Possible Causes of Cracks at Klang Mosque

by

Nurazzura Binti Mohd. Fuzi

Dissertation submitted in partial fulfilment of the requirements for the Bachelor of Engineering (Hons) (Civil Engineering)

JANUARY 2007

Universiti Teknologi PETRONAS Bandar Seri Iskandar 31750 Tronoh Perak Darul Ridzuan

CERTIFICATION OF APPROVAL

Possible Causes of Cracks at Klang Mosque

by

Nurazzura Binti Mohd. Fuzi

A project dissertation submitted to the Civil Engineering Programme Universiti Teknologi PETRONAS in partial fulfilment of the requirement for the BACHELOR OF ENGINEERING (Hons) (CIVIL ENGINEERING)

Approved by,

(Assoc. Prof. Dr. Nasir Shafiq)

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

January 2007

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the original work is my own except as specified in the references and acknowledgements, and that the original work contained herein have not been undertaken or done by unspecified sources or persons.

NURAZZURA BINTI MOHD. FUZI

ABSTRACT

This research project is focused on the evaluation and assessment of cracks appeared in the structural members of Klang Mosque. There are many different kinds of cracks that sometimes are not serious and are probably due to shrinkage of concrete. Thus, in order to find out whether the cracks are because of serious causes such as settlement or design fault, the crack has to be identified and the causes must be studied in order to prevent building failure from likely to happen.

In order to determine the possible causes of cracks this study is based in three levels. In the first level, site inspection was made and cracks were physically inspected and were mapped out on sketches, the information included the orientation location and size of cracks. In the second level of assessment structural analysis and design of cracked elements is made and it is compare with the actual design in order to determine whether the design short falls caused any cracks. In the third level some NDT (non-destructive test) is to be performed in order to assess the quality of work and properties of in-situ materials such as concrete.

ACKNOWLEDGEMENTS

The author would like to take this opportunity to thank all parties involved in making this final year project a great success. It is the assistance and patience of the following individuals and group of people that make the author's final year project successful.

Deepest appreciation goes to Associate Professor Dr. Nasir Shafiq, supervisor of the author's final year project, who is willing to spend time to provide guidance to the author in completing this project. Being under his supervision, enormous technical knowledge has been imparted to the author, which has enabled her to carry out her research efficiently and successfully. Thus, the author would not miss this opportunity to express her greatest gratitude to him for his invaluable advice, guidance, support as well as encouragement throughout the project.

Highest gratitude to those people who had helped in providing the information needed in completing this report especially to Mr. Ruslan Nyak Abdullah who had contributed a lot in the research and Mr. Rizal who provided the materials for testing. Heartfelt appreciation goes to my family and friends who is very patient and never failed to give the supports needed in completing this final year report.

Not forgetting, Mr. Johan (laboratory technician), who provide assistance to the testing, and the group of co-ordinators of this final year project who never failed to remind us on the deadline and importance on making a perfect report.

TABLE OF CONTENTS

ABSTRA	АСТ	•	•	•	•	•	•	•	.i
LIST OF	FIGURES	•	•	•	•	•	•	•	.iv
LIST OF	TABLES	•	•	•	•	•	٠	•	. V
CHAPTI	ER 1: INTROI	DUCTION	• •	•	•	•	•	•	.1
1.	Background o	f Study.		•					.1
2.	Problem State	ment.		•	•			•	.1
3.	Objective and	Scope of S	tudy.		•	•	•		.2
CHAPTI	ER 2: LITERA	TURE RE	VIEW	••	•	•	•	•	.3
1.	Concrete Crac	king and R	epairs.	•	-	•	-	٠	.3
2.	Symptoms and	d Diagnosis	of Dist	tress.		•			.4
3.	Cracking of H	ardened Co	oncrete.			•			.6
	3.1 Cracking	Due to Poo	or Const	ruction	Practic	es.	-		.7
	3.2 Cracking	Due to Cor	istructio	on Over	loads.				.8
	3.3 Cracking	Due to Erro	ors in D	esign a	nd Deta	uling.	-	•	.9
	3.4 Cracks D	ue to Extern	nally Ap	plied L	oads.		-		.9
4.	Evaluation of	Cracks.		•	-	-	•	•	.10
5.	Flexural Crack	king		•				•	.11
	5.1 Mechanis	m of Flexu	ral Crac	king.			•		.12
6.	Ultra Pulse Ve	elocity Test	• •			-			.13
	6.1 Application	ons and Lin	nitation	s		•			.14
СНАРТІ	ER 3: METHO	DOLOGY	AND I	PROJE	CT W	ORK.	•	•	.16
1.	Visual Examin	nation.		•	•	•	•		.16
2.	EsteemPlus 6.	2.5.8.					•		.17
- -	2.1 Key Feat	ires of Este	emPlus	6.2.5.8					.18
	2.2 Process of	f Analyzing	J				•	•	.19
3.	Thermal and S	Shrinkage C	racking	F	-	•	•	•	.21

. .

3.1 Crack Width Calcula	tion fo	r Thern	nal and	Shrinka	ige Cra	icking.	.22
4. Estimation of Crack Widt	ths for	Flexura	l Cracl	cing.			.23
5. Ultrasonic Pulse Velocity	Testin	igs.		•	•		.26
5.1 Direct Method.			-			-	.26
5.2 Indirect Method.	•		•	•	•		.27
CHADTED 4. DESULT AND DIS	CTISS	ION					70
1 Visual Examination		IUIN.	•	•	•	•	- <u>-</u> 29
 Prisual Examination. Results and Discussion fr 	· om.Cal	Iculatio	nc	•	-	•	29
2. 1 Reinforcement Check	cs and s	Shrinks	ige and	Therms	l Crac	k	م بيد. م
3.1 Crack Width Calculation for Thermal and Shrinkage Cracking 22 4. Estimation of Crack Widths for Flexural Cracking 23 5. Ultrasonic Pulse Velocity Testings .26 5.1 Direct Method .26 5.2 Indirect Method .27 CHAPTER 4: RESULT AND DISCUSSION. .29 . Visual Examination. .29 1. Visual Examination. .29 2.1 Reinforcement Checks and Shrinkage and Thermal Crack .21 Calculation. .31 2.1.1 Slab E-G/14-18. .31 2.1.2 Slab K-M/14-18. .32 2.1.3 Slab WI-Y/14-18. .33 2.2 Flexural Cracking. .34 2.3 Ultra Pulse Velocity Test. .35 CHAPTER 5: CONCLUSION AND RECOMMENDATION. .38 CHAPTER 6: REFERENCES. .38 CHAPTER 7: APPENDICES.							
2.1.1 Slab E-G/14-18	- 8.			•			.31
2.1.2 Slab K-M/14-1	8.	•	•	•	•		.32
2.1.3 Slab W1-Y/14-	-18.	•	•	•	•		.33
2.2 Flexural Cracking.	•	. •					.34
2.3 Ultra Pulse Velocity	Test.	-			*	-	.35
	:						
CHAPTER 5: CONCLUSION AN	D RE	COMN	IENDA	ATION.	÷	•	.36
1. Mitigation Measures.	-	•	-	•	•		.37
CHAPTER 6: REFERENCES.	•	•	•	•	•	•	.38
CHAPTER 7: APPENDICES.	•	•	•	•.	-	•	.41
•							

LIST OF FIGURES

Figure 1: Bending of a length of a be	am.	* *	•	-	•		.13
Figure 2: Relationship between conc	rete stre	ength ar	nd UPV	in exist	ing reir	forced	
concrete structures.	•	•	•				.15
Figure 3: Work breakdown structure	• -	٩	•	•			.16
Figure 4: Grids input		•		•			.19
Figure 5: Beams input.						•	.19
Figure 6: Columns input.	•	•	•	*			.20
Figure 7: Slabs input.							.20
Figure 8: Forces adjacent to a crack.			•	-			.21
Figure 9: Bending strains.	•	-		•			.23
Figure 10: Critical crack positions.	•	-		•	-		.25
Figure 11: PUNDIT to measure UPV	⁷ of con	crete cu	ıbe.	-			.26
Figure 12: Void Detections using the	Direct	Method	1.				.27
Figure 13: Void Detections using the	Indirec	t Metho	o d .	•			.28
Figure 14: Neutral axis-depth for cra	cked re	ctangula	ar sectio	ons – ela	stic bel	haviour	.31
Figure 15: Cross-section and detail o	f reinfo	rcemen	t positic	on.	•		.32
Figure 16: Relationship between con	crete sti	rength a	ind UPV	/ in exis	sting rei	nforced	1
concrete structures.	•	-	•	•	•	•	.35

LIST OF TABLES

Table 1: Short-term modulus of elasticity of concrete.		•	•		.11
Table 2: Quality of Concrete and Pulse Velocity.					.14
Table 3: Crack observation checklist. .					.29
Table 4: Comparison of reinforcements for slab E-G/14	4-18.	-			.31
Table 5: Comparison of reinforcements for slab K-M/1	14-18	S		•	.32
Table 6: Comparison of reinforcements for slab W1-Y/	/14-1	8.			.33
Table 7: Calculated crack width for slabs C-Ae1/14-18	3 of 1	0mm ai	nd 12m	m diam	eter
bars			-		.34
Table 8: Results from Ultra Pulse Velocity test. .					.35

. .

•

CHAPTER 1

INTRODUCTION

1. BACKGROUND OF STUDY

The study concerns a double storey mosque which is still under construction of its ground floor. The mosque is located in Klang town next to Pasar Jawa. The building is constructed beside the Klang River and the soil on which the building is constructed is of soft marine clay. The mosque is subjected to flooding at times. The mosque is designed to have 3 floors with a 60m tall minaret. At the time when crack was noticed, only the ground floor is being constructed which indicates that loading had not been applied fully yet. Severe cracks are found at the slabs at the centre of the building while construction is still taking place. By observation, the crack hair line is small and it is less than 0.3mm. The crack appeared at the slabs from Grid E-Y/14-18. It is long and continuous. The reinforcement diameter used is 10mm and the concrete strength is 30 N/mm². The construction has been abandoned for quite some time because of this cracking Because of this, the study is needed to find the possible causes of cracks that took place at the building.

2. PROBLEM STATEMENT

There are a lot of causes that can lead to cracking in concrete. It ranges from nonsevere and can be easily remediate to severe cases such as differential settlement which can be very harmful to the integrity of a building. The problem is at first suspected because of the weak marine clay soil which can cause differential settlement but précised surveying done did not show any changes in settlement. Thus, a case study as this will help to identify the cause of these cracks and provide suggestion for its remedial and future prevention so that this building is safe for use.

3. OBJECTIVE AND SCOPE OF STUDY

The main objective of this study is:

- To investigate the type of cracks that occurred at the Klang Mosque site by observing the crack mapping done.
- To identify whether it is the design fault or poor construction practice that causes the crack.
- To provide suggestion for remediation of the concrete cracks.

In order to achieve those two objectives, the scope of work of this study will be carried out in the following stages:

- Studying the location of cracks at the building whether it is located at structure parts (such as beams or columns) or non-structure parts (such as walls or floors). The crack mapping will be done to identify the type of cracks at the building.
- Review the settlement members, soil bore log and piling record of the construction to identify the causes of cracks.
- Do analysis of the affected slabs using EsteemPlus 6.2.5.8 software and check its calculation manually and then compare it with the original design.
- Do calculations to check shrinkage cracking and flexural cracking of the concrete slabs.
- Carry out non-destructive testing to check the strength of the concrete used.
- Suggest remediation for the problem found.

CHAPTER 2

LITERATURE REVIEW

1. CONCRETE CRACKING AND REPAIRS

Though concrete is a relatively durable building material, it may suffer *damage* or distress during its life period due to a number of reasons. Because of the varying conditions under which it is produced at various locations, the quality of concrete suffers occasionally either during production or during service conditions resulting in distress. The structural causes of distress of concrete may include externally applied and environmental loads exceeding the design stipulations, accidents and subsidence. Sometimes distress in a structure is brought about by poor construction practices, error in design and detailing, and construction overloads. The other causes may be drying shrinkage, thermal stress, weathering, chemical reactions and corrosion of reinforcement. In addition to the distress in hardened concrete the plastic concrete may also suffer damage due to plastic shrinkage and settlement cracking. Sometimes on stripping off the forms a number of surface defects such as bulges, ridges, honeycombing, bolt holes, etc. are noticed on the fresh concrete members. Such defects can be avoided to a large extent by providing a watertight and rigid formwork in such a way that stripping can be done without the use of crowbars or other tools. In addition to these defects, blow-holes develop during concreting operations due to improper design of formwork. These can be reduces if the form face is slightly absorbent and adequate compaction is provided. In case the blow-holes are exceptionally large, or if a smooth surface is required, they must be filed with 1:1 or 1:2 cement-sand mortars. The sand should be sieved through a 300µm or 600µm sieve, depending upon the smoothness of the finish required. Crushed limestone dust is preferable. The mortar should be rubbed over the affected area with a rubber-faced float, and finally rubbed down with a smooth stone or mortar block for a smooth finish.

The *honeycombing* consisting of groups of interconnected deep voids normally indicate inadequate compaction or loss of grout through joints in formwork or between formwork and previously cast-concrete. The affected area is delineated with a saw cut to a depth of 5mm. The unsound material is chipped out to the solid concrete. After the surface has been prepared a bonding coat should be applied to all exposed surfaces, and new concrete should be placed against the prepared surface. The bonding coat may consist of a slurry of cement and water, but it is desirable to incorporate a polymer admixture.

The repair of bulges and projections can be carried out by chipping off the concrete from the surface and then rubbing the surface with a grinding stone. Scouring of a vertical surface of hardened concrete making it resemble a map of delta of a river is caused by water moving upward against the face of formwork. This is a sign of excessive wet or harsh concrete. It is a superficial defect so, unless it is unusually deep and the cover to reinforcement is unusually small, the remedial measures consist of early facing up in the same way suggested for filling *blow-holes*.

This type of repair (more appropriately called *finishing*) should be done as soon as possible after the forms are stripped and before the concrete becomes too hard. The repair should be preferably be completed within 24 hours of the removal of the forms. This is done to develop a good bond and make the repaired portion as durable and permanent as the original work.

If the repairs are not properly done, the newly placed concrete becomes *loose* and *drummy* with the passage of time and finally gets detached from the main concrete. The darker colour of the repaired patches can be corrected by adding 10 to 20 percent white Portland cement to the patching mortar to obtain uniform surface colour. The various defects occurring during construction are outlined in Appendix I.

2. SYMPTOMS AND DIAGNOSIS OF DISTRESS

In addition to minor structural defects outlined above, the other distresses can be observed in the form of cracks, spalling and scaling of concrete. Cracking is the most common indication of the distress in a concrete structure. It may affect appearance only, or indicate significant structural distress of lack of durability. Cracks may represent the total extent of the damage, or they may point to the problems of greater magnitude. These, in turn, may cause corrosion of reinforcement due to the entry of moisture and oxygen.

All the concrete structures crack in some form or the other. Most buildings develop cracks in their fabric which are superficial and occur soon after the construction. Cracks, even if harmless, may have and adverse psychological effect. However, cracking in concrete structures is not necessarily a cause for accusing the designer, builder or supplier. What really matters is the type of structure and the nature of *cracking*. Cracks that are acceptable for building structures may not be acceptable for water-retaining structures.

Cracking of concrete structures can never be totally eliminated, but the practitioner should be aware of the causes, evaluation techniques, and the methods of repair. The approach to diagnosis of the problem of cracking should be identical to that of a doctor to the patient. An engineer should have a sound knowledge of all the facets of concrete technology, i.e. of the behaviour of construction materials, construction techniques, types of cracks likely to occur, their causes and respective remedial measures. In short, treatment of cracks involves detection, diagnosis and remedy. Before remedies are sought, correct diagnosis will decide whether satisfactory repair is possible. The development of cracks and their repair is a *perpetual* problem involving considerable cost and inconvenience to the occupants. The problem should be tackled on two fonts, i.e. by adopting preventive measures and repairing them. However, prevention is better than repair. The designer and builders should attempt to reduce the formation of cracks by using appropriate construction materials, and by adopting appropriate design and construction techniques.

The cracks in a structure are broadly classified in two categories: *superficial cracks* and *structural cracks*. The structural cracks may be *active* and *dormant*. A crack where a movement is observed to continue is termed active, whereas the crack where no movement occurs is termed dormant or static. The following information may help in diagnosing the cracks:

- (i) whether the crack is new or old
- (ii) type of crack, i.e. whether it is active or dormant
- (iii) whether it appears on the opposite of the face of the member also
- (iv) pattern of the cracks
- (v) soil condition, type of foundation used, sign of movement of ground, if any
- (vi) observations on the similar structures in the same locality
- (vii) study of specifications, method of construction used and the test results at the site, if any
- (viii) views of the designer, builder, occupants of the building, if any
- (ix) weather during which the structure has been constructed

From the above discussion it is evident that the cracking is a complex phenomenon. The various aspects of the problem are discussed as follows.

The latent defects in a concrete structure may be caused by inadequacy of design, materials or construction practices which may not become evident until sometime after its completion. The immediate cause of deterioration may be a chemical action or corrosion of reinforcement, but in majority of the cases the basic cause may be traced back to something such as unrealistic detailing or poor workmanship.

The incompatible dimensional changes caused by drying shrinkage and thermal movements during and after the hardening period may also cause cracks in concrete members. Before any repair work is taken in hand, the cause of damage must be clearly identified, for which careful investigation is required.

3. CRACKING OF HARDENED CONCRETE

The moisture-induced volume changes are characteristic of concrete. A loss of moisture from cement paste results in a volume shrinkage by as much as 1 percent, whereas the internal restraint provided by the aggregate reduces the magnitude of this volume change to about 0.05 percent. On the other hand, an increase in moisture in the concrete tends to increase its volume. If these volume changes are restrained (usually by another part of structure or by the subgrade), the tensile stresses develop.

When the tensile strength of concrete is exceeded, it will crack. The cracks may propagate at much lower stresses than are required to cause *crack initiation*. In massive concrete elements, tensile stresses are caused by differential shrinkage between the surface and the interior concrete. The larger shrinkage at the surface causes the cracks to develop that may with time penetrate deeper into the concrete. *Surface cracking* on walls and slabs usually occurs due to drying shrinkage when the surface layer of concrete has higher water content than the interior concrete. The *surface cracking* appears in the form of a series of shallow, closely spaced fine cracks.

The extent of shrinkage cracking depends upon the amount of shrinkage, degree of restraint, modulus of elasticity and amount of creep. The amount of drying shrinkage is influenced mainly by the amount and type of aggregate and the water content of the mix. The shrinkage decreases with the increase in the amount of aggregate and the reduction in *water content*. The higher the stiffness of the aggregate, the more of effective it is in reducing the shrinkage of concrete, e.g. the shrinkage of concrete containing sandstone aggregate may be more than twice that of concrete with basalt or granite. Therefore, the drying of shrinkage can be reduced by using the maximum practical amount of aggregate and lowest usable water content in mix. Shrinkage cracking can be controlled by using properly spaced *contraction joints* and proper *steel detailing*. The shrinkage cracking can also be controlled by using *shrinkage compensating cement*.

3.1 Cracking Due to Poor Construction Practices

Poor construction practices, such as adding water to concrete to improve workability, lack of curing, inadequate form support, inadequate compaction and arbitrary placement of construction joints, can result in cracking in concrete structures. Adding water to improve workability has the effect of reducing strength, increasing settlement and ultimate drying shrinkage. The early termination of curing will allow for increased shrinkage at the time when the concrete has low strength. Incomplete hydration due to drying will reduce not only the long term strength but also the *durability* of the structure. Lack of support for forms or inadequate compaction can result in the *settlement cracking* of concrete before it has developed sufficient strength to support its own weight, while improper location of construction joints can

result in cracking at the planes of weakness. Some of the defects occurring during construction are summarized in Appendix I.

3.2 Cracking Due to Construction Overloads

The loads induced during construction can be far more severe than those experienced in service. Unfortunately, these conditions may occur at the early ages when the concrete is most susceptible to damage and often result in permanent cracks.

A common error occurs when the precast members are not properly supported during transportation and erection. The use of arbitrary or convenient lofting points may cause severe damage. A big element lowered too fast, and stopped suddenly carries significant momentum which is translated into an impact load that may be several times the dead weight of the element.

Storage of materials and equipment can easily result in loading conditions during construction far more severe than any load for which the structure is designed. Damage from unintentional construction overloads can be prevented only if the designers provide information on load limitations for the structure and if the construction personnel heed to these limitations.

3.3 Cracking Due to Errors in Design and Detailing

The design and detailing errors that may result in unacceptable cracking include use of poorly detailed re-entrant corners in walls, precast members and slabs; improper selection and/or detailing of reinforcement; restraint of members subjected to volume changes caused by variations in temperature of moisture; lack of adequate contraction joints, and improper design of foundations resulting in differential settlement within the structure. Reentrant corners provide a location for stress concentration and therefore, are prime locations for cracks, as in the case of window and door openings in concrete walls and dapped beams. Additional properly anchored diagonal reinforcement is required to keep inevitable cracks narrow and prevent them from propagating further.

8

An inadequate amount of reinforcement may result in excessive cracking. A common mistake is to lightly reinforce an element because it is a non-structural element and tying it to the rest of the structure in such a manner that it is required to carry a major portion of the load once the structure begins to deform. The non-structural element will carry a load in proportion to its stiffness. Since this element is not detailed to act structurally, unsightly cracking may result even though the safety of the structure is not threatened. The restrained members subjected to volume changes frequently develop cracks. A slab, wall or a beam restrained against shortening, even if prestressed, can easily develop tensile stress sufficient to cause cracking. Beams should be allowed to move.

Improper foundation design may result in excessive differential movement within a structure. If the differential movement is relatively small, the cracking problem may be only visual in nature. However if there is a major differential settlement, the structure may not be able to redistribute the loads rapidly enough, and a failure may occur. One of the advantages of the reinforced concrete is that, if the movement takes place over a sufficiently long period of time, creep will allow some redistribution of load.

Special care needs to be taken in the design and detailing of structures in which cracking may cause a major serviceability problem. These structures also require continuous inspection during all phases of construction to supplement the careful design and detailing.

3.4 Cracks Due to Externally Applied Loads

Load-induced tensile stresses may result in cracks in concrete elements. A design procedure specifying the use of reinforcing steel, not only to carry tensile forces, but also to obtain both an adequate crack distribution and a reasonable limit on crack width is recommended. Flexural and tensile crack widths can be expected to increase with time for members subjected to either sustained or repetitive loading. A welldistributed reinforcing arrangement offers the best protection against undesirable cracking.

4. EVALUATION OF CRACKS

As in the case of a medial practitioner prescribing medicine without thoroughly examining the patient, it is difficult for a repair engineer to advocate any repair technology without making a thorough investigation. Before proceeding with repair, the investigations should be made to determine the location and extent of cracking, the causes of damage and the objectives of repair. Calculation can be made to determine stresses due to applied loads. For detailed information, the history of the structure, structural drawings and specifications, and construction and maintenance records should be reviewed.

The objectives of repair include restoration and enhancement of durability, structural strength, functional requirements and aesthetics. The evaluation of cracks is necessary for the following purposes:

- (i) To identify the cause of cracking
- (ii) To assess the structure for its safety and serviceability
- (iii) To establish the extent of the cracking
- (iv) To establish the likely extent of further deterioration
- (v) To study the suitability of various remedial measures
- (vi) To make a final assessment for serviceability after repairs

Apart from visual inspection, tapping the surface and listening to the sound for hollow areas may be one of the simplest methods of identifying the weak spots. The suspected areas are then opened up by chipping the weak concrete for further assessment.

The comparative strength of concrete in the structure may be assesses to a reasonable accuracy by non-destructive testing and by the tests on the cores extracted from the concrete. The commonly used non-destructive tests are the rebound-hammer test and ultrasonic-pulse-velocity test.

5. FLEXURAL CRACKING

Members subjected to bending generally exhibit a series of distributed flexural cracks, even at working load. These cracks are unobtrusive and harmless unless the widths become excessive, in which case appearance and durability suffer as the reinforcement is exposed to corrosion.

The actual width of cracks in a reinforced concrete structure will vary between wide limits and cannot be precisely estimated thus the limiting requirement to be satisfied is that the probability of the maximum width exceeding a satisfactory value is small. The maximum acceptable value suggested by BS8110 is 0.3mm at any position on the surface of the concrete in normal environments although some other codes of practice recommend lower values for important members. Requirements for specialised cases such as water-retaining structures may be more stringent.

If calculations to estimate maximum crack widths are performed, they are based on 'working' loads with $\gamma_f = 1.0$ and material partial factors of safety of $\gamma_m = 1.0$ for steel and concrete. BS 8110 recommends that the effective modulus of elasticity of the concrete should be taken as half the instantaneous value as given in Table 1, to allow for creep effects.

28-day characteristic cube	Static mod	alus E _{5,28}
strengtn far 24		100)
(N/mm²)	Lypical range	Wican
25	19-31	25
30	20-32	26
40	22-34	28
50	24-36	30
60	26-38	32

Table 1: Short-term modulus of elasticity of concrete

5.1 Mechanism of Flexural Cracking

This can be illustrated by considering the behaviour of a member subjected to a uniform moment.

A length of beam as shown in Figure 1 will initially behave elastically throughout as the applied uniform moment M is increased. When the limiting tensile strain for the concrete is reached a crack will form and the adjacent tensile zone will no longer be acted upon by direct tension forces. The curvature of the beam, however, causes further direct tension stresses to develop at some distance from the original crack to maintain internal equilibrium. This in turn causes further cracks to form and the process continues until the distance between cracks does not permit sufficient tensile stresses to develop to cause further cracking. These initial cracks are called 'primary cracks', and the average spacing in a region of constant moment has been shown experimentally to be approximately 1.67 (*h-x*) and will be largely independent of reinforcement detailing.

As the applied moment is increased beyond this point, the development of cracks is governed to a large extent by the reinforcement. Tensile stresses in the concrete surrounding reinforcing bars are caused by bond as the strain in the reinforcement increases. These stresses increase with distance from the primary cracks and may eventually cause further cracks to form approximately midway between the primary cracks. This action may continue with increasing moment until the bond between concrete and steel is incapable of developing sufficient tension in the concrete to cause further cracking in the length between existing cracks. Since the development of the tensile stresses is caused directly by the presence of the reinforcing bars, the spacing of the cracks will be influenced by the spacing of the reinforcement. If bars are sufficiently close for their 'zone of influence' to overlap then secondary cracks will join up across the member while otherwise they will form only adjacent to the individual bars. It has been confirmed experimentally that the average spacing of cracks along a line parallel to, and at a distance acr from, a main reinforcing bar depends on the efficiency of bond and may be taken as 1.67 acr for deformed bars, or 2.0act for plain round bars.

Figure 1: Bending of a length of a beam

6. ULTRA PULSE VELOCITY TEST

At present the ultrasonic pulse velocity method is the only one of this type that shows potential for testing concrete strength in situ. It measures the time of travel of an ultrasonic pulse passing through the concrete. The fundamental design features of all commercially available units are very similar, consisting of a pulse generator and a pulse receiver. Pulses are generated by shock-exciting piezo-electric crystals, with similar crystals used in the receiver3. The time taken for the pulse to pass through the concrete is measured by electronic measuring circuits.

Pulse velocity tests can be carried out on both laboratory-sized specimens and completed concrete structures, but some factors affect measurement:

- 1. There must be smooth contact with the surface under test; a coupling medium such as a thin film of oil is mandatory.
- 2. It is desirable for path-lengths to be at least 12 in. (30 cm) in order to avoid any errors introduced by heterogeneity.
- It must be recognized that there is an increase in pulse velocity at belowfreezing temperature owing to freezing of water; from 5 to 30°C (41 - 86°F) pulse velocities are not temperature dependent.
- 4. The presence of reinforcing steel in concrete has an appreciable effect on pulse velocity. It is therefore desirable and often mandatory to choose pulse paths that avoid the influence of reinforcing steel or to make corrections if steel is in the pulse path.

6.1 Applications and Limitations

The pulse velocity method is an ideal tool for establishing whether concrete is uniform. It can be used on both existing structures and those under construction. Usually, if large differences in pulse velocity are found within a structure for no apparent reason, there is strong reason to presume that defective or deteriorated concrete is present.

High pulse velocity readings are generally indicative of good quality concrete. A general relation between concrete quality and pulse velocity is given in Table 2.

General Conditions	Pulse Velocity, ft/sec
Excellent	Above 15,000
Good	12,000-15,000
Questionable	10,000-12,000
Poor	7,000-10,000
Very Poor	below 7,000

Table 2: Quality of Concrete and Pulse Velocity

Fairly good correlation can be obtained between cube compressive strength and pulse velocity. These relations enable the strength of structural concrete to be predicted within ± 20 per cent, provided the types of aggregate and mix proportions are constant.

The pulse velocity method has been used to study the effects on concrete of freezethaw action, sulphate attack, and acidic waters. Generally, the degree of damage is related to a reduction in pulse velocity. Cracks can also be detected. Great care should be exercised, however, in using pulse velocity measurements for these purposes since it is often difficult to interpret results. Sometimes the pulse does not travel through the damaged portion of the concrete.

The pulse velocity method can also be used to estimate the rate of hardening and strength development of concrete in the early stages to determine when to remove formwork. Holes have to be cut in the formwork so that transducers can be in direct contact with the concrete surface. As concrete ages, the rate of increase of pulse velocity slows down much more rapidly than the rate of development of strength, so that beyond a strength of 2,000 to 3,000 psi (13.6 to 20.4 MPa) accuracy in determining strength is less than $\pm 20\%$. Accuracy depends on careful calibration and use of the same concrete mix proportions and aggregate in the test samples used for calibration as in the structure.

In order to determine the strength of concrete, the results from UPV test can be plotted in a chart developed by P. Turgut as shown in the figure below.

In summary, ultrasonic pulse velocity tests have a great potential for concrete control, particularly for establishing uniformity and detecting cracks or defects. Its use for predicting strength is much more limited, owing to the large number of variables affecting the relation between strength and pulse velocity.

