DEVELOPMENT OF REAL TIME OPERATING SYSTEM FOR PIC18F
MICROCONTROLLERS FOR EDUCATIONAL PURPOSES

By

MOHAMED TAG ELSIR MOHAMED ELHUSSEIN

FINAL REPORT

Submitted to the Electrical and Electronics Engineering Programme
in Partial Fulfillment of the Requirements
for the Degree
Bachelor of Engineering (Hons)
(Electrical and Electronics Engineering)

Universiti Teknologi Petronas
Bandar Seri Iskandar
31750 Tronoh
Perak Darul Ridzuan

© Copyright 2009

by
Mohamed Tag Elsir, 2009

CERTIFICATION OF APPROVAL

DEVELOPMENT OF REAL TIME OPERATING SYSTEM FOR PIC18F
MICROCONTROLLER FOR EDUCATIONAL PURPOSES

By

MOHAMED TAG ELSIR MOHAMED ELHUSSEIN

A project dissertation submitted to the
Electrical & Electronics Engineering Programme
Universiti Teknologi PETRONAS
in partial fulfilment of the requirement for the
Bachelor of Engineering (Hons)
(Electrical & Electronics Engineering)

Approved:

Mr. Patrick Sebastian
Project Co-supervisor

UNIVERSITI TEKNOLOGI PETRONAS
TRONOH, PERAK

December 2009

CERTIFICATION OF ORIGINALITY

This is to certify that | am responsible for the work submitted in this project, that
the original work is my own except as specified in the references and
acknowledgements, and that the original work contained herein have not been

undertaken or done by unspecified sources or persons.

Mohamed Tag Elsir Mohamed Elhussein

ABSTRACT

Real Time Operating System (RTOS) is a small operating system
designed to manage the peripherals of Microcontrollers and exhibit a low level
layer to enhance the parallel execution of multiple programs. In addition to that,

RTOSes are most of concern about guarantee the processing at real time.

This project aims to implement and develop RTOS on PIC18Fxxx family. This
RTOS is to be developed under MPLAB IDE integrated development
environment. The kernel of this RTOS is written in Assembly language while the
users may use both assembly and C to develop their applications. A previous
RTOS project called PICo0s18 developed by Pragamtec inc. is being considered.
The selection of this system is due to its free license and the availability of its
documentations. PICos18 is based on OSEK/VDX (German/French industrial
standards for operating systems).

The main contribution in this project is first, by developing RTOS to review and
demonstrate the concept of RTOS and secondly, by developing drivers and
application compatible with the developed RTOS and finally presenting the
developed RTOS in educational form for future use as a teaching tool in

microcontroller-based courses.

ACKNOWLEDGEMENTS

Foremost, my utmost gratitude is to ALLAH the All-Mighty for his
uncountable graces upon me and for the successful completion of this project in
due course of time.

Enormous thanks to my family members for their priceless support and
continuous encouragement. Special gratitude is forwarded to my Mother for her
continuous and unlimited support that kept me going. There is no words can fulfill
her effort.

A respectful gratitude goes to my supervisor, AP. Dr. Yap Vooi Voon and
my co-supervisor Mr. Patrick Sebastian for their full support in the completion of
this project. Their constant guidance, helpful comments and suggestions have
helped me not only to complete but also to enhance the expected results of the
project. Their kindness, valuable advices, friendly approach and patience will
always be appreciated.

I would like also to express my thanks for the FYP committee for their
guidance and management in making all projects run smoothly. A special
gratitude is conveyed to Siti Hawa Tahir for her effort on monitoring and
checking the reports to match the university’s standards.

Lastly, great appreciation is to my friends, who were a constant source of
support during my work. To all UTP lecturers, students and staff and to all whose

their names are not mentioned here but they provided help directly or indirectly.

TABLE OF CONTENTS

AB S T R A T e re e v
TABLE OF CONTENTS ..o Vi
LIST OF FIGURESottt IX
LIST OF TABLES ...ttt ae e Xl
LIST OF ABBREVIATIONS ... Xl
CHAPTER 1 INTRODUCTIONoviiitiiiiieitie ettt 1
1.1.Background of StUAYcccocoveiieiiiiiie e 1
1.2.Problem STatement ..o 1
1.3.0Dbjective and SCOPe OF STUAYccvririiiiieie s 2
CHAPTER 2 LITERATURE REVIEW ..o 4
2.1.0perating SYSTEM (OS) ...cc.oiiiiiiiiiieieie e s 4
2.2.RTOS CONCEPL ...ttt 4
2.3.Multitasking ENVIFONMENTcoiviiiieiiiii e 5

2.4 RTOS KEIMEL....iiiiiiiiiee s 5

241 TASK SWITCHERooiiiieeee e 6

2.4.2.TASK SCHEDULERoooiiiiieie e 6

2.4.3.0THER RTOS SERVICES MANAGER........ccccooiiiiiiiiiiceee, 6

Vi

2.5.RTOS Scheduling AIgorithms ... 7

2.6.PIC18Fxxx microcontroller SYyStem...........ccccovevieiininiin e 8
2.6.1.PIC18F OSCILLATOR. ..ottt 10
2.6.2.PIC18F SYSTEM ARCHITECTUREccooiiiiiieee 12
2.6.3.CPU AND ALU OF PICI18ooiieieeeee e 17
2.6. 4. MEMORIES OF PICL8.......ooiiiiiiiieeieeeee e 19
2.6.5.INTERRUPTS ... 20
2.6.6.INPUT /OUTPUT PORTSccoeiieieiiee e 20

2.7.MPLAB C18 Compiler language SUItEccceverieeiieerieiie e ece e 21

CHAPTER 3 METHODOLOGYooiiiiiiiiiieie ettt 23

3.1.Procedure 1dentifiCationccoeoiiiriisiiiinessee e 23
3.1.1LPICLI8FXXX SYSTEM STUDY ..ot 24
3.1.2.STUDY OF RTOS CONCEPTS.....ccci i 24
3.1.3.RUNNING PICOS18 ON PIC18FXXX DEVICE...........cceue..e. 24
3.1.4.DEVELOPMENT OF RTOSooiiiiieiieiiieieeee e 25
3.1.5.RTOS TESTING AND TROUBLESHOOTINGcccvevierinne 25

3.2.EqUIpMeNt and TOOISooviiiiiiiiiieeeeee s 25
3.2.1.PIC18FXXX STARTING KIT oot 26
3.2.2.PICKIT 2 PROGRAMMERcoooiiiiiiiiiiece e 26
3.2.3.MPLAB IDE ...t 26
3.2.4.MPLAB SIM SIMULATOR ..ottt 27
3.2.5.PICKIT 2 DEBUGGER........ccoiiiiiiiieiecieeee e 27
3.2.6.C18 C COMPILER......coiiiiiiee e 28

vii

CHAPTER 4 RESULTS AND DISCUSSION.......ccooiiiiiiiiiiiiec 29

AT RESULTS Lo s 29
4.1.1.ASSEMBLY VERSION OF TAJRTOS ..o 29

4.1.2.C VERSION OF TAJRTOS.......cooiiiiiiiii i 36
4.1.3.TESTING FOR TAJRTOS ..ot 39

4.2 DISCUSSION ..ottt 49
CHAPTER 5 CONCLUSION AND RECOMMENDATIONS ..o 51
9. 1.CONCLUSION ..ottt 51
5.2.RECOMMENDATIONS ...ttt 52
REFERENCES ..o s 53
APPENDICIES o 55

viii

LIST OF FIGURES

Figure 1: PIC18F458 microcontroller pins alignment [3] ..o, 9
Figure 2: DeVvice CIOCK SOUICE.........ccuiiieiieiie ettt 12
Figure 3: Comparison of Harvard and von Neumann architecturesc.cccc....... 13
Figure 4: General Enhanced Microcontroller block diagramcccccevvvieevivenenne. 16
Figure 5: Operation of ALU and W regiStercovvririeinieiene e 18
FIQUIe 6: StatuS REJISIENccveiiieeeceeccie et 19
Figure 7: TypICal I/O POIT ..ot 21
Figure 8: General Flow chart of Project WOrkcccocoveveiiiie e 23
Figure 9: PIC18F developing Kit [9]ccoeieiiiiiiiiiisesieeeee e 26
Figure 10: PIC18F programmer [10]ccooieiieiicie e 26
Figure 11: Snapshot for MPLAB IDEcccooiiiiiiiiiieeeee e 27
Figure 12: Taj RTOS Kernel for assembly environment.............cccccoevveveiievvennene, 29
Figure 13: Flow chart of Taj RTOS kernel operation............cccccooeveiinineninicnienen, 30
Figure 14: Taj RTOS codes (Assembly VEersion)ccccccevveveeieiieeie e 31
Figure 15: SWitching MeChaniSM.........ccoiiiiiiiie i, 34
Figure 16: Memory usage fOor 3 TasKScccciveiiiieieeie e 34
Figure 17: Time elapsed during switching mechanism = 127 psecond..................... 35
Figure 18: The memory usage for Maximum number of tasks supported=26 36
Figure 19: Comparison between C and Assembly versions of task switcher 39

Figure 20: Project debugging with a “break point” at the start of switching code40

Figure 21: The circuit with LEDs, Keypad, LCD and the debugger connected........ 41
Figure 22: Taskl -only- iS DeINg ProCesSedcccvviiiiieiiieiiiee e 41
Figure 23: Task2 is -only- being processedccovviiieiiiiiine i, 42
Figure 24: Task3 is -0nly- DeINg ProCesSedcccciviiiieiiieiiieeiie e 42
Figure 25 PICL8F D0ard 1ayOUL..........cccoeieiiriniiiiieseseseeee e 56
Figure 26: Board connection with PICKit 2 programmerccccccevveiiieiiesieennenn 57
Figure 27: Schematic diagram for PICL18F boardcccceovviieniieniniiecieeee, 58
Figure 28: Board layout of PIC programmer and its parts' functions...............c........ 59

iX

file:///D:/Academic/year4sem2/FYP%20II/04%20Reports/2.3%20Final%20Report/Development%20of%20RTOS%20on%20PIC18F%20Microcontrollers.docx%23_Toc245157995
file:///D:/Academic/year4sem2/FYP%20II/04%20Reports/2.3%20Final%20Report/Development%20of%20RTOS%20on%20PIC18F%20Microcontrollers.docx%23_Toc245158000

Figure 29: Programmer’s connection with the development board...............ccveeneee. 60

Figure 30: PIC18F458 blocK diagram..........cccooviiiiiiiiiieiecee e 63
Figure 31: Program memory map for 18F458/452cccccovevveveiiieiieie e 64
Figure 32: Data Memory Map for 18F458 ..., 65
Figure 33: PICL18FXX8 deViCes' fEAtUIEScccveiueeiiieeie et 66
Figure 34: Interrupt schematic diagram for 18F458 ..o, 67

LIST OF TABLES

Table 1: PIC18Fxx8 devices' features [3]......cccoovreriririiiieieienese e 10
Table 2: Program and data memory for PIC18F458 [3].....cccccocvvvvevviiecieieeie e, 10
Table 3: TimerO intialization and the associated registers Settingcc.cceovvevenne. 32
Table 4: Vulnerable regiStersoov i 32
Table 5: Stack Pointers Array for 3 TasKScccoiiirininieieeee e 33
Table 6: Vulnerable registers for C environment............cccecveveiieii v s, 38
Table 7: Taj RTOS performance for C VEISION.........cccuiiiiiiereienc e 39
Table 8: PIC0s18 and Taj RTOS COMPATiSON.......cccciveiieiieireeieiiesieesresreesveenveseeseeas 50
Table 9: The supported PICs for PIC programmer Error! Bookmark not defined.
Table 10: Integer data types in C18 COMPIIET.........covevieiieieeecee e 61
Table 11: Floating Type in C18 COMPIIEr......ccoiiiiiiiiiieeeee e 61
Table 12: "near" and "far" qualifiers IN C18..........ccccceveiiiii i 62
Table 13: Pointer size and "rom and ram" qualifiers..........ccccooereniinniiniiice 62

Table 14: Command line summary for C18 compiler Error! Bookmark not defined.

Xi

A/D:
CAN:
D/A:
OS:
RTOS:
USB:
USART:
PIC:

PICmicro:

LIST OF ABBREVIATIONS

Analogue to Digital

Controller Area Network

Digital to Analogue

Operating System

Real Time Operating System

Universal Serial Bus

Addressable Universal Asynchronous Receiver/Transmitter.
Peripheral Interface Controller

PIC microcontroller

xii

CHAPTER 1
INTRODUCTION

1.1.Background of Study

Microcontrollers are widely used in embedded systems to control and manage
the operation of devices, and other peripherals. There are many types of
microcontrollers available in the market, however, the PIC16 and PIC18
microcontrollers -manufactured by Microchip- are the famous ones. They are
featured with very useful hardware modules and peripherals (e.g. A/D converters,
Timers, Interrupts, serial communication (I°C, SPI, USB, CAN ...) etc. Most of
microcontroller-based applications are programmed using Assembly and C
languages. The conventional approach of programming microcontrollers is by
using the round-robin programming methodology. In round robin programming
methodology, programmers write all the required instructions and tasks inside an
infinite loop which is continuously executing. So, round-robin programming
approach does not provide convenient programming environment and does not
help in reducing development time when the applications get complex.
Additionally, round robin programming does not guarantee real time processing
for tasks because it is probable that the microcontroller gets busy with checking
other less important tasks while another time-critical task needs microcontroller
attention. For the reasons mentioned and others, Real Time Operating System
(RTOS) is developed. However, the implementation of RTOS in such tight
environments requires additional care for the overhead processing time and the

utilization of the memory within the microcontroller.

1.2. Problem Statement

In this project, a RTOS is expected to be implemented on PIC18Fxxx

environment. The proposed system should exhibit the concept of RTOS and

should demonstrate multitasking processing, tasks scheduling, time and events

management in multiple tasks processing environment.

It is envisaged that software drivers would be developed to run other peripherals

which interface with the microcontroller.

1.3. Objective and Scope of Study

The objectives of the project are:

e Todevelop RTOS for Microchip Peripheral interface controllers (PI1C)

e To run the developed RTOS on one of the PIC devices (PIC18F452/8 is
proposed).

e To develop drivers compatible with the developed RTOS to utilize the
PIC’s peripherals.

e To create an application relies on the new implemented system and

demonstrate its functionality.

The scope of this project can be partitioned into 3 different complementing parts.
The first part is about the understanding of the architecture and the operation of
the high performance PIC microcontrollers (PIC18Fxxx series). The second part
is about understanding the operational and structural concept of RTOS and the
typical services which RTOS provides. The third part is about developing the
RTOS on one of the PIC18F series. At the early phases of this project, the concern
was held on studying the PIC18F452 microcontroller. The availability of this
microcontroller in UTP store made it a good choice. An overview look has been
made on the architecture of this PIC including: device hardware features, flash
and data memories, timers, interrupt, 1/0 ports, instruction set and assembly
programming procedure. For practical and economical considerations; MPLAB
IDE and C18 C compiler were the choice as programming development
environment. A project called PICos18 developed by Pragmatic Corporation has
been chosen as a typical example for understanding RTOS. The first semester of
final year will be dedicated for research and study about the programming practice
of PIC18Fxxx and familiarity with MPLAB IDE under MPASM assembler and
C18 compiler. At the end of the first semester, the operational concept of RTOS

2

on PIC18Fxxx device is to be demonstrated. The second semester is dedicated for
codes development and programs testing so that at the end of the semester, the full
functioning RTOS on PIC18Fxxx with other interfaced peripherals are to be
presented.

