
 i

DEVELOPMENT OF REAL TIME OPERATING SYSTEM FOR PIC18F

MICROCONTROLLERS FOR EDUCATIONAL PURPOSES

By

MOHAMED TAG ELSIR MOHAMED ELHUSSEIN

FINAL REPORT

Submitted to the Electrical and Electronics Engineering Programme

in Partial Fulfillment of the Requirements

 for the Degree

Bachelor of Engineering (Hons)

(Electrical and Electronics Engineering)

Universiti Teknologi Petronas

 Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

 Copyright 2009

by

Mohamed Tag Elsir, 2009

 ii

CERTIFICATION OF APPROVAL

DEVELOPMENT OF REAL TIME OPERATING SYSTEM FOR PIC18F

MICROCONTROLLER FOR EDUCATIONAL PURPOSES

By

MOHAMED TAG ELSIR MOHAMED ELHUSSEIN

A project dissertation submitted to the

Electrical & Electronics Engineering Programme

Universiti Teknologi PETRONAS

in partial fulfilment of the requirement for the

Bachelor of Engineering (Hons)

(Electrical & Electronics Engineering)

Approved:

Mr. Patrick Sebastian

Project Co-supervisor

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

December 2009

 iii

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that

the original work is my own except as specified in the references and

acknowledgements, and that the original work contained herein have not been

undertaken or done by unspecified sources or persons.

Mohamed Tag Elsir Mohamed Elhussein

 iv

ABSTRACT

Real Time Operating System (RTOS) is a small operating system

designed to manage the peripherals of Microcontrollers and exhibit a low level

layer to enhance the parallel execution of multiple programs. In addition to that,

RTOSes are most of concern about guarantee the processing at real time.

This project aims to implement and develop RTOS on PIC18Fxxx family. This

RTOS is to be developed under MPLAB IDE integrated development

environment. The kernel of this RTOS is written in Assembly language while the

users may use both assembly and C to develop their applications. A previous

RTOS project called PICos18 developed by Pragamtec inc. is being considered.

The selection of this system is due to its free license and the availability of its

documentations. PICos18 is based on OSEK/VDX (German/French industrial

standards for operating systems).

The main contribution in this project is first, by developing RTOS to review and

demonstrate the concept of RTOS and secondly, by developing drivers and

application compatible with the developed RTOS and finally presenting the

developed RTOS in educational form for future use as a teaching tool in

microcontroller-based courses.

 v

ACKNOWLEDGEMENTS

Foremost, my utmost gratitude is to ALLAH the All-Mighty for his

uncountable graces upon me and for the successful completion of this project in

due course of time.

Enormous thanks to my family members for their priceless support and

continuous encouragement. Special gratitude is forwarded to my Mother for her

continuous and unlimited support that kept me going. There is no words can fulfill

her effort.

A respectful gratitude goes to my supervisor, AP. Dr. Yap Vooi Voon and

my co-supervisor Mr. Patrick Sebastian for their full support in the completion of

this project. Their constant guidance, helpful comments and suggestions have

helped me not only to complete but also to enhance the expected results of the

project. Their kindness, valuable advices, friendly approach and patience will

always be appreciated.

I would like also to express my thanks for the FYP committee for their

guidance and management in making all projects run smoothly. A special

gratitude is conveyed to Siti Hawa Tahir for her effort on monitoring and

checking the reports to match the university‟s standards.

Lastly, great appreciation is to my friends, who were a constant source of

support during my work. To all UTP lecturers, students and staff and to all whose

their names are not mentioned here but they provided help directly or indirectly.

 vi

TABLE OF CONTENTS

ABSTRACT .. IV

TABLE OF CONTENTS .. VI

LIST OF FIGURES .. IX

LIST OF TABLES .. XI

LIST OF ABBREVIATIONS ... XII

CHAPTER 1 INTRODUCTION .. 1

1.1.Background of Study .. 1

1.2.Problem Statement .. 1

1.3.Objective and Scope of Study ... 2

CHAPTER 2 LITERATURE REVIEW ... 4

2.1.Operating System (OS) ... 4

2.2.RTOS Concept .. 4

2.3.Multitasking Environment .. 5

2.4.RTOS Kernel ... 5

2.4.1.TASK SWITCHER .. 6

2.4.2.TASK SCHEDULER .. 6

2.4.3.OTHER RTOS SERVICES MANAGER .. 6

 vii

2.5.RTOS Scheduling Algorithms .. 7

2.6.PIC18Fxxx microcontroller System .. 8

2.6.1.PIC18F OSCILLATOR... 10

2.6.2.PIC18F SYSTEM ARCHITECTURE ... 12

2.6.3.CPU AND ALU OF PIC18 .. 17

2.6.4.MEMORIES OF PIC18 .. 19

2.6.5.INTERRUPTS ... 20

2.6.6.INPUT /OUTPUT PORTS ... 20

2.7.MPLAB C18 Compiler language suite ... 21

CHAPTER 3 METHODOLOGY ... 23

3.1.Procedure Identification .. 23

3.1.1.PIC18FXXX SYSTEM STUDY ... 24

3.1.2.STUDY OF RTOS CONCEPTS .. 24

3.1.3.RUNNING PICOS18 ON PIC18FXXX DEVICE 24

3.1.4.DEVELOPMENT OF RTOS .. 25

3.1.5.RTOS TESTING AND TROUBLESHOOTING 25

3.2.Equipment and Tools .. 25

3.2.1.PIC18FXXX STARTING KIT ... 26

3.2.2.PICKIT 2 PROGRAMMER .. 26

3.2.3.MPLAB IDE ... 26

3.2.4.MPLAB SIM SIMULATOR .. 27

3.2.5.PICKIT 2 DEBUGGER .. 27

3.2.6.C18 C COMPILER ... 28

 viii

CHAPTER 4 RESULTS AND DISCUSSION ... 29

4.1 RESULTS ... 29

4.1.1.ASSEMBLY VERSION OF TAJ RTOS 29

4.1.2.C VERSION OF TAJ RTOS.. 36

4.1.3.TESTING FOR TAJ RTOS ... 39

4.2 DISCUSSION ... 49

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS 51

5.1.CONCLUSION ... 51

5.2.RECOMMENDATIONS .. 52

REFERENCES .. 53

APPENDICIES .. 55

 ix

LIST OF FIGURES

Figure 1: PIC18F458 microcontroller pins alignment [3] ... 9

Figure 2: Device Clock source ... 12

Figure 3: Comparison of Harvard and von Neumann architectures 13

Figure 4: General Enhanced Microcontroller block diagram 16

Figure 5: Operation of ALU and W register .. 18

Figure 6: Status Register .. 19

Figure 7: Typical I/O port .. 21

Figure 8: General Flow chart of Project work ... 23

Figure 9: PIC18F developing kit [9] .. 26

Figure 10: PIC18F programmer [10] ... 26

Figure 11: Snapshot for MPLAB IDE ... 27

Figure 12: Taj RTOS Kernel for assembly environment ... 29

Figure 13: Flow chart of Taj RTOS kernel operation .. 30

Figure 14: Taj RTOS codes (Assembly Version) .. 31

Figure 15: Switching mechanism ... 34

Figure 16: Memory usage for 3 Tasks ... 34

Figure 17: Time elapsed during switching mechanism = 127 µsecond 35

Figure 18: The memory usage for Maximum number of tasks supported=26 36

Figure 19: Comparison between C and Assembly versions of task switcher 39

Figure 20: Project debugging with a “break point” at the start of switching code 40

