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ABSTRACT

Theaim of this study is to investigate the influence of fatty acid compositions in

biodiesel on some parameters such as theoxidation stability, iodine value and cold flow

properties. Edible oil is represented byrefined corn oil and non-edible oil represented by

jatropha curcas oil. In order to overcome the shortcomings of jatropha-corn biodiesel,

acrylic copolymer is introduced as a Cold Flow Improvers (CFIs) additive to reduce the

cold filter plugging point (CFPP). Crude jatropha oil was pre-treated to minimize the

high free fatty acid content. The treated jatropha oil and refined corn oil were then

transesterificated using sodium methoxide,CH3ONa as catalyst at standard reaction

conditions (reaction time, 1.5 h; weight of catalyst 1 wt.% of initial oil weight; molar

ratio methano:oil/ 6:1; reaction temperature, 64°C) to produce jatropha methyl ester

(JME) and corn methyl ester (CME) respectively. The biodiesel is then blended at

different mass ratios. Each jatropha-corn biodiesel blend parameters such oxidation

stability, iodine value, density, calorific value, fatty acid content and cold flow

properties are investigated. The biodiesel was tested accordingly to the standard UNE-

EN 14214 for quality assurance. Results show that ratio blend CME:JME (20:80) gives

6.42 hours of oxidation stability and -2°C for CFPP which complies with the EN 14214

standards. Acrylic copolymer as CFI is then added to the same blend ratio to reduce the

CFPP. CFI successfully reduced the CFPP from -2°C to -6°C which gives better cold

flow properties to the corn-jatrophabiodiesel blend.
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND OF STUDY

The world's total energy supply comes mainly from petroleum, coal and natural gas.

Prediction of worldwide petroleum reserves is ambiguous but the general prediction of

maximum production in or before the period 2010-2020 will be decline to the 1960 level by

the year 2050. Consequently, the world can no longerafford to rely merely on fossil oil and

the bestway is to maintain energy reliability is through diversity in sources of energy (Bart,

Palmeri, & Cavallaro, 2010). Recently in Malaysia, the Renewable Energy (RE) act is

established to meet the 40% carbon emission intensity reduction target by 2020 (Invest

Malaysia). Many countries such as Europe have raised their share of renewable energy to 6-

10%, expected to increase to 20% by the year 2020(Ibrahim, 2012). Biodiesel can be one of

the alternative fuels to the current market concentration of oil supply and potentially

improves the environmental aspect (Wetzstein & Wetzstein, 2011).

There are several types of biodiesel. The first typeof biodiesel is derived from vegetable oil

mainly from food crops. Biodiesel can also be made from animal fat can be raw, processed

or used. The second type is liquid fuels which can be derived from biomass such as ethanol.

At present, large-scale biodiesel production relies on plantation crops as feedstock due to

the existing needs of food supply in agricultural industry.

Nevertheless, there are debates over the increase of food prices alongside with the increase

of global biofuel production. Studies suggested that biofuel production does have a modest

3% to 30% of contribution to the growth in the commodity food prices perceived in

2007/2008 (Mueller, Anderson, & Wallington, 2011). The increase of food prices continues

to affect the poorer countries, therefore, the competition of edible crops for biofuel

production and food supply is not ideal (Gui, Lee, & Bhatia, 2008). One of the ways to

overcome the food prices crisis is to use non-edible oils for biodiesel production instead

(Sims, Mabee, Saddler, & Taylor, 2010).



1.2 PROBLEM STATEMENT

One of the main setbacks related with the use of biodiesel at cold climates are operability

problems in diesel engines when high amount of saturated fatty acid methyl ester

components clogged fuel lines and filters when solidified(Boshui, Yuqiu, Jianhua, Jiu, &

Jiang, 2010). Most non-edible oils contained more saturated fatty acid in the range of C]6-

Cis. Meanwhile, edible oils that contained more unsaturated fatty acids are prone to

oxidation but have good low temperatures properties (Das, Bora, Pradhan, Naik, & Naik,

2009).

Over the last few years, several ways has been studied to resolve the low-temperature

problems of biodiesel. These include the blending of biodiesel with conventional diesel

fuels, winterization, adding additives and blending with branched-chain esters. Of all

methods, chemical additives was seems to be convenient and economical, and thereby the

most attractive (Boshui et al., 2010). The aim of this work deals with the correlation of fatty

acid methyl ester composition with important parameters; such as the oxidation stability,

CFPP and iodine value (IV) of the biodiesel. As an effort to promote the usage ofnon-edible

oil as feedstock in biodiesel production, an investigation of the blending of methyl ester

from non-edible oils and methyl ester from edible oil is done. In this study, edible oil

represented by refined corn oil and non-edible oil represented by jatropha curcas oil. In

order to overcome the shortcomings of jatropha-corn biodiesel, acrylic copolymer is

introduced as CFI to further reduce the CFPP.



1.3 OBJECTIVE

The main objectives of this research project are as the following;

i. To produce methyl ester from jatropha curcas L. oil and refined corn oil

ii. To blendjatropha curcas L. methyl ester and refinedcorn oil methyl ester; and obtain

the best blend that achievedoxidation stability of 6 hours and parameters such as iodine

value and cold flow properties that complies with EN14214 standards,

iii. To observe and investigate the effectiveness of commercial CFI in enhancing the cold

flow properties ofjatropha-corn methyl ester

1.4 SCOPE OF STUDY

In this project, the study aspects are the cold flow properties, oxidation stability and iodine

value of the biodiesel blend. The scope of study includes three main parts. The first one is

the production of corn methyl ester (CME) and jatropha curcas L. methyl ester (JME)

followed by the blending of both biodiesel as the following mass ratios :

i. CME:JME (0:100)

ii. CME:JME (20:80)

iii. CME:JME (40:60)

iv. CME:JME (60:40)

v. CME:JME (80:20)

vi. CME:JME (100:0)

The secondpart is the study of relation between fatty acid methyl ester compositions of each

blend with oxidation stability, iodine value and CFPP. The third part is the investigation of

CFPP before and after the addition of acrylic copolymer at several concentrations;

0.0mass%, 0.5mass% and 1.0mass%.