CHAPTER 2
LITERATURE REVIEW

2.1. Operating System (OS)

An operating system is a program that controls the execution of application
programs and acts as an interface between applications and the computer (or
microprocessor/microcontroller system) hardware. It can be thought of having 3
objectives:

e Convenience: An operating system makes a computer more convenient to

use.

e Efficiency: An operating system allows the computer system resources to

be used in an efficient manner.

e Ability to evolve: An operating system should be constructed in such a

way as to permit the effective development, testing, and introduction of

new functions without interfering with service [4].

2.2. RTOS Concept

Real time operating systems are operating systems specially made to be used
in time-critical environment where data must be processed extremely quickly [4].

An RTOS facilitates the creation of a real-time system, but does not guarantee the
final result will be real-time; this requires correct development of the software. An
RTOS does not necessarily have high throughput; rather, an RTOS provides
facilities which, if used properly, guarantee deadlines can be met generally or
deterministically (known as soft or hard real-time, respectively). An RTOS will
typically use specialized scheduling algorithms in order to provide the real-time
developer with the tools necessary to produce deterministic behavior in the final
system. An RTOS is valued more for how quickly and/or predictably it can

4

respond to a particular event than for the amount of work it can perform over a
given period of time. Key factors in an RTOS are therefore minimal interrupt

latency and a minimal task switching latency [12].

2.3. Multitasking Environment

Multitasking is the processing of multiple tasks in a way that they are
seemingly executed simultaneously on the same microcontroller CPU. This is
achieved by sharing the time of CPU so that it executes one task per CPU time

and switching the processing to cover all the tasks.

2.4. RTOS Kernel

RTOS kernel is the lowest-level and the core of the software layer which
adapts the microcontroller to the real-time and multitasking processing
environment. The functions provided by the kernel can be further divided in

broader terms as follows:

1. The ability to switch from one task to another based on interrupt or
software driven events (i.e. Task Switcher). This is the core of
multitasking.

2. Usually provides some way of determining which tasks should be running
based on priority (i.e. Task Scheduler)

3. Provides other services for the convenience of development (e.g. timing
and alarming functions to entertain RTOS with delays and time
management facilities (i.e. Alarm manager), events-based functions:
SetEvent and WaitEvent functions (i.e. event manager), and internal

communication between tasks (i.e. message manager).

In the following subsection, some the main kernel services will be discussed [13].

2.4.1. Task switcher

Task switcher is a part of kernel code which provides the RTOS with the
mechanism to switch the execution of tasks on interrupt bases. Task switcher is
the sole of kernel to achieve the multi-tasking processing.

2.4.2. Task scheduler

The Task Scheduler controls the execution of tasks, and can make them run in
a very timely and responsive fashion based on their priorities and readiness.

Most RTOSs do their scheduling of tasks using a scheme called "priority-based
preemptive scheduling.” Each task in a software application must be assigned a
priority, with higher priority values representing the need for quicker
responsiveness. Very quick responsiveness is made possible by the "preemptive”
nature of the task scheduling. "Preemptive” means that the scheduler is allowed to
stop any task at any point in its execution, if it determines that another task needs

to run immediately.

The basic rule that governs priority-based preemptive scheduling is that at every
moment in time, "The Highest Priority Task that is ready to run will be the Task
that must be running." In other words, if both a low-priority task and a higher-
priority task are ready to run, the scheduler will allow the higher-priority task to
run first. The low-priority task will only get to run after the higher-priority task

has finished with its current work.

2.4.3. Other RTOS services manager

For the RTOS to be more convenient for complex tasks development, other
timing and communication services have to be available. For this reason, some
RTOSes have events, alarms, and tasks’ communication functions served by their
kernels. However, implementing this feature adds overhead processing and
increase kernel interrupt latency time. Moreover, these services increase the RAM

usage by RTOS. So, it is not always optimal to have them.

2.5. RTOS Scheduling Algorithms

As mentioned before, the “real-time” term in the acronym “RTOS” indicates
the essential role of time in these particular systems. Typically, one or more
physical devices external to the microcontroller generate stimuli, and the
microcontroller must react appropriately to them within a fixed short amount of
time [5].

In more broad details, Real-time systems can generally be categorized as hard
real time, meaning there are absolute deadlines that must be met, or else, and soft
real time, meaning that missing an occasional deadline is tolerable. In both cases,
real-time behaviour is achieved by dividing the program into a number of
processes, each of whose behaviour is predictable and known in advance. These
processes are supposingly short lived and can run to completion in under a
second. When an external event is detected, it is the job of the scheduler to

schedule the processes in such a way as that all deadlines are met.

The events that a real-time system may have to respond to can be further
categorized as periodic (occurring at regular intervals) or aperiodic (occurring
unpredictably). A system may have to respond to multiple periodic event steams.
Depending on how much time each event requires for processing, it may not even
be possible to handle them all. For example, if there are m periodic events and
event i occurs with period Pi and requires Ci seconds of CPU time to handle each

event, then the load can only be handled if:

m Ci
E — <1
i=1 Pj

A real-time system that meets this criterion is said to be schedulable.

Additionally, based on the time when scheduling decisions are taken, scheduling
algorithms can be further divided in two categories: dynamic and static. The
former makes its scheduling decisions at run time; the latter makes them before

the system starts running.

This section will consider a few common dynamic real-time scheduling
algorithms. The classic algorithm is the rate monotonic algorithm (Liu and

Layland, 1973). In advance, it assigns to each process a priority proportional to

7

the frequency of occurrence of its triggering event. For example, a process to run
every 20 msec gets priority 50 and a process to run every 100 msec gets priority
10. At run time, the scheduler always runs the highest priority ready process, pre-
empting the running process if need be. Liu and Layland proved that this

algorithm is optimal.

Another popular real-time scheduling algorithm is earliest deadline first.
Whenever an event is detected, its process is added to the list of ready processes.
The list is kept sorted by deadline, which for a periodic event is the next
occurrence of the event. The algorithm runs the first process on the list, the one

with the closest deadline.

A third algorithm first computes for each process the amount of time it has to
spare, called its laxity. If a process requires 200 ms and must be finished in 250
millisecond, its laxity is 50 msec. The algorithm, called least laxity, chooses the

process with the smallest amount of time to spare [5].

While in theory it is possible to turn a general-purpose operating system into a
real-time system by using one of these scheduling algorithms, in practice the
context-switching overhead of general-purpose systems is so large that real-time
performance can only be achieved for applications with easy time constraints. As
a consequence, most real-time work uses special real-time operating systems that
have certain important properties. Typically these include a small size, fast
interrupt time, rapid context switch, and short interval during which interrupts are
disabled, and the ability to manage multiple timers in the millisecond or

microsecond range [5].

2.6. PIC18Fxxx microcontroller System

Microcontroller is a small computer system on a single chip consisting of a
relatively simple CPU combined with support functions such as interrupts,
timers, watchdog timer, serial and analog 1/0O etc.

PIC18Fxxx are high performance microcontrollers built with enhanced flash
memory technology with 16 bits instruction word length and can run at 40MHz

oscillator frequency.

PIC18Fxxx microcontrollers have several devices (e.g. 18F452, 18F458,
18F4550) each has its own special features (CAN module, USB module, etc...)

but the set of instructions used are still the same.

In this project, the general purpose microcontroller 18F452 and 18F458
(microcontroller with CAN module) will be used.

The following figure shows the pins alignment of 18F458 microcontroller:

MCLR/VPp —= [1 o 40 [1 =—= RB7/PGD
RAO/ANO/CVREF -—[] 2 39[] =-— RB6/PGC
RA1/ANT =—=[]3 38 [=— RB5/PGM
RA2/AN2/VREF- =[] 4 37 0 -— RB4
RA3/AN3/VREF+ <[] 5 36 [J =—» RB3/CANRX
RA4/TOCKI «—»[] 6 35 [] == RB2/CANTX/INT2
RAS5/AN4/SS/LVDIN <[] 7 34 [J =— RB1/INT1
REQ/AN5/RD <—»[] 8 U U 330« RBO/INTO
RE1/AN6/WR/C1OUT <—1] 9 9 9 321 <-—— VoD
RE2/AN7/CS/C20UT «—=110 o oo 31[1 =——Vss
VOD —=[]11 T T 30[J=— RD7/PSP7/P1D
Vss —=[112 & B 29[J =— RDG/PSPE/PIC
OSC1/CLKI —=[{13 & & 28[] == RD5/PSP5/P1B
OSC2/CLKO/RA6 <——[] 14 27 [J =— RD4/PSP4/ECCP1/P1A
RCO/T10SO/T1CKI =[] 15 26 [J =—= RC7/RX/DT
RCA/T10S| <[] 16 25 [1 +—» RCB/ITX/ICK
RC2ICCP1 «+— [17 24 [1 «— RC5/SDO
RC3/SCK/SCL <[] 18 23 [J =— RC4/SDI/SDA
RDO/PSPO/C1IN+ <—[] 19 22 [7 «—» RD3/PSP3/C2IN-
RD1/PSP1/C1IN- =—= [] 20 21[] =—= RD2/PSP2/C2IN+

Figure 1: PIC18F458 microcontroller pins alignment [3]

This microcontroller is characterized by several features which can be

summarized in the following table:

Table 1: PIC18Fxx8 devices'

res [3]

Features PIC18F248 PIC18F258 PIC18F448 PIC18F458
Operating Frequency DC - 40 MHz DC — 40 MHz DC - 40 MHz DC - 40 MHz
Internal Bytes 16K 32K 16K 32K
Program #of Single-Word 8192 16384 8192 16384
Memory Instructions
Data Memory (Bytes) 768 1536 768 1536
Data EEPROM Memory (Bytes) 256 256 256 256
Interrupt Sources 17 17 21 21
1/O Ports Ports A, B, C Ports A, B, C Ports A, B,C, D, E | Borts A, B, C, D, [E
Timers 4 4 4 I 4
Capture/Compare/PWM Modules 1 1 1 I 1
Enhanced Capture/Compare/ — — 1 1
PWM Modules
Serial Communications MSSP, CAN, MSSP, CAN, MSSP, CAN, MSSP, CAN,
Addressable USART | Addressable USART | Addressable USART | Alldressable USART!
Parallel Communications (PSP) No No Yes I Yes
10-bit Analog-to-Digital Converter 5 input channels 5 input channels 8 input channels E input channely
Analog Comparators No No 2 I 2
Analog Comparators VREF Output N/A N/A Yes I Yes
Resets (and Delays) POR, BOR, POR, BOR, POR, BOR, POR, BOR,
RESET Instruction, | RESET Instruction, | RESET Instruction, ESET Instructiol
Stack Full, Stack Full, Stack Full, Stack Full,
Stack Underflow Stack Underflow Stack Underflow ck Underflovy
(PWRT, OST) (PWRT, OST) (PWRT, OST) (PWRT, OST)
Programmable Low-Voltage Detect Yes Yes Yes Yes
Programmable Brown-out Reset Yes Yes Yes Yes
CAN Module Yes Yes Yes Yes
In-Circuit Serial Programming™ Yes Yes Yes Yes
(ICSP™)
Instruction Set 75 Instructions 75 Instructions 75 Instructions 75 Instructions
Packages 28-pin SPDIP 28-pin SPDIP 40-pin PDIP 40-pin PDIP
28-pin SOIC 28-pin SOIC 44-pin PLCC 44-pin PLCC
44-pin TQFP 44-pin TQFP

18F458 and 18F452 microcontrollers have relatively large data and program

memories. This is shown in the following table:

Table 2: Program and data memory for PIC18F458 [3]

Program Memory Data Memory g
10-bit B CCP/ Timers
Device | Flash | # Single-Word | SRAM |EEPROM| VO | AD 8 | ECCP | (oym | Master | USART | g /g iy

(bytes)| Instructions | (bytes) | (bytes) (ch) E (PWM) 2™

(5]
PIC18F248| 16K 8192 768 256 22 5 — 1/0 Y Y Y 113
PIC18F258| 32K 16384 1536 256 22 5 — 1/0 Y Y Y 113
PIC1aF44R] 18K 2192 I88 ot a3 A 2 Wkl 4 X X 13

PIC18F458| 32K 16384 1536 256 8 Y Y Y

In the following sections, more details about PIC18F devices will be discussed.

2.6.1. PIC18F oscillator

The device system clock is required for the device to execute instructions and

for the peripherals to function. Four device system clock periods (TscLk) generate

one internal instruction clock cycle (Tcy).

10

The device system clock (Tscik) is derived from an external system clock. This
external system clock can be generated in one of eight different oscillator modes.
The device configuration bits select the oscillator mode. Device configuration bits
are non-volatile memory locations and the operating mode is determined by the
value written during device programming.
The oscillator modes are:

e EC :External Clock

e ECIO : External Clock with I/O pin enabled

e LP : Low Frequency (Power) Crystal XT Crystal/Resonator HS

High Speed Crystal/Resonator

e RC :External Resistor/Capacitor

e RCIO : External Resistor/Capacitor with 1/O pin enabled

e HS4 : High Speed Crystal/Resonator with 4x frequency PLL multiplier

enabled, figure 2.2 shows device clock source schematic

Multiple oscillator circuits can be implemented on an Enhanced Architecture
device. There is the default oscillator (OSC1), and additional oscillators may be
available, such as the Timerl oscillator.
Software may allow these auxiliary oscillators to be switched in as the device
oscillator. The Timerl oscillator is a low frequency (low power) oscillator that is
designed to be operated at 32 kHz. Figure2-1 shows a block diagram of the
oscillator options. The output signal of the Timerl oscillator circuitry is a low
frequency (power) clock source (Ttip).
The source for the device system clock can be switched from the default clock
(TscLk) to the 32 kHz-clock low power clock source (Ttip) under software
control. Switching to the 32kHz low frequency (power) clock source from any of
the eight default clock sources may allow power saving.
These oscillator options are made available to allow a single device type the
flexibility to fit applications with different oscillator requirements. The RC
oscillator option saves system cost, while the LP crystal option saves power. The
HS4 option allows frequency of incoming crystal oscillator signal to be multiplied
by four for higher internal clock frequency. This is useful for customers who are
concerned with EMI due to high frequency crystals. The device configuration bits

are used to select these various options.

11

PICT1BCKXX

Teolx

HNW

v e TTi®

Tieso I
1 T105CEN Clack
, X E”E'?'E' Saurca
Tios eciliator (FOSC2:FOSCO)

Clock Sourca aptian
for athar madulas

Figure 2: Device Clock source

2.6.2. PIC18F System Architecture

The high performance of the PIC18CXXX devices can be attributed to a number
of architectural features commonly found in RISC microprocessors. These

include:

e Harvard architecture

e Long Word Instructions

e Single Word Instructions

e Single Cycle Instructions

e Instruction Pipelining

e Reduced Instruction Set

e Register File Architecture

e Orthogonal (Symmetric) Instructions. Figure 4.3 shows a general block
diagram for PIC18CXXX devices.

a) Harvard Architecture:

Harvard architecture has the program memory and data memory as separate

memories which are accessed from separate buses. This improves bandwidth over

12

traditional von Neumann architecture in which program and data are fetched from

the same memory using the same bus.

To execute an instruction, a von Neumann machine must make one or more
(generally more) accesses across the 8-bit bus to fetch the instruction. Then data
may need to be fetched, operated on and possibly written. As can be seen from
this description, the bus can become extremely congested. In Harvard
architecture, the instructions fetched in a single instruction cycle (all 16 bits).
While the program memory is being accessed, the data memory is on an
independent bus and can be read and written. These separated busses allow one
instruction to execute, while the next instruction is fetched. A comparison of

Harvard and von Neumann architectures is shown in figure below.

