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ABSTRACT 

In this study, solubility of carbon dioxide (C02) in new aqueous blends of 

diethanolarnine (DEA) + 2-amino-2-hydroxymethyl-1, 3-propanediol (AHPD) was 

carried out at temperatures of (303 K and 333 K) and C02 partial pressure ranging from 

(I 00 - 2000 kPa). The total aqueous blends amine mass fraction was kept within 30 wt% 

in all solutions, varies at (30 wt"/o DEA + 0 wt% AHPD), (20 wt% DEA + 10 wt% 

AHPD), (10 wt% DEA + 20 wt% AHPD) and (0 wt"lo DEA + 30 wt% AHPD). The 

results show higher C02 loading capacity is achieved when the system is operated at 

lower temperature and at higher C02 partial pressure. At a fixed temperature, an 

increase in mass fraction of AHPD in the aqueous blends solution leads to higher COz 

loading capacity. C02 loading capacity was found highest in the blends of I 0 wt% DEA 

+ 20 wt% AHPD at 1680 kPa and 303 K, which is 1.2814 mol of C02/ mol of absorbent. 

Physical properties such as density and viscosity ofDEA + AHPD are also measured at 

temperature of (303 K- 333 K). 
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CHAPTER! 

INTRODUCTION 

1.1 PROJECT BACKGROUND 

In the past few decades, removal of COz has become one of the most important 

environment issues when COz is the rna jor greenhouses gases that emitted from 

combustion of fossil fuel. The increasing COz emission and global warming have 

challenged the world scientists to think critically for a better solution to mitigate the 

problem while meeting the need of energy for the world. 

Above mentioned are all environmentally-related issues, but from industrial point of 

view, the presence of C02 in the process stream give impacts on the plant operation as 

well. For instant, fuiling to remove acid gases can lead to corrosion of pipes and the 

other processing equipment. Existence of C02 in the process stream could also affect on 

the heating value, commercial value and purity of the commercial products such as 

natural gas. 

This has also motivated the researches to study extensively on C02 capture where new 

and more energy-efficient absorbents or solvents should be invented. The removal of 

acid gas by absorption using reactive solvent has been the most commonly method used 

in industries although there are other methods available such as membrane separation 

and physical or chemical adsorption. A wide variety of alkanolamines are applied for 

COz absorption in the gas and chemical industries starting from monoethanolamine 

(MEA), diethanolamine (DEA), N-methylehtanolamine (MDEA) and 

diisopropanolamine (DIP A), followed by the new discovery of new class of amine, 

sterically hindered amines for instance, 2-amino-2-methyl-1-propanol (AMP), 2-amino-

2-hydroxymethyl-1,3-propanediol (AHPD), 2-piperidineethano1 (2-PE) and others. 

Recently, researchers figure out that by mixing different alkanolamines, the new mixed 

solution can combine strong features of the constituent amines. The mixed amine 
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systems, which combine the higher equilibrium capacity of tertiary amines with the 

higher reaction rate of primary or secondary amines, can enhance the absorption rate 

and has great saving in the so I vent regeneration energy. 

1.2 PROBLEM STATEMENT 

Today, DEA is used as the solvent for C02 removal at most of the gas treating field. 

DEA is found not only lead to high solvent regeneration cost but also has relatively low 

C02 loading (limited to 0.5 mol C02/mol amine). Hence, new solvent should be 

discovered to improvise the C02 loading capacity. 

In this project, DEA is mixed with AHPD with the aim to improve the C02 loading 

capacity instead of using DEA alone as solvent. Blended amine is chosen as the method 

to improve the solvent performance because it is the combination of a fast reactivity 

from a primary or secondary amines coupled with high absorption capacity and low 

regeneration cost from a tertiary or sterically hindered amines. Hence, study is carried 

out on the solubility of C02 and the physical properties of aqueous blends of DEA + 

AHPD such as density and viscosity. 

Information on blends of AMP with primary and secondary amines is available in the 

literature such as Hong (1996), Bandyopadhyay (2003, 2004, and 2005) and Kundu 

(2012). However, the physicochemical properties of aqueous blends of DEA with 

AHPD have not been reported in the open literature so far. Hence, it is significant to 

carry out this study as the proposed blends solution could be a potential solvent in 

industrial application. 

1.3 OBJECTIVE 

» To enhance C02 loading capacity ofDEA by blending it with AHPD 

» To measure the solubility of C02 and physical properties of the aqueous 

blends amine (DEA + AHPD) such as density and viscosity 
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1.4 SCOPE OF STUDY 

In this project, the total aqueous blends amine mass fraction in aU so Jut ions was kept 

within 30% in view of recent interest in using concentrated amine solution in gas 

treating (Paul and Mandai, 2006). Temperature and pressure are two very important 

parameters to determine the C02 solubility into the solution. Hence, solubility of C02 

was measured from temperature and C02 partial pressure ranging from 303 K- 333 K 

and 100 - 2000 kPa respectively to study on the effects of these parameters. Four 

difference mass fractions ofthe aqueous solutions will be used as solvent to study on the 

effect of mass fraction ofalkanolamines to the C02 solubility. On top of that, solubility 

data will be compared to prove that aqueous blends amine solution is better than single 

amine solution. Upon completion of experimental work, data will be analyzed to choose 

the optimum condition for this blends amine solution in COz capture. 