CHAPTER 2

LITERATURE REVIEW

Vegetable oil comprises of 98% triglycerides and a small amount of monoglycerides and

diglycerides(Ayhan, 2009). Triglycerides have one glycerol with three fatty acids. Direct

usage of triglycerides in diesel engine is discouraged due to its long molecule chains and

highly viscous characteristic (£aynak, Giiru, Bicer, Keskin, & icingur, 2009). Efforts have been

given in finding ways to reduce the viscosity of vegetable oils. Methods that were

discovered to reduce the viscosity are: dilution (blending) with hydrocarbons,

microemulsification, pyrolysis or thermal cracking, catalytic cracking and

transesterification(Schwab, Bagby, & Freedman, 1987).

Transesterification is the mostconventional method where reaction between triglyceride and

alcohol with the presence of catalyst gives biodiesel or fatty acid alkyl ester (FAME) and

gylcerols. Biodiesels are suitable to replace diesel fuel without any modification of engines

hardware. One study on the life cycle assessment (LCA) shows biodiesel is more

environmentally friendly than the diesel based on the global warming and renewable energy

aspect scores of biodiesel and diesel production (Jinglan).

Comparatively to the making of diesel fuel, diesel fuel is processed from fossil fuel through

fractional distillation. Extracted crude oil contained different hydrocarbon compounds that

are separated through difference in boiling point. Diesel is separated from the crude oil

when the distillation chamber reaches 200°C to 350°C in temperature (Leffler, 2008).

Biodiesel on the other hand, is biodegradable and have environmental benefits as it rarely

contain sulfur(Balat & Balat, 2008).



2.1 CORN ZEA MAYS OIL

Corn oil was ever considered as a biodiesel fuel in 1952. However, due to its relatively

expensive and high values as edible oil, biodiesel made from corn oil is not economically

feasible. Corn is the third most vital grain in the world after wheat and rice. It is the most

extensively used cooking oil in the US as a fast food frying oil. Corn oil's benefits include

its very low level of linolenic acid, high level of unsaponifable and stabilityduring frying. It

also has a mild nutty flavor, contain high amount of unsaturated fatty acids and low content

of saturated fatty acids (Bart et al., 2010).

2.2 JATROPHA CURCAS L. OIL

There is a growing in jatropha curcas L. as a biodiesel to help alleviate the energy crisis,

reduce the countries dependence on foreign imports and generates income in rural areas of

developing countries. The estimates of the oil content in seeds range from 35-40% and in

the kernels 55-60%. Many developing countries cannotafford to use edibleoils as an energy

source because they are already in short supply.Thus, non-edibleoils from under researched

plants such as Jatropha, Pongamia, Neem, Kusum and Pilu are being advocated (Wright &

Evans, 2008). Of the above Jatropha is considered the most potential source as non-edible

biodiesel producing plant because it can be grown on almost any soil type. Jatropha curcas.

L oil contain high free fatty acid (FFA) content and requires acid-catalyzed esterification.



2.3 TRANSESTERIFICATION

Transesterification (alcoholysis) is an equilibrium reaction and occurs essentially by mixing

the reactants (Schwab et al., 1987). Transesterification occur when triglyceride (vegetable

oil) reacts with an alcohol (methanol) in the presence of a strong acid or base catalyst

(Figure 2. l)(Ma&Hanna, 1999).

CH2-OOC-R,

CH-OOC-R2 +
l

3R'OH

Catalyst
R,-COO-R'

R2-COO~R'

CH2-OH
1

+ CH-OH
i

l

CHrOOOR, R3-COO-R'
i

CH2-OH

Glyceride Alcohol Esters Glycerol

Figure 2.1 : Transestrification process (Ma & Hanna, 1999).

In biodiesel production, the choice of acid and alkali catalyst can varied depending on the

free fatty acid (FFA) content in the raw vegetable oil. During the reaction, FFA may react

with alkali catalyst to form soap and water which deters the ester formation (Ayhan, 2009).

Therefore, alkali catalyst reaction should not exceed the recommended limit of acidity value

(2mg KOH/g oil) and FFA (1%) to avoid deactivation of catalyst, formation of soaps and

emulsion. This decreases the final yield of ester and consumes alkali. High FFA needs two-

step transesterification process, acid transesterification followed by alkali-transesterification

to get high biodiesel yield (Keskin, Guru, & Altiparmak, 2008; Patil& Deng, 2009). Methanol is

preferable as the solvent comparatively to ethanol because of it is a polar short chain alcohol

that is low in cost. Alkali catalyst, potassium methoxide effects complete transesterification

more quickly than sodium methoxide, CH3ONa at equivalent molar concentration with the

same triglyceride samples. Due to the danger possess in metallic potassium handling,

sodium methoxide, CHsONa is preferable (Ayhan, 2009).



2.4 IODINE VALUE (IV)

Iodine value is used for the determination of the quality of diesel fuel derived

from vegetable oil. Denote as grams of h absorbed/lOOg sample under standard conditions,

the iodine value is a degree of the unsaturation of oils and fats and their fatty acid

derivatives, which can be determined in many different methods. There are many methods

used to determine iodine value. One of the methods used is the American Oil Chemist'

Society (AOCS) method Cd ld-92 (Balat & Balat, 2008). The test begins with O.lgm of

tested oil taken in to 250ml of glass stopper iodine flask. The oil is dissolve in 20ml of

carbon tetrachloride and 25ml of Wij's solution. The contents of the flask are shaken well

and are placed in the dark for half an hour. At the end of this time 20 ml of 15% potassium

iodide solution is added followed by the addition of 100ml of distilled water. The contents

are then titrated against 0.1N sodium thiosulfate, Na2S203.5H20 using starch as indicator

until the yellow iodide color disappeared. The solution is again titrated until the

disappearance of color. Same procedure was done for blank solution. Iodine value was then

calculated by the following formula.

(Blank titration —Sample titration) x Normality of Na2S203.5H20 x Equivalent weight of iodine
Sample weight (gram)

Where,

Normality of sodium thiosulfate, Na2S203. SH20 = 0.1

Equivalent weight of iodine = 127

According to EN-14214 for determination of the iodine number the mass percentage of

the fatty acid methyl esters is multiplied by an assigned weighting factor. In this project,

the EN-14214 method is used. Table 2.1 shows the weighting factors for each fatty acid

composition.



