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ABSTRACT 

Diabetic Retinopathy (DR) is a sight threatening complication due to diabetes 

mellitus affecting the retina. The pathologies of DR can be monitored by analysing 

colour fundus images. However, the low and varied contrast between retinal vessels 

and the background in colour fundus images remains an impediment to visual analysis 

in particular in analysing tiny retinal vessels and capillary networks. To circumvent 

this problem, fundus fluorescein angiography (FF A) that improves the image contrast 

is used. Unfortunately, it is an invasive procedure (injection of contrast dyes) that 

leads to other physiological problems and in the worst case may cause death. 

The objective of this research is to develop a non-invasive digital Image 

enhancement scheme that can overcome the problem of the varied and low contrast 

colour fundus images in order that the contrast produced is comparable to the invasive 

fluorescein method, and without introducing noise or artefacts. The developed image 

enhancement algorithm (called RETICA) is incorporated into a newly developed 

computerised DR system (called RETINO) that is capable to monitor and grade DR 

severity using colour fundus images. RETINO grades DR severity into five stages, 

namely No DR, Mild Non Proliferative DR (NPDR), Moderate NPDR, Severe NPDR 

and Proliferative DR (PDR) by enhancing the quality of digital colour fundus image 

using RETICA in the macular region and analysing the enlargement of the foveal 

avascular zone (F AZ), a region devoid of retinal vessels in the macular region. The 

importance of this research is to improve image quality in order to increase the 

accuracy, sensitivity and specificity of DR diagnosis, and to enable DR grading 

through either direct observation or computer assisted diagnosis system. 

In this work, RETICA uses two processes to enhance the varied and low contrast 

colour retinal fundus images. RETICA first normalises varied contrast using an 

improved iterative Retinex, a method to separate the illumination from the reflectance 

part of the image. The improved iterative Retinex - one of the contributions of this 

research work to body of knowledge - uses kurtosis to determine the optimum 
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number of iteration and overcomes the problem of standard iterative Retinex in which 

the number of iteration is fixed and pre-determined. Normalisation of varied contrast 

is followed by separating the retinal pigments makeup, namely macular pigment, 

haemoglobin and melanin, using Independent Component Analysis (ICA). 

Independent component image due to haemoglobin exhibits higher contrast of retinal 

vessels. The use of ICA to enhance the contrast of retinal vessels by revealing the 

underlying sources in colour retinal fundus images is another contribution of this 

work since most of the image enhancement methods use pixel manipulation. Three 

fundus image models, i.e. varied contrast image model, low contrast image model, 

and varied plus low contrast image models are developed to validate and evaluate the 

performance of RETICA. Two DR analysis algorithms - semi-automated and fully­

automated - are developed to implement RETICA as a part of RETINO for grading 

DR severity based on the F AZ analysis. 

Results show that RETICA successfully normalises the varied contrast and 

enhances the low contrast of retinal vessels achieving a contrast improvement factor 

(CIF) of 5.389 comparable to that of the invasive FFA with CIF of 5.796. Findings 

from two clinical studies conducted at Hospital Selayang show a strong correlation 

between F AZ enlargement measured by both DR analysis algorithms using colour 

fundus images and corresponding DR severity level graded by ophthalmologists with 

correlation factor up to 0.877 for the semi-automated DR algorithm and 0.805 for the 

fully automated DR algorithm both at a very high significance (P) of less than 0.01. 

This indicates the usability of the F AZ analysis of colour fundus images in grading 

DR severity. Based on performance tests of RETINO, the semi-automated DR 

analysis algorithm achieves high values in sensitivity(> 0.84), specificity(> 0.97) and 

accuracy (0.95) for all DR severity stages. The fully automated DR analysis 

algorithm also achieves high sensitivity(~ 0.85), specificity(~ 0.91) and accuracy(~ 

0.91) for No DR and Mild DR. For the other DR stages (Moderate and Severe/ PDR), 

the results were not conclusive due to insufficient data. 

In summary, three major contributions have been achieved from this research. 

First is the development of the non-invasive image enhancement technique 

(RETICA), particularly to enhance the contrast of retinal blood vessels in the colour 

retinal fundus image. RETICA is beneficial not only for diagnosis of retina-related 
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diseases through direct observation, but also for segmentation of retinal vasculature 

using computer-based system. Second is the development of RETINO, which 

incorporates RETICA, based on both semi and fully automated DR analysis 

algorithms for early DR detection, DR mass screening, monitoring and grading of DR 

severity. Third contribution is the implementation of the developed technique on 

digital colour retinal fundus images and not fundus fluorescein angiograms for F AZ 

determination and measurement since no measurement of F AZ was studied based on 

digital colour fundus image so far. The method also allows DR screening by non-eye 

trained healthcare providers. The developed DR grading algorithms based on FAZ 

analysis is also a new non-invasive protocol for grading of DR severity, which at 

present uses pathology-based direct ophthalmology for daily practice. 
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ABSTRAK 

Diabetik Retinopati (DR) merupakan komplikasi mata yang berpunca daripada 

diabetis mellitus. Ianya menular di retina dan boleh mengancam penglihatan. 

Patologi-patologi DR boleh dipantau melalui analisis imej fundus warna. Walau 

bagaimanapun, kontras yang rendah dan berubah diantara pembuluh darah retina dan 

latar bdakang dalam imej fundus wama sentiasa menjadi penghalang kepada analisis 

visual khususnya dalam menganalisis pembuluh darah kecil retina dan rangkaian 

kapilarJi. Untuk mengatasi masalah ini, fundus fluorescein angiografi (FFA) yang 

meningkatkan kontras imej ftmdus digunakan. Malangnya, ia adalah prosedur invasif 

( suntikan pewarna kontras) y:mg boleh mendatangkan masalah fisiologi yang lain dan 

dalam keadaan yang paling buruk boleh menyebabkan kematian. 

Objektif kajian ini adalah untuk membangunkan satu skim peningkatan ImeJ 

digital bukan invasif yang boleh mengatasi masalah yang berkait rapat dengan imej 

fundus warna yang mempunyai kontras yang rendah dan berubah supaya kontras yang 

dihasilkan setanding dengan kaedah fluorescein yang invasif, dan tanpa menjanakan 

gangguan atau artifak. Algoritma peningkatan imej maju ini ( dikenali sebagai 

RETICA) digunakan di dalam sistem DR berkomputer (dikenali sebagai RETINO) 

yang barn dibangunkan, dan. mampu untuk memantau dan menggred DR dengan 

hanya menggunakan imej fundus warna. RETINO juga mempunyai keupayaan untuk 

menggred tal!ap keparahan DR menjadi lima peringkat, iaitu No DR, Mild NPDR, 

Moderate NPDR, Severe NPDR dan PDR dengan meningkatkan kualiti imej digital 

fundus warna menggunakan RETICA pada kawasan maklilar dan menganalisis 

pembesaran zon avascular foveal (F AZ), sebuah kawasan yang tidak mempunyai 

pembuluh darah retina di dalam makular. Kepentingan kajian ini adalah untuk 

menambah baik kualiti imej untuk meningkatkan kejituan, kepekaan dan spesifisiti 

bagi diagnosis DR, dan untuk membolehkan penggredan DR sama ada melalui 

pemerhatian secara langsung atau melalui sistem diagnosis komputer bantuan. 

Di dalam kerja ini, RETICA menggunakan dua proses untuk meningkatan imej 

retina fimdus warna yang m<~mpunyai kontras yang rendah dan berubah. Pertama 
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RETICA menormalkan kontras yang berubah dengan menggunakan Retinex lelaran 

yang ditingkatkan, iaitu satu kaedah untuk memisahkan pencahayaan dari sebahagian 

pantulan dari imej. Retinex lelaran yang ditingkatkan - salah satu sumbangan utama 

kajian ini - menggunakan kurtosis untuk menentukan jumlah optimum lelaran dan 

menyelesaikan masalah Retinex lelaran yang standard dimana jumlah lelaran adalah 

tetap dan sudah ditentukan di awal. Menormalkan kontras yang berubah diikuti 

dengan memisahkan komposisi binaan pigmen retina, iaitu pigmen makula, 

haemoglobin dan melanin, dengan menggunakan Analisis Komponen Bebas (ICA). 

Imej komponen bebas yang dihasilkan daripada hemoglobin mempamerkan kontras 

pembuluh darah retina yang lebih tinggi. Penggunaan ICA untuk meningkatkan 

kontras pembuluh darah retina dengan mendedahkan sumber-sumber asas dalam imej 

fundus retina wama merupakan satu lagi sumbangan kerja ini kerana kebanyakan 

kaedah peningkatan imej menggunakan manipulasi piksel. Tiga model imej fundus 

telah dibangunkan dan digunakan untuk mengesahkan dan menilai prestasi RETICA, 

iaitu model imej dengan kontras yang berubah, model imej dengan kontras yang 

rendah dan model imej dengan kontras yang rendah dan berubah. Dua algoritma 

analisis DR - semi-automatik dan automatik sepenuhnya - telah dibangunkan untuk 

melaksanakan RETICA sebagai sebahagian RETINO dalam penggredan tahap 

keparahan DR berdasarkan analisis F AZ. 

Hasil kajian menunjukkan bahawa RETICA berjaya menormalkan kontras yang 

berubah dan meningkatkan kontras pembuluh darah retina yang rendah dengan 

mencapai faktor peningkatan kontras (CIF) sebanyak 5.389 setanding kepada FFA 

invasifyang mencapai CIF sebanyak 5.796. Hasil daripada dua kajian klinikal yang 

dijalankan di Hospital Selayang menunjukkan korelasi yang kuat antara pembesaran 

FAZ yang diukur oleh kedua-dua algoritma analisis DR menggunakan imej fundus 

warna dengan tahap keparahan DR yang digredkan oleh pakar oftalmologi. Faktor 

korelasi menunjukkan sehingga kepada 0,877 bagi algoritma DR semi-automatik dan 

0,805 untuk algoritma DR automatik sepenuhnya dan kedua-dua di kepentingan yang 

amat tinggi (P) kurang daripada 0.01. Ini menunjukkan kesesuaian dan 

kebolehgunaan FAZ yang diperolehi dengan algoritma DR untuk imej fundus warna 

yang dibangunkan untuk menggred keparahan DR itu. Berdasarkan ujian prestasi 

pada RETINO, algoritma analisis DR separa automatik ini mencapai nilai yang tinggi 
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dalam kepekaan (> 0.84), spesifisiti/pengkhususan (> 0.97) dan kejituan (0.95) untuk 

semua peringkat DR. Algoritma analisis DR automatik sepenuhnya secara statistik 

mencapai kepekaan (2':,85), spesifisiti/pengkhususan (2': 0,91) dan kejituan (2': 0,91) 

yang tinggi bagi No DR and Mild DR. Bagi peringkat DR yang lain (Moderate and 

Severe/ PDR), keputusan tidak dapat memberikan kesimpulan berikutan 

ketidakcukupan data. 

Secara urnunmya, tiga sumbangan besar telah dicapai dari kajian ini. Pertama 

ialah pembangunan teknik peningkatan imej bukan invasif (RETICA), terutamanya 

untuk meningkatkan kontras saluran darah retina dalam retina fundus imej warna. 

RETICA adalah bermanfaat bukan sahaja untuk diagnosis penyakit berkaitan retina 

melalui pemerhatian secara langsung, tetapi juga untuk segmentasi vaskulatur retina 

menggunakan sistem berasaskan komputer. Sumbangan kedua ialah pembangunan 

RETINO, yang menggabungkan RETICA, berdasarkan kedua-dua analisis algoritma 

separuh dan automatik sepenuhnya DR bagi pengesanan peringkat awal DR, saringan 

massa pesakit DR, pemantauan dan penggredan keterukan DR. Surnbangan ketiga 

ialah pelaksanaan teknik maju pada digital retina fundus imej warna dan bukan pada 

fundus fluorescein angiogram bagi menentukan dan pengukuran FAZ karena belurn 

ada kajian tentang pengukuran F AZ berdasarkan digital imej fundus warna setakat ini. 