Harvard von Neumann
Program

Data |, | P .| Program | and
Memory [~ A CPU b 16 "l Memory CPU '78L’ Data
Memory

Figure 3: Comparison of Harvard and von Neumann architectures

b) Long Word Instructions:

Long word instructions have a wider (more bits) instruction bus than the 8-bit
data memory bus. This is possible because the two buses are separate. This allows
instructions to be sized differently than the 8-bit wide data word and allows a
more efficient use of the program memory, since the program memory width is

optimized to the architectural requirements.

¢) Single Word Instructions:

Single word instruction op-codes are 16-bits wide making it possible to have

all but a few instructions be single word instructions. A 16-bit wide program

13

memory access bus fetches a 16-bit instruction in a single cycle. With single word
instructions, the number of words of program memory locations equals the
number of instructions for the device. This means that all locations are valid
instructions. Typically in the von Neumann architecture, most instructions are
multi-byte. In general, a device with 4 Kbytes of program memory would allow
approximately 2K of instructions. This 2:1 ratio is generalized and dependent on
the application code. Since each instruction may take multiple bytes, there is no

assurance that each location is a valid instruction.

d) Double Word Instructions:

Some operations require more information than what can be stored in thel6
bits of a program memory location. These operations require a double word
instruction, and are therefore 32-bits wide. Instructions that require this second
instruction word are:

e Memory to memory move instruction (12 bits for each RAM address) -

MOVFF SourceReg, DestReg

e Literal value to FSR move instruction (12 bits for data and 2 bits for FSR

to load) - LFSR FSR#, Address

e Call and goto operations (20 bits for address)

- CALL Address

- GOTO Address
The first word indicates to the CPU that the next program memory location is the
additional information for this instruction and not an instruction. If the CPU tries
to execute the second word of an instruction (due to a software modified PC
pointing to that location as an instruction), the fetched data is executed as a NOP.
Double word instruction execution is not split between the two Tcy cycles by an
interrupt request.
That is, when an interrupt request occurs during the execution of a double word
instruction, the execution of the instruction is completed before the processor

vectors to the interrupt address. The interrupt latency is preserved.

e) Instruction Pipeline:
The instruction pipeline is a two-stage pipeline that overlaps the fetch and

execution of instructions. The fetch of the instruction takes one Tcy, while the

14

execution takes another Tcy. However, due to the overlap of the fetch of current
instruction and execution of previous instruction, an instruction is fetched and

another instruction is executed every Tcy.

f) Single Cycle Instructions:

With the program memory bus being 16-bits wide, the entire instruction is
fetched in a single machine cycle (TCY), except for double word instructions. The
instruction contains all the information required and is executed in a single cycle.
There may be a one cycle delay in execution if the result of the instruction
modified the contents of the program counter. This requires the pipeline to be

flushed and a new instruction to be fetched.

g) Two Cycle Instructions:
Double word instructions require two cycles to execute, since all the required

information is in the 32 bits.

h) Reduced Instruction Set:
When an instruction set is well designed and highly orthogonal (symmetric),
fewer instructions are required to perform all needed tasks. With fewer

instructions, the whole set can be more rapidly learned.

i) Register File Architecture:
The register files/data memory can be directly or indirectly addressed. All
special function registers, including the program counter, are mapped in the data

memory.

j) Orthogonal (Symmetric) Instructions:

Orthogonal instructions make it possible to carry out any operation on any
register using any addressing mode. This symmetrical nature and lack of “special
instructions” make programming simple yet efficient. In addition, the learning
curve is reduced significantly. The Enhanced MCU instruction set uses only three
non-register oriented instructions, which are used for two of the cores features.
One is the SLEEP instruction, which places the device into the lowest power use
mode. The second is the CLRWDT instruction, which verifies the chip is

operating properly by preventing the on-chip Watchdog Timer (WDT) from

15

overflowing and resetting the device. The third is the RESET instruction, which

resets the device.

Data Bus<8> ~ — — — — — —_ — —
| s v ™ "PoRTA g,
b i R 18 | 4 RAOQ |
: 4 RA1
5 [Trable Pointer<213] Data Latch | i RA2 |
R 8 L8 8 Data RAM 0 1 sﬁi |
21 inc/dec logic {uptodK =]
= address reach) | 1 RAS |
/sz dh dL : Address Latch | 2 i |
PORTB
Address Latch ; 27 Y 12 | |
¢ RBO/INTO
Program Memory Address<12> RB1/INT1
(up to 2M Bytes) 7\ \ 7I & I
12\' N ar T > RB2/INT2 |
Data Latch RB3
FSRO IMI | RB<7:4> |
| PORTC |
‘v 12 RCO
- RC1
A6 &b nc/d I 4 RC2 !
LU | s |
IS I 7 i RC4 I
Y 8 < RC5
e | 4 Ros |
RC7
| PORTD |
- RDO
Register I B RD1 I
S = RD2 |
B RD3
Instruction — |4 RD4 |
Decode &
Control N gg: |
|
0SC2/CLKOUT I
OSCA/CLKIN reey 2 AP I
" Power-up PORTE |
£ Timer - REO
— 2, Timing N . B RE1
T10SI — = 7 —1| Oscillator
T1080 - Seneaton Start-up Timer b RE2 !
T 7 RE [
\/ Power-on = +—=[X| RE4
Reset \/ | 4 RE5 |
SHRLL [W 1
& Watchdog ALU<8> | B ggs |
Timer | |
Precision || Brown-out /s .
Bandgap [— ~
Referegnce Reset I L I
[e |
é é 2
L | e I
MCLR VDD, Vss L)
Il e I
I .2 |
PORTx
| 4 Rx0 |
I = Rx1 |
B Rx2
L] R Rx3 |
% 4 Rx4
I 4 Rx5 |
| B Rx6 |
4 Rx7
e e o commy i i |
| e W e e L T e R S i e | e I e T P Y S| [s S A
I Timer0 Timer1 Timer2 Timer3 —>| AD Converter I
| , L
| it afs 1C ae [her |
= aC 10 10 1C 1C i Peripherals |
| 7 7
, Enhanced Master Addressable|
| %] [Toors| [syvonoust |usarr | | OAN || uss '
| |
Peripheral Modules (Note 1)
| ENS S i ST S e S SO S S O Y S S S S S S U WSS S S G S S P |
Note 1: Many of the general purpose I/O pins are multiplexed with one or more peripheral module functions. The muitiplexing combinations are
device dependent.

Figure 4: General Enhanced Microcontroller block diagram

16

2.6.3. CPU and ALU of PIC18

The Central Processing Unit (CPU) is responsible for using the information in
the program memory (instructions) to control the operation of the device. Many of
these instructions operate on data memory. To operate on data memory, the
Arithmetic Logical Unit (ALU) is required. In addition to performing arithmetical
and logical operations, the ALU controls the state of the status bits, which are
found in the STATUS register. The result of some instructions forces status bits to
a value depending on the state of the result.

a) CPU
The CPU can be thought of as the “brains” of the device. It is responsible for
fetching the correct instruction for execution, decoding that instruction and then
executing that instruction. The CPU sometimes works in conjunction with the
ALU to complete the execution of the instruction (in arithmetic and logical
operations). The CPU controls the program memory address bus, the data memory

address bus and accesses to the stack.

b) ALU

18Fxxx devices contain an 8-bit ALU and an 8-bit working register (WREG).
The ALU is a general purpose arithmetic and logical unit. It performs arithmetic
and Boolean functions between the data in the working register and any register
file. The WREG register is directly addressable and in the SFR memory map.

17

8-bit literal Register

(from instruction word) File
P B-bit register value
8 (from direct or indirect Special
address of instruction) Functi
v P I:{un_nz:tmm
egisters
| WREG Register | {4 et ~,
5
— STATUS Register S
78 8 r an
General
Purpose
A N, 0V, Z, RAM
DC, and C bits (GPR)
dbit. or frem instruction

Figure 5: Operation of ALU and W register

c) STATUS Register

The STATUS register, shown in figure below, contains the arithmetic status of
the ALU. The STATUS register can be the destination for any instruction, as with
any other register. If the STATUS register is the destination for an instruction that
affects the Z, DC, C, OV or N bits, then the write to these five bits is disabled.
These bits are set or cleared according to the device logic. Therefore, the result of
an instruction with the STATUS register as destination may be different than
intended. For example, CLRF STATUS will clear the upper three bits and set the
Z bit. This leaves the STATUS register as 000u uluu (where u= unchanged). It is
recommended, therefore, that only BCF, BSF, SWAPF, MOVFF, and MOVWF
instructions are used to alter the STATUS register, because these instructions do
not affect the Z, C, DC, OV or N bits of the STATUS register.

18

(4] u-o u-a Rz RAW-x RwW-x RAW-x RiwW-x
— — — N ov z DC c_ |
bit 7 bitd

0it7-5 Unimplemented: Resd =30
bit 4 N: Megstive bit

Thig bitis used for s gniad arithmetic | s complemant). It indicates wheathar the result was nag-

stive, (AL M5b = 1).
L = Resutwas negstive
= Resutwes positive
bit3 : Overflow bit
This bit is usad for signed arithmetic (2a complemant). It indicates an overflow of the 7-bit mag
nitude, which causes the sign bit (bitT) to change stste.

1 = Ovarflow occurred for signed arithmetic (in this arithm etic operation)
0 = No overflow occumed

bit 2 Z: Zero bit

The result of an arithmatic or logic operation is zen

The regult of an arithmetic or logic operation is not zero

bit 1 DC: Digit carry/bornow bit
For ADDWE, ADDLW, SUBLW, and SURWE inatructiona
0 = No camry-out from the dth low order bit of the regult
MNote: For bormow, the polarity is reversed. A subtrsction is sxecuted by adding the 25 com-
plement of the second opsrand. For rotste (RRE RLE) instructions, this bit s loadad
with aither the bitd or bit3 of the source regiatar.

bit 0 C: Carmry/bornow bit
For ADDWE, ADDLW, SUBLW, and SURWE instructions

L = A camy-out from the mosat significant bit of the result occurrad
0 = Mo carry-out from the most significant bit of the result occurred

MNote: For bormow, the polar ity i3 renaraed. A subtraction is exacuted by adding tha Z's com-
plemant of the sscond operand. For rotate {RRE RLE) inatructiona, this bit is loaded

with aithar the high or low ondar bit of the source register.

bl bit W = Writabla bit U = Unim plamented bit, read as 0
3

st POR resst 1= bitis g=t O = bit is cleared = bit

UM win

Figure 6: Status Register

2.6.4. Memories of PIC18

There are two memory blocks in the memory map; program memory and data
memory. Each block has its own bus, so that access to each block can occur
during the same instruction cycle.

The data memory can further be broken down into General Purpose RAM and the
Special Function Registers (SFRs). The SFRs used to control the peripheral
modules in the microcontroller. In addition, there are other registers used that are

neither part of the program nor data memory spaces.

19

These registers are not directly addressable and include:
- Return address stack

- Fast return stack

2.6.5. Interrupts

In PIC18 devices, interrupts can be generated from many sources such as
timers, A/D conversion, USART receive/transmit etc.... Interrupts can be also
prioritized as high or low level interrupt. There are several SFRs which control
interrupts (e.g. INTCON, IPR, PIE, etc...)

2.6.6. Input /Output ports

General purpose 1/0 pins can be considered the simplest of peripherals. They
allow the PICmicro to monitor and control other devices. To add flexibility and
functionality to a device, some pins are multiplexed with an alternate function(s).
These functions depend on which peripheral features are on the device. In general,
when a peripheral is functioning, that pin may not be used as a general purpose
1/0 pin.

For most ports, the I/O pin’s direction (input or output) is controlled by the data
direction register, called the TRIS register. TRIS<x> controls the direction of
PORT<x>. A ’1” in the TRIS bit corresponds to that pin being an input, while a
"0’ corresponds to that pin being an output. An easy way to remember is that a ’1’
looks like an I (input) and a ’0’ looks like an O (output).

The PORT register is the latch for the data to be output. When the PORT is read,
the device reads the levels present on the 1/O pins (not the latch). This means that
care should be taken with read-modify-write commands on the ports and changing
the direction of a pin from an input to an output.

The following figure shows a schematic of a typical 1/0O port.

20

._._-'”1
-
RD LAT
D2tz Bus —1 |
WR PORT
CH 4O 5 \ -
Daeta Laich i |£|‘7 IZ
S i%%
WR TRIZ o =
[k]
TRIE L2l
:<[: 7
/ Be
RO TRIS Trigger
| a D
r =
RD PORT |
- l:jy.

Figure 7: Typical 1/0O port

For more details about the modules of microcontrollers and related specs, please
refer to:

PICmicro® 18C MCU Family
Reference Manual

2.7. MPLAB C18 Compiler language suite

The MPLAB C18 compiler is a free-standing, optimizing ANSI C compiler for
the PIC18 PICmicro microcontrollers (MCU).This compiler is fully compatible
with Microchip’s MPLAB IDE and MPLAB SIM simulator.

The MPLAB C18 compiler has the following features:

e Generation of relocatable object modules for enhanced code reuse.

e Compatibility with object modules generated by the MPASM assembler,
allowing complete freedom in mixing assembly and C programming in a
single project.

e Strong support for inline assembly when total control is absolutely
necessary.

21

Extensive library support, including PWM, SPI™, [2C™, UART,
USART, string manipulation and math libraries.

Full user-level control over data and code memory allocation.

In this project, The focus will be made for the following points:

i)

C18 compiler managed resources:

C18 uses some registers to do some of the intermediate and temporary
operations. These registers are: FSRO, FSR1, FSR2, PRODH, PRODL,
TABLAT, TBLPTRU, TBLPTRH and TBLPTRL

Startup and Initialization

C18 compiler generates a C function to initialize all the variables used in
the main function. This function is directly called after reset.

During the initialization, a software stack (used and managed by C18
compiler) is setup and initialized. FSR1 and FSR2 are used to manage the

software stack.

iii) Software Stack:

This is basically a memory section defined in the linker script file (e.g.
18f452.1kr). C18 uses this section to store arguments, return values and
local variables of functions when they are called.

The default size of this stack is 256 bytes. However this can be modified

from the linker script by changing the following linker command:

ISTACK SIZE = 0x100 |

to the desired

values.

22

CHAPTER 3
METHODOLOGY

3.1. Procedure ldentification

The scope of this project and flow of tasks are envisaged to be carried out as

shown in the following chart:
[Start]
v

[Research and Study about PIC18F hardware and developing tools]
v

p
> Programming Task switching algorithm in assembly]

Simulation /tests with
multiple tasks succeeded?

No

A 4

Developing task switching algorithm for C language]

No

Simulation/tests
succeeded?

—’[Programming Scheduler and kernel services]

No

Simulation/tests
succeeded?

[Developing Real-Time application]

End

Figure 8: General Flow chart of Project work
23

The overall flow of the project can be divided into the following milestones:

3.1.1. PIC18Fxxx system Study

A thorough study is carried out to attain the student the basic and primitive
knowledge about the system which is intended to be programmed. This part of the
project is estimated to have 4-5 weeks of the first semester. A good familiarization
with PIC18F instruction set, special function registers (SFR), Memory
organization, device settings, peripherals’ operation and hardware circuitry has to

be gained.

3.1.2. Study of RTOS concepts

Operating systems have several concepts. In this project, an overall study of
operating system is to be done. This study will also cover the concept of:
operating system concept, RTOS concept, kernel, and scheduling algorithms.
Meanwhile, the RTOS named “PICo0s18” is to be simulated and investigated
throughout this stage.

3.1.3. Running P1Cos18 on PIC18Fxxx device

After having little soft background about RTOS, more practical interaction with
typical RTOS system is to be made. To achieve this goal, PICos18 is simulated
and ported to PIC18 microcontroller and then its performance is further
investigated. At this stage, the student is in favour of monitoring, examining and
evaluating the performance of this RTOS. This gives the student a good sense of
how RTOS behaves. The main challenge at this stage would probably be the
adaption of PICos18 to microcontroller settings and how applications and tasks

are created and made in P1Cos18 system.

