
Approved by, 

> 

CERTIFICATION OF APPROVAL 

'Plagiarism Detection Application' 

by 

Ntabane Mamphofore Jan 
7181 

A Project Dissertation submitted to the 

Information Technology Programme 

Universiti Teknologi PETRONAS 

in partial fulfilhnent of the requirement for the 

BACHELOR OF TECHNOLOGY (Hons) 

(INFORMATION COMMUNICATION TECHNOLOGY) 

(Dr Etienne Schneider) 

UNIVERSITI TEKNOLOGI PETRONAS 
TRONOH, PERAK 

July 2007 



CERTIFICATION OF ORIGINALITY 

This is to certify that I am responsible for the work submitted in this project, that the 

original work is my own except as specified in the references and acknowledgements, 

and that the original work contained herein have not been undertaken or done by 

unspecified sources or persons. 

Student Name : NTABANE MAMPHOFORE JAN 

Student ID : 7181 

Date : 1211
' November, 2007 

11 



Abstract 

The purpose of this abstract is to give a complete idea of the project being undertaken. 

Part 1 of this project deals mainly with the research value of the project. The project 

name is plagiarism Detection system or application. Methodologies and procedure of 

reaching this goal are included in the report as well. The motive behind the development 

of this application is to diminish plagiarism in University Technology Petronas (UTP). 

After reading this report a clear understanding of scope of study should be fully 

comprehended. The scope of study is researching about functionality of components 

needed to be integrated to complete a full plagiarism detection system. Behaviors of these 

components will also be studied to enable the student to make modification were possible 

to suit UTP while making it easy to use. 

lll 



Acknowledgement 

I would like to extend my deepest gratitude to my Supervisor Dr Etienne Schneider for 

his understanding, constant support and encouragement. He made this endeavor 

interesting and eye-opening for me. His patience is greatly admired. 

Also I am very grateful to one of the important characters who had my best interest at 

heart to make sure I never doubt my potential is Mr. Dicky Ekklesia . Thank you for 

giving me your time, valuable opinions and advises. 

I would like to express my gratitude to my roommate, Mr. Ernest Danke for bearing with 

my late night work and his support and constructive criticism, for without him as the user 

for my system improvement wouldn't have materialized. 

In the mist of all my achievements I would like to extend my deepest gratitude to my 

source of inspiration, my family. I am very grateful to my cornerstone ms Dinah Ntabane. 

Although we are oceans apart their love and support are the reason I wake up everyday to 

do what I can do best. 

Last but not least I would like to thank Prof. Jubert for his approach and advice on the 

interface design. 

IV 



Table of Contents 
Certification of Approval .......................................................................................... i 

Certification of Originality ........................................................................................ ii 

Abstract ..................................................................................................................... ii 

Acknowledgement. .................................................................................................... iv 

Table of Contents ...................................................................................................... v-vi 

List of Figures ........................................................................................................... vii 

CHAPTER!: Introduction ....................................................................................... 1 

1.1 Background of Study ................................................................. 1 

1.2 Problem Statement ...................................................................... 2 

1.3 Objective of Study ...................................................................... 2 

1.4 Objective of the Application ....................................................... 3 

1.5 Scope of Study ............................................................................ 3 

CHAPTER 2: Literature Review ............................................................................ 5 

2.1 What is Plagiarism ...................................................................... 5 

2.2 Levels ofPlagiarism .................................................................... 6 

2.3 Method Used to Detect Plagiarism ............................................. 7 

2.4 Algorithm Used in Plagiarism Detection .................................... 8 

2.5 Existing Softwares ...................................................................... 10 

2.5.1 JPlag ............................................................................. 10 

2.5.2 My drop Box ................................................................ 11 

2.5.3 Software Integrity Diagnosis System (SID) ................. 11 

2.5.4 YAP3 ............................................................................ 11 

2.5.5 SIM ............................................................................... 12 

2.5.6 MOSS ........................................................................... 12 

CHAPTER 3: Methodology Used in Study ............................................................. 13 

3.1 Spiral methodology ..................................................................... 13 

3.2 Research methodology ................................................................ 14 

3.2.1 Reading articles ............................................................ 14 

3.2.2 Getting Information from Science Forums .................. 14 

v 



3.3 Study Available Applications ..................................................... 16 

3.3.1 WCopyfind 2.6 ............................................................. 16 

3.3 .2 Cheat Guru ................................................................... 18 

3.3.4 Asking Lecturers for clarification ................................ 19 

3.4 Project Activities ......................................................................... 19 

3.4.1 Components Gathering ................................................. 19 

3.4.2 Code Analysis .............................................................. 19 

3.4.3 Literature review .......................................................... 19 

3.4.41nterface Design ........................................................... 20 

3.4.5 Action Inserted ............................................................. 20 

3.4.6 Software Updates ......................................................... 20 

3.4.7 The Progress of the Project's time line ....................... 21 

3.5 Project Implementation ............................................................... 22 

CHAPTER 4: Results and Discussion ..................................................................... 24 

4.1 Result .......................................................................................... 24 

4.2 Discussion ................................................................................... 26 

CHAPTER 5: Conclusion and Recommendations .................................................... 28 

5.1 Conclusion ................................................................................. 28 

5.2 Recommendations ....................................................................... 28 

REFERENCES .......................................................................................................... 29 

APPENDICES ......................................................................................................... 29-49 

Vl 



List of Figures 

1. Figure 1 :Four-Stages plagiarism detection model ....................................... 6 

2. Figure 2: The "Greedy String Tiling" algorithm [Wise, 1993] ..................... 8 

3. Figure 3: Part of a JPlag results display page for a pair of programs ........... 9 

4. Figure 4: A similar code segment detected by SID ...................................... 10 

5. Figure 5: Opening web page of MOSS results ............................................. 11 

6. Figure 6: depiction of waterfall Methodology .............................................. 12 

7. Figure 7: plagiarism detection Progress timeline .......................................... 28 

8. Figure 8: WCopyfind 2.6 detection systems ................................................. 16 

9. Figure 9: Guru Cheat detection software ...................................................... 17 

10. Figure 10: The interface for the application .................................................. 20 

11. Figure 11: Plagiarism detection Timeline Second Part ................................. 29 

12. Figure 12: Process Flow of Plagiarism detection applications ..................... 23 

13. Figure 13 :User Interface with user inputs ................................................... 24 

14. Figure 14: Plagiarism Detection Application's output. ................................ 24 

15. Figure 15: Help window for the output... ...................................................... 26 

List of Tables 
Table 1.1: Plagiarism spectrum of program .............................................................. 6 

vii 



CHAPTER ONE 

INTRODUCTION 

l.lBackground of the study 

Plagiarism detection application is an application intended to deter student from 

plagiarism activities. To agree not to do something you have to know what that thing is 

so that you don't do it. To make sure people know what it is not to be done this editorial 

will also encompasses the definition of plagiarism and methods of checking plagiarism. 

In most university students get away with plagiarism all the time which won't do them 

good later in life. Beside the fact that it is a crime to do plagiarism, it also unethical and 

not forgetting mind deteriorating. This lead to lot professionals who are really not 

qualified but they have the document to prove that they are worthy to be called 

postgraduate. 66% of 16,000 students from 31 prestigious U.S. universities have cheated 

at least once, says 1991 Rutgers University study. 36% of undergraduates have admitted 

to plagiarizing written material, says 1997 Psychological Record study. Cheating on 

campus increased an estimated 744% from 1993 to 1997, says University of California

Berkley officials . If the rate of plagiarism is quite high in those universities, one can 

imagine the rate in UTP. Amongst the sectors to be discussed the following will be 

discussed as listed: 

1. Identify Problem 

Objective 

Scope of study 

2. Literature review 

,. What is Plagiarism 

,j. Method used to Detect Plagiarism 

,j. Algorithms Used for plagiarism Detection 

,j. Existing Softwares 

3. Methodology Used in study 

4. conclusion 

5. Reference 

1 



1.2 Problem Statement 

The topic itself gives one the idea of why the system has to be developed without 

reading the problem statement, nevertheless as a request, I will explain in detail the 

problem that arise due to plagiarism in University Technology Petronas. The mission 

and vision of UTP involves producing students who are innovative and creative. This 

statement got compromised when students start copying other student's work 

diminishing originality which means upon graduating 50% of their knowledge is not true 

or fake. Lectures do not encourage this but they don't have a mechanism to see where 

some assignments are being replicated. As such when they get student's work from there 

they can evaluate how many students did understood, erroneously not taking into 

consideration plagiarism. This system is to aid lectures to spot the work that are 

repeating and can have students who don't understand to ask for help 

1.3 Objectives of study 

'*' Establish the requirements of a detection application 

The application has the requirements it must meet to be regarded as a detection 

application. As there are other application already in use, aligning the 

requirements of this application to comply with what other system already in use 

would be a good practice. 

,. Determine the standards of a detection application 

For a detection application to be regarded as the best, it has to have the standard that best 

detection application have. Research what are the functionalities that the application 

must have to reach the set standards. 

"*' Analyze the already in use applications 

Analyze the application in use based on what is the common algorithm to be used and 

what are the difference between them .Analyzing the pros and cons of the available 

algorithms. Do a research about the vulnerability of each application.\ 

2 



1.3.1 Objectives ofthe Application 

.., Deter plagiarism in UTP 

Knowing that your assigmnent is going to be fully scrutinized, it is lJiliikely to commit 

plagiarism act. Most people commit and/ or brake rules if they know for sure that they 

won't get caught. I know that UTP does not have hard core criminals it is just students 

desperate to make it to the industrial world. 