Table 2.1: Weighting Factors for Common Fatty Acids to Determine Iodine Value
(EN 14214:2003)

Methyl Ester Formula Factor

Saturated fatty acids Cn:0 0

Palmitoleic C16:l 0.950

Oleic C18:l 0.860

Linoleic C18:2 1.732

Linolenic C18:3 2.616

Gadoleic C20:l 0.785

Erucic C22:l 0.723

2.5 OXIDATION STABILITY

The oxidation stability of biodiesel differs extensively on the source of oil where

the biodiesel is derived, processing conditions, contaminants particularly trace metals, water,

radicals and peroxides and storage stability can be influence by humidity, sunlight,

microorganisms, temperature, oxygen and presence of organic occurring stabilizers (Bart et

al., 2010). Oxidation can form volatile small-chain fatty acids, which can lead to corrosion

in the engine. Meanwhile, polymers can formed, which agglomerates as "gums" which may

cause deposition of residue in the engine. Oxidation involves both storage and thermal

stability. The oxidation stability is determined via the Rancimat method. This test is based

on the period of time where methyl ester aged under constant air flow. When there is an

increase of conductivity of deionized water contained in the reservoir, it retains the volatile

acid liberated during the oxidation of fatty material. More volatile acids dissociates when

methyl ester deteriorates rapidly. According to European Committee for Standardization, an

oxidation curve is obtained when the conductivity is recorded continuously and this is

known as the IP or oil stability index. The European standard EN14112 establishes that the

oxidative stability of biodiesel should be determined at 110°C and required a minimum

value of 6 hours for the induction period (Dantas et al., 2011).



2.6 COLD FLOW PROPERTIES

In the previous study on optimization of biodiesel from edible and non-edible vegetable oil,

the jatropha and corn methyl ester show similar fuel properties to conventional diesel

compare to canola and karanja methyl ester(Patil & Deng, 2009). One of the disadvantages

of biodiesel is poor temperature operability, along with inferior oxidative and storage

stability, lower volumetric energy content, and higher nitrogen oxides exhaust

emissions(Joshi, 2011). Biodiesel with high unsaturated ester content show better cold flow

properties but have lower oxidation stability(Patil & Deng, 2009;Garcia-Perez, Adams,

Goodrum, Das, & Geller, 2010). Saturated fatty acid in the range of Cie-Cis has high

oxidation stability while unsaturated fatty acids, such as oleic and linolenic, are prone to

oxidation(Das et al., 2009).The biodiesel that has higher level of saturated methyl ester has

higher cetane number however it is susceptible to the free-radical attack(Knothe, Krahl, &

Van Gerpen, 2005).

Biodiesel with poor cold flow properties tend to cause formation of micro solid wax crystal

nuclei at low temperatures. As temperature decrease further, these crystal starts to grow

visibly and known as the cloud point (CP). At temperature below CP, larger crystals fuse

together to form large agglomerates that tend to cut off flow through fuel pipes and filters

causing start-up difficulties (Knothe et al., 2005). The temperature at which fuel crystals

have agglomerated in sufficient amounts to cause a test filter to plug is the CFPP. Pour point

is the temperature at which the fuel contains so many agglomerated crystals it is essentially

a gel and will no longer flow. The definition of CP, PP and CFPP is as the following and

illustrated in Figure 2.2;

i. Cloud Point: The temperature at which the first appearance of small solid crystals visibly

when observed as the fuel is cooled (D 2500).

ii. CFPP: The lowest temperature at which 20ml of sample safely passed through the filter

(wire mesh filter screen) under vacuum within 60 sec (EN 116) (Fernandez, Ramos, Perez, &

Rodriguez, 2010).



iii. Pour Point: The temperature at which the fuel is fully agglomerated, become gel-like and

will no longer flow when pour (D 97).

Numerous researches on the improvement of cold flow properties in biodiesel were carried

out. Biodiesel mixed with regular petroleum diesel at various ratio reduced CP and CFPP

{Kleinova, Paligova, Vrbova, Mikulec, & Cvengros, 2007 ; Knothe et al., 2005). Winterization

technique such as crystallization Alteration with methanol is used to improve the cold flow

properties of peanut biodieseI(Perez, Casas, Fernandez, Ramos, & Rodriguez, 2010). By adding

CFIs as fuel additives into soybean diesel, olefin-ester copolymers (OECP) were found to

reduce PP and CFPP(Boshui et al., 2010).

There are also a study on Differential Scanning Calorimetry(DSC) mixing bio-oil and

biodiesel shows improvement on oxidation stability. Bio-oil contain hindered phenols and

nano-particles of oligometric that modify crystal behavior by inhibiting wax crystals from

growing and subsequently improving the cold flow of soybean diesel (Garcia-Perez et al.,

2010).Metallic-based additive; magnesium, nickel and manganese is added into biodiesel

and resulted in decrease of viscosity, flash point and pour point effectively as well as

greenhouse gases emission reduction(GUru, Koca, Can, Cinar, & §ahin, 2010; Keskin, Guru, &

Altiparmak, 2007; Qaynak et al., 2009). A study on ethyl levulinate, an inexpensive bio-based

additive appears to be an acceptable CFI for biodiesel with high saturated fatty acid content

such as cottonseed methyl ester(Joshi, Moser, Toler, Smith, & Walker, 2011).

Evidently, extensive work has been done on the flow properties of biodiesel production;

however less significant work has been done concerning the improvement of cold flow of

blended methyl ester from different sources of oil. One of the study on the blend of jatropha

and palm methyl ester had achieved improvement in oxidation stability, and resulted in

reasonable cold flow properties that are suitable for tropical climate but not for production

ofwinter grades diesel fuels (Sarin, Sharma, Sinharay, & Malhotra, 2007).
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Figure 2.2 : Almost clear appearance of biodiesel after cloud point test (left),

Cloudy appearance of biodiesel after CFPP test (middle), Fully crystallized after

pour point test (right)

2.6.1 Cold Flow Improver (CFI)

One research reported the evaluation on the effectiveness of CFI in different

blended biodiesel (Echim, Maes, & Greyt, 2012). High saturated methyl esters,

such as tallow, palm, chicken and jatropha methyl ester were blended with high

level of unsaturated methyl ester such as soybean and rapeseed biodiesel samples

followed by the usage of CFI. However, there were no blend on jatropha methyl

ester and corn methyl ester was made. CFPP of the biodiesel blends were

improved when CFI were added (Echim et al., 2012). Hence, the aim of this

study is to investigate the potential of acrylic copolymer as CFI to further

improve the cold flow properties of jatropha-corn methyl ester blend. Another

advantage is to allow biodiesel works in winter conditions and to reduce the

dependency and usage of edible-oil.

