
ONLINE 2D SOCCER GAME USING SOCKS PROGRAMMING &

AGENTS

MOHD KHAIRI BIN MOHD SHAUKHI

INFORMATION & COMMUNICATION TECHNOLOGY

UNIVERSITI TEKNOLOGI PETRONAS

JULY2007

Online 2D Soccer Game using Socks Programming & Agents

by

Mohd Khairi Bin Mohd Shaukhi

A project dissertation submitted to the

Information Connnunication Technology Programme

Universiti Teknologi PETRONAS

in partial fulfillment of the requirement for the

BACHELOR OF TECHNOLOGY (Hons)

(INFORMATION COMMUNICATION TECHNOLOGY)

JULY2007

Universiti Teknologi PETRONAS

Bandar Sri Iskandar

31750 Tronoh

Perak Darul Ridzuan

I

CERTIFICATION OF APPROVAL

Online 2D Soccer Game using Socks Programming & Agents

Approved by,

By

Mohd Khairi Bin Mohd Shaukhi

A project dissertation submitted to the

Information Communication Technology Programme

Universiti Teknologi PETRONAS

in partial fulfillment of the requirement for the

BACHELOR OF TECHNOLOGY (Hons)

(INFORMATION COMMUNICATION TECHNOLOGY)

(Siti Rohkmah Mohd Shukri)

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

July2007

11

CERTIFICATION OF ORIGINALITY

This is to certifY that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and acknowledgements,

and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

MOHD KHAIRI BIN MOHD SHAUKHI

111

ABSTRACT

A soccer game is designed to simulate a real soccer game that is played all over the

world. The more realistic the game is, the more it will be played by people. The

development of soccer games nowadays are moving towards creating 3D graphics that

are almost human-like and artificial intelligence that are nearly perfect as a real soccer

players. Some of them allow multiplayer gameplay which allows two people at different

places connect to each other or to a game server and play the same game as opponent or

teammates. This entire feature requires a personal computer which has fast processing

power, a lot of memories, and a high-speed graphic processing chip. The objective of this

project is to design a 2D soccer game which has the AI capability and multiplayer

gameplay but only need minimum requirement to play it. To design such game, a lot of

study and research had to be done in the field of artificial intelligence and networking.

The scope of study also involves the research on the physics of the ball, such as the

movement and interaction with other players. This system is developed using Visual
'

Studio 2005 with the installment of Microsoft .NET 2.0 framework. Coding is done using

WinSocks programming for the multiplayer mode, GDI+ Programming (.NET APis) for

graphical details and Visual Basic language for AI and other features. All features in the

game have meet the targeted requirements. There are still rooms for improvements

mostly on the AI.

IV

ACKNOWLEDGEMENT

First of all, I would like to express lots of thank to Allah S.W.T for the blessing and also

for my parents and family members for their priceless support, encouragement, constant

love, valuable advices and their understanding in completing this project.

I also would like to extend my hearties gratitude to my supervisor, Siti Rohkmah Mohd

Shukri for her guidance, knowledge, support, advices, experience and feedback

throughout the process of completing this project. Her kindness, valuable advice and

useful feedback are really important and give big contribution towards my project.

I am indebted to many individuals who helping me during the process of completing this

project. They are people of my respect who involve directly or indirectly throughout this

project.

Last but not least, a token of appreciation to all my colleagues for all the supports and

cooperation during the development of the project. The support and assistance coming

from all parties involved in this project is really appreciated. I sincerely would like to

apologize for any mistaken that I made accidentally during this project.

Thank you to all of you.

v

TABLE OF CONTENTS

CERTIFICATION.

ABSTRACT

ACKNOWLEGEMENT

CHAPTER!: INTRODUCTION
1.0 Background Information
1.1 Problem Identification
1.2 Objectives and Scope of Study.

CHAPTER2: LITERATURE REVIEW
2.0 What is a 2D soccer game?
2.1 2D soccer game VS 3D soccer game

CHAPTER3: METHODOLOGY
3.0 Procedure Identification
3.1 Planning
3.2 Requirement Analysis
3.3 Design Phase
3.4 System Prototype
3.5 Implementation Testing
3.6 System Release
3.7 System Requirement

CHAPTER4: RESULTS AND DISCUSSION.
4.0 Result
4.1 Discussion

CHAPTERS: CONCLUSION AND RECOMMENDATION

REFERENCES

APPENDICES

VI

I

IV

v

1
1
2
2

6
6
6

8
8
9

11
11
16
17
17
18

19
19
19

20

21

23

FYP

ICT

UTP

www
GUI

2D

3D

AI

GDI

API

LAN

IP

PC

FIFA

VB

COM

CPU

RAM

MB

ABBREVIATIONS AND NOMENCLATURES

Final Year Project

Information and Communication Technology

Universiti Teknologi PETRONAS

World Wide Web

Graphical User Interface

Two-dimensional

Three-dimensional

Artificial Intelligence

Graphics Device Interface

Application Programming Interface

Local Area Network

Internet Protocol

Personal Computer

Federation lntemationale de Football Association

Visual Basic

Component Object Model

Central Processing Unit

Random Access Memory

Megabyte

vii

LIST OF FIGURES

Figure 1.0: Game Formation

Figure 2.0: Prototype Model

Figure 3.0: Basic Objects in the Field

Figure 4.0: Collision Detection VB Codes

viii

1.0 Background Information

CHAPTERl

Introduction

There are a lot of games that apply artificial intelligence movement to interact with

the environment and its surrounding. For a soccer game, the artificial intelligence resides

in the player reaction when it touches the ball and deciding what to do after it reacts to

the ball. After the reaction by the player, the ball has to designed to move according on

how the player kicks it. In doing this, calculation has to be done to make sure that the ball

move logically and accordingly. In this project, the tasks that need to be done is

researching and understanding how artificial intelligence works in a soccer match and

applying it into a 2D soccer game.

Soccer games nowadays provide the opportunity for the human players to play

against others through the Internet or LAN network. The game is seen by two or more

people far from each other on their computer. Different players are controlled in a

different network the game. This makes the game a lot more interesting as the

multiplayer mode give the chance for the human player to compete against another

human player. To apply the ability to play against other human player on a LAN network,

Windows Sockets API (Winsock) can be installed together with the soccer game. One

computer will act as a host while another computer can connect to the host as a client. It

works as a medium of communication so that the 2D soccer game can be played over the

LAN network.

The ball movement in accordance to the player's reaction with it is also taken into

account. In such a way, the ball must be programmed to move like a normal ball in a real

soccer game. In a 2D soccer game, the ball is programmed and calculated in terms of

velocity, direction, angle and speed during movement.

I

1.1 Problem Identification

Among the problems that had been identified were:

1. Creating the player's artificial intelligence.

2. Programming the network protocol to support the multiplayer mode for the 2D

soccer game.

3. Calculations on the velocity, angle, speed and reaction of ball motion.

4. Lagging occurs when there are a lot of calculations involving artificial

intelligence.

1.2 Objective

Among the objectives are:

1. To implement Winsock into a 2D soccer game so that it can be played across the

network by two players

2. To study the interaction of the artificial intelligence players with the ball.

3. To create a real-like simulation of real soccer game played by two human players.

1.3 Scope of Study

The scopes of this project are:

1.3.1 Artificial Intelligence

In this online 2D soccer game, artificial intelligence is applied to the players

which aren't controlled by the human players. Artificial intelligence is designed for

the movement of the players and what the players will do if they are close to the ball.

When they are close to the ball, they will kick it towards the opponent's goal. Other

artificial intelligence that is applied to the players is how the players will move

around the field. There are regions set on the field so that the AI players do not move

around freely around the field, but they will move inside their region only so that the

game play is not messed up. In doing so, the field is divided into 3 vertical parts with

each side's AI player controlling one region independently.

