). Furthermore, the parameters of the model,

for instance the regression coefficients in linear regression modeling are dramatically



changed in some case. Indirectly, this gives low predictive accuracy for traditional

procedure.

According to Kaneko (2011), in a traditional procedure, modeling relationship
between explanatory variables, X(#), and an objective variable ,y(f), is done by
regression methods after preparing data, X(f) and y(?) related to time 7. Then, the
constructed model predicts the value of y(¢) with the new data of x(#’) as shown

below:
y(©) = [x()] +c )
¢ = error calculation

Meanwhile for time difference approach, the difference of time for explanatory

variables, AX, and objective variables, Ay, are as shown below:

AX(H) =X() - X(t-) 2)
Ay(t) =y -y 3)
i = time before the target time

In terms of prediction, the constructed model predicts the time difference of y(¢'), A
y(¢"), with using the time difference of the latest data, AX(¢"), the equations are

shown below:
A x(t) = x(t) — X(¢'-i) @)
Ay()=y() - y(-i) _ )

y(¢’) can be calculated as follows because y(#’-i} is given previously:

y(&) =Ay() +y(-) ©6)
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Figure 2.3: Traditional and time difference of process variables procedures.

In the figure above, the difference between a traditional procedure and the proposed,
time difference procedure is shown. In order to construct any of the approach or

concept, regression method or modeling techniques will be used.

2.2 Modeling Technique

2.2.1 Partial Least Squares (PLS)

Moreover, another commonly used modeling technique is Partial Least Squares or
also known as Projection to Latent Structures (PLS) which is the extension of PCA.
PLS is a family of multivariate analysis techniques which is used to extract useful
information from correlated data. (Samuel Facchin, et al., 2005). The main objective
of PLS is to analyze or prefdict a set of dependent variables from a set of independent

e e e ]
e
Bl 15
5 i

]

;. responses

| S

Figure 2.4: PLS Diagram. (Eriksson, et al., 2001).
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Based on the figure above, the modeling technique used is Partial Least Square
(PLS) and the measurement interval is constant. In X-data set there will be n number
of rows and d number of columns while for Y-data set, there will be m number of
column and the number of rows is same as the X-data set which is m. PLS is a
method for relating explanatory variable, X € R"*? and an objective variable, y € R**
!, (where n is the number of sample and d is the number of variables). (Hiromasa
Kaneko, ef al., 2009). In order to check the performance of the model, the error can
be calculated by using Mean Squared (MSQ) error equation which is shown as
below: (Eliana Zamprogna, 2002)

(}’f — f’:‘){J’z‘ — ?e)T @)

iy

MSQ, =

where,
yi = column vector of measurement of the generic i-th output variable,
;i = estimate obtained from the PLS model,

A data-driven soft sensor derived with PLS deteriorates in the presence of abnormal
observations, resulting in model misspecification. Therefore, outlier detection
constitutes an essential prerequisite step for design of a data-driven soft sensor (Boa
Lin, et al., 2007).



CHAPTER 3

METHODOLOGY

3.1 Introduction
The figure below shows the flowchart for this project.

Figure 3.1: Methodology flowchart.

Firstly, research on the soft sensor models is done using some reliable journals and
books. Based on the fundamental knowledge, information on time difference of
process variables is gathered and studied. From this information, the modelling
techniques of soft sensor development are studied. The modeliing techniques are
PLS, PCA and SVR. All these modelling techniques are mathematical tools that need
to be understood. Then a proper case study is selected for this case to gather the data

9



needed. A proper data is needed for this case to test the efficiency of time difference
approach. Once the data is generated from the simulation, the studied approach and
modelling technique are applied to develop a soft sensor model. This model will be
developed using SIMCA-P software. Then, validation needs to be done for the soft
sensor so that it can be implemented in the control system of the chosen case study.
Finally the performance of model needs to be evaluated to observe the efficiency of
the model.

3.2 Model development

The development of the data-driven soft sensors model will start with the pre-
processing of the collected data. The main purpose of pre-processing is to normalize
the data to zero mean value and zero standard deviation. In order to normalize the
data, outliers need to be removed. Outliers are sensor values which deviate from the
normal or typical range of sensor data. Outliers deviate due to the abnormal
operating conditions, erroneous measurements, etc., in the data. The identification of
stationary state during the data collection period will be performed. There are two
type of outliers data exists namely obvious outliers and non-obvious outliers. The
difference between the both is the ability to identify the outlier value. This is
because, the values of obvious outliers can be easily detected through the violation of
the physical or technological limitation. For instance, it is impossible for the value of
absolute pressure to be negative value, so it is considered as exceeding the limitation
and easily detected. Meanwhile, the values of non-obvious outliers are hard to detect
because they do not violate any limitations but deviate from the typical values.

Figure below shows the position of the outliers in a set of data.