Kaedah ini juga membolehhn pemeriksaan DR oleh penyedia penjagaan kesihatan 

mata yang tidak terlatih. Pembangunan RETICA dan aplikasi pada imej-imej digital 

fundus warna bagi penentuan pembesaran F AZ dalam pemantauan dan penggredan 

tahap keparahan DR, terutama pada peringkat awal, telah menjadi sumbangan utama 

kajian ini. Algoritma penggredan DR yang dibangunkan berdasarkan analisis FAZ 

juga merupakan protokol bam yang bukan invasif bagi penggredan keparahan DR, 

yang pada masa ini menggunakan secara langsung berasaskan patologi oftalmologi 

untuk arnalan harian. 
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1.1 Background of Study 

CHAPTER 1 

INTRODUCTION 

Medical images obtained from medical imaging modalities contain information to 

diagnose pathologies, grade severity of diseases, monitor disease treatment and guide 

therapeutic procedures. Medical imaging modalities are favourable to probe the 

aoatomical structure, function, aod pathology ofhumao body. Based on the source of 

energy, medical imaging modality is divided into two, ionising radiation (invasive) 

aod non-ionising radiation (non-invasive) imaging modalities [1]. The ionising 

radiation imaging modalities use radiation that cao damage living tissue by disrupting 

and destroying individual cells at molecular level. Figure 1.1 shows some examples 

of this kind of imaging modalities including fluoroscopy, mammography, Computed 

Tomography (CT), aod Positron Emission Tomography (PET). 

-•.... i'! \ .. ~ --
. 'L..__l_ 
··~ 

a. Fluoroscopy b. Mammography 

c. Computed tomography d. Positron Emission Tomography 

Figure 1.1 Examples of ionising radiation imaging modalities 

The non-ionising radiation imaging modalities use radiation such as radio 

frequency (RF) waves, extremely low frequency (ELF) fields, infrared (IR), visible 

1 



light, and ultra violet (UV) that each has sufficient energy to move or cause atoms to 

vibrate around in a molecule, yet not enough to remove electrons. Figure 1.2 below 

shows imaging modalities that use non-ionising radiation such as magnetic resonance 

imaging (MRI), ultrasound, optical 3D scanner and fundus camera. 

a. Magnetic resonance imaging b. Ultrasound 

c. Optical 3D scanner d. Fundus camera 

Figure 1.2 Examples of non-ionising radiation imaging modalities 

One of the most common problems for all these imaging modalities is varied 

contrast and low contrast of the produced images. Contrast in an image refers to a 

measure of the magnitude of intensity differences between different regions or two 

adjacent pixels. Varied contrast is usually perceived as spurious smooth variation of 

image intensity and commonly referred to as uneven or non-uniform illumination, 

illumination variation, intensity inhomogeneity or non-uniformity, intensity variation, 

shading or bias artefact [2-3]. Low contrast on the other hand appears when different 

objects in an image show similar intensity characteristics. Some of these problems 

are due to technical limitations of the medical imaging devices and acquisition 

techniques while others correspond to the frequently unavoidable imaged-objects. 

Some of these contributing factors include complexity of imaging situations, disease 

opacity, poor focus, variability of data among patients, inadequate illumination and 

imperfect image acquisition pmcess resulting in noise and artefacts [4]. 
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The problems of varied and low contrast emerge in many medical images 

produced by medical imaging modalities. The problems for instance could be seen in 

retinal images obtained by fundus camera [5], fluoroscopic images obtained by 

fluoroscopy [6], magnetic resonance (MR) images obtained by Magnetic Resonance 

Imaging- MRI [7], mannnography images obtained by digital X-ray mammography 

[8], CT images obtained by CT angiography [9] and ultrasound images [10]. Figure 

1.3 below shows some examples of medical images obtained by different medical 

imaging modalities. 

a. Colour retinal fundus image b. Mammography image [II] 

c. MR image d. Ultrasound image [12] 

Figure 1.3 Examples of varied and low contrast images obtained from different 
medical imaging modalities 

Colour retinal fundus images, as shown in figure above suffer from the problems 

of varied contrast due to their spherical surface, making the reflection in the centre of 

the retina to be brighter than that in the edge of the retina. Both in mammography and 

in ultrasound images, the objects of interest, such as malignant tissues usually appear 

in low contrast. In magnetic resonance images, proper adjustment of T 1 and T 2 

parameters, which is essential to obtain good quality images, is relatively to be 

difficult. 
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In medical treatment, an accurate detection of pathologies in the early stages of 

the diseases importantly is to reduce the risks of severe cases or even of deaths that 

the patient has to deal with. In medical cases where irnages are required to monitor 

and grade the disease's severity level based on the pathological changes of the 

biological organs, accurate diagnosis may become difficult if the contrast between 

normal! objects and abnormal ones (pathologies) is subtle. Noise and artefacts that 

make direct analysis of these images more difficult often confound these low contrast 

medical images. 

Varied contrast in medical images similarly causes problems in a computer-aided 

diagnosis system especially for automated image analysis methods, such as 

segmentation [13-14], registration [15], feature extraction [16] and classification [17]. 

These problems not merely degrade image quality but also significantly hamper 

automated analysis [18]. 

1.1.1 Varied and Low Cmitrast of Retinal Images 

This research investigates the problems in varied contrast and low contrast of colour 

retinal fundus images. In ophthalmology, analysis of colour retinal fundus images is 

able to determine several dis<:ases related to the retina such as Diabetic Retinopathy 

(DR) - a sight threatening complication due to diabetes mellitus affecting the retina. 

International Diabetes Federation (IDF) (2009) estimated that approximately 285 

million people around the world suffer from diabetes and predicted an increase of the 

number to be 438 million within 20 years at the rate of 7 million people developing 

diabetes per year [3]. In Malaysia, National Eye Database in 2007 additionally 

reported that among 10,856 cases with diabetes, 36.8% has some form of DR, of 

which 7.1% comprises proliferative diabetic retinopathy (PDR) [4]. 

A digital fundus camera acquires retinal fundus images by capturing the 

illumination reflected from the retinal surface. During the acquisition process, the 

light illuminates on different parts of the retina and the amount of this illuminating 

light varies depending on the direction ofthe illuminating flash and varies from image 

to image. 
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Ocular fundus represents a structure of the back of the eyes and consists of 

multiple layers of tissue. Generally, the structure of the eye can be classified into two 

main groups, namely ocular media and ocular fundus [ 19]. Ocular media, which is 

located between the ocular fundus and the observer, consists of cornea, lens and 

vitreous; the ocular fundus meanwhile consists of the retina, the retinal pigment 

epithelium, the choroid and the sclera. Furthermore, the fundus layers beneath the 

retina consist of two pigments, namely melanin and haemoglobin, which dominate the 

overall appearance of the fundus. From a diagrammatic cross-section of the eye as 

shown in Figure 1.4, the ocular fundus part is of important since this part mainly 

affects the appearance of the colour retinal fundus image. 

ocular 
media 

ocular 
fundus 

region 

retina 

choroid 

sclera 

--+-vitreous humour 

\----j--inner limiting membrane 

Figure 1.4 A diagrammatic cross-section of the eye 

The photoreceptor layer, which is also called as visual pigment, is composed of 

light-sensitive cells called rods and cones, characterized by different sensitivity to 

light. The cones are smaller and very highly concentrated in the fovea, the part of the 

retina on the visual axis and responsible for central vision. In addition, the layers of 

other cells and blood vessels covering the peripheral retina thin out and disappear 

over the fovea, allowing uninterrupted exposure of the image. There are no rods in 

the fovea. However, rods dominate peripheral (non-central) vision. Under the 

photoreceptors is a dark layer known as retinal pigment epithelium (RPE). The RPE 

contains melanin granules that absorb excess light and transport oxygen, nutrients and 
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cellular wastes between the photoreceptors and the choroid. The choroid is a layer of 

blood vessels that supplies oxygen and nutrients to the outer layers of the retina. The 

innermost choroid, called the• choriocapillaris, is a dense net of flattened capillaries 

that forms a blood-filled shell lying parallel to the basal side of the RPE. Bruch's 

membrane separates the blood vessels of the choroid from the retinal pigment 

epithelium layer. The rest of the choroid is filled with larger blood vessels and 

melanin-containing melanocytes. The melanin content of the retinal pigment 

epithelium varies among individuals. However, only the melanin content of the 

choroid depends on skin pigmentation. The final layer of significance is the sclera, 

the fibrous, thick, white outer covering of the eye. Therefore, a reflectance of the 

fundus can be understood as a ratio of a total amount of reflected light to the total 

incident light propagating through several fundus layers. Figure 1.5 depicts a model 

of ocular fundus showing possible pathways of the remitted light. 

!:ident light 
1 

reflected light 

T / pupil plane 

ocular lens 
media 

1 
T ===¢=i'::J~f== inner limiting 

membrane 

retina 

Figure 1.5 A model of ocular fundus showing pathways of remitted light 

The slight changes of the biological structure and pigment construction lead to 

variation in colour of the retinal fundus. It is therefore necessary to understand the 

retinal fuadus colour based on the structure and pigment construction to model fundus 

spectral absorbance image. 

Despite the controlled acquisition process, retinal fundus images still suffer from 

varied contrast. Several factors causing varied contrast are, for example, the curved 

surface of the retina, the presence of pathologies, and pupil dilation that is highly 

variable among people. Some retinal pathologies, such as exudates and small blood 
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leaks appear as bright spots due to the protein contents in these spots, which are more 

reflective than the retinal surface [20]. 

The varied contrast prevents an absolute interpretation of the intensities in the 

image. For instance, the optic disc typically is the brightest object in the retinal 

image. The varied contrast often causes the area directly under the flash to appear the 

brightest. The curved retinal surface and the configuration of the light source and 

camera lead to the fact that the peripheral part of the retina appears darker than the 

central region. Examples of the variations of contrast that occur among colour retinal 

fundus images and within a colour retinal fundus image can be seen in Figure 1.6. 

(e) 

Figure 1.6 Uneven contrast occurs between images (a and b) and within an image (c) 

Instead of varied contrast, the contrast between retinal vessels and background is 

very low. This problem occurs particularly in retinal capillaries that are mostly 

located in the centre of the retina known as macular region. The retinal capillaries 

and retinal vessels surrounding the macular region are of very low contrast since they 

are located in the choroidal layer underneath the macular pigment and the retinal 

pigment epithelium, which contains melanin. Due to the low contrast between retinal 

blood vessels and the background in retinal fundus images, it is difficult to determine 

retinal vasculature that can be used to determine macular area, foveal avascular zone 

(FAZ) and existence of pathology. In general, the problem of varied and low contrast 
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in colour retinal fundus images reduces image quality and leads to innacuracy of 

segmentation of retinal blood vessels and pathology detection; thus, these eventually 

reduce the accuracy, sensitivity and specificity of diagnosis of the retinal-related 

diseases. A report, moreover, explains that the problems of image quality also affect 

human grading in approximately 10% to 15% of collected digital retinal images [ 4, 

21]. 