2

1.3.2 Modular engine

Modular engine is build into this game so that it allows expandability onto almost

all aspects of the game engine including non-player objects, AI players and the ball.

Modular engine is the ability of the program to accept broad number of inputs and

process it with one generic code. The inputs can therefore vary from different sources

whilst still retaining compatibility and performance as well as coding simplicity. The

engines are therefore set to have a lot of functions. Rather than running the whole

code sequentially, the engine will run certain function based on the input being fed.

The input can be retrieve from various sources. A good example of a modular engine

is the movement function. The movement of the player controlled by human is by

using mouse or keyboard. It is easier to set up the movement keys because the

movement function is a modular engine. AI currently is not set up as a modular

engine. Each player has its own AI rather than applying one general coding to all the

AI players. If AI is set as a modular engine, all of the AI players will run one

particular AI code multiple times, depending on the its role on the field. The

workload for AI to run as normal coding or as a modular engine are practically the

same, so applying the AI as a modular engine will be a study on optimizing the

program later.

1.3.3 Ball Movement

To make this 2D soccer game as real as possible, the ball movement should be

realistic. The study of the ball movement is based on trigonometric calculation of

vectors. Calculations is done when the ball interact with other players on the field.

Ball speed is currently set as a constant value upon contact with a decaying velocity

as it moves. When the ball touches other objects, for example, other players, the ball

should move accordingly as a real ball would do. It would bounce back or reflected to

other sides.

1.3.4 Multiplayer Mode

Multiplayer mode is the ability of the 2D soccer game to be played across the

LAN network by two different human players at two different computers. One will

3

act as a host, another is a client. A client will connect to the host by putting the IP

address of the host. To make this applicable, Winsock programming is used. One

human player will control one player in one team while the other human player will

control another in the opposite team. The computation engine is non-existent (not

functional) on the client as when it is run in client mode, all it does is relay keystrokes

and various inputs to the host's modular input system. All calculations will therefore

be done on the hosts, and the results are returned to the client at fast intervals. This is

done so that there is not much lagging created between host and client. If both are set

to run calculations independently, synchronization errors have a chance of occurring

and the game will not be synchronized. Theoretically, the response time between

calculations on the host machine and the display on the client machine is very

dependant upon the network latency of the connection rather than the bandwidth.

Therefore, network solutions with low inherent latency are much more preferred

rather than one with a higher bandwidth but lackluster latency.

1.3.5 Game Formation

Compared to a real soccer game, this game will only have 4 players for each

team. 3 of them will be positioned as field players and 1 will be the goalkeeper. It is

more reminiscent of futsal games instead, with the only variation being the

implementation of goalkeepers one each side. So, on the field, the maximum player

that is allowed is 8. players. The goalkeeper will stay at the goal line and will move

only on the line. It will block the ball from getting across the line. Two of the field

players will also have Artificial Intelligence while human player will control another

field player. The human player will be able to choose which of the 3 field players to

control according to who is nearest to the ball. The difference between the controlled

player and other AI player is that there will be a yellow ring on the human-controlled

player that will distinguish it between other players. When the human player switch to

other player, the yellow ring will also move to the currently controlled player.

4

Figure 1.0: Game Formation

Striker

5

Goalkeeper

Midfielders
/Defenders

CHAPTER2

Literature Review

2.0 What is a 2D soccer game?

A 2D soccer game is a PC game [1] which is played by one player simulating a

soccer match [2]. The simulation is done by giving control to the human player a

representation of him/her in the game in the form of a 2D character. A two-dimensional

view of the game is the view from the top of the soccer field. The human player will see

the field as he is seeing it from the sky with full view from one end of the goal to another.

An example of a simple 2D soccer game with the same characteristics is Champion

Soccer [3] and Championship Soccer [4]. People who tend to play 2D soccer game are

interested in the quickness of response and the total control that they can have when

playing a 2D soccer game instead of a 3D soccer game.

2.1 2D soccer game VS 3D soccer game

The major difference in deciding which of these two are better is the graphics.

The graphics in a game is important to let the human players feel that the game is

representing a real game. According to Wikipedia [5], 3D computer graphics are different

from 2D computer graphics in that a three-dimensional representation of geometric data

is stored in the computer for the purposes of performing calculations and rendering 2D

images. So the response time for a 3D soccer game from the time a human player push

the buttons to move the player in the field is slower than a 2D soccer game. Unless the

PC which used to render the 3D soccer game is powerful, it has a slower response time.

This is one of the major reasons why people tend to stick to 2D soccer game and

sacrifices the beautiful graphics for lower ones [6]. The latest release from Electronic

Arts (EA) Sports is their popular soccer franchise game; FIF A 07 [7] has the best 3D

graphics compared to other 3D soccer games. But it uses a Jot of resources especially the

memory part of a host PC. Not all PCs can support this game and most of the current 3D

soccer games. A popular 2D soccer game which highly popular around the 90's is

Sensible Soccer [07]. It still releases the series until today, but in 3D. This game sets the

6

standard for 2D soccer games which featured a zoomed-out bird's-eye view, editable

national, club and custom teams and gameplay ahead of its time utilizing a relatively

simple and user-friendly control scheme.

7

CHAPTER3

Methodology

I 3.0 Procedure Identification

Planning

.... Pi!~i~Pll.ll~i! ~ i
Requirement p Game Design

Analysis ' '
~' ~

System i
Coding

i Prototype

Implementation
'--- Testing

System Release

Figure 2.0: Prototype Model

The discussion will be focused on the method used in developing the system. Prototype

Model consists of:

(i) Plaoning

(ii) Requirement Analysis

(iii) Design Phase - Coding

(iv) System Prototype

(vi) Implementation Testing,

(vii) System Release.

8

Each of the phases has its own role and reflects on how much the system will be

progressing throughout the development stages of the system.

A prototyping based methodology performs the analysis, design and

implementation phases concurrently and repeatedly in a cycle until the system is

completed.

3.1 Planning

The author conducts planning for the project to identifY the task for the system

development. The author planned to do this project in 3 main phases.

3.1.1 First Phase

This first phase is to create the basic foundation of the soccer game. This

includes the human-controlled player and the ball movement. The human­

controlled player will be control using arrow keys on the keyboard. Other keys

will be assigned to the player for the player to dribble or kick the ball. Only one

player will be designed in this phase which is controlled by the human player.

Both the ball and the player will be placed on a 2D soccer field with graphics. The

graphics include the goal post, field line and penalty box.

The ball's movement is designed in this phase. This includes the velocity,

reaction and gravity effects. Velocity is set so to match the keys that are pressed

by the human players, or according to the mouse location if it is set as so. If the

player kicks the ball, the ball will move further than when being passed or dribble.

The friction effects is set so that the ball will slowed down gradually after being

kick like a normal ball in a soccer game.

9

•• -Plaver

0 -Ball

Figure 3.6: Basic Objects in Field

3.1.2 Second Phase

The second phase will focus on the network and AI players. Socks

programming will be applied during this phase for the network play. Two game

clients will be designed differently, one being the host, and another is the client.

The host will run the game acting as the game host while the client will connect to

the host. The client's game coding will not run the same as the host, but it will run

as minimal as possible. The client will just send keystrokes to the host to control

the player. The host will do all the calculation in the coding thus the client is

running on low resources for the game. The host will need more resources to run

the game. This network design is created to let computers with low end

requirements can run the game as the client. In network playability, modular

engine is designed so that it inputs the human players keystrokes from the client

to the host allowing the client to act as a dummy terminal.

10

Main Classes

Two main engines are written for this game.