CHAPTER 3

METHODOLOGY AND PROJECT WORK

Figure 3: Work Breakdown Structure

1. VISUAL EXAMINATION

The appearance of concrete surface may suggest the possibility of chemical attack by general softening and leaching matrix, or in case of sulphate attack by whitening of concrete. Rust stains often indicate corrosion of reinforcement but they may also be caused due to the contamination of aggregate with iron pyrites. If the cracked concrete is broken out, the appearance of the crack surface gives useful information; dirt or discolouration show that the crack has been there for some time. General flaking of an exposed concrete surface suggests frost damage. In fire damaged structure, the colour of concrete gives an indication of the maximum temperature reached.

The crack pattern may be informative, a mesh pattern suggests drying shrinkage, and surface crazing may indicate frost attack or in rare cases alkali-aggregate reaction. The cracks caused by unidirectional bending will be the widest in the zone of maximum tensile stress and will taper along their length, while cracks caused by direct tension will be of roughly uniform width. Pop-outs in concrete are usually associated with particles of coarse aggregate just below the surface.

The location and width of cracks should be noted on a sketch of the structure. A grid marked on the surface of the structure can be used to accurately locate cracks on the sketch. Crack widths can be measure to accuracy of about 0.025 mm using a crack comparator, which is a small hand-held microscope with a scale on the lens closest to the surface being viewed. Location of observed spalling, exposed environment, surface deterioration and rust staining should be noted on the sketch.

The use of brittle liquid coatings on the suspected structure can also help detect the crack or growth of cracks over a period of time. The movement of the crack can be monitored with the help of mechanical movement indicators or crack monitors using electrical resistance thin filaments which amplify crack movement and indicate the maximum range of movement occurring during the measurement period, i.e. the extent of progressive growth of crack. Linear variable differential transformers (LVDTs) and data acquisition systems (ranging from strip chart recorder to a computer based system) are available. The cracks in concrete may be evaluated at macro, micro, submicro and atomic levels (Angstroms Å). In the present discussion the macrostructure cracks having a size (i.e. width/depth) in the range of 0.1 to 0.3mm are of interest.

2. ESTEEMPLUS 6.2.5.8

The EsteemPlus 6.2.5.8 is a software used to do design analysis of affected slabs. This software is a local software by Esteem Innovation Sdn. Bhd.. It is useful enough to do simple analysis and calculations for this case study.

2.1 Key Features of EsteemPlus 6.2.5.8

It has user friendly interface which capitalises on the Windows environment and it eliminates the chore of remembering key commands for input. It provides efficiency as well as user functionality. It has feature of 3D Environment which able the display of the structure in 3D view for better visualization and presentation. It also includes 3D analysis. In this version, it has added more functions on slab in which a user can put loadings on slab such as line and point load, cantilever load and even customize an irregular slab. It also allows batch run of analysis of all floors simultaneously.

There are a series of e-tutorial designed to the user to learn and quickly familiarize with the functions of EsteemPlus. Among the tutorials are creating project and input grid, input liftcore and RC wall, input beam, input column and lateral load, input slab, analyze and design slabs, analyze beam, duplicate floor, generate and analyze 3D frame, design beam, design column, wall, pad and pile footing. A user can set the parameters for the design; detailing and project parameters such as the code of practice, load factor, characteristic strength and design parameters for each part of structure (slabs, beams, columns, etc.). There are 5 modules of input in the key plan input mode and these are detailed as follows:

- Input grid To access the grid input for both x and y direction grid.
- Input beams To access beam input for both x and y direction beams.
- Input slabs To access the input for slabs.
- Input columns To access the input for columns.
- Input RC Wall To access wall/liftcore input.

The analysis modules consist of the following:

- Generate Slab Mesh Generates mesh for the slab.
- Analyse FEM Slab Analyses the slab using Finite Elements Method.
- Design Slab To run the analysis for slabs either using FEM or conventional analysis method.

- Analyse Beam To run the analysis for floor beams and collate the reactions.
 Checks if the beam passes the deflection check for that floor only.
- 3D Frame Element Analyses the whole structure as a frame.
- Design Beam Run the analysis and designs the beam for the floor.

2.2 Process of Analyzing

1. Input the grids according to the original layout plan of Klang Mosque.

a lastern Struct	are Sette	ere 6.2.1 -	Pist is	nie i May							X
Fie Pojer	Edit Statik	accon Wall	Serv Mad	wa Heb		$\tilde{C}^{\rm as}(s) = \tilde{C}(s)$					×
D 🗟 🔒 🍓	• 1 Cr	1 Q Q		2 4	100%	- B	20	۵ 🐨 ۷	# 3 3	10 🗖 🖗 🗯	
Standball at	1	** **	截 蹦	5 8 2]]]	न 👔 🗄	· P1.	13 w H	1 1 4	ি নি	Ĉ
S 🖸 e tataral										Concerd Phopenber	Ţ
t ≘⊡ Haves Galta										Mak: P1	100
100	1									6 idea	
- [] 2										And Illians	Ť
Column	1=									Hetation (8.00	10.775
	185										Ż
- Refor										Eut flob section	
										NURDEC U	j
										T Hide Internal Con	ť
1											Č.
1	1.1.11										
										的复数形式	ŝ,
1	Auto										
	- 45 AV										(11) (11) (11)
											4
	1										
											Ê
REAL R	}										Ê

Figure 4: Grids input

2. Next, the beam is put in place according to the original layout plan with the same sizes.

Ciberry Street.	arel Softwar	0.5.2.3.E	(Piar Vi	5m. 25)						. E>
Rie Angest	er with	Sai Well	9 3 2 976	iow Meip		9795 (*				
0 9 8 8	r: 🚽 🛔	୍ କ୍ କ୍	Q & C	£ 0	22075	•] B	g 🖪	• 🛛 🗸 🖬		5 6 4
्रस्त्रे <i>२५</i> देव	劉毅後	8 ¥ 🖻	新聞	2 88 2	<u>7</u> 77	99 T C	́В,	8 🖙 🕈 🚊	÷ 0	
E C e-tutorial	6-8				64 6				in Louis Magnitus	- illi
85	-								, Fast Desciling	1 305
0 b	6				<u> </u>				First Live Load	0.00
¢	æ								, Second Dead	pet [
- 🖸 Cotum D Val	-tu		:						Second Live L	oc part
· 🖸 PedFor									Load Peakion	andarn fan Stat
(; PREFact	10 51					a surfin	* 1		Gird	Offert.
							ļ	-		<u>1</u> paw
						لا سار	l		1 C. 102	1 1
				i i Seco						
										가장 소리가 있다. 이렇게 다 가 같이 있다.
	- (62)) - (62)									an a
			÷.		1					$\sum_{i=1}^{n} \frac{1}{2} $
1.1	(1,1,1)									
										Me Ci
No. Schwinger 7									NO CONTRACTOR	
<u> Estate a c</u>				_						N. 18-9.

Figure 5: Beams input

3. Then, the column can be put in place according to the exact same location and sizes as the original layout.

Figure 6: Columns input

Input of slabs is according to the same thickness, drops and with the finishes load is taken as 1.7kN/m² and live load is taken as 5kN/m². This is taken from BS6399: Part 1: 1984 Table 7 – Assembly areas without fixed seating (can be referred also in Appendix 7).

File Project E	Edit Ventication Wall V	ien Windon Hiels 3. 70 (a) All - C	and the second		ma ou lan	_16
				9 19 2 8 9 19 2	bill bill (0) Oceanor Slab Prop (hick-resolant) Pathes(kN/m^2) ive Load(kN/m^2)	si # enties [150 [1.28 [1.50 [0.50]
U Wat		F			Soton Bai Diestio (* : x	• • • • • • • • •

Figure 7: Slabs input

3. THERMAL AND SHRINKAGE CRACING

After cracking, the equilibrium of concrete adjacent to a crack is as illustrated in Figure 8.

Figure 8: Forces adjacent to a crack

Equating tension and compression forces

$$A_{s}f_{st} = A_{c}f_{ct} - A_{s}f_{sc}$$

or

$$f_{ct} = \frac{A_s}{A_c} \left(f_{st} + f_{sc} \right)$$

If the condition is considered when steel and concrete simultaneously reach their limiting values in tension, that is, $f_{st} = f_y$ and $f_{ct} = f_t$ = tensile strength of concrete at appropriate age – usually taken as three days, then

$$r = \frac{A_s}{A_c} = \frac{f_t}{f_y + f_{sc}}$$

where *r* is the steel ratio.

The value of f_{sc} can be calculated but is generally very small and may be taken as zero without introducing undue inaccuracy; hence the critical value of steel ratio

$$r_{crit} = \frac{A_s}{A_c} = \frac{f_t}{f_y + f_{sc}}$$
 approximately

If the steel ratio is less than this value, the steel will yield in tension resulting in a few wide cracks; however if it is greater then more cracks will be formed when the tensile stress caused by bond between the steel and concrete exceeds the concrete tensile strength, that is

$$F_b s \sum u_s \ge f_t A_c$$

Where f_b = average bond stress

s = development length along a bar

 $\Sigma u_s = sum of perimeters of reinforcement$

For a round bar

$$\frac{u_s}{A} = \frac{4\pi\Phi}{\pi\Phi^2} = \frac{4}{\Phi}$$

Hence since

$$\sum u_s = \frac{A_s}{A} u_s$$
 for similar bars

Then

$$\sum u_s = \frac{4rA_c}{\Phi}$$

and thus

$$s \ge \frac{f_i \Phi}{4rf_b}$$

The maximum crack spacing is twice this value immediately prior to the formation of a new crack, when the development length on both sides is s_{min} , that is

$$s_{\max} = \frac{f_t \Phi}{2rf_b}$$

Crack spacing and hence width therefore is governed both by the reinforcement size and quantity for ratios above the critical value, which should be taken as a minimum requirement for controlled cracking.

3.1 Crack width Calculation for Thermal and Shrinkage Cracking

The expressions for crack spacing assume that the total thermal and shrinkage strains are sufficient to cause cracking, although in practice it is found that predicted cracks may not always occur. It is possible to estimate however the maximum crack width likely to occur by considering total concrete contraction in conjunction with the maximum likely crack spacing. For steel ratios greater than the critical value, and when the total contraction exceeds the ultimate tensile strain for the concrete (ε_{ult}), the tensile stress in the concrete increases from zero at a crack to a maximum value at mid-distance between cracks. Hence the mean tensile strain in the uncracked length is $\varepsilon_{ult}/2$ when a new crack is just about to form. The crack width is thus given by crack width = (total unit movement – concrete strain) x crack spacing with the maximum width corresponding to the maximum spacing of s_{max}

 $\omega_{max} = (\varepsilon_{sh} + T\alpha_c - \frac{1}{2} \varepsilon_{ull}) s_{max}$

where $\varepsilon_{sh} = \text{shrinkage strain}$

T = fall in temperature from hydration peak

 a_c = coefficient of thermal expansion of concrete

In practice, variations in restraints cause large variations within members and between otherwise similar members, with 'full' restraint seldom occurring. The behaviour depends considerably on this and temperatures at the time of casting. Allowance for these influences, and creep, can be made by the use of 'restraint factors' so that the equation for maximum crack width becomes

 $\omega_{max} = [R (\varepsilon_{sh} + T\alpha_c) - \frac{1}{2} \varepsilon_{ult}] s_{max}$

where R = restraint factor (maximum value 0.5 for 'full' restraint). Further guidance concerning possible 'restraint factors' is given in Part 2 of BS 8110.

4. ESTIMATION OF CRACK WIDTHS FOR FLEXURAL CRACKING

If the behaviour of the member in Figure 9 below is examined it can be seen that the overall extension per unit length at depth y below the neutral axis is given by

Figure 9: Bending strains

where ε_s is the average strain in the main reinforcement over the length considered, and may be assumed to be equal to f_s / E_s where f_s is the steel stress at the cracked sections. Hence, assuming any tensile strain of concrete between cracks as small, since full bond is never developed

$$\varepsilon_1 = \frac{y}{(d-x)E_s} \frac{f_s}{E_s}$$
$$= \sum w$$

where $= \sum w =$ sum of crack widths per unit length at level y.

The actual width of individual cracks will depend on the number of cracks in this unit length the average number being given by length/average spacing where average spacing $s_{av} = 1.67 a_{cr}$ for deformed bars; also $s_{av} \le 1.67 (h-x)$, the spacing of primary cracks.

Thus

Average crack width $w_{av} = \underbrace{\Sigma w}_{Average number of cracks}$ = $\varepsilon_1 s_{av}$

Experimentally, if maximum crack width is taken as twice the average value, the chance of this being exceeded is about 1 in 100 hence for deformed reinforcing bars, the maximum likely crack width w_{max} at any level defined by y in a member will thus be given by

$$w_{max} = \varepsilon_1 2 s_{av}$$
$$= \varepsilon_1 3.33 a_{cr}$$

provided that the limit of $w_{max} = \varepsilon_1 3.33$ (h-x) based on the primary cracks is not exceeded.

The positions on a member where the surface crack widths will be greatest depend on the relative values of strain (ε_I) and the distance to a point of zero strain (a_{cr}) . Despite the effects of bond slip adjacent to cracks, and the steel strain across cracks, the crack width at the surface of a reinforcing bar is very small and may be assumed to be zero. This may therefore be taken as a point of zero strain for the purposes of measuring a_{cr} . The neutral axis of the beam will also have zero strain and hence a_{cr} may also relate to this if appropriate.

Critical positions for maximum crack width will on a beam generally occur at the positions indicated in Figure 10 below. These occur when the distance to points of zero strain, that is, reinforcement surface of neutral axis, are as large as possible.

Positions 1 and 2 will have a maximum value of strain, while at position 3 although the strain is smaller, a_{cr} is considerably larger. The expression for w_{max} at any point may thus be expressed in the general form

maximum surface crack width at a point

= constant x distance to the surface of the nearest reinforcing bar or neutral axis x apparent tensile strain in the concrete at the level considered.

Figure 10: Critical crack positions

The expression for maximum surface crack width given in BS 8110 is basically of this form, with the constant based on a probability of the calculated value being exceeded of somewhat greater than 1 in 100. The expression is given as

$$w_{\max} = \frac{3a_{cr}\varepsilon_m}{1 + 2\left(\frac{a_{cr} - c_{\min}}{h - x}\right)}$$

where c_{min} is the minimum cover to the main reinforcement and ε_m is the average concrete strain and is based on ε_1 but allows for the stiffening effect of the cracked concrete in the tension zone ε_2 . The value of ε_2 is given by an empirical expression

$$\mathcal{E}_2 = \frac{b_t (h-x)(a'-x)}{3E_s A_s (d-x)}$$

and

$$\varepsilon_m = \varepsilon_1 - \varepsilon_2$$

where b_t is the width of section at centroid of tensile steel and a' the distance from compressive face to the point at which crack is calculated. This expression allows for variations of steel stress between cracks, and results in correspondingly reduced maximum crack width estimates. A negative value of ε_m indicates that the section is uncracked.

5. ULTRASONIC PULSE VELOCITY TESTINGS

The measurement of the velocity of ultrasonic pulses as a means of testing materials was originally developed for assessing the quality and condition of concrete and the PUNDIT will undoubtedly be used predominately for this purpose. Figure 11 shows the picture of the equipment. In most of the applications it is necessary to measure the pulse velocity to a high degree of accuracy since relatively small changes in pulse velocity usually reflect relatively large changes in the condition of the concrete. For this reason it is important that care be taken to obtain the highest possible accuracy of both the transit time and the path length measurements since the pulse velocity measurement depends on both of these. Accuracy of transit time measurement can only be assured if good acoustic coupling between the transducer face and the concrete surface can be achieved. For a concrete surface formed by casting against steel or smooth timber shuttering, good coupling can readily be obtained if the surface is free from dust and grit and covered with a light or medium grease or suitable couplant. A wet surface presents no problem. If the surface is moderately rough, stiffer grease should be used but very rough surfaces require more elaborate preparation.

Figure 11: PUNDIT to measure UPV of concrete cube

5.1 Direct Method

When an ultrasonic pulse traveling through concrete meets a concrete-air interface, there is a negligible transmission of energy across this interface so that any air-filled crack or void lying directly between the transducers will obstruct the direct beam of ultrasound when the void has a projected area larger than the area of the transducer faces. The first pulse to arrive at the receiving transducer will have been diffracted around the periphery of the defect and the transit time will be longer than in similar concrete with no defect.

The arrangement for direct method is as shown in Figure 12, where it requires access to two surfaces. The transmitting and receiving transducers are placed on opposite surfaces of the concrete slab. This will give maximum sensitivity and provide a well-defined path length.

Figure 12: Void Detections using the Direct Method

5.2 Indirect Method

Performing UPV testing requires access to two surfaces, unless indirect (surface transmission) testing is to be done. Though indirect arrangement is least satisfactory upon sensitivity and defined path length, but it is more commonly used since direct method is not possible to use at most of the time. Figure 13 shows the indirect method for detecting void. The void depth can be estimated using the following equation:

$$z = \frac{x_0}{2} \sqrt{\frac{V_s - V_d}{V_s + V_d}}$$
(1)

Where V_d is the pulse velocity in the defect concrete (km/s), V_s is the pulse velocity in the sound concrete (km/s) and t is the depth of the defect (mm), x_0 is the distance at which the change of slope occurs (mm).

Figure 13: Void Detections using the Indirect Method.

In a UPV test, a piezoceramic source is electrically pulsed to generate ultrasonic waves, which travel in the structural element, and are sensed by the matching receiver on the opposite side of the test member. The waveform at the receiver is recorded (including the signal transmission start time) by the PC-based system. Knowing the travel distance and travel time, the ultrasonic compression wave velocity is then calculated. After the receiver output is recorded by the PC data acquisition system, the data can be analyzed. Three parameters are used in the interpretation of data:

- 1. Arrival of compression waves
- 2. Signal strength and
- 3. Distortion of the transmitted signal.

CHAPTER 4

RESULT AND DISCUSSION

1. VISUAL EXAMINATION

The site investigation is done during the early part of the study to observe the crack at the slabs. These are the recordings of observation of the concrete slabs:

Types of visual observation	Yes	No
Softening		V
Leaching matrix		√.
Whitening of concrete		\checkmark
Rust stains		V
Discoloration		\checkmark
Flaking		
Colour changes		√ ·
Any exposed reinforcements		√
Crack Pattern		
Mesh pattern		1
Surface crazing		\checkmark
Have roughly uniform width	\checkmark	
Taper along the length		\checkmark
Pop-outs		\checkmark

Table 3: Crack observation checklist

The crack width cannot be measured because of lack of equipments at site. The visual observation is then transferred to the layout plan to do the crack mapping. Please refer to Appendix 2 (a) for the location of cracks at ground floor (clouded area) and Appendix 2 (b) for the crack mapping layout. The visual observation is according to Appendix 1. According to the visual observation at site, the crack is unidirectional and uniform. It cracks horizontally between grid 14-18 and from grid G-Af. The crack location is at the centre of the building which supposed to be the prayer hall. At the time when the crack is observed, only ground floor has been constructed. Since the crack occurs during construction, this shows that the crack is

new. The crack is active at first when it starts to occur but after a while the cracks become dormant. The crack is active at first when it starts to occur but after a while the cracks become dormant. The crack only appears at the surface of the slab. By observation, the crack hair line is small and it is less than 0.3mm.

There is a public market nearby and the surrounding buildings are mainly shop lots consist of 4 to 5 floors. By interviewing some of the locals and engineers of the construction, there are no other cases such as this anywhere else nearby.

The building is constructed on marine clay soil type. The soil profile can be seen in Appendix 3 (a) and 3 (b). As can be seen in the soil profile, the subsurface ground condition at the site can be classified with the following layers: alluvial deposits and residual soil of Kenny Hill formation. The alluvial deposits consist of very soft to soft clay from GL 0 to GL 18 for BH3 and GL 3.5 to GL 21.5 at BH1A. The residual of Kenny Hill Formation underline the alluvial deposits layer throughout the side. The residual of Kenny Hill Formation consist of greyish brown to clayey silt with fine sand and traces of gravel below the soft clay where $N \ge 50$. Précised surveying has been done for 16 weeks to check any settlement of the ground but from the readings it shows that there is no significant ground movement at the site. So, the possibility of the crack to occur because of differential settlement can be ruled out. Unfortunately, the précised surveying report is confidential and cannot be released to other parties.

There is a possibility that this crack occurs because of plastic shrinkage. For this paper, the analysis is start by checking the maximum allowed thermal and shrinkage crack and flexural crack for three random slabs.

2. RESULTS AND DISCUSSION FROM CALCULATIONS

2.1 Reinforcement Checks and Shrinkage and Thermal Crack Calculation

2.1.1 Slab E-G /14-18

For analysis calculation from EsteemPlus 6.2.5.8 Software, please refer to Appendix 4 (a). Comparison between original reinforcement and analyzed reinforcement:

	Analyzed	Original	
M _{xx}	Y10-275	Y10-200	OK
M _{yy}	Y10-275	Y10 - 300	OK
M _{syl}	Y10 - 200	Y10-200	OK
M _{sy2}	Y10 - 200	Y10-300	NOT OK
M _{sxl}	Y10-300	Y10 - 200	OK
M _{sx2}	Y10-300	Y10-300	OK

 Table 4: Comparison of reinforcements for slab E-G/14-18

To eliminate the possibility that the crack is caused by design fault, the original reinforcement's spacing must be lesser or the same as the analyzed reinforcement. From this table, it can be seen that three of reinforcements are not suitable for the design of this slab. But the differences are not that big in terms of spacing but still can be considered as design fault. But nevertheless, the crack occurs at the early stage of the construction without utilising much loading. Thus, the possibility that the crack occurs because of design error can be ruled out. The plan view and cross-sections for slab E-G / 14-18 is at Appendix 6 (a).

Figure 14: Neutral axis-depth for cracked rectangular sections - elastic behaviour

The calculation for thermal and shrinkage cracking is at Appendix 5 (a). The maximum crack width for shrinkage and thermal cracking is 0.10mm. The maximum crack width for flexural cracking will occur either at position 1 or 2 as indicated in Figure 15.

Figure 15: Cross-section and detail of reinforcement position

The maximum crack width of 0.10mm is therefore likely to occur at the bottom of the member, and the cracks are likely to be at an average spacing of 1.67 $a_{cr} = 1.67 x$ 23.3 \approx 39 mm at those positions. Cracks of similar width may occur on side faces at a spacing of approximately 1.67 x 44.2 \approx 74 mm.

2.1.2 Slab K-M / 14-18

For calculation from EsteemPlus 6.2.5.8 software, please refer to Appendix 4 (b). Comparison between original reinforcement and analyzed reinforcement:

	Analyzed	Original	
M _{xx}	Y10-200	Y10 - 150	ОК
M _{yy}	Y10-300	Y10-300	OK
M _{svI}	Y10-150	Y10 - 150	OK
M _{sy2}	Y10-150	Y10 - 150	ОК
M _{sx1}	Y10-300	Y10 - 150	OK
M _{sx2}	Y10-300	Y10 - 150	OK

Table 5: Comparison of reinforcements for slab K-M / 14-18

To eliminate the possibility that the crack is caused by design fault, the original reinforcement's spacing must be lesser or the same as the analyzed reinforcement. From this table, it can be seen that two of the reinforcements are not suitable for the design of this slab. But nevertheless, the crack occurs at the early stage of the

construction without utilising much loading. Thus, the possibility that the crack occurs because of design error can be ruled out. The plan view and cross-sections for slab K-M / 14-18 are at Appendix 6 (b).

The calculations for thermal and shrinkage cracking and flexural cracking are at Appendix 5 (b). The maximum crack width for shrinkage and thermal cracking is 0.10mm. The maximum crack width will occur either at position 1 or 2 as indicated in Figure 10. The maximum crack width of 0.12mm is therefore likely to occur at the bottom of the member, and the cracks are likely to be at an average spacing of 1.67 $a_{cr} = 1.67 \times 23.3 \approx 39$ mm at those positions. Cracks of similar width may occur on side faces at a spacing of approximately 1.67 x 36.6 \approx 61 mm.

2.1.3 Slab W1-Y / 14-18

For calculation from EsteemPlus 6.2.5.8 software, please refer to Appendix 4 (c). Comparison between original reinforcement and analyzed reinforcement:

	Analyzed	Original	an and an
M _{xx}	Y10-250	Y10-200	ОК
M_{yy}	Y10-275	Y10 - 300	NOT OK
M _{svl}	Y10 - 175	Y10-200	NOT OK
M _{sy2}	Y10-175	Y10-300	NOT OK
M _{sxl}	Y10-300	Y10-200	OK
M_{sx2}	Y10-300	Y10-300	OK

Table 6: Comparison of reinforcements for slab W1-Y / 14-18

To eliminate the possibility that the crack is caused by design fault, the original reinforcement's spacing must be lesser or the same as the analyzed reinforcement. From this table, it can be seen that one of the reinforcements are not suitable for the design of this slab. But nevertheless, the crack occurs at the early stage of the construction without utilising much loading. Thus, the possibility that the crack occurs because of the design error can be ruled out. The plan view and cross-sections for slab Ae-Ae1 / 14-18 are at Appendix 6 (c).

The calculations for thermal and shrinkage cracking and flexural cracking are at Appendix 5 (c). The maximum crack width for shrinkage and thermal cracking is

0.10 mm. The maximum crack width will occur either at position 1 or 2 as indicated in Figure 10. The maximum crack width of 0.11 mm is therefore likely to occur at the bottom of the member, and the cracks are likely to be at an average spacing of $1.67 a_{cr} = 1.67 \times 23.3 \approx 39$ mm at those positions. Cracks of similar width may occur on side faces at a spacing of approximately $1.67 \times 4.83 \approx 81$ mm.

2.2 Flexural Cracking

Calculation of flexural cracking is done for the slabs from Grid C-Ae1/14-18 with the help of Microsoft Excel in which shown in the Appendix 6 and 7. Comparison between two different diameter bars (10mm and 12mm) is to see whether increasing the bar diameter can actually overcome flexural cracking. From the result in the table below, we can see that the flexural fails from E-Y/14-18 (red indicates that the slab fails) which coincides with the actual crack on the slab which occurs at E-Y/14-18. The limitation for this calculation is 0.20mm for flexural cracking. When calculating again using 12mm diameter bars, none of the slabs failed and thus it shows that increasing the bar diameter probably solves the problem of the cracking.

Slab Location	10mm diameter bar	12mm diameter bar
Ad-Ae/14-18	0.09	0.07
Ae1-Af/14-18	0.14	0.14
Ae-Ae1/14-18	0.14	0,07
C-D/14-18	0.09	0.06
D-E/14-18	0.05	0.05
E-G/14-18	0.25	0.17
G-J/14-18	0.24	0.17
J-K/14-18	0.24	0.17
K-M/14-18	0.25	0.17
M-P/14-18	0.25	0.17
P-R/14-18	0.24	0.17
R-T/14-18	0.24	0.17
T-V/14-18	0.26	0.17
V-W1/14-18	0.29	0.18
W1-Y/14-18	0.24	0.18
Y-Ad/14-15	0.22	-0.05
Y-Ad/17-18	0.12	-0.05
Y-Z/15-15A	-0.03	-0.02
Y-Z/15A-16A	-0.04	-0.05
Y-Z/16A-17	0.03	-0.02
Z-Ad/15-16	0.03	-0.05
Z-Ad/16-17	0.03	-0.05

Table 7: Calculated crack width for slabs C-Ae1/14-18 of 10mm and 12mm diameter bars

2.3 Ultra Pulse Velocity Test

DIDECT	Cube A	3897.7m/s	Average=
METHOD	Cube B	3927.8m/s	3917.8 m/s
METHOD	Cube C	3927.8m/s	(3.9 km/s)
INDIDECT	Cube A	3791.0m/s	Average=
METHOD	Cube B	4042.4m/s	3917.0 m/s
MEIRUD	Cube C	3917.7m/s	(3.9 km/s)

The result for Ultra Pulse Velocity test is as shown below:

Table 8: Results from Ultra Pulse Velocity test

The result from direct method and indirect method is approximately the same and are rounded to 3.9km/s. The result is then transferred to P. Turgut's chart to plot and find the concrete's strength.

Figure 16: Relationship between concrete strength and UPV in existing reinforced concrete structures

Plotting 3.9km/s in this chart, we can see that its concrete cube strength is 23.5MPa. The concrete cube strength used to design this building is actually 30MPa. Thus it is a possibility that insufficient concrete strength could be the cause of crack in Klang Mosque.

CHAPTER 5

CONCLUSION

There are five methods used to find out the possible causes of cracks in Klang Mosque which are:

- Visual Observation
- Check detailing of reinforcement using EsteemPlus
- Shrinkage and thermal cracking calculation
- Flexural cracking
- Ultra Pulse Velocity test

The possible causes of cracks are as follows:

(i) *Visual Observation* - From the visual observation, the author found out that the pattern (long, around 38m in length), its crack width (around 2-4mm) and it only appear on the surface only which is the tension zone.

(ii) *Check detailing of reinforcement using EsteemPlus* - After checking the detailing of reinforcement, it is found that some of the reinforcements are not enough compared to the analysis in the EsteemPlus. This shows that reinforcement detailing could be one of the possible causes of crack there.

(iii) *Shrinkage and thermal cracking calculation* - By checking shrinkage and thermal cracking calculation, the calculated crack width is less than allowable crack width. Thus shrinkage of concrete is not the cause of crack in Klang Mosque.

(iv) *Flexural cracking* – The flexural cracking calculation done shows that the slabs from E-Y/14-18 are all exceed the maximum allowable crack width of 0.2mm for 10mm diameter bars but passed for 12mm bars. This shows that flexural cracking is another cause of cracks and the designers did not take into consideration the calculation of flexural cracking in their design.

(v) Ultra Pulse Velocity Test – This test is to check the concrete strength used for the construction of the building. The concrete strength gotten from the test is 23.5 MPa which is much lesser than the concrete strength used in the design which is 30 MPa. This shows that another cause for this cracking is the poor construction practice at site.

Conclusively, there are two possible causes of cracks that occur in Klang Mosque which are design failure and also poor construction practices. Both are human errors and are common factors in construction site anywhere. Therefore, to solve this problem, mitigation measures must be done so that no further cracks can occur at Klang Mosque site.