1.1.2 Retinal Image Enh~tncement 

Retinal image enhancement is an important pre-processing step to improve retinal 

image quality for visual peTception and to facilitate diagnosis of retinal-related 

diseases. In general, retinal image enhancement includes in image enhancement 

process that is important to transform an image into a more suitable format for 

computer-aided image processing [22]. The quality of the enhanced image depends 

on five factors, i.e. spatial resolution, contrast resolution, temporal resolution, 

illumination and noise [1]. Spatial resolution corresponds to image sharpness (edges) 

and features' fme detail, while contrast resolution - an ability to distinguish the 

intensity in an image repres<mted into a gray scale quantisation - corresponds to 

discrimination of detail within and between objects. Noise consists of undesired 

objects that deteriorate the visibility of particular objects in an image. A good quality 

medical image is significantly important for both diagnosis process and subsequent 

computer-based automated image analysis. 

Technically, based on its invasiveness, there are two categorisation of image 

enhancement, i.e. invasive and non-invasive enhancement. Invasive enhancement 

concerns with exposing or inje.;ting some contrasting agents into the human body. In 

radiography, for instance, the increase of the radiation dose to the patient results in 

better x-ray images. X-ray contrast media (e.g. barium, iodine) [23] are often used in 

any X-ray related to medical imaging modalities (e.g. angiography, CT, fluoroscopy 

and mammography) by injecting them into an artery or vein. Having absorbed X­

radiation, X-ray contrast media thereby are able to increase the contrast between the 

organ of interest and the sur'ounding tissue. Injection of X-ray contrast media, 
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however, may also result in death associated with nephropathy and allergic reactions 

as reported in [24]. In ophthalmology, fluorescein angiography could result better 

contrast of retinal vasculatures; yet, due to its invasiveness by injecting contrasting 

agent (sodium fluorescein) into the blood vessels, this method may also lead to 

physiological problems such as nausea, vomiting and dizziness [25]. The worst case 

of adverse reactions following fluorescein injection, what is more, could be fatal 

anaphylactic shock, which eventually leads to death [26]. It has been reported by 

Yannuzzi et a/. that the frequency rate for death cases due to fluorescein injection is 

I :222,000 [27]. Hence, even though fluorescein angiography can produce better 

contrast of retinal fundus images, it is not recommended for medical routine use [28]. 

In some cases related to the use of non-ionising imaging modalities for acquisition of 

medical images, injection of contrasting agent into the human body is not necessary to 

achieve better contrast of acquired images. Instead, patients must undergo an 

acquisition process with increasing power levels or a longer time exposure to obtain 

better contrast of images. For instance, the large power level of ultrasound may result 

in better ultrasound images. In the case of MRl, the longer the time of image 

acquisition is, the better the magnetic resonance images are. Even contrasting agent, 

for example micro-bubble contrast agents [29] and gadolinium [30], is sometimes 

used in ultrasound and MRI respectively to enhance a specific tissue of interest. 

Nevertheless, the use of such contrast agent may result in adverse effects such as 

headache, nausea, vomiting, dizziness in case of ultrasound [31] and may result in 

nephrogenic systemic fibrosis in MRI [32]. 

Implementation of these procedures in fact is a compromise between technical 

evaluation and artistic appraisal. At this point, it must take account of the comfort 

and safety of the patients before acquiring medical images. Excessive radiation dose 

to obtain perfect images, finally, is not acceptable. A good concern for a suitable 

compromise between the power levels or the injection of contrasting agent and patient 

safety comes to be significant to achieve better image quality. Another way to 

improve quality is by using non-invasive enhancement techniques. 

Non-invasive image enhancement techniques, also known as digital image 

enhancement techniques, fundamentally, refer to mathematical techniques to improve 
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the quality of a given image enabling the enhanced image to show better visual 

perception and contrast of certain features than the original one for a specific 

problem-oriented application. Through digital image processing techniques, the 

implementation of non-invasive image enhancement is on manipulation of image 

intensities to improve image quality without any intervention into human body. Most 

of the enhancement techniques focus on noise removal (smoothing), contrast 

enhancement (feature enhancement), contrast normalisation (illumination 

normalisation) and image sharpening to improve the visual perception of the image 

[33]. The other enhancement techniques are to be a pre-processing step to provide 

better input for subsequent automated image processing algorithm in a computerised 

system such as edge detection and object segmentation [34]. 

In r1~tinal images, it is important to enhance the low contrast tiny objects of 

interest selectively. Yet, to distinguish low contrast tiny objects and to increase their 

contrast without any distortions are becoming complicated. The major problem is 

how to discern the low contrast tiny objects of interest and noise since most of the 

image enhancement techniques tend to filter out the low contrast tiny object as noise. 

Moreover, retinal images suffer not only from low contrast, but also from varied 

contrast resulting in poor quality images. For that reason, the main challenge in 

developing a non-invasive re:tinal image enhancement technique is to determine 

significant image features and distinguish them from other objects, such as noise or 

artefacts to make the enhancement process applied on image features only to obtain 

the best possible enhanced images. A detail review on non-invasive image 

enhancement on retinal images is presented in a separated chapter. 

Some: studies have been conducted to compare the performance of several retinal 

image enhancement techniques. Yousiff et al. [35] conducted a comparative study for 

performance evaluation of nine different techniques for contrast enhancement and 

illumination equalisation of retinal fundus image on two publicly available databases 

oftotal60 images [36-37]. The eight different techniques are green band image [38], 

histogram equalisation [39], adaptive histogram equalisation [40], adaptive local 

contrast (:nhancement [ 41], background subtraction of retinal blood vessels [ 42], 

division by an over-smoothed version [43], desired average intensity [44] and 
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estimation of background luminosity and contrast variability [ 5]. The performance of 

each technique is evaluated by using a matched-filter vasculature segmentation 

algorithm [45]. The results show that adaptive histogram equalisation [40] is the most 

effective method among the others for having the largest area of 0.874 under the 

receiving operating characteristics (ROC). It is then followed by the adaptive local 

contrast enhancement [41] with 0.833 and the histogram equalisation [39] with 0.787 

at the second and the third, respectively [35] for improving the retinal vessels 

segmentation algorithm [41]. Youssif et al. [35] also applied hybrid method by 

combining Sinthanayothin's method on adaptive local contrast enhancement [41] with 

a method developed by Yang et a!. on division by an over-smoothed image for 

contrast normalisation [ 43]. It is interesting to note that applying contrast 

enhancement techniques on varied contrast corrected image further can enhance the 

image and in turn can achieve better result in the segmentation process than just 

performing ordinary contrast enhancement techniques on the input image. 

1.2 Problem Statement 

In an image formation model as shown in Figure 1. 7 image intensity I corresponding 

to a particular wavelength (A.) is a product of the illumination L and the reflectance R 

[ 46]. Varied contrast is defined as a smooth variation of image intensity that needs to 

be normalised as part of image enhancement. The varied contrast in the image occurs 

because of uneven illumination and or subtle difference in the reflectance. The later 

is commonly due to presence of objects in the image that have similar characteristics 

or presence oftiny objects, which also leads to the problem oflow contrast. 

hnage intensity 
i(A,.r,y) 

Figure 1. 7 Image formation model 

A general evaluation on the above review concludes three problems in medical 
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images. First, it is found that varied contrast is a problem in medical images due to 

geometrical surface of the objects and configuration of the acquisition system. In 

retinal fundus image, the varied contrast occurs due to the spherical surface of the 

retina and the configuration ofthe light source and camera. 

Second, low contrast tiny objects of interest present in medical images are related 

to biological structure of th<~ objects and the amount of light being absorbed or 

reflected by these particular objects. These low contrast tiny objects need to be 

extracted and selectively enhanced to facilitate diagnosis on direct observation or 

automated image analysis. These problems are significantly important when the 

diagnosis process involves the observation ofthese particular low contrast tiny objects 

to diagnose or to grade the severity level of a disease. 

Third, the best method to enhance the low contrast is based on invasive method. 

In retinal image, fundus fluon:scein angiography (FF A) is used to enhance the retinal 

blood vessels and pathologies. This invasive method, however, is not preferable due 

to its side effects that may lead to physiological problems and the worst case may 

cause death. 

1.3 Research Objective and Scope of Work 

The objective of this research is to develop a non-invasive digital imaging 

enhancement scheme that can enhance varied and low contrast colour retinal fundus 

images images to be similar to, or better than the contrast produced by invasive 

method (FF A) without introdm:ing noise or artefacts. The importance of this research 

is to improve image quality for direct observation and for computer-based automated 

image analysis. The use of the enhanced images will increase the accuracy, 

sensitivity and specificity of the diagnosis through eitb.er direct observation or 

computer assisted diagnosis system. The researcher applies Computerised Diabetic 

Retinopathy System - a particular medical application - to improve the quality of 

digital colour fundus image for grading of DR severity levels. 

This research is to address two main hypotheses. First, in an image formation 

model, image intensity is a product ofthe illumination and the reflectance. The varied 
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contrast due to illumination can be normalised by separating the illumination from the 

reflectance. The illumination varies slowly, leading its frequency spectrum 

assumedly to be distributed at low frequencies. If the varied contrast can be 

determined in a local neighbourhood, the contrast can then be normalised by 

specialised methods such as Retinex. 

The second hypothesis is that the objects are related to the reflectance. By 

determining the actual sources from the observed (low contrast) RGB image using 

methods such as Independent Component Analysis (ICA), the objects or areas due to 

the source of interest, can then be enhanced separately without introducing unwanted 

artefacts. If the varied contrast can be normalised (contrast normalisation) and low 

contrast objects can be enhanced (contrast enhancement), the accuracy, sensitivity and 

specificity of the diagnosis through either direct observation or computer assisted 

diagnosis system will increase. In this thesis, these two problems, i.e. varied contrast 

normalisation and low contrast enhancement, are formulated and solved separately. 

In this thesis, the problem of low varied and contrast of colour retinal fundus 

images is investigated. A non-invasive image enhancement scheme based on Retinex 

and ICA is proposed to overcome the problem of varied and low contrast with 

application to medical images particularly to colour retinal fundus images. 

The researcher attempts to develop a varied and low contrast image model to 

evaluate the performance of the proposed image enhancement method by collecting 

data for modelling and evaluation from two clinical studies conducted at Selayang 

Hospital, Malaysia from July 2008 to March 2010. This database named Fundus 

Image for Non-invasive Diabetic Retinopathy System (FINDeRS) consists of 315 

colour fundus images to be tested. The researcher also adopts several parameters to 

measure the performance of the proposed method and to compare with other 

enhancement methods. The proposed method in return is also implemented as part of 

a computerised Diabetic Retinopathy system to improve on the quality of digital 

colour fundus image for grading of DR severity levels. 

The problem in determination ofF AZ in digital colour retinal fundus images has 

become an initial motivation for this thesis. The F AZ is formed by connecting the 
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end-poilnts of fine retinal vessels in the macular region. These fine retinal vessels, 

howev<:r, are of low contrast and present in varied contrast of colour fundus images. 

Even though the proposed method is mainly developed based on colour fundus 

images, it can also be implemented to other medical images, which have similar 

characteristics, i.e. problem of varied and low contrast objects. 

1.4 Contribution of Thesis 

Three major contributions ar<: achieved from this research. The first contribution is 

the development of the non-invasive image enhancement technique (RETICA) - an 

hybrid method combining R<:tinex for contrast normalisation and ICA for contrast 

enhancement - to solve the problem of both varied and low contrast colour retinal 

fundus images obtained from non-invasive medical equipment in order to increase the 

visible details and contrast of tiny biological tissues or objects of interest, i.e. retinal 

blood vessels. This improvement in turn will avoid the need of applying contrasting 

agent on patients that can cause physiological problems to them. Having enhanced 

the contrast of retinal blood vessels in the colour retinal fundus image, RETICA is 

beneficial not only for diagnosis of retina-related diseases through direct observation, 

but also for segmentation of retinal vasculature using computer-based system. It 

moreover can be implemented as pre-processing step for medical image analysis to 

diagnose retina-related diseases. 