1. Main Engine

The main engine will cater mostly all of the calculations. The AI engine is written

in here. All calls are made into this main engine. Another main event that the

main engine holds is the input made by the human player using the keyboard or

the mouse.

2. Network

Network engine will handle the networking part of the game. Both host and client

have their own networking engine.

The reason this game has two separate classes is that to enable synchronizing

when multiplayer mode is on. Calculations has to be made at the host to avoid

lagging when a low end computer is used. For network play, modular engine is

used. The host is set to accept only keystrokes from the client allowing the client

to act as a dummy terminal.

AI Algorithm

1. Check Change Control

The first step is to check which player is control by the human player. The

human player can switch between the three field players.

2. DoAl

3. Calculate Player Angle

4. Move Player

An engine module is called which moves avtive player objects based on

keyinput struct state

5. MoveBall

An engine module is called which moves the ball according to its angle

and velocity characteristics

6. Move Goalkeeper

The goalkeeper is set to move randomly but in its own territory

13

7. Collision Check

Check for collision between all players and the ball, returning the angle

for the ball if collision occurs

If a goal is scored, subroutine reset is call. All players and ball position is

reset and the game is restart.

Collision Detection

When the human-controlled player kicks the ball, this is how the calculation is

made:

1. Center pixel (x andy) is took from both the ball and the player

2. Pythagoras formula is used to calculate the distance

3. If the distance is less than half of the ball and player's width, collision is

detected.

4. The ball vector is set as (ball center x- player center x) divide by distance

for x axis, (ball center y -player center y) divide by distance for y axis ..

(X1,Y1)

Player

'Get Player Centerpoint

Dim PCenterX As Double= picPlayerl.Location.X + (picPlayerl.Width /2)

Dim PCenterY As Double = picPlayerl.Location. Y + (picPlayerl.Height I 2)

'Get Ball Centerpoint

Dim BCenterX As Double = picBall.Location.X + (picBall.Width I 2)

Dim BCenterY As Double= picBall.Location. Y + (picBall.Height I 2)

'Check collision

Ball

Dim PlDistance As Double= Math.Abs(((BCenterX • PCenterX) A 2 + (BCenterY • PCenterY) A 2) A 0.5)
lfPlDistance ~= (picPlayerl.Width + pic Ball. Width) I 2 Then
'Set Ban vector

14

B~UyectqrX = (B<;:~nt~rX - P~~n~~rX) I Pl Di~mn'?~
BallVectorY ~ (BCenterY- PCenterY) I PlDistance
BaliExactVelocity ~ BnllVelocitySetting
BaliTimer.Tag ~ 0
End if

Figure 4.0: Collision Detection VB Codes

Drawing

Basic Circle Object Class is used to draw the ball and players. Vector format is used

for the eclipse drawing. The reason vector drawing is used because it allows faster

computation and smoother movement rather than using graphical picture such as .jpeg

or .gif.

Input

Modular design allows input to be accepted from different sources such as keyboard

or LAN. Subroutine sets input when called by outside sources. It can be called from

keyboard presses or LAN data arrival.

Movement

Human player can use mouse or keyboard to control the computer player. Both of

these inputs are already integrated into VB. The key mapping are:

Keyboard

W = Move player up

A = Move player left

S =Move player down

D = Move player rigt

XJZ = Change to next player

Mouse

Move cursor = Move player

Click = Change controls to keyboard

XJZ = Change to next player

15

For multiplayer, the keyboard press and release function is fetch and send to the host

engine for calculation. The mouse will send its x andy position. Using the mouse is

better for controlling the player because it allows 360 degrees of movement, but it is

hard for inexperienced human player to use.

Player Change Control

Controlled player is set as Pl. So when the human player presses X or Z , the Pl is

change to the next player object.

Network

MSWinsock library is used in the socks programming. The protocol used to create the

connection is TCPP. The network algorithm used is :

1. Host Listen for connecting IP

2. Client put the host's IP

3. Host detect connection

4. Host establish Connection

5. Game Start

Other Events

17 events are set in this game including engine, field, host, join, score and sound.

Main sound which is the cheering supporters are stream continuously until an event

happen such as a goal or the ball when outside the field. If a goal is scored, sound

event is change.

3.4 System Prototype

In this phase, prototypes will be produced to a certain extent of functional

requirements. The system prototype is not an end product; it will be refined for each

requirements being added to make the system fully functional. This prototype will be

tested for implementation in the next phase to ensure that the specific requirement works

effectively and efficiently.

16

3.5 Implementation Testing

In this phase, the prototypes that are produced to a certain extent will be deployed

in the application server and testing will be done to ensure that functional requirements

are working. This will save times to debug any problem compare to implementing full

system and checking for every bug.

The testing will be done based on the functional requirements and its integration

with other functional requirements. With this method of testing, the implementation of

the system will be done increasingly. Testing will be done in 2 stages, Alpha testing and

Beta testing.

3.5.1 Alpha Testing

Alpha testing will be conducted by the author during the development

phase and also when the game is fully operational. The objective of this test is to

eliminate as much errors as possible that are visible to the developer before

releasing it to the public for beta testing.

3.5.2 Beta Testing

Beta testing is conducted after alpha testing by a group of beta tester

which is voluntary to anyone who wants to test it. There are two groups of beta

testers which are garners that have been playing soccer game for a long time and

those who new to this genre.

3.6 System Release

This is the phase where the final system is expected to be completed, hopefully

without a bug. This product will then be deployed as a multiplayer game with the ability

of two people playing in one soccer match through a LAN network. The system will be

implemented in the real enviromnent and will be considered as a released title.

Three prototypes were released prior to the three phases that were planned. The final

released was compiled into a Windows Installer Package. The size is 1OMb. The installer

will install all the necessary files into the PC including the game itself, sounds, and also

MSWinsock.reg. An administrator account is needed to install the game into a PC

because the MSWinsock registry need to be embedded into the System32. User can

17

choose the installation directory of the game. Icons and other elements are also included

after the installation. The final name of the game is Winball.

3. 7 System Requirements

Development Tools

-Visual Studio 2005

-Adobe Photoshop

- .NET2.0

Coding

-Visual Basic

-WinSocks Programming

-GDI+ Programming (.NET APls)

Host and Client

-2GHz CPU Processor

-.NET 2.0 Framework

-Windows 2000/XPNista

-256MB RAM

-20MB Hard disk Space

18

4.0 Result

CHAPTER4

Result and Discussion

This report describes the basic theories that need to be applied into the 2D

Online Soccer Game. The theories include the collision detection of the ball when

the ball interacts with other objects on the soccer field. Also included is how the

human-player controls the player's movement in the game. Both of these theories

have been studied and developed in the prototype release of the game. According

to the methodology chosen by the author, the design phase which include the

game and coding design have passed and are going into prototyping stage for the

first phase of the game. It covers creating the basic foundation of the soccer game

including the human-controlled player and the ball movement

4.1 Discussion

Two more phases need to be covered after the first phase has finished. It

covers the computer players' artificial intelligence, network programming and

graphics details. The players' artificial intelligence will involve studies on

object's interaction in VB and mathematical formulas of the players' movement.

Two types of games will be created to handle the socks programming

architecture. Main host will be developed first and the coding will be strip down

to as minimal as possible for the connecting client to use. The client will only

have to calculate keystrokes calculation for the game. Graphical details will be

applied to make the game more interesting and can compete with other 2D online

soccer game. Extra graphics and sounds for the supporters will be added.

Graphics includes a scoreboard that will update when a goal is scored and shows

the two teams' logo. Sound effects which will be added are the supporters' chant

and the sound effect then the players' dribbles or kick the ball. Interesting and eye

catching graphical user interface (GUI) menu will be designed into the game.