Knowledge of physical properties such as density and viscosity is essential for the 

process design of equipments for process using these solvents. For instance, when 

designing a C02 absorber colunm's diameter, density is needed and the formula is as 

fo11ows (Douglas, 1988): 

M 
Dr = 0.0164-N(~)114 

p 

Douglas (1988) also mention even for a simple case of a double-pipe heat exchanger, 

one of the variables required is viscosities of fluid mixture on both the tube and shell 

sides of the exchanger. One of the equations in designing heat exchanger is as follow: 

h; = 0.023tG)o.ocCpJ.L)j(.l:.)o.H 
k J.l k J.lw 

Besides, these properties are important in the mass transfer rate modeling of absorption 

and regeneration because they affect the liquid-film coefficient for mass transfer. 
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CHAPTER2 

LITERATURE REVIEW 

2.1 INTRODUCTION OF ALKANOLAMINES 

Alkanolamines are the chemical compounds that have at least one hydroxyl group and 

one amino group. Hydroxyl group helps to reduce the vapor pressure and hence increase 

the solution solubility while amino group that is alkaline, promotes the reaction with 

acid gases such as C02 and H2S. The reaction between alkanolamines and C02 is 

exothermic and reversible reaction. 

Class of alkanolamines can be differentiated by the number of substitution on the central 

nitrogen atom; a single substitution is named as primary amine, double substitution is 

secondary amine and triple substitution is tertiary amine. Alkanolamines from these 

three classes are widely used in the gas treating industrial to capture C02 and H2S. MEA 

(primary amine) and DEA (secondary amine) are often used to remove C02 and H2S 

totally from sour natural gas and industrial gas streams, while on the other hands, 

aqueous MDEA (tertiary amine) selectively remove H2S from gas streams that 

containing both C02 and H2S. (Bandyopadhyay, 2005). 

Sterically hindered amine can be defined as an amine with a primary or secondary 

amine in which attached to one or more central carbon atoms linked to nitrogen atom. 

For example, AMP is the hindered form of MEA where its two hydrogen atoms attached 

to carbon atom is substituted by two methyl groups. (Iluita, 2012). These substitutions 

that form bulky group adjacent to amino group will determine the properties of sterically 

hindered amines such as absorption capacity, regeneration efficiency, reactivity and 

others. 
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The interest in the use of mixed amine solvents in gas-treating process is increasing. 

Chakaravarty (1985) reported that the application of blended amines enhanced the 

absorption capacity and absorption rate compared to a single amine solvent. From 

economic point of view, solvent circulation rate is a major consideration in the gas 

treating industries tbat use chemical solvents. Blends amine offers lower solvent 

circulation rate due to the higher COz equilibrium capacity. Furthermore, selectivity of 

blended amine solvent to remove acid gas can be varied by changing the concentration 

of the constituent amines in the blend. (Bandyopadhyay 2005). There are some blends 

amines have been suggested for the industrial gas-treating process, for instance mixtures 

of MEA and MDEA or DEA and MDEA (Chakaravarty, 1985; Kohl, 1997; 

Bandyopadhyay 2006). 

The characteristic of each class of amine is summarized as table below: 

Table 1· Characteristic of Each Class of Amine 
COz Absorbents 

MEA or MDEA Sterlcally Mixed Amine 
DEA Hindered Amine 

Reaction Rate High Low High High 
Regeneration High Low Low Low 
Cost 
COz Loading O.Smol 0.5 mol 1.0 mol COz/mole 1.0 mol 

C02/mole C02/ mole amine COz/mole 
amine amine amine 

Source (Satori, (Hong, 1996) (Satori, 1983) (Chakravarty, 
1983) (Iliuta, 20 10) (Bandyopadhyay, 1985) 

(Iliuta, 2005) 1995) 

2. 2 MECHANISM OF REACTION BETWEEN ALKANOLAMINES AND CO:! 

Reactions between alkanolamines and COz differ at each class of alkanolamines. In next 

section, the detail explanations will be given on the reactions that occur which lead to 

difference performances in different classes of amine as mentioned in Table I. 
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2.2.1 Primary (RNH2) and Secondary (R2NH) Amines 

There are two mechanisms for reaction between COz and amines. First is zwitterions 

mechanism as proposed by Caplow (1968) and Danckwerts (1979). In this mechanism, 

zwitterions will form as intermediate in the solution. Then, the proton from the 

zwitterions will react with base (B) such as amine. The reaction is as below: 

Formation of carbamate, RNHcoo· and protonated amine, RNH3 + 

COz + RNHz ..... RNH/coo-
RN+Hzcoo- +RNHz ..... RNHcoo- + RNH3 + 

Global reaction: 

Second mechanism is termolecular mechanism as proposed by Crooks and Donnellan 

(1989). In this reaction, only one step is involved. The reaction is as below: 

With regards to the formation of stable carbarnates, primary and secondary 

alkanolamines such as MEA and DEA are well known with fast reactivity. However, 

Iluita (2012) points out the stable carbarnates are difficult to be reverted to fresh amine. 