The second one is the development of DR system for monitoring and grading of 

DR severity based on semi-automated and fully-automated algorithms of FAZ 

analysis on colour retinal fundus image in which ophthalmologists today utilise FF A 

to obtain fundus angiograms that have high contrast of retinal blood vessels against 

the background to examine F AZ in diagnosing retina-related diseases. The developed 

DR system (RETINO) incorporates RETICA to enhance the contrast of the very fine 

vessels in the macular region from varied and low colour n:tinal fundus images for an 

accurate determination ofF AZ. 

The third contribution is the implementation of the developed technique on digital 

colour retinal fundus images and not fundus fluorescein angiograms for F AZ 
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determination and measurement since no measurement of F AZ was studied based on 

digital colour fundus image so far. The method also allows DR screening by non-eye 

trained healthcare providers. The developed DR grading algorithms based on F AZ 

analysis is also a new non-invasive protocol for grading of DR severity, which at 

present uses pathology-based direct ophthalmology for daily practice. The 

development of DR grading system will be advantageous to assist ophthalmologists 

for DR mass screening and monitoring and grading of DR severity. 

1.5 An Overview of Thesis Structure 

The overall structure of the thesis consists of six chapters, including this introductory 

chapter. The first chapter presents a brief introduction to medical imaging modalities 

that resulted in varied and low contrast medical images and the motivation of this 

study. To set the research objective, the researcher presents and formulates the 

problem of varied and low contrast images. The second chapter begins with a critical 

review on the existing image enhancement techniques in addressing the problem of 

varied and low contrast images. A review on Retinex and ICA and their applications 

in image processing is also presented in this chapter. Modelling of varied and low 

contrast images based on probability distributions of image objects to evaluating the 

performance of the proposed method is in the third chapter, followed by the fourth 

chapter to discuss about the development of the proposed method and the 

methodology used in this study. Further, the fourth chapter also includes validation 

study on the proposed method and presents a comparison between the proposed 

method and other image enhancement methods on the image model. The fifth chapter 

in tum describes the implementation of the developed method as part of the 

computerised system for monitoring and grading of DR using digital colour fundus 

images. The final chapter of this thesis concludes the entire thesis including a brief 

summary on the implementation of the findings and potential future research topics in 

this research area. 
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2.1 Image Contrast 

CHAPTER2 

LITERATURE REVIEW 

Created by the difference in reflected luminance from two different adjacent pixels, 

the image contrast is found to be in line with the characteristics of human visual 

perception and some crucial physical laws [ 4 7 -48]. Two of various definitions of 

image contrast found in the literature have been widely used to measure image 

contrast in simple patterns. First, contrast is defined as a relation between the 

luminous intensity values in an image or in specific region of an image in which 

Michelson defines it as 

C . ]max -]min 

]max +]min 

(2-1) 

with Imin and Imax indicating the largest and smallest luminous intensity values, 

respectively [49]. The second definition of contrast is based on Weber's law [50] and 

can be formulated as 

(2-2) 
c 

with Ir and Ib indica\ing the luminance of the specific objects and the background. If 

Michelson contrast is similarly expressed to that of Weber, the definition of contrast 

will be 

C=· M 
L+M 

(2-3) 

where !'J.L = (Lm~- Lm., )12 and L = Lmrr.. Similarly, Westheimer [51] defmes the 

contrast as 
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C= 2M 
2L+M 

(2-4) 

These image contrasts in general denote a dimensionless ratio between absolute 

luminance difference and average background luminance. Hence, it can be inferred 

that small luminance difference is insignificant if the average background luminance 

is high, while the same small luminance difference affects if the average background 

luminance is low. 

Conversely, human visual system perceives contrast as a difference in brightness 

and colour between two or more objects within the same field of view. It is more 

sensitive towards any significant changes or a great deal of details and less sensitive to 

smooth regions. In other words, human subjective perception is more sensitive to 

contrast than to absolute luminance. Hence, a human can perceive the world in the 

same way regardless of the significant variations in illumination. 

For an objective contrast measurement, most definitions of the aforementioned 

contrast are purposively to constitute a specific contrast value of the whole image area 

by measuring a single point of reflectance on a homogeneous intensity background. 

A problem, however, may arise if one or more points of uttermost darkness or 

brightness exist in the image. For instance, the image Michelson contrast 

significantly increases when a single point of extremely bright or extremely dark is 

added to the low contrast image. On the contrary, the perceived contrast may be 

decreased as it may greatly vary across the image. It then may become more difficult 

to have fair comparison of image contrasts from two or more images with the 

presence of the extremely bright or dark point. 

Another definition of image contrast is based on root mean square (RMS) 

contrast, defined as a standard deviation of the pixel intensities [52-53] and can be 

used to compare the contrast of two different images. Images have the same contrast 

if their RMS contrast is equal. The RMS of a two dimensional image is formulated as 

(2-5) 1 Y-1 X-! 

RMS= -LL(Iij -1)' 
XY i=O j=O 
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with lu is the ith and jth normalised luminous intensity element of the two dimensional 

image of size X by' Y and I is the mean normalised luminous pixel intensities of the 

image in the range [0, 1]. Both spatial distribution and spatial frequency content of 

contrast in the image do not affect the RMS contrast [54]. Rubin and Siegel, related 

to this, showed that RMS mt~asured from various human face images are equal for 

those that have equal contrast [53]. 

2.2 Retinal Image Enhanc1~ment 

Image enhancement is one of the important tasks in the image processmg to 

ameliorating the quality of the acquired image data for direct human observation both 

as a subjective phenomenon and for subsequent computer-aided image processing 

class. It deals with several operations such as contrast normalisation, contrast 

enhancement, edge enhancement and noise filtering. Contrast normalisation is 

necessary for images with variation of brightness or contrast whose objects of interest 

are sometimes found it difficult to recognise. In this case, contrast enhancement is 

significantly important to make the objects more obvious and distinguishable from the 

background or other objects. Further, edge enhancement is required to sharpen 

objects' edges in the image so that the objects are easier to recognise. Noise filtering 

additionally is needed for images suffering from presence of noise. 

Retinal image enhancement is a pre-processing step to improve retinal Image 

quality for visual perception and to facilitate diagnosis of retinal-related diseases such 

as diabetic retinopathy. There are two categorisation of retinal image enhancement, 

i.e. invasive and non-invasive t~nhancement. For invasive enhancement, a contrasting 

agent (sodium fluorescein) is injected into the human blood vessels to produce better 

contrast of retinal vasculatures. However, due to its invasiveness, this method may 

lead to physiological problems such as nausea, vomiting and dizziness [25]. The 

worst case of adverse reactions following fluorescein injection, what is more, could be 

fatal anaphylactic shock, which eventually leads to death [26]. It has been reported by 

Yannuzzi et a!. that the frequency rate for death cases due to fluorescein injection is 

I :222,000 [27]. Hence, even though fluorescein angiography can produce better 

contrast of retinal fundus images, it is not recommended for medical routine use [28]. 
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For non-mvasJVe enhancement, image intensities are manipulated to improve 

image quality without any intervention into human body through digital image 

processing techniques. Image enhancement techniques focus on noise removal 

(smoothing), contrast enhancement (feature enhancement), contrast normalisation 

(illumination normalisation) and image sharpening to improve the visual perception of 

the image for the use of human viewers [33]. The other enhancement techniques are 

to be a pre-processing step to provide better input for subsequent automated image 

processing algorithm in a computerised system such as edge detection and object 

segmentation [34]. In retinal image enhancement, the techniques developed are 

focused on (1) contrast normalisation as proposed by Wang et al. [55], Foracchia et 

a!. [5], Tusheng and Yibin [42], Walter and Klein [56], Fleming eta!. [18] and (2) 

contrast enhancement (feature enhancement) as developed by Saleh et al. [57], 

Sinthanayothin eta!. [58], Shimahara eta!. [59], Noronha eta!. [60], Wu eta!. [40] 

and Soares eta!. [61]. 

Dealing with this problem, we extend the discussion on general image 

enhancement techniques in two areas, i.e. image enhancement techniques to deal with 

the problem of varied contrast and image enhancement techniques to deal with the 

problem of low contrast. It is important to discuss on several enhancement techniques 

applicable not only for specific colour retinal fundus images, but also for other 

medical images to find possibilities in developing a new and better non-invasive 

digital imaging enhancement scheme that can enhance varied and low contrast colour 

retinal fundus images to be similar to, or better than the contrast produced by invasive 

method (FF A) without introducing noise or artefacts. The following sub-chapters 

discuss on various image enhancement techniques for varied contrast images and low 

contrast images. 

2.2.1 Enhancement Techniques for Varied Contrast Images 

In medical images, current image enhancement techniques to address the problem of 

varied contrast can be categorised into two, namely prospective and retrospective 

contrast normalisation methods [ 62-63]. Prospective contrast normalisation methods, 
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known as calibration methods, require an acquisition protocol tuned to varied contrast 

correction, whereas retrospective ones rely on the inforrnation in an acquired image 

and make certain assumptions about the imaged setting purposively being applicable 

to any image. 

Vari·ed contrast in prospt:ctive contrast normalisation methods reputedly is a 

systematic error occurred during the acquisition process resulting in varied contrast 

images. This systematic error can be compensated using a special imaging sequence 

device or using an additional phantom image with some identified physical properties 

resulting in a smoothed acquired image [ 64]. These correction methods however are 

not frequently applicable in real situation for requiring tm extra measurement and 

scanning time, and probably causing discomfort for the patients. Moreover, an 

increase in the background noise may arise as well [65]. In general, prospective 

approaches can only deal with varied contrast due to machine imperfections; however, 

the varied contrast problem may also originate from patient-induced data. 

Most techniques on contrast normalisation intensively been developed m 

retrospective methods can be classified into filtering [66-68], surface fitting [69-70], 

segmentation based [71-72], statistical model [73-75] and other methods [13, 76-77]. 

Filtering methods using high-pass or low-pass filter is to separate high frequency 

signal from low frequency artefacts of the image containing anatomical structures as 

in homomorphic filtering [67]. 

Homomorphic filtering, a technique based on an illwnination and reflectance 

image model, is performed on a log transform of the image intensity to separating 

illumination as low-frequency component and reflectance as high-frequency 

component from an image and to making illumination more uniform. However, this 

method works well only if varied contrast occurs over the whole image. 

Homomorphic filtering creates artefacts at the edge between object of interest and 

background in the image known as edge effects when the image contains an object of 

interest corrupted by a bias and a uniform background with no bias [68]. Moreover, 

several manually determined parameters make the implementation of homomorphic 

filtering even more difficult [78]. 
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Even though filtering methods in general have advantages due to their relatively 

simple implementation and rapid operation, they are merely suitable for small imaged 

anatomical structures enabling no information in low frequencies to be erroneously 

taken out by low-pass filter. Moreover, users also have to select some specified 

parameters, for instance filter size, causing an additional ambiguity and restricting the 

possibility of its usage. 

Surface fitting methods in turn are to estimate parametric surface taken from 

dominant or large homogenous regions and to fit it to a set of image features that 

suffer from varied contrast. The estimated surface is typically polynomial or spline 

based [79-80]. The weakness of these methods is that the estimation of a varied 

contrast area is merely from intensities of one dominant region and subsequently 

extrapolated over the whole image. Another weakness is that these methods may 

integrate some adverse information during the extrapolation. Surface fitting methods 

generally will perform well if homogenous areas of the image are distinctive and 

sufficiently large. Likar et al. applied an information minimisation by parametric 

fourth order polynomial model (M4) and used entropy as a global intensity uniformity 

for optimisation of complex image formation models to retrospectively correct the 

uneven illumination in MR images [81]. Method developed by Likar et al. [81] 

beneficially does not require initialisation, assumption of distributions of individual 

objects and pre-segmentation of defined region. Yet, the difficulty in optimisation 

may occur due to the application of polynomial correction model with a higher order. 