19

CHAPTERS

CONCLUSION AND RECOMMENDATION

The development of this 2D online soccer game is to study and apply

artificial intelligence into the players so that it can interact with other objects and

players. The author also does study on Socks programming to be applied into the

game to allow multiplayer gameplay. There are issues after the product has been

released, mainly on applying more AI players on the field. The lagging issue has

been resolved by using multithreading, and although more players can be applied

into the game, AI issues will still be a problem. More AI means more logical

coding that need to be added into each player. As discussed earlier, the AI engine

is not a modular engine, meaning each player has its own AI codes. Creating more

players with different AI may result in a messy gameplay and also coalition in the

logic programming aspects. If this project is to be continued at a later stage, a

good recommendation is to make the AI engine to be a modular engine. A general

AI coding need to be research and written that can be applied to each of the

players. This will make the game run smoothly and the AI players will move

accordingly.

20

REFERENCES

[1] Stahl, T, What is A PC Game, Chronology of the History of Video Games

[http://www.thocp.net/software/games/golden_age.htm; accessed on 26th February

2007]

[2] Cage, N, article entitled Basic Soccer Game Ru1es - History from British

universities in 1855

[http://www.about-soccer.com/soccer-game-ru1es.shtml; accessed on 26th

February 2007]

[3] Koffiepad, R, MobyGames Database, Champion Soccer for MSX

[http://www.mobygames.com/game/champion-soccer; accessed on 26th February

2007]

[4] Gold, L, MobyGames Database, Championship Soccer for Atari 2600

[http://www.mobygames.com/game/championship-soccer; accessed on 26th

February 2007]

[5] Wikipedia, definition of"3D Computer Graphics" article

[http://en.wikipedia.org/wiki/3D _computer _graphics; accessed on 26th February

2007]

[6] Teggo, R, article entitled 2D via 3D approach

[http://spritecraft.teggo.com/features/2dvia3d.shtml; accessed on 261
h February

2007]

[7] Light, M, Overview of FIF A 07

[http://www.fifa07.ea.com/home.asp?lang=us; accessed on 26th February 2007]

21

[8] Wikipedia, definition of" Visual Basic" article

[http://en.wikipedia.org/wikiNisual_basic; accessed on 2nd May 2007]

22

APPENDICES

APPENDIX 1: Main GUI of the game

Game Network

APPENDIX 2: Game Menu

APPENDIX 3: Network Menu

APPENDIX 4: Single Player

t:' WiiiBall

Gome -

APPENDIX 5: Host Waiting Box

i~orkHost .. ~r-------------------------~bt~·wiO·iii't·:liitiii~~--eii'
Waiting for Connection ..

APPENDIX 7: fnnMain.designer.vb

<Global.Microsoft. VisualBasic.CompilerServices.DesignerGeneratedO> _
Partial Class frmMain

Inherits System.Windows.Forms.Fonn

'Fonn overrides dispose to clean up the component list.
<System.Diagnostics,DebuggerNonUserCodeO> _
Protected Overrides Sub Dispose(ByVal disposing As Boolean)

Try
If disposing AndAlso components IsNot Nothing Then

components. Dispose()
End If

Finally
MyBase.Dispose(disposing)

End Try
End Sub

'Required by the Windows Form Designer
Private components As System.ComponentModeUContainer

~OTE: The following procedure is required by the Windows Form Designer
'It can be modified using the Windows Fonn Designer.
'Do not modify it using the code editor.
<System.Diagnostics.DebuggerStepThrough()> _
Private Sub InitializeComponentO

Me.components =New System.ComponentModeLContainer
Dim resources As System.ComponentModel.ComponentResourceManager =New

System.ComponentModel.ComponentResour~Manager(GetType(frmMain))

Me.EngineTicker =New System. Windows.Fonns.Timer(Me.components)
Me.Field =New System.Windows.Fonns.PictureBox
Me.mnuMenu =New System. Windows.Forms.MenuStrip
Me.GameToolStripMenultem =New System.Windows.Fonns. ToolStripMenultem
Me.mnuNewGame =New System. Windows.Forms. ToolStripMenultem
Me. ToolStripSeparatorl =New System.Windows.Fonns.ToolStripSeparator
Me.mnuExit =New System. Windows.Forms. TooiStripMenultem
Me.Network.ToolStripMenultem =New System. Windows.Forms.TooiStripMenultem
Me.mnuHost =New System. Windows.Forms.ToolStripMenultem
Me.mnuJoin =New System. Windows.Fonns. TooiStripMenultem
Me.lbiPlScore =New System. Windows.Forms.Label
Me.lbiSeparate =New System.Windows.Forms.Label
Me.lb1P2Score ~ New System. Windows.Forms.Label
Me.NetworkTicker =New System. Windows. Forms. Timer(Me.components)
Me.SoundSystem ~New AxEASYSOUNDLib.AxESound
Me.wskNetSend =New AxMSWinsockLib.AxWinsock
Me.wskNetListen =New AxMSWinsockLib.AxWinsock
CType(Me.Field, System.ComponentModei.ISupportlnitialize).BeginlnitO
Me.mnuMenu.SuspendLayoutO
CType(Me.SoundSystem, System.ComponentModei.ISupportlnitialize).BeginlnitO
CType(Me,wskNetSend, System.ComponentModei.!Supportlnitialiu),BeginlnitO
CType(Me. wskNetListen, System.ComponentModel.ISupportlnitialize).BeginlnitO
Me.SuspendLayoutO
'
'Engine Ticker
'
Me.EngineTicker.Interval = 10
'
'Field

Me.Field.Backgroundlmage = CType(resources.GetObject("Field.Backgroundlmage"), System.Drawing.Image)
Me.Field.Location =New System.Drawing.Point(53, 65)
Me.Field.Name = "Field"
Me.Field.Siu ~New System.Drawing.Size(760, 360)
Me.Field.Tablndex ~ 0
Me.Field.TabStop ~False
'
'mnuMenu

Me.lbiSeparate.Font ~New System.Drawing.Font("Courier New', 36.0!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Poin~ CType(O, Byte))

Me.lbiSeparate.Location ~New System.Drawing.Point(409, 449)
MeJblSeparate.Name = "lblSeparate"
Me.lbiSeparate.Size ~New System.Drawing.Size(52, 54)
Me.lbiSeparate.Tablndex ~ 4
Me.lblSeparate.Text = "-"

'
'lblP2Score

Me.lblP2Score.AutoSize = True
Me.1blP2Score.Font =New System.Drawing.Font('1Courier New", 36.0!, System.Drawing.FontStyle.Bold,

System.Drawing.GrapbicsUnit.Point. CType(O, Byte))
Me.lbiP2Score.Locntion ~New System.Drawing.Poinl(467, 449)
Me.1blP2Score.Name = "lbiP2Score"
Me.lbiP2Score.Size ~New System.Drawing.Size(S2, 54)
Me.lbiP2Score.Tablndex ~ 5
Me.lbiP2Score. Text ~ '0"

'Network Ticker

Me.NetworkTicker.lnterval ~ IO

'SoundSystem
'
Me.SoundSystem.Enabled ~True
Me.SoundSystem.Looation ~New System.Drawing.Point(729, 465)
Me.SoundSystem.Name = "SoundSystem"
Me.SoundSystem.OcxState = CType(resources.GetObject("SoundSystem.OcxState"), System.Windows.Forms.AxHost.State)
Me.SoundSystem.Size ~New Systern.Drawing.Size(60, 60)
Me.SoundSystem.Tablndex ~ 7
'
'wskNetSend