1. Mitigation Measures

In order to mitigate the cracks occurred, there is an economical and easy way to do it which does not involve demolishing the whole area and redo the construction again with another design. The method is by demolishing the concrete at the tension zone. After that, add dowel bars at the demolished part for every 1-2m. Then, they can fix conventional reinforcement (in the form of mesh) under the reinforcements and dowel bars and securing it in place by the use of sprayed-concrete techniques.

CHAPTER 6

REFERENCES

- 1. Newman, J. and Seng Choo, B. 2003, *Advanced Concrete Technology: Concrete Properties*, Elsevier Butterworth Heinemann.
- Ghali, A. and Favre, R. 1994, Concrete Structures, Stresses and Deformations, 2nd Edition, E & FN Spon.
- McKenzie, W.M.C. 2004, Design of Structural Elements, New York, Palgrave MacMillan.
- 4. Tsuchida, T. and Nakase, A. 1999, *Characterization of Soft Marine Clays*, Netherlands, A.A. Balkema.
- Atkinson, M.F. 2003, Structural Foundations Manual for Low-Rise Buildings, London, Spon Press.
- Tomlinson, M.J. 1994, Pile Design and Construction Practice, 4th Edition, London, E & FN Spon.
- 7. Roesset, J.M. 1999, Analysis, Design, Construction and Testing of Deep Foundations: Proceedings of the OTRC '99 Conference, Virginia, ASCE.
- Mosley, W.H. 1999, Reinforced Concrete Design 5th Edition, London, Palgrave.
- 9. Gambhir, M.L. 2004, Concrete Technology 3rd Edition, New Delhi, McGraw-Hill.
- 10. Centre for Civil Engineering Research and Codes. 1996, Building on Soft Soils: Design an Construction of Earth Structures Both On and Into Highly Compressible Subsoils of Low Bearing Capacity, Netherlands, A.A. Balkema.
- 11. Rendell, F., Jauberthie, R and Grantham, M. 2002, Deteriorated Concrete: Inspection and Physicochemical Analysis, London, Thomas Telford.
- 12. Poulos, H.G. June 2006, "Raked Piles-Virtues and Drawback", *Journal of Geotechnical and Geoenvironmental Engineering* **132(6)**: 795-803.

- Kitiyodom, P. and Matsumoto, T. November 2002, "A simplified analysis method for piled raft and pile group foundations with batter files", *International Journal for Numerical and Analytical Methods in Geomechanics* 26(13): 1349-1369.
- Fellenius, B.H. 1984, "Negative Skin Friction and Settlement of Piles" in Second International Seminar, Pile Foundations, Singapore, Nanyang Technological Institute.
- 15. Tan, Y.C., Gue, S.S., Ng, H.B. and Lee, P.T. 2003, "Design Parameters of Klang Clay, Malaysia" in 12th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, Singapore, 4th – 8th August 2003, Gue & Partners.
- Wikipedia. 17th June 2006, Marine Clay, <<u>http://en.wikipedia.org/wiki/Marine%5Fclay</u>>
- 17. Land Development Services of Department of Public Works and Environmental Services. 25th May 2006, Overcoming Problems with Marine Clays, <<u>http://222.fairfaxcounty.gov/dpwes/publications/marineclay.htm</u>>
- Boothby, T.E., Parfitt, M.K. and Roise, C. 23rd March 2005, Concrete Behaviour,

<<u>http://www.arche.psu.edu/thinshells/module%20III/concrete_behavior_text.ht</u> m>

- 19. National Park Service. Concrete: Causes of Deterioration, <<u>http://www.nps.gov/archive/goga/history/seaforts/chap9&10/concrete.htm</u>>
- 20. Friedman, D. 23rd September 2006, The Foundation Crack Bible Foundation Cracks, Leans, Bulges, Settlement: Inspecting Foundations for Structural Defects – Detection, Diagnosis, Cause, Repair <<u>http://www.inspect-ny.com/structure/foundation.htm#movement</u>>
- 21. Concrete Foundations Associations of North America. 2005, Concrete Cracking <<u>http://www.cfawalls.org/foundations/cracking.htm</u>>
- 22. e-foundationrepairs.com. 2006, Foundation Problem Signs, <<u>http://www.e-foundationrepairs.com/signs.html</u>>
- 23. Composite Corporation. 1998, *Types of Concrete Cracks*, <<u>http://www.compotite.com/tech_92-1.htm</u>>
- American Concrete Institute. 1st November 2001, Lecture 17 Design of Reinforced Concrete Beams for Shear

<<u>http://stommel.tamu.edu/~esandt/Teach/Fall01/CVEN444/Lecture/Lecture17/l</u> ecture17.ppt>

- 25. Esteem Innovation. EsteemPlus Help ver 1.0.
- 26. KH Zam Engineers. May 2005, Report on Defective Works, Selangor.
- 27. KH Zam Engineers and Kiso Jiban. May 2006, Report on Foundation Works (Removal of 3m Overburden), Selangor.
- 28. KH Zam Engineers. Supplementary Assessment to 'Report on Defective Works', Selangor.
- 29. Kumpulan Ikram. 2002, Lapuran Penyiasatan Tapak Ikram Central, Selangor.
- 30. British Standards Institution. 1997, BS 8110: Part 1: 1997 British Standard Structural Use of Concrete Part 1. Code of Practice for Design and Construction.
- 31. British Standards Institution. 1984, BS 6399: Part 1: 1984 British Standard Design Loading for Buildings Part 1. Code of Practice for Dead and Imposed Loads.
- 32. Ibrisam, A. 2005, Lecture Notes for EVB 3083 Design of Reinforced Concrete Structures. Universiti Teknologi PETRONAS.

CHAPTER 7

APPENDICES

Appendix 1: Summary of Defects Occurring During Construction

Appendix 2(a): Location of Cracks at Ground Floor

Appendix 2(b): Crack Mapping Layout

Appendix 3(a): Orientation of Soil Profile at the Site of Klang Mosque

Appendix 3(b): Soil Profile at the Site of Klang Mosque

Appendix 4(a): Reinforcement Calculations for Slab E-G/14-18 by EsteemPlus

Appendix 4(b): Reinforcement Calculations for Slab K-M/14-18 by EsteemPlus

Appendix 4(c): Reinforcement Calculations for Slab W1-Y/14-18 by EsteemPlus

Appendix 5(a): Calculation of Shrinkage and Thermal Crack Widths for Slab E-G/14-18

Appendix 5(b): Calculation of Shrinkage and Thermal Crack Widths for Slab K-M/14-18

Appendix 5(c): Calculation of Shrinkage and Thermal Crack Widths for Slab W1-Y/14-18

Appendix 6: Flexural Cracking Calculations for 10mm Diameter Bar

Appendix 7: Flexural Cracking Calculations for 12mm Diameter Bar

Appendix 8(a): Detailed Drawing for Slab E-G/14-18

Appendix 8(b): Detailed Drawing for Slab K-M/14-18

Appendix 8(a): Detailed Drawing for Slab W1-Y/14-18

Appendix 9: Public Assembly Occupancy Class (Halls, Auditoria, Restaurants, Museums, Libraries, Non-Residential Clubs, Theatres, Broadcasting Studios, Grandstands) (Taken from BS 6399: Part 1: 1984)

Summary of Defects Occurring During Construction

Symptom	Cause	Prevention	Remedy
Cracks in horizontal surface, as concrete stiffens or very soon thereafter.	Plastic shrinkage: rapid drying of surface	Shelter during placing. Cover as early as possible. Use air-entrainment.	Seal by brushing in cement or low viscosity polymer.
Cracks form above ties, reinforcement etc., or at arisses. Especially in deep lifts.	Plastic settlement: concrete continues to settle after starting to stiffen.	Charge mix design. Use air-entrainment.	Recompact upper part of concrete while still plastic. Seal cracks after concrete has hardened.
Cracks in thick sections, occurring as concrete cools.	Restrained thermal contraction.	Minimize restraint to contraction. Delay cooling until concrete has gained strength.	Seal cracks.
Blowholes in form • faces of concrete.	Air or water trapped against formwork: Inadequate compaction. Unsuitable mix design. Unsuitable release agent.	Improve vibration. Change mix design. Use appropriate release agent. Use absorbent formwork.	Fill with polymer modified fine mortar.
Voids in concrete.	Honeycombing: Inadequate compaction. Grout loss.	Improve compaction. Reduce maximum size of aggregate. Prevent leakage of grout.	Cut out and make good. Inject resin.
Erosion of vertical surfaces, in vertical streaky pattern.	Scouring: Water moving upwards against form face.	Change mix design, to make more cohesive or reduce water content.	Rub in polymer modified fine mortat.
Colour variations.	Variations in mix proportions, curing conditions, materials, characteristics of form face, vibration, release agent. Leakage of water from formwork.	Ensure uniformity of all relevant factors. Prevent leakage from formwork.	Apply surface coating.
Powdery formed surface.	Surface retardation, caused by sugars in certain timbers.	Change form material. Seal surface of	Generally, none required.

		formwork. Apply limewash to form face before first few uses.	
Rust-strains	Pyrites in aggregates. Rain streaking from unprotected steel. Rubbish in formwork. Ends of wire ties turned out.	Avoid contaminated aggregates. Protect exposed steel. Clean forms thoroughly. Turn ends of ties inwards.	Clean with dilute acid or sodium citrate/sodium dithionite. Apply surface coating.
Plucked surface	Insufficient release agent. Careless removal of formwork.	More care in applications of release agent and removal of formwork.	Rub in fine mortar, or patch as for spalled concrete.
Lack of cover to reinforcement.	Reinforcement moved during placing of concrete, or badly fixed. Inadequate tolerances in detailing.	Provide better support for reinforcement. More accurate steel fixing. Greater tolerances in detailing.	Apply polymer modified cement and sand rendering. Apply protective coating.

• •

Ш

. . .

 \mathbf{N}

Orientation of soil profile at the site of Klang Mosque

Location: 14-18 / E-G

Dime X 3600 mm	Dimensions Y 1m 10000 mm	Thickness 125 mm	Imposed Live Load, ILL 5.0 kN/m ²	Imposed Dea Load, IDL 1.7 kN/m ²	$\frac{DL}{m^2}$
----------------------	--------------------------------	---------------------	--	---	------------------

Total Dead Load = Self Weight + Imposed Dead Load

= Thickness x Concrete Density / 1000 + IDL

 $= 125 \times 24 / 1000 + 1.70$

= 4.70

Total factored load, $W_u = 1.40 \text{ x } 4.70 + 1.60 \text{ x } 5.00 = 14.58 \text{ kN/m}^2$

Total factored load x l_x x $l_x = W_u$ x L_x x L_x

= WL = 14.58 x 3.6 x 3.6

= 188.96 kNm/m width

Long / Short span-ratio, $l_y/l_x = 10000/3600 = 2.78$

 $l_y/l_x > f_2 \rightarrow$ Increase moment coefficients by: 1 + (min (2.78, 8)-2)/8 x 0.15 = 1.01458 To allow for one-way slab, adjust the short span moment coefficients by 1.01458 times

Case 1: All the four edges are continuous

Span and support coefficients: $B_x = 0.055, B_y = 0.024, B_{sx} = 0.073, B_{sy} = 0.032$

Moment based on the above coefficients (before redistribution): Short span moment, $M_x = B_x \times WL = 0.055 \times 188.96 = 10.39$ Long span moment, $M_y = B_y \times WL = 0.024 \times 188.96 = 4.53$ Support short span moment, $M_{sx} = B_{sx} \times WL = 0.073 \times 188.96 = 13.86$ Support long span moment, $M_{sy} = B_{sy} \times WL = 0.032 \times 188.96 = 6.05$

Summary of Moment, Steel Area Required, Rebar Provided:

	M _{xx}	M _{pp}	Msri	M _{sy2}	M _{sxl}	M _{sx2}
Moment	10.39	4.53	13.86	13.86	6.05	6.05
Area	271	188	366	366	188	188
Rebar	T10-275	T10-275	T10-200	T10-200	T10-300	T10-300

Deflection Check:

Dimensions X: 3600 < Y = 10000 AND bottom of bottom (BB) rebar is spanning X-direction:

So effective depth, $d = \text{Thickness} - \text{cover} - X_{Rebar}/2$ = 125 - 20 - 10/2 = 100.0 mm Span/depth's ratio, $A_f = l/d$ = 3600 / 100.0 = 36.0 Basic Span/depth's ration, $B_r = 26.0$ $A = 5 f_y A_{s,reg} / (8 A_{s,prov})$ $= 5 \times 460 \times 271 / (8 \times 286)$ = 272.5 $B = 120 \times [0.9 + M / (b \times d^{2})]$ = 120 x [0.9 + 10.39 x 1000 / (100 x 100)] = 232.7 Modification Factor, MF = 0.55 + (477 - A) / B= 0.55 + (477 - 272.5) / 232.7 = 1.43 Slab deflection ratio = $MF \times B_r / A_r$ = 1.43 x 26.0 / 36 = 1.03

Ratio \geq 1.0: Deflection check PASSED

Location: 14-18 / K-M

X	nsions Y	Thickness	Load, ILL	Load, IDL
5000 mm	10000 mm	150 mm	5.00 kN/m ²	1.70 kN/m^2

Total Dead Load = Self Weight + Imposed Dead Load

= Thickness x Concrete Density / 1000 + IDL

= 5.30

Total factored load, $W_u = 1.40 \ge 5.30 + 1.60 \ge 5.00 = 15.42 \text{ kN/m}^2$

Total factored load x l_x x $l_x = W_u$ x L_x x L_x

= WL = 15.42 x 5 x 5

= 385.50 kNm/m width

Long / Short span-ratio, $l_y/l_x = 10000/5000 = 2.00$

Case 1: All the four edges are continuous

Span and support coefficients:

 $B_x = 0.048, B_y = 0.024, B_{sx} = 0.063, B_{sy} = 0.032$

Moment based on the above coefficients (before redistribution): Short span moment, $M_x = B_x \times WL = 0.048 \times 385.50 = 18.32$ Long span moment, $M_y - B_y \times WL = 0.024 \times 385.50 = 9.25$ Support short span moment, $M_{sx} = B_{sx} \times WL = 0.063 \times 385.50 = 24.43$ Support long span moment, $M_{sy} = B_{sy} \times WL = 0.032 \times 385.50 = 12.34$

Summary of Moment, Steel Area Required, Rebar Provided:

	Mxx	Mpr	M _{sy1}	M _{sy2}	Msel	Max2
Moment	18.32	9.25	24.43	24.43	12.34	12.34
Area	384	225	521	521	254	254
Rebar	T10-200	T10-300	T10-150	T10-150	T10-300	T10-300

Deflection Check:

Dimensions X: 5000 < Y = 10000 AND bottom of bottom (BB) rebar is spanning X-direction:

So effective depth, $d = \text{Thickness} - \text{cover} - X_{Rebar}/2$ = 150 - 20 - 10/2 = 125.0 mm Span/depth's ratio, $A_f = l/d$ = 5000 / 125.0 = 40.0 Basic Span/depth's ration, $B_r = 26.0$ $A = 5 f_y A_{s,req} / (8 A_{s,prov})$ = 5 x 460 x 384 / (8 x 393) = 281.0 $B = 120 \times [0.9 + M/(b \times d^2)]$

 $= 120 \times [0.9 + 18.32 \times 1000 / (125 \times 125)]$ = 248.7Modification Factor, MF = 0.55 + (477 - A) / B= 0.55 + (477 - 281) / 248.7= 1.34Slab deflection ratio = $MF \times B_r / A_r$ $= 1.34 \times 26.0 / 40.00$ = 0.87Area after deflection check = 477 $A = 5 f_y A_{s,req} / (8 A_{s,prov})$ $= 5 \times 460 \times 384 / (8 \times 477)$ = 231.2Modification Factor, MF = 0.55 + (477 - A) / B= 0.55 + (477 - 231.2) / 248.7= 1.54Slab deflection ratio = $MF \times B_r / A_r$ = 1.54 x 26.0 / 40.00= 1.00

Deflection governs the design, consider option to increase depth! Ratio $\geq f_1$: Deflection check PASSED

Deflection governs the design, Steel Area Provided After Deflection Check: Steel Area = 477; Use T10-150

Location: 14-18 / W1-Y

Dime	nsions	ThisImore	Imposed Live	Imposed Dead
X	Y	T HICKNESS	Load, ILL	Load, IDL
3700 mm	10000 mm	125 mm	5.00 kN/m ²	1.70 kN/m ²

Total Dead Load = Self Weight + Imposed Dead Load

= Thickness x Concrete Density / 1000 + IDL

 $= 125 \times 24 / 1000 + 1.70$

= 4.70

Total factored load, $W_u = 1.40 \text{ x } 4.70 + 1.60 \text{ x } 5.00 = 14.58 \text{ kN/m}^2$ Total factored load x l_x x $l_x = W_u$ x L_x x L_x

= WL = 14.58 x 3.7 x 3.7

= 199.6 kNm/m width

Long / Short span-ratio, $l_v/l_x = 10000/3700 = 2.7$

 $l_y/l_x > f_2 \rightarrow$ Increase moment coefficients by: 1 + (min (2.7, 8)-2)/8 x 0.15 = 1.01318 To allow for one-way slab, adjust the short span moment coefficients by 1.01318 times

Case 5: Two short edges discontinuous Span and support coefficients: $B_x = 0.058, B_y = 0.034, B_{sx} = 0.078, B_{sy} = 0$

Moment based on the above coefficients (before redistribution): Short span moment, $M_x = B_x \times WL = 0.058 \times 199.6 = 11.66$ Long span moment, $M_y = B_y \times WL = 0.034 \times 199.6 = 6.79$ Support short span moment, $M_{xx} = B_{xx} \times WL = 0.078 \times 199.6 = 15.54$

Summary of Moment, Steel Area Required, Rebar Provided:

*						
	M _{xx}	M _{pp}	. M _{syl}	M _{sy2}	M _{sxl}	M _{xx2}
Moment	11.66	6.79	15.54	15.54	0	0
Area	305	195	414	414	188	188
Rebar	T10-250	T10-275	T10-175	T10-175	T10-300	T10-300

Deflection Check:

Dimensions X: 3700 < Y = 10000 AND bottom of bottom (BB) rebar is spanning X-direction:

So effective depth, $d = \text{Thickness} - \text{cover} - X_{Rebar}/2$ = 125 - 20 - 10/2 = 100.0 mmSpan/depth's ratio, $A_f = l/d$ = 3700 / 100.0 = 37Basic Span/depth's ratio, $B_r = 26.0$ $A = 5 f_y A_{s,req} / (8 A_{s,prov})$ = 5 x 460 x 305 / (8 x 314)

= 279.3 $B = 120 \text{ x} \left[0.9 + M / (b \text{ x} d^2) \right]$ $= 120 \times [0.9 + 11.66 \times 1000 / (100 \times 100)]$ = 247.9Modification Factor, MF = 0.55 + (477 - A) / B= 0.55 + (477 - 279.3) / 247.9= 1.35Slab deflection ratio = $MF \times B_r / A_r$ $= 1.35 \times 26.0 / 37$ =0.95Area after deflection check = 337 $A = 5 f_y A_{s,req} / (8 A_{s,prov})$ $= 5 \times 460 \times 305 / (8 \times 337)$ = 260.6Modification Factor, MF = 0.55 + (477 - A) / B= 0.55 + (477 - 260.6) / 247.9= 1.42Slab deflection ratio = $MF \times B_r / A_r$ $= 1.42 \times 26.0 / 37.00$ = 1.00

Deflection governs the design, consider option to increase depth! Ratio $\geq f_1$: Deflection check PASSED

Deflection governs the design, Steel Area Provided After Deflection Check: Steel Area = 337; Use T10-225

Calculation of Shrinkage and Thermal Crack Widths for Slab 14-18 / E-G

Design assumptions:

Drying shrinkage strain, $\varepsilon_{sh} = 50$ microstrain Temperature drop, $T = 20^{\circ}$ C Three-day ultimate tensile strength of concrete, $f_t =$ ultimate average bond stress, $f_b = 1.5$ N/mm² Modulus of elasticity of concrete, $E_c = 10$ kN/mm² Coefficient of thermal expansion for mature concrete, $a_c = 12$ microstrain/°C

Characteristic yield strength of reinforcement, $f_{\nu} = 460 \text{ N/mm}^2$

Modulus of elasticity of reinforcement, $E_s = 200 \text{ kN/mm}^2$

Critical steel ratio, $r_{crit} = (f_t/f_y) = 1.5 / 460 = 0.33\%$ = $\frac{0.33}{100} \times 125 \times 1000$ = 412.5 mm²/m

This should be conveniently provided as 10mm bars at 200mm centres in each face of the member $(393mm^2/m)$. This is the same as in the real design so the same value will be used. For this reinforcement, the maximum crack spacing is:

$$s_{\max} = \frac{f_t \Phi}{2\left(\frac{A_s}{A_c}\right)f_b} = \frac{1.5x10}{2x\frac{393x1.5}{125000}}$$

= 1590mm

Since the minimum spacing is given by one-half of this value, the average spacing will be $s_{av} = 0.75 \times 1590 = 1193$ mm

The maximum crack width corresponds to s_{max} and is given by $\omega_{max} = s_{max} \left[R \left(\varepsilon_{sh} + T \alpha_c \right) - \frac{1}{2} \varepsilon_{ult} \right]$

where ultimate tensile strain for the concrete

$$\varepsilon_{ult} = \frac{f_t}{E_c} = \frac{1.5}{10x10^3} = 150 \text{ microstrain}$$

Therefore assuming R = 0.5 (full restraint) $\omega_{max} = 1590 [0.5 (50 + 20 (12)) - \frac{1}{2} (150)] \times 10^{-6} = 0.11 \text{mm}$

Calculation of Shrinkage and Thermal Crack Widths for Slab 14-18 / K-M

Design assumptions:

Drying shrinkage strain, $\varepsilon_{sh} = 50$ microstrain Temperature drop, $T = 20^{\circ}$ C Three-day ultimate tensile strength of concrete, f_t = ultimate average bond stress, f_b = 1.5 N/mm² Modulus of elasticity of concrete, $E_c = 10$ kN/mm² Coefficient of thermal expansion for mature concrete, $a_c = 12$ microstrain/°C Characteristic yield strength of reinforcement, $f_y = 460$ N/mm² Modulus of elasticity of reinforcement, $E_s = 200$ kN/mm²

Critical steel ratio, $r_{crit} = (f_t/f_y) = 1.5 / 460 = 0.33\%$ = $\frac{0.33}{100} \times 150 \times 1000$ = 495 mm²/m

This should be conveniently provided as 10mm bars at 175mm centres in each face of the member (449mm²/m). For the original design, the slab's reinforcement is 10mm bars at 150mm centers in each face of the member (524mm²/m). For this reinforcement, the maximum crack spacing is:

$$s_{\max} = \frac{f_i \Phi}{2\left(\frac{A_s}{A_c}\right)f_b} = \frac{1.5x10}{2x\frac{524x1.5}{150000}}$$

= 1431mm

Since the minimum spacing is given by one-half of this value, the average spacing will be $s_{av} = 0.75 \times 1431 = 1073$ mm

The maximum crack width corresponds to s_{max} and is given by $\omega_{max} = s_{max} \left[R \left(\varepsilon_{sh} + T\alpha_c \right) - \frac{1}{2} \varepsilon_{ult} \right]$ where ultimate tensile strain for the concrete

$$\varepsilon_{ult} = \frac{f_i}{E_c} = \frac{1.5}{10x10^3} = 150 \text{ microstrain}$$

Therefore assuming R = 0.5 (full restraint) $\omega_{max} = 1431 [0.5 (50 + 20 (12)) - \frac{1}{2} (150)] \times 10^{-6} = 0.10$ mm

Calculation of Shrinkage and Thermal Crack Widths for Slab 14-18 / W1-Y

Design assumptions:

Drying shrinkage strain, $\varepsilon_{sh} = 50$ microstrain Temperature drop, $T = 20^{\circ}$ C Three day ultimate tensile strength of concrete f = ultimate average

Three-day ultimate tensile strength of concrete, f_t = ultimate average bond stress, f_b = 1.5 N/mm²

Modulus of elasticity of concrete, $E_c = 10$ kN/mm² Coefficient of thermal expansion for mature concrete, $a_c = 12$ microstrain/°C Characteristic yield strength of reinforcement, $f_y = 460$ N/mm² Modulus of elasticity of reinforcement, $E_s = 200$ kN/mm²

Critical steel ratio, $r_{crit} = (f_t/f_y) = 1.5 / 460 = 0.33\%$ = $\frac{0.33}{100} \times 125 \times 1000$ = 413 mm²/m

This should be conveniently provided as 10mm bars at 200mm centres in each face of the member ($524mm^2/m$). For the original design, the slab's reinforcement is 10mm bars at 150mm centers in each face of the member ($524mm^2/m$). For this reinforcement, the maximum crack spacing is:

$$s_{\max} = \frac{f_t \Phi}{2\left(\frac{A_s}{A_c}\right)f_b} = \frac{1.5x10}{2x\frac{524x1.5}{150000}}$$

= 1431mm

Since the minimum spacing is given by one-half of this value, the average spacing will be $s_{av} = 0.75 \text{ x } 1431 = 1073 \text{ mm}$

The maximum crack width corresponds to s_{max} and is given by $\omega_{max} = s_{max} \left[R \left(\varepsilon_{sh} + T\alpha_c \right) - \frac{1}{2} \varepsilon_{ull} \right]$ where ultimate tensile strain for the concrete

 $\varepsilon_{ult} = \frac{f_t}{E_s} = \frac{1.5}{10x10^3} = 150 \text{microstrain}$

Therefore assuming R = 0.5 (full restraint) $\omega_{max} = 1431 [0.5 (50 + 20 (12)) - \frac{1}{2} (150)] \times 10^{-6} = 0.10$ mm Appendix 6: Flexural Cracking Calculation for 10mm diameter bar

Spreadsheets to BS 8110etc CONCRETE	REINFORG	CED CONC	RETE CO	DUNCIL
Advisory Group	Made by	Date		Page
Ad-Ae/14-18 (10mm)	RC .	19-Jun-	2007	33
Crack Width Calculations to BS8110: 1997/ BS8007:1987	Checked	Revision		Job No
Originated from RCC14.xls on CD © 1999 BCA for RCC	chg	-		R68
WIDTH CALCULATIONS - FLEXURE	(fs*As)	(0.5*fc*t)*X)	
Area of reinforce Minimum cover to tension reinforce Maxmum bar s Ba a _{cr} " =(((S/2)^2+(CO+DIA/2)^2)^(1/2)-DIA/2) as default or enter "acr " is distance from the point considered to the surface of the	fcu= fy= ement " As " = b = h = d = ment " CO " = pacing " S " = r dia " DIA " = other value = e nearest long	<u>30</u> <u>460</u> <u>262</u> <u>1000</u> <u>150</u> <u>125</u> <u>20</u> <u>300</u> <u>10</u> <u>147.1</u> itudinal bar	N/mm ² N/mm ² mm ² mm mm mm mm mm mm mm	
Applied service mo	oment " Ms "=	<u>7.8</u>	KNm	
ATIONS		,		
moduli of elasticity of concrete " Ec " = (1/2)*(moduli of elasticity of Modular ratio " o "	(20+0.2*fcu) = f steel " Es " = α " = (Es/Ec) = ρ " = As/bd =	13.0 200.0 15.38 0.002	KN/mm ² KN/mm ²	
depth to neutral axis, " \mathbf{x} " = (- α . ρ +((α . ρ)*	+ 2.α.ρ) ^{•••} .d =	28	mm	
" = "Reinforcement stress " fs Concrete stress " fc " = (fs*A Strain at soffit of concrete beam/slab " ɛ1 " = (fs/Es	Z " = d-(x/3) = = Ms/(As*Z) = hs)/(0.5*b*x) = h)*(h-x)/(d-x) =	116 256 4.80 0.001612	N/mm² N/mm²	
Strain due to stiffening effect of concrete between $\epsilon_2 = b.(h-x)^2/(3.Es.As.(d-x))$ for crack wid $\epsilon_2 = 1.5.b.(h-x)^2/(3.Es.As.(d-x))$ for crack wid	cracks " $\epsilon 2$ " = ths of 0.2 mm ths of 0.1 mm $\epsilon_{re} =$	Used n/a 0.000976		
Average strain for calculation of crack width	- 22 ε _m "≖ε ₁ -ε2 =	0.000636		
Calculated crack width. " w " = 3.a,em/(1+)	2.(a _{cr} -c)/(n-x))			
Calculated crack width, " w " = 3.a _{cr} .em/(1+) CALCULATED CRACK	2.(a _c -c)/(n-x)) . WIDTH, 'w' =	0.09	mm	