CFI behave by hindering crystal growth, but do not prevent crystal initiation.

They have little effect on the temperature at which crystals that has already form.

To be more precise, CFI co-crystallize on the edges of the growing crystal plates

when crystals form, thereby inhibiting the continued agglomeration of the

plate(Bart et al., 2010). The CFI results in smaller size of crystals (d = lOurn-

11



lOOum) enabling it to pass through filters without clogging (Knothe et al., 2005).

The impact on cold flow properties is that, while CP is little affected,

considerable improvements in CFPP and PP can obtained.

CFI are usually Pour Point Depressant (PPD) having low molecular weight

copolymers in similar structure and melting point to the n-alkane paraffin

molecules, allowing them to co-crystallize after nucleation has been initiated

(Knothe et al., 2005). Types of copolymer includes polymethacrylates,

polyalkylmethacrylat.es, copolymer of vinyl acetate-maleate esters and many

more (Knothe et al., 2005). Polymethacrylates are the most widely used pour

point depressants. R in the ester has a major effect on the product, and is usually

represented by a normal paraffinic chain of at least 12 carbon atoms that ensure

solubility is shown in Figure 2.3. Typically it has a molecular weight of 7000-

10000 number in average. Commercial materials normally contain mixed alkyl

chains which can be branched.

CH, 4
COOR

CH
3

Figure 2.3 : A polymethacrylate molecule
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CHAPTER 3

METHODOLOGY

3.1 MATERIALS

Crude jatropha oil was procured from Eco Energy Solution Pty. Ltd. Refined corn oil was

Mazola/Sweet Yet Development Sdn. Bhd obtained from a local store. Anhydrous methanol

(99.8%), Sulphuric Acid reagent (95-98%) and Sodium Methoxide, CH3ONa (25% in

methanol solution) were obtained from Sigma-Alrich. Chemicals procured from Merck via

Avantis Laboratories Sdn. Bhd. were Toluene, Isopropanol and Anhydrous Sodium Sulfate.

Potassium Hydroxide and Phenolphthalein were obtained from R&M Chemicals and Fisher

Scientific respectively. All the chemicals used were analytical reagent grade. Tables 3.1-3-4

shows the materials required for each analytical methods.

Table 2.1 : Materials required for Acidity Check

Aspect Item Brand/Procured from

Solvent
Toluene Merck/Avantis Laboratories Sdn. Bhd

Isopropanol Merck/Avantis Laboratories Sdn. Bhd

Titrant
Potassium Hydroxide R&M Chemicals

Indicator
Phenolphthalein (General Purpose

Grade)
Fisher Scientific

Table 3.2: Materials and required for Pre-esterificaton reaction

Aspect Item Brand/Procured from

Oil
Refined Corn Oil Mazola/Sweet Yet Development Sdn. Bhd.

Jatropha Curcas L. Oil Eco Energy Solution Pty. Ltd.
Alcohol Methanol Sigma-Alrich 34940

Acid Sulphuric Acid Sigma-Alrich ACS Reagant 95.0% - 98.0%
Drying Agent Anhydrous Sodium Sulfate Merck/Avantis Laboratories Sdn. Bhd.

Table 3.3: Materials required for Transesterification reaction

Aspect Item Brand/Procured from

Oil
Refined Corn Oil Mazola/Sweet Yet Development Sdn. Bhd.

Jatropha Curcas L. Oil Eco Energy Solution Pty. Ltd.
Alcohol Methanol Sigma-Alrich 34940

Catalyst
Sodium Methoxide (25%

solution in methanol)
Sigma-Alrich /Avantis Laboratories Sdn.

Bhd.

Drying Agent Anhydrous Sodium Sulfate Merck/Avantis Laboratories Sdn. Bhd.
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Table 3.4: Materials required for addition of cold flow improver

Aspect Item Brand/Procured from

Oil
Refined Com Oil Mazola/Sweet Yet Development Sdn. Bhd.

Jatropha Curcas L. Oil Eco Energy Solution Pty. Ltd.
Additive Acrylic Copolymer Viscoplexl0-330/Platinum Energy Sdn. Bhd

3.2 EQUIPMENT

Esterification of crude jatrophaoil and transesterification ofjatrophaoil and refined corn oil

were carried out in a 250ml three-necked round bottom flask place in a water bath. The

reactor was equipped with a reflux condenser, to avoid the evaporation of methanol;

magnetic stirrer for rigorous stirring; and a heating plate for a constant heat supply (Figure

3.1).

Figure 3.1 : Pre-esterification and Transesterification Experimental Setup
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3.3 EXPERIMENTAL PROCEDURE

3.3.1 Pre-Esterification

Acid-catalyst pretreatment was carried out since the initial acid value of

crude jatropha oil was 23.41% or 47 mg KOH/g oil. Refined corn oil yield an

acidic value of 0.79% which is lower than 1%, thus, pre-esterification for refined

corn oil is not required. 250g of Crude Jatropha Curcas L. Oil was taken in a

three-necked round bottomed flask where 88 g of methanol was taken in a 200

ml measuring cylinder. 2.5g (1.0 wt%) of sulfuric acid (FLSO4) was measured

and poured drop wise into a measuring cylinder containing the methanol. Oil

was warmed by placing the round-bottomed flask in the water bath maintained at

64°C. Methanol and sulfuric acid were added into the oil for vigorous mixing by

means of a mechanical stirrer fixed in the flask. The required temperature (64°C)

was maintained throughout the stirring and after 4 hours, the mixture was left

overnight. The 2 layer mixture of treatedjatropha oil and residue are then poured

into a separating funnel and the bottom layer (treated jatropha oil) is separated

and stored. Treated jatropha oil is washed with de-ionized water to further

remove impurities. The residual methanol and water were separated from the oil

by rotary evaporation under vacuum at 70°C for 30minutes. Finally, treated

jatropha oil is swirled with anhydrous NaS04 to remove traces of moisture and

then separated from the anhydrous via gravitational filtration. Acidity value test

is repeated to ensure reduction of acidic value to less than 1 mg KOH/g oil.