This eventually will lead to longer regeneration time and more energy consumption. On 

the other hands, (Satori and Savage, 1983) and (Iliuta, 2010) agree that due to the 

carbamtes formation, primary and secondary amines have relatively low absorption 

which only limited to 0.5 mol COz/mol amine. 

2.2.2 Tertiary (R3N) Amines 

Tertiary amine has no hydrogen atom attached to nitrogen atom, unlike primary and 

secondary amine, COz reaction can only occur after C02 dissolves in water. (Zare, 
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2009). Hence it has more tendencies to nndergo hydrolysis reaction to form bicarbonate 

ion. The reaction is as below: 

Bicarbonate (HC01) formation 

C02 + H20 +-> HC01- + W 

Amine protonation 

Global reaction: 

Iluita (2010) reported that these bicarbonate undertake desorption process at higher rate 

and upshot in Jess energy consumption at regeneration column. Besides, Vaida (2009) 

mentioned that bicarbonate reaction is less exothermic than carbamate reaction. Thus, it 

results in lower solvent regeneration cost. Characteristic of tertiary amine, in short, able 

to reduce the main operational cost of gas treating process as the stripping unit is highly 

energy consuming. (Iluita, 2010). On the drawback side, from Subhasish's report, it 

stated that bicarbonate reaction is relatively slow. Therefore, slow reaction with C02 

limits the use ofMDEA. (Hong, 1996). 

2.2.3 Sterically Hindered Amines 

There are three simultaneous mechanisms for the reaction between sterically hindered 

amines and COz. 

(i) Same Bicarbonate formation mechanism with tertiary amines 

(ii) Bicarbonate formation by zwitterions hydrolysis 

Global reaction: 

RNH2 + co2 .... RNHtcoo· 

RNHtcoo· + HzO <-+ RNH/ + HC01-

RNHz + C02 + HzO <-> RNH1 + + HC01-
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(iii) Bicarbonate formation by carbamate hydrolysis 

RNHz + COz ..... RNHz +coo· 

RNHz +coo·+ RNHz <-> RNHCoo· + RNH3 + 

RNHCoo· + HzO + (RNH3 +) <-> RNHz + (RNHJl + HC03. 

Global reaction: 

Due to the hindrance of the bulky group in sterically hindered amines, unstable 

carbamate ions are formed in the reaction with C02 through hydrolysis. This will then 

releasing free amine to react with C02 again which give significantly higher loading 

capacity of I mol of C02 per mole of amine. (Bandyopadhyay 2003 and Mandai 2009). 

There is growing interest in using sterically hindered amine to capture C02 as it offers 

higher absorption capacity, higher absorption rate, and degradation resistance 

advantages over the conventional alkano lamines. On top of that, it is expected that a 

solution contains more bicarbonates are easier to be stripped off from C02 and produces 

lean solution. (Sartori and Savege 1983). 

2.3 SOLUBILITY OF CARBON DIOXIDE IN AQUEOUS MIXTURE 

Three parameters that affect solubility of carbon dioxide m aqueous mixture are: 

pressure, temperature and the aqueous mixture composition. 

2.3.1 Effect of Pressure on C02 Solubility 

Solubility of gas favors in high pressure system. When the system is at equilibrium state, 

rate of gas molecules enter the solution equivalent to the rate of solutes escape from the 

solution. Referring to the diagram illustrated in Figure l(b), when pressure is applied to 

the system and compresses the gas above the solution, more gas molecules present in the 
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solution as the rate of gas molecules enter the solution increase. In addition, Henry's 

Law states that solubility of gases in solution is directly proportional to the pressure of 

the gas above the surfuce of the solution. This can be expressed as: 

C = k * Pgas, where 

C =the solubility of gas in solvent 

k = the proportionality constant 

P gas= the partial pressure of the gas above the solvent 

Thus, the solubility of gas increases as the partial pressure above the solution increases. 

Figure I: Effect of Pressure on the Solubility of a gas. 
(Source: http://wps.prenhall.com/wps/media/objects/3312/3391718/blb 1303.html) 

2.3.2 Effect of Temperature on C(h Solubility 

For gas phase, C02 solubility decreases when the temperature of the solution increases. 