Data outlier

Data auther

®

Figure 3.2: Data outliers.
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The following step is model structure and regressor selection which is the most
crucial part for a soft sensor. Model structure is a set of candidate models among
which the model should be searched for. For instance, if the process works close to a
steady state condition, a linear model structure can be used, due to the greater
simplicity of the design phase. (Luigi Fortuna, er al., 2007). Thus, for regressor
selection, it is closely connected with the problem of model structure selection,
because it is relevant to the condition of the plant state. For example, in the case of
static models, Principle Component Analysis (PCA) and Partial Least Squares (PLS)
are valid tools to further simplify the modeling task and avoiding the negative effects
of data co-linearity (Luigi Fortuna, ef al., 2007). Basically the data measured in the
process industry are co-linear due to partial redundancy in the sensor arrangement.
For example, two neighboring temperature sensors in a process unit will deliver
strongly correlated measurements to the system. Co-linearity can be handled by
selecting a subset of the input variables which is less co-linear. Next is model
validation, which will verify that, model residuals are not correlated with model
inputs and that their autocorrelation function is an impulse function. (Luigi Fortuna,
et al., 2007).

" QOutlier detection
and data filtering

Model sturture and
regressor selection

- Model Validation-

Figure 3.3: Block scheme of soft sensor development.
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3.3 Least-Squares Regression

Least-squares regression is a derivation of an approximate function that best fits a

given set of data points. (Dechaumphai, 2011). There are two types of regression in

Least-Squares regression namely linear regression and multiple regressions.

3.3.1 Linear regression

Linear least-squares regression is a method for fitting a set of data that tends to vary

linearly which the coefficients a; and 4y of a linear function as shown below:

glx) = ap+a,x

@

The main purpose of this method is to minimize the squares of the differences

between the data values and the function values. The best fit is the smallest possible

total error. The graph below explains more detail about linear regression.

1

¥
OMbWREUNDY®OD

f/
L]

Q 10

30

40

*
e
dixi) ®.47
//
-~ < Seriesl
. . Fear (Seresl)
T v g{xi)
M
20
x

Figure 3.4: Linear regression method for data that tend to vary linearly.

The total error that occurs from all » data is:

E= E?=1[d(xi)]2

Where i is data points, the equation can be rearrange as shown below:

E= 3% [y —9(—"&)]2

By substituting equation 8 into equation 10, the function will be as shown below:

E=Yki[yi—(a+ aﬂfa’)]z

12
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The function E has a minimum at the values of a; and ay where partial derivative of E

with respect to each variable is equal to zero.

d
a

23]

=0

=]
=

aE

6a1

From equation 12,

Yilvi—(ag+ a;x)](-D =0
?—.—13’;‘ - Z?:i ap — Z?=1 ax; =0
nag + (Zl"'lxl)al Zz 1y1

From equation 13,

Z 1[y1 (ap + alxi)]("‘xi) =

Yhaxyi — Yo x — Niey x> =0

=1 Xp)ag + (Za 1x2)a1 = Xi=1 XY

Combine Equation 16 and 19 in the matrix form as shown below:

n
[ n Li- 1xi]{ao} { Li=1 Vi }
n n
Yi=1Xi Xi= 1x D1 XiYi
The solution of the system is:

v, x8) - L 17‘13’t)(2¢-1x1)
n(Zi, 27)-CL 1xl)

— n(zl—lxlyl) (Za-»lxl)(z 1yl)

n(zl"l l) (zt—lxl)

!

Qo =

13

(12)

(13)

(14)
(15)
(16)

(I7)
(18)

(19)

(20)

@1)

(22)



3.3.2 Case study
A set of data for the wind velocities measured at different elevations of a building is

shown in the table below:

Table 3.1: Data of wind velocities at different elevations of the building.

Building elevation, x (m) | Wind velocity, y (m/sec)
10 2.2
15 4.6
20 4.2
25 7.0
30 6.6
35 9.2

To calculate the value of ay and a;, x; and x;y; data for all the elevation needed.

Table 3.2: Values required for linear regression calculation purpose.

Z

Xj Yi Xj Xi¥i
10 22 100 22
15 4.6 225 69
20 42 400 84
25 7.0 625 175
30 6.6 900 198
35 9.2 1,225 322
=135 x£=338 % =3,475 ~ =870

Substitute the values from the table in equation 21 and equation 22 to get the ag and

a; value.

__ (33.8)(3,475)—(870)(135)

o= DI T — 0.001904 23)
_ 6{870)—(135)(33.8) _
@ = T = 0250286 24)

So, the fitted value is, g(x) = 0.001904 + 0.250286x

14
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Figure 3.5: Comparison between the fitted function and data.

Refer to appendix 1 for MATLAB coding for this problem solving.