24

3.14. Development of RTOS

At this stage, the coding, algorithms and the hardware interface of the system is
to be started. At the very starting of this stage, simple codes to setup timers and
interrupts will be developed in assembly environment. This is because assembly
programming is straight forward to microcontroller hardware in addition to its
light size comparing to C generated code. TimerQ with its associated interrupt in

the microcontroller will be utilized as kernel timer.

When kernel timer interrupting facility is available, task switching algorithm will
be developed. For instance, tasks will be written in assembly language and then
the assembly version for task switcher will be tested. As soon as the assembly

version runs successfully, a C version of the task switching will be created.

After the work with switching mechanism is successfully done, development of
timing based functions (e.g. delayMs), scheduling algorithms, and events based

routines are to be made.

3.15. RTOS testing and troubleshooting

Finally, the project will be concluded by demonstrating its operability on a
practical application which is based on the developed RTOS. A suitable

application will be selected and designed at the end of this project.

3.2. Equipment and Tools

To implement the RTOS on PIC18Fxxx devices, some equipments and software
are utilized. These tools and equipment include:

25

3.2.1. PIC18Fxxx starting kit

Figure 9: PIC18F developing kit [9]

This kit is a practical and suitable platform for developing codes and programs
on 18F series devices. All the basic and necessary connections to microcontroller
are built. This board is running on 20MHz oscillator frequency. The layout of the

board and the hardware circuitry can be viewed in appendix A.

3.2.2. PICKit 2 programmer

The programmer is used to load the hex file (produced by compiler or

assembler) into the PIC memory.

Figure 10: PIC18F programmer [10]

3.2.3. MPLAB IDE

26

MBLAB IDE version 8.33 is used to development programs and codes for
PIC18F. It also contains a complete framework (includes simulator, programmer,

debugger and compilers).

~ ples - WPLAR DF v, Ma
D@ & wE SN ILT Db ~dwE G & SEE| Chooam i
= OI% WP NP ek pphl b _prs g

e mg | Usbiges b ekl Doode o debems DESEs | e b
* General latercapl veetor. Do met medify.

®* Ganarsl TSR rostar. Complats the fanctics core with the &f
® cass gow Eesd Lo Juey Lo Che fumstios dedicetsd o the oooe
" Gepasta aisl RATE_DATR e S&ved estamalleeiy SiLE C18 VI,

Fprages code _INTERMIFT_VECTORL = OsO33f

Figure 11: Snapshot for MPLAB IDE

3.2.4. MPLAB SIM Simulator

MPLAB SIM simulator is part of MPLAB IDE software. This software is used
to simulate assembly and ¢ codes. It offers good features to monitor the registers

of the PIC and also monitoring the timing of instructions’ execution.

3.2.5. PICkit 2 Debugger

This is a very useful and simple In-Circuit debugger. It connects to PICKit2
programmer. It gives good debugging facilities especially when peripherals are

interfaced with microcontrollers. It only supports one break point at a time.

27

3.2.6. C18 C COMPILER

C18 C compiler is designed to work with PIC18 devices and to work under

MPLAB IDE integrated environment.

By using this compiler, programmers may edit and developed application based
on the high level C language. Moreover, some built-in function are available for
fast development process for microcontroller hardware (e.g. CAN and 12C serial

communication).

28

CHAPTER 4
RESULTS AND DISCUSSION

41 RESULTS

During the work process throughout this project, the following results are
obtained:

e A multitasking kernel for “Taj RTOS” for assembly programming
environment.

e C version of “Taj RTOS” multitasking kernel based on round-robin
scheduling algorithm.

e Testing “Taj RTOS” with LCD, keypad, 7 segment display units and
LEDs output based task.

4.1.1. Taj RTOS for Assembly programming environment

A simple multi-tasking kernel is developed to share microcontroller’s CPU time
on the tasks which are written in assembly. To achieve this, two assembly
subroutines are created to form the kernel which are: RTOS Initializer and Task

switcher. (please look at kernel code in appendix E)

RTOS Task
Initializer Switcher

Figure 12: Taj RTOS Kernel for assembly environment

a) Design concept:

29

To make the multitasking processing for tasks possible, each task has to be
given small time of CPU to execute its instructions. In this kernel, each task is
given 1ms of CPU time to execute its instruction before it is swept and another
task is loaded to the CPU. This timing is done by configuring TIMERO to
generate interrupt every 1ms. Whenever the interrupt occurs, all the important
registers which tasks use are stored in RAM and it is retrieved when the task is

restored again.

Initialize Tasks’ Stacks

Setup interrupts every 1ms

A

Launch First Task

v
Process Current Task

A 4

A

Yes

v

[Store Task’s Context]
v

[Restore Next Task’s Context }

v

[Launch next Task

=]

Figure 13: Flow chart of Taj RTOS kernel operation

30

b) Overview of RTOS code

RTOS code is written in 1 assembly file named “kernel.asm” where RTOS
initializer and Task switcher reside. Aside from that, four header files are
made to declare Tasks, Stacks and RTOS registers. RTOS code is
available in Appendix D.

The following figure illustrates the codes and their functions for assembly version

of Taj-RTOS.

o
Kernel code = Source Files All Device “Fuses” or
This file a|so: includes: |2 DeviceConfig.asm Configuration words
. RTOS initializer L |a kernel.asm J are here
s Task Switcher 9] Taskl.asm
E Task2.asm —
2] Taska.asm| Here Tgsks are
Written
@ Task4.asmp” |
RTOS used (2] Tasks.asm
registers(temporary E Taské.asm
i i 4] Task7.asm —
regisiers, running sk All Macros Called

() Header Files
|= KernelMacro.inc
|~ RTOS-DATA.inc —

Stack Size and Stack
Allocation is done
here

register ...) are

declared here _— inside Kernel Code

are written here

z StacksDeclaration.inc

The Number of Tasks

: | TasksDeclaration.inc ™.
is declared here

) Object Files
] Library Files I
1 Linker Script

(] Other Files

Figure 14: Taj RTOS codes (Assembly Version)

c) RTOS Initializer:

For the RTOS to function, some initializations have to be done before RTOS
starts. These initializations are done in this part of the kernel. The typical

initializations include:

i) Initializing TIMERO to generate high priority periodic interrupt every
1 ms.

The following table shows TimerO0 initialization.

31

Table 3: TimerO0 intialization and the associated registers setting

Register
INTCON2 Register
IPEN bit in RCON register 1

TOCON Register Oxc4

Function

Set TimerO0 as high priority interrupt

Enable Priority interrupt

Setting 1:16 pre-scale for Timer0

i) Creating Stack for each Task where the vulnerable registers are stored

and retrieved.

For each task a stack is created to save the vulnerable registers. The size of

the stack equals the size of registers which is classified as “vulnerable” for

the tasks to run properly. Those registers are listed in the following table:

Table 4: Vulnerable registers

Register

Stack pointer (STKPTR)
Hardware Stack

(TOSU - TOSH - TOSL) x 30 levels
BSR

WREG

PROD (H-L)

FSR(0,1,2) (H-L)

STATUS
TABLE POINTER
TBLPTR (U-H-L)

TABLAT

MAXIMUM TOTAL SIZE

Maximum Size

32

Since the hardware stack is not always used, the common practice is to
save a portion of it (say 10 levels). This will stack size and the utilization

of RAM and therefore reduce the switching time.
iii) Creating Array to store the addresses of the stack for easier reach.

To ease the access to the stacks, the addresses of the stacks have to be
stored in one array. Each address has higher byte and lower byte.

Therefore the size of the array is,

Array size = number of Tasks x 2

Table 5: Stack Pointers Array for 3 Tasks

Index Value Index Value
0 Stack1 Address High byte 1 Stackl Address Low byte
2 Stack2 Address High byte 3 Stack2 Address Low byte
4 Stack3 Address High byte 5 Stack3 Address Low byte

d) Task switcher:

The function of this section is to switch between tasks whenever required. For
the switching to be smooth and fine, all the vulnerable registers have to be
stored and restored without any loss on their data. However, care has to be
taken when dealing with sensitive registers such as PC and Status registers.
Before the switching takes place, the kernel has to locate the next stack to
retrieve data from and the current stack to save data to. The following figure

illustrates the switching mechanism.

33

Microcontroller CPU

Program Counter/
Working registers \

Store Otht:r irinstprc;rstant Restore
Cont * Context

STACK1 STACK 2

Figure 15: Switching mechanism

During this operation, FSRO and FSR1 registers are used to point to current and

next stack respectively.

The following figure shows the data memory utilization when 3 tasks are used

157

Program Memory Data Memory
Total: 16384 Total: 1533

Figure 16: Memory usage for 3 Tasks

34

« test09-27 - MPLAB IDE vB.33 - Stopwatch

File Edit Yiew Project Debugger Programmer Tools Configure ‘Window Help
DS (i mE 2480 ? o InBPEREO| by "oiZHBw® &

M D:\RTOStest\09-27\TaskSwitching.asm

TaskSwitching asm | KemelMacio.ing || TasksDeclaration.ine || StacksDeclaration.ine

MOVEF Copytempl, FSROH ;Let FSROH points to The Required Stack High address ude.

MOVEE Copytemp2 ESROL sLet FSROL points to The Reqgquired Stack Low address date.
SaveCurrentTaskContext : date.
StoreContextIn O ;itore context to Current Task Stack is uptoc
RestoreNextTaskContext : date.
INCE RUNNINGTRSK F RCCESS ;Increment RUNNINGTASK so It Points to Next Task date.
MOVLY TOTAL_TASKS p to date
CPESGT EUNNINGTRSK, RCCESS
BER ContinueWithNextTask
SetBunningTask 1 pl SUCCE
ContinueWithNextTask: we v 31
DECF EUNNINGTASK W, ACCESS
BLNCF WREG, W, ACCESS
LESE 0, StackPointershrray Stopwatch
MOVEE PLUSWO ,Copytempl
INCF WREG, W, ACCESS
MOVEF PLUSWO ,Copytemp? Stopuwatch Total Simulated
HOVEF Copytempl, FSROH ; Instruction Cypcles
MOVEF Copytemp2, FSROL
RestoreContextFraom 0O Time [uSecs]

EBER EscapeTimerd
Processor Frequency [MHz | 20.000000

EscapeTimar0:
RestoringFSRiregisters:
MOVEF FSROHtemp , FSROH
MOVEF FSROLtemp , FSROL
RestoringWREGandSTATUSregisters:
MOVEF STATUStemp STATUS ; Restore STATIE and WREG hefore LEAWing ISR
MOVLY a
CPESEQ STRATUStemp
ECF STRATUS 2
MOVEF Temp . WREG
EnableGlobalIntBack:
BSF INTCON . GIEH ACCESS ;enahle interrupts

PIC15F458 pi0z1bs R novzdeoc 20MHz bank0

Figure 17: Time elapsed during switching mechanism = 127 psecond

35

$LEFINE TOTAL TRASES L'ze!

;Export the Tasks to all files
WARIAELE Taskumber=1
WHILE TaskNumber == TOTAL TASKS
EXTERN TaskifriTaskNumber |
Tasklwumber+=1

ENDI
M Memory Usage Gauge

Program Memory Data Memory
Total: 16384 Total: 1533

Figure 18: The memory usage for Maximum number of tasks supported=26

So, the features of the assembly version of Taj-RTOS performance can be
summarized in the following table:

Attribute

Switching time 50 psecond

Maximum supported number of A3
Tasks

The maximum response time 29 millisecond

4.1.2. C version of Taj RTOS

For the convenience of programming, tasks have to be written in C language.
So, the kernel has to be modified to adapt the new C development environment. In
C environment, three main issues have to be considered:

e (C18 compiler initializing code (what kind of initializations are done?
And how this affects RTOS?)

36

e How C functions’ parameters and results are passed and retrieved are
called (What considerations should RTOS take to deal with functions)
e The allocation of variables, temporary mathematical operations
registers and other vulnerable registers (what are those variables? and

where are they stored?)

a) Design considerations:

The design concept is still the same. However, some changes are made to

adapt the new C environment.
The adaptations made can be listed as follows:

1) In RTOS initializer:

As mentioned in CHAPTER 2: Literature review, C18 compiler has
some initializing codes which are called directly after the startup and
just before the main function. After the microcontroller leaves this
part, FSR registers are already setup. So, this is the most important
thing which RTOS initializer has to keep. It has to keep those 3
registers unchanged during RTOS initializations.

i) Task Switcher:

The simple assembly version of this switcher is modified in two
senses:

a. It has to save the contents of the software stack whenever
switching is made.

b. It has to optionally save the variables which are used by several
functions (e.g. a variable “counter” is used by “delay_1ms()”
function which is in turn used by more than task. So the task
switcher has to store the value of ‘“counter” whenever
switching is done to keep each task’s variables untouched by

the other tasks)

b) RTOS Initializer:
The new initializer has to keep FSR registers (FSR2H, FSR2L,
FSR1H, FSRL1, FSROH and FSROL) unchanged.

37

Table 6: Vulnerable registers for C environment

Register Maximum Size

Stack pointer (STKPTR)
Hardware Stack

(TOSU - TOSH - TOSL) x 30 levels
Software Stack (just in C environment)
BSR

WREG

PROD (H-L)

FSR(0,1,2) (H-L)

STATUS

TABLE POINTER

TBLPTR (U-H-L)

TABLAT

MAXIMUM TOTAL SIZE

* This value can be less or more depending on how much functions are nested

c) Task switcher:

The new task switcher allocates more size for the stacks used in switching.
Moreover the switching time has also increased due to the overhead process of

saving and retrieving the data of the software stack.

The following figure shows a comparison between the assembly version and C
version of the switcher in term of memory utilization and switching time.

38

Time (uSecs) | 54.400000

Data Memory
Total: 1533
Memory utilization ~Assembly version

Program Memory
Total: 16384

Switching time -C version

Program Memory Data Memory
Total: 16384 Total: 1533

Memory utilization -C version

Figure 19: Comparison between C and Assembly versions of task switcher

So, the features of the C version of Taj-RTOS performance can be summarized in
the following table:

Table 7: Taj RTOS performance for C version

Attribute Value

Switching time 94 usecond

Maximum supported number of g
Tasks

The maximum response time 10 millisecond

4.1.3. Testing of Taj RTOS

After the core of the kernel being designed, an application based on 3 tasks
is designed to monitor the performance of the RTOS in managing the multitasking

operations.

i) Tasks overview
3 tasks were developed. Taskl interfaces with 8 LEDs connected at PORTC. This
task blinks the 8 LEDs in sequence 1 LED at a time. Task2 is a continuously
running counter whose value is displayed at LCD connected to PORTD and
PORTE. Task3 is programmed to scan a keypad at PORTB and display its value

39

on 7 segment display unit connected also to PORTC (Where LEDs are also

connected).

i) Project building and compilations

The three tasks are written in 3 separate files. The number of Tasks is declared in
“TaskDeclarations.inc”.

iii) Running the project using PICKit2 debugger

A break point is put at the start of the switching code. So, whenever the
processing of the simulation is halted whenever switching is started. By using
PICKit2 debugger connected to the circuit, we can see the switching mechanism
and the multitasking behaviour in the real world.

The execution process for the 3 tasks is illustrated by the following figures.

= 1180 ML B vh1
O O Yoo Do Qe Aogese [k Cofoue Ende D
D@ S SANOR T A FPFRO| Ok ~ddEBmd 546

Fusabletlobal Int et
e] INTOON, GIEN, MRS5S disable inters

Figure 20: Project debugging with a “break point” at the start of switching
code

40

Figure 21: The circuit with LEDs, Keypad, LCD and the debugger connected

Figure 22: Task1 -only- is being processed

41

Figure 24: Task3 is -only- being processed

When breakpoint is removed, the microcontroller runs the three tasks -seemingly-
at the same time while no task affects the execution of the others.