Increase of temperature allows the gases (C02) to gain more kinetic energy and hence it 

can move freely. In second law of thermodynamic stated that heating of solution shifts 

gases to disorder state and they are highly disperse. On top of that, at higher temperature, 

molecules of the solvent will tend to break their intermolecular bonds and escape from 

the solution. Therefore, less C02 exist in the solution when the temperature of the 

solution is high or in other words, less C02 has been captured. As the reaction is 

exothermic, when the temperature is elevated, the equilibrium tends to shift to the left 

according to Le Chatelier's principle. Hence, less C02 is absorbed. 
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2.3.3 Effect of Aqueous Mixture Solution (Solvent) Composition on C{)z Solubility 

Since single amine solvent has its limitation such as low C02 loading capacity for 

primary or secondary amine and slow absorption rate for tertiary amine, use of mixed 

amine solvents can be another alternative to overcome the limitations. Mixed amine 

solvent is the combination of higher reaction rate of the primary or secondary amines 

and higher C02 loading capacity from tertiary amines or sterically hindered amines. 

Therefore, according to Chakaravarty (1985), the application of blended amines can 

enhance the absorption rate and great saving in the solvent regeneration energy. 

In this project, AHPD from sterically hindered amine class is blended with DEA from 

secondary amine class, with the aim to improve COz loading capacity and the absorption 

rate. AHPD is chosen due to its characteristic of low stability constants and easily 

undergo hydrolysis process that can release free amine. When more COz is able to react 

with this free amine, an overall stoichiometric loading capacity will become 1 mol of 

C02/ mol of amine with appreciable rate of absorption (Sartori and Savage, 1983). 

Hence, increase mass fraction of AHPD in the mixed aqueous solution will help to 

increase COz loading capacity. 

Summary: From the study of the literatures, loading capacity decreases with increases 

of temperature; the loading capacity increases with increases of pressure; loading 

capacity increases with increases of tertiary amine or sterically hindered amines 

concentration. The statement was reported by Hong (1996), Murgesan (2009) and 

Kundu (2012) in their works. Solubility of C02 in (DEA +AMP) has been reported both 

by Hong (1996) and Kundu (2012). Comparing at the same parameters such as 

temperature, both resuhs show good agreement that the C02 loading capacity decreases 

with increasing temperature. The results for the C02 solubility in this study are reported 

by measuring the moles of C02 per moles of alkanolamine in the solution. 
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2.4 DENSITY AND VISCOSITY OF AQUEOUS MIXUTURE 

Bandyopadhyay (2003) have measured the density and viscosity of aqueous blends 

solutions where MDEA and AMP are the tertiary amines combine with primary amine, 

MEA and secondary amine, DEA over the temperature range of 298 K to 333 K. 

Density of aqueous blends amines (MDEA and MEAIDEA) is higher than (AMP and 

MEAIDEA). These aqueous blends amines have the similar trend that the density is 

decreasing when the temperature is increasing and the composition of tertiary amine is 

decreasing. On the other hand, (MDEA and MEA/DEA)'s viscosity is lower than (AMP 

and MEA/DEA). However, viscosities of these blend aqueous amines are decreasing at 

higher temperature and at lower composition of tertiary amine. The correlated densities 

and viscosities of the ternary mixtures are in excellent agreement with the experimental 

data over the temperature and relative composition ranges studied. 

Mandai (2006) has also done the similar work by using the aqueous blends solutions (2-

PE + MEA/DEA) from 288 K to 333 K. The work differs from others in the way that 

the density of the mixtures decreases with the increasing composition of 2-PE in the 

mixture. 

Bandyopadhyay (2006) and Murshid (2011) have published the physical properties for 

aqueous solutions of (AMP + PZ) and (AHPD + PZ) respectively at 298 K to 333 K. 

From Bandyopadhyay (2006)'s study, the density decreases linearly with the increasing 

temperature and increases as the PZ concentrations increases in the aqueous AHPD. The 

viscosity values show a nonlinear decreasing trend while increasing the temperature. 

However, the values increase with the increase of PZ concentration in aqueous AHPD. 

Same trends were observed from the Murshid (20ll)'s study. 
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2.5 C01 LOADING CALCULATION METHOD 

In Abdi (2005)'s work, he has presented the method to calculate C02 loading and in this 

study, C02 loading was calculated using the same method. 

Step 1: Mole of C02 feed, 

where VMV =volume of mixing vessel 

Z1 and Z2 = the compressibility factors corresponding to the pressure 

P1 and P2 =initial pressure and final pressure respectively before and after 

transferring C02 

Ta =ambient temperature 

Step 2: Moles of C02 in gas phase, 

where VEe 

Zc02 

_ VEcPco2 

nco2- Zco2RT 

= volume of equilibrium cell 

= the compressibility factor corresponding to partial pressure of 

C02 

Pco2 =partial pressure of C02 (pressure after the system reaches 

equilibrium) 

T = temperature of equilibrium cell 

Step 3: Mole of C02 in liquid phase= Mole of C02 feed- mole of C02 in gas phase 

Step 4: C02 loading in liquid phase,a = Oc02IO.mino 

Where nc02 =the mole of C02 in liquid phase 

Damine 

mnEA 

p 

VI 

Mamine 

=the moles of amine in liquid phase= n . - maminePV1 
amme- Mamine 

= mass fraction of amine in the aqueous solution 

= aqueous solution density 

= the volume of amine in the cell 

=molecular weight of amine 
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CHAPTER3 

METHODOLOGY 

3.1 CHEMICAL SOLUBILITY EXPERIMENT 

The C02 solubility measurement setup used in this study is similar to the one reported in 

Thanapalan's (2009) work. The schematic diagram of the setup is shown in Fignre 2. 