3.3.3 Multiple Regression
The difference in this method is the fitted function y are dependent of many variable

of (X1, X2, X35eeeeeens Xk) and this is written as: (Dechaumphai, 2011)

Y = P(X1, X2, X3 cer con vre eer ve = X))

where k is the number of the independent variables.

The fitted g function is:

g = Qg +axq + AzX2 + e + a,X (25)
The total error E is,

E =31y — (g +ax; +agxy; + e . + agx)]? (26)

15



The function E has a minimum at the values of a, until a, where partial derivative of

E with respect to each variable is equal to zero.

3E _ ™

Ea_o

oE

3;1—--0

aE

e =0 } 27)
8k

=0

The derivation in equation 27 is solved by using the same method as mentioned in
equation 12 and 13. The details from the derivation or the minimization process are

written in matrix form as shown below:

|- T n n r n 3\
R ) m Qm - ) v pRZ
i=1 i=1 i=1 i=1
mn n n n n
Z X1i Z X1iX1; Z X1iX2i Z X1iXki | Qo Z X1iYi
i=1 i=1 i=1 i=1 a i=1
n n n n Ay }= {_n .
Z Xai Z X1iX2i Z X2iXa; Z X2iXki a Z X2iYi
i=1 =1 =1 i=1 k i=1
n ) n ) n ) 1’1 ) n '
Z Xki z X1iXyi Z XoiXpi Z XpiXgi z XkiYi
Li=1 i=1 i=1 i=1 | \i=1 J

By using Gauss Elimination method, the matrix form above is solved and can get the

coefficient value of aj until ay.

16



3.34 Casestudy
Use the multiple linear regression method to fit the data with two independent

variables as shown in the table below:

Table 3.3: Data variables of multiple regression.

i Xii | X | Vi
1 0 0 1
2 0 1 4
3 1 0 3
4 1 2 9
5 1 2 1 8
6 2 2 11

In order to calculate the coefficient values, the data of xi, X3, Vi, X1iX1i, X1iX2i, X2iX2i

X1iy; and Xoiy; are needed and it is tabulated as below:

Table 3.4: Values required for linear regression calculation purpose.

I X1i X2i Yi X1iX1i X1iX2i X2iX2i X1iYi X2iYi
1 0 0 1 0 0 0 0 0
2 0 1 4 0 0 1 0 4
3 1 0 3 1 0 ¢ 3 0
4 1 2 9 1 2 4 9 18
5 2 1 8 4 2 1 16 8
6 2 2 11 4 4 4 22 22
> 6 6 36 10 8 10 50 52

Substitute the values from the table in equation above to get the ag, a; and a; values.

6 6 61](3 36
6 10 8]3%1 =450
6 8 10i\a: 52

So, after solving the matrix form above the coefficient values are:
a=1,a,=2and a3 =3

Thus the fitted value function based on equation 25,isg =1+ 2x;+3x; .
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Refer to Appendix 2 for MATLAB coding for this problem solving,

3.3.5 Partial Least Squares regression
3.3.5.1 Pre-processing of data

Before constructing the X and Y co-ordinate systems, the data should be pre-treated
through scaling and mean-centering. In a process plant, the value of all the variables
varies from very small value to very large value and this affect the result. This is
because variable with a large variance is more prone to be expressed in the modeling
compare to the low variance. For instance, flow rate variable which usually have
large variance will overcome the mole fraction variable which is equal or less than
1.0. Indirectly, this affects the result of estimation. In order to avoid this problem, the
data need to be scale it so that the range of all the variables will be equally
distributed and once the modeling is done, the data can be de-scaled it to get the
original predicted value. The following step after scaling is mean-centering for pre-
processing. This step is important because it can minimize the error in the data,

Hlustration in the figure below shows the method of data pre processing.

Unit variance £y

TrrE———————

Measured values

Figure 3.6: Unit variance scaling and mean-centering. (Jacob Bjerrum, 2008)
3.3.5.2 Geometry of PLS

Once the pre processing is done, the data can be used for the computation and

modelling. The first step to construct the PLS model is, set up the K-dimensional
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space with variables where each column of X represents one co-ordinate axis. Next
step is plotting the observations (each rows) data in K-dimensional space. (Svante
Wold, 2001). Then, the following step is to calculate the first PLS component. At
this part, the first component approximates the point-swarm in the X-space and
provides a good correlation with the y-vector. The projections of each data towards
the line in the X-space give the score of each observation. The score vector
mentioned for the first component is t1 and the weight of the y-vector is c¢1. For the
second component, the line will be perpendicular from the first component line and
the projections for it give score t2 and the weight of the y-vector is c2. Those two
components combines together to define a plane in the X-space. By combining these
variables, we can get more accurate results for this predictive model. The illustration

of geometric representation of PLS regression is shown as below.