Spreadsheets to BS 8110etc REINFORCED	REINFORCED CONCRETE COUNCIL			
Advisory Group	Made by	Date	Page	
Ae1-Af/14-18 (10mm)	RC	19-Jun-2	007 33	
Crack Width Calculations to BS8110: 1997/ BS8007:1987	Checked	Revision	Job No	
Originated from RCC14 xls on CD © 1999 BCA for RCC	chg	-	R68	
WIDTH CALCULATIONS - FLEXURE	-			
h As Es Es	(fs*As)	(0.5*fc*b*	(x) (x)	
Section <u>Strain</u>	Stresses/	force		
Area of reinforce	fcu= fy= ement " As " = b = h =	<u>30</u> M <u>460</u> M <u>393</u> m <u>1000</u> m <u>150</u> m	V/mm ² V/mm ² nm ² nm nm	
Minimum cover to tension reinforce	a = = " ment " CO	<u>125</u> n 20 n	nm nm	
Maxmum bar s	pacing "S" =	<u>200</u> n	nm	
Ва	r dia " DIA " =	<u>10</u> n	nm	
\mathbf{a}_{cr} =(((S/2)^2+(CO+DIA/2)^2)^(1/2)-DIA/2) as default or enter	other value =	<u>98.1</u> n	nm	
acr is distance from the point considered to the surface of the Applied service mo	e nearest iong oment " Ms "=	nudinal bar 12.2 k	(Nm	
Applied of Neo Mc		<u>12.2</u> I		
ATIONS		• *	•*	
moduli of elasticity of concrete " Ec" = (1/2)*(20+0.2*fcu) =	13.0 k	(N/mm² (N/mm²	
moduli of elasticity of Modular ratio "~	Steel " ES " = (" = (Fe/Fe) =	200.0 1	WHHI II	
	ρ = (Earror) = ρ = As/bd =	0.003		
depth to neutral axis, " \mathbf{x} " = (- α . ρ +((α . ρ) ²)	+ 2.α.ρ) ^{0.5} .d =	33 n	nm	
	Z " = d-(x/3) =	114	v2	
Reinforcement stress " fs " = Concrete stress " fc " = (fs*A	= MS/(AS*Z) = \s\/(() 5*b*x) =	273 N	vmm [*] Nmm [*]	
Strain at soffit of concrete beam/slab " ϵ 1 " = (fs/Es	s)*(h-x)/(d-x) =	0.001737	w,,,H/1	
Strain due to stiffening effect of concrete between of	$cracks " \epsilon 2 " =$	3.00 (/ V f		
$\epsilon_2 = b.(h-x)^2/(3.Es.As.(d-x))$ for crack wid	ths of 0.2 mm	Used		
$\epsilon_2 = 1.5.b.(h-x)^2/(3.Es.As.(d-x))$ for crack wid	ths of 0.1 mm	n/a		
Average strain for calculation of crack width	ε ₂ = ε ₁ -ε ₂ =	0.000630 0.001107		
Calculated crack width "w"=3.a. em//14	2 (ac)/(h-x))		-	
CALCULATED CRACK	. WIDTH, 'W' =	0.14 n	nm	

Spreadsheets to BS 8110etc CONCRETE	ED CONC	ED CONCRETE COUNCIL			
Advisory Group	Made by	Date		Page	
Ae-Ae1/14-18 (10mm)	RC	19-Jun-	2007	33	
Crack Width Calculations to BS8110: 1997/ BS8007:1987	Checked	Revision		Job No	
Originated from RCC14.xis on CD © 1999 BCA for RCC	chg			<u> </u>	
WIDTH CALCULATIONS - FLEXURE	-				
h As Es E1	fs*As)	(0.5*fc*b)*X)		
<u>Section</u> <u>Strain</u> <u>S</u>	<u>Stresses/</u>	force			
Area of reinforcen	fcu= fy= nent * As " = b = h = d =	<u>30</u> <u>460</u> <u>393</u> <u>1000</u> <u>150</u> 125	N/mm ² N/mm ² mm ² mm mm		
Minimum cover to tension reinforcem Maxmum bar sp Bar _{"er} " =(((S/2)^2+(CO+DIA/2)^2)^(1/2)-DIA/2) as default or enter o 'acr " is distance from the point considered to the surface of the	nent " CO " = acing " S " = dia " DIA " = other value = nearest long	20 200 10 98.1 itudinal bar	mm mm mm mm		
Applied service mor	ment " Ms "=	<u>12.2</u>	KNm		
TIONS moduli of elasticity of concrete " Ec " = (1/2)*(2 moduli of elasticity of s Modular ratio " α ' ο	0+0.2*fcu) = steel " Es " = ' = (Es/Ec) = '' = As/bd =	13.0 200.0 15.38 0.003	KN/mm² KN/mm²	2	
depth to neutral axis, " \mathbf{x} " = (- α . ρ +((α . ρ) ² +	2.α.ρ) ^{0.5} .d =	33	mm		
" Z Reinforcement stress " fs " = Concrete stress " fc " = (fs*As Strain at soffit of concrete beam/slab " ε1 " = (fs/Es)'	" = d-(x/3) = Ms/(As*Z) = ;)/(0.5*b*x) = *(h-x)/(d-x) =	114 273 6.44 0.001737	N/mm² N/mm²		
Strain due to stiffening effect of concrete between cr $\epsilon_2 = b.(h-x)^2/(3.Es.As.(d-x))$ for crack width $\epsilon_2 = 1.5.b.(h-x)^2/(3.Es.As.(d-x))$ for crack width	acks " ε 2 " = ns of 0.2 mm ns of 0.1 mm	Used n/a			
Average strain for calculation of crack width "	ε ₂ = ε _m "= ε ₁ -ε ₂ =	0.000630			
Calculated crack width, "w " = 3.a _{cr} .ɛm/(1+2	.(a _{cr} -c)/(h-x))				
CALCULATED CRACK	Nidth, 'w' =	0.14	mm		

Spreadsheets to BS 8110etc CONCRETE	REINFORC	ED CONCI	RETE COUNCIL			
Advisory Group	Made by	Date		Page		
Slab C-D/14-18 (10mm)	RC	19-Jun-:	2007	33		
Crack Width Calculations to BS8110: 1997/ BS8007:1987	Checked	Revision		Job No		
Originated from RCC14.xis on CD © 1999 BCA for RCC	chg			R68		
WIDTH CALCULATIONS - FLEXURE	-					
$ \begin{array}{c c} $	fs*As)	(0.5*fc*b	*x)			
Section Strain S	stresses/	torce				
	fcu=	<u>30</u>	N/mm ²			
	fy=	<u>460</u>	N/mm ²			
Area of reinforcen	nent " As " =	<u>314</u>	mm ²			
S & -+ UA	U- h-	1000	mm			
	n.= d =	<u>100</u> 75	mm			
Minimum cover to tension reinforcem	nent " CO " =	<u>75</u> 20	mm			
Maxmum bar sp	acing "S"=	250	mm			
Bar	dia " DIA " =	10	mm			
" acr " =(((S/2)^2+(CO+DIA/2)^2)^(1/2)-DIA/2) as default or enter of	other value =	<u>122.5</u>	mm			
"acr " is distance from the point considered to the surface of the	nearest long	itudinal bar				
Applied service mor	nent "MS "=	<u>4.3</u>	KNM			
moduli of elasticity of concrete " Ec" = (1/2)*(2	0+0.2*fcu) =	13.0	KN/mm ²			
moduli of elasticity of s	steel " Es " =	200.0	KN/mm ²			
Modular ratio " a "	" = (Es/Ec) =	15.38				
ρ" د	= As/DO =	0.004				
depth to neutral axis, " \mathbf{x} " = $(-\alpha . \rho + ((\alpha . \rho)^2 + (\alpha . \rho)^2))$	2.α.ρ) ^{3.3} .d =	23	mm			
u 🤧	" = d_(v/2) -	67				
Reinforcement stress " fs " =	Ms/(As*Z) =	205	N/mm ²			
Concrete stress " fc " = (fs*As	s)/(0.5*b*x) =	5.71	N/mm ⁺			
Strain at soffit of concrete beam/slab " ɛ1 " = (fs/Es)"	*(h-x)/(d-x) =	0.001512				
Strain due to stiffening effect of concrete between cr	acks " $\epsilon 2$ " =	11				
$\varepsilon_2 = D.(\Pi-X)^{-1}(J.ES.AS.(\Pi-X))$ for crack width $\varepsilon_2 = 1.5 h (h v)^{-1}(J.ES.AS.(d-X))$ for crack width	ns of 0.2 mm	USEC				
22 - 1.3.0.(11-x) /(3.⊏3.AS.(4-x)) 101 G dCK WIQU	13 OLU, I HIH EA =	0.000607				
Average strain for calculation of crack width "	ε _m " = ε ₁ -ε ₂ =	0.000904				
Calculated crack width, "w" = 3.acr.em/(1+2	.(a _{cr} -c)/(h-x))					
CALCULATED CRACK	width, 'w' =	0.09	mm			
	-					

Spreadsheets to BS 8110etc REINFORCED	REINFORG	ED CONC	RETE CO	DUNCIL
Advisory Group	Made by	Date		Page
Slab D-E/14-18 (10mm)	RC	19-Jun-	2007	33
Crack Width Calculations to BS8110: 1997/ BS8007:1987	Checked	Revision		Job No
Originated from RCC14.xls on CD © 1999 BCA for RCC	chg	_		R68
WIDTH CALCULATIONS - FLEXURE	<u>-</u>			
$\begin{array}{c c} & & & \\ &$	fs*As)	(0.5*fc*b)*X)	
Section Strain S	<u>Stresses/</u>	<u>'force</u>		
Area of reinforcer	fcu= fy= nent " As " = b = h =	<u>30</u> 460 393 1000 125	N/mm ² N/mm ² mm ² mm	
	d =	100	mm	
Minimum cover to tension reinforcen	nent " CO " =	<u>20</u>	mm	
Maxinun bar sp Bar	dia " DIA " =	<u>200</u> 10	mm	
" acr " =(((S/2)^2+(CO+DIA/2)^2)^(1/2)-DIA/2) as default or enter of	other value =	<u>98.1</u>	mm	
"acr " is distance from the point considered to the surface of the	nearest long	itudinal bar		
Applied service mor	ment " Ms "=	<u>5.2</u>	KNm	
LATIONS				
moduli of elasticity of concrete " Ec" = (1/2)*(2	0+0.2*fcu) =	13.0	KN/mm ²	
moduli of elasticity of a	steel " Es " =	200.0	KN/mm ²	
Modular ratio " a	" = (Es/Ec) =	15.38		
depth to peutral axis "x" = $(-\alpha \circ + ((\alpha \circ))^2 + ((\alpha \circ))^2)$	$2 \alpha \alpha^{0.5} d =$	29	mm	
		20		
"Ζ	" = d-(x/3) =	90		
Reinforcement stress " fs " = Concrete stress " fc " = (fs*As	Ms/(As*Z) = Ms/(0.5*b*x) =	148	N/mm ²	
Strain at soffit of concrete beam/slab " £1 " = (fs/Es)	*(h-x)/(d-x) =	0.001000	1 1/1/1/11	
Strain due to stiffening effect of concrete between cr	acks " ε2 " =			
$\varepsilon_2 = b.(h-x)^2/(3.Es.As.(d-x))$ for crack width	ns of 0.2 mm	Used		
$\varepsilon_2 = 1.5.b.(h-x)^2/(3.Es.As.(d-x))$ for crack width	ns of 0.1 mm	n/a		
Average strain for calculation of crack width "	ε ₂ = ε _m "= ε ₁ -ε ₂ =	0.000550 0.000450		
Calculated crack width, "w" = 3.a _{cr} .ɛm/(1+2	.(a _{cr} -c)/(h-x))			
CALCULATED CRACK	width, 'w' =	0.05	mm	

•

Spreadsheets to BS 8110etc CONCRETE	REINFORG	CED CONCI	INCRETE COUNCIL				
Advisory Group	Made by	Date		Page			
E-G/14-18 (10mm)	RC	19-Jun-	2007	33			
Crack Width Calculations to BS8110: 1997/ BS8007:1987	Checked	Revision		Job No			
Originated from RCC14.xis on CD © 1999 BCA for RCC	chg			R68			
(WIDTH CALCULATIONS - FLEXURE	-						
h As NEUTRAL AXIS	f_{s*As}	(0.5*fc*b	*x)				
<u>Section</u> <u>Strain</u>	Stresses/	<u>'force</u>					
Area of reinforces	fcu= fy= ment " As " = b = h = d =	<u>30</u> <u>460</u> <u>262</u> <u>1000</u> <u>125</u> 100	N/mm ² N/mm ² mm ² mm mm				
Minimum cover to tension reinforcer	ment " CO " =	20	mm				
Maxmum bar sp	bacing "S" =	300	mm				
Bar	dia " DIA " =	10	mm				
" a _{cr} " =(((S/2)^2+(CO+DIA/2)^2)^(1/2)-DIA/2) as default or enter	other value =	<u>147.1</u>	mm				
"acr" is distance from the point considered to the surface of the	e nearest long	itudinal bar					
Applied service mo	ment " Ms "=	<u>10.4</u>	KNm				
JLATIONS	0.000000 -	40.0	1/11/00/002				
moduli of elasticity of concrete $^{-1}$ EC = (1/2)*(2	20+0.2*TCU) = atoo! " Ee " =	13.0	KN/mm ²				
Modular ratio " «	$" = (F_S/F_C) =$	200.0	Newmen				
"í	= (L3/L0) = = As/bd =	0.003					
depth to neutral axis, " \mathbf{x} " = (- α . ρ +((α . ρ) ² +	$(2.\alpha.\rho)^{0.5}$.d =	25	mm				
	••						
* 2	2 " = d-(x/3) =	92					
Reinforcement stress " fs " =	Ms/(As*Z) =	432	N/mm ²				
Concrete stress "ic = (Is Al	s)/(U.5°D°X) = */b v\/(d v) =	9.19	MADED.				
		0.002877					
Suam due to sumening effect of concrete detween c $p_n = h (h_x)^2 / (3 \text{ Fe Ae} (d_x))$ for crack widt	hacks $\epsilon \mathbf{Z}^{\circ} =$	hasil					
$\epsilon_2 = 1.5.b.(h-x)^2/(3.Es.As.(d-x))$ for crack widt	hs of 0.1 mm	n/a					
	ε ₂ =	0.000850					
Average strain for calculation of crack width "	ε _m "= ε ₁ -ε ₂ =	0.002027					
Calculated crack width, "w"=3.acr.em/(1+2	2.(a _{cr} -c)/(h-x))						
CALCULATED CRACK	width, 'w' =	0.25	mm				
Spreadsheets to BS 8110etc CONCRETE	REINFORG	CED CONC	RETE CO	DUNCIL			
---	---	---	---	--------			
Advisory Group	Made by	Date		Page			
G-J/14-18 (10mm)	RC	19-Jun-	2007	33			
Crack Width Calculations to BS8110: 1997/ BS8007:1987	Checked	Revision		Job No			
Originated from RCC14.xis on CD © 1999 BCA for RCC	chg	-		R68			
WIDTH CALCULATIONS - FLEXURE	-						
$\begin{array}{c c} & & & \\ &$	fs*As)	(0.5*fc*t)*X)				
<u>Section</u> <u>Strain</u>	<u>Stresses/</u>	force					
Area of reinforcer	fcu= fy= nent " As " = b = h = d =	<u>30</u> <u>460</u> <u>262</u> <u>1000</u> <u>125</u> 100	N/mm ² N/mm ² mm ² mm mm				
Minimum cover to tension reinforcen Maxmum bar sp Bar	nent " CO " = bacing " S " = dia " DIA " =	20 300 10	mm mm mm				
" acr " =(((S/2)^2+(CO+DIA/2)^2)^(1/2)-DIA/2) as default or enter of	other value =	147.1	mm				
"acr " is distance from the point considered to the surface of the	nearest long	itudinal bar	L() !				
Applied service mol	ment Mis =	<u>10.1</u>	KINM				
LATIONS							
moduli of elasticity of concrete " Ec" = (1/2)*(2	0+0.2*fcu) =	13.0	KN/mm ²				
Modular ratio." a	steel Es = " = (Es/Ec) =	200.0 15.38	KN/mm				
"p	" = As/bd =	0.003					
depth to neutral axis, " \mathbf{x} " = $(-\alpha .\rho + ((\alpha .\rho)^2 +$	$(2.\alpha.\rho)^{0.5}.d =$	25	mm				
۲ ۴	$'' = d_{1}(y/3) =$	02					
Reinforcement stress " fs " =	$Ms/(As^{*}Z) =$	420	N/mm ²				
Concreté stress " fc " = (fs*As	s)/(0.5*b*x) =	8.92	N/mm*				
Strain due to stiffening effect of concrete between a	(II-X)/(U-X) =	0.002794					
$\epsilon_2 = b.(h-x)^2/(3.Es.As.(d-x))$ for crack width	hs of 0.2 mm	Used					
$\epsilon_2 = 1.5.b.(h-x)^2/(3.Es.As.(d-x))$ for crack width	hs of 0.1 mm	n/a					
Average strain for calculation of crack width "	ε ₂ = ε _m **= ε ₁ -ε ₂ =	0.000850 0.001944					
Calculated crack width, "w" = 3.a,.em/(1+2	.(a _{cr} -c)/(h-x))						
CALCULATED CRACK	WIDTH, 'W =	0.24	mm				

Spreadsheets to BS 8110etc REINFORCED	REINFORC	ED CONC	RETE CO	DUNCIL
Advisory Group	Made by	Date		Page
J-K/14-18 (10mm)	RC	19-Jun-	2007	33
Crack Width Calculations to BS8110: 1997/ BS8007:1987	Checked	Revision		Job No
Originated from RCC14.xis on CD @ 1999 BCA for RCC	chg	-		R68
WIDTH CALCULATIONS - FLEXURE	-			
$\begin{array}{c c} b \\ \hline \\ x \\ h \\ h \\ \hline \\ As \\ \hline \\ e \\ \hline \hline \\ e \\ \hline \\ e \\ \hline \hline \hline \hline$	fs *As)	(0.5*fc*b	*x)	
<u>Section</u> <u>Strain</u> <u>S</u>	Stresses/	force		
Area of reinforcen	fcu= fy= nent " As " = b = h = d =	<u>30</u> <u>460</u> <u>262</u> <u>1000</u> <u>125</u> 100	N/mm ² N/mm ² mm ² mm mm	
Minimum cover to tension reinforcem Maxmum bar sp. Bar	ent " CO " = acing " S " = dia " DIA " =	20 300 10	mm mm	
$a_{cr} = (((S/2)^2+(CO+DIA/2)^2)^{(1/2)}-DIA/2)$ as default or enter of	ther value =	<u>147.1</u>	mm	
acr is distance from the point considered to the surface of the Applied service mon	nearest longi nent " Ms "=	10 1	KNm	
· · · · · · · · · · · · · · · · · · ·				
LATIONS moduli of elasticity of concrete " Ec " = (1/2)*(24) moduli of elasticity of s Modular ratio " α "	0+0.2*fcu) = steel " Es " = ' = (Es/Ec) =	13.0 200.0 15.38	KN/mm² KN/mm²	2 2
ρ donth to poutral axis. " \dot{v} " = ($\alpha \circ t$)($\alpha \circ \dot{v}^2$ =	= AS/DU =	0.003	m m	
deput to field a cass, $\mathbf{x} = (-\alpha, p + ((\alpha, p) + (\alpha, p)))$	2.u.p) .u =	20	11011	
Ζ Reinforcement stress " fs " = I Concrete stress " fc " = (fs*As Strain at soffit of concrete beam/slab " ε1 " = (fs/Es)*	" = d-(x/3) = Ms/(As*Z) =)/(0.5*b*x) = *(h-x)/(d-x) =	92 420 8.92 0.002794	N/mm² N/mm²	
Strain due to stiffening effect of concrete between cr $\epsilon_2 = b.(h-x)^2/(3.Es.As.(d-x))$ for crack width $\epsilon_2 = 1.5.b.(h-x)^2/(3.Es.As.(d-x))$ for crack width	acks " ε 2 " = ns of 0.2 mm ns of 0.1 mm	Used n/a		
Average strain for calculation of crack width "	ε ₂ = ε _m "= ε ₁ -ε ₂ =	0.000850 0.001944		
Calculated crack width "w" = 3 a_ cm//1+2	(ac)/(h-x))			
CALCULATED CRACK	NIDTH, 'W =	0.24	mm	

Spreadsheets to BS 8110etc REINFORCED	REINFORC	CED CONCI	RETE CO	DUNCIL
Advisory Group	Made by	Date		Page
K-M/14-18 (10mm)	RC	19-Jun-	2007	33
Crack Width Calculations to BS8110: 1997/ BS8007:1987	Checked	Revision		Job No
Originated from RCC14.xis on CD @ 1999 BCA for RCC	chg	-		R68
WIDTH CALCULATIONS - FLEXURE	-			
h As NEUTRAL AXIS 6 6 6 6 6 6 6 6 6 6 6 6 6	fs*As) fs*As	(0.5*fc*b	*x)	
<u>Section</u> <u>Strain</u> S	<u>Stresses/</u>	force		
Area of reinforcer	fcu= fy= nent " As " = b = h = d =	<u>30</u> <u>460</u> <u>393</u> <u>1000</u> <u>150</u> 125	N/mm ² N/mm ² mm ² mm	
Minimum cover to toncion reinforcer		125	mm mm	
Maxmum bar sn	acing "S" =	200	mm	
Bar	dia " DIA " =	10	mm	
" acr " =(((S/2)^2+(CO+DIA/2)^2)^(1/2)-DIA/2) as default or enter of	other value =	98.1	mm	
"acr " is distance from the point considered to the surface of the	nearest long	itudinal bar		
Applied service mor	ment " Ms "=	<u>18.3</u>	KNm	
moduli of elasticity of concrete " Ec " = (1/2)*(2 moduli of elasticity of source the moduli of elasticity of source the moduli of elasticity of source the moduli of elasticity of source the module of the modul	0+0.2*fcu) = steel " Es " = " = (Es/Ec) =	13.0 200.0 15.38	KN/mm ² KN/mm ²	
P	2 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0.003		
$ucput to field axis, x = (-\alpha.p+((\alpha.p) + (\alpha.p)))$	z.u.pj .u	00	11111	
" Z Reinforcement stress " fs " = Concrete stress " fc " = (fs*As	" = d-(x/3) = Ms/(As*Z) = s)/(0.5*b*x) =	114 409 9.66	N/mm² N/mm²	
Strain at soffit of concrete beam/slab " ε 1 " = (fs/Es)	*(h-x)/(d-x) =	0.002604		
Strain due to stiffening effect of concrete between cr $\epsilon_2 = b.(h-x)^2/(3.Es.As.(d-x))$ for crack width $\epsilon_2 = 1.5.b.(h-x)^2/(3.Es.As.(d-x))$ for crack width Average strain for calculation of crack width "	eacks " $\epsilon 2$ " = 1s of 0.2 mm 1s of 0.1 mm $\epsilon_2 =$ ϵ_m "= $\epsilon_1 - \epsilon_2 =$	Used n/a 0.000630 0.001974		
Calculated crack width. " w " = 3.a., em/(1+2	.(a.,-c)/(h-x))			
		0.25	mm	
	••• ·· ••••	U.£J		

Spreadsheets to BS 8110etc CONCRETE	REINFOR	CED CONC	RETE CO	DUNCIL
Advisory Group	Made by	Date		Page
M-P/14-18 (10mm)	RC	19-Jun-	2007	33
Crack Width Calculations to BS8110: 1997/ BS8007:1987	Checked	Revision		Job No
Originated from RCC14.xls on CD © 1999 BCA for RCC	chg			R68
K WIDTH CALCULATIONS - FLEXURE	t e.			
$\begin{array}{c c} & b \\ \hline \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$	fs *As)	(0.5*fc*b	*x)	
Section Strain S	Stresses/	force		
Area of reinforcer	fcu= fy= nent " As " = b = h = d =	<u>30</u> <u>460</u> <u>393</u> <u>1000</u> <u>150</u> <u>125</u>	N/mm ² N/mm ² mm ² mm mm	
Minimum cover to tension reinforcem Maxmum bar sp Bar " a _{cr} " =(((S/2)^2+(CO+DIA/2)^2)^(1/2)-DIA/2) as default or enter of "acr " is distance from the point considered to the surface of the	nent " CO " = bacing " S " = dia " DIA " = bther value = nearest long	<u>20</u> <u>200</u> <u>10</u> <u>98.1</u> itudinal bar	mm mm mm	
Applied Service mol	1110111 1113 -	10.5	NI¥IH	
JLATIONS moduli of elasticity of concrete " Ec " = (1/2)*(2 moduli of elasticity of s Modular ratio " a " p	20+0.2*fcu) = steel " Es " = " = (Es/Ec) = • " = As/bd =	13.0 200.0 15.38 0.003	KN/mm KN/mm	2
depth to neutral axis, " \mathbf{x} " = (- α . ρ +((α . ρ) ² +	2.α.ρ) ^{0.5} .d =	33	mm	
" Z Reinforcement stress " fs " = Concrete stress " fc " = (fs*As Strain at soffit of concrete beam/slab " ε1 " = (fs/Es)	L" = d-(x/3) = Ms/(As*Z) = s)/(0.5*b*x) = *(h-x)/(d-x) =	114 409 9.66 0.002604	N/mm² N/mm²	
Strain due to stiffening effect of concrete between cr $\epsilon_2 = b.(h-x)^2/(3.Es.As.(d-x))$ for crack width $\epsilon_2 = 1.5.b.(h-x)^2/(3.Es.As.(d-x))$ for crack width	racks " $\epsilon 2$ " = hs of 0.2 mm hs of 0.1 mm ϵ_2 =	Used n/a 0.000630		
Average strain for calculation of crack width "	ε _m "= ε ₁ -ε ₂ =	0.001974		
Calculated crack width, " w " = 3.acr.cm/(1+2	!.(a _{cr} -c)/(h-x))		•	
CALCULATED CRACK	WIDTH, 'w' =	0.25	mm	

Spreadsheets to BS 8110etc CONCRETE				
Advisory Group	Made by	Date		Page
P-R/14-18 (10mm)	RC	19-Jun-	-2007	33
Crack Width Calculations to BS8110: 1997/ BS8007:1987	Checked	Revision		Job No
Originated from RCC14 xis on CD © 1999 BCA for RCC	cha	-		R68
WIDTH CALCULATIONS - FLEXURE				
$ \begin{array}{c c} $	fc (fs*As) fs	(0.5*fc*t)*x)	
<u>Section</u> <u>Strain</u> S	Stresses/	force		
Area of reinforcer	fcu= fy= nent " As " = b = h = d =	<u>30</u> <u>460</u> <u>262</u> <u>1000</u> <u>125</u> 100	N/mm ² N/mm ² mm ² mm mm	
Minimum cover to tension reinforcen Maxmum bar sp Bar " a _{cr} " =(((S/2)^2+(CO+DIA/2)^2)^(1/2)-DIA/2) as default or enter of	nent " CO " = bacing " S " = dia " DIA " = other value =	<u>20</u> . <u>300</u> <u>10</u> <u>147.1</u>	mm mm mm mm	
"acr " is distance from the point considered to the surface of the Applied service more	nearest long ment " Ms "=	itudinal bar <u>10.1</u>	KNm	
moduli of elasticity of concrete " Ec " = (1/2)*(2 moduli of elasticity elasticity of elasticity of elasticity of elasticity of elasticity of elasticity of elasticity el	20+0.2*fcu) = steel " Es " = " = (Es/Ec) = • " = As/bd =	13.0 200.0 15.38 0.003	KN/mm [*] KN/mm [*]	2
depth to neutral axis, "x" = $(-\alpha, \rho + ((\alpha, \rho)^2 +$	$(2.\alpha.p)^{0.5}.d =$	25	mm	
"Ζ Reinforcement stress " fs " = Concrete stress " fc " = (fs*As Strain at soffit of concrete beam/slab " ε1 " = (fs/Es)	2" = d-(x/3) = Ms/(As*Z) = s)/(0.5*b*x) = *(h-x)/(d-x) =	92 420 8.92 0.002794	N/mm ² N/mm ²	
Strain due to stiffening effect of concrete between cr $\epsilon_2 = b.(h-x)^2/(3.Es.As.(d-x))$ for crack width $\epsilon_2 = 1.5.b.(h-x)^2/(3.Es.As.(d-x))$ for crack width	racks " $\epsilon 2$ " = hs of 0.2 mm hs of 0.1 mm ϵ_2 =	Used n/a 0.000850		
Average strain for calculation of crack width "	$\varepsilon_m = \varepsilon_1 - \varepsilon_2 =$	0.001944		
Calculated crack width, "w " = $3.a_{cr}.\epsilon m/(1+2)$	(a _{cr} -c)/(h-x))			
CALCULATED CRACK	width, 'w' =	0.24	mm	

Spreadsheets to BS 8110etc CONCRE	REINFOR	CED CONC	RETE CO	DUNCIL
Advisory Group	Wade by	Date		Page
R-T/14-18 (10mm)	RC	19-Jun-:	2007	33
Crack Width Calculations to BS8110: 1997/ BS8007:1987	Checked	Revision		Job No
Originated from RCC14 xls on CD © 1999 BCA for RCC	chg	-		R68
WIDTH CALCULATIONS - FLEXURE	-			
NEUTRAL AXIS	(fs*As)	(0.5*fc*b	*x)	
<u>Section</u> <u>Strain</u>	Stresses,	/force		
Area of reinformation $B_{reinform}$ Minimum cover to tension reinformation $B_{reinform}$ a $C(S/2)^2 + (CO+D A/2)^2)^{(1/2)} - D A/2)$ as default or end	fcu= fy= brcement " As " = b = h = d = rcement " CO " = ar spacing " S " = Bar dia " DIA " = bar dia " DIA " =	30 460 262 1000 125 100 20 300 10 147 1	N/mm ² N/mm ² mm ² mm mm mm mm mm	
"acr " is distance from the point considered to the surface of	f the nearest long	<u>147.1</u> ifudinal har	11411	
Applied service	moment " Ms "=	10.1	KNm	
JLATIONS moduli of elasticity of concrete " Ec " = (1/ moduli of elasticit Modular ratio	2)*(20+0.2*fcu) = y of steel " Es " = " α " = (Es/Ec) = " ο " = As/bd =	13.0 200.0 15.38 0.003	KN/mm* KN/mm*	2
depth to neutral axis. "x" = $(-\alpha, \alpha) + ((\alpha, \alpha))$	$(a)^{2} + 2.\alpha.a)^{0.5} d =$	25	mm	
Reinforcement stress "fs) + 2.α.ρ) .α - " Z " = d-(x/3) = " = Ms//Δs*7) ⇒	20 92 420	N/mm ²	
Concrete stress " fc " = (1	s*As)/(0.5*b*x) =	8.92	N/mm ⁻	
Strain at soffit of concrete beam/slab " $\epsilon 1$ " = (fs	/Es)*(h-x)/(d-x) =	0.002794		
Strain due to stiffening effect of concrete betwee $\epsilon_2 = b.(h-x)^2/(3.Es.As.(d-x))$ for crack $\epsilon_2 = 1.5.b.(h-x)^2/(3.Es.As.(d-x))$ for crack Average strain for calculation of crack with	en cracks " $\epsilon 2$ " = widths of 0.2 mm widths of 0.1 mm ϵ_2 = tth " ϵ_m "= ϵ_1 - ϵ_2 =	Used n/a 0.000850 0.001944		
	(A () ()))))))))))))			
Ualculated crack width, " w " = 3.a _{ct} .em/	(1+2.(a _{cr} -C)/(h-X))			
CALCULATED CRA	CK WIDTH, 'w =	0.24	mm	