Initially, the desired temperature of equilibrium cell (volume of 0.1 L) was set and 

maintained by PROTECH Digital Heating Circulators HC-10 with accuracy of 

temperature measurement± 0.1 oc. To remove all the possible moistures trapped inside 

the setup, the system was purged by nitrogen for 5 minutes. Mixing vessel (volume of3 

L) was then pressurized with C02 until the desired pressure. While waiting for the 

pressure to be stabilized, approximately 10 mL of aqueous blends solultion was pumped 

into the equilibrium cell by metering pump. The equilibrium cell was vacuumed up to 

approximately 26 kPa before being fed with the solvents. Then, C02 was transferred to 

equilibrium cell and stirrer helps to enhance the contact between C02 and the blends. 

When the pressure of equilibrium cell was observed to remain constant, it was assumed 

that the system has reached the equilibrium state. The time required for the system to 

achieve equilibrium was depending on the pressure applied to the system, which 

approximately ranging from 2 hours ti1112 hours. 
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Figure 2: Schematic diagram ofSOLTEQ BP-22 high pressure solubility cell. 
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Step 1: Sample preparation 

Figure 3: 99.5% purity ofDEA and 99.8% purity of AHPD from Merck, Malaysia 

Step 2: Weight and stir the sample 

Figure 4: Mettler Toledo- Top Balance (left) and Curning PC-420D- Hot Plate and 

Stirrer (right) 

Step 3: Start C02 solubility experiment 
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3.2DENSITY 

Densities of aqueous blends solutions DEA + AHPD were measured at the temperature 

vary from 303 K to 333 K at atmospheric pressure. The solutions were fed in a U­

shaped borosilicate glass tube embedded in the density meter (Anton Paar, DMA 4500 

M) and were being excited to vibrate. Densities were measured depending on the 

samples characteristic frequency. 

Density = KA X Q2 X / 1 - KB X / 2 

where KA and KB is apparatus constant, Q is the quotient of the period of oscillation of 

the U-tube divided by the period of the oscillation of the reference oscillator and f1 and 

fz is the correlation terms for the temperature, viscosity and nonlinearlity. The allowable 

errors in the measurement of densities were approximately 1 x 10·5 gfcm3 and for 

temperature were ± 0. 01 K. 

Figure 6: Anton Paar Density Meter: DMA 4500 M 
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3.3 VISCOSITY 

Viscosities of aqueous blends solutions DEA + AHPD were measured at the 

temperature vary from 303 K to 333 K at atmospheric pressure using microviscometer 

(Anton Paar, Lovis 2000 MIME). A capillary which filled with the solutions and a ball, 

were inserted in the rotating capillary block. The runtime of the ball rolling inside the 

capillary is proportional to viscosity. 

11 = K. (Pb- Ps).M 

where 1] is dynamic viscosity, K is the constant of proportionality, Pb and p, is ball 

density and sample density respectively and At is the rolling time. The accuracy of the 

viscosity and temperature measurements were up to ±0.5% and ±0.02 K respectively. 

Figure 7: Anton Paar Microviscometer: Lovis 2000 MIME 
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3.4 RESEARCH METHODOLOGY 

Problem Statement 

Problem identification based on current issue and significance of the project 

Literature Review 

Study and review journals and books related to the pro jet proposed with high 
understanding of the concept involved 

Experiment Design 

Decision on the equipments and chemicals involved for the project with clear view of · 
procedures to be conducted 

Data Analysis and Interpretation 

Evaluation of the result based on the conceptual understanding and practicality 

Report Writing 

Report the findings with conclusion and recommendation for improvement. 
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3.5 KEY MILESTONE 

2. Submission of Progress Report Assessment Form 07 

3. 

4. Copy 

5. Oral Presentation Assessment Form 09 

6. Submission of Technical Paper To be submitted 
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3.6 GANTT CHART 

Figure 8: Gantt Chart 
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CHAPTER4 

RESULTS AND DISCUSSION 

4.1 EXPERIMENTAL DATA FOR C02 SOLUBILITY 

Solubility of C02 in aqueous solution ofDEA + AHPD at 303 K and 333 K, from C02 

partial pressure ranging from 100 k:Pa till2000 k:Pa is measured and tabulated in Table 2. 

The concentration of alkanolamine aqueous solution varies at (30 mass% DEA + 0 mass% 

AHPD), (20 mass% DEA + 10 mass% AHPD), (10 mass% DEA + 20 mass% AHPD) 

and (0 mass% DEA + 30 mass% AHPD). 