4.1.4. Writing RTOS based program

To write RTOS based program which might be loaded later to

PIC18F/18C devices, users are required to do the following:

1. Using MICROCHIP MPLAB IDE software and Microchip C18 toolsuite. At
the time TAJ-RTOS was developed the following software was used:
+» MPLAB IDE version 8.33
¢+ Microchip C18 toolsuite
42

v MPLAB C18 C compiler version 3.30
v' MPASM Assembler version 5.30.1
v" MPLINK Object Linker version 4.30.1

Figure 25: MPLAB IDE logo

However, -due to programming flexibility of TAJ-RTOS- TAJ-RTOS might

be used for earlier versions of this tools, but no testing has been made

regarding this matter.

NOTE: the user may need to install C18 toolsuite from microchip website.
2. In MPLAB environment, a project is to be created and PIC device to be

selected

& MPLAB IDE v8.33

Programmer Tools Configure Window Help

M untitled. mew - [=]x]

PIC18F458

W MPLAB IDE v8.33 T Development of R... | % Gmal-Regarding ... e @ LVRRL BE-

Figure 26: Creating new project

43

| MPLAB IDE vB.33

Fie Edt View Project Debugaer Programmer Tools Corfigurs Window Help

D@ M| mE &dman?

M untitled.mew

Project Wizard

Welcome!

This wizard helps you create or configure a new MPLAE IDE
project

Ta continue, click Next,

< Back i et > I Cancel Help

PICIEF458

» MPLAB IDE v8.33
File Edit View Project Debugger Programmer Tools Corfigure Window Help

DS M| e Sdlan?

M untitled.mow.

Project Wizard

Step Dne:
Select a device

Device:

< Back. E Nest > Cancel Help

PIC18F458

Figure 28: Selecting PIC device

3. Selecting Microchip MPASM toolsuite If (TAJ-RTOS Assembly version is
considered)

44

| MPLAB IDE vB.33

Fie Edt View Project Debugaer Programmer Tools Corfigurs Window Help

D@ M| mE &dman?

M untitled.mew

Project Wizard

Step Two:
Select a language toalsute

Active Tooksute: | Microchin MPASM Tookuite

Toolsuite Contents

H = A
MPLINK Object Linker (mplink exe] w431
MPLIE Librarian (mplib.exe)

Location

Browse.

[Store tool Iacations in project

Help! My Suite Isn't Listed! [Show allinstalled taclsuites

< Back i Nest > Cancel Help

PICIEF458

Figure 29: Selecting MPASM Toolsuite

Selecting Microchip C18 toolsuite If (TAJ-RTOS C version is considered)

 MPLAB IDE v6.33

Fle Edi View Project Debugger Programmer Tools Configre Window Help

heH i ha|[2hw AR ? fEdBad

R untitled. mow

Project Wizard

Step Two:
Select a language toolsuite

Active Toclsule: | Microchip 18 Taolsute

Toolsuite Contents

MPLINK Dbiect Linker (mplink.exe] v4.30.01
MPLAE C18 C Campier (mec18 exe) v3.30

| [orowse.. |

[] Store toal locations in project

Help! My Suits Isnt Listed! [5how all installed toolsuites

<Back [Mext> Cancel Help

PIC18F458

Figure 30: Selecting C18 Toolsuite
4. Adding the following files to the project
s TAJ-RTOS assembly version:
v" RTOSsetting.inc
v" RTOSMacros.inc
v" RTOSdeclarations.inc

45

RTOSkernel.asm
Init.asm

ISR,asm

DeviceConfig.asm

 MPLAB IDE vB.33 HEIE
Flle Edit View Project Debugger Programmer Tools Corfigure Window Help

D@ M| mE &dman ?

M untitled.mew [- [2]x]

Project Wizard

Step Four:
‘Add evisting fls ta your project

B I5Ro -~ \DeviceConfig.asm
Add>»
\lnitasm
1 c

ASR.asm

ARTOS declarations.ing
ARTOSkemel asm
AATOSMacrosinc

" RT0sker \RTOSsetting.inc

[RT0Sksmel o
[0 RTOSMacros.inc
RTOSseting.inc
[Task1.asm
m

PICIEF458

W MPLAB IDE v8.33 T Development of RTO

Figure 31: Adding RTOS files —Assembly version

% TAJ-RTOS C version:

v" RTOSsetting.inc
RTOSMacros.inc
RTOSdeclarations.inc
RTOSservices.inc
RTOSservices.asm
RTOSkernel.asm
ISR,c

Main.c

NN N N N N N

DeviceConfig.asm

46

| MPLAB IDE vB.33

Fie Edt View Project Debugaer Programmer Tools Corfigurs Window Help

[- [7]%]

D@ M| mE &dman?

M untitled.mew = =E

Project Wizard

Step Four:
‘Add existing fles ta pour project

| Elwln]

DeviceConfio s
| Addo> |,

HISR.c

Hmain.c

) i) i)) o))

o
. B RTOSdeclaral |
u >

PICIEF4SE
W MPLAB IDE v8,33

Figure 32: Adding RTOS files for C version

5. After the project is successfully created then, user may start developing
required applications directly by proceeding with the following steps:

X/

s If Assembly-based programs are considered

v’ Set the type of the processing and device configuration in

DeviceConfig.asm file

v" Set the number of tasks required in RTOSsetting.inc file

v Write any initialization code required by the application
Init.asm file (e.g. enable pull-ups, set timer1 interrupt...)

v Write any Interrupt service routine in ISR.asm file

v' Tasks’ codes might be written in a separate file with the

following format:
Taskx
;code
;code
Here GOTO Here;
GLOBAL Taskx

(NOTE: x is the number of the task, e.g. Task1, Task12

47

in

)

¢+ If C-based programs are considered

v’ Set the type of the processing and device configuration in
DeviceConfig.asm file

v’ Set the number of tasks required, Scheduling Algorithm,
Tasks’ priorities and frequencies in RTOSsetting.inc file

v Write any initialization code required by the application in
main.c file before the line where InitRTOS is called

v Write any Interrupt service routine in ISR.asm file

v Tasks’ codes might be written in a separate file with the

following format:

void Taskx (void)

{
/Icode

/Icode
While(1);

hy

(Where x is the number of the task)

6. In case of C-based programs, user may add the built in functions to interface
PIC device with 7segment display, LCD, LEDs and Keypad.

7. After the application is successfully created then, user may start compiling
debugging, simulating and downloading the code.

8. For advance settings (related to RTOS operation), user may check the effect
of some parameters on the operation of RTOS by modifying their values in
RTOSdeclarations.inc file (e.g. Stack size, StackPointerArray size,
TEMPDATA and MATHDATA size...)

48

4.2 DISCUSSION

The task switching process is the core of supporting the multitasking

processing in RTOS environment.

The assembly version of RTOS kernel is light -in coding- and exhibits very tiny

processing overhead since it just deals with minimum registers and variables.

From the simulation and the coding, the deterministic behaviour of the task
switcher could be noticed. With only 3 tasks, the task switching process consumes
less than 100us (for the C version) and less than 50 us (for the assembly version).

Each task has its own scratch memory stack to save all important registers and
variable while switching process. The current size of each stack is around 128

bytes. This may cause problems when the number of tasks grows larger.

It can be noticed that, the assembly version of Taj RTOS can support up to 26
Tasks while the C version supports up to 9 only. This is because fifth of
microcontroller’s RAM is reserved for the software stack, so RTOS would not

have enough space to create stacks for the tasks.

For more responsive processing of the tasks, a pre-emptive scheduling mechanism
has to be invoked. This would provide the kernel with the ability to execute the
high prioritized ready tasks before the tasks with lower priority. This algorithm
would not certainly guarantee that all deadlines to be met but at least an optimal
performance could be achieved. However, with pre-emptive scheduling algorithm,

deadlocks are very prone to occur.

Inter-task communication and synchronization are features that RTOS may
increase the efficiency of RTOS. These services would make it possible for tasks
to pass information from one to another. They would also make it possible for
tasks to coordinate, so that they can proactively cooperate with one another. But
in microcontrollers-wise, this may not be preferable, due to the limited resources

within the microcontroller and the stringency of timing.

In comparison to PICos18 RTOS, Taj RTOS has many features that make it
different form it -in particular- and from other RTOSes as a whole. These features

can be listed in the following table:

49

Table 8: PICo0s18 and Taj RTOS comparison

Features

Switching time

Max Number of Tasks
RAM utilization

Accessibility of kernel code and

kernel parameters
Clarity of code

Ability of kernel to switch from

any task at any moment

Available scheduling algorithms

Ease of getting it started

Drivers availability

Usage and Application

P1Cos18
100pS
6
286 bytes/task

No

Not much

No

2

Not easy (more

steps)
Yes

Industrial

Taj RTOS
95uS
9
184 bytes/task

Yes

Ok (designed to be clear)

Yes

1

easy (less steps)

No

Educational

50

CHAPTER 5
CONCLUSION AND RECOMMENDATIONS

5.1. CONCLUSION

Taj RTOS is fully capable of supporting the multitasking processing for
Assembly and C programming environment. PIC0s18 is a good example for
RTOS. However, its procedural settings make it less friendly to use. With Taj
RTOS, RTOS operations are very clear to users and some of RTOS parameters

are available for modification.

C18 built-in functions can still be used in Taj RTOS environment, while it is not
applicable for other RTOSes (e.g. PIC0s18).

Taj RTOS employs simple and clear programming methodology which makes it

good choice as educational tool.

Taj RTOS easy to understand, easy to use and faster to developed since it takes

considerable advantages of both assembly and C codes.

Taj RTOS still has some weaknesses which could be overcome by more reviews

for its codes and algorithms.

51

5.2. RECOMMENDATIONS

Throughout the work of this project, Taj RTOS has demonstrated its full
functionality to support multitasking processing. This RTOS can be further
enhanced to support various scheduling algorithms. Moreover, Taj RTOS can be
made available in different forms to serve different levels and types of users (e.g.
applications developers, students, beginners and experts).

Taj RTOS is very suitable for educational purposes, so it is highly recommended
to be used as a teaching tool in microcontroller-based courses.

52

REFERENCES

[1] Wikipedia The free encyclopaedia, ‘Embedded System” 10 Feb 2009
http://en.wikipedia.org/wiki/Embedded_system#cite_note-barr-glossary-0

[2] Microchip Technology Inc., “MPLAB® C18 C COMPILER USER’S
GUIDE”, U.S.A, 2005

[3] Microchip Technology Inc., “PIC18FXX8 Data Sheet 28/40-Pin High-
Performance: Enhanced Flash Microcontrollers with CAN Module”, U.S.A, 2004

[4] William Stallings, “Operating systems: Internals and Design Principles”, 5t
ed., Pearson Prentice Hall, 2005, pp 52.

[5] Andrew S. Tanenbaum™ and Albert S. Woodhull, “Operating systems; Design
and Implementation”, nd ed., Prentice Hall, 1997, pp 90 and 91.

[6] Pragmatec S.A.R.L., “PICos18 Real time kernel for PIC18: Tutorial and
Developer Guide”, v 2.01, France, March 2005. Version 2.xx

[7] Pragmatec S.A.R.L., “PIC0s18 Real time kernel for PIC18: Kernel Interface
API”, v 2.xx, France, May 2006.

[8] OSEK group, “OSEK/VDX Operating System: Operating system
specifications”, version 2.1, revision 1, November 2000.

[9] Cytron Technologies, “SK40B PIC microcontroller start-up kit: User’s

Manual”, version 1.1, Malaysia, December 2007.

[10] Cytron Technologies, “UICO0A USB ICSP PIC Programmer: User’s
Manual”, version 1.7, Malaysia, November 2007.

[11] Microchip Technology Inc., “MPLAB® C18 C COMPILER: Getting
Started”, U.S.A, 2005

[12] Wikipedia The free encyclopaedia, ‘Real Time Operating System” JUNE
2009 http://en.wikipedia.org/wiki/Real-time_operating_system

53

[13] Robert Betz, “Class-Notes-Introduction to Real-Time operating systems”,
Department of Electrical and Computer Engineering, University of Newcastle,
Australia, 2001, pp 40.

54

APPENDICIES

55

APPENDIX A
PIC18F DEVELOPMENT BOARD DRAWINGS

| d
' R RN
‘ : C RS =7 .
Pin 1 - > 2710 SRS e |
of PIC . : CRBY
. 3 O RB3 u- J
' ' ORB2 I
. s 0 m - l—LQO 2 m
. ' > RBO 9
. : 50 !
. ’ & GND ‘ 34 (%
t) o RD?Z | ‘ .
. » ¢ RD& . s =»
. » RES ' . -
. » o ROM = X
. » o RES ¥ € P —
" w1 ORES 4
; v 13| oRES °
. » 3,08
. " 30 203 0.
- " 220 D2
Label Function Label Function
A | Slide Switch for main power supply G | 5V regulator
B | DC power adaptor socket H | Header pin and tum pin
C Battery connector 1 40 pin IC socket for PIC MCU
D Power indicator LED J Reset button
E | Senal cable adaptor (female DB9) K | Programmable push button
F Connector for UICO0A Programmer

A — is a slide switch to On/OfY the power supply from DC adaptor or Battery connector.
Pushing the switch down will ON SK40B.

B —1s a DC power adaptor socket for user to plug in DC adaptor. The input voltage should be
ranged from 7 to 15V.

Figure 33 PIC18F board layout

56

From
UIC00A

Figure 34: Board connection with PICKit 2 programmer

57

YIS &
— 7o] 4T] s T 16BN fei T 1
—5ax i] e odse oy (500 :
— e o vangs e TROXREN (—— €
— ‘ 1 oasE 142073 f—r *
- Tml_lnf AIXLBE BN [T $
— o4 S 1axeuE DINLOMOILONE o 0oE s
—vai G |—7 vesdra L0NTITA60 |- t
— | o) fe || sesesm NNT1250 |-
—5q8 | T < san 1.mx&8u "y —
— ot R e PRA

W ny NYETEE
8 Prm e Saas
— e | L £ 1 e 0TI TS 4RV SV |
782 ‘ = 10012 TENLAVE
—tex T et L ENY EVE
— ‘ | e D A TRV TVE
= e, T Em
— | ‘ o e T

il

o L z S
3 g S A e .
T|e _ GH & T wa =
wou wu —SE) !
S~ =lmon wmu o —

I

i + B

TR
10

48

EA[L

& 28

- 2
R A

n2

11

"

aND —

52

11

"W

s
5|__|(_

3]
a

58

U.