Spreadsheets to BS 8110etc CONCRETE	REINFORCED CONCRETE COUNCIL			
Advisory Group	Made by	Date		Page
T-V/14-18 (10mm)	RC	19-Jun-	2007	33
Crack Width Calculations to BS8110: 1997/ BS8007:1987	Checked	Revision		Job No
Originated from RCC14.xls on CD © 1999 BCA for RCC	chg	-		R68
K WIDTH CALCULATIONS - FLEXURE	-			
$\begin{array}{c c} & & & & & \\ \hline & & \\ &$	fs*As) fs	(0.5*fc*b	*x)	
<u>Section</u> <u>Strain</u> <u>S</u>	<u>stresses/</u>	'force		
Area of reinforcem	fcu= fy= nent " As " = b = h =	<u>30</u> 460 393 1000 125	N/mm ² N/mm ² mm ² mm	
	d =	<u>100</u>	mm	
Minimum cover to tension reinforcem	ent " CO " =	<u>20</u> 200	mm	
Bari	dia " DiA " =	<u>200</u> 10	mm	
" a _{cr} " =(((S/2) ² +(CO+DIA/2) ²) ^(1/2) -DIA/2) as default or enter o	ther value =	<u>98.1</u>	mm	
"acr " is distance from the point considered to the surface of the	nearest long	itudinal bar		
Applied service mon	nent " Ms "=	<u>14.9</u>	KNm	
JLATIONS moduli of elasticity of concrete " Ec" = (1/2)*(20	0+0.2*fcu) =	13.0	KN/mm ⁻	2
moduli of elasticity of s	steel " Es " =	200.0	KN/mm ²	<u>'</u>
Modular ratio " α "	' = (Es/Ec) =	15.38		
$e^{-\frac{1}{2}}$	- Asibu -	0.004	mm	
$uepur to neutral axis, x = (-x.p \cdot ((x.p)))$	2.0.p) .u -	25	11111	
"Z	" = d-(x/3) =	90		
Reinforcement stress " fs " = I	$Ms/(As^{*}Z) =$	419	N/mm ²	1
Strain at soffit of concrete beam/slab " $\epsilon 1$ " = (fs/Es)*	*(h-x)/(d-x) =	0.002833	1 1/11/11	
Strain due to stiffening effect of concrete between cra	acks " ε 2 " =			
$\varepsilon_2 = b.(h-x)^2/(3.Es.As.(d-x))$ for crack width	ns of 0.2 mm	Used		
$\varepsilon_2 = 1.5.b.(h-x)^2/(3.Es.As.(d-x))$ for crack width	ns of 0.1 mm	n/a 0.000550		
Average strain for calculation of crack width "	€2 Em "= E1-E2 =	0.000300		
Calculated crack width, "w" = 3.acr.cm/(1+2.	.(a _{cr} -c)/(h-x))			
CALCULATED CRACK V	NIDTH, 'w' =	0.26	mm	

Spreadsheets to BS 8110etc CONCRETE	REINFORCED CONCRETE COUNCIL			
Advisory Group	Made by	Date	Page	
V-W1/14-18 (10mm)	RC	19-Jun-	2007 33	
Crack Width Calculations to BS8110: 1997/ BS8007:1987	Checked	Revision	Job No	
Originated from RCC14.xts on CD @ 1999 BCA for RCC	chg		R68	
WIDTH CALCULATIONS - FLEXURE	-			
h As Es Es Es Es Es Es Es Es Es E	(fs*As) fs	(0.5*fc*b	*x)	
<u>Section</u> <u>Strain</u> <u>S</u>	<u>Stresses/</u>	force		
Area of reinforce	fcu= fy= ment " As " = b = h = d =	<u>30</u> <u>460</u> <u>393</u> <u>1000</u> <u>125</u> 100	N/mm ² N/mm ² mm ² mm mm	
Minimum cover to tension reinforcen	nent " CO " =	20	mm	
. Maxmum bar sp	bacing " \$ " =	200	mm.	
	dia " DIA " =	<u>10</u> 09.1	mm	
"acr " is distance from the point considered to the surface of the	nearest long	itudinal bar		
Applied service mon	ment " Ms "=	16.4	KNm	
JLATIONS			10102	
moduli of elasticity of concrete " EC" = (1/2)*(2 moduli of elasticity of	20+0.2"tcu) = steel " Es " =	13.0 200.0	KN/mm ²	
Modular ratio " a	" = (Es/Ec) =	15.38		
"F	• " = As/bd =	0.004		
depth to neutral axis, " \mathbf{x} " = $(-\alpha . \rho + ((\alpha . \rho)^2 + (\alpha . \rho)^2))$	$(2.\alpha.\rho)^{0.5}$.d =	29	mm	
* 2	z " = d-(x/3) =	90		
Reinforcement stress " fs " =	Ms/(As*Z) =	461	N/mm ²	
Concrete stress " ic " = (is:A: Strain at soffit of concrete beam/slab " s1 " = (is/Es)	s)/(0.5°0°X) = *(h-x)/(d-x) =	12.39	IN/HIIHI	
Strain due to stiffening effect of concrete between c	racks " $\epsilon 2$ " =	0.000110		
$\epsilon_2 = b.(h-x)^2/(3.Es.As.(d-x))$ for crack width	hs of 0.2 mm	Used		
$\varepsilon_2 = 1.5.b.(h-x)^2/(3.Es.As.(d-x))$ for crack widt	hs of 0.1 mm	n/a		
Average strain for calculation of crack width "	ε ₂ = ε _m "= ε ₁ -ε ₂ =	0.000550		
Calculated crack width, "w" = $3.a_{cr.} \epsilon m/(1+2)$?.(a _{cr} -c)/(h-x))			
CALCULATED CRACK	WIDTH, 'w' =	0.29	mm	

Spreadsheets to BS 8110etc CONCRETE	REINFORC	ED CONCI	RETE CO	DUNCIL
Advisory Group	Made by	Date	2007	Page
W1-1714-10 (101111)	RC	19-Juli-	2007	- 33 14 M M
Crack Wildin Calculations to BS6110, 1997/ BS6007, 1967	Спескеа	revision		
	cng			100
WIDTH CALCULATIONS - FLEXURE	-			
$ \begin{array}{c cccc} & & & & & & \\ \hline & & & \\ $	fs*As)	(0.5*fc*b	*x)	
Section Strain S	Stresses/	force		
	fcu= fy=	<u>30</u> 460	N/mm ² N/mm ²	
Area of reinforcer	nent " As " =	<u>314</u>	mm ²	
3 CA FALVIA	b =	<u>1000</u>	mm	
	n =	<u>125</u> 100	mm	
Minimum cover to tension reinforcen		20	mm	
Maxmum bar sp	bacing "S" =	250	mm	
Bar	dia " DIA " =	10	mm	
" acr " =(((S/2)^2+(CO+DIA/2)^2)^(1/2)-DIA/2) as default or enter of	other value =	<u>122.5</u>	mm	
"acr " is distance from the point considered to the surface of the	nearest long	itudinal bar		
Applied service more	ment " Ms "=	<u>11.7</u>	KNm	
ILATIONS	- 11a - 11a			
moduli of elasticity of concrete " Ec" = (1/2)*(2	20+0.2*fcu) =	13.0	KN/mm	2
moduli of elasticity of a Modular catio." ~	s(eei es = " = (Es/Ec) =	200.0	NINTITI	
woddiai 1auo α "ρ	• " = As/bd =	0.003		-
depth to neutral axis, " x " = $(-\alpha.\rho + ((\alpha.\rho)^2 + (\alpha.\rho)^2))$	$(2.\alpha.\rho)^{0.5}.d =$	27	mm	
" 2	:" = d-(x/3) =	91		
Reinforcement stress " fs " =	$Ms/(As^{*}Z) =$	408	N/mm ²	
Concrete stress " fc " = (fs*A:	s)/(0.5*b*x) =	9.61	N/mm ⁻	
Strain at some of concrete deamysiad " at " = (TS/ES)	<u>[</u> [H-X]/[U-X] = moke # - ● # =	0.002732		
Strain due to stimening effect of concrete between c $\epsilon_n = b (h-x)^2/(3 \text{ Es As } (d-x))$ for crack width	hs of 0.2 mm	Lised		
$\epsilon_2 = 1.5.b.(h-x)^2/(3.Es.As.(d-x))$ for crack width	hs of 0.1 mm	n/a		
	ε ₂ =	0.000700		
Average strain for calculation of crack width "	ε _m "≖ ε ₁ -ε ₂ =	0.002032		
Calculated crack width, "w"=3.a _{cr} .ɛm/(1+2	?.(a _{cr} -c)/(h-x))			
CALCULATED CRACK	width, 'w' =	0.24	mm	

Spreadsheets to BS 8110etc REINFORCED	REINFORG	CED CONCI	RETE CO	UNCIL
Advisory Group Y-Ad/14-15 (10mm) Crack Width Calculations to BS8110: 1997/ BS8007:1987	Made by RC Checked	Date 19-Jun-: Revision	2007	Page 33 Job No
Originated from RCC14.xis on CD @ 1999 BCA for RCC	cha	-		R68
WIDTH CALCULATIONS - FLEXURE	-		<u></u>	
$ \begin{array}{c c} $	fs*As)	(0.5*fc*b	*x)	
<u>Section</u> <u>Strain</u>	Stresses/	force		
Area of reinforces	fcu= fy= ment " As " = b = h = d =	<u>30</u> <u>460</u> <u>262</u> <u>1000</u> <u>150</u> 125	N/mm ² N/mm ² mm ² mm mm	•
Minimum cover to tension reinforcen Maxmum bar sp Bar " a " =(/(S/2)/2+/CO+DIA/2)/2)/(1/2) DIA/2) as default or enter (nent " CO " = bacing " S " = dia " DIA " =	20 300 10	നന നന നന നന	
$a_{cr} = (((3/2) 2 + (30 + D/A/2) 2) ((1/2) - D/A/2) as default of effect of the surface of the surface of the$	nearest long	itudinal har	*****	
Applied service mo	ment " Ms "=	<u>12.1</u>	KNm	
IL ATIONO				
moduli of elasticity of concrete " Ec " = (1/2)*(2 moduli of elasticity of Modular ratio " α " f	20+0.2*fcu) = steel " Es " = " = (Es/Ec) = > " = As/bd =	13.0 200.0 15.38 0.002	KN/mm² KN/mm²	!
depth to neutral axis, "x" = $(-\alpha . \rho + ((\alpha . \rho)^2 + (\alpha . \rho)^2))$	- 2.α.ρ) ^{0.5} .d =	28	mm	
" 2 Reinforcement stress " fs " = Concrete stress " fc " = (fs*A Strain at soffit of concrete beam/slab " ε1 " = (fs/Es) Strain due to stiffening effect of concrete between c	L" = d-(x/3) = Ms/(As*Z) = s)/(0.5*b*x) = *(h-x)/(d-x) = racks " ε 2 " =	116 398 7.45 0.002500	N/mm² N/mm²	
$\varepsilon_2 = b.(h-x)^2/(3.Es.As.(d-x))$ for crack widt $\varepsilon_2 = 1.5.b.(h-x)^2/(3.Es.As.(d-x))$ for crack widt	hs of 0.2 mm hs of 0.1 mm $\epsilon_2 =$	Used n/a 0.000976		
Average strain for calculation of crack width "	ε _m "= ε ₁ -ε ₂ =	0.001524		
Calculated crack width, "w" = 3.a _{cr} .em/(1+2	?.(a _{cr} -c)/(h-x))			
CALCULATED CRACK	WIDTH, 'w' =	0.22	mm	

Spreadsheets to BS 8110etc REINFORCED	REINFORCED CONCRETE COUNCIL			
Advisory Group	Made by	Date		Page
Y-Ad/17-18 (10mm)	RC	19-Jun-2	2007	33
Crack Width Calculations to BS8110: 1997/ BS8007:1987	Checked	Revision		Job No
Originated from RCC14.xls on CD © 1999 BCA for RCC	chg	-		R68
WIDTH CALCULATIONS - FLEXURE	-			:
$\begin{array}{c c} & & & & & \\ \hline & & \\ &$	fs*As)	(0.5*fc*b	*x)	
Section Strain S	Stresses/	'force		
Area of reinforcer	fcu= fy= ment " As " = b = h =	<u>30</u> <u>460</u> <u>262</u> <u>1000</u> <u>150</u>	N/mm ² N/mm ² mm ² mm mm	
	d =	<u>125</u>	mm	
Minimum cover to tension reinforcen	nent " CO " =	<u>20</u>	mm	
Maxmum bar sp Bar	aang 5 dia " MA " =	<u>300</u> 10	mm	
" \mathbf{a}_{cr} " =(((S/2)^2+(CO+DiA/2)^2)^(1/2)-DiA/2) as default or enter of	other value =	147.1	mm	
"acr " is distance from the point considered to the surface of the	nearest long	itudinal bar		
Applied service mo	ment " Ms "=	<u>8.7</u>	KNm	
JLATIONS moduli of electicity of concrete " Ec " = (1/2)*(2)	20+0.2*fcu) =	13.0	KN/mm	2
moduli of elasticity of	steel " Es " =	200.0	KN/mm ⁴	2
Modular ratio " a	" = (Es/Ec) =	15.38		
"p 	• " = As/bd =	0.002		
depth to neutral axis, " \mathbf{x} " = $(-\alpha.\rho + ((\alpha.\rho)^2 + (\alpha.\rho)^2)$	· 2.α.ρ) .đ =	28	mm	
" 2	" = d-(x/3) =	116		
Reinforcement stress " fs " =	$Ms/(As^*Z) =$	287	N/mm ²	
Concrete stress " fc " = (fs*As Strain at soffit of concrete boom/elob " -1 " = (fs/Ec)	s)/{U.5*b*x} = *(h_x\/(d_x) =	5.37	N/mm~	
Strain due to stiffening effect of concrete between o	$\frac{1}{2} (1 - \lambda)^{2} (1 - \lambda)^{2} = \frac{1}{2} = $	0.001803		
$\epsilon_2 = b.(h-x)^2/(3.Es.As.(d-x))$ for crack width	hs of 0.2 mm	Used		
$\epsilon_2 = 1.5.b.(h-x)^2/(3.Es.As.(d-x))$ for crack width	hs of 0.1 mm	n/a		
Average strain for calculation of crack width "	ε ₂ = ε _m "= ε ₁ -ε ₂ =	0.000976 0.000827		
Calculated crack width "w" = $3a_{-}$ em/(1+2)	.(a.,-c)/(h-x))			
	WIDTH 'w' =	0.12	ព្រាល	

Spreadsheets to BS 8110etc CONCRETE	REINFORG	ED CONCI	RETE CO	DUNCIL
Advisory Group	Made by	Date		Page
Y-Z/15-15A (10mm)	RC	19-Jun-	2007	33
Crack Width Calculations to BS8110: 1997/ BS8007:1987	Checked	Revision		Job No
Originated from RCC14.xls or CD © 1999 BCA for RCC	chg			R68
WIDTH CALCULATIONS - FLEXURE	-		2	
$ \begin{array}{c c} b \\ $	fs*As)	(0.5*fc*b	**X)	
Section Strain S	Stresses/	'force		
Area of reinforcen	fcu= fy= nent " As " = b = h =	<u>30</u> <u>460</u> <u>262</u> <u>1000</u> <u>100</u>	N/mm ² N/mm ² mm ² mm	
	d =	<u>75</u>	mm	
Minimum cover to tension reinforcem	nent " CO " =	<u>20</u>	mm	
Maxmum bar sp	acing "S"=	<u>300</u>	mm	
" a., " =(((S/2)^2+(CO+DiA/2)^2)^(1/2)-DiA/2) as default or enter of	other value =	147.1	mm	
"acr " is distance from the point considered to the surface of the	nearest long	itudinal bar		
Applied service mor	ment " Ms "=	<u>1.1</u>	KNm	
ILATIONS			10.14	,
moduli of elasticity of concrete " Ec" = (1/2)"(2 moduli of elasticity of e	0+0.2*1CU) = stool " Es " =	13.0 200.0	KN/mm ²	2
Modular ratio " a "	" = (Es/Ec) =	15.38	. w writher	
"ρ	" = As/bd =	0.003		
depth to neutral axis, " \mathbf{x} " = (- α . ρ +((α . ρ) ² +	$(2.\alpha.\rho)^{0.5}$.d =	21	mm	
" 7	$'' = d_2(y/3) -$	68		
Reinforcement stress " fs " =	Ms/(As*Z) =	59	N/mm ²	
Concrete stress " fc * = (fs*As	s)/(0.5*b*x) =	1.49	N/mm*	
Strain at soffit of concrete beam/slab " ε1 " = (fs/Es)	*(h-x)/(d-x) =	0.000435		
Strain due to stiffening effect of concrete between cr	acks " $\epsilon 2$ " =	linnd		
$ε_2 = 0.(1-x) /(0.⊂S.AS.(0-x))$ for crack width $ε_2 = 1.5 h (h-x)^2 /(3.Es As (d-x))$ for crack width	his of 0.2 mm	useu n/a		
	ε ₂ =	0.000736		
Average strain for calculation of crack width "	$\varepsilon_m = \varepsilon_1 - \varepsilon_2 =$	-0.000301		
Calculated crack width, "w" = 3.a _{cr.} ɛm/(1+2	.(a _{cr} -c)/(h-x))			
CALCULATED CRACK	width, 'w' =	-0.03	mm	

		<u></u>		
Spreadsheets to BS 8110etc CONCRETE	REINFORC	ED CONCF	RETE CO	UNCIL
Advisory Group	Made by	Date		Page
Y-Z/15A-16A (10mm)	RC	19-Jun-2	2007	33
Crack Width Calculations to BS8110: 1997/ BS8007:1987	Checked	Revision		Job No
Originated from RCC14.xis on CD © 1999 BCA for RCC	chg	-		R68
WIDTH CALCULATIONS - FLEXURE	-			
$\begin{array}{c c} & b \\ \hline \\ x \\ d \\ h \\ \hline \\ As \\ \bullet \\ $	fs*As)	(0.5*fc*b	*x)	
<u>Section</u> <u>Strain</u> S	<u>Stresses/</u>	force		
Area of reinforcer	fcu= fy= nent " As " = b = h = d =	<u>30</u> <u>460</u> <u>262</u> <u>1000</u> <u>150</u> 125	N/mm ² N/mm ² mm ² mm mm	
Minimum cover to tension reinforcen Maxmum bar sp	nent " CO " = bacing " S " =	<u>20</u> <u>300</u>	mm mm	
Bar Bar البنجامة مع (משות-(1/2/\/2\/2\/2\/2\) = " م "	dia " DIA " = other value =	<u>10</u> 147 1	mm	
"acr " is distance from the point considered to the surface of the	nearest long	itudinal har	*****	
Applied service mon	ment " Ms "=	34	KNm	
		<u>v</u>		
LATIONS moduli of elasticity of concrete " Ec " = (1/2)*(2 moduli of elasticity of	20+0.2*fcu) = steel " Es " =	13.0 200.0	KN/mm² KN/mm²	
Modular ratio " a	" = (Es/Ec) = "	15.38		
depth to neutral axis, " x " = $(-\alpha.\rho + ((\alpha.\rho)^2 +$	$(2.\alpha.\rho)^{0.5}.d =$	28	mm	
11 77	" = d-(v/3) =	116		
Z Reinforcement stress " fs " =	Ms/(As*Z) =	112	N/mm ²	
Concrete stress " fc " = (fs*As	s)/(0.5*b*x) =	2.10	N/mm ⁺	
Strain at soffit of concrete beam/slab " ϵ 1 " = (fs/Es)	*(h-x)/(d-x) =	0.000703		
Strain due to stiffening effect of concrete between cr	racks " $\epsilon 2$ " =	z # *		
$\varepsilon_2 = D.(h-x)^2/(3.Es.As.(d-x))$ for crack width $\varepsilon_2 = 1.5 b.(b.x)^2/(3.Es.As.(d-x))$ for crack width	hs of 0.2 mm	Used		
$\varepsilon_2 = 1.5.0.(1-x)$ ((5.25.AS.(0-x)) for Grack width	113 VI U. 1 11111 5. =	n/a 0 000976		
Average strain for calculation of crack width "	ε _m "# ε ₁ -ε ₂ =	-0.000273		·
Calculated crack width, " w " = 3.acr.em/(1+2	!.(a _{cr} -c)/(h-x))			
CALCULATED CRACK	width, 'w' =	-0.04	mm	