Figure 21: The circuit with LEDs, Keypad, LCD and the debugger connected 41

Figure 22: Task1 -only- is being processed ... 41

Figure 23: Task2 is -only- being processed ... 42

Figure 24: Task3 is -only- being processed ... 42

Figure 25 PIC18F board layout .. 56

Figure 26: Board connection with PICkit 2 programmer .. 57

Figure 27: Schematic diagram for PIC18F board .. 58

Figure 28: Board layout of PIC programmer and its parts' functions 59

file:///D:/Academic/year4sem2/FYP%20II/04%20Reports/2.3%20Final%20Report/Development%20of%20RTOS%20on%20PIC18F%20Microcontrollers.docx%23_Toc245157995
file:///D:/Academic/year4sem2/FYP%20II/04%20Reports/2.3%20Final%20Report/Development%20of%20RTOS%20on%20PIC18F%20Microcontrollers.docx%23_Toc245158000

 x

Figure 29: Programmer‟s connection with the development board 60

Figure 30: PIC18F458 block diagram .. 63

Figure 31: Program memory map for 18F458/452 .. 64

Figure 32: Data Memory Map for 18F458 .. 65

Figure 33: PIC18Fxx8 devices' features .. 66

Figure 34: Interrupt schematic diagram for 18F458 .. 67

 xi

LIST OF TABLES

Table 1: PIC18Fxx8 devices' features [3] .. 10

Table 2: Program and data memory for PIC18F458 [3] .. 10

Table 3: Timer0 intialization and the associated registers setting 32

Table 4: Vulnerable registers ... 32

Table 5: Stack Pointers Array for 3 Tasks ... 33

Table 6: Vulnerable registers for C environment... 38

Table 7: Taj RTOS performance for C version.. 39

Table 8: PICos18 and Taj RTOS comparison .. 50

Table 9: The supported PICs for PIC programmer Error! Bookmark not defined.

Table 10: Integer data types in C18 compiler .. 61

Table 11: Floating Type in C18 compiler .. 61

Table 12: "near" and "far" qualifiers in C18 .. 62

Table 13: Pointer size and "rom and ram" qualifiers ... 62

Table 14: Command line summary for C18 compiler Error! Bookmark not defined.

 xii

LIST OF ABBREVIATIONS

A/D: Analogue to Digital

CAN: Controller Area Network

D/A: Digital to Analogue

OS: Operating System

RTOS: Real Time Operating System

USB: Universal Serial Bus

USART: Addressable Universal Asynchronous Receiver/Transmitter.

PIC: Peripheral Interface Controller

PICmicro: PIC microcontroller

 1

CHAPTER 1

INTRODUCTION

1.1.Background of Study

Microcontrollers are widely used in embedded systems to control and manage

the operation of devices, and other peripherals. There are many types of

microcontrollers available in the market, however, the PIC16 and PIC18

microcontrollers -manufactured by Microchip- are the famous ones. They are

featured with very useful hardware modules and peripherals (e.g. A/D converters,

Timers, Interrupts, serial communication (I
2
C, SPI, USB, CAN ...) etc. Most of

microcontroller-based applications are programmed using Assembly and C

languages. The conventional approach of programming microcontrollers is by

using the round-robin programming methodology. In round robin programming

methodology, programmers write all the required instructions and tasks inside an

infinite loop which is continuously executing. So, round-robin programming

approach does not provide convenient programming environment and does not

help in reducing development time when the applications get complex.

Additionally, round robin programming does not guarantee real time processing

for tasks because it is probable that the microcontroller gets busy with checking

other less important tasks while another time-critical task needs microcontroller

attention. For the reasons mentioned and others, Real Time Operating System

(RTOS) is developed. However, the implementation of RTOS in such tight

environments requires additional care for the overhead processing time and the

utilization of the memory within the microcontroller.

1.2. Problem Statement

In this project, a RTOS is expected to be implemented on PIC18Fxxx

environment. The proposed system should exhibit the concept of RTOS and

 2

should demonstrate multitasking processing, tasks scheduling, time and events

management in multiple tasks processing environment.

It is envisaged that software drivers would be developed to run other peripherals

which interface with the microcontroller.

1.3. Objective and Scope of Study

The objectives of the project are:

 To develop RTOS for Microchip Peripheral interface controllers (PIC)

 To run the developed RTOS on one of the PIC devices (PIC18F452/8 is

proposed).

 To develop drivers compatible with the developed RTOS to utilize the

PIC‟s peripherals.

 To create an application relies on the new implemented system and

demonstrate its functionality.

The scope of this project can be partitioned into 3 different complementing parts.

The first part is about the understanding of the architecture and the operation of

the high performance PIC microcontrollers (PIC18Fxxx series). The second part

is about understanding the operational and structural concept of RTOS and the

typical services which RTOS provides. The third part is about developing the

RTOS on one of the PIC18F series. At the early phases of this project, the concern

was held on studying the PIC18F452 microcontroller. The availability of this

microcontroller in UTP store made it a good choice. An overview look has been

made on the architecture of this PIC including: device hardware features, flash

and data memories, timers, interrupt, I/O ports, instruction set and assembly

programming procedure. For practical and economical considerations; MPLAB

IDE and C18 C compiler were the choice as programming development

environment. A project called PICos18 developed by Pragmatic Corporation has

been chosen as a typical example for understanding RTOS. The first semester of

final year will be dedicated for research and study about the programming practice

of PIC18Fxxx and familiarity with MPLAB IDE under MPASM assembler and

C18 compiler. At the end of the first semester, the operational concept of RTOS

 3

on PIC18Fxxx device is to be demonstrated. The second semester is dedicated for

codes development and programs testing so that at the end of the semester, the full

functioning RTOS on PIC18Fxxx with other interfaced peripherals are to be

presented.

 4

CHAPTER 2

LITERATURE REVIEW

2.1. Operating System (OS)

An operating system is a program that controls the execution of application

programs and acts as an interface between applications and the computer (or

microprocessor/microcontroller system) hardware. It can be thought of having 3

objectives:

 Convenience: An operating system makes a computer more convenient to

use.

 Efficiency: An operating system allows the computer system resources to

be used in an efficient manner.

 Ability to evolve: An operating system should be constructed in such a

way as to permit the effective development, testing, and introduction of

new functions without interfering with service [4].

2.2. RTOS Concept

Real time operating systems are operating systems specially made to be used

in time-critical environment where data must be processed extremely quickly [4].

An RTOS facilitates the creation of a real-time system, but does not guarantee the

final result will be real-time; this requires correct development of the software. An

RTOS does not necessarily have high throughput; rather, an RTOS provides

facilities which, if used properly, guarantee deadlines can be met generally or

deterministically (known as soft or hard real-time, respectively). An RTOS will

typically use specialized scheduling algorithms in order to provide the real-time

developer with the tools necessary to produce deterministic behavior in the final

system. An RTOS is valued more for how quickly and/or predictably it can

 5

respond to a particular event than for the amount of work it can perform over a

given period of time. Key factors in an RTOS are therefore minimal interrupt

latency and a minimal task switching latency [12].