4 plane

projection

Direction in
plane defining
best correlation with Y

(cltl +c2e2+..)
Figure 3.7: The geometric representation of PLS regression.

3.3.5.3 PLS calculation method

With the knowledge of Least squares of regression which is the basic of PLS, the
author continue to practice the partial least square regression method to prepare for
next step application purpose in the time difference in process variables approach.

The calculation methods or steps for PLS are discussed as shown below:
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PLS decomposes the (nxN) matrix of zero-mean variables X and (nxM) matrix of

zero-mean variables y as shown below:

X=TPT+E (28)
y=UQ" +F (29)
where,

T and U = (n x p) of p extracted score vector
P = (N x p) , matrix loading

Q = (M x p), matrix loading

E = (n x N) matrices of residual

F = (n x M) matrices of residual

Then the properties of PLS regression can be calculated by using the NIPALS
algorithm. The first step is to form two matrices which is E = X and F = Y, where
these matrices should be normalized (z-scores). Then, the vector u is assumed with
random values and a denotes as ‘to normalize the result of the operation’. NIPALS

algorithm iteration is as shown below: (Abdi, 2010).
Step 1: w o E™u (to estimate X weights)

Step 2: t o Ew (to estimate X factor scores)

Step 3: ¢ o F't (to estimate Y weights)

Step 4: u=Fc (estimate Y scores).

Step 1 need to repeat until t has converged. Once it is converged, compute the value
of b, b=t'u and compute p value, p=E"t. The next step is to deflate the matrices of E
and F by subtracting the effect of t. (Abdi, 2010)

E=E-tp’ (30)

F=F - btc", scalar b , stored as a diagonal element of B,
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If E is a null matrix, then the whole set of latent is correct but if it is not the iteration
need to be repeat until E is a null matrix. The dependent variables are predicted using
the equation of ¥ = TBC'. By following all the steps as shown above, ¥ (predicted

value) in matrix form can be obtained.

3.3.6 Case study

The total data set of biochemical oxygen demand is (20 x 6) in the file of moore.mat.
The predictor set in matrix form for this case is (20 x 5) while the predicted set is (20
x 1). The predictor for this case is X; and X; while the objective variable is y only.
By using plsregress function in MATLAB, the function can be solved easily. The
MATLAB coding for this case is attached in Appendix 3. From the MATLAB
simulation, the solution for this case is showed in the graph below:

B 8 2 B 8 § 8

o
=
T

Fercent Variance Explained in y

g

L L 2 2 L L s L
1 2 3 4 5 6 7 8 9 10
Mumber of PLS componenis

Figure 3.8: Graph of % variance explained in y versus number of PLS component.
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Figure 3.9: Graph of Mean squared errors versus number of components.

From the figure above, it shows that two numbers of components is sufficient for this

case study. The root mean square for this case study is 0.8529 which is good result.
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3.4 Gantt chart

Figure 3.10: Gantt chart for the second semester project implementation.

Processes u Milestones

22



3.5 Tools required

Since this is a simulation project, software is the basic tool required. The software
needed is SIMCA-P which is the standard in multivariate data analysis. By using this
software, model development for soft sensor development can be easily done. This
software was developed by Umetrics. It is a commercial tool that transform the data
into information and provide complete solution for both off-line and on-line data
analysis (continuous and batch processes). This software can be used for many
purposes; mainly for this project it is useful for the math and computational. Besides
that, it is also can be used for PLS modeling technique methods. Apart from that,
Hysys is used in this project. Hysys is a simulation based software and commercially
used in the industry. The virtual plant from the case study is built in Hysys

environment. By using Hysys, data of the process unit can be extracted.
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CHAPTER 4

RESULTS AND DISCUSSION

4.1 Distillation Column

For this case study, a binary distillation column with dynamic mode simulation is
used. This column consists of three main streams, which are feed stream, top product
and bottom product stream. The liquid mixture which consists of acetone and 2-
propanol is fed to the distillation column through the feed stream. Then, the feed
flows down to the column and settles there. However, due to the heat supply from the
reboiler, the lower boiling point components in the liquid mixture (acetone) will
vaporize. The heat source for the reboiler is the steam. Meanwhile, the remaining
liquid (2-propanol} will be removed by the reboiler through the bottom product
stream. The vapor released will flow to the top of the column and cooled down by
the condenser. The condensed liquid will be discharged through the top product
stream. However, there will be some percentage of condensed liquid will be returned
to the top column as reflux. Overall, this simulation is about the distillation of
acetone and 2-propanol where acetone is the main top product and 2-propanol is the

main bottom product of the distillation.

4.1.1 Details of the distillation column

The details for the distillation column are shown as below:

Table 4.1: Specification of the distillation column.