· •

Advisory Group $Y_{27}(B4-17 (10mm))$ Crack Width Calculations to BS110: 1997/BS8007:1997 Crack Width Calculations to BS110: 1997/BS8007:1997 Crack Width Calculations to BS110: 1997/BS8007:1997 Crack Width Calculations to BS110: 1997/BS8007:1997 WIDTH CALCULATIONS - FLEXURE WIDTH CALCULATIONS - FLEXURE VIDTH CALCULATIONS - FLEXURE - (15 + As) $VIDTH CALCULATIONS - FLEXUREVIDTH CALCULATIONS - FLEXURE - (15 + As) VIDTH CALCULATIONS - FLEXUREVIDTH CALCULATIONS - FLEXURE - (15 + As) VIDTH CALCULATIONS - FLEXURE - (15 + As) VIDTH CALCULATIONS - FLEXURE - (15 + As)VIDTH CALCULATED CRACK WIDTH, VI = (13 + (15 + AS))VIDTH CALCULATED CRACK WIDTH, VI = (13 + (15 + AS))VIDTH CALCULATED CRACK WIDTH, VI = (10 + MIT)VIDTH CALCULATED CRACK WIDTH, VI = (10 + MIT)$	Spreadsheets to BS 8110etc CONCRETE	REINFORCED CONCRETE COUNCIL			
$ \begin{array}{c} Y_{2}/2/46.477 (10mm) \\ Crack Width Calculations to BS110: 1997/BS3007:1997 \\ Crack Width Calculations to BS110: 1997/BS3007:1997 \\ Crack Width Calculations c0 = 1998 BCA for fCC \\ Cognitumet wave mRCC14.48 or C0 = 1998 BCA for fCC \\ Cognitumet wave mRCC14.48 or C0 = 1998 BCA for fCC \\ Cognitumet wave mRCC14.48 or C0 = 1998 BCA for fCC \\ Cognitumet wave mRCC14.48 or C0 = 1998 BCA for fCC \\ Cognitumet wave mRCC14.48 or C0 = 1998 BCA for fCC \\ Cognitumet wave mRCC14.48 or C0 = 1998 BCA for fCC \\ Cognitumet wave mRCC14.48 or C0 = 1998 BCA for fCC \\ Cognitumet wave mRCC14.48 or C0 = 1998 BCA for fCC \\ Cognitumet wave mRCC14.48 or C0 = 1998 BCA for fCC \\ Cognitumet wave mRCC14.48 or C0 = 1000 mm \\ Cognitumet wave may are for for fCC \\ Cognitumet wave may are for for for fCC \\ Cognitumet wave may are for for for for for for for for for for$	Advisory Group Council	Made by	Date		Page
Crack Width Calculations to BS110: 1997/ BS2007:1987 Organization RCC14.sta on CD = 1999 BCA for RCC WIDTH CALCULATIONS - FLEXURE $\begin{array}{c} \hline & \\ \hline & $	Y-Z/16A-17 (10mm)	RC	19-Jun-2	2007	33
Conjuncted from RCC21444 and CD = 1199 BCA for RCC WIDTH CALCULATIONS - FLEXURE $\frac{b}{b} = \frac{b}{b} = $	Crack Width Calculations to BS8110: 1997/ BS8007:1987	Checked	Revision		Job No
WIDTH CALCULATIONS - FLEXURE $i = \frac{1}{1000} + \frac{1}{100$	Originated from RCC14.xis on CD © 1999 BCA for RCC	chg			R68
$\frac{1}{100} + \frac{1}{100} + \frac{1}$	WIDTH CALCULATIONS - FLEXURE	-			
Section Strong Strong Stressever $\int \frac{1}{2} \int \frac{1}{2} $	h As NEUTRAL AXIS	(fs*As)	(0.5*fc*b	*x)	
$ \begin{array}{c} \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \\ & \end{array} \\ \\ \\ \end{array} \\ \\ \begin{array}{c} & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} & \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} & \end{array} \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} & \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} & \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} & \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} & \end{array} \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} & \end{array} \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} & \end{array} \\ \end{array} \\ \begin{array}{c} & \end{array} \\ \end{array} \\ \begin{array}{c} & \end{array} \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} & \end{array} \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \bigg $ \\ \\ \bigg \bigg	Section Strain	<u>Stresses/</u>	force		
Minimum cover to tension reinforcement "CO" = <u>20</u> mm Maxmum bar spacing "S" = <u>300</u> mm Bar dia "DIA" = <u>10</u> mm "acr" is distance from the point considered to the surface of the nearest longitudinal bar Applied service moment "Ms" = <u>2.5</u> KNm LATIONS moduli of elasticity of concrete "Ec" = (1/2)*(20+0.2*fcu) = <u>13.0</u> KN/mm ² moduli of elasticity of steel "Es " = 2000 KN/mm ² Modular ratio " α " = (Es/Ec) = <u>15.38</u> " ρ " = As/bd = 0.003 depth to neutral axis, "x" = (- α . ρ +((α . ρ) ² + 2. α . ρ) ⁰⁵ .d = <u>21</u> mm "Z" = d-(x/3) = <u>68</u> Reinforcement stress "fs" = Ms/(As*Z) = <u>13.9</u> N/mm ² Concrete stress "fs" = (fs/As)/(0.5*b^*X) = <u>3.49</u> N/mm ² Strain at soffit of concrete between cracks "s2" = $\epsilon_2 = b.(h-x)^2/(3.Es.As.(d-x))$ for crack widths of 0.2 mm $\epsilon_2 = 0.000736$ Average strain for calculation of crack width " ϵ_m " = $\epsilon_1\epsilon_2 = 0.000281$ Calculated crack width, "w" = <u>3.a_c.em/(1+2.(a_{cr}-c)/(h-x))</u> CALCULATED CRACK WIDTH, 'w' = <u>0.03</u> mm	Area of reinforce	fcu= fy= ment " As " = b = h = d =	30 460 262 1000 100 75	N/mm ² N/mm ² mm ² mm mm	
Maxmum bar spacing "S = <u>300</u> mm Bar dia "DIA" = <u>10</u> mm "acr" =(((S/2)^2+(CO+DIA/2)^2)^(1/2)-DIA/2) as default or enter other value = <u>147.1</u> mm "acr" is distance from the point considered to the surface of the nearest longitudinal bar Applied service moment "Ms" = <u>2.5</u> KNm LATIONS moduli of elasticity of concrete "Ec" = (1/2)*(20+0.2*fcu) = <u>13.0</u> KN/mm ² moduli of elasticity of concrete "Ec" = (1/2)*(20+0.2*fcu) = <u>13.0</u> KN/mm ² moduli of elasticity of service moment "Ms " = <u>200.0</u> KN/mm ² Modular ratio " α " = (Es/Ec) = <u>15.38</u> " ρ " = As/bd = 0.003 depth to neutral axis, " x " = (- α . ρ +((α . ρ) ² + 2. α . ρ) ^{0.5} .d = <u>21</u> mm "Z " = d-(x/3) = <u>68</u> Reinforcement stress "fs" = Ms/(As ² Z) = <u>13.9</u> N/mm ² Concrete stress "fs" = (srAs)/(0.5 ⁺ X) = <u>3.49</u> N/mm ² Strain at soffit of concrete beam/slab "s1" = (fs/Es)*(h-x)/(4x) = 0.001017 Strain due to stiffening effect of concrete biveen cracks "s2" = $\epsilon_2 = b.(h-x)^2/(3.Es.As.(d-x))$ for crack widths of 0.2 mm Used $\epsilon_2 = 0.000736$ Average strain for calculation of crack widths " ϵ_m " = $\epsilon_1 \cdot \epsilon_2 = 0.000281$ Calculated crack width, "w" = $3.a_w.em/(1+2.(a_w-c)/(h-x))$ CALCULATED CRACK WIDTH, 'w' = 0.03 mm	Minimum cover to tension reinforcer	nent " CO " =	<u>20</u>	mm	
$\mathbf{a}_{cr} = (((S/2)^{2}+(CO+DIA/2)^{2})^{(1/2)}-DIA/2) as default or enter other value = 10/12, 1 mm "acr" is distance from the point considered to the surface of the nearest longitudinal bar Applied service moment " Ms "= 2.5 KNm LATIONS moduli of elasticity of concrete " Ec" = (1/2)*(20+0.2*fcu) = 13.0 KN/mm2 moduli of elasticity of steel " Es " = 200.0 KN/mm2 Modular ratio " \alpha " = (Es/Ec) = 15.38" \rho " = As/bd = 0.003depth to neutral axis, "x" = (-\alpha.\rho +((\alpha.\rho)2 + 2.\alpha.\rho)0.5.d = 21 mm" Z " = d-(x/3) = 68Reinforcement stress " fs " = Ms/(As*Z) = 139 N/mm2Concrete stress " fc " = (fs/Es)*(h-x)/(d-x) = 0.001017Strain at soffit of concrete beam/slab " \epsilon_1 " = (fs/Es)*(h-x)/(d-x) = 0.001017Strain due to stiffening effect of concrete between cracks " \epsilon^2 " = \epsilon_2 = b.(h-x)^2/(3.Es.As.(d-x)) for crack widths of 0.2 mm Used\epsilon_2 = 0.000736Average strain for calculation of crack width " \epsilon_m "= \epsilon_1 - \epsilon_2 = 0.000281Calculated crack width, " w " = 3.a_{cr}.em/(1+2.(a_{cr}-c)/(h-x)))CALCULATED CRACK WIDTH, 'w' = 0.03 mm$	Maxmum bar sp	oacing "5" = dia " DIA " -	<u>300</u> 10	mm	
"acr " is distance from the point considered to the surface of the nearest longitudinal bar Applied service moment " Ms "= 2.5 KNm LATIONS moduli of elasticity of concrete " Ec" = $(1/2)^{*}(20+0.2^{*}fcu) = 13.0$ KN/mm ² moduli of elasticity of steel " Es " = 200.0 KN/mm ² Modular ratio " α " = (Es/Ec) = 15.38 " ρ " = As/bd = 0.003 depth to neutral axis, "x" = $(-\alpha.\rho + ((\alpha.\rho)^{2} + 2.\alpha.\rho)^{0.5}.d = 21$ mm " Z " = $d_{-}(x/3) = 68$ Reinforcement stress " fs " = Ms/(As*Z) = 139 N/mm ² Concrete stress " fc " = (fs/Es)*(h-x)/(d-x) = 0.001017 Strain at soffit of concrete beam/stab " ϵ_{1} " = (fs/Es)*(h-x)/(d-x) = 0.001017 Strain due to stiffening effect of concrete between cracks " ϵ_{2} " = $\epsilon_{2} = b.(h-x)^{2}/(3.Es.As.(d-x))$ for crack widths of 0.2 mm n/a $\epsilon_{2} = 0.000736$ Average strain for calculation of crack width " ϵ_{m} "= $\epsilon_{1}-\epsilon_{2} = 0.000281$ Calculated crack width, " w " = $3.a_{cr}.em/(1+2.(a_{cr}-c)/(h-x)))$ CALCULATED CRACK WIDTH, 'w' = 0.03 mm	acr " =(((S/2)^2+(CO+DIA/2)^2)^(1/2)-DIA/2) as default or enter	other value =	<u>10</u> 147.1	mm	
Applied service moment " Ms "= 2.5 KNm LATIONS moduli of elasticity of concrete " Ec" = $(1/2)^{*}(20+0.2^{*}fcu) = 13.0$ KN/mm ² moduli of elasticity of steel " Es " = 200.0 KN/mm ² Modular ratio " α " = (Es/Ec) = 15.38 " ρ " = As/bd = 0.003 depth to neutral axis, "x" = $(-\alpha, \rho + ((\alpha, \rho)^{2} + 2.\alpha, \rho)^{0.5}.d = 21$ mm " Z " = $d - (x/3) = 68$ Reinforcement stress " fs " = Ms/(As*2) = 139 N/mm ² Concrete stress " fc " = (15^{*}As)/(0.5^{*}D^{*}x) = 3.49 N/mm ² Strain at soffit of concrete beam/slab " ϵ^{1} " = (15 [*] As)/(0.5^{*}D^{*}x) = 3.49 N/mm ² Strain due to stiffening effect of concrete between cracks " ϵ^{2} " = $\epsilon_{2} = b.(h-x)^{2}/(3.Es.As.(d-x))$ for crack widths of 0.2 mm Used $\epsilon_{2} = 1.5.b.(h-x)^{2}/(3.Es.As.(d-x))$ for crack widths of 0.1 mm n/a $\epsilon_{2} = 0.0000736$ Average strain for calculation of crack width " ϵ_{m} "= $\epsilon_{1}-\epsilon_{2} = 0.000281$ Calculated crack width, " w " = $3.a_{cr}.em/(1+2.(a_{cr}-c)/(h-x)))$ CALCULATED CRACK WIDTH, 'w' = 0.03 mm	"acr " is distance from the point considered to the surface of the	e nearest long	itudinal bar		
LATIONS moduli of elasticity of concrete " Ec" = $(1/2)^*(20+0.2^*fcu) = 13.0 \text{ KN/mm}^2$ moduli of elasticity of steel " Es " = 200.0 KN/mm ² Modular ratio " α " = (Es/Ec) = 15.38 " ρ " = As/bd = 0.003 depth to neutral axis, "x" = $(-\alpha, \rho + ((\alpha, \rho)^2 + 2, \alpha, \rho)^{0.5} \text{ d} = 21 \text{ mm}$ " Z " = d-(x/3) = 68 Reinforcement stress " fs " = Ms/(As*Z) = 139 N/mm ² Concrete stress " fc " = (fs/Es)*(0.5^*b^*x) = 3.49 N/mm ² Strain at soffit of concrete beam/stab " ϵ_1 " = (fs/Es)*(h-x)/(d-x) = 0.001017 Strain due to stiffening effect of concrete between cracks " ϵ_2 " = $\epsilon_2 = b.(h-x)^2/(3.Es.As.(d-x))$ for crack widths of 0.2 mm Used $\epsilon_2 = 1.5.b.(h-x)^2/(3.Es.As.(d-x))$ for crack widths of 0.1 mm n/a $\epsilon_2 = 0.000736$ Average strain for calculation of crack width " ϵ_m "= $\epsilon_1 \cdot \epsilon_2 = 0.000281$ Calculated crack width, " w " = $3.a_{\alpha'} \cdot \epsilon m/(1+2.(a_{\alpha'}-c)/(h-x)))$ CALCULATED CRACK WIDTH, 'w' = 0.03 mm	Applied service mo	ment " Ms "=	<u>2.5</u>	KNm	
moduli of elasticity of concrete " Ec" = $(1/2)^{*}(20+0.2^{*}fcu) = 13.0 \text{ KN/mm}^{2}$ moduli of elasticity of steel " Es " = 200.0 KN/mm ² Modular ratio " α " = (Es/Ec) = 15.38 " ρ " = As/bd = 0.003 depth to neutral axis, "x" = $(-\alpha, \rho + ((\alpha, \rho)^{2} + 2.\alpha, \rho)^{0.5} \cdot d = 21 \text{ mm}$ " Z " = d-(x/3) = 68 Reinforcement stress " fs " = Ms/(As*Z) = 139 \text{ N/mm}^{2} Concrete stress " fc " = (fs*As)/(0.5^{*}D^{*}x) = 3.49 \text{ N/mm}^{2} Strain at soffit of concrete beam/slab " $\epsilon 1$ " = (fs/Es)"(h-x)/(d-x) = 0.001017 Strain due to stiffening effect of concrete between cracks " $\epsilon 2$ " = $\epsilon_{2} = b.(h-x)^{2}/(3.Es.As.(d-x))$ for crack widths of 0.2 mm Used $\epsilon_{2} = 0.000736$ Average strain for calculation of crack width " ϵ_{m} "= $\epsilon_{1}-\epsilon_{2} = 0.000281$ Calculated crack width, " w " = $3.a_{cr}\cdot\epsilon m/(1+2.(a_{cr}-c)/(h-x))$ CALCULATED CRACK WIDTH, 'w' = 0.03 mm	JLATIONS				
Modular ratio " α " = (Es/Ec) = 15.38 " ρ " = As/bd = 0.003 depth to neutral axis, " x " = ($-\alpha.\rho + ((\alpha.\rho)^2 + 2.\alpha.\rho)^{0.5}.d = 21$ mm " Z " = d-($x/3$) = 68 Reinforcement stress "fs" = Ms/(As*Z) = 139 N/mm ² Concrete stress "fc" = (fs*As)/(0.5*b*x) = 3.49 N/mm ⁻² Strain at soffit of concrete beam/slab " ϵ_1 " = (fs/Es)*(h-x)/(d-x) = 0.001017 Strain due to stiffening effect of concrete between cracks " ϵ_2 " = $\epsilon_2 = b.(h-x)^2/(3.Es.As.(d-x))$ for crack widths of 0.2 mm Used $\epsilon_2 = 1.5.b.(h-x)^2/(3.Es.As.(d-x))$ for crack widths of 0.1 mm n/a $\epsilon_2 = 0.000736$ Average strain for calculation of crack width " ϵ_m " = $\epsilon_1 \cdot \epsilon_2 = 0.000281$ Calculated crack width, "w" = $3.a_{cr} \cdot \epsilon m/(1+2.(a_{cr} \cdot c)/(h-x))$) CALCULATED CRACK WIDTH, 'w' = 0.03 mm	moduli of elasticity of concrete " Ec" = (1/2)*(2	20+0.2*fcu) = 	13.0	KN/mm ²	
" ρ " = As/bd = 0.003 depth to neutral axis, "x" = $(-\alpha.\rho + ((\alpha.\rho)^2 + 2.\alpha.\rho)^{0.5}.d = 21$ mm "Z" = d-(x/3) = 68 Reinforcement stress "fs" = Ms/(As*Z) = 139 N/mm ² Concrete stress "fc" = (fs*As)/(0.5*b*x) = 3.49 N/mm ² Strain at soffit of concrete beam/slab "s1" = (fs/Es)*(h-x)/(d-x) = 0.001017 Strain due to stiffening effect of concrete between cracks "s2" = $\varepsilon_2 = b.(h-x)^2/(3.Es.As.(d-x))$ for crack widths of 0.2 mm Used $\varepsilon_2 = 1.5.b.(h-x)^2/(3.Es.As.(d-x))$ for crack widths of 0.1 mm n/a $\varepsilon_2 = 0.000736$ Average strain for calculation of crack width " ε_m " = ε_1 - $\varepsilon_2 = 0.000281$ Calculated crack width, "w" = $3.a_{cr}\cdot\varepsilon m/(1+2.(a_{cr}-c)/(h-x)))$ CALCULATED CRACK WIDTH, 'w' = 0.03 mm	Modular ratio " «	"= (Es/Ec) =	200.0 15.38	COMPRESS.	
depth to neutral axis, " $\mathbf{x}^{"} = (-\alpha.\rho + ((\alpha.\rho)^{2} + 2.\alpha.\rho)^{0.5}.d = 21 mm$ " $\mathbf{Z}^{"} = d - (x/3) = 68$ Reinforcement stress " $\mathbf{fs}^{"} = \mathbf{Ms}/(\mathbf{As}^{*}Z) = 139 \text{ N/mm}^{2}$ Concrete stress " $\mathbf{fc}^{"} = (\mathbf{fs}^{*}\mathbf{As})/(0.5^{*}\mathbf{b}^{*}\mathbf{x}) = 3.49 \text{ N/mm}^{*}$ Strain at soffit of concrete beam/stab " $\mathbf{\epsilon}1^{"} = (\mathbf{fs}/\mathbf{Es})^{*}(\mathbf{h}-\mathbf{x})/(d-\mathbf{x}) = 0.001017$ Strain due to stiffening effect of concrete between cracks " $\mathbf{\epsilon}2^{"} = \epsilon_{2} = \mathbf{b}.(\mathbf{h}-\mathbf{x})^{2}/(3.\mathbf{Es}.\mathbf{As}.(\mathbf{d}-\mathbf{x}))$ for crack widths of 0.2 mm Used $\mathbf{\epsilon}_{2} = 1.5.\mathbf{b}.(\mathbf{h}-\mathbf{x})^{2}/(3.\mathbf{Es}.\mathbf{As}.(\mathbf{d}-\mathbf{x}))$ for crack widths of 0.1 mm n/a $\mathbf{\epsilon}_{2} = 0.000736$ Average strain for calculation of crack width " $\mathbf{\epsilon}_{m}$ "= $\mathbf{\epsilon}_{1}-\mathbf{\epsilon}_{2} = 0.000281$ Calculated crack width, " \mathbf{w} " = $3.\mathbf{a}_{cr}.\mathbf{\epsilon}m/(1+2.(\mathbf{a}_{cr}-\mathbf{c})/(\mathbf{h}-\mathbf{x}))$) CALCULATED CRACK WIDTH, ' \mathbf{w} ' = 0.03 mm	"(o " = As/bd =	0.003		
" Z " = d-(x/3) = 68 Reinforcement stress "fs " = Ms/(As*Z) = 139 N/mm ² Concrete stress "fc " = (fs*As)/(0.5*b*x) = 3.49 N/mm ² Strain at soffit of concrete beam/slab " ϵ_1 " = (fs/Es)*(h-x)/(d-x) = 0.001017 Strain due to stiffening effect of concrete between cracks " ϵ_2 " = $\epsilon_2 = b.(h-x)^2/(3.Es.As.(d-x))$ for crack widths of 0.2 mm Used $\epsilon_2 = 1.5.b.(h-x)^2/(3.Es.As.(d-x))$ for crack widths of 0.1 mm n/a $\epsilon_2 = 0.000736$ Average strain for calculation of crack width " ϵ_m "= ϵ_1 - $\epsilon_2 = 0.000281$ Calculated crack width, " w " = $3.a_{cr}$. $\epsilon_m/(1+2.(a_{cr}-c)/(h-x))$) CALCULATED CRACK WIDTH, 'w' = 0.03 mm	depth to neutral axis, " \mathbf{x} " = $(-\alpha.\rho + ((\alpha.\rho)^2 + (\alpha.\rho)^2)$	+ 2.α.ρ) ^{0.5} .d =	21	നന	
Reinforcement stress " fs " = Ms/(As*Z) = 139 N/mm ² Concrete stress " fc " = (fs*As)/(0.5*b*x) = 3.49 N/mm [*] Strain at soffit of concrete beam/slab " ϵ_1 " = (fs/Es)*(h-x)/(d-x) = 0.001017 Strain due to stiffening effect of concrete between cracks " ϵ_2 " = $\epsilon_2 = b.(h-x)^2/(3.Es.As.(d-x))$ for crack widths of 0.2 mm Used $\epsilon_2 = 1.5.b.(h-x)^2/(3.Es.As.(d-x))$ for crack widths of 0.1 mm n/a $\epsilon_2 = 0.000736$ Average strain for calculation of crack width " ϵ_m "= ϵ_1 - $\epsilon_2 = 0.000281$ Calculated crack width, " w " = $3.a_{cr}.\epsilon m/(1+2.(a_{cr}-c)/(h-x)))$ CALCULATED CRACK WIDTH, 'w' = 0.03 mm	"2	z " = d-(x/3) =	68		
Strain at soffit of concrete beam/slab " $\epsilon 1$ " = (fs/Es)*(h-x)/(d-x) = 0.001017 Strain due to stiffening effect of concrete between cracks " $\epsilon 2$ " = $\epsilon_2 = b.(h-x)^2/(3.Es.As.(d-x))$ for crack widths of 0.2 mm Used $\epsilon_2 = 1.5.b.(h-x)^2/(3.Es.As.(d-x))$ for crack widths of 0.1 mm n/a $\epsilon_2 = 0.000736$ Average strain for calculation of crack width " ϵ_m "= ϵ_1 - $\epsilon_2 = 0.000281$ Calculated crack width, "w" = $3.a_{cr}$. $\epsilon m/(1+2.(a_{cr}-c)/(h-x))$ CALCULATED CRACK WIDTH, 'w' = 0.03 mm	Reinforcement stress " fs " =	Ms/(As*Z) = s)/(0.5*b*y) =	139	N/mm ⁴ N/mm ⁺	
Strain due to stiffening effect of concrete between cracks " $\epsilon 2$ " = $\epsilon_2 = b.(h-x)^2/(3.Es.As.(d-x))$ for crack widths of 0.2 mm Used $\epsilon_2 = 1.5.b.(h-x)^2/(3.Es.As.(d-x))$ for crack widths of 0.1 mm n/a $\epsilon_2 = 0.000736$ Average strain for calculation of crack width " ϵ_m "= ϵ_1 - $\epsilon_2 = 0.000281$ Calculated crack width, " w " = $3.a_{cr}.\epsilon m/(1+2.(a_{cr}-c)/(h-x)))$ CALCULATED CRACK WIDTH, 'w' = 0.03 mm	Strain at soffit of concrete beam/slab " £1 " = (fs/Es))*(h-x)/(d-x) =	3.49 0.001017		
$\begin{aligned} & \epsilon_2 = b.(h-x)^2/(3.\text{Es.As.}(d-x)) \text{ for crack widths of } 0.2 \text{ mm} & \text{Used} \\ & \epsilon_2 = 1.5.b.(h-x)^2/(3.\text{Es.As.}(d-x)) \text{ for crack widths of } 0.1 \text{ mm} & n/a \\ & \epsilon_2 = 0.000736 \\ & \text{Average strain for calculation of crack width "} \epsilon_m "= \epsilon_1 - \epsilon_2 = 0.000281 \\ & \text{Calculated crack width, "} w " = 3.a_{cr} \cdot \epsilon m/(1+2.(a_{cr}-c)/(h-x)) \\ & \text{CALCULATED CRACK WIDTH, 'w' = 0.03 mm} \end{aligned}$	Strain due to stiffening effect of concrete between c	racks "			l
$\epsilon_2 = 1.5.$ D.(n-x) ⁻ /(3.ES.AS.(d-x)) for crack widths of 0.1 mm n/a $\epsilon_2 = 0.000736$ Average strain for calculation of crack width " ϵ_m "= ϵ_1 - $\epsilon_2 = 0.000281$ Calculated crack width, "w" = $3.a_{cr}$. $\epsilon m/(1+2.(a_{cr}-c)/(h-x))$ CALCULATED CRACK WIDTH, 'w' = 0.03 mm	$\varepsilon_2 = b.(h-x)^2/(3.Es.As.(d-x))$ for crack widt	hs of 0.2 mm	Used		
Average strain for calculation of crack width " ϵ_m "= ϵ_1 - ϵ_2 = 0.000281 Calculated crack width, "w" = 3.a _{cr} . $\epsilon m/(1+2.(a_{cr}-c)/(h-x))$ CALCULATED CRACK WIDTH, 'w' = 0.03 mm	$\epsilon_2 = 1.5.$ D.(h-x) ⁻ /(3.Es.As.(d-x)) for crack widt	ns ot U.1 mm *- =	n/a 0.000736		
Calculated crack width, " w " = 3.a _{cr} .ɛm/(1+2.(a _{cr} -c)/(h-x)) CALCULATED CRACK WIDTH, 'w' = 0.03 mm	Average strain for calculation of crack width "	- ε ₂ ε _m "= ε ₁ -ε ₂ =	0.000281		
CALCULATED CRACK WIDTH, 'w' = 0.03 mm	Calculated crack width, " w " = 3.acr.em/(1+2	2.(a _{cr} -c)/(h-x))			
	CALCULATED CRACK	WIDTH, 'w' =	0.03	mm	

	· · · · · · · · · · · · · · · · · · ·			
Spreadsheets to BS 8110etc CONCRETE	REINFORG	ED CONCI	RETE CO	DUNCIL
Advisory Group	Made by	Date		Page
Z-Ad/15-16 (10mm)	RC	19-Jun-	2007	33
Crack Width Calculations to BS8110: 1997/ BS8007:1987	Checked	Revision		Job No
Originated from RCC14 xis on CD @ 1999 BCA for RCC	chg	-		R68
WIDTH CALCULATIONS - FLEXURE	-			
$ \begin{array}{c c} $	fs*As) fs*As)	(0.5*fc*b	*x)	
Section Strain S	stresses/	<u>torce</u>		
	fcu= fy=	<u>30</u> <u>460</u>	N/mm ² N/mm ²	
Area of reinforcer	nent " As " =	<u>262</u>	mm ²	
	b =	1000	mm	
	d =	<u>130</u> 125	mm	
Minimum cover to tension reinforcem	nent " CO " =	20	mm	
Maxmum bar sp	acing " S " =	300	mm	
Bar	dia " DIA " =	<u>10</u>	mm	
" \mathbf{a}_{cr} " =(((S/2)^2+(CO+DIA/2)^2)^(1/2)-DIA/2) as default or enter of	other value =	<u>147.1</u>	mm	
"acr " is distance from the point considered to the surface of the	nearest long	itudinal bar	Khim	
Applied service mon	Henr MIS -	<u>5.0</u>	KINIH	
ILATIONS				
moduli of elasticity of concrete " Ec" = (1/2)*(2	0+0.2*fcu) =	13.0	KN/mm ²	
moduli of elasticity of s	steel " Es " =	200.0	KN/mm ²	
Modular ratio "α'	" = (Es/Ec) =	15.38		
ρ	= A\$/00 =	0.002		
depth to neutral axis, $\mathbf{x}^{n} = (-\alpha . \rho + ((\alpha . \rho)^{n} + (\alpha . \rho))^{n})$	2.a.p)a =	28	mm	
"7	" = d-(x/3) =	116		
	Ms/(As*Z) =	183	N/mm ²	
Concrete stress " fc " = (fs*As	s)/(0.5*b*x) =	3.44	N/mm ⁺	
Strain at soffit of concrete beam/slab " ϵ 1 " = (fs/Es)"	*(h-x)/(d-x) =	0.001154		
Strain due to stiffening effect of concrete between cr	racks " $\epsilon 2$ " =	1100-1		
$\varepsilon_2 = 0.(11-x) /(0.\pm S.AS.(0-x))$ for crack width $\varepsilon_2 = 1.5 h (h_x)^2 /(3 \text{ Fe Ae (d_x)})$ for crack width	is of 0.2 mm	used n/a		
$c_2 = 1.0.0.01$ m/o. $\pm 3.75.(0-3.9)$ for Grack With	= 82 E	0.000976		
Average strain for calculation of crack width "	ε _m "= ε ₁ -ε ₂ =	0.000177		
Calculated crack width, "w " = 3.a _{cr} .ɛm/(1+2	.(a _{cr} -c)/(h-x))			
CALCULATED CRACK	width, 'w' =	0.03	mm	

Spreadsheets to BS 8110etc REINFORCED	REINFORCED CONCRETE COUNCIL			DUNCIL
Advisory Group	Made by	Date		Page
Z-Ad/16-17 (10mm)	RC	19-Jun-2	2007	33
Crack Width Calculations to BS8110: 1997/ BS8007:1987	Checked	Revision		Job No
Originated from RCC14.xis on CD © 1999 BCA for RCC	chg			_R68
K WIDTH CALCULATIONS - FLEXURE	-			
h As As Es Es (fs*As) fs	(0.5*fc*b	*x)	
<u>Section</u> <u>Strain</u> <u>S</u>	<u>Stresses/</u>	for <u>ce</u>		
Area of reinforcer	fcu= fy= nent " As " = b = h = d =	<u>30</u> <u>460</u> <u>262</u> <u>1000</u> <u>150</u> 125	N/mm ² N/mm ² mm ² mm mm	
Minimum cover to tension reinforcen	nent " CO " =	20	mm	
Maxmum bar sp	bacing "S" =	300	mm	
Bar	dia " DIA " =	10	mm	
" a _{cr} " =(((S/2)^2+(CO+DIA/2)^2)^(1/2)-DIA/2) as default or enter of	other value =	<u>147.1</u>	mm	
"acr " is distance from the point considered to the surface of the	nearest long	itudinal bar		
Applied service mol	ment " Ms "=	<u>5.7</u>	KNm	
JLATIONS moduli of elasticity of concrete " Ec" = (1/2)*(2	20+0.2*fcu) =	13.0	KN/mm ²	1
moduli of elasticity of	steel " Es ["] =	200.0	KN/mm ²	<u>.</u>
Modular ratio " a	" = (Es/Ec) =	15.38		
"ρ 	> " = A\$/D0 =	0.002		-
depth to neutral axis, " \mathbf{x} " = (- α . ρ +((α . ρ) ² +	$(2.\alpha.\rho)^{\alpha\beta}.d =$	28	mm	
"Z	2 " = d-(x/3) =	116		
Reinforcement stress " fs " =	Ms/(As*Z) =	189	N/mm ²	
Concrete stress " tc " = (ts/As	\$)/(U.5^D^X) = *(b x)/(d x) =	3.54	N/mm-	
Strain due to stiffening effect of concrete between o	- (<i>II=A/</i> (U=A) = racke [#] ∘? [#] =	0.001.199		
$\epsilon_2 = b.(h-x)^2/(3.Es.As.(d-x))$ for crack width	hs of 0.2 mm	Used		
$\varepsilon_2 = 1.5.b.(h-x)^2/(3.Es.As.(d-x))$ for crack width	hs of 0.1 mm	n/a		
	ε ₂ =	0.000976		
Average strain for calculation of crack width "	ε _m "≌ ε ₁ -ε ₂ =	0.000213		
Calculated crack width, "w " = 3.acr.em/(1+2	?.(a _{cr} -c)/(h-x))			
CALCULATED CRACK	width, 'w =	0.03	mm	

Appendix 7: Flexural Cracking Calculation for 12mm diameter bar

Spreadsheets to BS 8110etc	REINFORCED	REINFORCED CONCRETE COUNCIL			UNCIL
Advisory Group Ad-Ae/14-18 (12mm) Crack Width Calculations to BS8110: 1997/ BS8007:15	COUNCIL	Made by RC Checked	Date 19-Jun- Revision	2007	Page 33 Job No
Originated from RCC14.xls on CD @ 1999 BCA for RCC	· · ·	chg	-		R68
WIDTH CALCULATIONS - FLEXURE		-			
h As	E c E s E s E 1	(fs*As)	(0.5*fc*b	•*X)	·
Section Stro	ain	<u>Stresses/</u>	<u>force</u>		
	ea of reinforce	fcu= fy= ment " As " = b = h = d =	30 460 377 1000 150 124	N/mm ² N/mm ² mm ² mm mm	
Minimum cover to ten: N a_{cr} " =(((S/2)^2+(CO+DIA/2)^2)^(1/2)-DIA/2) as de "acr " is distance from the point considered to the	sion reinforce laxmum bar s Ba afault or enter a surface of the	ment " CO " = pacing " S " = r dia " DIA " = other value = e nearest lonc	<u>20</u> <u>300</u> <u>12</u> <u>146.2</u> iitudinal bar	mm mm mm mm	
Appli	ed service mo	oment " Ms "=	<u>7.8</u>	KNm	
ILATIONS moduli of elasticity of concrete moduli Mc	" Ec" = (1/2)*(of elasticity of odular ratio " o "	20+0.2*fcu) = steel " Es " = t" = (Es/Ec) =	13.0 200.0 15.38	KN/mm [*] KN/mm [*]	2
depth to neutral axis, " \mathbf{x} " = \mathbf{x}	$(-\alpha.\rho + ((\alpha.\rho)^2)$	$(+ 2.\alpha.p)^{0.5}.d =$	33	mm	
Reinforcement Concrete stres Strain at soffit of concrete beam/slab	": stress " fs " = s " fc " = (fs*A " ɛ1 " = (fs/Es	Z " = d-(x/3) = : Ms/(As*Z) = .s)/(0.5*b*x) = .)*(h-x)/(d-x) =	113 182 4.22 0.001170	N/mm ² N/mm ⁻	
Strain due to stiffening effect of concr $\varepsilon_2 = b.(h-x)^2/(3.Es.As.(d-x))$ $\varepsilon_2 = 1.5.b.(h-x)^2/(3.Es.As.(d-x))$	ete between c) for crack wid) for crack wid	ths of 0.2 mm ths of 0.1 mm $\epsilon_2 =$	Used n/a 0.000667		
Average strain for calculation of	of crack width '	" e _m "= e _{1"} e ₂ =	0.000503		
Calculated crack width, * w " :	= 3.a _{cr} .em/(1+)	2.(a _{cr} -c)/(h-x))			
CALCULA		WIDTH $W =$	0.07	mm	

Spreadsheets to BS 8110etc CONCR		REINFORCED CONCRETE COUNCIL			
Advisory Group	UNCIL	Made by	Date		Page
Ae1-Af/14-18 (12mm)		RC	19-Jun-	2007	33
Crack Width Calculations to BS8110: 1997/ BS8007:1987		Checked	Revision		Job No
Originated from RCC14.xls on CD © 1999 BCA for RCC		chg	-		R68
< WIDTH CALCULATIONS - FLEXURE		-			
h As Es Es E1	((fs*As)	(0.5*fc*b 	*x)	
Section Strain	(Stresses/	force		
Area of rein	force	fcu= fy= ment " As " = b = h =	<u>30</u> <u>460</u> <u>377</u> <u>1000</u> <u>150</u>	N/mm ² N/mm ² mm ² mm	
		= b = " 00 " tree	<u>124</u>	mm	
Maxmum Cover to tension reim	orcer har sr	nent "CO" = nacing "S" =	<u>20</u> 300	mm mm	
	Bar	"dia " DIA " =	<u>12</u>	mm	
" a_{cr} " =(((S/2)^2+(CO+DIA/2)^2)^(1/2)-DIA/2) as default or e	enter	other value =	146.2	mm	
"acr " is distance from the point considered to the surface	of the	e nearest long	itudinal bar	1/ Mara	
Applied Servic	æ mo	ment wis -	<u>11.2</u>	KNIII	
JLATIONS moduli of elasticity of concrete " Ec " = (1	/2)*(2	20+0.2*fcu) =	13.0	KN/mm	2
moduli of elastic Modular rat	in " «	Steet " ES " = " = (Es/Ec) =	200.0	KN/mm	_
	ت ت ا	> " = As/bd =	0.003		
depth to neutral axis, " \mathbf{x} " = (- α . ρ +((α	ι.ρ) ² Η	+ 2.a.p) ^{0.5} .d =	33	mm	
	" Z	z" = d-(x/3) =	113		
Reinforcement stress "	fs " =	Ms/(As*Z) =	262	N/mm ²	
Concrete stress " fc " = Strain at soffit of concrete hearn/slah " s1 " = ((ts*A fe/⊑e`	\$)/(0.5*b*X) = *(b_x)/(d_x) =	6.06	N/mm-	
Strain due to stiffening effect of concrete betw	een c	racks "e2" =	0.001000		
$\epsilon_2 = b.(h-x)^2/(3.Es.As.(d-x))$ for crac $\epsilon_2 = 1.5 b.(h-x)^2/(3.Es.As.(d-x))$ for crac	k widt	hs of 0.2 mm	Used		
		ε ₂ =	0.000667		
Average strain for calculation of crack w	ridth "	$\varepsilon_m = \varepsilon_1 - \varepsilon_2 =$	0.001013		
Calculated crack width, " w " = 3.acr.en	า/(1+2	2.(a _{cr} -c)/(h-x))			
CALCULATED CR	ACK	WIDTH, W =	0.14	mm	