2.3. Multitasking Environment

Multitasking is the processing of multiple tasks in a way that they are

seemingly executed simultaneously on the same microcontroller CPU. This is

achieved by sharing the time of CPU so that it executes one task per CPU time

and switching the processing to cover all the tasks.

2.4. RTOS Kernel

RTOS kernel is the lowest-level and the core of the software layer which

adapts the microcontroller to the real-time and multitasking processing

environment. The functions provided by the kernel can be further divided in

broader terms as follows:

1. The ability to switch from one task to another based on interrupt or

software driven events (i.e. Task Switcher). This is the core of

multitasking.

2. Usually provides some way of determining which tasks should be running

based on priority (i.e. Task Scheduler)

3. Provides other services for the convenience of development (e.g. timing

and alarming functions to entertain RTOS with delays and time

management facilities (i.e. Alarm manager), events-based functions:

SetEvent and WaitEvent functions (i.e. event manager), and internal

communication between tasks (i.e. message manager).

In the following subsection, some the main kernel services will be discussed [13].

 6

2.4.1. Task switcher

Task switcher is a part of kernel code which provides the RTOS with the

mechanism to switch the execution of tasks on interrupt bases. Task switcher is

the sole of kernel to achieve the multi-tasking processing.

2.4.2. Task scheduler

The Task Scheduler controls the execution of tasks, and can make them run in

a very timely and responsive fashion based on their priorities and readiness.

Most RTOSs do their scheduling of tasks using a scheme called "priority-based

preemptive scheduling." Each task in a software application must be assigned a

priority, with higher priority values representing the need for quicker

responsiveness. Very quick responsiveness is made possible by the "preemptive"

nature of the task scheduling. "Preemptive" means that the scheduler is allowed to

stop any task at any point in its execution, if it determines that another task needs

to run immediately.

The basic rule that governs priority-based preemptive scheduling is that at every

moment in time, "The Highest Priority Task that is ready to run will be the Task

that must be running." In other words, if both a low-priority task and a higher-

priority task are ready to run, the scheduler will allow the higher-priority task to

run first. The low-priority task will only get to run after the higher-priority task

has finished with its current work.

2.4.3. Other RTOS services manager

For the RTOS to be more convenient for complex tasks development, other

timing and communication services have to be available. For this reason, some

RTOSes have events, alarms, and tasks‟ communication functions served by their

kernels. However, implementing this feature adds overhead processing and

increase kernel interrupt latency time. Moreover, these services increase the RAM

usage by RTOS. So, it is not always optimal to have them.

 7

2.5. RTOS Scheduling Algorithms

As mentioned before, the “real-time” term in the acronym “RTOS” indicates

the essential role of time in these particular systems. Typically, one or more

physical devices external to the microcontroller generate stimuli, and the

microcontroller must react appropriately to them within a fixed short amount of

time [5].

In more broad details, Real-time systems can generally be categorized as hard

real time, meaning there are absolute deadlines that must be met, or else, and soft

real time, meaning that missing an occasional deadline is tolerable. In both cases,

real-time behaviour is achieved by dividing the program into a number of

processes, each of whose behaviour is predictable and known in advance. These

processes are supposingly short lived and can run to completion in under a

second. When an external event is detected, it is the job of the scheduler to

schedule the processes in such a way as that all deadlines are met.

The events that a real-time system may have to respond to can be further

categorized as periodic (occurring at regular intervals) or aperiodic (occurring

unpredictably). A system may have to respond to multiple periodic event steams.

Depending on how much time each event requires for processing, it may not even

be possible to handle them all. For example, if there are m periodic events and

event i occurs with period Pi and requires Ci seconds of CPU time to handle each

event, then the load can only be handled if:

A real-time system that meets this criterion is said to be schedulable.

Additionally, based on the time when scheduling decisions are taken, scheduling

algorithms can be further divided in two categories: dynamic and static. The

former makes its scheduling decisions at run time; the latter makes them before

the system starts running.

This section will consider a few common dynamic real-time scheduling

algorithms. The classic algorithm is the rate monotonic algorithm (Liu and

Layland, 1973). In advance, it assigns to each process a priority proportional to

 8

the frequency of occurrence of its triggering event. For example, a process to run

every 20 msec gets priority 50 and a process to run every 100 msec gets priority

10. At run time, the scheduler always runs the highest priority ready process, pre-

empting the running process if need be. Liu and Layland proved that this

algorithm is optimal.

Another popular real-time scheduling algorithm is earliest deadline first.

Whenever an event is detected, its process is added to the list of ready processes.

The list is kept sorted by deadline, which for a periodic event is the next

occurrence of the event. The algorithm runs the first process on the list, the one

with the closest deadline.

A third algorithm first computes for each process the amount of time it has to

spare, called its laxity. If a process requires 200 ms and must be finished in 250

millisecond, its laxity is 50 msec. The algorithm, called least laxity, chooses the

process with the smallest amount of time to spare [5].

While in theory it is possible to turn a general-purpose operating system into a

real-time system by using one of these scheduling algorithms, in practice the

context-switching overhead of general-purpose systems is so large that real-time

performance can only be achieved for applications with easy time constraints. As

a consequence, most real-time work uses special real-time operating systems that

have certain important properties. Typically these include a small size, fast

interrupt time, rapid context switch, and short interval during which interrupts are

disabled, and the ability to manage multiple timers in the millisecond or

microsecond range [5].

2.6. PIC18Fxxx microcontroller System

Microcontroller is a small computer system on a single chip consisting of a

relatively simple CPU combined with support functions such as interrupts,

timers, watchdog timer, serial and analog I/O etc.

 9

PIC18Fxxx are high performance microcontrollers built with enhanced flash

memory technology with 16 bits instruction word length and can run at 40MHz

oscillator frequency.

PIC18Fxxx microcontrollers have several devices (e.g. 18F452, 18F458,

18F4550) each has its own special features (CAN module, USB module, etc...)

but the set of instructions used are still the same.

In this project, the general purpose microcontroller 18F452 and 18F458

(microcontroller with CAN module) will be used.

The following figure shows the pins alignment of 18F458 microcontroller:

Figure 1: PIC18F458 microcontroller pins alignment [3]

This microcontroller is characterized by several features which can be

summarized in the following table:

 10

Table 1: PIC18Fxx8 devices' features [3]

18F458 and 18F452 microcontrollers have relatively large data and program

memories. This is shown in the following table:

Table 2: Program and data memory for PIC18F458 [3]

In the following sections, more details about PIC18F devices will be discussed.

2.6.1. PIC18F oscillator

The device system clock is required for the device to execute instructions and

for the peripherals to function. Four device system clock periods (TSCLK) generate

one internal instruction clock cycle (TCY).

 11

The device system clock (TSCLK) is derived from an external system clock. This

external system clock can be generated in one of eight different oscillator modes.

The device configuration bits select the oscillator mode. Device configuration bits

are non-volatile memory locations and the operating mode is determined by the

value written during device programming.