3.3.2 Transesterification

200g of refined corn oil was taken in a three-necked round bottomed flask.

46.88 g of methanol was taken in a 200 ml beaker. 2 g of sodium methoxide,

CFbONa was taken in a measuring cylinder. The oil was warmed by placing the

round-bottomed flask in the water bath maintained at 64°C to avoid the

evaporation of methanol. Sodium methoxide, CFbONa and methanol solution

was added into the oil for vigorous mixing by means of a mechanical stirrer

fixed in the flask. The required temperature (64°C) was maintained throughout
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the stirring and after 90 minutes. Mixture is then poured into a separating funnel

and leaves it overnight. The 2 layer mixture of refined Corn biodiesel (CME) and

the bottom layer (glycerol) is separated. CME is washed with de-ionized water

carefully to further remove impurities (e.g catalyst, glycerol). The residual

methanol and water were separated from biodiesel by rotary evaporation under

vacuum at 70°C for 30minutes. Finally, biodiesel is swirled with anhydrous

sodium sulfate, NaS04 to remove moisture. Mixture of CME and anhydrous

NaS04 is then separated by gravitational filtration to pure, crystal clear biodiesel.

Similar steps were repeated for treated jatropha oil to form jatropha biodiesel.

Figure 3.2: Transesterification process (1) Refined Corn Oil (2)

Transesterification (3) Separation of biodiesel and glycerol (4) Washing with

deionized water (5) Rotary Evaporator (6) Biodiesel as product
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3.4 ANALYTICAL METHODS

3.4.1 Acid Value

Acid values (AV) of vegetable oil were determined according to American Oil

Chemists' Society (AOCS) Method Cd 3d-63. Before proceeding with

transesterification, the oil sample needs to be tested for acidity value. When an acid

value of 2.0mg KOH/g oil or less was achieved, the oil can be used in alkali

catalyzed transesterification reaction. When neat biodiesel is produced, acidity value

is again tested to obtain EN14104 requirement of 0.5mg KOH/g oil and below.

Titrant

Solvent

Indicator

KOH (85% Assay); 0.66g/500mL Isopropanol

Isopropanol: Toluene; (1:1)

Phenolphthalein; LOg/lOOmL Isopropanol

Fill burette with KOH titrant. Aliquot 25mL solvent into beaker with magnetic

stirrer and add 0.4 mL indicator. Note volume on burette. Add titrant drop-wise

while stirring until faint pink color remains. Note volume on burette and record

volume KOH used (B). Add 2g (W) of oil sample and mix until fully dissolved. Add

titrant drop-wise until faint pink color remains. Note volume on burette and note

volume KOH used (A). Acid Value is tabulated using the below equation:

[(A-B)xNx 56.11]
Acid Value =

Where:

A = Volume of titrant used for sample

B = Volume of titrant used for blank

N =0.02

W=2
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3.4.2 Fatty Acid Composition

The fatty acid composition at different blend ratios are analyzed by gas

chromatography on a 7890A GC system from Agilent Technologies, equipped

with Triple Axis inert XL El/Cl MSD detector and Quadrupole mass analyzer.

The scan rate is 125,000 amu/sec and the inlet has a direct insertion probe and

pyrolizer.

3.4.3 Density

Density meter Anton Paar DMA 4500M is used to measure the density of the

neat biodiesel. The conversion factor for the correction of density, determined by

EN ISO 3675 over a range of temperatures from 20°C to 60°C to density at 15°C

is calculated by the formula :

P(is)= p(n +0.723(r-15)

3.4.4 Oxidation Stability

The induction period (IP) of each biodiesel blend ratios was quantified using the

Metrohm 873 Rancimat instrument with the method EN14112 for the neat

biodiesel and its blends. In this method, 3g of sample were heated at 110°C

under constant air flow (10 L/h).

3.4.5 Cold Flow Properties

CP and PP of each neat biodiesel was measured using ISL CPP 5Gs using D2500

and D97 method respectively. An automatic tester ISL FPP 5Gs was used to

quantify the CFPP of neat biodiesel and each biodiesel blend ratios. Each test

required a 45ml of biodiesel sample.



CHAPTER 4

RESULT AND DISCUSSION

4.1 CALCULATIONS FOR BIODIESEL PREPARATION

4.1.1 Pre-esterification of Crude Jatropha Oil

The calculations of the amount of methanol, and the amount of catalyst used for
pre-esterification of crude jatropha oil to produce treated jatropha oil are shown.
The methanohoil ratio used is 10:1. Catalyst used is sulfuric acid (H2S04) at lwt%

of total oil used.

Mass ofcrude jatropha oil

Molecular weight ofjatropha oil

Moles ofjatropha oil

250g

910.23g/mol

Mass of jatrop ha oil

Molecular Weig ht of jatrop ha oil

250g

910.23g/mol

0.275mol

Mass of methanol =

Ratio of methanol: oil x Moles of jatropha oilx Molecular weight of methanol

MassofH2S04 =

10

= y x (°-275)x 32-04 = 88g

lwt% x Mass of jatropha oil

— x250g
100 6

2.5g
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4.1.2 Transesterification ofTreated Jatropha Oil/Refined Corn Oil

The calculations of the amount of methanol and the amount of catalyst used for

transesterification of com oil to produce com methyl ester are shown. The

methanohoil ratio of 6:1 is used with alkalized catalyst sodium

methoxide,CHsOMe at lwt% of total oil used. Same calculations were repeated

for treated jatropha oil to produce jatropha methyl ester.

Mass ofcorn oil

Molecular weight ofcorn oil

Moles of corn oil

200g

820.13g/mol

Mass of corn oil

Molecular Weight of corn oil

200g

820.13g/mol

0.244 mol

Mass of methanol =

Ratio of methanol: oil x Moles of corn oil x Molecular weight of methanol

= 7 x (0.244 )x 32.04 = 45.37g

Mass ofCH.OMe lwt% x Mass of corn oil

2.00#
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4.2 CHARACTERIZATION OF BIODIESEL SAMPLES

4.2.1 Titration for Acidity Value

To avoid the formation of soap and loss of ester during alkaline catalyst

transesterification, acidity value titration was carried to identify the acidity value.