Me.wskNetSend.Enabled =True
Me.wskNetSend.Looation =New System.Drawing.Point(795, 497)
Me. wskNetSend.Name = "wskNetSend"
Me.wskNetSend.OcxState = CType(resources.GetObject("wskNetSend.OcxState"), System.Windows.Fonns.AxHost.State)
Me.wskNetSend.Size ~New System.Drawing.Si;re(28, 28)
Me,wskNetSend,Tablndox ~ 6

'wskNetListen

Me.wskNetListen.Enabled =True
Me.wskNetListen.Location =New Systern.Drawing.Point(829, 497)
Me.wskNetListen.Name = "wskNetListenn
Me.wskNetListen.OcxState = CType(resources.GetObject{"wskNetListen.OcxState11

), System.Windows.Fonns.AxHost.State)
Me.wskNetListen.Size ~New System.Drawiog.Size(28, 28)
Mc:,wskNetListen.Tablndex = 1

'frmMain

Me.AutoScaleDimensions- New Systern.Drawing.SizeF(6.0!, 13.0!)
Me.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font
Me.BackColor = System.Dfawing.Color.SteeiBlue
Me.BackgroundhnageLayout =System. Windows.Forms.ImageLayout.Center
Me.CiientSize ~New System.Drawing.Size(869, 537)
Me.Controls,Add(Me,SoundSystem)
Me.Controls.Add(Me.wskNetSend)
Me.Controls.Add(Me.lbiP2Score)
Me.Controls.Add(Me.lblSeparate)
Me.Controls.Add(Me.lbiPI Score)
Me.Controls.Add(Me.wskNetListen)
Me.Controls.Add(Me.Field)
Me.Controls.Add(Me.mnnMenu)
Me.Cursor= System.Windows.Forms.Cursors.Cross
Me.DoubleBuffered =True
Me.lcon ~ CType(resources.GetObject('$this.lcon"), System.Drawing.Jcon)
Me.MainMenuStrip = Me.mnuMenu
Me.Name = "frmMain"

Me. Text= 11WinBa11"
CType(Me.Field, System.ComponentModel.ISupportlnitialize).EndlnitO
Me.mnuMenu.ResumeLayout(False)
Me.mnuMenu.PerforrnLayoutQ
CType(Me.SoundSystem, System.ComponentModel.lSupportlnitialize).Endlnit()
CType(Me,wskNetSend, Systom,ComponentModei.ISupportlnitialize).EndlnitO
CType(Me.wskNetListen, System.ComponentModei.ISupportlnitialize).EndlnitO
Me.ResumeLayout(False)
Me.PerfonoLayoutO

End Sub
Friend WithEvents EngineTicker As System.Windows.Fonns.Timer
Friend WitbEvents Field As System. Windows.Forms.PictureBox
Friend WithE vents wskNetListen As AxMSWinsockLib.AxWinsock
Friend WithE vents mnuMenu As System. Windows.Forms.MenuStrip
Friend WitbEvents GameTooiStripMenultem As System. Windows.Fonns. ToolStripMenultem
Friend WithE vents mnuNewGame As System. Windows.Fonns.TooiStripMenultem
Friend WitbEveots TooiStripSeparatorl As System.Windows.Fonns.TooiStripSeparator
Friend WithEvents mnuExit As System.Windows.Forms.TooiStripMenu!tem
Friend WithEvents NetworkToolStripMenultem As Systern.Windows.Fonns.ToolStripMenultem
Friend WithE vents mnuHost As System.Windows.Forms.ToolStripMenultem
Friend WithE vents mnuJoin As System.Windows.Forms. ToolStripMenultem
Friend WitbEvents lbiP!Score As System.Windows.Forms.Label
Friend WitbEvents lbiSeparate As System.Windows.Forms.Label
Friend WithEvents lblP2Score As System. Windows.Forms.Label
Friend WithEvents Network.Ticker As System.Windows.Fonns.Timer
Friend WithEvents wskNetSend As AxMSWinsoekLib.AxWinsock
Friend WitbEvents SoondSystem As AxEASYSOUNDLib.AxESonnd

End Class

APPENDIX 8: Engine.vb

Public Class SphereEngine

'Basic Circle Object class, used for balls and player counters
Public Structure CircleObject

Diru X As Single
Dim Y As Single
Dim Size As lntl6
Dim Angle As Intl6
Dim Velocity As Single
Dim AITag As lntl6

End Structure

'Player Input. Modular design allows input to be accepted from different sources, keyboard or LAN.
Private Structure Inputs

Dim Up As Boolean
Dim Down As Boolean
Dim Left As Boolean
Diru Right As Boolean
Dim ChsngeActive As Boolean
Dim Power As Boolean

End Structure

'Declares variables, based on above structures
Public Player(I, 2) As CircleObject 'Player objects, 6 total, 3 per side
Private Keylnput(l, 2) As Inputs 'Define 2 sets ofkeyinputs, one for each side
Public Ball As CircleObject 'Defme ball object
Public Goalie(I) As CircleObject
Public PIChangeP As Short
Public P2ChangeP As Short
Public NetworkPiay As Boolean =False
Public NetworklsHost As Boolean= False

Public Sub Setlnput(ByVal Team As lntl6, ByVal Player As Intl6, ByVal Key As lntl6, By Val State As Boolean)
'Subroutine sets input when called by outside sources.
'Can be called from keyboard presses or LAN data arrjval
Dim character As String- Chr(Key)
Select Case chamcter

Case 11A"
Keylnputffeam, Player).Left ~State

Case "a"
Keylnput(Team, Player). Left~ State

Case"W"
Keylnputffeam, Player). Up~ State

Case "w"
Keylnput(feam, Player). Up~ State

Case "D"
Keylnputffeam, Player).Right ~ State

Case 11d"
Keylnput(Team, Player).Right ~State

Case "S"
Keylnputffeam, Player).Down ~State

Case 11511

Keylnput(Team, Player).Down ~ State
Case"Z"

If State= False Then Exit Select
IfTearo ~ 0 Then PIChangeP ~I Else P2ChaugeP ~ 0

Case "z"
If State= False Then Exit Select
IfTeam ~ 0 Then PJChangeP ~ I Else P2ChaugeP ~ 0

Case "X"
If State~ False Then Exit Select
1fT earn- 0 Then PIChaogeP ~ •I Else P2ChangeP ~ 0

Case "x"

If State= Fa1se Then Exit Select
lfTeam ~ 0 Then PIChangeP = •I Else P2ChangeP = 0

End Select
End Sub

Private Fnnction GetAngle(ByVal SourceX As Single, ByVal SourceY As Single, ByVal TargetX As Single, ByVal TargetY As
Single) As Integer

Dim TriX As Single= (TargetX- SourceX)
Dim TriY As Single= (TargetY ~ SourceY)
Dim Angle As Single
Anglo= MathAtan(TriY I TriX)
'Convert radians to degrees
IfTargetY >= SourceY Then

IfTargetX >= SourceX Then
'Bottom Right
Angle= (Angle I Math.Pl) • 180

Else
'Bottom Left
Angle= 180 +((Angle I Math.PI) • 180)

Endlf
Else

IfTargetX >= SourceX Then
'Top Right
Angle= (Angle I Math.Pl) ' 180 + 360

Else
'Top Left
Angle= 180 + ((Angle I Math.PI) • 180)

End If
Endlf
Return lnt(Angle)

End Function

Private Function CheckCollision(ByVal objl As CircleObject, ByVat obj2 As CircleObject, ByVal simple As Boolean) As lnt16
'Basic collision detection code detection function.
'Call with 'simple' will skip the collision angle calculations
'and just return yes or no for ~ollision
'Simple disabled will return the collision angle referring
'to the trajectory of the second object after coUision
Dim Obj!CenterX As Single= objl.X + (objl.Size 12)
Dim Obj!CenterY As Single= objl. Y + (objl.Size 12)
Dim Obj2CenterX As Single= obj2.X + (obj2.Size 12)
Dim Obj2CenterY As Single= obj2.Y + (obj2.Size 12)
Dim Distance As Single= ((((Obj2CenterX- ObjlCenterX) A2) + ((Obj2CenterY- ObjlCenterY) A 2)) A0.5)
IfNot simple Then

lfDistance <= ((objl.Size + obj2.Size) 12) Then
Return lnt(GetAngle(ObjlCenterX, ObjlCenterY, Obj2CenterX, Obj2CenterY))

Else
Return-!