"- Assist Lectures in evaluating 

The application will assist lectures in evaluating the level of understanding of the whole 

class by the result they get from the test and assigmnents. Lectures will easily be able to 

spot the students who needs help and take necessary step. 

"' Encourage originality practice 

Reinforcement is one of the techniques used to ensure that people get use to what they 

are supposed to do. Upon the implementation of this application in UTP student will 

have to get use to submitting their original work even when the application is no longer 

in use they will still know that there is still a way that they can be analyzed should their 

work have any suspiciousness of plagiarism. 

1.4 Scope of Study 
The application is design to cater for student doing programming in UTP, meaning it 

will be searching for comparison between programming assigmnents. Plagiarism 

detection is a very complex process and trying to start writing programs and codes for 

the whole application will take three to four years based on the research that was done. 

The scope of study is to study components used in the plagiarism detection system. 

Factors about the system's components are their behavior, history and functionality then 

gather them from the internet finally integrate them. Integration of the components 

3 



might spawn lot of errors which will consume time but with lot of research supervisor's 

guide it is doable. 

Creating packages was one of the skills learn during Java programming, after all the 

packages have been gathered a user interface will be designed to suit UTP's standards 

and culture. 

4 



CHAPTER TWO 

LITERATURE REVIEW 

2.1 What is Plagiarism? 

Plagiarism is defined by the Cornell University Honor Council as "the acts of passing off 

as one's own the ideas or writings of another." In the Appendix to the Honor Council 

pamphlet called "Acknowledging the Work of Others" (which is used by permission of 

Cornell University), three simple conventions are presented for when you must provide a 

reference[!] 

I. If you use someone else's ideas, you should cite the source. 

2. If the way in which you are using the source is unclear, make it clear. 

3. If you received specific help from someone in writing the paper, 

acknowledge it. 

Examples of Plagiarism.[!] 

..!. word-for-word plagiarism 

When material is taken directly from a book, article, speech, statement, remarks, the 

Internet, or some other source, the writer must provide proper attnbution. In this 

example, no credit is given to the author . 

.&. The footnote without quotation marks 

.&. The paraphrase 

Even if the author's exact language is not used, a footnote is required for material that is 

paraphrased . 

..!. The mosaic: Having the original idea or passage but with copied material woven 

throughout the passage. 

·.&. The "apt phrase" 

Taking one phrase from the author and use it as your own. 

Definition from Programming perspective. 

A program plagiarism can be defined as a program which has been produced from 

another program by copying or by using a small number of source code modifications. 

[13] Plagiarized programs are usually produced in a short time without understanding 

5 



the source code. This type of plagiarism is the one which will be dealt with in detail in 

the whole report. 

2.2Levels of Plagiarism 

A program plagiarism can be defined as a program which has been produced from 

another program by copying or by using a small number of source code modifications. 

Plagiarized programs are usually produced in a short time without understanding the 

source code. Faidhi and Robinson defined six levels of program modification type in a 

plagiarism spectrum [12]. Table 1 shows a simple program plagiarism spectrum. 

Table 1: Plagiarism spectrum of program 

LEVELS PLAGIARSM METHOD 

0 Original Prorgam 

Comment and indentation 

.1. Level 0 is an original program source code without modification. 

'- Ievell, comment and indentation are changed 

·4. Ievell is to change the identifier name in terms of variable or function 

..:&. Level 5, program statements are changed to an equivalent from using different 

statement. 

·"'- Level 6 is a changed program contro1logic that achieves the same operation. 

In the plagiarism spectrum, since structural characteristics of the source change, it is 

difficult to detect a plagiarized source code that is included in a method higher 

6 



than level 4 in a plagiarism spectrum [13]. Most students tend to use levels from 0-2 

which are totally unacceptable. 

2.3Method used to detect plagiarism 

Automated Methods of Plagiarism Detection 

There are three different methods of plagiarism detection. 

""- Quiz methods 

Another method of detecting plagiarism is quizzing students about their written work. A 

student who has produced their own paper should be faruiliar with its contents and 

should 

be able to answer questions about it.[2] 

$ Writing style methods 

Many faculty members detect plagiarism by observing writing styles. Sometimes a paper 

seems to be too professionally written to have been prepared by a student. Another clue 

is a sudden shift in writing styles. Ironically, the Copy/Paste process that makes 

plagiarism so easy also betrays the crime because students forget to reformat the text 

into a uniform font.[2] 

""- Comparison with original sources [2] 

Chunking Methods 

Metrics based plagiarism monitoring 

A Plagiarism Detection Using a Syntax-Tree 

7 



Figure 1 Four -Stage plagiarism Detection Model 

2.4 Algorithms Used in Plagiarism Detection 

The Running Karp-Rabin Matching and Greedy String Tiling (RKR-GST) 

Algorithm 1 Compare a File Against an Existing CoUection(4) 

1 p = 1// the first token of Q 

2WHILEp·qj 0 +l 

3 find Q[p:::p + o i 1] from the suffix array 

4 IF Q[p:::p + 0 i 1] was found 

5 UpdateRepository 

6 p=p+o 

7 ELSE 

8 p=p+l 

9 FOR EVERY file Fi in the collection 

10 Similarity(Q; Fi) = MatchedT okens(Fi)=q 

8 



Algorithm 2 Update the Repository [4] 

1 LetS be the set of matches ofQ[p:::p + o i 1) 

2 IF some of the strings in S are found in the same file /* collision of type 1 *I 

3 leave only the longest one 

4 FOR every string M from the remaining list S 

5 IF M doesn't intersect with any repository element 

6 insert M to the repository 

7 ELSE IF M is longer than any conflicting rep. element/* collision of type 2 *I 

8 remove all conflicting repository elements 

9 insert M to the repository 

0 Greedy-String-Tiling(String A, String B) { 
1 tiles= {}; 
2 do { 
3 maxmatch = !VI; 
4 matches = {}; 
5 Forall unmarked tokens Aa in A { 
6 Forallunmarked tokens Bb in B { 
7 j = 0; 
8 while ( Aa+J == Bb+J && 
9 unmarkeci(Aa+J) && unmarkeci(Bb+J)) 
10 j ++; 
11 if (j == maxnratch) 
12 matches= matches$ match(a,b,j); 
13 else if (j > 1naxma.tch) { 
14 matches = {match(ct, b, j)}; 
15 maxmatch = j; 
16 } 
17 } 
18 } 
19 Fo1·all match(", b, nwxm.(ltch) E nwtches { 
20 For j = 0 ... (maxmatch- 1) { 
21 mark(Ao+J); 
22 mark(Bb+1); 
23 } 
24 tiles= tiles U match( a, b, maxm(ltch); 
25 } 
26 } while (nwxmatch > 1\I); 
27 1·eturn tiles; 
28 } 

Figure 2: The "Greedy String Tiling" algorithm [Wise, 1993]. 

9 



2.5 Existing Softwares 

The recommended solution to be used in understanding the result produced by each 

software, one needs to comprehend the concept of their Algorithm. 

2.5.1. JPlag 
JPlag is a java application that was developed for plagiarism detection( see figure 2 

below) 

How it works 

I. All program source codes to be compared are parsed (or scanned, depending on the 

input language) and converted into token strings. 

2. These token strings are compared in pairs for determining the similarity of each pair. 

The method used is basically "Greedy String Tiling" [Wise, 1993]: During each such 

comparison, JPlag attempts to cover one token string with substrings ("tiles") taken from 

the other file as well as possible. The percentage of the token strings that can be covered 

is the similarity value. The corresponding tiles are visualized in the HTML pages.[S] 

., 

792145 

93% 

puhl.ic vn'id t=>al.nt. (craphi"'" g) { 

> 

;',1 Sy><~n err.£lr:i.nt"l:n("fHr.i.r~t.()"); 

?I lJ<:>o:o updot.,() to d:i:pl.,:y tbe oE'f"'"'"'"'"n i.>'Jffe>: 
upda.te (g); 

J•• 
:/r.Jpdat" C<or.V"'S 

void upd,.teCon~ ( ) 
< 

:~~~~-~:~~.:::;~ ~.-d:~~-,',,._,-~(,'·" vi :'L'o. ollT> i-~i._,ltl.: 
::<rtc:c,,·p;-,,_c~- c:t:-:Ln~cco ·~·~:Cro>.:h>--=.oo')_ 

~iE~:hj~~: ~~tf:ii~ :t:~~~. i~--t·~~-i~d~:o ~-i» 
~ef ''"'~'",.''" c• . G.c-:·.•>:"<<'C':: • 0 <.m.l-·;· d.ic'-. •:>"iQ_..,;-,. jin 
::.ff'::c-~)o:-_l<:-: O.c'O.•.•:'Ic-c'::•:IJ U. o,_,., ·-c~d::ob. :.<;rr;. 
1,,;..-.,:.c:-;-:=F•"''-"':0 
3.co:>:vJ•J~.~r: .,,- ' 

, .. 
~ Rop=~nta Q~~o ~r ~t v~a aod~~io4 ., 

~h=>31.1.:Ced. :p-1:.<::> .-.oad. u.p""'t• (ll-cap<:t:>-es q) ( 

I'/ "Y"~- •rl.". f:c"iAtl.:co. ("upd'ftteO "); 