Table 2: Solubility ofCOz in DEA + AHPD Aqueous Solution at 303 K and 333 K 

DEA+AHPD 
mass fraction 

30+0 

20+ 10 

10+20 

0+30 

T=303K 
Pcoz/kPa 

245 
824 
1265 
1678 

265 
723 
1158 
1658 

287 
638 
1126 
1680 

287 
667 
1127 
1655 

0.7087 
0.7834 
1.1151 
1.2069 

0.6154 
0.8794 
1.1748 
1.2387 

0.6529 
1.0268 
1.2038 
1.2814 

0.6684 
1.0618 
1.2559 
1.3259 
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T=333 K 
Pcoz!kPa 

241 
736 

1197 
1714 

318 
855 
1167 
1736 

330 
733 
1143 
1635 

356 
751 
1204 
1635 

0.6241 
0.6963 
0.9858 
1.1767 

0.5442 
0.7460 
1.0909 
1.2008 

0.5904 
0.8614 
1.1196 
1.2508 

0.6117 
0.9530 
1.1628 
1.2958 



4.1.1 Effect of Temperature and COz Partial Pressure on COz Loading 
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Figure 9: Solubility of C02 in aqueous solution of30 wt% DEA+ 0 wt% AHPD at T = 
303 K and 333 K 
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Figure 10: Solubility ofCOz in aqueous solution of20 wt% DEA+ 10 wt% AHPD at T 

= 303 K and 333 K 
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Figure II: Solubility of C02 in aqueous solution oflO wt% DEA+ 20 wt% AHPD at T 

= 303 K and 333K 
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Figure 12: Solubility of C02 in aqueous solution ofO wt% DEA+ 30 wt% AHPD at T = 
303 K and 333K 

Graphs of C02 partial pressure as the function of C02 loading at fixed concentration are 

presented in Figure 9 - 12. From Figure 9 - 12, it can be observed that higher C02 

loading capacity is achieved when the system is operated at lower temperature. On the 

other hand, higher C02 loading capacity can be obtained at higher C02 partial pressure. 

Hence, temperature and C02 partial pressure are the parameters that should be taken 

into consideration during gas treating process. 
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4.1.2 Effect of Concentration on COt Loading 
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Figure 13: Solubility of C02 in different concentration of aqueous solution at T = 303 K 
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Figure 14: Solubility of C02 in different concentration of aqueous solution at T = 333 K 

To study on the effect of different amine concentration to C02 solubility, plot of C02 

partial pressure as the function of C02 loading in four different amine concentrations at 

fixed temperature are illustrated in Figure 13 and 14. 

From Figure 13 and 14, at low partial pressure up to 400 kPa at 303 K and 600 kPa at 

333 K, aqueous DEA solutions has higher C02 loading compared to the aqueous blends 
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solution, however, become lower at higher partial pressure. This trend was also 

observed at other mixed solvent experimental data such as AMP + TMS as reported by 

Roberts and Mather (1988) and MEA + MDEA and DEA + MDEA in Meisen's work 

(1994). 

Apart from that, it is also observed from the graphs that aqueous AHPD solution is 

performing better in absorbing C02 as compared to aqueous DEA solution at C02 

partial pressure more than 400 kPa at both 303 K and 333 K. Therefore, by blending 

DEA with AHPD, C02 loading capacity is expected to increase. This statement agrees 

well with the result obtained in this work. It is the evidence from the Figure 13 and 14 

that at a ftxed temperature, an increase in mass fraction of AHPD in the aqueous blends 

solution brings to higher C02 loading capacity. 

4.2DENSITY 

Density measurements data for different concentration of aqueous blends solution of 

DEA and AHPD for the temperature range (303 K - 333 K) is presented in Table 3. 

Experimental data obtained from this stndy on densities of 30 wt% DEA aqueous 

solution were compared with the data reported by Bandyopadyay (2003) and Li (1997) 

for validation. The comparison data is presented in Table 4. 

Table 3: Density ofDEA + AHPD Agueous Solution from T = 303 K to 333 K 
DEA+AHPD p/g.cm"3 

mass%/ mass% 303 K 308K 313K 318 K 323K 328K 333K 

30/0 1.03083 1.02864 1.02630 1.02383 1.02126 1.01856 1.01577 

10/20 1.05883 1.05666 1.05436 1.05192 1.04932 1.04653 1.04347 

20/10 1.04460 1.04229 1.03998 1.03754 1.03498 1.03230 1.02949 

0/30 1.07445 1.07227 1.06993 1.0674 1.06482 1.06204 1.05924 
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Table 4: Comparison ofDensity of30 wt% Aqueous DEA Solution Measured in This 
Work with Literature Values 

30wt%DEA 

TIK. Bandyopadyay(2003) 

303 1.0332 

308 1.0291 

313 1.0264 

318 1.0227 

323 1.0193 

lOOAAD 

a AAD "' ~ .f IPexp - Pliterature I 
N i=l Pexv 

1.09 • 

1.08 ! 