It is found that pre-esterification reaction is needed to be carried for crude

jatropha oil since an initial acidity value of 46.81 mg KOH/g oil or 23.41% FFA

was obtained. The acidity value greatly reduced to 1.40 mg KOH/g oil after the

pretreatment with sulfuric acid catalyst.

On the other hand, corn oil advanced to the transesterification reaction to form

CME since the acidity value scored 1.57 mg KOH/g oil or 0.79% FFA. It did not

exceed the maximum allowable specification at 2.0mgKOH/g oil or 1% FFA.

The acidity value of the neat biodiesel was examined again after

transesterification reaction. CME and JME met the EN14104 requirement. Table

4.1 shows the summarized results of the acidity value test.

Table 4.1 : Acidity Value Test

Acidity Value Test
Test

Method
Limits

Average Acid Value
(mg KOH/g oil)

JME CME

Initial Crude/Refined Oil - - 46.81 1.57

After Pre-esterification (Oil) - 2.0 max 1.40 1.57

After Transesterification EN14104 0.5 max 0.12 0.11
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4.2.2 General Quality Parameters

Standards are vital for commercialization and market of biodiesel. The

European norm EN14214 sets specifications and test methods for biodiesel

(FAME) to be used as automotive fuel for diesel engines. The European

standard tends to be stricter than the American ASTM D6751 standard,

displaying more stringent limits. Table 4.2 shows some of the general properties

of the biodiesel to ensure a good quality assurance of biodiesel.

Table 4.2 : General quality parameters of biodiesel

Properties Test Method Limits
Methyl ester

JME CME

Ester Content (%) EN 14103 96.5 min 95.7 95.9

Cloud Point (°C) D2500 - 4 0.1

Pour Point(°C) D97 - 3 0

CFPP(°C) EN 116 +5 to -20 -1.2 -4

Density (kg/m3)
at 15°C

EN ISO 3675 860 to 900 882.46 885.70

Acidity Value
(mg KOH/g oil)

EN14104 0.5 max 0.12 0.11

Calorific Value

(MJ/kg)
ASTMD240 - 39.75 39.82
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4.2.3 Fatty Acid Compositions

Gas chromatography is used to analyze the fatty acid compositions of JME and

CME; also the fatty acid composition of each blend ratios. Table 4.3 shows the

common chemical structures of common fatty acids used to identify each

component obtained from the GC results. Table 4.4 is a comparison table where

the fatty acid components of this work are compared to available journal sources.

Table 4.3 : Chemical structures of common fatty acids(BarawaI & Sharma, 2005)

Fatty Acid Formulas Methyl Ester Terms

Myristic C14:0 Methyl tetradecanoic acid
Palmitic C16:0 Hexadecanoic acid

Palmitoleic C16.-1 9-Hexadecenoic acid

Margeric C17:0 Heptadecanoic acid

Stearic C18:0 Octadecanoic acid

Oleic C18:l 9-Octadecenoic acid

Linoleic C18:2 9,12-Octadecadienoic acid

Linolenic C18:3 9,12,15-octadecatrienoic acid

Arachidic C20:0 Eicosanoic acid

Gadoleic C20:l 9-eicosenoic acid

Behenic C22:0 Docosanoic acid

Lignoceric C24:0 Tetracosanoic acid

Table 4.4 : Neat jatropha methyl ester and neat corn methyl ester major
component

fatty acid

Fatty Acid (%) Formula
JME CME

This work Source* This work Source*

Palmitic C16:0 22.45 16.02 22.11 11.54

Stearic C18:0 10.00 10.21 4.09 2.02

Oleic C18:l 8.04 38.54 8.14 28.32

Linoleic C18:2 52.90 33.08 59.06 55.78

Others Cn 6.61 2.15 6.60 2.32

Source*: (Wright & Evans, 2008), (Chiou, 2008)

Table 4.5 shows the fatty acid compositions of the neat biodiesel and biodiesel

blends at Corn methyl ester (CME) Jatropha methyl ester (JME) mass ratio of;
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i. CME:JME (0:100)

ii. CME:JME (20:80)

iii. CME:JME (40:60)

iv. CME:JME (60:40)

v. CME:JME (80:20)

vi. CME:JME (100:0)

Saturated fatty acid is methyl ester with no double bond. Unsaturated fatty acid is

methyl ester with one double bond or more. Observation from Table 4.5, neat

JME contained more saturated fat than neat CME. Vice-versa, CME contained

more unsaturated fat than the neat JME. The percentage of saturation lessens as

CME mass ratio increased in each blending. In the meantime, the total amount of

monosaturated fat remained the same with little almost no increment or

decrement in the total percentage while, the percentage of polysaturated fat

escalated as the amount CME blend ratio increased.

Table 4.5 : Fatty acid compositions ofJatropha methyl ester(JME) and Corn
methyl ester(CME) with its respective blend ratios

Fatty Acid
(%)

Formula
CME :JME

(0:100)
20:80 40:60 60:40 80:20

CME:JME

(100:0)

Myristic C14:0 0.28 0.22 0.22 0.21 0.23 0.17

Palmitic C16:0 22.45 22.08 22.24 22.32 22.70 22.11

Palmitoleic C16:l 3.27 2.84 2.31 1.82 1.42 1.14

Margeric C17:0 - 0.39 0.52 0.47 0.45 0.34

Stearic C18:0 10.00 9.19 7.94 6.77 5.42 4.09

Oleic C18:l 8.04 7.63 6.73 7.53 7.49 8.14

Linoleic C18:2 52.90 54.18 55.91 57.18 58.04 59.06

Linolenic C18:3 0.23 0.50 0.20 0.20 0.70 0.24

Arachidic C20:0 1.12 1.22 1.46 1.62 1.92 1.95

Gadoleic C20:l 0.50 0.76 1.01 1.28 1.64 1.86

Behenic C22:0 1.22 0.59 1.03 0.59 - 0.49

Lignoceric C24:0 - 0.40 0.44 - - 0.41

Saturated

(Cn:0) 35.06 34.09 33.85 31.99 30.71 29.57

Monounsatu rated

(Cn:l) 11.81 11.23 10.05 10.63 10.56 11.13

Polyunsaturated
(Cn:2,3) 53.13 54.68 56.11 57.38 58.73 59.30

Total 100.00 100.00 100.00 100.00 100.00 100.00
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4.3 IODINE VALUE

The iodine value is quantified using the EN-14214 calculation method for determination

of the iodine value adapted for biodiesel from the AOCS Recommended practice Cdlc-

85. This method uses the mass percentage of the fatty acid methyl esters and multiplied

it by an assigned weighting factor (Table 4.6). One example calculation is shown as the

following.