Dtl'lf!"r">!t10Y'I ~:11\ "' ~T:S:II!:f!"O' 

I'/ t:-" t:h,. .o.ff'..,,.. .. .,n buEf'.,." '"'"-ill_ va1:id? 
i.E' ( ( o~:to-.:=.piuo~ -- :n.~l 

> 

II <din._..,idth !• offDin~n,.ion w:idthJ 
II ~d.1a..Dcu.9ht 1- <=rl:'l;i~"'ioa.M2.~ht) ) ( 

// n .. ~a:t.r-.1:. ib 
v:pa~-1;-~• n • 

~d~~~(:~~~;~.b~~;~ ~r~,~ ~· ···~ 

, .. 
~ Man:ll'" li.OlJ~l!l tlr""'ll"'!!l . , 

p>ibhc. "' ( 

// Syot.<>m. "'"". p:n.ntl.n( "pa:>.nt () "'' 

, .. 
~ update~ thjs can~a9 . . , 
~chron:i~ed puh1:ic void update (GLaphic9 

" ( " " 

/~~ 

// ~~ ~"' ~f£~~~~on ~~f~~ ~~~~ 

f::~:~~~"r-~~f~~ .. U,:n._ .... i.Jt:h~ 
(IHn_ h"'i-::Jh't: ''"' o:f'fllimendon. htrlg'ht:) ) 

=,:'[:.n=;_-_.o:cc.-, - J"''· 
,.-,-,,, .. ",~ ~ .-,-~_-•. _ .. ::-.. ,._,J~(.J,, 

~r=C,- ·=h1.:o c-ti·~-.. ~·-"!:•- -;.·:t•~--~-1"''"'" 
"".,,,..,. ..- l'"·'"' lr• 

J'/ Oo~y (;},., of"F<>reen buE'f'"" =into<> 
({- draw;~n.aqe(c:f'f':J.:n.aqe, 0, 0, ~s~ • 

"" :l!cond~c mo~e <:lr~o 
•/ " 

:publ.:Lc void :aou:ocDr;:,:u;;cqoC.'*"lf.""~l'L~ o~ ~ 
""''-"""Moved(e) . 

Figure 3: Part of a JPlag results display page for a pair of program 

10 



2.5.2. My Drop Box 

My Drop Box is a family of products for e-earning that includes the world's leading 

plagiarism prevention service and a comprehensive Course management Toolset. 

2.5.3 SID: A Software Integrity Diagnosis System 

It detects similarity between programs by computing the shared information between 

them. It was originally an algorithm developed for comparing how similar or dissimilar 

genomes are [15]. It was then realized that this algorithm could be extended to many 

other applications including fmding chain letter history and detecting plagiarism. 

LSteck ~lement8 Stack { 
p:tivate L~-e top; 

public LSt~~~() { 8@tup(); } 
public LSe~~~(tnt sz) { setup(); ) 

private vo~~ setup() { top = null; } // 

public vo~g =leex() { eop n null; } II 

LIQ!lll..,10 

top = null; 
tlize = 0 

} // Initialize s~k 

publ1c void clea%() ( 
top = null; 

size = 0 
) // Reaove Objec~ f~om stack 

Figure 4: A similar code segment detected by SID. 

2.5.4 YAP3: 

Which is developed by M.J. Wise is a similarity evaluation system using structural 

matrix method. YAP is a system for detecting suspected plagiarism in computer 

programs and other texts submitted by students YAP3, the third version of YAP, 

focusing on its novel underlying algorithm- Running-Karp-Rabin Greedy-String-Tiling 

(or RKS-GST), whose development arose from the observation with YAP and other 

11 



systems that students shuftle independent code segments. Y AP3 is able to detect 

transposed subsequences, and is less tempered by phony additional statements. The 

paper concludes with a discussion of recent extension of YAP to English texts, further 

illustrating the flexibility of the YAP approach.[16] 

2.5.5 SIM. 

The SIM plagiarism detection system compares token sequences using a dynamic 

programming string alignment technique [6]. The SIM plagiarism detection system [1] 

converts the source programs into token strings, then compares the strings using 

dynamic programming string alignment techniques like those used in DNA string 

matching [17]. 

2.5.6MOSS: 

MOSS stands for" Measure Of Software Similarity." It is a system developed in 1994 by 

Alex Aiken, associate professor of computer science at UC Berkeley. [8] 

· Moss ResuRs 

, Sun Mar 14 15:24:02 PST 1999 

Options -1 c -m 10 

• (Text Report 1 How to Read the Results 1 IiQ! 1 FAQ (Contact Moss 1 Submission Scripts 1 ~] 

Fllll1 FleZ , Tolel!ns Nall:lll!d lines Matched 

mite WQif.~ (7~o/,) mike fox.c @0%) 463 139 
bill smyth c (66%l bill smith c (66%l 456 133 
lane whRe.c (59%1 lane b!anco.c (66%) 354 111 
john dQe.c (1 00%) john deer.c (1 OO%l · 220 49 

Any errors encountered during 1h!s query. are listed below. 

Figure 5: Opening web page of MOSS results. 

12 



CHAPTER THREE 

METHODOLOGIES USED 

3.1 Spiral Methodology 
The perfect methodology for this project would be Spiral Methodology since the student 

and managerial control.[! 0] 

Benefits of Spiral model 

"*' the methodology iterates over the processes of think a little, plan a little, 

implement a little, then test a little 

,._ he spiral methodology is an incremental improvement on the waterfall 

methodology 

,,. It allows for feedback to each team the complexity of each requirement. 

.$ There are stages where mistakes in the requirements can be corrected. 

,._ The end user gets a peek at the results and can feedback information 

il. It is easy to make changes. 

Drawbacks of Spiral Model 

,._ The spiral methodology has no governors to control oscillations . 

.$ The length or number of cycles grows unbounded . 

.$ There are no constraints on the requirement team to '·get things right the first 

time'' 

,._ There are no firm deadlines 

.$ Cycles continue with no clear termination condition. 

"*' During implementation the developer may be chasing a continuously changing 

architecture and dynamic product requirements. 

13 



Figure 6: depiction of Spiral Methodology 

3.2 Research Methodology 

3.2.1Reading articles 
Reading more articles pertaining to plagiarism it is discovered that most online /internet 

systems consider the plagiarism detection application on a lager scale thus making it a 

full plagiarism detection system that covers all aspects of plagiarism. The main aim of 

studying the literature review was to derive a feature that makes this plagiarism 

detection application being developed unique and different. As stated in most of the 

articles they only provide high level of their architecture as a result keeping the user in 

total oblivion. 

3.2.2 Getting information from Computer Science forums 

One of the most effective medium when it comes to gathering information to contribute 

to the project reaching towards completion is posting your problem in science forums. 

14 



Rules from forums promote the idea that they are there to help with problem not to do 

you work. The forums is composed of various expert of programmers and they will 

require a clear idea of your problem and give you suggestion whilst they both 

constructively criticize each other's ideas giving the poster heads up on his/ her pit falls 

or vulnerability to his I her application. Listed below is a list of ideas collected from 

forums pertaining to this project: 

$ Most file compare algorithms use a line as a basic unit with the ability to 

ignore (or more normally to treat as a single space) any white space. Once 

any filtering of this form has been done they then look for an exact match. I 

don't think this 

Sort of comparison can really detect plagiarism. 

Suggestion: If someone has plagiarized a bit of code but changed all the 

variable names and reformatted the code then how will you detect this? 

You will need to treat source code tokens as the basic comparison unit and 

then compare (fuzzy?) tokens. 

This does not sound easy to me . 

by Roger sun Developer Network 

$ My guess is that, by compiling the files, you can identify these changes by 

going a comparison score on the generated-bytecode. Using $strings can 

get that for you, then compare the edit -distance (Levenshtein distance) on 

the bytecode. 

All this gets you is a probability of cheating - it is up to the user to examine 

(Dctually look at files where) the scores where the distance is beneath some 

arbitrary threshold. Then you can adjust the threshold based on some 

'training' (read- neural ntwk). 

byrafeal 

From this forum makes options to solution unlimited and helps the developer to 

think outside the box. 

15 



3.3 Studying available Applications 

Most plagiarism detection system that compare bytes code are web based and users 

have to use the internet to access them or they need reasonable network connection. 

Standalone application in most articles and the ones being user tested after installation 

handles plagiarism from plain text only point of view which when it comes to byte codes 

they can easily be fooled. Amongst the softwares that are standalone and consider text 

format input are Cheat gurus, Wcopyfmd 2.6and Eve. 

3.3.1 Wcopyfind 2.6 

Wcopyfind2.6 is a stand alone software that consider plain text only and it has a lot of 

inputs from the user as a result it will confuse the user since vast number of result can be 

obtained although this sound like a good thing for analysis the lecturer might not have 

time to rigorously asses those outputs. Program examines a collection of document files. 

It extracts the text portions of those documents and looks through them for matching 

words in phrases of a specified minimum length. When it finds two files that share 

enough words in those phrases, Wcopyfind 2.6 generates html report files. These reports 

contain the document text with the matching phrases underlined. 

'* What Wcopyfmd 2.6 can do: It can find documents that share large amounts 

of text. This result may indicate that one file is a copy or partial copy of the 

other, or that they are either copies or partial copies of a third document. 