— 204
o
g
8
&

[4

Figure 35: Schematic diagram for PIC18F board

APPENDIX B
PROGRAMMER DRAWINGS

0s2
Jo|
B - (1 3[‘7 g9 83"
-] 14 L _J l_J [_ <
C D
Label Function Label Function
A | Mini USB port socket D | Busy indicator LED (red)
B Switch to initiate write device E IDC Box Header for programming
programming connector
C Main power supply indicator LED

(green)

Figure 36: Board layout of PIC programmer and its parts' functions

59

DEVELOPMENT BOARD

o, lsclabea Croutry UICO0A
T Schotky-type Diode
or High Seatchng To Apphcanon Fropenny Ceazectar
Drode (IN4148) Caowt I0C B Hentey = 1DC Bl Hander =
e Dy N S B Y |
10 1
4 —
” L RN FBIPOD 7
—3— RADANR REGPOC 57 —_
S FAS i
0 1ot = 81 — RADAN I el Vet RBS b
= 1 Reset bund =i RANANINrefe REAPOM =ty
g1 RAUVTOCKLCIOUT RB) pedr—
RASANMESC20UT RAl —
= Vs RBOINT T
- O : Vad -t s
= = ¢ Vpr Optional to connect
- REVFOUDT et | ;
_— ROGTIICK e V 1) 00,
e ROSEDO feppe +
- e RCABDISDA
* Typecel Vihies Y LN AT L8
Tugm Mcracostrsder Devicr

Figure 37: Programmer’s connection with the development board

60

APPENDIX C
C18 COMPILER

DATA TYPES:
Table 9: Integer data types in C18 compiler
Type Size Minimum Maximum
chay: (1.2} 8 bits -128 127
signed char 8 bits -128 127
unsigned char 8 bits 0 255
int 16 bits -32,768 32,767
unsigned int 16 bits 0 65,535
short 16 bits -32,768 32,767
unsigned short 16 bits 0 65,535
short long 24 bits -8,388,608 8,388,607
unsigned short long 24 bits 0 16,777,215
long 32 bits -2,147,483,648 2,147,483,647
unsigned long 32 bits 0 4,294,967,295
Note 1: A plain char is signed by default.
2: A plain char may be unsigned by default via the -k command-line option.

Table 10: Floating Type in C18 compiler

Type | Size Miriioamm | Mgz Minimum Normalized Maximum Normalized

Exponent | Exponent

float [32bits| -126 128 |o7126 4 175404356 - 38 [2'28 * (2-271%) ~ 6.80564693¢ + 38

double | 32bits| -126 128 | 27126.. 4 175494350 - 38 | 2128 * (2-2719) ~ 6.805646936 + 38

61

QUALIFIERS:

Table 11: "near' and "“far' qualifiers in C18

rom ram
far Anywhere in program memory Anywhere in data memory (default)
near In program memory with address less In access memory
than 64K

Table 12: Pointer size and ""'rom and ram™ qualifiers

Pointer Type Example Size
Data memory pointer char # dmp; 16 bits
Near program memory pointer rom near char * npmp; 16 bits
Far program memory pointer rom far char * fpmp; 24 bits

62

APPENDIX D
RESULTS

THE 18F458 SPECIFICATIONS:

Data Bus<8>
@ PORTA
. RAO/ANO/CVREF
21||Table Pointer<21> Data Latch I RA1/AN1
A I RA2/AN2A/REF-
8 Data RAM] 4 RAJANINVREF +
21 inc/dec logic upto 1536 Kbytes < RA4/TOCKI
7 = RAS/AN4/SS/LVDIN
Address Latch 4 OSC2/CLKO/RAS
« 2 PCLATU[PCLATH l P12 PORTE
Address<12> I RBO/INTO
A 4 RB1/INT1
Program Counter 12ﬁ B RB2/CANTX/INT2
Addi Latch Bank0, F [4 RB3/CANRX
ress Latcl FSRO] = RB4
Program Memory| 31 Level Stack FSR1 | L4 RB5/PGM
upto 32 Kbytes FSR2] 12 b RB6/PGC
Data Latch N RB7/PGD
PORTC
- RCO/T10SO/T1CKI
& < RC1/T108I
4, N RC2/CCP1
L\ I RC3/SCK/SCL
K I RC4/SDI/SDA
= RC5/SDO
< RC6/TX/CK
B RC7/RX/DT
PORTD
i RDO/PSPO/C1IN+
n RD1/PSP1/C1IN-
instruction |4 4 RD2/PSP2/C2IN+
Decode & > RD3/PSP3/C2IN-
Control A RD4/PSP4/ECCP1/P1A
OSC2/CLKO/RAS + * * ‘ ‘ | & RD5/PSP5/P1B
OSC1/CLKI Powsrup n RD6/PSP6/P1C
m Timer [RD7/PSP7/P1D
RN _
T108I o REQ/ANG/RD,
T1080 Power-on RE1/ANBAVR/C1OUT
4X —_—
o K= Reset 8 RE2/AN7/CS/C20UT
Watchdog
— Timer
Precision Browhzout =
Ear;d Gap :'> Reset
Test Mode
Select
Band Gap & é
MCLR VoD, Vss
PBOR 3 . 2 : 10-bit Parallel
PLVD Timer0 Timer1 Timer2 Timer3 ADC Slave Port
Data EEPROM Enhanced Synchronous
ata Comparators CCP1 ccp USART Serial Port CAN Module

Figure 38: PIC18F458 block diagram

63

FC=200- |
CAIL, RCALL , RETUEN 21
RETFIE, RETLW | 7
Stack Level 1

Stack Level 31

Reset Vector 0000nh

High Priority Inferrupt Vector |0008h

Low Priority Interrupt Vector [0018h

On-Chip
Program Memory

TFFFh
2000h

User Memary Space

Read “0'

1FFFFFh
200000

Figure 39: Program memory map for 18F458/452

64

BSR<3:0>

= 0110

= 1110

= 1111

Data Memory Map

000h
00h| Access RAM O5Eh
Bank0O | — — — — A 060h
FFh GPR OFFh
00h 100h
Bank 1 GPR
FFh 1FFh
00h 200h
Bank 2 GPR
FFh 2FFh
00h 300h
Bank 3 GPR
FFh 3FFh
400h
Bank 4 GPR Access Bank
4FFh 00h
00h 500h Access Bank low
Bank 5 GPR (GPR) 5Fh
FFh 5fFFh = — — 1 60h
600h Access Bank high
(SFR)
FFh
Bank 6 U~ Unused Ja When a =0,
to M Read ‘00 M the BSR is ignored and the
Bank 14 Access Bank is used.
The first 96 bytes are
general purpose RAM
(from Bank 0).
00h EOF(I):# The next 160 bytes are
Bank 15 l _SFR_ __ _|F5Fh Special Function Registers
FEh SFR EE?:?‘ (from Bank 15).

Whena=1,
the BSR is used to specify
the RAM location that the
instruction uses.

Figure 40: Data Memory Map for 18F458

65

Features PIC18F248 PIC18F258 PIC18F448 PIC18F458
Operating Frequency DC - 40 MHz DC - 40 MHz DC - 40 MHz DC - 40 MHz
Internal Bytes 16K 32K 16K 32K
Program # of Single-Word 8192 16384 8192 16384
Memory Instructions
Data Memory (Bytes) 768 1536 768 1536
Data EEPROM Memory (Bytes) 256 256 256 256
Interrupt Sources 17 17 21 21
1/O Ports Ports A, B, C Ports A, B, C Ports A,B,C,D,E | Ports A, B, C,D, E
Timers 4 4 4 4
Capture/Compare/PVWM Modules 1 1 1 1
Enhanced Capture/Compare/ — — 1 1
PWM Modules
Serial Communications MSSP, CAN, MSSP, CAN, MSSP, CAN, MSSP, CAN,
Addressable USART | Addressable USART | Addressable USART | Addressable USART]
Parallel Communications (PSP) No No Yes Yes
10-bit Analog-to-Digital Converter 5 input channels 5 input channels 8 input channels 8 input channels
Analog Comparators No No 2 2
Analog Comparators VREF Output N/A N/A Yes Yes
Resets (and Delays) POR, BOR, POR, BOR, POR, BOR, POR, BOR,
RESET Instruction, | RESET Instruction, | RESET Instruction, | RESET Instruction,
Stack Full, Stack Full, Stack Full, Stack Full,
Stack Underflow Stack Underflow Stack Underflow Stack Underflow
(PWRT, OST) (PWRT, OST) (PWRT, OST) (PWRT, OST)
Programmable Low-Voltage Detect Yes Yes Yes Yes
Programmable Brown-out Reset Yes Yes Yes Yes
CAN Module Yes Yes Yes Yes
In-Circuit Serial Programming™ Yes Yes Yes Yes

(ICSP™)

Instruction Set

75 Instructions

75 Instructions

75 Instructions

75 Instructions

Packages

28-pin SPDIP
28-pin SOIC

28-pin SPDIP
28-pin SOIC

40-pin PDIP
44-pin PLCC
44-pin TQFP

40-pin PDIP
44-pin PLCC
44-pin TQFP

Figure 41: PIC18Fxx8 devices' features

66

Peripheral Interrupt Flag bit
Peripheral Interrupt Enable bit
Peripheral Interrupt Priority bit

TMROIF
TMROIE
TMROIP

INTOIF
INTOIE

INT1IF
INT1IE
INT1IP

INT2IF
INT2IE
INT2IP

O

Additional Peripheral Interrupts
THigh Priority Interrupt Generation O

lLow Priority Interrupt Generation

IPEN
GIEL/PEI

0008h
DHD-

Wake-up if in Sleep mode

=

Interrupt to CPU
Vector to Location

GIE/GIEH

Peripheral Interrupt Flag bit
Peripheral Interrupt Enable bit E:)—T\
Peripheral Interrupt Priority bit -/
TMROIF
[TMROIE
JuRE— ORI
RBIF
TMR1IP | RBIE
XXXXIF RBIP
XXXXIE E:’)_ s o ol
XXXXIP INTOIF

INTOIE

O INTAIE
Additional Peripheral Interrupts INT1IE

O INT1IP
INT2IF

INT2IE

INT2IP

Interrupt to CPU
Vector to Location

0018h

PEIE/GIEL:
GIE/GIEH

Figure 42: Interrupt schematic diagram for 18F458

67

APPENDIX E
TAJ RTOS CODES

Assembly version:

68

#include

pdRR R kR ke ks kb ok kb ok kR kMg
; Ma

p*** Structure of program memory ***
ResetVec CODE 0x00
goto Init
InterruptHighV CODE 0x08
SaveWREGandSTATUSregisters:
MOVFF STATUS, STATUStemp ; Save STATUS
MOVWE' Wtemp, ACCESS
goto HighInterruptServiceRoutine

InterruptLowV CODE

0x1

@

SaveWREGandSTATUSRegisters:

MOVFF STATUS, STATUStempL ; SR
MOVWF WtempL, A
goto LowPriorityISR
StartRTOS:
GLOBAL StartRTOS
InitRTOS:
;Backup the following registers that might be us
MOVFF STATUS, STATUS temp ; i entering RTOS
MOVWE Wtemp, ACCESS
BackupFSROregister:
MOVFF FSROH, FSROHtemp
MOVFF FSROL, FSROLtemp
InitKernelTimer:
SetTimer0:
DisableGloballInt:
BCF INTCON, GIE ;disable global and e > TMRO interrupt
BSF INTCON, TOIE
SetTMROasHighPriorityInt:
BSF INTCON2, TMROIP ;TMRO high priority
EnablePriorityLevel:
BSF RCON, IPEN,A ble priority levels
CLRF TMROH, A ar tin
CLRF TMROL, A
SetlmsTMRO:
MOVLW B'1100
MOVWF TOCON ; up timer0 - prescaler 1:16
EnableGloballnt:
BSF INTCON, GIEH,A ;enable interrupts
InitializeRunningTask:
SetRunningTask 0 ; At First time running -> running task to NONE

task is running yet)
InitializeAllStacks:
InitializeStacks
InitializeStackPointersArray 0,StackPointersArray
CallTaskl:
SetRunningTask 1 is running
ReturnFSROregister:
;Return Important Registers Initial Values
MOVFF FSROHtemp, FSROH
MOVFF FSROLtemp, FSROL
ReturnSTATUSwregRegister:
MOVFF STATUStemp, STATUS ; Restore STATI before LEAVing ISR
MOVFF Wtemp, WREG
GOTO Taskl

69

(i.e

HighInterruptServiceRoutine:
CheckInterruptSource:
BTFSS INTCON, TMROIF,A ;
GOTO HighPriorityISR

k for TMRO overflow

BackupFSROregisters:
MOVFF FSROH, FSROHtemp
MOVFF FSROL, FSROLtemp

TheKernel:
DisableGlobalInterrupt:
BCF INTCON,GIEH,ACCESS ;disable interrupts
RechargeTimer:
BCF INTCON, TMROIF, A upt flag
MOVLW D'100* 156 -> for 1 mSec
MO TMROL
TaskSwitcher:

DetermineRunningTask:

DECF RUNNINGTASK, W, ACCESS

RLNCF WREG, W, ACCESS

LFSR 0,StackPointersArray

MOVFEF PLUSWO, Copytempl

INCF WREG, W, ACCESS

MOVFF PLUSWO, Copytemp2

MOVFF Copytempl, FSROH

MOVFF Copytemp2, FSROL
SaveCurrentTaskContext:

StoreContextIn 0 ;Store cor to Current Task Stack
RestoreNextTaskContext:

INCF RUNNINGTASK, F,ACCESS ;Increment RUNNINGTASK so It Points to }

MOVLW TOTAL_TASKS

CPFSGT RUNNINGTASK,ACCESS

BRA ContinueWithNextTask

SetRunningTask 1
ContinueWithNextTask:

DECF RUNNINGTASK, W, ACCESS

RLNCF WREG, W, ACCESS

LFSR 0,StackPointersArray

MOVFF PLUSWO, Copytempl

INCF WREG, W, ACCESS

MOVFF PLUSWO, Copytemp2

MOVFF Copytempl, FSROH

MOVFF Copytemp2, FSROL

RestoreContextFrom 0

EscapeTimer0:
RestoringFSROregisters:
MOVFF FSROHtemp, FSROH
MOVFF FSROLtemp, FSROL
RestoringWREGandSTATUSregisters:

MOVFF STATUStemp, STATUS ; LEAVing ISR
MOVEF Wtemp, WREG
EnableGlobalIntBack:
BSF INTCON,GIEH,ACCESS ;enable interrupts
RETFIE
END ; end of assembly language program

70

File 2: KernelMacro.INC

e S S e g

y block whe

Memory block where FE

AssignValue2Register value, register
high register
value

low register, BANKED

AssignValue2AccessRegister value, register

value
register, ACCESS
SetRunningTask TaskNo
TaskNo
MOVWF RUNNINGTASK, ACCESS
InitializeStack MACRO Stackaddress, TaskNumber
LFSR 0,Stackaddress
MOVLW 1 3a
MOVWF POSTINCO urnAddr

upper Task#v (TaskNumber) ;Move T
POSTINCO

high Task#v(TaskNumber) M
POSTINCO

low Task#v(TaskNumber) ;Move TOSL
POSTINCO

BSR, POSTINCO

Wtemp, POSTINCO

STATUStemp, POSTINCO

PRODH, POSTINCO

PRODL, POSTINCO

FSROHtemp, POSTINCO

FSROLtemp, POSTINCO

FSR1H, POSTINCO

FSR1L, POSTINCO

FSR2H, POSTINCO

FSR2L, POSTINCO

TBLPTRU, POSTINCO

TBLPTRH, POSTINCO

TBLPTRL, POSTINCO

TABLAT, POSTINCO

InitializeStacks

TaskNumber
TaskNumber=1
WHILE TaskNumber<=TOTAL_TASKS
InitializeStack STACK#v (TaskNumber) , TaskNumber
TaskNumber+=1

W

InitializeStackPointersArray MACRO FSR, Array
LFSR FSR,Array
I I StackNumber=1
StackNumber <= TOTAL TASKS
MOVLW HIGH STACK#v (StackNumber)
MOVWE' POSTINCO,ACCESS
MOVLW LOW STACK#v (StackNumber)
MOVWE' POSTINCO,ACCESS

StackNumber+=1

71

NDM

varia labelGenerator=1
StoreContextIn MA

labelGenerator+=1

MOVFF
StoreHWStack#v (labelGenerator)
label

MOVFF
MOVFF
MOVFF
DECFSZ
GOTO
MOVFF
MOVFF
MOVFF

RestoreContextFrom

labelGenerator+=1
MOVFF
MOVEF

RestoreHWStack#v (labelGenerator)
MOVF
MOVWF
MOVF

DECFSZ
GOTO
MOVFF
MOVFF
MOVFF
MOVFF
MOVFF
MOVFF

FSRno

STKPTR, POSTINC#v (FSRno)