1.07 J 

l ~:~: ' -.. 1.04 

1.03 

1.02 

1.01 
300 

II II 

305 310 

p/g.cm· 

this work TIK 

1.03083 303 

1.02864 313 

1.02630 323 

1.02383 333 

1.02126 

0.117" 

II 

315 320 325 
Temperature, K 

Figure 15: Density ofDEA + AHPD at various temperatures 

30wt%DEA 

Li(l997) this work 

1.0306 1.03083 

1.0264 1.02630 

1.0225 1.02126 

1.0172 1.01577 

0.074" 

--- DEA+AHPD (30+0) 

--DEA+AHPD (20+10) 
OEA+AHPD (10+20) 

~ OEA+AHPO (0+30) 

330 335 

For the density measurements of 30 wt % DEA aqueous solution, the experinlental data 

of this work shows 0.117 % deviation from experimental data of Bandyopadyay at 

temperatures of (303, 308, 313, 318 and 323) K and 0.074 % deviation from 

experimental data of Li at temperatures of (303, 313, 323 and 333). Thus, the density 

data obtained from this study is in good agreement with the literature data. As illustrated 

in Figure 15, the densities of aqueous blends solution DEA + AHPD decrease with the 

increasing temperature and decreasing mass fraction of AHPD in the mixture. 
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4.3 VISCOSITY 

Viscosity measurements data for different concentration of aqueous blends solution of 

DEA and AHPD at the temperature range (303 K- 333 K) is presented in Table 5. 

Experimental data obtained from this study on viscosities of 30 wt% DEA aqueous 

solution were measured at temperature range from 303 K to 333 K and compared with 

the data reported by Li (1997) for validation. The comparison data is presented in Table 

6. 

Table 5: Viscosity ofDEA + AHPD Aqueous Solution from T = 303 K to 333 K. 

DEA+AHPD 1]/mPa.s 
mass%/mass% 303 K 308K 313 K 318K 323K 328K 333K 

30/0 2.692 2.329 2.037 1.772 1.575 1.410 1.257 

10/20 2.315 2.013 1.765 1.563 1.406 1.264 1.141 

20/10 2.439 2.144 1.877 1.655 1.487 1.330 1.210 

0/30 2.249 1.976 1.793 1.596 1.417 1.273 1.145 

Table 6: Comparison ofViscosity of30 wt% Aqueous DEA Solution Measured in This 
Work with Literature Values 

1]/mPa.s 

30wt%DEA 

T/K Li (1997) Tbis work 

303 2.542 2.692 

313 1.930 2.037 

323 1.469 1.575 

333 1.218 1.257 

AAD 0.044' 
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Figure 16: Viscosity ofDEA + AHPD at various temperatures 
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The average absolute deviation of the viscosity measurements for 30 wt % DEA 

aqueous solution is 0.044. Thus, the viscosity data obtained from this study is in good 

agreement with the data of Li. As illustrated in Figure 16, the viscosities of aqueous 

blends solution DEA + AHPD decrease with the increasing temperature and increasing 

mass fraction of AHPD in the mixture. 
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CHAPTERS 

CONCLUSION AND RECOMMENDATIONS 

Conclusion: In this study, C02 solubility in blend aqueous solution of (DEA + AHPD) 

was measured at 303 K and 333 K, over the C02 partial pressure range from (100 kPa-

2000kPa). 

From the result obtained, C02 solubility was found dependant on temperature, pressure 

and mass fraction of DEA and AHPD in the solution. Solubility of C02 increases as the 

COz partial pressure increases but decreases as temperature increases. Besides, C02 

loading capacity of blend aqueous solution of (DEA + AHPD) is higher compared to 

using aqueous DEA solution alone as C02 capture solvent at high C02 partial pressure. 

COzloading capacity was found highest in the blend of(IO wt% DEA + 20 wt"/o AHPD) 

at 1680 kPa and 303 K, which is 1.2814 mol of COz/ mol of amine. 

Physical properties such as density and viscosity of AHPD+DEA were measured at 

temperature range of (303 K - 333 K) at atmospheric pressure. These data can be useful 

for the engineers for their conceptual design phase, for instance in this context is about 

designing C02 absorption column. Both density and viscosity measurements of the 

aqueous solution agree well with the literature works. Both properties were observed 

decrease with increasing temperature. However, density of the blends decrease with 

decreasing mass fraction of AHPD in the mixture, but viscosity of the blends decrease 

with increasing mass fraction of AHPD in the mixture. 