• What Wcopyfmd 2.6 cannot do: It cannot search for text that was copied 

from any external source, unless you include that external source in the 

documents you give to Wcopyfind 2.6. It works on only purely local data---it 

cannot search the web or internet to find matching documents. If you suspect 

that a particular outside source has been copied, you must create a local 

docwpent \lPI)taJrliP.g that outside material and include this document in the 

collection of documents that you give to Wcopyfind 2.6. (see figure 2) 

16 



• •• W(opyfmd 7.0 GJ- 1'5( 

Figure 8 : Wcopyfind 2.6 detection systems 

Steps of how Wcopyfmd 2.6is used. 

1. Select a file you need to be detected 

2. Select a folder were you saved all submitted files 

3. Run the application 

4. Get result in 

Adavantages 

".l. This application is just a Stand alone application file , there is no need to install 

,.l. No need for a server 

$ Can generate a brief report upon request in form of html. 

Disadvantages 

.1. Detects plain text only 

* Have many options which might lead to undesirable outputs 

.$ Complicated to a novice user 

17 



3.3.2 Cheat Guru 

Cheat Guru is using the specialized Plagiarism Detection software to prevent instances 

of plagiarism. Furthermore, they have developed the special client module and made this 

software accessible to their customers. Many companies claim to utilize the tools of such 

kind, few of them do and none of them offer their Plagiarism Detection software to their 

customers. They have created a server that does the comparison fur their customers. 

Figure 9: Guru Cheat detection software. 

Advantages 

,,. User friendly interface 

,4- Straight forward 

"- Protect user from technical side. 

Disadvantages 

"'- If internet connection is lost the application hang there is no way to resume it 

4 You don't choose your own collection of files to mn I against with. 

4- It uses materials from the net only not other submitted by students 

4 It only compares plain text. 

18 



6.1.4 Asking Lecturers for clarification 

Seeking clarification from the lectures is one of the method one can acquire information 

fast whilst uncovering new leads to other unlimited information. The advantages of 

consulting lecturers is they share a bit of their experience and often give you word of 

encouragement when any is needed. The new professor from Pakistan has shared his 

views on interface design and the right methodology when it comes to interface design 

and what are the basic requirements of a good interface. 

3.4 Project Activities 

3.4.1 Component Gathering 
The components collected are java since comparing to the other programming languages 

is friendly and has lot of resources. 

• JDKl.6 

• JWSD2.0 

• APACHEANT 

• DIFFJ 

3.4.2 Code Analysis 
Initially the packages and classes collected were meant to work towards creating a 

simple simulation of the system. It was later discovered that the system thought to be of 

the same purpose as the one planned to be developed has deviated a little bit from the 

project's goal. The code shows that the system depends on the second party which is 

located remotely. The ultimate goal of this project is to create an application that 

functions similar to the prior mentioned (W copyfind 2.6), the only discrepancy is that 

the application in this project will have better user interface and will compare bytes code 

instead of just plain text. All Source codes of W copyfind 2.6 have bees collected even 

though not analyzed yet (Microsoft C++ workspace). 

3.4 3 Literature Review 
The literature review was redone to fmd a way to cater for the system requirements. The 

"Plaggie" is a java developed an application that was developed to detect plagiarism 

between java source codes. The available application at present cater for Linux operating 

19 



system meaning there is no complete packaged that was assembled for windows .The 

system however is compatible with windows as well it is just the mater of creating a 

MAKE file that caters for windows. Java language is a language that can operate across 

most operating system. 

3.4.4 Interface Design 
Although the ftmctionalities of "Plaggie" are somehow close to the application being 

developed. Plaggie does not have an interface. It runs from the command line. The 

documentation of the application mentioned the reason behind this feature. The interface 

is meant to make the system easy to use whilst leaving the ftmctionality of the 

application in tact. The Interface should encompass nonftmctional factors like UTP 

colors and logo to resemble the UTP culture. The diagram below(figurelO) depicts the 

proposed interface for the system. Although only the basic ftmctions are being looked at 

the interface will merge with the Plaggie ftmctionalities when the MAKE file issue is 

being resolved. 

3.4.5 Action inserted 
The actions included in the interface are not core ftmctionality buttons but the ones to 

help user navigate the application for example status bar and the help file. When the user 

clicks the browse button or any other button the status bar will display the ftmction being 

performed by the user. The browse button is used to search for the file that needs to be 

scanned against the other files that are already submitted and saved in a folder. The 

source button is used to point to the location of the folder where all submitted files 

resides. 

3.4.6 Software Updates 
.&. Jbuilder 4.0 

,j.. Photoshop 

>$ Diftj 

.L. Netbeans 

.L. Jdk 1.6.0 07 

.L. Make file (still in process) 

20 



Figure 10: The interface for the application 

3.4.7 The progress ofthis project's time line 
The time line shows the repeat of literature review to the realization of the first literature 

review deviating from the system requirements. The new literature review was done. 

The softwares that thought to be the tools for implementation had to be changed as well 

but the change is not completely alien to the original requirements. The feasibility 

research has to follow the literature review that helps to find the successful application 

available comparing them with developed application taking into consideration the tools 

available 

21 



3.5 Project Implementations 

Process Flow of Plagiarism detection application 
As shown in figure (12). The basic flow of the application is not complex provided that 

the internal operations of the application are not justified. 

Phase One 

Step 1 : click browse to locate a file being submitted. This event will trigger call the 

JfileChooser class to gener;tte a fileChooser window. The use will select a file to be 

submitted and then click open. The event of clicking open will call the submission. Java 

class which will get the path of the file whilst displaying the path in the text field. 

Step 2: Click source to find the folder which holds previously submitted files. This event 

will trigger the JfolderChooser class to generate a folder chooser window, prior to the 

user selecting the folder. The directorySubmission.java class will be executed which will 

get the path of the folder and display its path in the text field. 

Phase Two 

Step!: Click run button to execute the application. While the application is running the 

user can click help button without affecting the application. The run button will execute 

the main class which sends commands to other multiple classes via the Configuration. 

Java class • When the application complete processing the result it will execute the 

Report.java class which will generate a HTML file with result or Text report and display 

the result on the interface. 

Step 2: click Stop button, this button might be used in a circumstances whereby the user 

loaded the wrong file or choose the wrong folder and there is no point of waiting for the 

undesired results. 

Step 3: Help button it is used to help with the navigation of the system and explain the 

features of the interface 

22 



PHASE ONE: FRONT END 

Help.java 

. .. 

irHAiri TWO :BACK END 

Figure 12: Process Flow of Plagiarism detection applications 

23 



CHAPTER FOUR 

RESULT AND DISCUSSION 

4.1 Results 
The plagiarism detection application developed uses the differences found on the code to 

find similarities amongst the code in the same destination folder. If the application does 

not return any difference or changes it means that the code or the assignment has the 

replica of it already submitted. The application can expose the following changes: 

$ packages renamed 

• imports added and removed 

$ types (classes and interfaces) added and removed 

c$ methods added and removed 

• fields added and removed 

• code changed within methods and constructors, and for field initializers 

c* access changed 

$ changes in method/ctor throws list 

The plagiarism detection application can accept a submitted java files and compare it 

with the other files already submitted by other students. The application can only detect 

java files in the destination folder (as shown in figure 13 below), other formats will not 

be displayed or even be considered when the application is executed. 

24 



Plagiarism D.:recriun Applicariun 
Cllckbro-1osearchlllewbmlltedlile 

I Browse llc:\Ja.aAssiqnm~rrNoi~MesMtn1 4404java 

Name:Some student 
10 :440~ 
Oiljeeliw. To cat(~tatetne payamouill aM tax amount 
Filo:otnljava 

mportjavauwlnq JOptionPane; II load GUt 
mportja\la.texl!. 1/Fomlalreatnumbers to 1 d~clmol ploces 

ubttc erassalnt 1 
public static ;oid main( Strinu D aros) { 

Choo!e FOlder wl!h al SWmlttedlie!l 

j Soli'« jjc:IJaYJAsslqnm;nr,rotdertost 

Figure 13: User Interface with user inputs 

'Ibm' 

.... 

... 