;To avoid

TOSU, POSTINC#v (FSRno)

TOSH, POSTINC#v (FSRno)

TOSL, POSTINC#v (FSRno)
STKPTR, F,A

StoreHWStack#v (labelGenerator)
BSR, POSTINC#v (FSRno)

Wtemp, POSTINC#v (FSRno)
STATUStemp, POSTINC#v (FSRno)
PRODH, POSTINC#v (FSRno)
PRODL, POSTINC#v (FSRno)
FSROHtemp, POSTINC#v (FSRno)
FSROLtemp, POSTINC#v (FSRno)
FSR1H, POSTINC#v (FSRno)
FSR1L, POSTINC#v (FSRno)
FSR2H, POSTINC#v (FSRno)
FSR2L, POSTINC#v (FSRno)
TBLPTRU, POSTINC#v (FSRno)
TBLPTRH, POSTINC#v (FSRno)
TBLPTRL, POSTINC#v (FSRno)
TABLAT, POSTINC#v (FSRno)

FSRno

POSTINC#v (FSRno) , STKPTR
STKPTR, STKPTRtemp

POSTINC#v (FSRno) ,W

TOSU

POSTINC#v (FSRno) , W

TOSH

POSTINC#v (FSRno) ,W

TOSL

STKPTR, F,A
RestoreHWStack#v (labelGenerator)
STKPTRtemp, STKPTR
POSTINC#v (FSRno) ,BSR
POSTINC#v (FSRno) , Wtemp
POSTINC#v (FSRno) , STATUS temp
POSTINC#v (FSRno) , PRODH
POSTINC#v (FSRno) , PRODL
POSTINC#v (FSRno) , FSROHtemp
POSTINC#v (FSRno) , FSROLtemp
POSTINC#v (FSRno) , FSR1H
POSTINC#v (FSRno) , FSR1L
POSTINC#v (FSRno) , FSR2H
POSTINC#v (FSRno) , FSR2L
POSTINC#v (FSRno) , TBLPTRU
POSTINC#v (FSRno) , TBLPTRH
POSTINC#v (FSRno) , TBLPTRL
POSTINC#v (FSRno) , TABLAT

72

File 3: RTOSDeclarations.INC

#include "RTOSsetting.inc"
UDATA_ACS
Wtemp RES 1
STKPTRtemp RES 1
STATUStemp RES 1
STATUStempL RES 1
WtempL RES i,
RUNNINGTASK RES 5 §
FSROHtemp RES 1
FSROLtemp RES 1
Copytempl RES d:
Copytemp2 RES 1

;Tasks Declaration
;Export the Tasks to all files
VARIABLE TaskNumber=1
WHILE TaskNumber <= TOTAL_TASKS
EXTERN Task#v(TaskNumber)
TaskNumber+=1
ENDW

;Export Init AND ISR labels:
EXTERN 1Init, HighPriorityISR,LowPriorityISR

;Stacks Declaration

;Decription: To declare the required stack and temp data

in "TasksDeclaration.inc" file

#DEFINE STACKSIZE
; Rbout STACKSIZE:

(wtemp,

;Declaring temp registers in access memory

statustemp) for the declared tasks

D'1'+D'3'*D'31'+D'1'+D'1"+D'1"+D"12"

; The stack size depends on how many registers are required to be saved

; For 1:STKPTR,31*3:Stack Spaces, 1:BSR, 1:STATUS,
;7 12 SFRs Extention: PRODH-L (2 SFRs), FSR0,1,2(6 SFRs)

;Reserve Space for stacks
;Declaring Scratch memory

;Stack size = 'STACKSIZE' Byte

1:WREG,

’

12:extra

TBLPTR(U-H-L) (3 SFRs), TABLAT

depending on the definition of tasks
section for storing taskl variables when task switching

;Reserve Space for stacks depending on the definition of tasks

VARIABLE TaskNumber=1

WHILE TaskNumber<=TOTAL_TASKS
_ STACK#v (TaskNumber) UDATA
variables when task switching
STACK#v (TaskNumber) RES
TaskNumber+=1

ENDW

STACKSIZE

; Declare Stacks' pointers

;Reserve Space for stack pointers depending on the definition of

;Declaring Scratch memory section for storing

taskl

tasks

_StackPointersSpace UDATA
StackPointersArray RES (TOTAL_TASKS*2)

File 4: DeviceConfig:
#include <pl8f458.inc>

Setting Microcontroller to 20MHz, NOWDG, NOPROTECTION,

T NOBOR sk sk ek
CONFIG OSCS=OFF , OSC =HS :;No oscilator switch and 20Mhz oscilator
CONFIG BOR =OFF , PWRT-=OFF ;Brown out reset=off , power up timer ->

off
CONFIG WDT-OFF ;Watch dog timer -> off
CONFIG DEBUG=OFF, LVP =OFF , STVR=OFF ;Background Debugger, Low Voltage ICSP,

Stack over/underflow Reset -> OFF
CONFIG CPO =OFF , CP1 =OFF , CP2 =OFF , CP3 =OFF ;Code Protection Block 0,1,2,3 -> OFF
CONFIG CPB =OFF , CPD =OFF ;Boot Block Code Protection, Data EEPROM

Code Protection-> OFF
CONFIG WRTO=OFF , WRT1=OFF , WRT2=OFF , WRT3=OFF ;Write Protection Block 0,1,2,3 -> OFF

CONFIG WRTB=OFF , WRTC=OFF , WRTD=OFF
EEPROM Write Protection -> OFF

CONFIG EBTRO=OFF, EBTR1-=OFF,
OFF

CONFIG EBTRB=OFF

EBTR2=0OFF, EBTR3=OFF

;Boot Block ,Configuration Register,Data

; Table Read Protection Block 0,1,2,3 ->

73

File 5: ISR.asm

CODE
HighPriorityISR
RETFIE
LowPriorityISR
%% Put Low priority interrupt service routine code here **
RETFIE
GLOBAL HighPriorityISR,LowPriorityISR

END

File 6: Init.asm

GOTO StartRTOS
GLOBAL 1Init

EXTERN StartRTOS
END

74

C version:
1. RTOSsetting.inc

#define TOTAL_TASKS D'13"

ne OSCFREQ D'20" ¥

ne RoundRobin 1
= RateMonotonic 2
#d ne Preemptive 3
#define SchedulingAlgorithm RoundRobin

= Priorityl
e Priority2

ine Frequencyl
= Frequency?2

75

2. RTOSMacros.inc file:

;
ok s e e ok sk e ok sk ek sk ok sk ok R RTOS MACROSG %% sk sk sk ok e sk sk ke ko

;

; ;
This file contains all macros called in Kernel file
List of Macros:

Macro Name | Macro

escription
1. AssignValue2Register:
2. AssignValue2AccessRegister:
3. SetRunningTask:
4. InitializeStack:

11 important registers are saved

assign <value> to <reg> at Any RAM mem.

assign <value> to <reg> at access RAM

Set <value> to <RUNNINGTASK> register

Initialize The -RTOS created- stacks of Tasks where

5. InitializeStacks: | Initialize All Tasks' Stacks -created by RTOS to
ave important registers-

5. StoreContextIn: | Store Important Registers To Memory block where FSRO
s pointing to

6. ReStoreContextFrom: | ReStore Important Registers From Memory block where
SRO is pointing to

6. ReStoreContextFrom: | ReStore Important Registers From Memory block where

SRO is pointing to

Se FE e B Ne BN) e @ e Se oNe we T Se

;~~~~~;This file is created by: Mohamed Tag 2009;~~~~~ ;

variable labelGenerator=1

;
;This Assembler variable is incremented whenever macro is called and then appended to labels
;This is to avoid lables duplication when macros are substituted in the main code where it's
called

;
SetRunningTask: MACRO TaskNo

3 Rk ek ok ek kok ko ok ok ok

MOVLW TaskNo
MOVWF RUNNINGTASK, ACCESS
ENDM
7 OIXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXKXXXXKXXXXKXKXKXXXXXXX MACRO
XXXXAXXKXXAXX XXX X XXX AX KKK XXX X XXX XX XK XX KKK KK KKAK
FXXXXXXKXXXXXKX END XXXXXXXXXXXXXXXXXXXXX?

InitializeStack: MACRO Stackaddress, TaskNumber

3Rk E Rk Kk

labelGenerator+=1

LFSR 0,Stackaddress

MOVLW 1 ;FillHWstackPointer

MOVWF POSTINCO ;FillHWstackReturnAddress To
Tasks' starting addresses

MOVLW upper Task#v(TaskNumber) ;Move TOSU

MOVWE POSTINCO

MOVLW high Task#v (TaskNumber) ;Move TOSH

MOVWF POSTINCO

MOVLW low Task#v(TaskNumber) ;Move TOSL

MOVWF POSTINCO

MOVFF BSR, POSTINCO ;BSR

;NOTE: IMPORTANT REGISTERS (W,STATUS,FSR0O) ARE SAVEVD IN temp MEMORY
(E.G. W->Wtemp)

;THIS IS DONE WHEN RTOS INITIALIZATION IS ENTERED

;THIS IS BECAUSE InitRTOS UTILIZE THOSE REGISTERS

MOVFF Wtemp, POSTINCO ;Wtemp, ACCESS

MOVFF STATUStemp, POSTINCO ; STATUStemp, ACCESS

76

TSTFSZ
BRA
BRA
InitializeSWStack#v(labelGenerator)
MOVFF
DECFSZ
GOTO
SkipSWstack#v(labelGenerator)
MOVFF

MOVF

PRODH, POSTINCO
PRODL, POSTINCO
FSROHtemp, POSTINCO
FSROLtemp, POSTINCO
FSR1H, POSTINCO
FSR1L, POSTINCO
FSR2H, POSTINCO
FSR2L, POSTINCO
TBLPTRU, POSTINCO
TBLPTRH, POSTINCO
TBLPTRL, POSTINCO
TABLAT, POSTINCO
PCLATU, POSTINCO
PCLATH, POSTINCO
PORTA, POSTINCO
PORTC, POSTINCO
FSR1H, Copytempl
FSR1L, Copytemp2

1, _stack
SWstackDepth

WREG, ACCESS
InitializeSWStack#v(labelGenerator)
SkipSWstack#v (labelGenerator)

;To avoid the dublication of label

POSTINC1, POSTINCO

WREG, W, ACCESS

InitializeSWStack#v (labelGenerator)
Copytempl, FSR1H ; Restore

Copytemp2, FSR1L

the original value of

InitializeStacks:

P R o e e o o A S Y
; ;

LOCAL
TaskNumber=1

WHILE

TaskNumber

TaskNumber<=TOTAL_ TASKS

InitializeStack STACK#v (TaskNumber), TaskNumb

TaskNumber+=1

InitializeStackPointersArray:

o s e ko o o e o o ok e o o s e o o o ok o e o o sk ok bk ke
; H

LFSR

LOCAIL
LOCAL

WHILE

MOVLW

MOVWF

MOVLW

MOVWE
StackNumber+=1

ENDW

0,StackPointersArray
StackNumber=1

StackNumber <= TOTAL_TASKS
HIGH STACK#v (StackNumber)
POSTINCO,ACCESS

LOW STACK#v (StackNumber)
POSTINCO,ACCESS

StoreContextIn:

P T e S S A e A e o A S S Y
’ 7

;

77

labelGenerator+=1

MOVFF STKPTR, POSTINCO
StoreHWStack#v (labelGenerator) : ;To avoid the dub of
MOVFF TOSU, POSTINCO
MOVFF TOSH, POSTINCO
MOVFF TOSL, POSTINCO
DECFSZ STKPTR, F,A
GOTO StoreHWStack#v (labelGenerator)

StoreImportantSFRs#v (lab
; Important is

MOVFF BSR, POSTINCO

MOVFF Wtemp, POSTINCO

MOVFF STATUStemp, POSTINCO

MOVFF PRODH, POSTINCO

MOVFF PRODL, POSTINCO

MOVFF FSROHtemp, POSTINCO

MOVFF FSROLtemp, POSTINCO

MOVFF FSR1H, POSTINCO

MOVFF FSR1L, POSTINCO

MOVFF FSR2H, POSTINCO

MOVFF FSR2L, POSTINCO

MOVFF TBLPTRU, POSTINCO

MOVFF TBLPTRH, POSTINCO

MOVFF TBLPTRL, POSTINCO

MOVFEF TABLAT, POSTINCO

MOVFF PCLATU, POSTINCO

MOVFF PCLATH, POSTINCO

MOVFF PORTA, POSTINCO

MOVFF PORTC, POSTINCO

MOVFF FSR1H, Copytempl ; Save a

MOVFF FSR1L, Copytemp2
StoreSWstack#v(labelGenerator) :

LFSR 1, _stack SW

MOVLW SWstackDepth

TSTFSZ WREG, ACCESS

BRA StoreSWStack#v (labelGenerator)

BRA SkipSWstackStoring#v (labelGenerator)

StoreSWStack#v (labelGenerator)

dublication of label
MOVFF POSTINC1, POSTINCO
DECFSZ WREG, W, ACCESS
GOTO StoreSWStack#v (labelGenerator)

SkipSWstackStoring#v(labelGenerator) :
StoreSharedSections#v(labelGenerator) :

SaveSectionToFSRO MATH_DATA
SaveSectionToFSRO .tmpdata
MOVFF Copytempl, FSR1H ; of

Copytemp2, FSR1L

RestoreContextFrom:

ok b ek bk ek bk ke ok ek kb ek ok ek ok ek ke k ek s

labelGenerator+=1
MOVFF POSTINCO, STKPTR
MOVFF STKPTR, STKPTRtemp
RestoreHWStack#v (labelGenerator)
MOVF POSTINCO, W
MOVWE TOSU
MOVF POSTINCO, W
MOVWF TOSH
MOVF POSTINCO, W
MOVWF TOSL
DECFS2Z STKPTR, F,A
GOTO RestoreHWStack#v (labelGenerator)
MOVFF STKPTRtemp, STKPTR
MOVFF POSTINCO, BSR
MOVFF POSTINCO, Wtemp
MOVFF POSTINCO, STATUS temp

78

into

BRA
ReStoresWStack#v (labelGenerator) :

MOVFF

DECFSZ

GOTO
SkipReSWstack#v (labelGenerator) :
RestoreSharedSections#v(labelGenerator) :

POSTINCO, PRODH
POSTINCO, PRODL
POSTINCO, FSROHtemp
POSTINCO, FSROLtemp
POSTINCO, FSR1H
POSTINCO, FSR1L
POSTINCO, FSR2H
POSTINCO, FSR2L
POSTINCO, TBLPTRU
POSTINCO, TBLPTRH
POSTINCO, TBLPTRL
POSTINCO, TABLAT
POSTINCO, PCLATU
POSTINCO, PCLATH
POSTINCO, PORTA
POSTINCO, PORTC
FSR1H, Copytempl ;
FSR1L, Copytemp2
1, _stack

SWstackDepth
WREG, ACCESS
ReStoreSWStack#v (labelGenerator)
SkipReSWstack#v (labelGenerator)

POSTINCO, POSTINC1
WREG, W, ACCESS
ReStoreSWStack#v (labelGenerator)

RestoreSectionFromFSRO MATH DATA
RestoreSectionFromFSRO .tmpdata

RecoveringFSR1#v(labelGenerator) :
MOVFF
MOVFF

=

Copytempl, FSR1H ;
Copytemp2, FSR1L

MACRO

scnstart_lfsr

MOVLW
TSTFSZ
BRA
BRA
StoreSection#v (labelGenerator) :