Specification Description
Height 5.5m
Diameter 150mm

Number of trays 15

Type of trays Bubble cap

Tray spacing 350mm

Feed tray location | Tray 7
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The operating condition of the distiliation column used in the simulation is shown as

below:

Table 4.2: Operating conditions of the column,
Parameter Operation data
Feed Flow rate 0.6646 kmol/h
Feed acetone mole fraction 0.3
Feed 2-propanol mole fraction 0.7
Reflux Flow rate 1.051 kmol/h
Distillate Flow rate 0.1974 kmol/h
Top acetone mole fraction 0.9843
Top 2-propanol mole fraction 0.0157
Bottom product flow rate 1.5051 kmol/h
Bottom acetone mole fraction 0.0271
Bottom 2-propanol mole fraction 0.9729
Steam flow rate 18.0285 kg/h
Top temperature 78.60 C
Bottom temperature 83.86 C
Feed temperature 47°C
Column pressure 1.013 bar

4.1.2 Schematic drawing of distillation column

The schematic drawing of this distillation column is shown as below:

bee o

STEAM NLET

YR PROCULT
Eing "

BOTTOM
R
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Figure 4.1: Schematic drawing of the distillation column.
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The distillation model in the laboratory is shown as below:

ELLELLL ] L) L

Figure 4.3: Hysys snapshot of the virtual distillation column.
4.2 Simulation studies

Using the distillation column simulation as mentioned above, the input variables are
varied to generate a quality data. Those variables are the feed temperature, feed flow
rate, steam flow rate and reflux flow rate. Before the input variables are changed, tﬁe
simulation is modified to fit the case study. There are few problems in the
simulation, mainly, the separation is very poor, where the mole fraction of acetone at
top column is just 0.4. Moreover, the tray efficiency is about 0.06 merely, and this is
very low for an efficient distillation column. Then, the feed temperature does not
match with the top and bottom temperature of the column. This is because, the feed
temperature is too low for the separation process which is only 28 'C whereas the top
and bottom temperatures of the column are 66T and 82 C respectively. In order to

solve these problems, few steps are taken and the flow is as shown below:
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1) The tray efficiency is increased gradually to 0.85 with the increment of 2%.
2) The feed temperature is increased to 40 ° C with the increment of 2% too.
3) The reflux flow rate is increased to 0.08211 m’/h with 20% increment. At the
same time, the control valve and PV value is changed to 0.0864.
4) The steam flow rate is increased about 6% where the flow rate is 18.0285
kg/h.
5) The feed temperature is increased again until it reaches 47°C.
For each step mentioned above, the time is set to 1000s to run the simulation. At the
same time, the reflux ratio is observed so that the ratio is maintained below 6. Afier
step 5, the simulation reached the steady-state mode with 0.98 of top acetone mole
fraction. By using this modified simulation, the input variables are varied about 2%
of step change with the range of £10% for 1000 seconds. The pattern of step changes

is shown clearly in the graph below:

12
1 N\

Percentage of input
variabless (%)

Time (s)

Figure 4.4: Changes of the percentage for all the input variables with time.

4.3 Data analysis and preparation
Based on the step changes of percentage study, the step change at 3000s of the input
variables shows the most fluctuation, so the detailed analysis of those input variables,

are shown in the graphical method as below:
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Figure 4.5: Transient response in the top product composition for step change in
feed temperature.
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Figure 4.6: Transient response in the top product composition for step change in
reflux flow rate.
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Figure 4.7: Transient response in the top product composition for step change in
feed flow rate.
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Figure 4.8: Transient response in the top product composition for step
change in steam flow rate.

According to the figures above, transient response for feed temperature fluctuate less
compare to other input variables changes. Besides that, mole fraction of acetone

fluctuates a lot as the time increases compare to other input variables.
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Temperature profile of the distiliation column for the selected input variables are

shown as below:
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Figure 4.9: Temperature profile for step change in feed temperature.
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Figure 4.10: Temperature profile for step change in reflux flow rate.
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Figure 4.11: Temperature profile for step change in feed flow rate.
80
e Tray 1
85 ww—Tray 2
s TrAY 3
-~ 80
;_“i w———Tray 4
2
275 e Tray 5
©
fg’_ === Tray 6
5 20 g} Tray?
g JUUR——— —Tray 8
= 65
cTray @
&0 _ o Tray 10
evemzoms Traty 11
55 e TrAY 12
1500 2000 2500 3000 3500 4000 Trav 13
Time {min) Y

Figure 4.12: Temperature profile for step change in steam flow rate.