- -- -

I! Pl,•gl<lrlsrn Detectwn Results (;Jcg]~ 

Plagiari.sn1 [)~t~ction ~~\pplication 
Code differences 

OUTPUT>C:\JavaAssignmentlfotdertest\Qtn1_4404_java <-> C:1JavaAssignment\foldertesnPayme ... 
OUTPUT:>10,11 d1 0 Import section removed 
OUTPUT>< importjavax.swing.JOplionPane;//toad GUt 
OUTPUT:>« importjava.text"'; II Format real numbers to 2 decimal places 
OUTPUT:o 
OUTPUT,.16c14, 15 code changed in main(StringDJ 
OUTPUT"< final double hoursWorked = 40: II constant variable in Java is final 

~~~~~:~ ' '" 0 " "'" '"" ''" 

Codes status 

PLAGIARISM: C:UavaAssignmenl\folderteSnatn1_ 4404.java is croaated after C:\JavaAssignmentlfolde 
PLAGIARISM: C:U:avaAssignmenllfoldertesi\Qtn1_4404java is created before C:UavaAssignmentlfol 
C:UavaAssignmenllfoldertest\atn1_ 4404_java - C:UavaAssignmenru'oldertest\Paymentjava are differ 
PLAGIARISM: C:\JavaAssignmenllfoldertest\Qtn1_5595_java is created before C:UavaAssignmentlfol 
C:\JavaAssignmentlfoldertest\Qin1_5:595java- C:VavaAssignmentlfoldertest\Payment.java are differ 
C:\JavaAssignment\foldertest\Qtn1_562Sjava- C:\JavaAssignment\foldertest\Payment.java are differ 

[~ 

Figure 14: Plagiarism Detection Application's output 

25 



As shown in figure 14, the application returns the differences among the files within the 

destination folder whilst displaying the statns of all the files in the folder. As the 

submitted file might be the same as the newly submitted file the application can also 

show which file was created first. If the result shows that few files are plagiarized it is 

advised to remove them from the destination folder. 

The application only compare with the same class name, as such the files submitted 

might require the stndent to have a standard class name. The reason behind this logic is 

that when the system has so many functions/ task that require a single action, it 

decreases the cohesiveness of the system. Consequently the system will not be reliable 

because any error within either task will hinder the operation of other task as they are 

intertwined. Converting each class to have the same name will require to be executed 

separately as it is also a major function. As such to overcome this encumbrance setting 

the class name before the files are compared was considered. 

4.2 Discussion 

Most plagiarism detection systems function are based on the chances that the stndent 

changed variable names or jumbled the code like spaghetti to confuse the lecturers. The 

other approach taken was looking at the way the application could be improved was 

doing a survey based on hypothetical questions conveyed verbally among my peers and 

my juniors assuring them that those questions are just for killing time and nothing much. 

In entering the mind of a plagiarizer beside my own, it was found that it is most likely 

that the original file or assignment is created first. In situations were both assignments 

were created on the same day the copy would have been modified recently. 

Stndents in UTP do not put too much effort when they plagiarize. The same pattern and 

behavior between plagiarizer and the source is classic, meaning that it is not complex. 

The stndent who knows their work they are unlikely to procrastinate with their 

assignment leading to their file assignment possessing the properties of being created 

first. The stndents who plagiarize wait till the last minute and then in panic they 

plagiarize not considering the fact that the file's properties will show that it was 

26 



completed in unrealistic time. Based on this fmding it is thought that it will be a 

contribution to also insert a function that return date created and modified . 

Figure 15 depicts the window generated by the help button in the output window. 

Although the system has the right functionality to detect plagiarism the output can be 

quite puzzling for the first time user and for the novice user who has no programming 

background but it is highly unlikely since this is for java programming lecturers. The 

system uses a format that is of assembly language for the computer to understand it as 

such few standard symbols of the the output needs to be explained. 

Figure 15: Help window for the output. 

27 



CHAPTER FIVE 

CONCLUSION AND RECOMMENDATIONS 

5.1CONCLUSION 
Plagiarism is a crime that is taken lightly by most students because it is not likely to be 

reported that a particular student is going for a hearing due to plagiarism. As a result 

they tend to copy other student's work not taking into consideration the penalties they 

might face. Having regulations against plagiarism and implementing this system will 

serves a threshold to the counteraction against plagiarism in UTP. 

The application can detect plagiarism that obvious and easy to spot as well as the 

complicated ones. Students who are oblivious about their work will be exposed beyond 

doubts. Since the students have the same lecture and have the same privileges to the 

UTP resources, some plagiarism cases can be debated and /or justified as why they are 

little bit similar. The intention of this application is not make life hard for the student or 

increase work for the lectures but to shape the minds of the student while allowing them 

to unleash their creativity. Innovation is hindered when creativity is duplicated. 

5.2 RECOMMENDATIONS 

~ The Application can be modified to cater for any type of files. 

~ Implement the function application to compare the submitted files 

with internet resources 

~ Improve the system to capture every plagiarism cases based on 

student id, for future references 

28 



REFERENCES 

(1] George town university Honor Council (1999) 

[2] J. Evan Noynaert , department of computers science , Plagiarism Detection Software 

mathematics and physics 

[3] B.Belkhouch, Anastacia Nix , Johnette hasfell EECS department Tulane University , 

Plagiarism Detection in Software Designs. 

[4] Maxim Mozgovoy, Kimmo Fredriksson 

[5] Lutz Prechelt Guido malpoh, Finding Plagiarisms among a Set of Programs with 

Jplag, 30 march 2000. 

[6] Christian Arwin, Plagiarism Detection across Programming Languages 

[7] Xin Chen , brent , Mingli , Brian McK.iunon Amit Seker , Shared Information and 

Program Plagiarism Detection. December 13,2003. 

[8] Kevin w. Browser and Lawrence O.Hal1 , Experience Using "MOSS" to Detect 

Cheating On Programming Assignments, University of south florida 

[9] Young Chul Kim - Y ong - Y ooncho, Jong Bae Moon , Computing technology , A 

Plagiarism Detection System Using A, Syntax-TreeDecember 2004. 

[10] www.mariosalexandrou.com 

[11] http://gervaseprograms.georgetown.edu/hc/plagiarism.html 

[12] J. Faidhi and S. Robinson. An empirical approach for detecting program similarity 

and plagiarism within a program 

[13] Jeong-Hoon Ji, Gyun Woo, Hwan-Gue Cho, A Source Code Linearization 

Technique for Detecting Plagiarized Programs 

[14] Paul Clough, July 2000, Plagiarism in natural and programming languages: an 

overview of 

current tools and technologies. 

[15] http://genome.math.uwaterloo.ca/SID/ 

(16] Michael J. Wise,lmproved detection of similarities in computer program and other 
texts, Department of Computer Science. University of Sydney, Australia 
[17] Shauna D. Stephens ,Using Metrics to Detect Plagiarism 
Department of Computer and Information Sciences 

29 



APPENDICES 

Appendix A 

Plagiarism Detection Application Timeline (First Halt) 

ID Task Name Slatt rlllish Outation 1sn'""' feb'""' """'" fef82007 """"' ""'""' 
• 

. 

"'"'"'''''' 
·l·l·l,l•l•i" 

"' "'"'"'"' ,., fl 

n I "120 1"1 ~ 123 1" 
"'lll'"'"'''''' 

·1·1·1'1' 
1 Researoh 112912007 3/912007 30d 

2 Feasibility Researoh 112912007 2J2J2007 5d . . . 

3 l.ltemlure Je'liew 21112orn 21512orn 2d4h 

4 Ana~iis 2/512007 212312007 15d 

5 Use1 Requiements 21512orn 21912007 5d . ·. 

6 System Requiemtnts 2/12/2orn 211512orn 5d . 

7 Algorithm Analysis 2/11112007 2l23l2orn 5d . . 

8 Tool Ga1beling 212fi/2007 3/912007 9d . 

9 Software llownloadilg 212fi/2007 31212007 5d . 

. 

. 