The oscillator modes are:

 EC : External Clock

 ECIO : External Clock with I/O pin enabled

 LP : Low Frequency (Power) Crystal XT Crystal/Resonator HS

High Speed Crystal/Resonator

 RC : External Resistor/Capacitor

 RCIO : External Resistor/Capacitor with I/O pin enabled

 HS4 : High Speed Crystal/Resonator with 4x frequency PLL multiplier

enabled, figure 2.2 shows device clock source schematic

Multiple oscillator circuits can be implemented on an Enhanced Architecture

device. There is the default oscillator (OSC1), and additional oscillators may be

available, such as the Timer1 oscillator.

Software may allow these auxiliary oscillators to be switched in as the device

oscillator. The Timer1 oscillator is a low frequency (low power) oscillator that is

designed to be operated at 32 kHz. Figure2-1 shows a block diagram of the

oscillator options. The output signal of the Timer1 oscillator circuitry is a low

frequency (power) clock source (TT1P).

The source for the device system clock can be switched from the default clock

(TSCLK) to the 32 kHz-clock low power clock source (TT1P) under software

control. Switching to the 32kHz low frequency (power) clock source from any of

the eight default clock sources may allow power saving.

These oscillator options are made available to allow a single device type the

flexibility to fit applications with different oscillator requirements. The RC

oscillator option saves system cost, while the LP crystal option saves power. The

HS4 option allows frequency of incoming crystal oscillator signal to be multiplied

by four for higher internal clock frequency. This is useful for customers who are

concerned with EMI due to high frequency crystals. The device configuration bits

are used to select these various options.

 12

Figure 2: Device Clock source

2.6.2. PIC18F System Architecture

The high performance of the PIC18CXXX devices can be attributed to a number

of architectural features commonly found in RISC microprocessors. These

include:

 Harvard architecture

 Long Word Instructions

 Single Word Instructions

 Single Cycle Instructions

 Instruction Pipelining

 Reduced Instruction Set

 Register File Architecture

 Orthogonal (Symmetric) Instructions. Figure 4.3 shows a general block

diagram for PIC18CXXX devices.

a) Harvard Architecture:

Harvard architecture has the program memory and data memory as separate

memories which are accessed from separate buses. This improves bandwidth over

 13

traditional von Neumann architecture in which program and data are fetched from

the same memory using the same bus.

To execute an instruction, a von Neumann machine must make one or more

(generally more) accesses across the 8-bit bus to fetch the instruction. Then data

may need to be fetched, operated on and possibly written. As can be seen from

this description, the bus can become extremely congested. In Harvard

architecture, the instructions fetched in a single instruction cycle (all 16 bits).

While the program memory is being accessed, the data memory is on an

independent bus and can be read and written. These separated busses allow one

instruction to execute, while the next instruction is fetched. A comparison of

Harvard and von Neumann architectures is shown in figure below.

Figure 3: Comparison of Harvard and von Neumann architectures

b) Long Word Instructions:

Long word instructions have a wider (more bits) instruction bus than the 8-bit

data memory bus. This is possible because the two buses are separate. This allows

instructions to be sized differently than the 8-bit wide data word and allows a

more efficient use of the program memory, since the program memory width is

optimized to the architectural requirements.

c) Single Word Instructions:

Single word instruction op-codes are 16-bits wide making it possible to have

all but a few instructions be single word instructions. A 16-bit wide program

 14

memory access bus fetches a 16-bit instruction in a single cycle. With single word

instructions, the number of words of program memory locations equals the

number of instructions for the device. This means that all locations are valid

instructions. Typically in the von Neumann architecture, most instructions are

multi-byte. In general, a device with 4 Kbytes of program memory would allow

approximately 2K of instructions. This 2:1 ratio is generalized and dependent on

the application code. Since each instruction may take multiple bytes, there is no

assurance that each location is a valid instruction.

d) Double Word Instructions:

Some operations require more information than what can be stored in the16

bits of a program memory location. These operations require a double word

instruction, and are therefore 32-bits wide. Instructions that require this second

instruction word are:

 Memory to memory move instruction (12 bits for each RAM address) -

MOVFF SourceReg, DestReg

 Literal value to FSR move instruction (12 bits for data and 2 bits for FSR

to load) - LFSR FSR#, Address

 Call and goto operations (20 bits for address)

- CALL Address

- GOTO Address

The first word indicates to the CPU that the next program memory location is the

additional information for this instruction and not an instruction. If the CPU tries

to execute the second word of an instruction (due to a software modified PC

pointing to that location as an instruction), the fetched data is executed as a NOP.

Double word instruction execution is not split between the two TCY cycles by an

interrupt request.

That is, when an interrupt request occurs during the execution of a double word

instruction, the execution of the instruction is completed before the processor

vectors to the interrupt address. The interrupt latency is preserved.

e) Instruction Pipeline:

The instruction pipeline is a two-stage pipeline that overlaps the fetch and

execution of instructions. The fetch of the instruction takes one TCY, while the

 15

execution takes another TCY. However, due to the overlap of the fetch of current

instruction and execution of previous instruction, an instruction is fetched and

another instruction is executed every TCY.

f) Single Cycle Instructions:

With the program memory bus being 16-bits wide, the entire instruction is

fetched in a single machine cycle (TCY), except for double word instructions. The

instruction contains all the information required and is executed in a single cycle.

There may be a one cycle delay in execution if the result of the instruction

modified the contents of the program counter. This requires the pipeline to be

flushed and a new instruction to be fetched.

g) Two Cycle Instructions:

Double word instructions require two cycles to execute, since all the required

information is in the 32 bits.

h) Reduced Instruction Set:

When an instruction set is well designed and highly orthogonal (symmetric),

fewer instructions are required to perform all needed tasks. With fewer

instructions, the whole set can be more rapidly learned.

i) Register File Architecture:

The register files/data memory can be directly or indirectly addressed. All

special function registers, including the program counter, are mapped in the data

memory.

j) Orthogonal (Symmetric) Instructions:

Orthogonal instructions make it possible to carry out any operation on any

register using any addressing mode. This symmetrical nature and lack of “special

instructions” make programming simple yet efficient. In addition, the learning

curve is reduced significantly. The Enhanced MCU instruction set uses only three

non-register oriented instructions, which are used for two of the cores features.

One is the SLEEP instruction, which places the device into the lowest power use

mode. The second is the CLRWDT instruction, which verifies the chip is

operating properly by preventing the on-chip Watchdog Timer (WDT) from

 16

overflowing and resetting the device. The third is the RESET instruction, which

resets the device.

Figure 4: General Enhanced Microcontroller block diagram

 17

2.6.3. CPU and ALU of PIC18

The Central Processing Unit (CPU) is responsible for using the information in

the program memory (instructions) to control the operation of the device. Many of

these instructions operate on data memory. To operate on data memory, the

Arithmetic Logical Unit (ALU) is required. In addition to performing arithmetical

and logical operations, the ALU controls the state of the status bits, which are

found in the STATUS register. The result of some instructions forces status bits to

a value depending on the state of the result.

a) CPU

The CPU can be thought of as the “brains” of the device. It is responsible for

fetching the correct instruction for execution, decoding that instruction and then

executing that instruction. The CPU sometimes works in conjunction with the

ALU to complete the execution of the instruction (in arithmetic and logical

operations). The CPU controls the program memory address bus, the data memory

address bus and accesses to the stack.

b) ALU

18Fxxx devices contain an 8-bit ALU and an 8-bit working register (WREG).