Endlf
Else

If Distance<>= ((objl.Size + obj2.Size) 12) Then Return 1 Else Return 0
End If

god Function

Pnblic Sub ResetO
'Subroutine caU resets positions for all objects on the field
Ball. Velocity= 0
Bali.Angle = 0

Player(O, O).X = 190
Player(O, O).Y= 175
Player(O, O).AITag = 0

Goalie(O).X = 20
Goalie(O).Y = 175
Goalie(O).AITag = 0

Player(!, O).X = 570
Player(!, O).Y= 175

Player(!, O).A!Tag ~ 0

Player(O, I).X ~ 100
Player(O, I).Y~ 100
Player(O, I).A!Tag ~ I

Player(O, 2).X ~ I 00
Player(O, 2). Y ~ 250
Player(O, 2).A!Tag ~ 2

Player(!, I).X ~ 660
Player(I, I).Y ~ 100
Player(I, l).A!Tag ~I

Player(!, 2).X~660
Player(!, 2).Y~250
Player(I, 2).A!Tag ~ 2

Goalie(I).X ~ frmMain.Field. Width - 40
Goalie(I).Y ~ 175
Goalie(l).A!Tag ~ 0

Dim i As Intl6
Dimj As Intl6
Fori=OTo 1

Forj=OTo2
With Player(i, j)

.Anf!le~o

.Size =20
End With

Next
With Goalie(i)
.Angie~o

.size ~20
End With

Next

Bali.X~ 380
BaiLY~ 175
Ball. Size ~ 10

frmMain.PlActive = 0
fnnMain.P2Active = 0

End Sub

Public Function Tick() As Boolean
'Calculation engine tick algorithm. Calls appropriate subs in order
If (Not NetworkPlay) Gr (NetworkPlay And NetworklsHost) Then

Call CheckChangeControl()
CallDoAl()
Call CalcPlayerAngle()
Call MovePlayefll()
Call MoveBall()
Call MQveGoalieO
If CheckBordersO =False Then Return False : Exit Function
Call DoCollide()
lfNetworkPiay And NetworklsHost Then Call SendEngineVafll()

End if
fimMain.Field.RefreshO
Application.DoEventsO
Return True

End Function

Private Sub CheckChangeContrul()
Dim i As Short= 0
lfPIChangeP <> OThen
Fori~OTo2

Player(O, i).A!Tag +~ PlChangeP
lfPiayer(O, i).A!Tag ~ 3 Then Player(O, i).A!Tag ~ 0 Else lfPiayer(O, i).A!Tag ~ -1 Then Player(O, i).A!Tag ~ 2
lfPlayer(O, i).A!Tag ~ 0 Then frmMain.PlActive ~ i

Next
PI Changer~ False

End If
lfP2ChangeP <> 0 Then

Fori=OTo2
Player(!, i).AITag-P2ChangeP
If Player(!, i).A!Tag ~ 3 Then Player(!, i).A!Tag ~ 0 Else lfPlayer(l, i).AITag ~ -1 Then Player(!, i).A!Tag ~ 2
If Player(I, i).A!Tag ~ 0 Then frmMain.P2Active ~ i

Next
P2ChangeP =False

End If
End Sub

Private Sub DoAIO
Dim i As Short
Dim j As Short
Fori=OTo 1
Forj~OTo2

CalcAIPlayer(Player(i,j), (i ~ 0))
Next

Next
End Sub

Private Sub CalcAWlayer(ByRefPI As CircleObject, ByVallsPI As Boolean)
Dim Ball Center X As Single ~ Bali.X + 5
Dim BaliCenterY As Single~ BalLY+ 5
Dim PCenterX As Single = Pl.X + 10
Dim PCenterY As Single ~PLY+ lO
Dim PTargetX As Single
Dim PrargetY As Single
Dim Angle As Integer
lf(IsPI And PLA!Tag=O) Or (NoilsPI And PLA!Tag~ 0 And NeiworkPlay AndNeiworklsHost) Then Exit Snb

IflsPl Then
Angle~ GetAngle(BallCenterX, BallCenterY, frmMain.Field.Widlh -1, frmMaln.Field.Height /2)
Select Case PLA!Tag

Case I ' Player I (Mid)
If Angle < 180 Then

PLAngle ~ 180
lfBallCenterX > PCenterX + 10 AndBallCenterY > PCenterY + 6 Then

If Angle~ 180 Then Angle-~ 180 Else Angle-180
PTargetY ~ BallCenterY- 6 * Math.Sin(Angle)
PTargetX ~ BallCenterX - I 0 • Malh.Cos(Angle)
PI.Angle ~ GetAngle(PCenterX, PCenterY, PTargetX, PTargetY)

Else
lfBallCenterX < PCenterX + 10 Then

Pl.Angle ~ 180
Else

Pl.Angle = 270
Endlf

End If
Elself Angle > 180 Then

IfBallCenterX > PCenterX + 10 And BaiiCenterY < PCenterY- 6 Then
If Angle~ 180 Then Angle~ 180Else Angle -180
PTargetY = BallCenterY + 6 * Math.Sin(Angle)
PTargetX ~ BaliCenterX -10 * Malh.Cos(Angle)
PLAngle ~ GetAngle(PCenterX, PCenterY, PTargetX, PTargetY)

Else
IfBallCenterX < PCenterX + 10 Then

PLAngle ~ 180
Else
PLAngle~90

End if
End If

E:lse
lfPCenterX + 10 > BallCenterX- 5 Then

PLAngle=O
Else : Pl.Angle = 180
End if

End If
If (PCenterX > frmMain.Field. Width I 3 And PCenterX < frmMain.Field. Width * 2 I 3) Or (Bali.X >

frmMain.Field. Width I 3 And Baii.X < frmMain.Field.Width * 2 I 3) Or (PCenterX < frmMain.Field. Width I 3 And (PLAngle < 91 Or
PI.Angle> 269)) Or(PCenterX > frmMain.Field.Width • 213 And (PI.Angle> 89 AndPI.Angle< 271)) Then

Pl. Velocity~ 1.4142
Else

Pl. Velocity~ 0.1
End if

Case 2 ' Player I (Back)
If Angle < 180 Then

PI.Angle ~ 180
IfBallCenterX > PCenterX + 10 And Ba11CenterY > PCenterY + 6 Then

If Angle~ !80 Then Angle~ 180 Else Angle-~<= 180
PTargetY ~ BallCenterY- 6' Math.Sin(Angle)
PTargetX ~ Bai!CenterX- 10 * Math.Cos(Angle)
PI.Angle ~ GetAngle(PCenterX, PCenterY, PTargetX, PTargetY)

Else
lfBaiiCenterX < PCenterX + 10 Then

PI.Angle ~ 180
Else

Pl. Angle~ 270
End if

End If
Elself Angle> 180 Then

If Ball Center X> PCenterX + l 0 And Bal!CenterY < PCenterY - 6 Then
If Angle~ 180 Then Angle -I80ElseAngle -t= 180
PTargetY ~ BallCenterY + 6 * Math.Sin(Angle)
PTargetx ~ BaiiCenterX - l 0 • Math.Cos(Angle)
PI.Angle ~ GetAngle(PCenterX, PCenterY, PTarget)(, PTargetY)