Segmentation-based methods furthermore are to combine and produce better 

contrast normalisation and segmentation concurrently. However, the number and 

selection of the explicitly modelled object classes are becoming the problems in this 

method. Guillemaud and Brady [72] proposed a method based on minimum entropy 

that automatically determines the number of object classes as an improvement for 

Well et al. technique [82] which needs to select and determine the spatial distribution 

of the object classes in an image manually. Nevertheless, it is found difficult to 

determine object classes when the image is unevenly illuminated. This is a non-trivial 

problem in that contrast normalisation itself is also the main objective. Moreover, the 

segmentation-based methods' assumption that the distribution of image intensity is 
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given by a mixture of Gaussian (normal) distribution of individual objects is often 

invalid; not mentioning another problem when dealing with pathological image data. 

Statistical model for contrast normalisation, known as nonparametric non­

uniformity normalisation (N3), proposed by Sled et al. [73] has been widely used for 

correcting uneven illumination, particularly in MR data. The excellences of this 

method are its insensitivene>:s to pathological data and fully automatic process 

requiring no model of object classes. The method derives a non-parametric model of 

object classes from the data it:;elf and employs an iterative optimisation approach to 

determine both smooth multiplicative illumination component and the true object 

classes' distribution. The two parameters necessarily to be determined are the 

parameter to control the smoothness of the estimated non-uniformity and the other 

parameter to control the trade off between accuracy and convergence rate. In fact it 

has been reported in [83] that 'lvi4 developed by Likar et al. [81] performed faster than 

N3 developed by Sled et al. [73]. Tustison et al. [74] on the other hand recently has 

modified this high popular N3 method by replacing the B-spline smoothing strategy 

and modifying of iterative optimisation used in the original N3 to improve 

convergence performance. 

Lastly, other methods, though not classified into any of the aforementioned 

categories in contrast normalisation, also exist such as registration against template 

[76], shape recovery [84], background estimation and subtraction [5, 42]. In 

registration-based method proposed in [76], two images, i.e. an image undergoing the 

proposed method and a reference image, are to be registered and to normalise varied 

contrast by smoothing and dividing themselves. However, the need for an 

application-specific reference image has become a main disadvantage of this method. 

In shape recovery based method, Lai and Fang [84] modelled smooth illumination­

field function and automatically determined orientation constraints using a finite­

element method. The major disadvantage of this method on the contrary is on the use 

of a linear system with large matrix to solve orientation constraints affecting the 

computation time. Additionally, the selection of data constraints by sparse sampling 

may result in imperfect data sele1;tion and lead to error in the contrast normalisation. 

In background estimation and subtraction, foreground-background model has been 
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initially proposed by [42] and extended by [5]. The local intensity variations field is 

to estimate model of background image to normalising the luminosity and contrast 

variability; while Mahalanobis distance is for the background pixel classification. 

These techniques conversely may face the problem when dealing with the presence of 

large bright objects, for instance zone with large exudates or laser treatments and 

large dark areas, for instance large haemorrhages and macula in retinal images in that 

these areas considerably are not in the luminosity and contrast variability estimation 

process. The aforementioned main enhancement techniques for varied contrast 

images are summaried in Table 2-1. 

Table 2-1 Advantages and disadvantages of different enhancement techniques for 
varied contrast images 

Enhancement Techniqnes Advantages Disadvantages 
Simple implementation, rapid 

Creation of edge effects 
Filtering [66-68] 

operation and well-
(artefacts), manual pre-

performed if varied contrast 
determined parameters. 

occurs over the whole image. 
Estimation of a varied 

Well-performed if contrast area using intensities 

Surface fitting [69-70] 
homogenous areas of the of one dominant region may 
image are distinctive and cause some adverse 
sufficiently large. information during the 

extrapolation. 
Assumption that the 
distribution of image 

Produces better contrast intensity is given by a 

Segmentation based [71-72] 
normalisation through mixture of Gaussian (normal) 
selection of the explicitly distribution for selection of 
modelled object classes. the explicitly modelled object 

classes is often invalid for 
pathological image data. 

Its insensitiveness to Computation time and 

Statistical model [73-75] 
pathological data and fully convergence performance 
automatic process require no due to its iterative 
model of object classes. optimisation. 

2.2.2 Enhancement Techniques for Low Contrast Image 

When the distribution of intensity values containing information is excessively 

concentrated on a specific range, an image may appear in low contrast. It can be 

optimised by spreading out the distribution of the significant intensities. The process 

of a contrast enhancement in tum aims to increase image intensity differences to make 
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the image or specific objects appeared in the image more obvious. Of numerous 

enhancement techniques being proposed to overcome the problem of low contrast 

images, contrast enhancement techniques is mainly categorised into two, namely 

spatial domain and frequency domain [34, 46]. The spatial domain involves a process 

of the contrast enhancement by modifying luminous intensity histogram of the input 

image and the latter techniqw~ performs the enhancement process in the frequency 

domain of the image. 

Based on the process of expanding the range of significant intensities, spatial 

domain can generally be categorised into two, i.e. linear and non-linear techniques. 

Linear contrast enhancement refers to a process that linearly expands the range of 

original image intensities into a newly specified intensity distribution to utilise a full 

range of available brightness value. In image processing, distribution of image 

intensity values is referred as histogram of the image. Examples of linear contrast 

enhancement techniques are min-max, percentage and piecewise linear contrast 

stretching techniques [3 3]. In linear contrast stretching, original minimum and 

maximum intensity values of an image are allocated to a new set of intensity values to 

increasing the dynamic range of histogram of the processed image. The difference 

between min-max and percentage linear contrast stretching technique is that the first 

uses particular minimum and maximum values and the latter represents the specific 

minimum and maximum values into a certain percentage of pixel intensities from the 

mean of the histogram. When the histogram of an image is bi or remodel, contrast 

enhancement can be performed in selected areas by stretching certain values of the 

histogram. A piecewise linear contrast stretching in the image consists of a number of 

linear enhancement steps that can be described as 

(2-6) 

with a, b and c are gained constants in the respective regwns and M is as the 

maximum luminous intensity value. One major drawback of linear contrast stretching 

is that each value in the input image can possibly have several values in the output 
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image - causmg certain objects in the original image to lose their correct 

corresponding brightness value in the processed image. 

Non-linear contrast enhancement meanwhile refers to a process to modify the 

image intensity distribution using a non-linear technique. One of the most commonly 

used methods is histogram equalisation [33, 85] whose basic idea is to map luminous 

pixel intensity values in the image to a more uniform distribution. In the histogram 

equalisation, the mean of luminous intensities of the processed image lies in the 

middle of gray level intensity of the input image in spite of its mean. Histogram 

equalisation method can be categorised into two, namely global and local methods 

[86]. Global histogram equalisation modifies a single histogram obtained from the 

entire image to enhance the image contrast. Its main disadvantage is its dependence 

on the global statistics of the image. Histogram equalisation is effective to enhance 

low contrast image if the image contains one or two distinctive objects and no 

significant contrast change between these objects and the background. Conversely, 

rarely does this condition occur in real one. Moreover, applying this technique on the 

presence of a high peak in the histogram can result in over-enhanced image leading to 

an unwanted loss of objects' visibility [87]. 

Local histogram equalisation methods in tum have been proposed to overcome the 

problems of global histogram equalisation. In these methods, the input image is 

partitioned into sub-images. Adaptive histogram equalisation (AHE) has been 

proposed by independently applying histogram equalisation on each sub-image [88-

90]. These sub-images are subsequently combined using interpolation method to get 

the final image [88]. Even though AHE is able to improve image's local contrast and 

produce more detail image, this method often overemphasizes noise and introduces 

significant artefacts in the process, for instance at the edges of relatively 

homogeneous regions [88, 91]. A generalisation of AHE, known as contrast limited 

adaptive histogram equalisation (CLAHE), has then been developed to overcome the 

problem of noise amplification [92-93]. CLAHE is an improvement of AHE by 

modifying an enhancement calculation based on user-specified maximum, i.e. 

contrast-limit level. This maximum contrast enhancement factor is set up to prevent 

an over enhancement of noise and reduce halo effects of the AHE. In CLAHE, 
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contrast--limit level of the histogram and size of the local region of the image (tile) are 

two important parameters [90]. CLAHE has been widely implemented for image 

enhancement in medical applications, for instance in enhancement of mammograms 

[93], retinal images [94], CT images [85] and X-ray images [95]. However, one 

major drawback in CLAHE is that it easily introduces artificial boundaries between 

two regions where the contrast between these regions is huge [96-97]. The size of the 

image tile and the contrast-limit parameter are also image and user dependant that can 

be disadvantageous to CLAHE. 

Other non-linear enhancement techniques based on spatial filtering, such as 

multichannel filtering [98], bllurred masking [99], adaptive contrast enhancement 

[100] and enhancement using first derivative and local statistics [101] use local 

information of the image to enhance image details. Again, these techniques also have 

major drawbacks due to ringing artefacts and noise over enhancement caused by 

amplification of noise and high contrast edges. Another drawback further may arise if 

the some local regions are so prominent that the entire image may lose its uniform 

pattern. A general characteristic of the aforementioned techniques is that they operate 

based on single-scale spatial domain leading them merely be able to perform a 

contrast enhancement of a certain size of specific local processing regions. 

The other contrast enhancement techniques are based on frequency domain 

transform. Many studies of frequency domain transform with application to medical 

image enhancement mainly concentrate on the wavelet transform. Wavelet, as a 

mathematical tool that is able to simultaneously provide both the time and frequency 

information of a signal in different scale, has been widely used for a medical images 

enhancemcmt such as CT images [102], MR images [103], X-ray images [104], retinal 

fundus images [61], mammograms [105] and ultrasound images [106]. 

A wavelet-based multi scale analysis provides several sub-band images from the 

original image and the advantage of analysing each band independently. Each sub­

band image contains information based on various scales resulting in the 

representation of low or high frequency elements on separate images. Noise or 

similar type of components of the image can be depicted in high resolution (small 
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scale) and large objects or subtle objects with defined extent can be depicted in 

medium and low-resolution levels. This categorisation is advantageous to selectively 

enhance or degrade image features of importance in different resolution level [107]. 

Table 2-2 Advantages and disadvantages of different enhancement techniques for 
low contrast images 

Enhancement Techniques Advantages Disadvantages 
Simple implementation and 

Losing correct brightness 
well-performed of contrast 

value in tbe processed image 
Linear contrast stretching enhancement by stretching 

due to possibility of having 
techniques [33] certain values of the 

several values in the output 
histogram if the histogram of 
an image is bimodal. 

tmage. 

Over-enhanced image 
Effective to enhance low leading to an unwanted loss 

Global histogram contrast image if tbe image of objects' visibility if 
equalisation [33, 85] contains one or two applying this technique on 

distinctive objects. the presence of a high peak 
in the histogram. 

Local histogram equalisation 
Improve image's local Overemphasizes noise and 

each sub-image [88-90] 
contrast and produce more introduces significant 
detail image. artefacts. 

The use of local information 
Ringing artefacts and noise 

Spatial filtering [98-1 0 I] of the image enables to 
over enhancement caused by 
amplification of noise and 

enhance image details. 
high contrast edges. 

Selectively enhance or 
The results of wavelet 

Wavelet-based multi scale degrade image features of 
transform is no longer shift 

[108] importance in different 
invariant. 

resolution level. 