to Selling lhe environment 31212007 3/912007 5d I . 

.· . . 

Figure 7: plagiarism detection Progress timeline 



Appendix B 

Plagiarism Detection Application (Second Hall) 

Ta§!Nam& Slatt Firi!/i Dlimlioo 
~11!007 

~1212007 4'2611007 34d 

lilelature Rliilw l11212007 ~61l001 I Sd 

FeasiDiilt Researcll 311612007 3'2112007 -411 

IJialjsis . 3121noo7 '1lJil007 3d -&jslem 181uiretnenls 3ll6I2007 !13012007 I Sd -Padlagegallieri~ 41l12007 416Q001 Sd -l'adiag& lnslallalion 4lfli!Jil7 ~1312007 6d 

CodeAn!lysis 411312007 4'161l007 -411 

hrlerfare Design 4117n007 1124n001 6d 

Creilivfundi!Jrs 1124n001 lliJ1JJ1I 3d 
II I -
Figure II: Plagiarism detection Timeline Second Half. 



ID 

1 

2 

3 

4 

5 

6 
7 

8 

9 

Appendix C 

Predestinated Gantt chart 

Task Name 

Project Work Continue 

Submission of Progress Report 1 

Project Work Continue 

Submission of Progress report 2 

Seminar Progress Reporting 

Exibition /PreEdx 

Submit Final Report (No Ext) 

Oral Presentation 

Subm~ Dissertation 

Start Finish Duration 

7125/2007 712712007 3d 

8/10/2007 8/10/2007 1d 

8/13/2007 10/18/2007 49d 

9/19/2007 9119/2007 1d 

9/24/2007 9/28/2007 5d 

10/3/2007 10/3/2007 1d 

10/5/2007 10/5/2007 1d 
10122/2007 10/26/2007 5d 

1112/2007 11/212007 1d 

I Alfl2IYJT Sep21YJT Od21YJT I Nov21YJT 

7122,71i91 8151 &'121 &'191 &26 1121 "'Q/161!m 1!130 11011 1111'14,11121111128,1114111111,11118,11121 

I 
. 

I 

----I . 

•• 
I . 

. 

I . 

. • 
I 



AppendixD 

Interface Code 

I* 

* DetcctionApplicationUI.java 

* 
• Created on May 2, 2007, 3:58PM 

*I 

package DetectionApplication; 

import java.io.BufferedReader; 

importjava.io.File; 

importjava.io.FileNotFoundException; 

importjava.io.FileReader; 

importjava.io.IOException; 

import javax.swing.JFileChooser; 

import java.io.InputStream; 

import java.io.InputStreamReader; 

import javax.swing.JFileChooser; 

import javax.swing.JFrame; 

import javax.swing.JTextArea; 

import javax.swing.text.Bad.LocationException; 

class StreamGobbler extends Thread 

{ 

InputStream is; 

String type; 

Objecto; 

private String txtAreaOpenFileValue; 

private String txtAreaExecValue; 

StreamGobbler(InputStream is, String type) 

{ 

this.is = is; 

this.type ~ type; 

o ~null; 

StreamGobbler(lnputStream is, String type, Object o) 

33 



{ 

} 

this.is = is; 

this.type ~ type; 

this.o=o; 

public void runO 

} 

try 

{ 

InputStreamReader isr ~ new InputStreamReader(is ); 

BufferedReader br ~new BufferedReader(isr); 

String lin~ull; 

while ( (line ~ br.readLine()) !~ null) { 

if(o !~null) { 

} 

} 

javax.swing.JTextArea printArea ~ Gavax.swing.JTextArea) o; 

printAreaappend(type + 11>" + Jine+ "\n''); 

else 

System.out.println(type +">"+line); 

} catch (IOException ioe) 

{ 

ioe.printStackTraceO; 

} 

!** 

• 
*@author User 

*I 

public class DetectionApplicationUI extends javax.swing.JFrame { 

String txtAreaOpenFileValue; 

String txtAreaExecValue; 

!** Creates new fonn DetectionApplicationUI */ 

public DetectionApplicationUIO { 

txtAreaExecValue = ""; 

initComponentsO; 

} 

34 



} 

//private static FileChooser filechoose ~new FileChooser(); 

/** This method is called from within the constructor to 

* initialize the form. 

• WARNING: Do NOT modifY this code. The content of this method is 

* always regenerated by the Form Editor. 

•; 

II <editor~ fold defaultstate=''collapsed" desc=" Generated Code "> 

private void ioitComponents() { 

jLabell ~new javax.swing.JLabel(); 

jLabel2 ~new javax.swiog.JLabel(); 

jLabel3 ~ new javax.swing.JLabel(); 

browsebutton ~ new javax.swing.JButton(); 

directorypath ~ new javax.swiog.JTextField(); 

sourcebutton ~ new javax.swing.ffiutton(); 

filepath ~new javax.swing.JTextField(); 

jScrol!Panel ~new javax.swiog.JScrol!Pane(); 

filelarea ~new javax.swiog.JTextArea(); 

stopbutton ~ new javax.swing.ffiutton(); 

jLabel4 ~new javax.swiog.JLabel(); 

jLabel7 ~new javax.swing.JLabel(); 

jLabel8 ~ new javax.swiog.JLabel(); 

helpbutton ~new javax.swing.ffiutton(); 

jScro11Pane2 ~ new javax.swing.JScrollPane(); 

directoryfiles ~new javax.swiog.JTextArea(); 

Runbutton ~ new javax.swing.ffiutton(); 

setDefaultCloseOperationQavax.swing. WindowConstants.EXIT _ON_ CLOSE); 

setTitle("Plagiarism Detection Appication"); 

jLabell.setlcon(new javax.swing.Imagelcon("D:\\ACADEMICS\\FINAL YEAR PROJECT\\applname.gif')); 

jLabell.setText("Applicationname"); 

jLabel2.setlcon(new javax.swiog.lmagelcon("D:\\ACADEMICS\\FINAL YEAR PROJECT\\searchiconA.gif')); 

jLabel2.setText("Searchicon"); 

jLabel3.setlcon(new javax.swiog.lmagelcon("D:\\ACADEMICS\\FINAL YEAR PROJECT\\Logonew.gif')); 

jLabel3.setName("utplogo"); 

browsebutton.setText("Browse"); 

browsebutton.addMouseListener(new java.awt.event.MouseAdapter() { 

35 



public void mouseClicked(java.awt.event.MouseEvent evt) { 

browsebuttonMouseClicked(evt); 

} 

public void mouseEntered(javaawt.event.MouseEvent evt) { 

browsebuttonMouseEntered( evt); 

} 

public void mouseExited(javaawt.event.MouseEvent evt) { 

browsebuttonMouseExited( evt); 

} 

} ); 

browsebutton.addActionListener(new java.awt.event.ActionListener() { 

public void actionPerformed(java.awt.event.ActionEvent evt) { 

browsebuttonActionPerformed(evt); 

} 

} ); 

browsebutton.addKeyListener(new javaawt.event.Key Adapter() { 

public void keyTyped(javaawt.event.KeyEvent evt) { 

browsebuttonKeyTyped( evt); 

} 

} ); 

sourcebutton.setText("Source"); 

sourcebutton.addMouseListener(new java.awt.event.MouseAdapter() { 

public void mouseEntered(java.awt.eventMouseEvent evt) { 

sourcebuttonMouseEntered( evt); 

} 

public void mouseExited(java.awt.eventMouseEvent evt) { 

sourcebuttonMouseExited( evt); 

} 

}); 

sourcebutton.addActionListener(new java.awt.event.ActionListener() { 

public void actionPerformed(java.awt.event.ActionEvent evt) { 

sourcebuttonActionPerformed(evt); 

} 

}); 

file I area.setColumns(20 ); 

filelarea.setRows(5); 

j Scroi!Pane !.set V iewportView(file I area); 

stopbutton.setText("Stop"); 

stopbutton.addMouseListener(new java.awt.event.MouseAdapter() { 

36 



public void mouseEnteredGava.awt.eventMouseEvent evt) { 

stopbuttonMouseEntered( evt); 

} 

public void mouseExitedijava.awt.event.MouseEvent evt) { 

stopbuttonMouseExited( evt); 

} 

)); 

jLabel4.setText("status bar"); 

jLabel7.setText("Choose Folder with all Submitted files"); 

jLabel8.setText("Click browse to search the submitted file "); 

helpbutton.setText(''Help"); 

helpbutton.addMouseListener(new java.awt.event.MouseAdapter() { 

public void mouseEnteredGava.awt.eventMouseEvent evt) { 

helpbuttonMouseEntered(evt); 

} 

public void mouseExitedijava.awt.event.MouseEvent evt) { 

helpbuttonMouseExited( evt); 

} 

} ); 

helpbutton.addActiouListener(new java.awt.event.ActionListener() { 

public void actionPerformedGava.awt.event.ActionEvent evt) { 

helpbuttonActionPerformed( evt); 

} 

}); 

directoryfiles.setColumns(20); 

directoryfiles.setRows( 5); 

jScrol!Pane2.setViewportView( directoryfiles ); 

Runbutton.setText("Run"); 

Runbutton.addActionListener(new java.awt.event.ActionListener() { 

public void actionPerformedGava.awt.event.ActionEvent evt) { 

RunbuttonActionPerformed(evt); 

} 

} ); 

javax.swing.GroupLayout layout= new javax.swing.GroupLayout(getContentl'ane()); 

getContentl'ane().setLayout(layout); 

37 



1ayout.setHorizonta!Group( 

1ayout.createParal1e1GroupGavax.swing.GroupLayout.Alignment.LEADING) 

.addGroup(1ayout.createSequentia1Group() 

.addContainerGap() 

.addGroup(layout.createParal1e1GroupGavax.swing.GroupLayout.Aiignment.LEADING) 

.addGroup(layout.createSequentialGroup() 

.addPreferredGapGavax.swing.LayoutSty1e.ComponentP1acement.RELATED) 

.addComponentGLabe13, javax.swing.GroupLayout.PREFERRED _SIZE, 

javax.swing.GroupLayoutPREFERRED _SIZE) 

.addGap(29, 29, 29) 

.addGroup(1ayout.createParal1e1GroupGavax.swing.GroupLayout.A1ignment.LEADING) 

.addComponenl(jLabe17) 

.addGroupGavax.swing.GroupLayout.Alignment.TRAILING, 1ayout.createSequentialGroup() 

.addComponent(Runbutton) 

.addPreferredGapGavax.swing.LayoutSty1e.ComponentP1acement.RELATED, 