According to the temperature profile above, step change in feed temperature affects

the most followed by the step change in steam flow rate. Meanwhile, step change in

feed flow rate does not affect the tray temperature throughout the process.
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Since the response of those input variabies meets the criteria for this case study, théy
are combined in series form as a new data set. The current data set consist of 17,280
samples with specified operating conditions. The operating conditions are feed molar
flow, mole fraction of acetone in the top product, all the tray temperatures, steam
flow rate and feed temperature. For this case study, about five set of data is prepared
to simulate in SIMCA-P software using PLS modeling technique. Those set of data

are prepared as below:

(t-1) , where i=0, 1, 2, 3& 4 (time before target time) t= time at instantaneous.
a) (t)data - Current data set without any changes in time.
b) (t-1) data— Data with 1 minute difference.
¢) (t-2) data — Data with 2 minute difference.
d) (t-3) data — Data with 3 minute difference.
e) (t-4) data — Data with 4 minute difference.

4.4 Development of soft sensors using PLS technique

All the data sets as mentioned previously are simulated using SIMCA-P and the

coefficient plot is shown as below:

Table 4.3: Coefficient Plot.

Data set Coefficient Plot

t original M1 (PL3)
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Data set Coefficient Plot
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Coefficient plot shows the regression model for each data set and those coefficients
refer to scaled and centered X-data, meanwhile the Y-data is scaled but not centered.
The scaling technique used for this simulation is unit variance (UV-scaling). The
scaled data makes the coefficient more comparable to each other. The bar indicated
the confidence level of the coefficients and it is significant if the bar length is small.
Moreover the green shaded box represents the average value of the variable. From
the observation of table 8, the considerable input variables are selected to generate a
new data set. The considerable input variables are selected based on the size of
confidence interval and also the average value of input variables. Those selected

input variables are tabulated as below:

Table 4.4: Selected input variables for new data set.

Data set - Selected input variable
Original Tray temperature 7 until 15
t-1 Tray temperature 12 until 15
t-2 Tray temperature 14 and 15
t-3 Tray temperature 14 and 15
t-4 Tray temperature 15
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By using the selected input variables as mentioned above, a new data set is prepared
and simulated as a new project. The coefficient plot and Y-observed versus Y-
prediction plot is observed in the new data set. In the y-observed and y-prediction
plot, it displays the observed versus predicted values of the selected variables. Then,
the R? of the regression line on the plot indicates the fit. If R? value near to 1 shows
that the regression line is very fit. The RMSEE on the plot is Root Mean Square
Error of the fit for observation in the model where for a good prediction plot, the
RMSEE value should be very low. Moreover, if the points on the plot scattered from
the regression line, indicated those points are outliers that need to be removed. The
input variables in the new data set are reduced until the optimum value of R in the y-
observed versus y-predicted plot is reached. The steps of reduction of input variables

in the new data set are tabulated as below:

Table 4.5: Steps of input variables reduction in the data.

Step | Description Plot
1 Outliers are | New data set without removing outliers.
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Step

Description

Plot

Hotelling T* figure

final findings trial 1.M7 (PLS)
tiComp. 1]M{Comp. 1]

&.
\

1]

RIX([i] = 0.501316 Ellipse: Horalline T3

i aRi
SIMCAP 11- 87272012 9:03:45 Al

Tray
temperature
71is

removed

final findings trigt 1.:8 (PLS)
YPradjLast comp.J(d1 - Master Comp Mole Frac {(Acetone)yYVar(d - Master Comp Mole Frac (Acetone))

y=1"x-3.773e-008
R2=0.0853 -

g

5

N

:

”“u"l"‘

-t

:

o
£

Yoarg? - Maatar Zomp Mole Frac (Acetonel)

582 0983 0934 0.985 0986 0987 0583 ¢.589

YPradi ?]{d1 - Master Comp Mole Frac {Acslona))

LE:: 1 0981

- a
RHARE = 8.000337832 SHCAF 1% - 8RR E5705 A

R?=0.9853

Tray
temperature
8is

removed

finad firdings triat 1.M0 (PLS)
YPred[Last comp.]{d1 - Master Camp Mole Frac (Acetone))YVar(d1 - Mastar Comp Mole Frac {Acetone))

T
5 C
2 y=1"%+1.812e-007|
5 omall’ o= o885 4
: . »
Y 8988
S —
§ 0.964 s et e sl SR
E o
fom| "
3
S oem
0.98% 9831 0.582 0993 0984 0888 0.885 0.987 0.9%8 0.989

YProd{1Hd1 - Master Cormp Mole Frat jAcetons))

BMAEE = 0.000323635 SCAP T1- 222012 85736 Al

R?>= 0.9865

Tray
temperature
9is

removed

final findings trial 1.M11 {(PL3}
YPrediLast comp.}{d1 - Master Comp Mole Frac {(Acetong)yYVar(d1 - Master Comp Mole Frac {(Acetona))

R%=10.9898

YPred{1](d} - Maater Corop Mole Frac (dcetansl)

RMSEE = 0._000281871

g
] =1"x6.0;8a.008
5 o ¥ R0.989 : > 1
|§ 0988
]
§ i—
Bom . o

0982
s
g 0.990

0.98% 6.561 0982 0.583 0524 0985 0.586 0987 0.988 .98

SIMCAP 11 - RI2I2042 R:58:02 AlX

35




Step | Description Plot
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Based on the table above, after the outliers are removed in the data, the R* value in
the plot increased. Besides that, when the input variable reduced from tray
temperature 7 to 11, the R? value of the plot increased. But the reduction of input
variable tray temperature 12 shows a low value for R? which is 0.9919. So the
particular input variable is remained in the model. The other variables are tested

based on trial and error method to reduce the number of input variables.