Spreadsheets to BS 8110etc CONCRETE	Spreadsheets to BS 8110etc REINFORCED REINFORCED CONCRETE COUNCIL			
Advisory Group	Made by	Date		Page
Ae-Ae1/14-18 (12mm)	RC	19-Jun-:	2007	33
Crack Width Calculations to BS8110: 1997/ BS8007:1987	Checked	Revision		Job No
Originated from RCC14.xis on CD @ 1999 BCA for RCC	chg			R68
WIDTH CALCULATIONS - FLEXURE	-			
h As Es E1	(fs*As)	(0.5*fc*b	*x)	
Section <u>Strain</u>	<u>Stresses/</u>	<u>force</u>		
Area of reinforce	fcu= fy= ement " As " = b = h =	<u>30</u> <u>460</u> <u>377</u> <u>1000</u> <u>150</u> 124	N/mm ² N/mm ² mm ² mm	
Ministrum anum de Anumien seinferen	= D = 1 00 1 tree	<u>124</u>	mm	
MINIMUM COVER TO TENSION REINFORCE	nent"CO =	<u>20</u> 300	mm mm	
Ba	rdia" DiA "≂	12	mm	
" acr " =(((S/2)^2+(CO+DIA/2)^2)^(1/2)-DIA/2) as default or enter	other value =	<u>146.2</u>	mm	
"acr " is distance from the point considered to the surface of the	e nearest long	itudinal bar		
Applied service mo	oment " Ms "=	<u>7.8</u>	KNm	
JLATIONS moduli of elasticity of concrete " $Ec^{*} = (1/2)^{*/}$	20+0 2*fcu) =	13.0	KN/mm	2
moduli of elasticity of moduli of elasticity of	steel " Es " =	200.0	KN/mm	2
Modular ratio " a	: " = (Es/Ec) =	15.38		
	ρ" = As/bd =	0.003		
depth to neutral axis, " x " = $(-\alpha.\rho + ((\alpha.\rho)^2 + (\alpha.\rho)^2))$	+ 2.α.ρ) ^{0.0} .d =	33	mm	
"	Z " = d-(x/3) =	113		
Reinforcement stress " fs " =	Ms/(As*Z) =	182	N/mm ²	
Concrete stress " tc " = (IS*A Strain at soffit of concrete beam/slab " c1 " = (fs/Es	\\$)/(U.5*D*X) = *(b x\/(d x) =	4.22	N/mm-	
Strain due to stiffening effect of concrete between c	γ (ιι-∧μ(u-∧) \racke " ∘9 "	0.001170		
$\epsilon_2 \simeq b.(h-x)^2/(3.Es.As.(d-x))$ for crack wid	ths of 0.2 mm	Used		
$\epsilon_2 = 1.5.b.(h-x)^2/(3.Es.As.(d-x))$ for crack wid	ths of 0.1 mm	n/a		1
	€ ₂ =	0.000667		
Average strain for calculation of crack width	"ε _m "≖ ε ₁ -ε ₂ =	0.000503		
Calculated crack width, "w"=3.acr.em/(1+	2.(a _{cr} -c)/(h-x))			
CALCULATED CRACK	WIDTH, W =	0.07	mm	

REINFORCED DE ALLO DE COLODETE COLUMNI					
Spreadsneets to b5 of fueld CONCRETE					
C-D/14-18 (12mm)	Made by RC	Date 19-Jun-j	2007	Page 33	
Crack Width Calculations to BS8110: 1997/ BS8007:1987	Checked	Revision		Job No	
Originated from RCC14.xis on CD © 1999 BCA for RCC	chg			R68	
WIDTH CALCULATIONS - FLEXURE	-				
b c	fa				
h As NEUTRAL AXIS	fs * As)	(0.5*fc*b	*χ)		
	fs	<u>L</u>			
Section Strain S	Stresses/	force			
Area of reinforcer	fcu= fy= nent " As " = b = h = d =	<u>30</u> <u>460</u> <u>503</u> <u>1000</u> <u>100</u> <u>74</u>	N/mm ² N/mm ² mm ² mm mm		
Minimum cover to tension reinforcen Maxmum bar sp Bar " a _{cr} " ≃(((S/2)^2+(CO+DIA/2)^2)^(1/2)-DIA/2) as default or enter o "acr " is distance from the point considered to the surface of the Applied service mon	nent " CO " = bacing " S " = dia " DIA " = other value = nearest long ment " Ms "=	<u>20</u> <u>225</u> <u>12</u> <u>109.5</u> itudinal bar <u>4.0</u>	mm mm mm mm KNm		
JLATIONS					
moduli of elasticity of concrete " Ec " = (1/2)*(2 moduli of elasticity of a Modular ratio " α " ρ	20+0.2*fcu) = steel " Es " = " = (Es/Ec) = o " = As/bd =	13.0 200.0 15.38 0.007	KN/mm ² KN/mm ²		
depth to neutral axis, " \mathbf{x} " = (- α . ρ +((α . ρ) ² +	- 2.α.ρ) ^{0.5} .d =	27	mm	-	
" Z Reinforcement stress " fs " = Concrete stress " fc " = (fs*As Strain at soffit of concrete beam/slab " ε1 " = (fs/Es)	L" = d-(x/3) = Ms/(As*Z) = s)/(0.5*b*x) = *(h-x)/(d-x) =	65 123 4.60 0.000957	N/mm² N/mm*		
Strain due to stiffening effect of concrete between ce $\epsilon_2 = b.(h-x)^2/(3.Es.As.(d-x))$ for crack width $\epsilon_2 = 1.5.b.(h-x)^2/(3.Es.As.(d-x))$ for crack width	racks " $\epsilon 2$ " = hs of 0.2 mm hs of 0.1 mm $\epsilon_2 =$	Used n/a 0.000376			
Average strain for calculation of crack width "	ε _m "= ε ₁ -ε ₂ =	0.000581			
Calculated crack width, "w" = 3.a _{cr} .em/(1+2	2.(a _{cr} -c)/(h-x))				
CALCULATED CRACK	width, 'w =	0.06	mm		

		<u></u>		1
Spreadsheets to BS 8110etc CONCRETE	REINFORG	ED CONCR	RETE CO	DUNCIL
Advisory Group	Made by	Date		Page
D-E/14-18 (12mm)	RC	19-Jun-2	2007	33
Crack Width Calculations to BS8110: 1997/ BS8007:1987	Checked	Revision		Job No
Originated from RCC14.xis on CD © 1999 BCA for RCC	chg	-		R68
WIDTH CALCULATIONS - FLEXURE	-			
<u>b</u>				
h d NEUTRAL AXIS	f _c	(0.5*fc*b	*x)	
$\begin{array}{c} As \\ \bullet \bullet \bullet \\ $	fs (<u>•</u>		
<u>Section</u> <u>Strain</u> S	Stresses/	force		
	fcu=	30	N/mm ²	
	fy=	460	N/mm ²	
Area of reinforcer	nent " As " =	377	mm ²	
	U	1000	mm	
	n – d =	99	mm	
Minimum cover to tension reinforcen	nent " CO " =	<u>20</u>	mm	
Maxmum bar sp	bacing "S"=	<u>300</u>	mm	
	dia " DIA " =	<u>12</u>	mm	
$a_{cr} = -(((S/2)^2 + (CO+D/A/2)^2)^*(1/2) - D/A/2)$ as delault of enter C	nearest long	itudinal har	11111	
Applied service mon the point considered to the salitace of the	ment " Ms "=	5.0	KNm	
		_		
JLATIONS				,
moduli of elasticity of concrete " Ec" = (1/2)*(2	20+0.2*fcu) =	13.0	KN/mm ⁴	2
Modular ratio " α	" = (Es/Ec) =	200.0	NINTERI	
۳ ۵	• " = As/bd =	0.004		
depth to neutral axis, " x " = $(-\alpha.\rho + ((\alpha.\rho)^2 +$	$(2.\alpha.\rho)^{0.5}.d =$	29	mm	-
"7	= (-(x/3) =	89		
Reinforcement stress " fs " =	Ms/(As*Z) =	148	N/mm ²	
Concrete stress " fc " = (fs*As	s)/(0.5*b*x) =	3.91	N/mm*	
Strain at some of concrete beam/slab " £1 " = (fs/Es)	^(N-X)/(0-X) =	0.001015		
Strain due to stittening effect of concrete between class = $h(h-x)^2/(3 \text{ Fs As }(d-x))$ for crack width	TACKS $cz =$	lised		
$\epsilon_2 = 1.5.b.(h-x)^2/(3.Es.As.(d-x))$ for crack width	hs of 0.1 mm	n/a		
Average strain for calculation of crack width "	ε ₂ = ε _m "= ε ₁ -ε ₂ =	0.000584 0.000431		
Coloulated crack width "w"- 2 a cm//4+0) (a _n)//h v))			
Calculated Grack with $W = 3.4 \text{ gr}$. SHI(172		0.07		
CALCULATED CRACK	vvi∪1H, W =	0.05	mm	

Spreadsheets to BS 8110etc REINFORCED	REINFORCED CONCRETE COUNCIL			
Advisory Group	Made by	Date		Page
E-G/14-18 (12mm)	RC	19-Jun-2	2007	33
Crack Width Calculations to BS8110: 1997/ BS8007:1987	Checked	Revision		Job No
Originated from RCC14.xis on CD © 1999 BCA for RCC	chg			R68
WIDTH CALCULATIONS - FLEXURE	_			
$ \begin{array}{c c} $	fs*As)	(0.5*fc*b	*x)	
Section Strain S	Stresses/	'force		
Area of reinforcer	fcu= fy= nent " As " = b = h =	<u>30</u> <u>460</u> <u>377</u> <u>1000</u> <u>125</u> 20	N/mm ² N/mm ² mm ² mm	
Minimum power to topology reinforcer	= 0 = "00" too	<u>30</u>	mm	
Maxmum bar so	acing "S" =	<u>20</u> 300	mm	
Bar	dia " DIA " =	<u>12</u>	mm	
" a_{cr} " =(((S/2)^2+(CO+DIA/2)^2)^(1/2)-DIA/2) as default or enter of	other value =	146.2	mm	
"acr " is distance from the point considered to the surface of the	nearest long	itudinal bar		
Applied service mor	ment " Ms "=	<u>9.9</u>	KNm	
moduli of elasticity of concrete " Ec" = (1/2)*(2	20+0.2*fcu) =	13.0	KN/mm ⁱ	2
moduli of elasticity of	steel " Es " ≃	200.0	KN/mm ²	2
Modular ratio " α	" = (Es/Ec) = " = As/bd =	15.38		
depth to neutral axis. "x" = $(-\alpha, \rho + ((\alpha, \rho)^2 + \beta))^2$	$(2,\alpha,\alpha)^{0.5}$.d =	29	mm	
astra a contract of (art. (art.)	p, :=			
"Ζ	." = d-(x/3) =	89	2	
Reinforcement stress " fs " = Concrete stress " fc " = (fs*As	Ms/(As*Z) = s)/(0.5*b*x) =	294 7 76	N/mm ⁺	
Strain at soffit of concrete beam/slab " £1 " = (fs/Es)	*(h-x)/(d-x) =	0.002013		
Strain due to stiffening effect of concrete between cr	racks " e2 " =			
$\varepsilon_2 = b.(h-x)^2/(3.Es.As.(d-x))$ for crack width	hs of 0.2 mm	Used		
$\varepsilon_2 = 1.5.D.(\Pi - X)^{-1}(3.\pm S.AS.(d-X))$ for crack width	ns of 0.1 mm	n/a 0.000584		
Average strain for calculation of crack width "	ε _m "≡ ε ₁ -ε ₂ =	0.001430		
Calculated crack width, " w " = 3.a _{cr} .εm/(1+2	(a _{cr} -c)/(h-x))			
CALCULATED CRACK	width, 'w' =	0.17	mm	

Spreadsheets to BS 8110etc REINFORCED	REINFORCED CONCRETE COUNC			DUNCIL
Advisory Group G-J/14-18 (12mm)	Made by RC	Date 19-Jun-	2007	Page 33
Crack Width Calculations to BS8110: 1997/ BS8007:1987	Checked	Revision		Job No
Originated from RCC14.xis on CD © 1999 BCA for RCC	chg			R68
K WIDTH CALCULATIONS - FLEXURE	-			
h As Es Es Es Es	fs*As)	(0.5*fc*b	•*X)	
Section Strain S	Stresses/	force		
Area of reinforcer Area of reinforcer Minimum cover to tension reinforcer Maxmum bar sp	fcu= fy= ment " As " = b = h = d = nent " CO " = bacing " S " =	30 460 377 1000 125 99 20 300	N/mm ² N/mm ² mm ² mm mm mm mm	
" acr " =(((S/2)^2+(CO+DIA/2)^2)^(1/2)-DIA/2) as default or enter of	other value =	146.2	mm	
"acr " is distance from the point considered to the surface of the Applied service mo	e nearest long ment " Ms "=	itudinal bar <u>9.6</u>	KNm	
ULATIONS moduli of elasticity of concrete " Ec " = (1/2)*(2 moduli of elasticity of Modular ratio " α	20+0.2*fcu) = steel " Es " = " = (Es/Ec) = o " = As/bd =	13.0 200.0 15.38 0.004	KN/mm KN/mm	2 2
depth to neutral axis, " x " = $(-\alpha . \rho + ((\alpha . \rho)^2 + (\alpha . \rho)^2))$	$(2.\alpha.\rho)^{0.0}.d =$	29	mm	
" Z Reinforcement stress " fs " = Concrete stress " fc " = (fs*A Strain at soffit of concrete beam/slab " ε1 " = (fs/Es)	L" = d-(x/3) = Ms/(As*Z) = s)/(0.5*b*x) = 1*(h-x)/(d-x) =	89 285 7.53 0.001954	N/mm² N/mm²	
Strain due to stiffening effect of concrete between c	racks " $\epsilon 2$ " =	licod		
$\epsilon_2 = 1.5.b.(h-x)^2/(3.Es.As.(d-x))$ for crack widt	hs of 0.1 mm	n/a		
Average strain for calculation of crack width "	ε ₂ = ε _m "≖ ε ₁ -ε ₂ =	0.000584		
Calculated crack width. "w" = $3.a_{}\epsilon m/(1+2)$	2.(a _{cr} -c)/(h-x))			
CALCULATED CRACK	width, 'w' =	0.17	mm	

Spreadsheets to BS 8110etc CONCRETE	REINFORCED CONCRETE COUNCI			
Advisory Group	Made by	Date	• • •,••,••,•	Page
J-K/14-18 (12mm)	RC	19-Jun-	2007	33
Crack Width Calculations to BS8110: 1997/ BS8007:1987	Checked	Revision		Job No
Originated from RCC14.xis on CD © 1999 BCA for RCC	chg	-		R68
< WIDTH CALCULATIONS - FLEXURE	-			
h As Es Es E1	(fs*As)	(0.5*fc*b	*x)	
Section Strain	<u>Stresses/</u>	'force		
Area of reinforce	fcu= fy= ment " As " = b = h = d =	<u>30</u> <u>460</u> <u>377</u> <u>1000</u> <u>125</u> 99	N/mm ² N/mm ² mm ² mm mm	
Minimum cover to tension reinforcer Maxmum bar s Bar	ment " CO " = pacing " S " = r dia " DIA " =	<u>20</u> <u>300</u> <u>12</u>	mm mm mm	
" a_{cr} " =(((S/2)^2+(CO+DIA/2)^2)^(1/2)-DIA/2) as default or enter	other value =	<u>146.2</u>	mm	
"acr " is distance from the point considered to the surface of the Applied service mo	e nearest long ment " Ms "=	itudinal bar <u>9.6</u>	KNm	
moduli of elasticity of concrete " Ec" = (1/2)*(moduli of elasticity of Modular ratio " α	20+0.2*fcu) = steel " Es " = " = (Es/Ec) = p " = As/bd =	13.0 200.0 15.38 0.004	KN/mm KN/mm	2
depth to neutral axis, " x " = $(-\alpha.\rho + ((\alpha.\rho)^2 + (\alpha.\rho)^2))$	+ 2.a.p) ^{0.5} .d =	29	mm	
Reinforcement stress " fs " = Concrete stress " fc " = (fs /Es Strain at soffit of concrete beam/slab " ε1 " = (fs /Es	Z " = d-(x/3) = Ms/(As*Z) = s)/(0.5*b*x) =)*(h-x)/(d-x) =	89 285 7.53 0.001954	N/mm² N/mm²	
Strain due to stimening effect of concrete between c $\epsilon_2 = b.(h-x)^2/(3.Es.As.(d-x))$ for crack widi	tracks " $\epsilon \mathbf{Z}$ " = ths of 0.2 mm	Used		
Average strain for calculation of crack width	ε ₂ = ε ₂ =	0.000584		
Calculated crack width, "w" = $3.a_{cr}.\epsilon m/(1+2)$				
CALCULATED CRACK	WIDTH. 'w' =	0.17	ភាព	

Spreadsheets to BS 8110etc CONCRETE	REINFORCED CONCRETE COUNCI			
Advisory Group	Made by	Date		Page
K-M/14-18 (12mm)	RC	19-Jun-:	2007	33
Crack Width Calculations to BS8110: 1997/ BS8007:1987	Checked	Revision		Job No
Originated from RCC14.xts on CD © 1999 BCA for RCC	chg			R68
K WIDTH CALCULATIONS - FLEXURE	-			
$\begin{array}{c c} & & & \\ &$	(fs*As)	(0.5*fc*b z	*x)	
Section Strain S	Stresses/	force		
Area of reinforces	fcu= fy= ment " As " = b = h =	<u>30</u> 460 566 1000 150	N/mm ² N/mm ² mm ² mm	
	d =	<u>124</u>	mm	
Minimum cover to tension reinforcen	nent " CO " = $\frac{1}{2}$	<u>20</u>	mm	
Bar	dia " DIA " =	12	mm	
" acr " =(((S/2)^2+(CO+DIA/2)^2)^(1/2)-DIA/2) as default or enter of	other value =	<u>97.3</u>	mm	
"acr " is distance from the point considered to the surface of the	nearest long	itudinal bar		
Applied service mo	ment " Ms "=	<u>17.5</u>	KNm	
ULATIONS moduli of elasticity of concrete " Ec" = (1/2)*(2	20+0.2*fcu) =	13.0	KN/mm ²	2
moduli of elasticity of	steel " Es [°] ≍	200.0	KN/mm ²	2
Modular ratio " a	" = (Es/Ec) =	15.38		
depth to neutral axis, " x " = $(-\alpha.\rho + ((\alpha.\rho)^2 + (\alpha.\rho)^2)$	$-Asibu = 2.\alpha.\rho)^{0.5}.d =$	0.005 39	mm	
" z Reinforcement stress " fs " = Concrete stress " fc " = (fs*As Strain at soffit of concrete beam/slab " ɛ1 " = (fs/Es)	L" = d-(x/3) = Ms/(As*Z) = s)/(0.5*b*x) = *(h-x)/(d-x) =	111 279 8.18 0.001818	N/mm² N/mm²	
Strain due to stiffening effect of concrete between c $\epsilon_2 = b.(h-x)^2/(3.Es.As.(d-x))$ for crack widt $\epsilon_2 = 1.5.b.(h-x)^2/(3.Es.As.(d-x))$ for crack widt	racks " ɛ2 " = hs of 0.2 mm hs of 0.1 mm	Used n/a 0.000/28		
Average strain for calculation of crack width "	ε _m "≝ ε ₁ -ε ₂ =	0.001390		
Calculated crack width, "w " = 3.acr. Em/(1+2	?.(a _{cr} -c)/(h-x))			
CALCULATED CRACK	width, 'w' =	0.17	mm	

Spreadsheets to BS 8110etc REINFORCED				UNCIL
Advisory Group	Made by	Date		Page
M-P/14-18 (12mm)	RC	19-Jun-2	2007	33
Crack Width Calculations to BS8110: 1997/ BS8007:1987	Checked	Revision		Job No
Originated from RCC14.xls on CD © 1999 BCA for RCC	chg	-		R68
K WIDTH CALCULATIONS - FLEXURE	-			
$\begin{array}{c c} & & & \\ &$	fs*As)	(0.5*fc*b	*x)	
<u>Section</u> <u>Strain</u> S	Stresses/	[/] force		
Area of reinforcer	fcu= fy= ment " As " = b = h = d =	30 460 566 1000 150	N/mm ² N/mm ² mm ² mm	
Minimum cover to tension reinfercen	= 0 - " 00 " tooo	<u>124</u> 20	mm	
Maxmum bar sc	bacing "S" =	200	mm	
Bar	dia " DIA " =	12	mm	
" a _{cr} " =(((S/2)^2+(CO+DIA/2)^2)^(1/2)-DIA/2) as default or enter of	other value =	<u>97.3</u>	mm	
"acr " is distance from the point considered to the surface of the	e nearest long	itudinal bar	KAIm	
Applied service mo	ment wis -	<u>17.5</u>	KINIII	
JLATIONS moduli of elasticity of concrete " Ec " = (1/2)*(2 moduli of elasticity of	20+0.2*fcu) =	13.0 200.0	KN/mm ² KN/mm ²	2
Modular ratio " α	" = (Es/Ec) =	200.0 15.38	1714111111	
۹ "	> " = As/bd =	0.005		
depth to neutral axis, " \mathbf{x} " = (- α . ρ +((α . ρ) ² +	- 2.α.ρ) ^{0.5} .d =	39	mm	
" 2	L " = d-(x/3) =	111		
Reinforcement stress " fs " = Concrete stress " fc " = (fs*A:	Ms/(As*∠) = s)/(0.5*b*x) =	279 8 18	N/mm ⁻	
Strain at soffit of concrete beam/slab " £1 " = (fs/Es)	*(h-x)/(d-x) =	0.001818		
Strain due to stiffening effect of concrete between c $\epsilon_2 = b.(h-x)^2/(3.Es.As.(d-x))$ for crack widt $\epsilon_2 = 1.5.b.(h-x)^2/(3.Es.As.(d-x))$ for crack widt	racks " ɛ 2 " = hs of 0.2 mm hs of 0.1 mm	Used n/a		
Average strain for calculation of crack width "	ε ₂ = ε _m "= ε ₁ -ε ₂ =	0.000428		
Calculated crack width, "w" = $3.a_{cr.}\epsilon m/(1+2)$	2.(a _{cr} -c)/(h-x))			
CALCULATED CRACK	WIDTH, 'w' =	0.17	mm	

Spreadsheets to BS 8110etc REINFORCED	REINFORC	ED CONCI	RETE CO	DUNCIL
Advisory Group	Made by	Date		Page
P-R/14-18 (12mm)	RC	19-Jun-	2007	33
Crack Width Calculations to BS8110: 1997/ BS8007:1987	Checked	Revision		Job No
Originated from RCC14.xls on CD © 1999 BCA for RCC	chg		<u> </u>	R68
< WIDTH CALCULATIONS - FLEXURE	-			
h As Es E1	(fs*As)	(0.5*fc*b	*x)	
Section Strain	<u>Stresses/</u>	force		
Area of reinforce	fcu= fy= ment " As " = b = h = d =	<u>30</u> 460 377 1000 125 99	N/mm ² N/mm ² mm ² mm mm	
Minimum cover to tension reinforcer Maxmum bar s Bar " a _{cr} " =(((S/2)^2+(CO+DIA/2)^2)^(1/2)-DIA/2) as default or enter	ment " CO " = pacing " S " = r dia " DIA " = other value =	20 300 12 146.2	mm mm mm mm	
"acr " is distance from the point considered to the surface of the Applied service mo	e nearest long pment " Ms "=	itudinal bar <u>9.6</u>	KNm	
JLATIONS				
moduli of elasticity of concrete " Ec " = (1/2)*(moduli of elasticity of Modular ratio " α "	20+0.2*fcu) = steel " Es " = z" = (Es/Ec) = ρ" = As/bd =	13.0 200.0 15.38 0.004	KN/mm [*] KN/mm [*]	2
depth to neutral axis, "x" = $(-\alpha.\rho + ((\alpha.\rho)^2 - (\alpha.\rho)^2))$	+ 2.a.p) ^{0.5} .d =	29	mm	
Reinforcement stress " fs " =	Z " = d-(x/3) = = Ms/(As*Z) = .s)/(0.5*b*x) =	89 285 7.53	N/mm² N/mm²	
	14/1 1 // / .	0.004054		
Strain at soffit of concrete beam/slab " ϵ 1 " = (fs/Es Strain due to stiffening effect of concrete between c $\epsilon_2 = b.(h-x)^2/(3.Es.As.(d-x))$ for crack wide)*(h-x)/(d-x) = xracks " ɛ 2 " = ths of 0.2 mm	Used		
Strain at soffit of concrete beam/slab " $\epsilon 1$ " = (fs/Es Strain due to stiffening effect of concrete between c $\epsilon_2 = b.(h-x)^2/(3.Es.As.(d-x))$ for crack wide $\epsilon_2 = 1.5.b.(h-x)^2/(3.Es.As.(d-x))$ for crack wide	(h-x)/(d-x) = cracks " $\epsilon 2$ " = ths of 0.2 mm ths of 0.1 mm $\epsilon_2 =$	Used n/a 0.000584		
Strain at soffit of concrete beam/slab " ϵ 1 " = (fs/Es Strain due to stiffening effect of concrete between c $\epsilon_2 = b.(h-x)^2/(3.Es.As.(d-x))$ for crack wid $\epsilon_2 = 1.5.b.(h-x)^2/(3.Es.As.(d-x))$ for crack widt Average strain for calculation of crack width ')*(h-x)/(d-x) = cracks " $\epsilon 2$ " = ths of 0.2 mm ths of 0.1 mm ϵ_2 = " ϵ_m "= ϵ_1 - ϵ_2 =	Used n/a 0.000584 0.001371		
Strain at soffit of concrete beam/slab " ϵ 1 " = (fs/Es Strain due to stiffening effect of concrete between c $\epsilon_2 = b.(h-x)^2/(3.Es.As.(d-x))$ for crack wid $\epsilon_2 = 1.5.b.(h-x)^2/(3.Es.As.(d-x))$ for crack wid Average strain for calculation of crack width ' Calculated crack width, " w " = $3.a_{cr}.\epsilonm/(1+2)$	(h-x)/(d-x) = tracks " $\epsilon 2$ " = ths of 0.2 mm ths of 0.1 mm $\epsilon_2 =$ " ϵ_m "= $\epsilon_1 - \epsilon_2 =$ 2.(a_{cr} -c)/(h -x))	Used n/a 0.000584 0.001371		

Spreadsheets to BS 8110etc CONCRETE				
Advisory Group	Made by	Date		Page
R-T/14-18 (12mm)	RC	19-Jun-2	2007	33
Crack Width Calculations to BS8110: 1997/ BS8007:1987	Checked	Revision		Job No
Originated from RCC14.xis on CD © 1999 BCA for RCC	chg	-		R68
< WIDTH CALCULATIONS - FLEXURE	-			
h As Es E1	(fs*As)	(0.5*fc*b	*x)	
Section Strain	<u>Stresses/</u>	force		
Area of reinforce	fcu= fy= ment " As " = b = h =	<u>30</u> <u>460</u> <u>377</u> <u>1000</u> <u>125</u> 20	N/mm ² N/mm ² mm ² mm mm	•
Minimum anun in inning reinforma	= D = 11 00 11 teor	<u>99</u>	mm	
Marmum bar si	nent CO -	<u>20</u> 300	mm	
Ba	dia " DIA " =	12	mm	
" a_{cr} " =(((S/2)^2+(CO+DIA/2)^2)^(1/2)-DIA/2) as default or enter	other value =	146.2	mm	
"acr " is distance from the point considered to the surface of the	e nearest long	itudinal bar		
Applied service mo	ment " Ms "=	<u>9.6</u>	KNm	
JLATIONS moduli of elasticity of concrete " Ec" = (1/2)*(20+0 2*fcu) =	13.0	KN/mm ²	2
moduli of elasticity of	steel " Es " =	200.0	KN/mm ²	2
Modular ratio " a	" = (Es/Ec) =	15.38		
" 	p " = As/bd =	0.004		
depth to neutral axis, " \mathbf{x} " = $(-\alpha.\rho + ((\alpha.\rho)^2 - \alpha.\rho)^2)$	+2.α.ρ)°. .d =	29	mm	
	7 " = d-(x/3) =	89		
Reinforcement stress " fs " =	Ms/(As*Z) =	285	N/mm ²	
Concrete stress " fc " = (fs*A	s)/(0.5*b*x) =	7.53	N/mm*	
Strain at soffit of concrete beam/slab " ϵ 1 " = (fs/Es)*(h-x)/(d-x) =	0.001954		
Strain due to stiffening effect of concrete between $c_{s_{-}} = b (h_{-}v)^{2}/(3 \text{ Ee Ae} (d_{-}v))$ for creat width	racks " $\epsilon 2$ " = ths of 0.2 mm	llead		
$\epsilon_2 = 0.(1-x) / (0.Es.As.(d-x))$ for crack wide $\epsilon_2 = 1.5.b.(h-x)^2 / (3.Es.As.(d-x))$ for crack wide	ths of 0.1 mm	n/a		
	8 ₂ =	0.000584		
Average strain for calculation of crack width '	'ε _m "≖ε ₁ -ε₂ =	0.001371		
Calculated crack width, "w " = 3.acr.em/(1+2	2.(a _{cr} -c)/(h-x))			
CALCULATED CRACK	WIDTH, 'w' =	0.17	mm	