Short.MAX_ VALUE) 

.add Component( stopbutton) 

.addGap(122, 122, 122) 

.addComponent(helpbutton, 

javax.swing.GroupLayout.PREFERRED _SIZE) 

.addGap(622, 622, 622)) 

javax.swing.GroupLayout.PREFERRED _SIZE, 

.addGroupGavax.swing.GroupLayout.Alignment.TRAILING, layout.createSequentialGroup() 

.addGroup(layout.createParalleiGroupGavax.swing.GroupLayout.Alignment.TRAILING) 

239, 

103, 

65, 

.addComponentGScrol!Pane2, javax.swing.GroupLayout.Alignment.LEADING, 

javax.swing.GroupLayout.DEFAUL T _SIZE, 362, Short. MAX_ VALUE) 

.addGroup(layout.createSequentialGroup() 

.addComponent(sourcebutton) 

.addGap(l9, 19, 19) 

.addComponent(directorypath, javax.swing.GroupLayout.DEF AUL T _SIZE, 278, 

ShortMAX _VALUE)) 

.addComponenl(jScrol!Panel, javax.swing.GroupLayout.Alignment.LEADING, 

javax.swing.GroupLayout.DEFAUL T _SIZE, 362, Short.MAX _VALUE) 

.addGroupGavax.swing.GroupLayout.Alignment.LEADING, 1ayout.createSequentialGroup() 

.addComponent(browsebutton) 

.addGap(l7, 17, 17) 

.addComponent(filepath, javax.swing.GroupLayout.DEF AUL T _SIZE, 

Short.MAX_VALUE)) 

.addComponenl(jl..abel8,javax.swing.GroupLayout.Alignment.LEADING)) 

.addGap(94, 94, 94) 

.addComponenl(jLabe12, 

javax.swing.GroupLayout.PREFERRED _SIZE) 

.addGap(411, 411, 411)))) 

javax.swing.GroupLayout.PREFERRED _SIZE, 

38 

278, 

151, 



.addComponentGLabell, 

javax.swing.GroupLayout.PREFERRED _SIZE) 

.addComponentGLabel4, 

javax.swing.GroupLayout.PREFERRED _SIZE)) 

.addContainerGapO) 

javax.swing.GroupLayout.PREFERRED _SIZE, 

javax.swing.GroupLayout.PREFERRED _SIZE, 

); 

layout.setV ertica!Group( 

layout.createParalle!GroupGavax.swing.GroupLayout.Alignment.LEADING) 

.addGroup(layout.createSequentialGroup() 

.addContainerGap() 

.addComponentGLabell, 

javax.swing.GroupLayout.PREFERRED _SIZE) 

javax.swing.GroupLayoutPREFERRED _SIZE, 

.addGap(O, 0, Short.MAX _VALUE) 

.addGroup(layout.createParalle!GroupGavax.swing.GroupLayout.Alignment.LEADING) 

.addGroup(layout.createSequentialGroup() 

.addPreferredGapGavax.swing.LayoutStyle.ComponentPlacement.RELATED) 

.addComponent(jLabel3, javax.swing.GroupLayout.PREFERRED _SIZE, 

javax.swing.GroupLayout.PREFERRED _SIZE)) 

.addGroup(layout.createSequentialGroup() 

.addGap(l8, 18, 18) 

.addGroup(layout.createParalle!GroupGavax.swing.GroupLayout.Alignment.LEADING) 

javax.swing.GroupLayout.PREFERRED _SIZE, .addComponent(jLabel2, 

javax.swing.GroupLayout.PREFERRED _SIZE) 

.addGroup(layout.createSequentialGroup() 

.addComponent(jLabel8) 

.addPreferredGapGavax.swing.LayoutStyle.ComponentPlacement.RELA TED) 

.addGroup(layout.createParalle!GroupUavax.swing.GroupLayoutAlignment.BASELINE) 

.addComponent(browsebutton) 

838, 

630, 

61, 

490, 

167, 

.addComponent(filepath, javax.swing.GroupLayout.PREFERRED _SIZE, 

javax.swing.GroupLayout.DEF AUL T _SIZE, javax.swing.GroupLayout.PREFERRED _SIZE)) 

.addPreferredGapGavax.swing.LayoutStyle.ComponentPlacement.RELATED) 

.addComponent(jScroi!Panel, javax.swing.GroupLayoutPREFERRED _SIZE, 

javax.swing.GroupLayout.PREFERRED _SIZE) 

.addGap(24, 24, 24) 

.addComponentGLabel7) 

.addPreferredGapGavax.swing.LayoutStyle.ComponentPiacement.RELATED) 

.addGroup(layout.createParalle!GroupGavax.swing.GroupLayout.Alignment.TRAILING) 

.addComponent(sourcebutton) 

175, 

.addComponent( directorypath, javax.swing.GroupLayout.PREFERRED _SIZE, 

javax.swing.GroupLayout.DEF AUL T _SIZE, javax.swing.GroupLayout.PREFERRED _SIZE)) 

.addGap(22, 22, 22) 

39 



.addComponent(jScrol!Pane2, 

javax.swing.GroupLayout.PREFERRED _SIZE) 

javax.swing.GroupLayout.PREFERRED _SIZE, 

.addGap(58, 58, 58) 

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.BASELINE) 

.addComponent(stopbutton) 

.addComponent(helpbutton) 

.addComponent(Runbutton)))))) 

.addPreferredGapGavax.swing.LayoutStyle.ComponentPlacement.RELATED) 

.addComponent(jLabel4, javax.swing.GroupLayout.PREFERRED _SIZE, 

javax.swing.GroupLayoutPREFERRED _SIZE) 

.addGap(25, 25, 25)) 

); 

pack(); 

}//</editor-fold> 

private void RunbuttouActionPerformedGava.awt.event.ActionEvent evt) { 

II TODO add your handling code here: 

lltxtAreaQpenFile.setText(""); 

txtAreaOpenFileValue = ""; 

txtAreaExecValue = '"'; 

II txtAreaExec.setText(""); 

try{ 

int lineStartOfiSet, lineEndOffset, lineCount = directoryfiles.getLineCount(); 

String name I, name2; 

long dl, d2; 

II txtAreaExec.setText(""); 

frrnDiffJ myDiffJWindow = new frrnDiffJ(); 

for (int i=O; i<lineCount-1; i++) { 

lineStartOffset = directoryfiles.getLineStartOffset(i); 

lineEndOffset = directoryfiles.getLineEndOffset(i); 

name I = directoryfiles.getT ext(lineStartOffset, lineEndOffset -IineStartOffset-1 ); 

for (intj=i+ I; j<lineCount-1; j++) { 

lineStartOffset = directoryfiles.getLineStartOffsetG); 

lineEndOffset = directoryfiles.getLineEndOffsetG); 

name2 = directoryfiles.getText(lineStartOffset, lineEndOffset-lineStartOffset-1 ); 

if(diflj (name!, name2, myDiffJWindow.getTxtAreaDiffJ()) = 0) { 

I* 

* Get the timestamp from file I 

String fl = "SquareJava"; 

long dl =new File(fl).lastModified(); 

40 

170, 

22, 



if(dl =d2) 

relation= "the same age as"; 

else if(dl < d2) 

relation= "Created before"; 

else 

relation= "created after••; 

System.out.println(fl + " was"+ relation+''+ t2); 

*I 

dl ~new File (name! ).lastModified(); 

d2 ~new File (name2).lastModified(); 

if(dl =d2) { 

//txtAreaOpenFile.append("PLAGIARISM: 11 + namel + 11 and " + name2 + " also has the same 

timestamp. In"); 

txtAreaOpenFileValue ~ txtAreaOpenFileValue +"PLAGIARISM: "+name! +"and"+ name2 + 

" also has the same timestamp.\n"; 

} else if(dl < d2) { 

1/txtAreaOpenFile.append("PLAGIARISM: "+ namel +"is created before"+ name2 + ".\n"); 

txtAreaOpenFileV alue ~ txtAreaOpenFileV alue + "PLAGIARISM: " + name! + " is created before " 

+ name2 + ".\n''; 

} else 

lltxtAreaOpenFile.append("PLAGIARISM: "+name! +"is created after"+ name2 + ".\n"); 

txtAreaOpenFileValue ~ txtAreaOpenFileValue +"PLAGIARISM: "+name! +" is created after" 

+ name2 + ".\n"; 

} 

} 

} 

} else { 

//txtAreaOpenFile.append(namel + " -" + name2 + 11 are different\n"); 

txtAreaOpenFileValue = txtAreaOpenFileValue + namel +" - 11 + name2 +" are different\n"; 

System.out.printlri("Debug txtAreaExecValue:\n"+txtAreaExecValue); 

llmyDiflJWindow.setTxtAreaDiffJValue(txtAreaOpenFileValue); 

llmyDiflJWindow.setTxtAreaDiffJValue(txtAreaExecValue); 

myDiflJWindow.setVisible(true); 

} catch (BadLocationException ex) { 

ex.printStackTrace(); 

} 

II-- end of execute diffj -·· 

private void btnExecActionPerformedGava.awt.event.ActionEvent evt) { 

41 



diflj ("C:/diflj/Hello.java", "C:/diflj/Hello2.java", null); 

} 

private int diflj(String name!, String name2, Object o)( 

II TODO add your handliog code here: 

} 

try 

{ 

String osName = System.getProperty("os.name" ); 

Stringcmd; 

cmd ="java -cp C:/diflj/classes org.incava.diftj.Diffl " +name I +" " + name2; 

Runtime rt = Runtime.getRuntime(); 

System.out.println("Execing" + cmd); 

Process proc = rt.exec( cmd); 

II any error message? 

//this line will display the output un the main wiodow so not nescessary 

II StreamGobbler errorGobbler = new StreamGobbler(proc.getErrorStream(), "ERROR", txtAreaExec ); 

II any output? 

//StreamGobbler outputGobbler =new StreamGobbler(proc.getlnputStream(), "OUTPUT", txtAreaExec); 

StreamGobbler outputGobbler =new StreamGobbler(proc.getlnputStream(), "OUTPUT", o); 

II kick them off 

II errorGobbler.start(); 

outputGobbler.start(); 

II any error??? 

iot exitVal = proc.waitFor(); 

System.out.priutln("ExitValue:" + exitVal); 

return exitV al; 

} catch (Throwable t) 

{ 

t.priutStackTrace(); 

} 

return -1; 

private void sourcebuttonActionPerforroed(java.awtevent.ActionEvent evt) { 

II TODO add your handliog cnde here: 

JFileChooser chooser = new JFileChooser(); 

chooser.setFileSelectionMode(JFileChooser.DIRECTORIES _ONLY); 

42 



int return Val = chooser.showDialog(this, "Choose Source Directory"); 

II int return Val= chooser.showOpenDialog(this); 