2.3 Comparative Study on Retinal Image Enhancement 

Some studies have been conducted to compare the performance of several medical 

image enhancement techniques. Yousiff et al. [35] conducted a comparative study for 

performance evaluation of nine different techniques for contrast enhancement and 

illumination equalisation of retinal fundus image on two publicly available databases 

of total 60 images [36-37]. The eight different techniques are green band image [38], 

histogram equalisation [39], adaptive histogram equalisation [40], adaptive local 

contrast enhancement [ 41], background subtraction of retinal blood vessels [ 42], 

division by an over-smoothed version [43], desired average intensity [44] and 

estimation of background luminosity and contrast variability [5]. The performance of 

each technique is evaluated by using a matched-filter vasculature segmentation 
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algorithm [ 45]. The results show that adaptive histogram equalisation [ 40] is the most 

effective method among the others for having the largest area of 0.874 under the 

receiving operating characteristics (ROC). It is then followed by the adaptive local 

contrast enhancement [41] with 0.833 and the histogram equalisation [39] with 0.787 

at the second and the third, respectively [35] for improving the retinal vessels 

segmentation algorithm [41]. Youssif et al. [35] also applied hybrid method by 

combining Sinthanayothin's ffil~thod on adaptive local contrast enhancement [41] with 

a method developed by Yang et al. on division by an over-smoothed image for 

contrast normalisation [43]. It is interesting to note that applying contrast 

enhancement techniques on varied contrast corrected image further can enhance the 

image ar1d in turn can achiev,e better result in the segmentation process than just 

performing ordinary contrast enhancement techniques on the input image. 

Salvatelli et al. [ 1 09] test the performance of homomorphic filtering [ 46] and 

morphological filtering [22] for contrast normalisation. They also compare the 

performance of two contrast enhancement techniques, namely morphological filtering 

[22] and local contrast enhancement [41]. Each combination of these four image pre­

processing techniques is then tested using unsupervised segmentation of the abnormal 

blood vessels on diabetic retinopathy images. For the result, homomorphic filtering 

for contrast normalisation and morphological filtering for contrast enhancement are 

becoming the best combination [109]. Besides, it is believed that both processes of 

contrast normalisation and contrast enhancement must be simultaneously conducted 

for better image quality that leads to better segmentation results. Yet, another 

comparative studies conducted by Ralunan et al. [110] and Bichao et al. [111] 

interestingly show that Retinex,, a method to obtain colour constancy, can produce 

better image quality in terms of 1he tonal rendition and dynamic range compression of 

the processed image than that of histogram-based image processing techniques such 

as histogram equalisation, manual histogram adjustment and other commonly used 

techniques, e.g. homomorphic filtering. 

Tomazevic et al. [62] in evaluating contrast normalisation has compared several 

retrospective contrast normalisation methods, such as linear and homomorphic 

filtering [46], morphological filtt:ring [112], fitting a shading model [34] and entropy 
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minimisation [ 113]. The method based on entropy minimisation (EMI) for the result 

achieves the best corrections of the tested methods [62] for producing no spurious 

intensity variations to the output image and being insensitive to noise. Interestingly, 

most of the EMI-based methods have been implemented using independent 

component analysis (ICA), which is a blind statistical method for separating the 

mixed signals and determining the underlying factors or components from mixtures of 

a set of random signals, measurements or variables [ 114-116]. In the next subsection, 

the Retinex theory and the ICA and their applications in image processing will be 

reviewed and investigated to solve the problem of varied and low contrast image. 

2.4 Retinex Theory and Its Application in Image Processing 

Edwin H Land was first to formulate Retinex theory to describe human visual system 

in perceiving the colour or lightness of the scene [ 117]. Land found that human visual 

system preserves information from the object's characteristics, reflectance for 

example and discards uncertain factors such as varying illumination. It then indicates 

that even when retinal sensory signals coming from different colour patches under 

different illuminations are identical, human visual system are able to name the 

reflectance colour. However, during that time, Land did not understand if the human 

vision was only formed either in the retina or in the cortex. The term Retinex itself 

means an amalgamation of retina and cortex, assuming that both retinal eye and brain 

cortex play a significant role in the vision process. 

Retinex theory has four basic principles. First, colour is obtained from three kinds 

of lightness, namely physical reflectance, perceived reflectance and sensation of 

lightness that are independently computed for each colour channel. The objective of 

Retinex is to measure the sensation of lightness to obtain the estimated physical 

reflectance that is averaged over a particular channel or to obtain perceived 

reflectance in the event of human visual system. Second, the intensity ratios 

measured from the surroundings assumedly refer to illumination invariant. Third, 

combined information from local ratios is used to determine the lightness in a given 

channel that is measured over large regions. The last, the highest lightness obtained 

from a specific location in each channel is assumed to have maximum reflectance for 
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that particular channel. 

In the Retinex theory, an image is decomposed into two parts, i.e. illumination 

and reflectance. Intensity image I at certain point (x, y) corresponding to a particular 

wavelength (A.) is equal to the product of illumination L and reflectance R. 

J(,t,x,y) = L(.1., x,y).R(.1., x,y) (2-7) 

The basis of the Retinex theory considers the slow variation of intensity resulting 

in the distribution of frequency spectrum at low frequencies. The illumination part of 

the image is estimated and the output image considered as the reflectance part is 

obtained by subtracting this estimation from the original image. The reflectance part, 

which is invariant to illumination condition, is used to obtain reliable object 

recognition. Land and McCann further developed a computational proposed 

extension of the Retinex theory called as the 'Reset Retinex' to show that the 

reflectance value of a particular pixel can be determined by taking the ratio of the 

pixel intensity with other pixels in the image [118]. Numerous algorithms have been 

developed and some of them will be explained in the next subsections. 

2.4.1 Retinex Algorithms 

The main idea of Retinex algorithms assumes that a perceived reflectance depends on 

a relative measure of lightness, known as sensation of lightness correlating to the 

reflectance of the objects. The implementation of Retinex theory in general can be 

categorised into two, i.e. non-iterative and iterative methods based on a process of 

estimating the illumination part. The non-iterative methods are categorised into two, 

namely global and local Retinex methods. In the non-iterative global Retinex 

methods, one-dimensional geometrical structure, i.e. paths is used to scan the image 

content. Erst, illumination part of the image is estimated using information obtained 

from pixel intensity along multiple random paths within the image. The obtained 

illumination part is subsequently to estimate the reflectance part of the image. The 

difference among global Retinex methods is the type of path used. There are several 

global Retinex methods depending on the used paths, such as piecewise linear paths 
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(119], Brownian paths [120] and double spirals [121]. In most of natural images, 

Retinex algorithms with many piecewise linear paths - sometimes known as random 

walks algorithms- are required to produce better-enhanced images but this will affect 

the computational time. Brownian paths and double spirals are used to reduce the 

computational time required by the piecewise linear paths while preserving the basic 

underlying principles. Global Retinex methods using global information obtained 

from the separation process of illumination and reflectance are capable to maintain the 

original tone of the image. Even so, these methods tend to produce poor detail 

recovering in the dark regions in particular [122]. 

In the non-iterative local Retinex methods, the neighbouring pixel intensities are 

to estimate the illumination part of the image followed by the estimation of the 

reflectance part of the image. The main difference among local Retinex methods is the 

way to estimate the illumination information, for instance single scale Retinex (SSR) 

using Gaussian estimation [123] and multi-scale Retinex (MSR) using Gaussian 

estimation [124]. Using local information obtained from the separation process of 

illumination and reflectance, local Retinex methods are able to recover better fine 

details in the image compared to that of global Retinex methods. Since only local 

information is used, the original tone of the image on the contrary is often not well 

maintained. 

The iterative Retinex methods essentially are a multilevel one-dimensional 

Retinex implementation and have been developed by Frankie and McCann [125-126] 

and further refined by Funt et al. [127]. These methods elaborate the information 

from the surrounding areas of pixel of interests similarly to that of the global Retinex 

ones in obtaining the reflectance part of the image. 

The different Retinex algorithms usually have the same system diagram as shown 

in Figure 2.1 and the difference among them concentrates on the actual estimation of 

the illumination part of the image. 
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I 

image image 

Figure 2.1 Diagram of general Retinex algorithms 

The initial step is to convert the intensities of the input image of a specific wavelength 

(A) using logarithmic function withi(A.,x,y) = logl(A.,x,y), l(A.,x,y) = logL(A.,x,y) and 

r(A.,x,y)=logR(A.,x,y). The reflectance R of the image is estimated in its 

logarithmic form r as the difference between logarithms of I and L and formulated as 

log R(A., x, y) = log (J(A., x, y)) -log (L(A., x, y)) (2-8) 

The use of logarithmic conversion offers advantages both physiologically in which 

referring to the sensitivity of human visual system ar1d numerically in which 

preferring additions to multiplications. In practice, many different algorithms based 

on Retinex theory have been developed and some of them are reviewed below. 

2.4.1.1 Non-Iterative Lo1:al Retinex Methods 

The reflectance R of a specific wavelength (A) at a particular pixel (x,y) in which 

A, E R,G,Brepresents three colour channels in digital colour image is first estimated 

as the normalised sum of ratios between the intensity I (A.,x,y) and the highest intensity 

travelled by each of the M random paths {p 1 : i = 1, 2, 3, ... , M} along the image where 

each random path ends at (x, y). The estimated reflectance achieved by the non­

iterative local Retinex methods is formulated as 

R(A,,x,y)=-' IJ(A.,x,y) 
M 1~1 I(h_,) 

(2-9) 

with h, as the point with the highest intensity along path p 1 • 
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2.4.1.2 Non-Iterative Global Retinex Methods 

The idea of global Retinex method is to use the information of the surrounding areas 

of pixel of interests to estimate the illumination and subsequently to update the 

intensity of the pixel of interests. Land proposed centre-surround Retinex algorithm 

[ 128] is as an improvement of his initial random paths Retinex algorithm [ 118]. 

Land's method computes the lightness of the generic image pixels from a particular 

wavelength (A.) as the logarithm of the ratio between intensity I ( x, y) and the average 

value of the neighbouring locations, sampled with a density that decays as the inverse 

square of the distance from the centre. The lightness produced by the centre-surround 

Retinex algorithm showing the estimated reflectance is formulated as 

I R( ' ) I ( I(A.,x,y) J og /\,,x,y = og 
({l(A,x,,y,), (x,,y,) eSurround})w 

(2-1 0) 

with ( •) w representing the weighted average operator. Different from (2-9) in which 

the ratio is calculated based on the pixel with highest intensity; (2-1 0) calculates the 

ratio based on a weighted average intensity value of the surroundings. Jobson et al. 

[123] continued Land's work with the use of the weighted average of the surround as 

an estimated illumination part of the image that can be obtained by convolving the 

image function l(A.,x,y) with a normalised kernel function F. This algorithm, 

known as SSR, is defined as 

logR(A.,x,y) =log( I(A.,x,y) ) 
F(A.,x,y) * I(A.,x,y) 

(2-11) 

log R(;t, x, y) = log /(.:t, x, y)- log[F(;t, X, y) * li (.:t, X, y)], ;t E {R,G,B) (2-12) 

The Retinex output R(.-l,x,y)represents the estimated reflectance part of the image, 

F(A.,x,y) represents the normalised surround function where IJF(A-,x,y)dxdy =l 

and "*" denotes the convolution operation. Jobson et al. [123] estimated the 

illumination part by means of a Gaussian form subsequently subtracted from the 
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original image to obtain the estimated reflectance that is invariant to illumination. 

Even though various surround functions, such as inverse square spatial surround [128] 

and exponential absolute value [129] can be used, Gaussian surround function offers 

good dynamic range compression and advantages of being more distinctively regional 

[130]. For a particular wavelength/.., the Gaussian function is defined as 

F(A, X, y, 0") = Ce -((x'+y')la') (2-13) 

with C that is selected so that JfF(A,x,y,a)dxdy = 1 and cr is the scale that controls 

the Gaussian surround function and needs to be determined in advance. The scale 

determines the type of information needed by the Retinex. The smaller scales provide 

more dynamic range compression and the larger scales provide more tonal rendition. 