Spreadsheets to BS 8110etc CONCRET	REINFORCED CONCRETE COUNCI			
Advisory Group	Made by	Date	Page	
T-V/14-18 (12mm)	RC	19-Jun-	2007 33	
Crack Width Calculations to BS8110: 1997/ BS8007:1987	Checked	Revision	Job No	
Originated from RCC14,xis on CD © 1999 BCA for RCC	chg	-	R68	
<pre>< WIDTH CALCULATIONS - FLEXURE</pre>	-	·····		
$\begin{array}{c c} & & & \\ &$	(fs*As) (fs*As)	z	*x)	
<u>Section</u> <u>Strain</u>	<u>Stresses</u>	<u>/force</u>		
Area of reinford	fcu= fy= cement " As " = b = h = d =	= 30 = 460 = 377 = 1000 = 125 = 99	N/mm ² N/mm ² mm ² mm mm	
Minimum cover to tension reinforc	ement " CO " =	= 20	mm	
Maxmum bar	spacing "S" =	= 300	mm	
B	ar dia " DIA " =	<u>12</u>	mm	
" a_{cr} " =(((S/2)^2+(CO+DIA/2)^2)^(1/2)-DIA/2) as default or enter	r other value =	<u>146.2</u>	mm	
"acr " is distance from the point considered to the surface of the	he nearest lon	gitudinal bar	Kb2	
Applied service in	IOMENT MIS -	- <u>9.9</u>	KNM	
ULATIONS moduli of elasticity of concrete " Ec " = (1/2)	*(20+0.2*fcu) =	= 13.0	KN/mm ²	
moduli of elasticity of	of steel " Es " =	= 200.0	KN/mm ²	
Modular ratio "	α " = (Es/Ec) = " ρ " = As/bd =	= 15.38 = 0.004		
depth to neutral axis, " \mathbf{x} " = (- α . ρ +((α . ρ)"	* + 2.α.ρ)°~.d =	= 29	mm	
	" Z " = d-(x/3) =	- 89		
Reinforcement stress " fs "	= Ms/(As*Z) =	= 294	N/mm ²	
Concrete stress " fc " = (fs*	'As)/(0.5*b*x) =	7.76	N/mm ⁺	
Strain at some of concrete beam/siab $\epsilon_1 = (rs/E)$:s)"(n-x)/(a-x) =	= 0.002013 -		
Strain due to stimening effect of concrete between $\epsilon_{r} = b (h-x)^2/(3 \text{ Fs As } (d-x))$ for crack wi	dths of 0.2 mm	- 1 Used		
$\epsilon_2 = 1.5.b.(h-x)^2/(3.Es.As.(d-x))$ for crack wi	dths of 0.1 mn	1 n/a		
Average strain for calculation of crack width	ε ₂ : ε _m "= ε ₁ -ε ₂ :	= 0.000584 = 0.001430		
Calculated crack width. " w " = 3.aem/l1	+2.(a,,-c)/(h-x))		
CALCULATED CRAC	K WIDTH W	- = 0.17	mm	

Spreadsheets to BS 8110etc CONCRETE	REINFORG	CED CONCI	RETE CO	DUNCIL
Advisory Group	Made by	Date	· · · · ·	Page
V-W1/14-18 (12mm)	RC	19-Jun-	2007	33
Crack Width Calculations to BS8110: 1997/ BS8007:1987	Checked	Revision		Job No
Originated from RCC14.xis on CD @ 1999 BCA for RCC	chg			R68
K WIDTH CALCULATIONS - FLEXURE	-		:	
h h As Es Es Es En	(fs*As) fs	(0.5*fc*b	*x)	
<u>Section</u> <u>Strain</u>	<u>Stresses/</u>	force		
Area of reinforce	fcu= fy= ment " As " = b = h = d =	$ \frac{30}{460} \\ \frac{377}{1000} \\ \frac{125}{99} $	N/mm ² N/mm ² mm ² mm mm	
Minimum cover to tension reinforcen Maxmum bar sp Bar	nent " CO " = bacing " S " = dia " DIA " =	20 300 12	mm mm mm	
" a _{cr} " =(((S/2)"2+(CO+DIA/2)"2)"(1/2)-DIA/2) as default or enter "acr " is distance from the point considered to the surface of the Applied service mo	oiner value = nearest long ment " Ms "=	<u>146.2</u> itudinal bar 10 3	MM	
סוו שמאשט שטווקקר		10.0	1 (1 42 11	
JLATIONS moduli of elasticity of concrete " Ec " = (1/2)*(2 moduli of elasticity of Modular ratio " α	20+0.2*fcu) = steel " Es " = " = (Es/Ec) =	13.0 200.0 15.38	KN/mm [*] KN/mm [*]	2
denth to neutral axis " \mathbf{x} " = (- $\alpha \circ \pm ((\alpha \circ)^2 + ((\alpha \circ)^2))$	$-2\alpha a^{0.5} d =$	0.004 20	mm	
depin to neutral axis, $\mathbf{X} = (-\alpha, p + ((\alpha, p))^{-4}$	$Z^{*} = d_{-}(x/3) = Me/(\Delta s^{*}7) = 0$	29 89 305	mm N/mm ²	
Concrete stress " fc " = (fs*A: Strain at soffit of concrete beam/slab " ɛ1 " = (fs/Es)	s)/(0.5*b*x) =)*(h-x)/(d-x) =	8.04 0.002086	N/mm ⁺	
Strain due to stiffening effect of concrete between c $\epsilon_2 = b.(h-x)^2/(3.Es.As.(d-x))$ for crack widt $\epsilon_2 = 1.5.b.(h-x)^2/(3.Es.As.(d-x))$ for crack widt Average strain for calculation of crack width "	racks " $\varepsilon 2$ " = hs of 0.2 mm hs of 0.1 mm ε_2 = ε_m "= ε_1 - ε_2 =	Used n/a 0.000584 0.001503		
Calculated crack width, " w " = 3.acr.em/(1+2	2.(a _{cr} -c)/(h-x))			
CALCULATED CRACK	WIDTH, ' w ' =	0.18	mm	

Spreadsheets to BS 8110etc	REINFORCED CONCRETE	REINFORCED CONCRETE COUNCIL			
Advisory Group	COUNCIL	Made by	Date		Page
W1-Y/14-18 (12mm)		RC	19-Jun-	2007	33
Crack Width Calculations to BS8110: 1997/ BS8007:19	87	Checked	Revision		Job No
Originated from RCC14.xis on CD © 1999 BCA for RCC		chg	-		R68
K WIDTH CALCULATIONS - FLEXURE		-			
As NEUTRAL AXIS	ε _s ε ₁	(fs*As) fs	(0.5*fc*b	*x)	
<u>Section</u> <u>Strc</u>	<u>iin</u>	Stresses/	'force	·	
Are	a of reinforce	fcu= fy= ment " As " = b = h =	<u>30</u> <u>460</u> <u>377</u> <u>1000</u> <u>125</u>	N/mm ² N/mm ² mm ² mm mm	
		d =	<u>99</u>	mm	
Minimum cover to tens	ion reinforcer	nent " CO " =	<u>20</u>	mm	
· · · · · · · · · · · · · · · · · · ·	axmum bar sp Bar	acing 5 − "dia " Di∆ " =	<u>300</u> 12	(IIII) mm	
" acr " =(((S/2)^2+(CO+DIA/2)^2)^(1/2)-DIA/2) as de	fault or enter	other value =	<u>146 2</u>	mm	
"acr " is distance from the point considered to the	surface of the	e nearest long	itudinal bar		1
Applie	ed service mo	ment " Ms "=	<u>10.4</u>	KNm	
JLATIONS moduli of elasticity of concrete "	Ec" = (1/2)*(2	20+0.2*fcu) =	13.0	KN/mm ²	2
moduli c Mo	n elasticity of dular ratio " a	steet Es =	200.0	NIMIT	
	"I	o" = As/bd =	0.004		
depth to neutral axis, "x" = (-a.p +((a.p) ² +	+ 2.a.p) ^{0.5} .d =	29	mm	
		z " = d-(x/3) =	89		
Reinforcement	stress " fs " =	Ms/(As*Z) = s)/(0.5*b*x) =	308 8 1 2	N/mm ²	
Strain at soffit of concrete beam/slab	'ε1 " = (fs/Es))*(h-x)/(d-x) =	0.002107		
Strain due to stiffening effect of concre	ete between c	racks " ɛ 2 " =			
$\varepsilon_2 = b.(h-x)^2/(3.Es.As.(d-x))$	for crack widt	hs of 0.2 mm	Used		
$\epsilon_2 = 1.5.b.(h-x)^2/(3.Es.As.(d-x))$	tor crack wid	ns of 0.1 mm	n/a 0.000594		
Average strain for calculation of	f crack width "	י= ₂ 1€m ^{יי} ≡ 11-€2 =	0.001523		
Calculated crack width, " w " =	3.a _{cr} .em/(1+2	2.(a _{cr} -c)/(h-x))			
CALCULA	TED CRACK	WIDTH, 'w' =	0.18	mm	
		-			

. .

	<u> </u>			
Spreadsheets to BS 8110etc CONCRETE	REINFOR		RETE CO	UNCIL
Advisory Group	Made by	Date		Page
Y-Ad/14-15 (12mm)	RC.	19-Jun-2	2007	33
Crack Width Calculations to BS8110: 1997/ BS8007:1987	Checked	Revision		Job No
Originated from RCC14.xis on CD @ 1999 BCA for RCC	chg			
K WIDTH CALCULATIONS - FLEXURE	-			
h As Es Es E1	(fs*As)	(0.5*fc*b	*x)	
Section Strain	<u>Stresses</u> ,	force		
Area of reinforce Area of reinforce Minimum cover to tension reinforcer Maxmum bar s	fcu= fy= ment " As " = b = h = d = nent " CO " = pacing " S " =	30 460 377 1000 150 124 20 300	N/mm ² N/mm ² mm ² mm mm mm mm	
68 (۲) م (۲)	r dia " DIA " = other value =	<u>12</u> 146.2	mm	
"acr " is distance from the point considered to the surface of the	e nearest lond	itudinal bar	11111	
Applied service mo	ment " Ms "=	<u>2.2</u>	KNm	
••				
JLATIONS moduli of elasticity of concrete " Ec" = (1/2)*(2 moduli of elasticity of Modular ratio " α	20+0.2*fcu) = steel " Es " = " = (Es/Ec) = o " = As/bd =	13.0 200.0 15.38 0.003	KN/mm² KN/mm²	
depth to neutral axis. "x" = $(-\alpha, \rho + ((\alpha, \rho)^2)$	+ $2.\alpha.0$) ^{0.5} .d =	33	mm	
"2	Z " = d-(x/3) =	113	• • • ·	
Reinforcement stress " fs " = Concrete stress " fc " = (fs*A	= Ms/(As*Z) = s)/(0.5*b*x) =	52 1.20	N/mm ⁺ N/mm ⁺	
Strain at soffit of concrete beam/slab " ϵ 1 " = (fs/Es))*(h-x)/(d-x) =	0.000333		
Strain due to stiffening effect of concrete between c	racks " ε 2 " =			
$\epsilon_2 = D.(N-X)^2/(3.Es.As.(d-X))$ for crack wide $\epsilon_2 = 1.5 h (h x)^2/(3.Es.As.(d x))$ for crack wide	INS OF U.2 MM	Used		
22 - 1.J.D. (174) (J. L. S. AS. (4-4)) 101 CIACK WU	uio or o. i min 8a ≂	0.000667		
Average strain for calculation of crack width	'ε _m "= ε ₁ -ε ₂ =	-0.000334		

Calculated crack width, " w " = $3.a_{cr} \epsilon m/(1+2.(a_{cr}-c)/(h-x))$ CALCULATED CRACK WIDTH, 'w' =

-0.05

mm

Spreadsheets to BS 8110etc CONCRETE				
Advisory Group	Made by	Date		Page
Y-Ad/17-18 (12mm)	RC	19-Jun-2	2007	33
Crack Width Calculations to BS8110: 1997/ BS8007:1987	Checked	Revision		Job No
Originated from RCC14.xls on CD © 1999 BCA for RCC	chg	*		R68
K WIDTH CALCULATIONS - FLEXURE	-			
h As Es En	fs*As)	(0.5*fc*b	*X)	
<u>Section</u> <u>Strain</u>	Stresses/	force	·	
Area of reinforcer	fcu= fy= ment " As " = b = h = d =	<u>30</u> <u>460</u> <u>377</u> <u>1000</u> <u>150</u> 124	N/mm ² N/mm ² mm ² mm mm	
Minimum cover to tension reinforcen Maxmum bar sp Bar " a _{cr} " =(((S/2)^2+(CO+DIA/2)^2)^(1/2)-DIA/2) as default or enter	nent " CO " = bacing " S " = dia " DIA " = other value =	<u>20</u> <u>300</u> <u>12</u> 146,2	mm mm mm mm	
"acr " is distance from the point considered to the surface of the	nearest long	itudinal bar		
Applied service mo	ment " Ms "=	<u>2.2</u>	KNm	
11 ATIONO				
moduli of elasticity of concrete " Ec " = (1/2)*(2 moduli of elasticity of Modular ratio " α	20+0.2*fcu) = steel " Es " = " = (Es/Ec) = o " = As/bd =	13.0 200.0 15.38 0.003	KN/mm² KN/mm²	-
depth to neutral axis, " x " = $(-\alpha.\rho + ((\alpha.\rho)^2 + (\alpha.\rho)^2)$	- 2.α.ρ) ^{0.5} .d =	33	mm	
"Z Reinforcement stress " fs " =	" = d-(x/3) = Ms/(As*Z) =	113 52	N/mm ²	
Concrete stress " fc " = (fs*A	s)/(0.5*b*x) =	1.20	N/mm*	
Strain at soffit of concrete beam/slab " $\epsilon 1$ " = (fs/Es)	r(n-x)/(d-x) ≍	0.000333		
Strain due to stiffening effect of concrete between c $\epsilon_2 = b.(h-x)^2/(3.Es.As.(d-x))$ for crack widt $\epsilon_2 = 1.5.b.(h-x)^2/(3.Es.As.(d-x))$ for crack widt	racks * £2 * = hs of 0.2 mm hs of 0.1 mm	Used n/a		
Average strain for calculation of crack width "	ε ₂ = ε _m "= ε ₁ -ε ₂ =	0.000667 -0.000334		
Calculated crack width. " w " = $3.a_{cc} \epsilon m/(1+2)$	2.(a _{cr} -c)/(h-x))			
CALCULATED CRACK	WIDTH, W =	-0.05	mm	

ł

Spreadsheets to BS 8110etc REINFORCED	REINFORCED CONCRETE COUNCIL			
Advisory Group	Made by	Date	Page	
Y-Z/15-15A (12mm)	RC	19-Jun-2	2007 33	
Crack Width Calculations to BS8110: 1997/ BS8007:1987	Checked	Revision	Job No	
Originated from RCC14.xis on CD © 1999 BCA for RCC	chg	-	R68	
K WIDTH CALCULATIONS - FLEXURE	-			
h As As Es E1	(fs*As)	(0.5*fc*b	*x)	
Section Strain S	<u>Stresses/</u>	'force		
Area of reinforce	fcu= fy= ment " As " = b = h = d =	<u>30</u> <u>460</u> <u>566</u> <u>1000</u> <u>100</u> 74	N/mm ² N/mm ² mm ² mm mm	
Minimum cover to tension reinforcer	- u = " nept " CO	<u>74</u> 20	mm	
Maxmum bar sp	pacing "S" =	200	mm	
Bar	" dia " DIA " =	<u>12</u>	mm	
" \mathbf{a}_{cr} " =(((S/2)^2+(CO+DIA/2)^2)^(1/2)-DIA/2) as default or enter \mathbf{a}_{cr}	other value =	<u>97.3</u>	mm	
"acr" is distance from the point considered to the surface of the Applied service mo	e nearest long ment " Ms "=	nudinal dar	KNm	
		<u>0.0</u>		
ULATIONS				
moduli of elasticity of concrete " Ec" = (1/2)*(2	20+0.2*fcu) =	13.0	KN/mm ²	
Modular ratio " «	" = (Fs/Fc) =	200.0	NN/HHH	
	p " = As/bd =	0.008		
depth to neutral axis, " x " = $(-\alpha.\rho + ((\alpha.\rho)^2 + (\alpha.\rho)^2))$	+ 2.α.ρ) ^{0.5} .d =	28	mm	
	7 " = d_(v/3) =	65		
Reinforcement stress " fs " =	Ms/(As*Z) =	13	N/mm ²	
Concrete stress " fc " = (fs*A	s)/(0.5*b*x) =	0.54	N/mm ⁺	
Strain at soffit of concrete beam/siab " £1 " = (fs/Es))*(n-x)/(d-x) =	0.000105		
Strain due to stimening effect of concrete between c $\epsilon_2 = b.(h-x)^2/(3.Es.As.(d-x))$ for crack widt	hs of 0.2 mm	Used		
$\varepsilon_2 = 1.5.b.(h-x)^2/(3.Es.As.(d-x))$ for crack widt	ths of 0.1 mm	n/a		
• • • • • • • • • • • • • • • • • • •	ε ₂ =	0.000331		
Average strain for calculation of crack width "	$\varepsilon_m = \varepsilon_1 - \varepsilon_2 =$	-0.000226		
Calculated crack width, " w " = 3.acr.em/(1+2	2.(a _{cr} -c)/(h-x))			
CALCULATED CRACK	WIDTH. W =	-0.02	mm	
	-			

Spreadsheets to BS 8110etc	REINFORCED CONCRETE	REINFORCED CONCRETE COUNC			
Advisory Group	COUNCIL	Made by	Date		Page
Y-Z/15A-16A (12mm)		RC	19-Jun-	2007	33
Crack Width Calculations to BS8110: 1997/ BS8007:19	87	Checked	Revision		Job No
Originated from RCC14.xls on CD © 1999 BCA for RCC		chg	_		R68
K WIDTH CALCULATIONS - FLEXURE	<u></u>	-			
h As	ε _c ε _s	fc fs*As) fs	(0.5*fc*b	*x)	
<u>Section</u> <u>Stra</u>	iin .	Stresses/	<u>'force</u>		
Are	a of reinforce	fcu= fy= ment " As " = b = h = d =	<u>30</u> <u>460</u> <u>377</u> <u>1000</u> <u>150</u> 124	N/mm ² N/mm ² mm ² mm	
Minimum pover to tone	ion roinforcon	- u -	124	11111 mm	
With Mittani Cover to tens Mi	axmum bar sr	bacing "S" =	<u>20</u> 300	mm	
	Bar	dia " DIA " =	12	mm	
" a_{cr} " =(((S/2)^2+(CO+DIA/2)^2)^(1/2)-DIA/2) as de	fault or enter	other value =	<u>146.2</u>	mm	
"acr " is distance from the point considered to the	surface of the	nearest long	itudinal bar		
Applie	ed service mo	ment " Ms "=	<u>2.2</u>	KNm	
ULATIONS moduli of elasticity of concrete."	$E_{0}^{*} = (1/2)^{*}(2)^{*}$	20+0 2*fcu) =	13.0	KNI/mm	2
moduli of elasticity of concrete moduli o	of elasticity of	steel " Es " =	200.0	KN/mm ²	2
Mo	dular ratio " α	" = (Es/Ec) =	15.38		
	៉ីម	• " = As/bd =	0.003		
depth to neutral axis, "x" = (-	-α.ρ +((α.ρ) ² +	$(2.\alpha.\rho)^{0.5}.d =$	33	mm	
	" 2	:" = d-(x/3) =	113		
Reinforcement	stress " fs " =	$Ms/(As^{*}Z) =$	52	N/mm ²	
Concrete stress Strain at soffit of concrete heam/slab 1	'	s)/(0.5°0°X) = *(b_x)/(d_x) =	1.20	19//11/11	
Strain due to stiffening effect of concre	te hetween c	racks " e 2 " =	0.000355		
$\epsilon_2 = b.(h-x)^2/(3.Es.As.(d-x))$	for crack widt	hs of 0.2 mm	Used		
$\epsilon_2 = 1.5.b.(h-x)^2/(3.Es.As.(d-x))$	for crack widt	hs of 0.1 mm	n/a		
Average strain for calculation of	i crack width "	$\varepsilon_2 = \varepsilon_m = \varepsilon_1 - \varepsilon_2 =$	0.000667 -0.000334		
Calculated crack width, " w " =	3.a _{cr} .εm/(1+2	?.(a _{cr} -c)/(h-x))			
CALCULA	TED CRACK	width. 'w =	-0.05	mm	
		-			
Spreadsheets to BS 8110etc REINFORCED	REINFORG	ED CONCR	RETE CO	DUNCIL	
--	--	------------------	--------------------	----------	
Advisory Group	Made by	Date		Page	
Y-Z/16A-17 (12mm)	RC	19-Jun-2	2007	33	
Crack Width Calculations to BS8110: 1997/ BS8007:1987	Checked	Revision		Job No	
Originated from RCC14.xis on CD © 1999 BCA for RCC	chg	-		R68	
K WIDTH CALCULATIONS - FLEXURE	-				
	fc				
	- F	(0.5*fc*b	*x)		
h j		2			
$\begin{array}{c c} As \\ \hline \\ $	fs*As) fs				
Section Strain S	Stresses/	force			
<u>- </u>	fcu=	30	N/mm ²		
	fy=	<u>460</u>	N/mm ²		
Area of reinforcer	nent" As " =	<u>566</u>	mm ²		
	b= h=	1000	mm	-	
	d =	<u>74</u>	mm		
Minimum cover to tension reinforcen	nent " CO " =	<u>20</u>	mm		
Maxmum bar sp Bar	acing " S " = dia " DIA " =	<u>200</u> 12	mm		
" a _{cr} " =(((S/2) ² +(CO+DIA/2) ²) ^(1/2) -DIA/2) as default or enter of	other value =	<u>97.3</u>	mm		
"acr " is distance from the point considered to the surface of the	nearest long	itudinal bar			
Applied service more	ment " Ms "=	<u>0.5</u>	KNm		
ILATIONS					
moduli of elasticity of concrete " Ec" = (1/2)*(2	0+0.2*fcu) =	13.0	KN/mm ²	:	
moduli of elasticity of	steel " Es " =	200.0	KN/mm ²	<u>.</u>	
Modular ratio " α " = (Es/Ec) = 15.38 " α " = As/bd = 0.008					
depth to neutral axis, " x " = $(-\alpha, \rho + ((\alpha, \rho)^2 + (\alpha, \rho)^2)$	$(2.\alpha.\rho)^{0.5}$.d =	28	mm		
"Z Poinforcement stress "fo " -	$'' = d_{(x/3)} = Me_{(x/3)} = 0$	65 13	N/mm ²		
Concrete stress " fc " = (fs*As	(0.5*b*x) =	0.54	N/mm*		
Strain at soffit of concrete beam/slab " $\varepsilon 1$ " = (fs/Es)	*(h-x)/(d-x) =	0.000105			
Strain due to stiffening effect of concrete between cr	acks " ε 2 " =				
$\varepsilon_2 = D.(\Pi-X)^2/(3.Es.As.(d-X))$ for crack width $\varepsilon_2 = 1.5 b.(b-x)^2/(3.Es.As.(d-x))$ for crack width	ns of 0.2 mm	Used n/a			
2 ····································	€2 ⁼	0.000331			
Average strain for calculation of crack width "	ε _m "= ε ₁ -ε ₂ =	-0.000226			
Calculated crack width, " w " = 3.acr.em/(1+2	.(a _{cr} -c)/(h-x))				
CALCULATED CRACK	WIDTH, 'W =	-0.02	៣៣		
	•				

Spreadsheets to BS 8110etc	REINFORCED CONCRETE	REINFORC	ED CONCI	RETE CC	UNCIL
Advisory Group	COUNCIL	Made by	Date		Page
Z-Ad/15-16 (12mm)		RC	19-Jun-	2007	33
Crack Width Calculations to BS8110: 1997/ BS8007:198	7	Checked	Revision		Job No
Originated from RCC14.xls on CD © 1999 BCA for RCC		chg	-		R68
K WIDTH CALCULATIONS - FLEXURE		-			
h As	<u>ε</u> ε _s (ε ₁	fs*As)	(0.5*fc*b	*x)	
<u>Section</u> <u>Strai</u>	<u>n</u>	Stresses/	force		
Area	of reinforce	fcu= fy= ment " As " = b = h =	<u>30</u> <u>460</u> <u>377</u> <u>1000</u> <u>150</u>	N/mm ² N/mm ² mm ² mm	
		d =	124	mm	
Minimum cover to tensio	on reinforcer	nent " CO " =	<u>20</u>	mm	
ivia.	Rar Bar	dia " DIA " =	<u>300</u> 12	mm	
" acr " =(((S/2)^2+(CO+DIA/2)^2)^(1/2)-DIA/2) as defa	ault or enter	other value =	146.2	mm	
"acr " is distance from the point considered to the s	urface of the	nearest long	itudinal bar		
Арриес	I SERVICE MO	ment" MS =	<u>2.2</u>	KNM	
ULATIONS					
moduli of elasticity of concrete "	Ec" = (1/2)*(2	20+0.2*fcu) =	13.0	KN/mm ²	
moduli of	elasticity of	steel " Es " = " = (Eo/Eo) =	200.0	KN/mm*	
MOU!	ulairauo o: "f	= (ES/EC) = = As/bd =	0.003		
depth to neutral axis, "x" = (-o	1.ρ +((α.ρ) ² +	- 2.α.ρ) ^{0.5} .d =	33	mm	
Reinforcement s	tress " fs " =	Ms/(As*7) =	113 52	N/mm ²	
Concrete stress	' fc " = (fs*A	s)/(0.5*b*x) =	1.20	N/mm*	
Strain at soffit of concrete beam/slab "	ε1 " = (fs/Es))*(h-x)/(d-x) =	0.000333		
Strain due to stiffening effect of concret $r_{0} = h (h_{-}x)^{2}/(3 F_{0} A_{0} A_{0} A_{0})$	e between c or crack widt	racks " $\varepsilon 2$ " = bs of 0.2 mm	lised		
$\epsilon_2 = 1.5.6.(h-x)^2/(3.Es.As.(d-x))$ for	or crack widt	hs of 0.1 mm	n/a		1
		ε ₂ =	0.000667		
Average strain for calculation of	crack width "	$\varepsilon_m = \varepsilon_1 - \varepsilon_2 =$	-0.000334		
Calculated crack width, " w " = 3	3.a _{cr} .εm/(1+2	2.(a _{cr} -c)/(h-x))			
CALCULAT	ED CRACK	WIDTH, 'w' =	-0,05	mm	

Spreadsheets to BS 8110etc	REINFORCED CONCRETE	REINFORCED CONCRETE COUNCIL		
Advisory Group	COUNCIL	Made by	Date	Page
Z-Ad/16-17 (12mm)		RC	19-Jun-2007	33
Crack Width Calculations to BS8110: 1997/ BS8007:19	87	Checked	Revision	Job No
Originated from RCC14.xis on CD @ 1999 BCA for RCC		chg	-	R68

K WIDTH CALCULATIONS - FLEXURE

<u>Stresses/force</u>

<u>Strain</u>

s		
fcu=	<u>30</u>	N/mm ²
fy=	<u>460</u>	N/mm ²
Area of reinforcement * As " =	377	mm ²
b = b	<u>1000</u>	mm
h=	<u> 150 </u>	mm
d =	<u>124</u>	mm
Minimum cover to tension reinforcement " CO " =	<u>20</u>	mm
Maxmum bar spacing " S " =	<u>300</u>	mm
Bar dia " DIA " =	<u>12</u>	mm
" a_{cr} " =(((S/2)^2+(CO+DiA/2)^2)^(1/2)-DiA/2) as default or enter other value =	<u>146.2</u>	mm
"acr " is distance from the point considered to the surface of the nearest long	tudinal bar	
Applied service moment " Ms "=	<u>2.2</u>	KNm
•		
JLATIONS		
moduli of elasticity of concrete " Ec" = (1/2)*(20+0.2*fcu) =	13.0	KN/mm ²
moduli of elasticity of steel " Es " =	200.0	KN/mm ²
Modular ratio " α " = (Es/Ec) =	15.38	
" ρ " = As/bd =	0.003	
depth to neutral axis, " \mathbf{x} " = $(-\alpha . \rho + ((\alpha . \rho)^2 + 2 . \alpha . \rho)^{0.5} . d =$	33	mm
" Z " = d-(x/3) =	113	
Reinforcement stress " fs " = Ms/(As*Z) =	52	N/mm ²
Concrete stress " \mathbf{fc} " = ($\mathbf{fs}^* \mathbf{As}$)/($0.5^* \mathbf{b}^* \mathbf{x}$) =	1.20	N/mm ⁻
Strain at softit of concrete beam/slab " ϵ 1 " = (fs/Es)*(n-x)/(d-x) =	0.000333	
Strain due to stiffening effect of concrete between cracks " $\epsilon 2$ " =		
$\epsilon_2 = b.(h-x)^2/(3.Es.As.(d-x))$ for crack widths of 0.2 mm	Used	
$\varepsilon_2 = 1.5.b.(h-x)^2/(3.Es.As.(d-x))$ for crack widths of 0.1 mm	n/a	
£2 =	0.000667	
Average strain for calculation of crack width " ε_m "= ε_1 - ε_2 =	-0.000334	
Calculated crack width, "w " = 3.a _{cr} .ɛm/(1+2.(a _{cr} -c)/(h-x))		
CALCULATED CRACK WIDTH, 'w' =	-0.05	mm

Cross-section of the Slab at B-B for Slab E-G/14-18

Cross-section of the Slab at B-B for Slab K-M/14-18

Public Assembly Occupancy Class (Halls, Auditoria, Restaurants, Museums, Libraries, Non-Residential Clubs, Theatres, Broadcasting Studios, Grandstands) (Taken from BS 6399: Part 1: 1984)

Floor Area Usage	Intensity of Distributed Load	Concentrated Load
- · · · · · ·	kN/m ²	kN
Dense mobile stacking (books) on mobile trucks	4.8 for each metre of stack height but with a minimum of 9.6	7.0
Stack rooms (books)	2.4 for each metre of stack height but with a minimum of 6.5	7.0
Boiler rooms, motor rooms, fan rooms and the like including the weight of machinery	7.5	4.5
Stages	7.5	4.5
Corridors, hallways, etc. subject to loads greater than from crowds, such as wheeled vehicles, trolleys and the like. Corridors, stairs and passageways in grandstands	5.0	4.5
Drill rooms and drill halls	5.0	9.0
Assembly areas without fixed seating*: dance halls, gymnasia, grandstands	5.0	3.6
Projection rooms, bars	5.0	-
Museum floors and art galleries for exhibition purposes	4.0	4.5
Corridors, hallways, stairs, landings, footbridges, etc.	4.0	4.5

Reading rooms with book storage, e.g. libraries	4.0	4.5
Assembly areas with fixed seating*	4.0	-
Kitchens, laundries	3.0	4.5
Chapels, churches	3.0	2.7
Reading rooms without book storage	2.5	4.5
Grids	2.5	-
Areas for equipment	2.0	1.8
Dining rooms, lounges billiard rooms	2.0	2.7
Dressing rooms	2.0	1.8
Toilet rooms	2.0	-
Balconies	Same as rooms to which they give access but with minimum of 4.0	1.5 per metre run concentrated at the outer edge
Fly galleries	4.5kN per metre run distributed uniformly over the width	-
Cat walks	-	1.0 at 1m centres