Else
IfBaiiCenterX < PCenterX + I 0 Then

Pl.Angle ~ 180
Else

PI.Angle ~ 90
Endlf

Endlf
Else

IfPCenterX + 10 > BallCenterX- 5 Then
PI.Angle~o

Else: PI.Angle ~ !80
End If

End If
If(PCenterX < frmMain.Field.Width I 3) Or (Ball.X < frmMain.Field.Width I 3) Or (PCenterX > frmMain.Field.Width *

I I 3 And (PI.Angle> 89 And PI.Angle < 271)) Then
PI.Velocity~ 1.4142

Else
PLVelocity ~OJ

Endlf
End Select

Else
Angle~ GetAngle(BaiiCenterX, BallCenterY, I, frmMain.Field.Height I 2)
Select Case PJ.AITag

Case 0 ' Player 2 (Forward)
If Angle< 180 And Ba!ICenterX < frmMain. Width I 3 Then

Player(!, O).Angle ~ 0
IfBallCenterX < PCenterX - 10 And Ba11CenterY > PCenterY + 6 Then

If Angle~ 180 Then Angle-= !80 Else Angle~ !80
PTargetY ~ BallCenterY- 6 • Math.Sin(Angle)
PTargetX = BallCenterX + 10 • Math.Cos(Angle)
Player(I, O).Angle ~ GetAngle(PCenierX, PCenterY, PTarget)(, PTargetY)

Else
IfBallCenterX > PCenterX- 10 Then

Player(!, O).Angle ~ 0
Else

Player(!, O).Angle ~ 270
Endlf

End If
Etself Angle > 180 And BallCenterX < frmMain. Width I 3 Then

If Angle < 180 Then
PI.Angle ~ 0
IfBai!CenterX < PCenrerX- IO And Ba!ICenrerY > PCenterY + 6 Then

If Angle>~ 180 Then Angle~ 180 Else Angle~ 180
PTargetY ~ Bai!CenterY. 6 * Math.Sin(Angle)
PTargotX ~ Bai!CenrerX + 10 * Math.Cos(Angle)
PI.Angle ~ GetAngle(PCenterX, PCenterY, PTargetX, PTargetY)

Else
IfBallCenterX > PCenterX ~ 10 Then

PI.Angle~o

Else
PI.Angle ~ 270

Endlf
End If

Elself Angle> 180 Then

IfBaliCenterX < PCenterX- 10 AndBaiiCenterY < PCenterY- 6 Then
If Angle~ 180 Then Angle~ I80 Else Angle+~ 180
PTargetY ~ Ba!ICenterY + 6 * Math.Sin(Angle)
PTargetX ~ BallCenterX + 10 * Math.Cos(Angle)
Pl.Angle ~ GetAngle(PCenterX, PCenterY, PTargetX, PTargetY)

Else
If Ball Center X > PCenterX - 10 Then

PI.Angle~o

Else
Pl.Angle ~ 90

End If
Endlf

Else
IfPCenterX- 10 > BallCenterX + 5 Then

Pl.Angle ~ 180
Else : Pl.Angle ~ 0
End If

End If
lf(PCenterX > frmMain.Field.Width * 213) Or (Ball.X > frmMain.Field.Width * 213) Or (PCenterX <

frmMain.Field.Width • 213 And (Pl.Angle < 9I Or Pl.Angle > 269)) Then
Pl. Velocity~ 1.4142

Else
Pl. Velocity~ 0.1

End If
End Select

End If
End Sub

Private Sub CalcPiayerAngleO
Dim PCenterX As Single
Dim PCenterY As Single
Dim i As Intl6
Dimj As Intl6
Fori=OTo 1

Forj=OTo2
IfPiayer(i, j).A!Tag ~ 0 And i ~ 0 Then

lffrmMain.UseMouse Then
PCenterX = Player(i, j).X + 10
PCenterY = Player(i,j).Y + 10
Dim TriX As Single ~ (frmMain.MouseX • PCenterX)
Dim TriY As Single= (frmMain.MouseY ... PCenterY)
Dbn Angle As Single
Angle~ Math.Atan(TriY I TriX)
'Convert radians to degrees
If frmMain,Mousc Y >= PCenterY Then

If frmMain.MouseX >= PCenterX Then
'Bottom Right
Angle~ (Angle I Math.PI) * 180

Else
'Bottom Left
Angle~ 180 +((Angle I Math.PI) * 180)

End if
Else

If frmMain.MouseX >= PCenterX Then

Top Right
Angle~ (Angle I Math.PI)' 180 + 360

Else
Top Left
Angle~ 180 +((Angle I Math.PI) * 180)

End If
Eodlf
Player(i, j).Angle ~ GetAngle(PCenterX, PCenterY, ftmMain.MouseX, fnnMain.MouseY)
Player(i,j).Velocity~ 1.4142

Else
If Keylnput(i, j).Up And Keylnput(i, j).Left Then

Player(i,j).Angle ~ 225
Elself Keylnput(i, j). Up And Key Input(~ j).Right Then

Player(i, j).Angle ~ 315
ElselfKeylnput(i,j).Right And Keylnput(i,j).Down Then

Player(i, j).Angle ~ 45
Else If Keylnput(i, j).Down And Keylnput(i, j).Left Then

Player(i, j).Angle ~ 135
Else If Keylnput(i, j).Up Then

Player(i, j).Angle ~ 270
ElselfKeylnput(i,j).Rigbt Then

Player(i, j).Angle ~ 0
Elself Keylnput(i, j).Down Then

Player(i, j).Angle ~ 90
Elself Keylnput(i,j).Left Then

Player(i,j).Angle ~ 180
Endlf
Player(i,j).Velocity ~ 1.4142
IfNot (Keylnput(i,j).Up Or Keylnput(i,j).Left Or Keylnput(i,j).Right Or Keylnput(i,j).Down) Then

Player(i, j). Velocity~ 0
End If

Endlf
Else If Player(i, j).A!Tag ~ 0 And i ~ 1 And NetworkPiay And Networkls!lost Then

IfftmMain.P2UseMouse Then
PCenterX ~ Player(i,j).X + 10
PCenterY ~ Player(i, j).Y + 10
Dim TriX As Single~ (fnnMain.P2MouseX - PCenterX)
Dim TriY As Single~(frmMain.P2MouseY -PCenterY)
Dim Angle As Single
Angle~ Math.Atan(TriY I TriX)
'Convert radians to degrees
IffnnMain.P2Mouse Y >= PCenterY Then

If frmMain.P2MouseX »= PCenterX Then
'Bottom Right
Angle~ (Angle I Math.PI) * 180

Else
'Bottom Left
Angle~ 180 +((Angle/ Math.PI)' 180)

End If
Else

IffnnMain.P2MouseX >= PCenterX Then
Top Right
Angle~ (Angle I Math.PI) ' 180 + 360

Else
'Top Left
Angle~ 180 + ((Angle/Math.PI) *180)

End If
End If
Player(~ j).Angle ~ GetAngle(PCenterX, PCenterY, frmMain.P2MouseX, frmMain.P2Mouse Y)
Player(i,j).Veloeity ~ 1.4142