Hence, a trade-off in determining the scale of the surround function is necessary to 

achieve optimal dynamic range compression and tonal rendition. 

In practice, it is difficult to determine such a single scale to achieve both 

aforementioned objectives. Therefore, superposition of weighted several different 

scales of SSR, also known as MSR, is an obvious choice to balance these two effects. 

The MSR estimates the reflectartce part from the ratio of the image intensities to their 

averaged local intensities to achieve both tonal rendition and dynamic range 

compression simultaneously. First, the image is decompos(~d into a set of images to 

obtain the image averages at different spatial resolutions by employing Gaussian 

filters of different sizes. Next, a set of images used to measure the reflectance are 

produced by dividing the original image by that of the decomposed image. Then, a 

logarithmic function is applied to each of the images to reduce the image dynamic 

range. The displayed image is eventually reconstructed by jointly adding the 

compressed images according to each of the weighting factors. The MSR is 

formulated as 

N 

log R(A,x,y) = L wn {log 1;(.1,x,y) -log[Fn (A, X, y) *I, (A, X, y)]} 
(2-14) 

n=I 
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N ( f(A X y) ) logR(Jc,x,y) = L:w. log ' ' 
""1 F(Jc,x,y)*I(Jc,x,y) 

(2-15) 

in which N is the number of scales, Oln is the weighting factors for the n1
h scale and 

N 

L w. = 1. Jobson et al. [124] showed that the weighting factor w. = 113 with N=3 is 
n=! 

sufficient for most of the MSR applications. 

2.4.1.3 Iterative Retinex Methods 

McCann et al. improved the random walks Retinex algorithm [ 118] by developing a 

multilevel one-dimensional Retinex implementation [125-126]. These iterative 

Retinex methods [125-126] calculates the long-distance interactions and then 

gradually moves to short-distance interactions among pixels. In each step, the spacing 

between the pixels being compared decreases. The direction among pixels also alters 

at each step in clockwise order. At each step, the pixels comparison is implemented 

to estimate the reflectance part using the ratio - product - reset - average operation, 

which is iteratively computed in a certain number of times. This number of iteration 

turns out to be an important image-dependent parameter of the algorithm. After 

estimating the reflectance part of the image at the longest-distance, the resulting 

values are used as initial estimation of reflectance for the next level of interaction. 

Subsequent comparisons between pixels are continually performed to refine the 

estimated reflectance until the spacing decreases to one pixel and the final product is 

obtained. 

Ratio and product are the processes of accumulating and comparing resulting in 

the revision of a newer product in each pixels comparing process. Reset operation is 

to normalise the newer product exceeding the sustainable maximum. Averaging aims 

to estimate and update one pixel's luminance. The ratio-product-reset-average 

operation is performed by calculating the ratio between images I (in a specific 

channel) and its spatially shifted version and offset by some displacement distances 

formulated as 
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(2-16) 

where (loglx,y -logl,,y,) IS the ratio and l(loglx,y -loglx,,y,)+logO"',Y'j 

represents the product. Reset operation is performed to update the maximum intensity 

of the seene L::' if [logl,,y -logl"'.Y' +logO"'·Y,)]>logL::'. The logo;,y is a 

result of averaging with log 0 x,y and o;,y itself is an updated output produced in each 

iteration that will be used as an input for the next iteration. 

A comparison of Retinex algorithms in terms of advantages and disadvantages of 

each method is summarised in Table 2-3. 

Table 2-3 Advantages and disadvantages of several Retinex algorithms 

Retinex algorithms Advantages Disadvantages 
Single scale Retinex (SSR) Wdl-performed for dynamic 'Washed out' appearance, loss 
f123l range compression. of good tonal rendetion. 
Multi-scale Retinex (MSR) Good tonal rendetion and 'Washed out' appearance 
[124] preserve image's details. (less than SSR). 

'Washed out' appearance is 
MSR with dynamic range suppressed, preserve image's 'Ringing' artefacts are not 
[131] details, increase global totally diminished. 

contrast. 
Retinex-based adaptive filter 

Reduce artefacts. 
Increased computational 

[132]. time. 
Image and template must be 

Fast MSR [133] Fast 
in the same size, size of the 
image must be in the power 
of two. 

Reduce artefacts, no need to Number of iteration is fixed 
Iterative Retinex methods det(lrtnine image-dependent and pre-determined, 
[125-126] parameters, only number of increased computational 

iteration. time. 

2.4.2 Applications of Retinex in Image Processing 

Retinex teehnique has been widely used in image processing mostly to solve the 

problems of colour constancy [120, 122, 124, 134-135]. Other implementations of 

Retinex technique are on shadow removal [136] and illumination normalisation [137-

138]. Retinex technique has also been widely employed for medical imaging. For 
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instance, Chen applied Retinex technique in chest radiographic image for dynamic 

range compression and contrast enhancement to improve the visibility of the dark 

regions on chest radiograph [ 13 9]. Chao et al. applied this technique on MRI images 

and showed that it is able to correct varied contrast and to enhance image contrast to 

clarifying the deep brain structures of MR images captured by surface coils [ 140]. A 

specific application of Retinex technique on retinal images has been proposed by 

Vazquez et al. for classification of retinal blood vessels that combines an image 

enhancement based on MSR Retinex and a clustering technique performed in a 

number of overlapped areas in the fundus image [141]. 

In this thesis, the iterative method based on McCann algorithm [125-126] is 

adapted since it only needs to determine the number of iteration for its operation. The 

operation of this iterative Retinex method is simpler than that of the non-iterative ones 

in which several parameters, such as the weighted scale, must be predetermined to 

obtain good dynamic range and tonal rendition. However, the number of iteration 

used by McCann algorithm is fixed and must be determined in prior. Therefore, in 

our developed algorithm, we improve McCann algorithm by setting up a parameter to 

determine the optimum number of iteration for the Retinex rather than to use a fixed 

and predetermined number of iteration. 

2.5 Independent Component Analysis 

Independent Component Analysis or ICA is a blind statistical and computational 

technique that belongs to a class of blind source separation (BSS) for separating the 

mixed signals and determining the underlying factors or components from mixtures of 

a set of random variables, measurements or signals [142]. Besides blind source 

separation, the main applications of ICA are blind deconvolution and feature 

extraction. Herault and Jutten [143-144] introduced mathematical theory behind ICA 

and then was improved by Common [145], Lee [115], Cardoso [146], and Hyvarinen 

[147]. In ICA, a generative model is defined for the observed multivariate data 

generally obtained from a large number of samples. Multivariate data assumedly are 

to be linear or nonlinear mixtures of some unknown hidden variables or sources while 

the mixing process or the distribution of sources is unknown. The uniqueness of ICA 
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from other methods is that it determines hidden variables called as the independent 

components (ICs) of the observed data that are both non-Gaussian (possible exception 

of only one component to be Gaussian) and statistically independent. ICA has been 

successfully applied to solve various problems, e.g. medical signal [148], image 

processing [149], face recognition [150], telecommunication [151] and so forth. 

2.5.1 Linear ICA Model 

A mathematical formulation of ICA model is described as follows. Given observed 

random data v = [ v10 v2 , ... , v N] eo \n m<N with m as the number of observations and N as 

the number of available san1ples, a linear combination of n random sources 

s = [ s10 s 2 , ... , s N] E \n "'N with mixing matrix A E \n m<n is fmmulated as 

v =As (2-17) 

This generative model of ICA shows how a process of mixing the componentss 

generates the observed data v . It is assumed that v and s are centred or mean 

subtracted. In this basic model, the number of ICs is equal to the number of observed 

data ( m = n ), thus, mixing matrix A is square and invertible. Both the ICs, which are 

hidden variables and the mixing matrix A, carmot be directly observed. Only is the 

random data v being observed. Mixing matrix A and random sources s are estimated 

usingv. If A=W1
, the ICs can b1~ determined using separating matrix W simply by 

s=Wv (2-18) 

where s i:; defined as estimated. sources. The goal of ICA is to get s as close as 

possible to s , which is determined as original sources, by finding out the optimum 

separating matrix W based on various estimation methods of independence. In some 

cases, noise is included in the measurements. Thus, adding a noise term in the model 

ofiCA yields 

v = As + n (2-19) 

where n represents additive white Gaussian nmse. The problem of ICA is 
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systematically illustrated in Figure 2.2. 

s Mixing 
~-"1 Process 

A 

Separating fi "' s 
'.--""" Process 

w 

Figure 2.2 Diagram ofiCA problem 

In cases where the number of observed data is greater than the number of sources 

( m > n ), the row dimension m of A can be reduced to n dimension using principle 

component analysis (PCA) to make the mixing matrix A square. If m < n, the number 

of observed data is smaller than the number of ICs, thus, the mixing matrix A is not 

invertible. This case is called as ICA with over-complete representations [152]. The 

possible way to estimate the ICs in over-complete cases is by using pseudo-inverse of 

mixing matrix. The mathematical formulation of this solution is described as 

(2-20) 

Even though a simple pseudo-inverse offers a solution in some situations, many cases 

still need a more sophisticated estimate, for. instance, using maximum likelihood and 

maximum a posterior estimation [153]. 

2.5.2 Limitations and Ambiguities in ICA 

In generative ICA model shown in (2-17), the only assumptions needed are that (1) 

the ICs are statistically independent, (2) the mixing of the sources into the 

observations is linear, (3) the probability densities of the ICs are non-Gaussian and (4) 

the number of observations is larger than or equal to the number of sources [154]. 

Based on (2-17), some ambiguities may occur due to indeterminacies of the orders 

and the variances of the ICs. Since both s and A are unknown, the order of the ICs in 

(2-17) cannot be determined. Substituting a permutation matrix P and its inverse in 

the ICA model (2-17) gives 

v = (Ar')(Ps) =A's' (2-21) 
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where Ps are the original ICs but in another order while AP-1 is the new unknown 

mixing matrix A' to be solved. Moreover, any scalar multiplier in one of the sources 

s, can always be wiped out by dividing the corresponding column a, of A by the 

same scalar, for instance k,: 

v= L(_!_a,J(s,k,) 
' k, 

(2-22) 

Fortunately, both of these ambiguities are insignificant in most applications [155]. 

2.5.3 Statistical Independence and N on-Gaussianity 

Statistically, random variable x and y are considered to be independent if and only if 

the joint probability density function (pdf) can be factorised as 

(2-23) 

where Px,y(x,y) isthejointpdfof x andy, Px(x) and py(y) aremarginalpdfof 

x and y, respectively. Marginal density function of x is defined as 

(2-24) 

Applying this equation to random variabless=[s~'s2 , ... ,sN], the components are 

statistically independent if the joint pdf p(s) can be factorised as 

N 

p(s) = f1p(s,) 
(2-25) 

i=l 

where p(s,) is the pdf of the i1h source. 

For instance, in the case of two ICs, if s1 and s, are independent, the density of s1 

is unaffected by s2 • It is important to note that, different from principal component 

analysis (PCA), ICA uses statistical independence rather than only de-correlations. 
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Statistical independence shows stronger property than de-correlations, which simply 

considers the second order statistics. In other words, if the variables are independent, 

they must be uncorrelated. Nevertheless, the uncorrelated variables are not always 

independent. 