SkipSectionSaving#v (labelGenerator)
ENDM

1, SectionName

scnsz_low SectionName

WREG, ACCESS
StoreSection#v(labelGenerator)
SkipSectionSaving#v (labelGenerator)

POSTINC1, POSTINCO
WREG, W, ACCESS
StoreSection#v(labelGenerator)

RestoreSectionFromFSRO:

PRI
;

scnstart_lfsr

MOVLW
TSTFSZ
BRA
BRA
ReStoreSection#v(labelGenerator) :
MOVFF
DECFS2Z
BRA

SectionName

1, SectionName

scnsz_low SectionName

WREG, ACCESS
ReStoreSection#v(labelGenerator)
SkipSectionRestoring#v (labelGenerator)

POSTINCO, POSTINC1

WREG, W, ACCESS
ReStoreSection#v(labelGenerator)

79

SkipSectionRestoring#v(labelGenerator)

o kokkok bk kb bk .
i i

scnstart lfsr

MOVLW

TSTFSZ

BRA

BRA
StoreSectionPortion#v(labelGenerator) :

MOVFF

DECFSZ

BRA
SkipSectionPortionSaving#v(labelGenerator)

MACRO SectionName,Depth
1, SectionName ;Load FSR1 by Section
Depth
WREG, ACCESS

StoreSectionPortion#v(labelGenerator)
SkipSectionPortionSaving#v(labelGenerator)

POSTINC1, POSTINCO
WREG, W, ACCESS
StoreSectionPortion#v(labelGenerator)

P o R
; i

labelGenerator+=1

scnstart_lfsr
start Address

MOVLW

TSTFSZ

BRA

BRA
ReStoreSectionPortion#v(labelGenerator) :

MOVFF

DECFSZ

BRA
SkipSectionPortionRestoring#v(labelGenerator)

1, SectionName

Depth

WREG, ACCESS
ReStoreSectionPortion#v(labelGenerator)
SkipSectionPortionRestoring#v(labelGenerator)

POSTINCO, POSTINC1
WREG, W, ACCESS
ReStoreSectionPortion#v(labelGenerator)

o sk sk ok s ok ok s ko sk ok ok ok ok sk sk sk kb sk ok bk .
; 7

infsnz
incf
endm

KernelCounter, F
KernelCounter+1,F

;Increm

unsigned int data type aligned 1lik

low one is overflown

MACRO

I XXXXXXXXXXXXX END XXXXXXXXXXX2

80

3. ROTSdeclarations.inc file

e ;

; This file contains all declarations needed by the Kernel

; List of Macros:

; i R R R R R R e R e R e R i R e G e

; Section Name |

Description

; 1. RTOStemporaryRegisters: | Declare temporary registers needed for data movement

process

F 2. TasksDeclaration: | Import Tasks' names and make default values for them

; 3. StacksDeclaration: | Declare Stacks Reguired to save vulneralbe registers

of each Task

: 4, TasksCounter: | Declare Counters for each task (required for time

calculations)

; 4. TasksState: | Declare State register for each Task

fomeseasseaa e SIS RS S S ST S e e e S e s S SR e
;~~~~~;This file is created by: Mohamed Tag 2009;~~~~~;

#include "RTOSsettings.inc"

3Ol m e o

—————————— ;

RTOStemporaryRegisters UDATA_ACS

3Rk Rk ko Kk ok ok ok ok ko Rk ok ok

Wtemp RES 1
STKPTRtemp RES 1
STATUStemp RES 1
RUNNINGTASK RES i
FSROHtemp RES 15
FSROLtemp RES i
Copytempl RES 1
Copytemp2 RES I
GLOBAL RUNNINGTASK ;Globalize this variables

7 DIXXXXXXXXXXXXXXXXXXKXXXXX XXX XXX KX XXXXXXXXXXXXXXXXX SECTION
XXXXXXXXXKXXXKXXXKXXXKXXXK XXX XXX XXX XX KX XX KXXKKXXX
P XXXXXXXXXXXXX END XXXXXXXXXXXXXXXXXXXXX};

TasksDeclaration

3kkk ok ke ke ke kk kb ok ok k ok k sk ko ok

; Define the tasks priorities here (priorities : 0-255)
;Tasklpriority DB D'1!'
;Task2priority DB Dy

VARIABLE TaskNumber=1

WHILE TaskNumber <= TOTAL TASKS
_Task#v (TaskNumber) priority code
Task#v (TaskNumber)priority DB #v (TaskNumber)

GLOBAL Task#v (TaskNumber)priority
;Export the Tasks to all files

EXTERN Task#v(TaskNumber)
TaskNumber+=1

ENDW
7 D2XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXKXXKXXXD
XARXXKRXKKXRXKKRX KK RK K XXX KX XXX LXK KX K KLRKK

xxx SECTION

XXX END XXXXXXXXXXXX

;03 = i

ek ok e ek ok sk ek ok sk ke ok ok e ok ok ok

#DEFINE HWstackDepth D'10'

#DEFINE MATHDATASIZE BLZ:Y

#DEFINE DELAYDATSIZE D'0’ ; DELAYDAT1, DELAYDAT2:DelayCounterl, DelayCounter2
#DEFINE TMPDATASIZE D'2! 7i__tmp 0

#DEFINE SWstackDepth D'20'

#DEFINE STACKSIZE D'1'+ D'3'*HWstackDepth +D'1'+D'1'+D'1'+ D'12' + D'2' + SWstackDepth

81

+MATHDATASIZE + DELAYDATSIZE+ TMPDATASIZE

; About STACKSIZE:

7 The stack size depends on how many registers are required to be saved

; For 1:STKPTR,31*3:Stack Spaces, 1:BSR, 1:STATUS, 1:WREG, 12:extra

; 9 SFRs Extention: PRODH-L (2 SFRs), FSROH-L,FSR1H-L,FSR2H-L(6 SFRs), TBLPTR(U-H-L) (3 SFRs),
TABLAT (1)

; 2: PCLATU, PCLATH

; SWstackDepth: How many bytes are required to be saved from the software stack (This SW is
implemented by C18 compiler)

;Reserve Space for stacks depending on the definition of tasks
;Declaring Scratch memory section for storing taskl variables when task switching
;Stack size = 'STACKSIZE' Byte

;Reserve Space for stacks depending on the definition of tasks
VARIABLE TaskNumber=1
WHILE TaskNumber<=TOTAL_TASKS

_STACK#v (TaskNumber) UDATA ;Declaring Scratch memory section for storing taskl
variables when task switching
STACK#v (TaskNumber) RES STACKSIZE
TaskNumber+=1
ENDW

; Declare Stacks' pointers

;Reserve Space for stack pointers depending on the definition of tasks
_StackPointersSpace UDATA

StackPointersArray RES (TOTAL_TASKS*2)

7 O 3XAXXXAKXAXXAXXXXXXXXX XXX XXX XXXXXXXXXXXXXXKKXXXXXXXXXX SECTION
XXXAXXXAXXXARXXXARXXXARXXXARXXXXXXXXXXX X XXX X XXX XXKXRK

PXX < <xxX END X (XXXX. X XX;
704
---------- i
TasksCounters
B Y
—
""""" ;
#DEFINE CounterSize 2 ;Support up to 2716 = 65'000
;Counter Continuously incremented (Every TIMERO Interrupt)!
_KernelCounter UDATA_ACS
KernelCounter RES CounterSize
Global KernelCounter
VARIABLE TaskNumber=1
_TasksCounters UDATA ;Declaring Counters for each Task
WHILE TaskNumber<=TOTAL TASKS
Counter#v (TaskNumber) RES CounterSize
GLOBAL Counter#v (TaskNumber)
TaskNumber+=1
ENDW

7 D4 XXXXXXXXAXXKX X XXX XXX XX XXX XXX XXX XXX XXX XXXXXXXXXXXXX SECTION

< <X H
FXXXXXXXXXXXXK END XXXXXXXXXXXXXXXXXXXXX?

;
TasksStates

3 ke kokk ke ok sk kokok ok okok ok ok ok kok ok ok

#DEFINE READY 1
#DEFINE RUNNING 2
#DEFINE SUSPENDED 3
#DEFINE TERMINATED 4
TaskNumber=1
_TasksStates UDATA_ACS ;Declaring State for each Task
WHILE TaskNumber<=TOTAL TASKS
State#v (TaskNumber) RES 1}
GLOBAL State#v (TaskNumber)
TaskNumber+=1
ENDW

7 05X XXX XXKXKXXXXXXXXXXX XXX XXX XXXXXXXXXXXXXXKKXXXXXXXXXX SECTION
XXXAXXXAXXXARXXXARXXXARXXXXRXXX XXX XX XXX XXX XX XXX XXKXKK

82

4. RTOSkernel.asm

;Include Files;

#include <pl8cxxx.inc>
#include "RTOSdeclarations.inc"
#include "RTOSMacros.inc"

EXTERN LowPriorityISR,HighPriorityISR, _stack
7 XXAAXXXXXXXXXXXXX XXX XX XXX XXX XXX XXX XXX XX XXX XXX XX XX AKX XXX XX XX XXX XXX XXX XXX XXX XXX XX XXX XX XX KKK
7 XXXXXXXXXXXXXXX XXX XXX XXX XX XX XXX XXX XXKKXKXK S

;Interrupt Vectors High, Low;
;Note: STATUS->STATUStemp & WREG->Wtemp for High Interrupt;
;Low Interrupt Vector to LowlInterruptService;

;
InterruptHighV CODE 0x08
SaveWREGandSTATUSregisters:
MOVFF STATUS, STATUStemp ; Save STATUS and WREG before entering ISR
MOVWF Wtemp, ACCESS
goto HighInterruptServiceRoutine
InterruptLowV CODE 0x18
SaveWREGandSTATUSRegisters:
goto LowPriorityISR

[2:2.9.0.9.9.9.0.9.9.9.0.9.9.9.0.9.9.9.0.9.99.0.9.99.09.99.09.99.09.99.09.9909.9009.9009.99909.99909399099990999099909990999.0999.0999¢]
[2:9.0.9.6.9.0.9.6.9.0.9.6.9.9.9.6.9.9.9.6.9.9.9.6.9.9.9.9.9.9.9.69.9.9.69¢6.9.4

;RTOS INITIALIZATION STARTS HERE

~

InitRTOS:

GLOBAL InitRTOS
7 ;
BACKupImportantRegisters: ; WHY THIS IS DONE?: ONCE C18 FINISH ITS INITIALIZATION, WE
NEED TO

INITIALIZE TASKS SO THAT THEY FEEL THERE IS NONE BESIDE

THEM
I.E. JUST IF THERE IS ONE TASK ONLY
SO , WHAT EVER CHANGES HAPPEN TO OUR IMPORTANT REGISTERS

DURING RTOS STARTUP
HAS TO BE RESTORED WHEN TASKS ARE CALLED (FOR THE FIRST

TIME)
; NOTE: only STATUS, WREG and FSR0O are affected during RTOS
initialization
i
MOVFF STATUS, STATUStemp ; Save STATUS and WREG before entering RTOS
MOVWF Wtemp, ACCESS
BackupFSROregister:
MOVFF FSROH, FSROHtemp
MOVFF FSROL, FSROLtemp
7 7
InitKernelTimer:
SetTimer0:
DisableGlobalInt:
MOVLW 0x20 ;disable global and enable TMRO interrupt
MOVWF INTCON, A
SetTMROasHighPriorityInt:
MOVLW 0x84 ;TMRO high priority
MOVWE INTCONZ, A
EnablePriorityLevel:
BSF RCON, IPEN,A ;jenable priority levels
CLRF TMROH, A ;clear timer
CLRF TMROL, A ;clear timer
SetlmsTMRO:
MOVLW B'11000100"
MOVWF TOCON ;set up timer0 - prescaler 1:16
EnableGloballInt:
BSF INTCON, GIEH, A ;enable interrupts

;
InitializeAllStacksOFtheTASKs:
InitializeStacks

83

InitializeStackPointersArray

; 7

ClearKernelCounter:

CLRF KernelCounter, ACCESS ;Clear High
CLRF KernelCounter+1,ACCESS ;Clear Low
ReturnFSROregister:

;Return Important Registers Initial Values
MOVFEF FSROHtemp, FSROH
MOVFF FSROLtemp, FSROL
ReturnSTATUSwregRegister:

MOVFF STATUStemp, STATUS ; Restore STATUS and WREG before LEAVing ISR
MOVFF Wtemp, WREG

CallTaskl:
SetRunningTask . ;Taskl is running

LaunchFirstTask:
GOTO

P XXXXXXXXXXXXXXXKXXXXX

XXXXXXXXXX 7

;High Priority Interrupt Service ;

;Kernel Code;

HighInterruptServiceRoutine:

CheckInterruptSource:
BTFSS INTCON, TMROIF, A ;check
GOTO HighPriorityISR

h

or TMRO overflow

TimerO0ISR:

DisableGloballInterrupt:

BCF INTCON,GIEH,ACCESS ;disable interrupts
RechargeTimer:

BCF INTCON, TMROIF, A ;clear interrupt flag

MOVLW D'100’ ;TMROL = 256-156 -> for 1 mSec

MOVWF TMROL

; ;
UpdateKernelCounter:
IncrementKernelCounter

InvokeAlarmsManager:
GOTO AlarmsManager

InvokeTaskScheduler:
GOTO TaskScheduler

InvokeTaskSwitcher:
GOTO TaskSwitcher

84

BackupFSROregisters:
MOVFF FSROH, FSROHtemp
MOVFF FSROL, FSROLtemp

DetermineRunningTask:

DECF RUNNINGTASK, W, ACCESS
PointToSTACKofRUNNINGtask:

RLNCF WREG, W, ACCESS

LFSR 0,StackPointersArray

MOVFF PLUSWO, Copytempl

INCF WREG, W, ACCESS

MOVEF PLUSWO, Copytemp2

MOVFF Copytempl, FSROH

MOVFF Copytemp2, FSROL
SaveCurrentTaskContext:

StoreContextIn
IncrementRunningTask:

INCF RUNNINGTASK, F,ACCESS

MOVLW TOTAL TASKS

CPFSGT RUNNINGTASK, ACCESS

BRA ContinueWithNextTask

SetRunningTask !
ContinueWithNextTask:

DECF RUNNINGTASK, W, ACCESS
PointToSTACKofNEXTtask:

RLNCF WREG, W, ACCESS

LFSR 0,StackPointersArray

MOVFF PLUSWO, Copytempl

INCF WREG, W, ACCESS

MOVFF PLUSWO, Copytemp2

MOVFF Copytempl, FSROH

MOVFF Copytemp2, FSROL

RestoreContextFrom

RestoreBackupRegisters:
RestoringFSROregisters:

MOVFF FSROHtemp, FSROH

MOVFF FSROLtemp, FSROL
RestoringWREGandSTATUSregisters:

MOVFF STATUStemp, STATUS ;

MOVFF Wtemp, WREG

FinishSwitching:
EnableGlobalIntBack:

BSF INTCON,GIEH,ACCESS ;enable interrupts
EscapeTimerQISR:

RETFIE 0

y language program

85

5. ISR.cfile

#pragma interrupt HighPriorityISR
void HighPriorityISR (void)
{
// Write your ISR here (for high priority interrupt)
1

#pragma interruptlow LowPriorityISR
void LowPriorityISR (veoid)
{
// Write your ISR here (low priority interrupt)
1

6. main.c file

#include <plB8f458.h>
#include "D:\codes\IO\IO.h" //FUNCTIONs FOR IO Initialization as IO

extern void InitRTOS (void);
extern void Taskl (void);

void init (veid);

void init (void)
{

InitializeIO();
}

void main (void)

!
i

_init ()
// _asm bra Taskl _endasm
_asm goto InitRTOS _endasm

}

86