Else
lfKeylnput(i, j). Up And Keylnput(i,j).Left Then

Player(i, j).Angle ~ 225
ElselfKeylnput(i, j). Up And Keylnput(i, j).Right Then

Player(i, j).Angle ~ 315
Elself Keylnput(i,j).Right And Keylnput(i, j).Down Then

Player(i, j).Angle ~ 45
ElselfKeylnput(i, j).Down And Keylnput(i, j).Left Then

Player(i, j),Angle ~ 135
ElselfKeylnput(i,J).Up Then

End Sub

Private Function CheckBordersQ As Boolean
'Checks ball position at borders
Dim x As Boolean = True
IfBall.X < 0 Then

If Ball. Y > (frmMain.Field.Height/2) - 32 And Ball. Y + 10 < (frmMain.Field.Height /2) + 32 Then
PlaySound(4)
frmMain.lblP2Score.Text +='I
x""' False

Else
PlaySound(7)
x =False

End If
ElseifBall.X > frmMain.Field. Width Then

IfBall.Y > (frmMain.Field.Height /2)- 32 And Ball.Y + \0 < (frmMain.Field.Height /2) + 32 Then
PlaySound(S)
frmMain.lbiPlScore.Text += 1
x =False

Else
PlaySound(7)
x= False

End If
ElseifBall.Y < 0 Then

PlaySound(7)
x= False

ElseifBaiLY > frmMain.Field.Height Then
PlaySound(7)
x= False

End If
If (Ball.X < (frmMain.Field. Width /3)) Or (Ball. X > (frmMain.Field. Width * 2/3)) Then

PlaySound(3)
End If
Retumx

End Function

Private Sub DoCollideO
'Check for collision between all players and the ball,
'returning the angle for the ball if collision occurs.
Dim Angle As lnt16
Dim i As lntl6
Dimj As Intl6
Fori=OTo I

Forj=OTo2
Angle= CheckCollision(Player(i,j), Ball, False)
If Angle <> -1 Then

Ball.Angle =Angle
Ball.Velocity=3
PlaySound(6)

End If
Next
Angle= CheckCollision(Goalie(i), Ball, False)
If Angle <> -1 Then

Bal!.Angle =Angle
Ball. Velocity= 3
PlaySound(6)
PlaySound(l)

Endlf
Next

End Sub

Private Sub SendEngineVarsO
Try

Dim SendString As String= "Engine;"
Dim i As Short= 0
Dimj As Short= 0
Fori=OTo 1

Forj=0To2
SendString &= Player(i, j).X & ";"
SendString &=Player(~ j). Y & ";"

APPENDIX 9: NetworkClient.Designer.vb

<Globa1.Microsoft.VisualBasic.CompilerServices.DesignerGenerated0> _
Partial Class NetworkCJient

Inherits System.Windows.Fo~s.Fomt

'Form overrides dispose to clean up the component list.
<System,DiagnostiGs,DebuggerNonUserCodeO> _
Protected Overrides Sub Dispose(ByVal disposing As Boolean)

Try
If disposing AndAJso components IsNot Nothing Then

components.DisposeQ
Endlf

Finally
MyBase.Dispose(disposing)

End Try
End Sub

'Required by the Windows Form Designer
Private components As System.ComponentModel.IContainer

'NOTE: The following procedure is required by the Windows Fonn Designer
'It can be modified using the Windows Form Designer.
'Do not modify it using the code editor.
<System.Diagnostics.DebuggerStepThrough()> ~
Private Sub InitializeComponentO

Me.cmdCmmect =New System. Windows.Fonns.Button
Me.txtiP =New System.Windows.Fonns. TextBox
MeJbiStatus =New System, Windows,Fonns,Label
Me.cmdCancel =New System. Windows.Forms.Button
Me.SuspendLayoutO
'
'cmdConnect

Me.cmdColUlect.Location =New System.Drawing.Point(IS, 51)
Me.cmdConnect.Name = 11cmdConnect"
Me.cmdConnect.Size =New Systern.Drawing.Size(75, 23)
Me,cmdConnectTablndex = 0
Me.cmdConnect.T ext= "Connect"
Me.cmdConnect.UseVisualStyleBack.Color =True
'
'txtiP

Me.txtiP.Location =New System.Drawing.Point(15, 25)
Me.txtiP.Name = "txtiP"
Me.txt!P.Size ~New System.DrawingSize(l56, 20)
Me.txt!P.Tablndex ~ I
Me.txt!P.Text ~ "127.0.0.1"
Me.txtiP.TextAiign = System.Windows.Forms.HorizontalAlignment.Center
'
'lblStatus

Me.lbiStatus.Location =New System.Drawing.Point(l2, 9).
Me.lbiStatus.Name = "lbiStatus"
MeJblStatus.Size ~New System.Drawing.Size(l59, 13)
Me,lblStatus.Tablndex ~ 2
Me.lbtStatus. Text= "Connection Idle"
Me.lb1Status.TextA1ign = System.Drawing.ContentAlignment.MiddleCenter
'
'cmdCancel

Me.cmdCancei.Location =New System.Drawing.Point(96, 51)
Me.cmdCancei.Name = "cmdCancel"
Me.cmdCanceLSize ~New System.Drawing.Size(75, 23)
Me.cmdCanceLTablndex ~ 3

APPENDIX 10: NetworkHost.Designer.vb

<Global.Microsoft. VisuaiBasic. CornpilerServices.DesignerGeneratedO> _
Partial Class NetworkHost

Inherits System.Windows.Forms.Form

'Form overrides dispose to clean up the component lisl
<System.Diagnostios,Debu!!!!orNonUsorCodeO> _
Protected Overrides Sub Dispose(ByVal disposing As Boolean)

Try
1f disposing AndAlso components IsNot Nothing Then

components.DisposeQ
Endlf

Finally
MyBase.Dispose(disposing)

End Try
End Sub

'Required by the Windows Fonn Designer
Private components As System.ComponentModel.IContainer

'NOTE: The foUowing procedure is required by the Windows Form Designer
'It can be modified using the Windows Fonn Designer.
'Do not modify it using the code editor.
<System.Diagnostics.Debu!!!!erStepTbrougbO> _
Private Sub InitializeComponentO

Me.cmdCancel =New System. Windows.Fonns.Button
Me.lblWait ~New System.Windows.Forms.Label
Me,SuspendLayoutO
'
'cmdcancet

Me.cmdCancel.Location =New System.Drawing.Point(93, 32)
Me.cmdCancei.Name = ''cmdCancel"
Me.cmdCancei.Size ~New System.Drawing.Siz<(75, 23)
Me.crndCancei.Tablndex = 0
Me.cmdCancel. Text= "Cancel"
Me,c;mdCanGetUseVisuaJStyleBaekColor =True
'
1b1Wait

Me.lblWait.Location ~New Systern.Drawing.Point(l2, 9)
Me.lblWaitName = 'lblWait'
Me.lblWait.Size ~New System.Drawing.Size(l56, 16)
Me.lblWait.Tablndex ~ I
Me.lblWait. Text= "Waiting for Connection ... "
MeJblWait.TextAlign = System.Drawing.ContenWignment.MiddleCenter
'
'NetworkHost

Me.AutoScaleDimensions ~New System.Drawing.SizeF(6.0!, 13.01)
Me.AutoScaleMode = System. Windows.Forms.AutoScaJeMode.Font
Me.ClientSize =New System.Drawing. Size(180, 67)
Me.Controls.Add(Me.lb!Wait)
Me.Controls.Add(Me.cmdCancel)
Me.FonnBorderStyle = System.Windows.Forms.FonnBorderStyle.FixedToo1Window
Me.Name = "NetworkHost11

Me. Text= "NetworkHost"
Me.ResumeLayout(False)

End Sub
Friend WithEvents cmdCancel As System.Windows.Forms.Button
Friend WithEvents lb)Wait As System. Windows.Fonns.Label

End Class