The ALU is a general purpose arithmetic and logical unit. It performs arithmetic

and Boolean functions between the data in the working register and any register

file. The WREG register is directly addressable and in the SFR memory map.

 18

Figure 5: Operation of ALU and W register

c) STATUS Register

The STATUS register, shown in figure below, contains the arithmetic status of

the ALU. The STATUS register can be the destination for any instruction, as with

any other register. If the STATUS register is the destination for an instruction that

affects the Z, DC, C, OV or N bits, then the write to these five bits is disabled.

These bits are set or cleared according to the device logic. Therefore, the result of

an instruction with the STATUS register as destination may be different than

intended. For example, CLRF STATUS will clear the upper three bits and set the

Z bit. This leaves the STATUS register as 000u u1uu (where u= unchanged). It is

recommended, therefore, that only BCF, BSF, SWAPF, MOVFF, and MOVWF

instructions are used to alter the STATUS register, because these instructions do

not affect the Z, C, DC, OV or N bits of the STATUS register.

 19

Figure 6: Status Register

2.6.4. Memories of PIC18

There are two memory blocks in the memory map; program memory and data

memory. Each block has its own bus, so that access to each block can occur

during the same instruction cycle.

The data memory can further be broken down into General Purpose RAM and the

Special Function Registers (SFRs). The SFRs used to control the peripheral

modules in the microcontroller. In addition, there are other registers used that are

neither part of the program nor data memory spaces.

 20

These registers are not directly addressable and include:

- Return address stack

- Fast return stack

2.6.5. Interrupts

In PIC18 devices, interrupts can be generated from many sources such as

timers, A/D conversion, USART receive/transmit etc…. Interrupts can be also

prioritized as high or low level interrupt. There are several SFRs which control

interrupts (e.g. INTCON, IPR, PIE, etc…)

2.6.6. Input /Output ports

General purpose I/O pins can be considered the simplest of peripherals. They

allow the PICmicro to monitor and control other devices. To add flexibility and

functionality to a device, some pins are multiplexed with an alternate function(s).

These functions depend on which peripheral features are on the device. In general,

when a peripheral is functioning, that pin may not be used as a general purpose

I/O pin.

For most ports, the I/O pin‟s direction (input or output) is controlled by the data

direction register, called the TRIS register. TRIS<x> controls the direction of

PORT<x>. A ‟1‟ in the TRIS bit corresponds to that pin being an input, while a

‟0‟ corresponds to that pin being an output. An easy way to remember is that a ‟1‟

looks like an I (input) and a ‟0‟ looks like an O (output).

The PORT register is the latch for the data to be output. When the PORT is read,

the device reads the levels present on the I/O pins (not the latch). This means that

care should be taken with read-modify-write commands on the ports and changing

the direction of a pin from an input to an output.

The following figure shows a schematic of a typical I/O port.

 21

Figure 7: Typical I/O port

For more details about the modules of microcontrollers and related specs, please

refer to:

2.7. MPLAB C18 Compiler language suite

The MPLAB C18 compiler is a free-standing, optimizing ANSI C compiler for

the PIC18 PICmicro microcontrollers (MCU).This compiler is fully compatible

with Microchip‟s MPLAB IDE and MPLAB SIM simulator.

The MPLAB C18 compiler has the following features:

 Generation of relocatable object modules for enhanced code reuse.

 Compatibility with object modules generated by the MPASM assembler,

allowing complete freedom in mixing assembly and C programming in a

single project.

 Strong support for inline assembly when total control is absolutely

necessary.

 22

 Extensive library support, including PWM, SPI™, I2C™, UART,

USART, string manipulation and math libraries.

 Full user-level control over data and code memory allocation.

In this project, The focus will be made for the following points:

i) C18 compiler managed resources:

C18 uses some registers to do some of the intermediate and temporary

operations. These registers are: FSR0, FSR1, FSR2, PRODH, PRODL,

TABLAT, TBLPTRU, TBLPTRH and TBLPTRL

ii) Startup and Initialization

C18 compiler generates a C function to initialize all the variables used in

the main function. This function is directly called after reset.

During the initialization, a software stack (used and managed by C18

compiler) is setup and initialized. FSR1 and FSR2 are used to manage the

software stack.

iii) Software Stack:

This is basically a memory section defined in the linker script file (e.g.

18f452.lkr). C18 uses this section to store arguments, return values and

local variables of functions when they are called.

The default size of this stack is 256 bytes. However this can be modified

from the linker script by changing the following linker command:

 to the desired

values.

 23

CHAPTER 3

METHODOLOGY

3.1. Procedure Identification

The scope of this project and flow of tasks are envisaged to be carried out as

shown in the following chart:

Start

Research and Study about PIC18F hardware and developing tools

Programming Task switching algorithm in assembly

Developing task switching algorithm for C language

Simulation/tests

succeeded?

Simulation /tests with

multiple tasks succeeded?

Developing Real-Time application

No

No

Programming Scheduler and kernel services

Simulation/tests

succeeded?

No

Figure 8: General Flow chart of Project work

End

 24

The overall flow of the project can be divided into the following milestones:

3.1.1. PIC18Fxxx system Study

A thorough study is carried out to attain the student the basic and primitive

knowledge about the system which is intended to be programmed. This part of the

project is estimated to have 4-5 weeks of the first semester. A good familiarization

with PIC18F instruction set, special function registers (SFR), Memory

organization, device settings, peripherals‟ operation and hardware circuitry has to

be gained.

3.1.2. Study of RTOS concepts

Operating systems have several concepts. In this project, an overall study of

operating system is to be done. This study will also cover the concept of:

operating system concept, RTOS concept, kernel, and scheduling algorithms.

Meanwhile, the RTOS named “PICos18” is to be simulated and investigated

throughout this stage.

3.1.3. Running PICos18 on PIC18Fxxx device

After having little soft background about RTOS, more practical interaction with

typical RTOS system is to be made. To achieve this goal, PICos18 is simulated

and ported to PIC18 microcontroller and then its performance is further

investigated. At this stage, the student is in favour of monitoring, examining and

evaluating the performance of this RTOS. This gives the student a good sense of

how RTOS behaves. The main challenge at this stage would probably be the

adaption of PICos18 to microcontroller settings and how applications and tasks

are created and made in PICos18 system.

 25

3.1.4. Development of RTOS

At this stage, the coding, algorithms and the hardware interface of the system is

to be started. At the very starting of this stage, simple codes to setup timers and

interrupts will be developed in assembly environment. This is because assembly

programming is straight forward to microcontroller hardware in addition to its

light size comparing to C generated code. Timer0 with its associated interrupt in

the microcontroller will be utilized as kernel timer.

When kernel timer interrupting facility is available, task switching algorithm will

be developed. For instance, tasks will be written in assembly language and then

the assembly version for task switcher will be tested. As soon as the assembly

version runs successfully, a C version of the task switching will be created.

After the work with switching mechanism is successfully done, development of

timing based functions (e.g. delayMs), scheduling algorithms, and events based

routines are to be made.