36




After reducing the input variables in the data, the balance final input variables are
shown as below:

final findings trial 1.M15 (P1.8)
CoeRCS[Last comp.](d1 - Master Comp Mole Frac (Acetone))
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Figure 4.13: Final coefficient plot.
Other than the coefficient plot, VIP plot which stands for variable importance plot
explains the correlation of X and Y data. Variable importance plot summarize the
importance of the variables in the model. By using this plot, the less important

variable can be removed to increase the performance of the model.

The VIP plot for this case is shown as below:

final findings trial 1.M15 (PLS)

VIP[iast comp.}
w = o o 73 T o & = & = = =
= = = = & = 2 = E
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BIACAP 11 - TI112012 6:18:54 PM

Figure 4.14: Variable importance plot.
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About 13 input variables are correlated in the regression coefficient above. The

regression model for the coefficient plot above is as following:

Table 4.6: Coefficients of regression model.

Input variable (X) | Description Regression
coefficient
- Constant 3.54E+02
Ti2(t) Tray temperature 12 (original) | -2.47E-01
Tis(t) Tray temperature 13 (originaf) | -2.48E-01
T14(t) Tray temperature 14 (original) | -2.50E-01
Tys(t) Tray temperature 15(original) | -2.52E-01
ATp(t-1) Tray temperature 12 (t-1) -3.73E-03
AT 4(1-2) Tray temperature 14 (t-2) -1.05E-03
AT;5(t-2) Tray temperature 15 (t-2) 3.11E-03
AT14(t-3) Tray temperature 14 (t-3) -2.40E-03
AT,5(t-3) Tray temperature 15 (t-3) 3.57E-03
AT s5(t-4) Tray temperature 15 (t-4) -1.99E-03

For this PLS model, the regression model is written as:

Y = Y,,; + XB, where B is the regression coefficient.

x,(f) =354225-[24713x10° T, (1)]-[2483 Tx10° T, (1)} -[25008x10° T, (1)}-
[25242x10° T ()]-[3.73x10° AT (= 1)]-[LO5X10° AT, (- 2)]+
[3.11x10° AT, (t - 2)]-[240x10° AT, (¢ —3)]+[3.57x10° AT (¢ -3)] -
[1.99x10° AT, (t—4)]

Where Y= X (f) = mole fraction of acetone in the top product at 7.
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Using this regression model, the output variable which is mole fraction of acetone in
the top product is predicted. The efficiency of the model can be seen in the y-

observed versus y-predicted plot.

Fnal findings tiad 1.M15 (PLS)
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Figure 4.15: Y-observed versus Y-predicted plot.

According to the plot above, the R? value is 0.9949 which shows the fit is good
enough. In addition, the RMSEE value is (0.000199201, shows that the error is less in
this model. Besides that, the regression line is straight about 45 ° and the data points
are not scattered far from the regression line. This shows that, there are very less

outliers in this model which is good for prediction.

4.5 Evaluation and comparison of soft sensor performance

In order to evaluate the time difference of process variables method against the static
conventional method, the original data without time difference approach is simulated
to observe the performance of it. The simulation observation of the original data

using PLS modeling technique is shown as below:

original M1 (PLS)
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Figure 4.16: Y-observed versus Y-predicted plot for static conventional method.
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Based on the plot above, the R” value is 0.9871 and the RMSEE value is 0.00329577.
This shows that the fitting is good but the data points are scattered far away from the

regression line. The comparison of both time difference approach model and static

conventional method model is tabulated as below:

Table 4.7: Comparison of conventional method and time difference method model.

Model

R2

RMSEE

Observation of data

point

Static conventional

0.9871

0.0033

Scattered far away
from the regression

line

Time difference

0.9949

0.0002

Scattered near the

regression line

As overall, time difference of process variable approach model gives higher

prediction compared to conventional model.
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CHAPTER 5

CONCLUSION AND RECOMMENDATION

5.1 Conclusion

In this project, data-driven model with time difference of process variables is
developed using SIMCA-P software. This model is developed using the PLS
modeling technique which is built-in the software. The data to develop this model is
generated using the binary distillation column simulation. Moreover, the simulation
used to generate the data is in dynamic mode so that the performance of the
inferential model can be evaluated. After data pre-processing, the input variables are
correlated to reduce the number of variables. By doing this, the components are

correlated and the model is developed.