Recommendation: Since C02 loading capacity increases by blending DEA with AHPD, 

this blend aqueous solution has the potential to be recommended to the gas treating 

industries that are using DEA as absorbent for removal of C02. However, more studies 

should be carried out to investigate on the kinetic of C02 absorption and other physical 

properties such as surface tension and refractive index. The result would be more 

convincing if the experimental data are compared with other aqueous blend amines. 
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APPENDIX 

Table 7: Manual Hand Valves List 

Valve No. Description Initial Position 

V-1 Nitrogen Feed to Mixing Vessel Close 

V-2 Vacuum or Vent for Mixing Vessel Close 

V-3 Gas Feed from Mixing Vessel to Equilibrium Close 

Cell 

V-4 C02 Feed to Mixing Vessel Close 

V-5 Gas Booster PI Inlet To bypass 

V-6 Gas Booster P2 Outlet To bypass 

V-7 Solvent Feed to Equilibrium Cell Close 

V-8 Vent Close 

V-9 Vacuum or Vent for Equilibrium Cell Close 

V-10 Vent Close 

V-11 N20 Feed to Mixing Vessel Close 

V-12 Liquid Satnpling or Drain from Equilibrium Close 

Cell 

V-13 Thermostat Inlet to Mixing Vessel Heating Close 

Jacket 

V-14 Thermostat Inlet to Equilibrium Cell Heating Close 

Jacket 
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co, Solubility Emeriment Laboratory Manual 

Start Up Procedure 

I. Ensure all valves are in initial position. (refer to Appendix, Table 7) 

2. Place a beaker beneath and open Valve V -12 to collect any residue in the EC. 

3. Open Valve V-2 and V-3 to purge both Mixing Vessel, MV and Equilibrium 

Cell, EC. Then open Valve V-1 to introduce nitrogen for purging. 

4. Wait for 5 minutes until there is no more moisture coming out from Valve V-12. 

5. Close valve V-1. Then, close valve V-2, V-3 and V-12 where applicable. 

Preparation of C02 

I. Switch Valve V5 and V6 towards the mixing vessel MV. 

2. Enter the C02 flow rate at the mass flow controller. 

3. Start introducing C02 into the MV by opening Valve V4 at the mass flow 

controller for C02 to be used. 

4. Immediately open the air drive supply to the gas booster. 

5. Allow the C02 to pressurize the MV until the desired pressure is reached. 

6. Immediately turn off the mass flow controller and close the Valve V4. 

7. Close the air drive supply to the gas booster and switch both Valve V5 and V6 

towards the bypass line. 

8. Allow the pressure in MV to stabilize. Then, record the pressure, PI. 

Solubility Experiment 

I. Set the desire temperature at thermostat heating bath 

2. Open Valve V8 and V9 to create vacuum condition in MV by switch on the 

vacuum pump. Close Valve V8 and V9 when the pressure in MV is less than 

atmospheric pressure. 

3. Introduce the desired amount of solvent solution using the metering pump 

through Valve V7. 
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4. Charge EC with C02 from MV by slowly opening Valve V3 until the pressure 

between both MV and EC are equalized. Close Valve V3. 

5. Allow the temperature in EC to stabilize before proceeding. 

6. Record PI, Tl and T2. 

7. Switch on magnetic stirrer. 

8. Monitor the pressure drop in the EC until the pressure in the EC has stabilized. 

RecordP2. 

9. Repeat the steps above to carry out the next set of solubility experiment. 

Shut Down Procedure 

I. Switch off the magnetic stirrer at EC. 

2. Reduce the temperature set point at thermostat heating bath to room temperature. 

3. Perform purging steps for EC and MV 

4. Once the bath temperature has dropped to below 50°C, close Valve V-13 and V-

14. 

5. Stop the bath circulation and switch it off. 

6. Switch off control panel 

7. Return all valves to initial position. 
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Density E:meriment Laboratory Manual 

1. Prepare the aqueous amine ofDEA + AHPD with difference concentration of (0 

wt% DEA + 30 wt% AHPD), (10 wt% DEA + 20 wt% AHPD), (20 wt% DEA + 

10 wt% AHPD) and (30 wt% DEA + 0 wt% AHPD). 

2. Set the desired temperature at the monitor and create a file name to store the data. 

3. Extract 5ml of solution using a syringe and slowly inject it into the densitometer 

through injection port. Make sure the tip of syringe is at dry condition. 

4. Once the solution flows out from the outlet, stop injection. Press "Start" button. 

5. Record the result after 45 minutes- 1 hour. 

6. Inject the remaining solution into the densitometer. Then, inject water to wash 

out the solution by switch on the pump. 

7. Repeat step 2 to 6 for difference concentration of solution. 

Viscosity Exoeriment Laboratory Manual 

1. Prepare the aqueous amine solution as per density experiment. 

2. Plug a syringe filled with cleaning liquid (acetone) into capillary and rinse the 

capillary. Repeat for a few times until no traces ofliquid are left. 

3. Blow the capillary dry with the built-in air pump. 

4. Drop the steel ball into the capillary and fill it with the aqueous amine so !uti on. 

5. Make sure no bubbles inside the capillary. Then, insert the capillary into the 

capillary block 

6. Enter the desired temperature and hit "Start" for Lovis to start measure. 

7. Repeat step 2 to 6 for temperature at 303 K till 333 K and difference 

concentration of aqueous amine solution. 
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