3.1.5. RTOS testing and troubleshooting

Finally, the project will be concluded by demonstrating its operability on a

practical application which is based on the developed RTOS. A suitable

application will be selected and designed at the end of this project.

3.2. Equipment and Tools

To implement the RTOS on PIC18Fxxx devices, some equipments and software

are utilized. These tools and equipment include:

 26

3.2.1. PIC18Fxxx starting kit

Figure 9: PIC18F developing kit [9]

This kit is a practical and suitable platform for developing codes and programs

on 18F series devices. All the basic and necessary connections to microcontroller

are built. This board is running on 20MHz oscillator frequency. The layout of the

board and the hardware circuitry can be viewed in appendix A.

3.2.2. PICKit 2 programmer

The programmer is used to load the hex file (produced by compiler or

assembler) into the PIC memory.

Figure 10: PIC18F programmer [10]

3.2.3. MPLAB IDE

 27

MBLAB IDE version 8.33 is used to development programs and codes for

PIC18F. It also contains a complete framework (includes simulator, programmer,

debugger and compilers).

Figure 11: Snapshot for MPLAB IDE

3.2.4. MPLAB SIM Simulator

MPLAB SIM simulator is part of MPLAB IDE software. This software is used

to simulate assembly and c codes. It offers good features to monitor the registers

of the PIC and also monitoring the timing of instructions‟ execution.

3.2.5. PICkit 2 Debugger

This is a very useful and simple In-Circuit debugger. It connects to PICkit2

programmer. It gives good debugging facilities especially when peripherals are

interfaced with microcontrollers. It only supports one break point at a time.

 28

3.2.6. C18 C COMPILER

C18 C compiler is designed to work with PIC18 devices and to work under

MPLAB IDE integrated environment.

By using this compiler, programmers may edit and developed application based

on the high level C language. Moreover, some built-in function are available for

fast development process for microcontroller hardware (e.g. CAN and I2C serial

communication).

 29

CHAPTER 4

RESULTS AND DISCUSSION

4.1 RESULTS

During the work process throughout this project, the following results are

obtained:

 A multitasking kernel for “Taj RTOS” for assembly programming

environment.

 C version of “Taj RTOS” multitasking kernel based on round-robin

scheduling algorithm.

 Testing “Taj RTOS” with LCD, keypad, 7 segment display units and

LEDs output based task.

4.1.1. Taj RTOS for Assembly programming environment

A simple multi-tasking kernel is developed to share microcontroller‟s CPU time

on the tasks which are written in assembly. To achieve this, two assembly

subroutines are created to form the kernel which are: RTOS Initializer and Task

switcher. (please look at kernel code in appendix E)

RTOS

Initializer
Task

Switcher

RTOS

Kernel

Figure 12: Taj RTOS Kernel for assembly environment

a) Design concept:

 30

To make the multitasking processing for tasks possible, each task has to be

given small time of CPU to execute its instructions. In this kernel, each task is

given 1ms of CPU time to execute its instruction before it is swept and another

task is loaded to the CPU. This timing is done by configuring TIMER0 to

generate interrupt every 1ms. Whenever the interrupt occurs, all the important

registers which tasks use are stored in RAM and it is retrieved when the task is

restored again.

Initialize Tasks‟ Stacks

Setup interrupts every 1ms

Launch First Task

Process Current Task

Any interrupts?

Restore Next Task‟s Context

Launch next Task

Store Task‟s Context

End

No

Yes

Figure 13: n lttre cwtlntT tOTR tahcFh tlahc wolF

 31

b) Overview of RTOS code

RTOS code is written in 1 assembly file named “kernel.asm” where RTOS

initializer and Task switcher reside. Aside from that, four header files are

made to declare Tasks, Stacks and RTOS registers. RTOS code is

available in Appendix D.

The following figure illustrates the codes and their functions for assembly version

of Taj-RTOS.

Figure 14: Taj RTOS codes (Assembly Version)

c) RTOS Initializer:

For the RTOS to function, some initializations have to be done before RTOS

starts. These initializations are done in this part of the kernel. The typical

initializations include:

i) Initializing TIMER0 to generate high priority periodic interrupt every

1 ms.

The following table shows Timer0 initialization.

 32

Table 3: Timer0 intialization and the associated registers setting

Register Value Function

INTCON2 Register 0x84 Set Timer0 as high priority interrupt

IPEN bit in RCON register 1 Enable Priority interrupt

T0CON Register 0xc4 Setting 1:16 pre-scale for Timer0

ii) Creating Stack for each Task where the vulnerable registers are stored

and retrieved.

For each task a stack is created to save the vulnerable registers. The size of

the stack equals the size of registers which is classified as “vulnerable” for

the tasks to run properly. Those registers are listed in the following table:

Table 4: Vulnerable registers

Register Maximum Size

Stack pointer (STKPTR) 1

Hardware Stack

(TOSU - TOSH - TOSL) x 30 levels

90

BSR 1

WREG 1

PROD (H-L) 2

FSR(0,1,2) (H-L) 6

STATUS 1

TABLE POINTER

TBLPTR (U-H-L)

TABLAT

4

MAXIMUM TOTAL SIZE 106

 33

Since the hardware stack is not always used, the common practice is to

save a portion of it (say 10 levels). This will stack size and the utilization

of RAM and therefore reduce the switching time.

iii) Creating Array to store the addresses of the stack for easier reach.

To ease the access to the stacks, the addresses of the stacks have to be

stored in one array. Each address has higher byte and lower byte.

Therefore the size of the array is,

Table 5: Stack Pointers Array for 3 Tasks
Index Value Index Value

0 Stack1 Address High byte 1 Stack1 Address Low byte

2 Stack2 Address High byte 3 Stack2 Address Low byte

4 Stack3 Address High byte 5 Stack3 Address Low byte

d) Task switcher:

The function of this section is to switch between tasks whenever required. For

the switching to be smooth and fine, all the vulnerable registers have to be

stored and restored without any loss on their data. However, care has to be

taken when dealing with sensitive registers such as PC and Status registers.

Before the switching takes place, the kernel has to locate the next stack to

retrieve data from and the current stack to save data to. The following figure

illustrates the switching mechanism.

 34

Figure 15: Switching mechanism

During this operation, FSR0 and FSR1 registers are used to point to current and

next stack respectively.

The following figure shows the data memory utilization when 3 tasks are used

Figure 16: Memory usage for 3 Tasks

 35

Figure 17: Time elapsed during switching mechanism = 127 µsecond

 36

Figure 18: The memory usage for Maximum number of tasks supported=26

So, the features of the assembly version of Taj-RTOS performance can be

summarized in the following table:

Attribute Value

Switching time 50 µsecond

Maximum supported number of

Tasks

26

The maximum response time 29 millisecond

4.1.2. C version of Taj RTOS

For the convenience of programming, tasks have to be written in C language.

So, the kernel has to be modified to adapt the new C development environment. In

C environment, three main issues have to be considered:

 C18 compiler initializing code (what kind of initializations are done?

And how this affects RTOS?)