In order to evaluate the time difference of process variable against the static
conventional method, the R* value of both methods is observed. Based on the
observation, the prediction of the inferential model for time difference approach is
higher compared to the static conventional method. This is mainly because, the
performance of time difference approach is good in non-steady state condition.
Meanwhile, the static conventional model performed better in steady-state condition

only. As overall, the objective of this project is achieved.

5.2 Recommendation

In order to evaluate the efficiency of soft sensor model, this soft sensor model shouid
be tested with new data set generated by the simulation. If the efficiency is good, this
model can be applied to real industriai data. Moreover, apart from PLS modeling
technique, this model should be developed using other modeling technique such as
SVR (support vector machine). By using this modeling technique, the current model
can be evaluated against the model which developed using SVR technique. Besides
that, another soft sensor model can be developed using different case study such as

reactor unit.
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Appendix 1

APPENDICES

a) MATLAB Coding and command window with results:

n = input{\nEnter number of data.);
for irow = 1:n
x(irow) = inpul("nEnter value of x: ');
yirow) = input{'Enter value of y: ");
end

sumx = (.0;
sumy = 0.0;
sumx2 = 0.0;
sumxy = 0.0;
fori=1Ln
samx = sumyx, + x(1);
sumy = sumy -+ y(i);
sumx2 = sumx2 + x(i)*x(i};
sumxy = sumxy + x(i)*y(i);
end
% SOLVE FOR COEEFICIENTS:
det = n*sumx2 - sumx*sumx;
AD = (sumy*sumx2 - sumxy*sumx)/det;
Al = (n*sumxy - sumx*sumy)/det;
fprintfVCOEFFICTENT Al = %14.6¢',A0)
forintf("\nCOEFFICIENT Al = %]4.6e Al)

Enter number of data:6

Enter value of x: 10
Enter value of y: 2.2

Enter value of x: 15
Enter value of y: 4.6

Enter value of x: 20
Enter value of y: 4.2

Enter value of x: 25
Enter value of y: 7.0

Enter value of x: 30
Enter vatue of v: 6.6

Enter value of x: 35
Enter value of v: 9.2

COEFFICIENT A0 = 1.904762¢-003
COEFFICIENT Al = 2.502857¢-001

Appendix 2

a) Input Data (file name : bros.dat) = 62, 1, 14, 103, 129, 218 & 2211

fid=fopen('bros.dat’,r');
n=fscanf{fid, %f,1);
k=fscanf(fid,24f,1);
x=fscanf{fid, %",[3 6]},
x=x"
x1=x(;,1:2);
y=x(:3);
b=zeros(k+1,1);
a=zeros(k+1.k+1);
for i=1ln
for irtk+1
if ir=1
fi=1.;
end
ifir>1
fr=x1{i,ir-1);
end
for ic = 1;k+1
if ic==1}
fe=1.;
end
if ic>-1
fe=x1{i,ic-1);
end
a(ir,ic)=a(ir,ic)+fr*fe;
end
b(iry=b(ir}-+r*y(i);
end
end
kpi=k+1;
xc=gauss(kpl, a, b);
fprintf’\ncoefficient of fitted function are:’}
fori=1:k+l

iml=i-1,

fprintf{\n A(%eld) = %13.7e,imlxx{i});
end

coefficient of fitted function are:
A(0) = 1.0000000e-+000
A(1) = 2.0000000e+000
A(2) = 3.0000000e+000
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Appendix 3

load moore

y =moore{.,6); % Response

X0 = moore(:,1:5); % Original predictors
X1 = XG+10*randn{size(X0)); % Correlated predictors

X =[X0,X1];[XL,y1,X5,YS,beta, PCTVAR] = plsregress(3{,y, 10);

plot(1:10,cumsum(100*PCTVAR(2,)),-bo');

xlabel{"Number of PLS components');

ylabel('Percent Variance Explained in v');
[XL,¥1,XS,YS,beta, PCTVAR,MSE,stats] = plsregress(X.y.6);
yfit = fones(size(X,1),1) X]*beta;

plot(y.¥fit,'s")

TSS = sum((y-mean(y))."2);

RSS = sum((y-yfit)."2);

Rsquared = 1 - RSS/TSS

plot(1:10,stats, W,'0-");
legend({'c?','c2",'c3"'c4','c5",'c6'},'Location', NW")
xlabel(Predictor’);

ylabel("Weight');

faxes,h1,h2] = plotyy(0:6,MSE(1,:),0:6, MSE(2,)));
set(h],'Marker','0")

set(h2,'Marker','o")

legend('MSE Predictors','MSE Response')
xlabel{'Number of Components)
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