if\retumVal = lFileChooserAPPROVE_OPTION) { 

directorypath.setText( chooser.getSelectedFile().getAbsolutePatb()); 

File[] allFiles = chooser.getSelectedFile().listFiles(); 

directoryfiles.setText(""); 

for (int i=O; i<allFiles.lengtb; i++) { 

if ( allFiles[i].isDirectory()) { 

II··· temporary disabled··· 

lltxtAreaSource.append("Dir: "+ aliFiles[i].getAbsolutePatb() + "\n"); 

} else { 

if (allFiles[i].getAbsolutePatb().substring(allFiles[i].getAbsolutePatb().lengtb(}-

4).compareTolgnoreCase("java")==O) 

directoryfiles.append(allFiles[i].getAbsolutePatb() + "\n"); 

} 

} 

} 

private void helpbuttonActionPerformedGavaawtevent.ActionEveot evt) { 

I I TODO add your handling code here: 

new Helpfile().setVisible(true); 

} 

private void helpbuttonMouseExitedGavaawt.event.MouseEvent evt) { 

I I TODO add your handling code here: 

jLabel4.setText("Status Bar"); 

} 

private void helpbuttonMouseEnteredGavaawtevent.MouseEvent evt) { 

II TODO add your handling code here: 

jLabel4.setText("View tbe help File"); 

I* 

private void sourcebuttonActionPerformedGavaawt.event.ActionEvent evt) { 

} 

*I 

private void browsebnttonActionPerformedGavaawtevent.ActionEvent evt) { 

II TODO add your handling code here: 

43 



} 

JFileChooser chooser= new JFileChooser(); 

II Note: source for ExampleFileFilter can be found in FileCbooserDemo, 

II under the derooljfc directory in the Java 2 SDK, Standard Edition. 

ExampleFileFilter filter = new ExampleFileFilter(); 

filter.addExtension("txt"); 

filter.add.Extension("java"); 

filter.setDescription("Text & Java files"); 

chooser.setFileFilter(filter); 

int returoVal = chooser.showOpenDialog(this); 

if\returo Val ~ JFileChooser.APPROVE _OPTION) { 

} 

IISystem.out.println("You chose to open this file:"+ chooser.getSelectedFile().getName()); 

try{ 

filepath.setText(chooser.getSelectedFile().getAbsolutePath()); 

BufferedReader in= new BufferedReader(new FileReader(chooser.getSelectedFile().getAbsolutePath())); 

filelarea.setText(""); 

String str; 

while ((str = in.readLine()) !=null) { 

file 1 area. append( str+"ln"); 

} catch (FileNotFoundException fe) { 

} catch (IOException ie) { 

} 

private void stopbuttonMouseExited(java.awt.event.MouseEvent evt) { 

II TODD add your handling code here: 

jLabel4.setText("Status Bar"); 

} 

private void stopbuttonMouseEntered(java.awt.event.MouseEvent evt) { 

II TODD add your handling code here: 

jLabel4.setText("Abort the application's operation"); 

} 

private void sourcebuttonMouseExited(java.awt.event.MouseEvent evt) { 

II TODD add your handling code here: 

jLabel4.setText("Status Bar"); 

44 



} 

private void browsebuttonMouseExited(javaawt.eventMouseEvent evt) { 

II TODO add your handling code here: 

jLahel4.setText("Status Bar"); 

} 

private void sourcebuttonMouseEntered(javaawt.event.MouseEvent evt) { 

II TODO add your handling code here: 

jLahel4.setText("Searching for the destination folder"); 

} 

private void browsebuttonMouseEntered(javaawt.event.MouseEvent evt) { 

II TODO add your handling code here: 

jLabel4.setText("Browsing for submitted file"); 

} 

private void browsebuttonKeyTyped(javaawt.event.KeyEvent evt) { 

II TODO add your handling code here: 

} 

private void browsebuttonMouseClicked(java.awt.event.MouseEvent evt) { 

II TODO add your handling code here: 

II new FileChooser()setVisible(troe); 

new Multi().setVisible(troe); 

} 

I** 

* @pararn args the command line arguments 

*I 

public static void main(String argsD) { 

javaawt.EventQueue.invokeLater(new Runnable() { 

public void ron() { 

} 

} 

}); 

new DetectionApplicationUI().setVisible(troe); 

45 



} 

I I Variables declaration - do not modify 

private javax.swing.JButton Runbutton; 

private javax.swing.JButton browsebutton; 

private javax.swing.JTextArea directnryfiles; 

private javax.swing.JTextField directorypath; 

private javax.swing.JTextArea filelarea; 

private javax.swing.JTextField filepath; 

private javax.swing.JButton helpbutton; 

private javax.swing.JLabel jLabell; 

private javax.swing.JLabel jLabel2; 

private javax.swing.JLabel jLabel3; 

private javax.swing.JLabel jLabel4; 

private javax.swing.JLabel jLabel7; 

private javax.swing.JLabel jLabel8; 

private javax.swing.JScrollPane jScrol!Panel; 

private javax.swing.JScrollPane jScrol!Pane2; 

private javax.swing.JButton sourcebutton; 

private javax.swing.JButton stopbutton; 

II End of variables declaration 

OutPut Code 

I* 

* frmDiiiiJava 

Created on September 24, 2007, 8:25 PM 

*I 

I** 

• 
* @author User 

*I 

public class frmDifii extends javax.swing.JFrame { 

I** Creates new form frmDiffl*l 

public frmDifii() { 

initComponents(); 

} 

46 



public void setTxtAreaDiiDValue (String val) { 

txtAreaDiff.J.setText(val); 

} 

} 

public javax.swing.JTextArea getTxtAreaDiff.J () { 

return this. txtAreaDiff.J; 

public void setTxtAreaExecValue (String val) { 

txtAreaExec.setText(val); 

} 

!** This method is called from within tbe constmctor to 

* initialize the form. 

• WARNING: Do NOT modify Ibis code. The content oftbis method is 

*always regenerated by the Form Editor . . , 
II <editor~ fold defaultstate="collapsed" desc=" Generated Code "> 

private void initComponents() { 

btnClose = new javax.swing.JButton(); 

jScrol!Panel =new javax.swing.JScrol!Pane(); 

txtAreaDiff.J =new javax.swing.JTextArea(); 

jScrollPane2 =new javax.swing.JScrol!Pane(); 

txtAreaExec =new javax.swing.JTextArea(); 

setDefuultCloseOperationQavax.swing. WindowConstants.EXIT _ON_ CLOSE); 

btnClose.setText("Close"); 

btnClose.addActionListener(new javaawt.event.ActionListener() { 

public void actionPerformedQava.awt.event.ActionEvent evt) { 

btnCloseActionPerformed(evt); 

} 

}); 

txtAreaDiff.J.setColumns(20); 

txtAreaDiff.J.se1Rows(5); 

jScrol!Panel.setViewportView(txtAreaDiff.J); 

txtAreaExec.setColumns(20); 

txtAreaExec.setRows(5); 

jScrol!Pane2.setViewportView(txtAreaExec); 

javax.swing.GroupLayout layout= new javax.swing.GroupLayout(getContentPane()); 

getContentPane().setLayout(layout); 

layout.setHorizonta!Group( 

47 



layout.createParallelGroupGavax.swing.GroupLayout.Aligoment.LEADING) 

.addGroupGavax.swing.GroupLayout.Aligoment.TRAILING, layout.createSequentia!Group() 

.addContainerGap( 411, Short.MAX _VALUE) 

.addComponent(htnClose) 

.addContainerGap()) 

.addGroup(layout.createSequentia!Group() 

.addContainerGap() 

.addGroup(layout.createParallelGroupGavax.swing.GroupLayout.Aligoment.TRAILING, false) 

.addComponentGScrol!Pane2, javax.swing.GroupLayout.Aligoment.LEADING) 

.addComponentGScrollPanel, javax.swing.GroupLayout.Aligoment.LEADING, 

javax.swing.GroupLayout.DEFAULT_SIZE, 343, Short.MAX_ VALUE)) 

.addContainerGap(127, Short.MAX_ VALUE)) 

); 

layout.setV ertica!Group( 

layout.createParallelGroupGavax.swing.GroupLayout.Aligoment.LEADING) 

.addGroupGavax.swing.GroupLayout.Aligoment.TRAILING, layout.createSequentia!Group() 

.addContainerGap() 

.addComponentGScrol!Panel, 

javax.swing.GroupLayout.PREFERRED _SIZE) 

.addGap(26, 26, 26) 

javax.swing.GroupLayout.PREFERRED _SIZE, 184, 

.addComponentGScrol!Pane2, javax.swing.GroupLayout.PREFERRED _SIZE, 127, 

javax.swing.GroupLayout.PREFERRED _SIZE) 

.addPreferredGapGavax.swing.LayoutStyle.Componen!Placement.RELATED, 23, Short.MAX_ VALUE) 

); 

.addComponent(btnClose) 

.addContainerGap()) 

pack(); 

}//</editor-fold> 

private void btnCloseActionPerformedGavaawt.event.ActionEvent evt) { 

II TODO add your handling code here: 

this.setVisible( false); 

this. dispose(); 

} 

!** 

* @param args the command line arguments 

*I 

public static void main(String args(]) { 

javaawt.EventQueue.invokeLater(new Runnable() { 

public void run() { 

new frmDiftJ().setVisible(true); 

48 



} 

} 

} 

}); 

II Variables declaration - do not modifY 

private javax.swing.JButton btnClose; 

private javax.swing.JScrollPane jScrol!Panel; 

private javax.swing.JScrol!Pane jScrol!Pane2; 

private javax.swing.JTextArea txtAreaDiffJ; 

private javax.swing.JTextArea txtAreaExec; 

II End of variables declaration 

49 