 37

 How C functions‟ parameters and results are passed and retrieved are

called (What considerations should RTOS take to deal with functions)

 The allocation of variables, temporary mathematical operations

registers and other vulnerable registers (what are those variables? and

where are they stored?)

a) Design considerations:

The design concept is still the same. However, some changes are made to

adapt the new C environment.

The adaptations made can be listed as follows:

i) In RTOS initializer:

As mentioned in CHAPTER 2: Literature review, C18 compiler has

some initializing codes which are called directly after the startup and

just before the main function. After the microcontroller leaves this

part, FSR registers are already setup. So, this is the most important

thing which RTOS initializer has to keep. It has to keep those 3

registers unchanged during RTOS initializations.

ii) Task Switcher:

The simple assembly version of this switcher is modified in two

senses:

a. It has to save the contents of the software stack whenever

switching is made.

b. It has to optionally save the variables which are used by several

functions (e.g. a variable “counter” is used by “delay_1ms()”

function which is in turn used by more than task. So the task

switcher has to store the value of “counter” whenever

switching is done to keep each task‟s variables untouched by

the other tasks)

b) RTOS Initializer:

The new initializer has to keep FSR registers (FSR2H, FSR2L,

FSR1H, FSRL1, FSR0H and FSR0L) unchanged.

 38

Table 6: Vulnerable registers for C environment

Register Maximum Size

Stack pointer (STKPTR) 1

Hardware Stack

(TOSU - TOSH - TOSL) x 30 levels

90

Software Stack (just in C environment) *32

BSR 1

WREG 1

PROD (H-L) 2

FSR(0,1,2) (H-L) 6

STATUS 1

TABLE POINTER

TBLPTR (U-H-L)

TABLAT

4

MAXIMUM TOTAL SIZE 138

 * This value can be less or more depending on how much functions are nested

c) Task switcher:

The new task switcher allocates more size for the stacks used in switching.

Moreover the switching time has also increased due to the overhead process of

saving and retrieving the data of the software stack.

The following figure shows a comparison between the assembly version and C

version of the switcher in term of memory utilization and switching time.

 39

Figure 19: Comparison between C and Assembly versions of task switcher

So, the features of the C version of Taj-RTOS performance can be summarized in

the following table:

Table 7: Taj RTOS performance for C version

Attribute Value

Switching time 94 µsecond

Maximum supported number of

Tasks

9

The maximum response time 10 millisecond

4.1.3. Testing of Taj RTOS

 After the core of the kernel being designed, an application based on 3 tasks

is designed to monitor the performance of the RTOS in managing the multitasking

operations.

i) Tasks overview

3 tasks were developed. Task1 interfaces with 8 LEDs connected at PORTC. This

task blinks the 8 LEDs in sequence 1 LED at a time. Task2 is a continuously

running counter whose value is displayed at LCD connected to PORTD and

PORTE. Task3 is programmed to scan a keypad at PORTB and display its value

 40

on 7 segment display unit connected also to PORTC (Where LEDs are also

connected).

ii) Project building and compilations

The three tasks are written in 3 separate files. The number of Tasks is declared in

“TaskDeclarations.inc”.

iii) Running the project using PICkit2 debugger

A break point is put at the start of the switching code. So, whenever the

processing of the simulation is halted whenever switching is started. By using

PICkit2 debugger connected to the circuit, we can see the switching mechanism

and the multitasking behaviour in the real world.

The execution process for the 3 tasks is illustrated by the following figures.

Figure 20: Project debugging with a “break point” at the start of switching

code

 41

Figure 21: The circuit with LEDs, Keypad, LCD and the debugger connected

Figure 22: Task1 -only- is being processed

 42

Figure 23: Task2 is -only- being processed

Figure 24: Task3 is -only- being processed

When breakpoint is removed, the microcontroller runs the three tasks -seemingly-

at the same time while no task affects the execution of the others.

4.1.4. Writing RTOS based program

 To write RTOS based program which might be loaded later to

PIC18F/18C devices, users are required to do the following:

1. Using MICROCHIP MPLAB IDE software and Microchip C18 toolsuite. At

the time TAJ-RTOS was developed the following software was used:

 MPLAB IDE version 8.33

 Microchip C18 toolsuite

 43

 MPLAB C18 C compiler version 3.30

 MPASM Assembler version 5.30.1

 MPLINK Object Linker version 4.30.1

Figure 25: MPLAB IDE logo

However, -due to programming flexibility of TAJ-RTOS- TAJ-RTOS might

be used for earlier versions of this tools, but no testing has been made

regarding this matter.

NOTE: the user may need to install C18 toolsuite from microchip website.

2. In MPLAB environment, a project is to be created and PIC device to be

selected

Figure 26: Creating new project

 44

Figure 27: Welcoming Message

Figure 28: Selecting PIC device

3. Selecting Microchip MPASM toolsuite If (TAJ-RTOS Assembly version is

considered)

 45

Figure 29: Selecting MPASM Toolsuite

Selecting Microchip C18 toolsuite If (TAJ-RTOS C version is considered)

Figure 30: Selecting C18 Toolsuite

4. Adding the following files to the project

 TAJ-RTOS assembly version:

 RTOSsetting.inc

 RTOSMacros.inc

 RTOSdeclarations.inc

 46

 RTOSkernel.asm

 Init.asm

 ISR,asm

 DeviceConfig.asm

Figure 31: Adding RTOS files –Assembly version

 TAJ-RTOS C version:

 RTOSsetting.inc

 RTOSMacros.inc

 RTOSdeclarations.inc

 RTOSservices.inc

 RTOSservices.asm

 RTOSkernel.asm

 ISR,c

 Main.c

 DeviceConfig.asm

 47

Figure 32: Adding RTOS files for C version

5. After the project is successfully created then, user may start developing

required applications directly by proceeding with the following steps:

 If Assembly-based programs are considered

 Set the type of the processing and device configuration in

DeviceConfig.asm file

 Set the number of tasks required in RTOSsetting.inc file

 Write any initialization code required by the application in

Init.asm file (e.g. enable pull-ups, set timer1 interrupt…)

 Write any Interrupt service routine in ISR.asm file

 Tasks‟ codes might be written in a separate file with the

following format:

Taskx

;code

;code

Here GOTO Here;

GLOBAL Taskx

(NOTE: x is the number of the task, e.g. Task1, Task12 …)

 48

 If C-based programs are considered

 Set the type of the processing and device configuration in

DeviceConfig.asm file

 Set the number of tasks required, Scheduling Algorithm,

Tasks‟ priorities and frequencies in RTOSsetting.inc file

 Write any initialization code required by the application in

main.c file before the line where InitRTOS is called

 Write any Interrupt service routine in ISR.asm file

 Tasks‟ codes might be written in a separate file with the

following format:

void Taskx (void)

{

//code

//code

While(1);

}

(Where x is the number of the task)

6. In case of C-based programs, user may add the built in functions to interface

PIC device with 7segment display, LCD, LEDs and Keypad.

7. After the application is successfully created then, user may start compiling

debugging, simulating and downloading the code.

8. For advance settings (related to RTOS operation), user may check the effect

of some parameters on the operation of RTOS by modifying their values in

RTOSdeclarations.inc file (e.g. Stack size, StackPointerArray size,

TEMPDATA and MATHDATA size…)

 49

4.2 DISCUSSION

The task switching process is the core of supporting the multitasking

processing in RTOS environment.