Iodine value calculation (EN14214,2003) for CME:JME(100:0),

Iodine value (IV) = mass % fatty acid x weighting factor

= (0.950 x 1.139%) + (0.86 x 8.139%) + (1.732 x 59.055%)

+ (2.616 x 0.241%) + (0.785 x 1.856%)

= 112.45

Table 4.6 : Weighting Factors for Common Fatty Ac
(EN 14214:2003;

ids to Determine odine Value

Methyl Ester Formula Factor

Saturated fatty acids Cn:0 0

Palmitoleic C16:l 0.950

Oleic C18:l 0.860

Linoleic C18:2 1.732

Linolenic C18:3 2.616

Gadoleic C20:l 0.785

Erucic C22:l 0.723

Expressed in gram I2/100gram sample, Table 4.7 shows the correlation between the

iodine value and the degree of unsaturation reported in one decimal place. CME:JME is

represented by shortform C:J. Table 4.8 shows the comparison of the iodine value of this

work with existing journal source.

Table 4.7: Fatty acid composition in total of saturated, monounsaturated and
polyunsaturated with iodine value

Fatty Arid (%) C!:J (0:100) 20:80 40:60 60:40 80:20 C:J(100:0)

Saturated (Cn:0) 35.06 34.09 33.85 31.99 30.71 29.57

Monounsaturated (Cn: 1) 11.81 11.23 10.05 10.63 10.56 11.13

Polyunsaturated (Cn:2,3) 53.13 54.68 56.11 57.38 58.73 59.30

Iodine value (gl2/100g) 102.6 105.0 106.1 108.8 111.4 112.5
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Table 4.8 : Iodine value

Methyl ester
Iodine value (gl2/100g)

This-work Source*

JME 102.6 96 to 106

CME 112.5 101 to 119.41

Source*:(Wright & Evans, 2008),(Ramos, Fernandez, Casas, Rodriguez, & Perez, 2009)

Iodine value is limited to 120g VlOOg in the European biodiesel standard EN14214. The

limitation of unsaturated fatty acids prevents the formation of deposits when heating

higher unsaturated fatty acids can result in polymerization of glycer ides(Ramos et al.,

2009). Both JME and CME have iodine value below 120 which are 102.6g I2/100g and

112.5g k/lOOg respectively. Iodine value is a measure for degree of unsaturation in

methyl ester. In the table, as more the unsaturation is present, the iodine value increased

as well. The increment of polyunsaturated fatty acid contributes to the increment of

iodine value in this study.

4.4 OXIDATION STABILITY

The European standard EN14112 establishes that the oxidative stability of biodiesel

should be determined at 110°C by the Rancimat method, requiring a minimum value of

6 hours for the induction period. Figure 4.1 shown is Metrohm 873 Biodiesel Rancimat

instrument used to determine the oxidation stability for neat biodiesel and biodiesel

blends.

Figure 4.1 : Metrohm 873 Biodiesel Rancimat
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The oxidation stability of biodiesel varies significantly depending on the source of

oil/fat from which the biodiesl is derived, processing conditions, contaminants

particularly trace metals, water, radicals and peroxides and storage stability can be

influence by humidity, sunlight, microorganisms, temperature and oxygen(Bart et al.,

2010). Figure 4.2 shows a graph of Induction Period (IP) against the biodiesel blends of

jatropha mass fraction. Biodiesel blend at 0.6 and 0.8 of mass fraction jatropha indicates

CME:JME (40:60) and CME:JME (20:80), respectively. Both blend ratios managed to

achieve the minimum requirement at 6.18 hours and 6.42 hours respectively. The IP

escalated as the degree of saturation increased with the higher amount of JME in the

blends. Since the objective of the study is to maximize the usage of non-edible oil in

biodiesel production, blend ratio at 0.8 mass fraction jatropha or CME:JME (20:80) is

selected to be further improve for cold flow properties.

Oxidation Stability of Jatropha/Corn Biodiesel
Blend

6.42

5.89

0 0.2 0.4 0.6 0.8

Biodiesel Blends, Mass Fraction Jatropha Methyl Ester

Figure 4.2: Oxidation Stability of Jatropha/Corn Biodiesel Blend
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4.5 Cold Fiter Plugging Point

CFPP test calls for cooling a FAME sample at a specified rate and drawing it under

vacuum through a wire mesh filter screen (Knothe et al., 2005). CFPP is then defined as

the lowest temperature at which 20ml of sample safely passes through the filter within

60s (EN 116). An automatic tester ISL FPP 5Gs was used to carry out the determination

of the CFPP at each biodiesel blend ratio and after the addition of CFI. Figure 4.3 shows

the equipment used to test CFPP which is the automatic tester ISL FPP 5Gs.

Figure 4.3 : Automatic tester ISL FPP 5Gs

4.5.1 Improvement of CFPP by blending of JME and CME

Figure 4.4 shows that pure CME has a CFPP value of -4°C which is lower than

pure JME which has a value of -1.2°C. It can be seen that the edible oil has a

better CFPP compared to the inedible JME. At the blend of 20:80 (CME:JME),

it can be observed that the CFPP value lowers from -1.2°C to 2.0 °C. The trend

continues as the mass fraction of CME increased, and the lowest temperature

achieved is -3.7°C for the blend ratio at 80:20 (CME:JME). Methyl ester that

has long chained saturated fatty acids like behenic (C20:0) and Iignolenic(C24:0)

acid tend to have the worse low-temperature properties. Low temperature

properties depend mostly on the saturated fats while the effect of unsaturated

ester is negligible.
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Cold Filter Plugging Point of JME:CME Blend

-0.5
0.2 0.4 0.6 0.8

Biodiesel blends, Mass Fraction Corn Methyl Ester

Figure 4.4: CFPP ofJME:CME blend

Although blend ratio at 80:20 (CME:JME) has the lowest CFPP, the oxidation

stability of this blend is 5.89 hours and it did not meet the oxidation stability

requirement. Therefore, the blend 20:80 (CME:JME) with an oxidation stability

of 6.42 hours and CFPP of -2°C is used for the investigation of CFI additive

addition.