The assembly version of RTOS kernel is light -in coding- and exhibits very tiny

processing overhead since it just deals with minimum registers and variables.

From the simulation and the coding, the deterministic behaviour of the task

switcher could be noticed. With only 3 tasks, the task switching process consumes

less than 100µs (for the C version) and less than 50 µs (for the assembly version).

Each task has its own scratch memory stack to save all important registers and

variable while switching process. The current size of each stack is around 128

bytes. This may cause problems when the number of tasks grows larger.

It can be noticed that, the assembly version of Taj RTOS can support up to 26

Tasks while the C version supports up to 9 only. This is because fifth of

microcontroller‟s RAM is reserved for the software stack, so RTOS would not

have enough space to create stacks for the tasks.

For more responsive processing of the tasks, a pre-emptive scheduling mechanism

has to be invoked. This would provide the kernel with the ability to execute the

high prioritized ready tasks before the tasks with lower priority. This algorithm

would not certainly guarantee that all deadlines to be met but at least an optimal

performance could be achieved. However, with pre-emptive scheduling algorithm,

deadlocks are very prone to occur.

Inter-task communication and synchronization are features that RTOS may

increase the efficiency of RTOS. These services would make it possible for tasks

to pass information from one to another. They would also make it possible for

tasks to coordinate, so that they can proactively cooperate with one another. But

in microcontrollers-wise, this may not be preferable, due to the limited resources

within the microcontroller and the stringency of timing.

In comparison to PICos18 RTOS, Taj RTOS has many features that make it

different form it -in particular- and from other RTOSes as a whole. These features

can be listed in the following table:

 50

Table 8: PICos18 and Taj RTOS comparison

Features PICos18 Taj RTOS

Switching time 100µS 95µS

Max Number of Tasks 6 9

RAM utilization 286 bytes/task 184 bytes/task

Accessibility of kernel code and

kernel parameters

No Yes

Clarity of code Not much Ok (designed to be clear)

Ability of kernel to switch from

any task at any moment

No Yes

Available scheduling algorithms 2 1

Ease of getting it started Not easy (more

steps)

easy (less steps)

Drivers availability Yes No

Usage and Application Industrial Educational

 51

CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

5.1. CONCLUSION

Taj RTOS is fully capable of supporting the multitasking processing for

Assembly and C programming environment. PICos18 is a good example for

RTOS. However, its procedural settings make it less friendly to use. With Taj

RTOS, RTOS operations are very clear to users and some of RTOS parameters

are available for modification.

C18 built-in functions can still be used in Taj RTOS environment, while it is not

applicable for other RTOSes (e.g. PICos18).

Taj RTOS employs simple and clear programming methodology which makes it

good choice as educational tool.

Taj RTOS easy to understand, easy to use and faster to developed since it takes

considerable advantages of both assembly and C codes.

Taj RTOS still has some weaknesses which could be overcome by more reviews

for its codes and algorithms.

 52

5.2. RECOMMENDATIONS

Throughout the work of this project, Taj RTOS has demonstrated its full

functionality to support multitasking processing. This RTOS can be further

enhanced to support various scheduling algorithms. Moreover, Taj RTOS can be

made available in different forms to serve different levels and types of users (e.g.

applications developers, students, beginners and experts).

Taj RTOS is very suitable for educational purposes, so it is highly recommended

to be used as a teaching tool in microcontroller-based courses.

53

REFERENCES

 [1] Wikipedia The free encyclopaedia, „Embedded System” 10 Feb 2009

http://en.wikipedia.org/wiki/Embedded_system#cite_note-barr-glossary-0

[2] Microchip Technology Inc., “MPLAB® C18 C COMPILER USER‟S

GUIDE”, U.S.A, 2005

[3] Microchip Technology Inc., “PIC18FXX8 Data Sheet 28/40-Pin High-

Performance: Enhanced Flash Microcontrollers with CAN Module”, U.S.A, 2004

[4] William Stallings, “Operating systems: Internals and Design Principles”, 5
th

ed., Pearson Prentice Hall, 2005, pp 52.

[5] Andrew S. Tanenbaum` and Albert S. Woodhull, “Operating systems; Design

and Implementation”, 2
nd

 ed., Prentice Hall, 1997, pp 90 and 91.

[6] Pragmatec S.A.R.L., “PICos18 Real time kernel for PIC18: Tutorial and

Developer Guide”, v 2.01, France, March 2005. Version 2.xx

[7] Pragmatec S.A.R.L., “PICos18 Real time kernel for PIC18: Kernel Interface

API”, v 2.xx, France, May 2006.

[8] OSEK group, “OSEK/VDX Operating System: Operating system

specifications”, version 2.1, revision 1, November 2000.

[9] Cytron Technologies, “SK40B PIC microcontroller start-up kit: User‟s

Manual”, version 1.1, Malaysia, December 2007.

[10] Cytron Technologies, “UIC00A USB ICSP PIC Programmer: User‟s

Manual”, version 1.7, Malaysia, November 2007.

[11] Microchip Technology Inc., “MPLAB® C18 C COMPILER: Getting

Started”, U.S.A, 2005

[12] Wikipedia The free encyclopaedia, „Real Time Operating System” JUNE

2009 http://en.wikipedia.org/wiki/Real-time_operating_system

 54

[13] Robert Betz, “Class-Notes-Introduction to Real-Time operating systems”,

Department of Electrical and Computer Engineering, University of Newcastle,

Australia, 2001, pp 40.

 55

APPENDICIES

 56

APPENDIX A

PIC18F DEVELOPMENT BOARD DRAWINGS

Figure 33 PIC18F board layout

 57

Figure 34: Board connection with PICkit 2 programmer

 58

Figure 35: Schematic diagram for PIC18F board

 59

APPENDIX B

PROGRAMMER DRAWINGS

Figure 36: Board layout of PIC programmer and its parts' functions

 60

Figure 37: Programmer’s connection with the development board

 61

APPENDIX C

C18 COMPILER

DATA TYPES:

Table 9: Integer data types in C18 compiler

Table 10: Floating Type in C18 compiler

 62

QUALIFIERS:

Table 11: "near" and "far" qualifiers in C18

Table 12: Pointer size and "rom and ram" qualifiers

 63

APPENDIX D

RESULTS

THE 18F458 SPECIFICATIONS:

Figure 38: PIC18F458 block diagram

 64

Figure 39: Program memory map for 18F458/452

 65

Figure 40: Data Memory Map for 18F458

 66

Figure 41: PIC18Fxx8 devices' features

 67

Figure 42: Interrupt schematic diagram for 18F458

 68

APPENDIX E

TAJ RTOS CODES

Assembly version:

 69

File 1: RTOSkernel.ASM

 70

 71

File 2: KernelMacro.INC

 72

 73

File 3: RTOSDeclarations.INC

File 4: DeviceConfig:

 74

File 5: ISR.asm

File 6: Init.asm

 75

C version:

1. RTOSsetting.inc

 76

2. RTOSMacros.inc file:

 77

 78

 79

 80

 81

3. ROTSdeclarations.inc file

 82

 83

4. RTOSkernel.asm

 84

 85

 86

5. ISR.c file

6. main.c file