4.5.2 Performance of Acrylic Copolymer as Cold Flow Improver (CFI)

Figure 4.5 shows the effect of acrylic copolymer on the CFPP of the 20:80

(CME:JME) blend. Concentration of 0.0mass%, 0.5mass% and 1.0mass% of

acrylic copolymer was added to the blend to observe the changes in temperature.

The maximum allowable amount of additive used in the biodiesel is 1.0mass%.

The result of -3°C was obtained when 0.5mass% was added. When 1.0 mass%

of additive was added, the temperature greatly reduced to -6°C. The function of

the acryclic copolymer as additive is that it significantly reduces growth and

agglomeration rates as temperature drops below cloud point. Acrylic copolymer

behaves by hindering crystal growth, but do not prevent crystal initiation. They
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have little effect on the temperature at which crystals that has already form. To

be more precise, the additive co-crystallize on the edges of the growing crystal

plates when crystals form, thereby inhibiting the continued agglomeration of the

plate(Bart et al., 2010).
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Effects ofAcrylic Copolymer on CFPP in
CMErJME 720:80 blend

Amount of acrylic copolymer, mass %

Figure 4.5: Effectsof Acrylic Copolymer on CFPP in CME:JME/20:80 Blend
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CHAPTER 5

RECOMMENDATION AND CONCLUSION

As an effort to promote the usage of non-edible oil as feedstock in biodiesel production,

an investigation of the blending of methyl ester from non-edible oils and methyl ester

from edible oil is done. The blend ratio of 20:80 (CME:JME) has achieved an oxidation

stability of 6.42 hour with CFPP of-2°C.

Some critical parameters like oxidation stability, iodine value and CFPP were

succesfully correlated with the methyl ester composition of each biodiesel, according to

the parameter: degree of unsaturation.

In this study, in order to overcome the shortcomings of jatropha-corn biodiesel, acrylic

copolymer is introduced as CFI additive to further reduce the CFPP. It is found out that

the addition of CFI can enhance the cold flow properties of the biodiesel blend and in

this case is the Jatropha-Corn biodiesel. The 20:80 (CME:JME) blend manage to

achieve a reduction of CFPP from -2°C to -6°C after the addition 1.0 mass% of acrylic

copolymer. Acrylic copolymer significantly helps to reduce growth and agglomeration

rates as temperature drops below cloud point. Acrylic copolymer behaves by hindering

crystal growth, co-crystallize on the edges of the growing crystal plates when crystals

form, thereby inhibiting the continued agglomeration of the plate.

More parameters can be further tested to ensure the biodiesel has met the EN14214

standard; such as the cetane number, flash point, water and sediment content as these

parameters are quite crucial in affecting the cold flow properties of biodiesel.
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Bl) ACID VALUE

Crude Jatropha Curcas L. oil

APPENDIX B

Table Bl: Acidity of Crude Jatropha Curcas L. oil

Trial Condition

Volume of

Titrant used

(ml)

Acid Value

FFA (%)
Average
FFA(%)

1

Before titration

(no sample added)
8.5

25.16

23.41

After titration

(no sample added)
9.1

After titration

(2g of sample added)
32

2

Before titration

(no sample added)
10.5

21.65
After titration

(no sample added)
10.8

After titration

(2g of sample added)
30.3

Treated Jatropha Curcas L. Oil

Table B2: Acidity for Treated Jatropha Oil

Trial Condition

Volume of

Titrant used

(ml)

Acid Value

FFA (%)
Average
FFA(%)

1

Before titration

(no sample added)
3.5

0.6600

0.69772

After titration

(no sample added)
4.1

After titration

(2g of sample
added)

7.1

2

Before titration

(no sample added)
12.6

0.72943

After titration

(no sample added)
12.9

After titration

(2g of sample
added)

15.8
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Refined Corn Oil

Table B3: Acidity of Refined Corn Oil

Trial Condition

Volume of

Titrant used

(ml)

Acid Value

FFA (%)
Average
FFA(%)

1

Before titration

(no sample added)
7.7

0.89776

0.78554

After titration

(no sample added)
8.1

After titration

(2g of sample added)
8.8

2

Before titration

(no sample added)
11

0.67332
After titration

(no sample added)
14

After titration

(2g of sample added)
19.2
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B2) TEMPERATURE PROFILES FOR NEAT BIODIESEL

Cloud Point

Table B4: Cloud Point Runs

Cloud Point
Experimental

JME CME

Runl 3.9 0.1

Run 2 4 0.1

Run 3 4 0.2

Average 4 0.1

Pour Point

Table B5 : Pour Point Runs

Pour Point
Experimental

JME CME

Run 1 3 0

Run 2 3 0

Run 3 3 0

Average 3 0

Cold FilterPlugging Point

Table B6 : Cold Filter Plugging Point Runs

CFPP
Experimental

JME CME

Run 1 -1.2 -4.1

Run 2 -1.1 -4.0

Run 3 -1.2 -4.0

Average -1.2 -4
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B3) OXIDATION STABILITY

Oxidation stability data (Conductivity,uS/cm vs Induction Period.hour)

CME:JME 80:20 / 2.75g

CME:JME40:60/3.

• Induction time

a Stability time

CME;JME60:40/3.i

CME:JME 20:80/3.1
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Figure Bl: Comparison ofthe Induction Period of the Blends
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Figure B2: Induction Period at CME:JME (100:0)
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Figure B3: Induction Period at CME JME (80:20)

Figure B4: Induction Period at CME:JME (60:40)
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Figure B6: Induction Period at CME:JME (20:80)
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