Non-Gaussianity, which is of importance for estimation of the ICA model is the 

other parameter to show the statistical independence. It is defined as the deviation of 

pdf from Gaussian distribution. Based on the central limit theorem (CL T) [!56], 

distribution of a sum of independent random variables tends to be more Gaussian 

(normal) than the distribution of each independent random variable. Thus, 

independence is non-Gaussianity. In the linear ICA model (2-17), v, which is the 

linear mixture of a number of ICs, has distribution closer to Gaussian than that of the 

ICss. 

2.5.4 Measuring Non-Gaussianity 

A quantitative measure of non-Gaussianity of a random variable is to estimate the ICs. 

The first quantitative measure of non-Gaussianity is kurtosis, which in statistics shows 

a peaked measure of a probability distribution. Kurtosis or the fourth-order cumulant 

of random variable y denoted by kurt(y) is defined as 

kurt(y) = E{y' }- 3(E{y2 
})' 

(2-26) 

where E = {-} is the statistical expectation operator. The normalised kurtosis of a 

random variable y is then formulated as 

(2-27) 

Kurtosis of a Gaussian (normal) random variable is equal to zero; conversely, for 

most non-Gaussian random variables, it is nonzero. With negative kurtosis, a random 

variable is called sub-Gaussian or leptokurtic, while with positive one it is called as a 

super-Gaussian or platykurtic. Due to its simplicity, both theoretical and 
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computational, kurtosis has been widely used to measure the non-Gaussianity of a 

random variable. However, it has a limitation for being sensitive to outliers in data 

set; leading it to be not a robust measure of non-Gaussianity. 

The second quantitative measure of non-Gaussianity is negentropy, which is 

calculated based on the information theoretic differential entropy. Entropy of a 

random variable corresponds to the degree of information given by the observed 

variable. The more random (i.e. unstructured or unpredictable) the variable is, the 

larger the entropy is. Entropy H of a discrete random variable Y is defined as [157] 

H(Y) =-L P(Y =a,) log P(Y =a,) (2-28) 

where a, are the possible values of Y. Generalisation of the above formula for 

continuous random variables is known as differential entropy. The differential 

entropy H of a random variable Y with probability density function p(y) is defined as 

[157] 

H(y) =- fp(y) logp(y)dy (2-29) 

It has been proved that Gaussian variable has the greatest entropy among all 

random variables of equal variance [157]. Conversely, the entropy of a random 

variable is small for random variables with non-Gaussian distribution. For this, the 

entropy apparently can be used as a measure of non-Gaussianity. A slight 

modification of differential entropy, called negentropy is defined as 

where J is negentropy of y and y gau" is a Gaussian random variable of the same 

covariance matrix as y. Negentropy is always non-negative. It is zero if and only if 

y has a Gaussian distribution. The use of negentropy as a quantitative measure of 

non-Gaussianity has both advarttages and disadvantages in that negentropy or 

differential entropy is the optimal estimator for non-Gaussianity and is well justified 

by statistical theory. However, it is very difficult computationally for requiring an 
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estimate of the pdf to calculate the negentropy. 

The third quantitative measure of non-Gaussianity is by using approximations of 

negentropy. Some approximations of negentropy have been proposed to overcome 

the difficulty in calculating negentropy for the application of I CA. Classical method 

in approximating negentropy is by using the following higher-order moments [158] 

J(y) "']__ E{y' Y + -
1 

kurt(y )' 
12 48 

(2-31) 

However, the above classical approximation of negentropy suffers from the non­

robustness due to the use of kurtosis. An approximation of negentropy has been 

proposed by Hyvarinen [159] and is defined as 

J(y)"' fk,[E{G,(y)}-E{G,(v)}]' 
(2-32) 

i=l 

where k, are some positive constants and v is a Gaussian variable. Both y and v 

are normalised to zero mean and unit variance. The function of G, are some non­

quadratic functions that should not be sensitive to outliers and must not grow too fast 

to get robust estimators. In a case where only one non-quadratic function G is used, 

the approximation will be 

J(y)"' [E{G(y )}- E{G(v )}]' (2-33) 

The most common choices of function G that have been proved to be useful are 

(2-34) 

1 ( y') G2 (y)=-~exp -a, 2 , G,'(y)=g2 (y)=u exp(-a2 y 2 12; 
(2-35) 

where a1 and a
2 

are some suitable constants where 1::; a1 ::; 2, a2 "'I. The statistical 

properties of the ICA method such as consistency and robustness will depend on the 
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choice of the objective function, meaning that different contrast functions offer 

different advantages. As pointed out by Hyvarinen [147], G1 is good general-purpose 

contrast function whilst G2 is suitable when the ICs are highly super-Gaussian or 

when the robustness is very important. 

2.5.5 Pre-processing Data for ICA 

Before applying ICA algorithm, the data set usually undergoes some pre-processing 

steps to make the problem ofiCs estimation simpler and better conditioned. 

2.5.5.1 Centring 

Centring data v is performed by subtracting the data v with its mean m = E{v} to 

make data v a zero-mean variable. The formula is defined as follows: 

v=v-E{v} (2-36) 

In (2-17), if data v is a zero-mean variable, it can be inferred that s is also zero-mean. 

The mixing matrix A is estimated with the centred data and the estimation process is 

completed by adding the mean of s to the centred estimates of s . 

2.5.5.2 Whitening 

Whitening is decorrelation followed by scaling of the observed random variables. In 

ICA it can be performed using PCA in which the observed data v is linearly 

transformed to obtain a whitened data v whose components are uncorrelated and 

their variances are equal unity (variance normalisation). A simple PCA algorithm 

uses eigenvalue decomposition (EVD) of the covariance matrix. For instance, given 

a random variable v containing a large samples, the covariance matrix of the 

whitened random variable v is obtained from the sample and expressed as 
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C, =E{vvr}=EDrE=l (2-37) 

with D = diag [d1 ••• d n] is the diagonal matrix of its eigen values of C,, I is an 

identity matrix and E is an orthogonal matrix of eigen vectors of E {Vv r } . 

Whitening transform is formulated as 

(2-38) 

Therefore, applying whitening transform on the observed random variable vis 

expressed as 

v = Rv = ED-Y, Er v (2-39) 

The ICA is now performed on whitened data v instead of original observed data v . 

The PCA technique estimates the whitening matrix R and the ICA technique finds the 

separating matrix W, which its schematic diagram is shown in Figure 2.3. 

Whitening v Separating s 

matrixR matrix W > 

Figure 2.3 Estimating the ICs using whitening and separating processes 

From (2-17), the mixing matrix A is considered as an inverse matrix of the 

concatenation of whitening matrix R and the separating matrix W. 

2.5.6 ICA Algorithms 

The estimation of ICs of the ICA model shown in (2-18) can be solved by using 

optimisation algorithm to determine a proper linear transform that makes s
1 

as 

independent as possible. The choice of the optimisation algorithm affects the 

algorithmic properties of the ICA such as convergence speed, memory requirement 

and numerical stability. The ICs are obtained using a separating matrix W. Several 

optimisation algorithms such as Newton-like methods and gradient -based methods 
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are usee! to optimise the chosen contrast functions, also known as cost functions or 

objective function for detemtining the separating matrix W. ICA algorithms to 

estimate the ICs can be derived from several different principles, such as 

maximisation of non-Gaussianity [147], maximum likelihood estimation [160] and 

minimisation of mutual information [161]. 

2.5.6.1 Maximisation of Non-Gaussianity 

Assuming that ICs have non-Gaussian distribution, ICA methods are applied to 

separate the components from their mixture by maximising non-Gaussianity of each 

component. A flowchart showing the ICA process by maximisation of non­

Gaussianity is depicted in Figure 2.4. 
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Updating separating 
matrix w; 
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(Centring and whitening) 

separating matrix W1 

Maximise non­
Gaussianityofw;v 

Figure 2.4 Flowchart ofiCA by maximisation ofnon-Gaussianity 

One well-known method in applying maximisation of non-Gaussianity is fast 

fixed-point algorithm (FastiCA) developed by Hyvarinen et al. [147]. The FastiCA is 

based on a fixed-point iteration for maximisation of non-Gaussianity of wv to obtain 

the estimated IC s as indicated in (2-18). Since the FastiCA uses approximation of 

negentropy, the maxima of the approximation of wrv are obtained at certain optima 

E{G(w,.v)}. The optima of E{G(w,.v)} under the constraint E{(w,.v) 2
} = llwll' = 1 

are obtained at points where 

E{v g(w,.v)'}- fJw = o (2-36) 
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where~ is a constant that giv<!S f3 = E{w{vg(w{v)} and w0 is the value of w at the 

optimum. 

Using Newton's iteration method, matrix w IS determined by the following 

equations. 

w+ = w- [E{v g(wrv))- fJw ]![E{g'(wrv))- fJ] (2-37) 

(2-38) 

where w*is the new value of w and llw+ll is the norm of w+. By multiplying both 

sides of the (2-37) with(/]-- E{g'(wrv)}), the fixed-point algorithm can be 

formulated as 

w+ = E{vg(wTv)}- E(g'(wTv)}w (2-39) 

In summary, the algorithm of the FastiCA for one IC estimation can be described 

as follows: 

I. Determine an initial random weight vector (matrix) w . 

2. Calculate w+ =; E{vg(wri))}- E(g'(wrv)}w 

3. Determine w' as the new value of w denoted by w' = w+ /llw+ II 

4. Check the criteria for convergence. If lw - w 'I::;; e is not fulfilled, the process 

will be back to step 2. The convergence parameter 8 is set to some values, 

e.g. 0.0001. 

For estimation of several ICs, the FastiCA implements two approaches, I.e. 

deflationary and symmetrical approaches. In deflationary approach, the ICs are 

estimated one by one, while in the symmetrical one, the ICs are obtained in a parallel 

process. Detailed steps for deflationary approach are as follows: 

1. Pre-process data to make z<:ro-mean and whitened data'iJ. 
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2. Choose m ICs. 

3. Initialise random w,, i=l, 2, ... , m to unit form, 

4. w~ =E{vg(w{v)}-E(g'(w,'v)}w,. 

b-1 

5. Orthogonalisationofw: =wi- I(wJ"Y wa)wa. 
a=l 

6. Normalisationofw,: = w~ !llw,:ll· 

7. Check the criteria for convergence. If lw 
1 

- w ,'I ,; li is not fulfilled, the process 

will be back to step 4. The convergence parameter e is set to some values, 

e.g. 0.0001. 

8. Increase the iteration i = i+ 1 until i=m. 

9. The iteration process ends when the convergence is achieved or the iteration 

has reached its maximum number of iteration. 

For symmetrical orthogonalisation, detailed steps are described as follows:-

1. Pre-process data to make zero-mean and whitened data v. 

2. Choose m ICs and set iteration i=l. 

3. Initialise random w,, i = I, 2, ... , m to unit form and orthogonalise the matrix w . 

4. For each i: w~ = E{Vg(w,'v)}- E(g'(w,'v)}w, and update each colunm of the 

separating matrix w from the previous iteration. 

5. Orthogonalisationofw• =(wwrt12 w. 

6. Check the criteria for convergence. If lw- w• I,; li is not fulfilled, the process 

will be back to step 4. The convergence parameter li is set to some values, 

e.g. 0.0001. 
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7. The iteration process ends when the convergence is achieved or the iteration 

has reached its maximum number of iteration. 

2.5.6.2 Maximum Likelihood Estimation 

Maximum likelihood (ML) is a statistical approach for estimating the ICA model 

based on the assumption that the unknown parameters to be estimated are constants. 

If the pdf of the ICs are known, an application of a simple gradient-based algorithm 

enables to obtain these ICs. However, rarely does the situation where the pdf are 

known occur. Bell and Sejnowski introduced the infomax principle based on 

maximising information flow (entropy) of a neural network using non-linear scaling 

function [ 114]. This scaling function must be well chosen to allow the application of 

ICA. A stochastic gradient method [114] for maximising likelihood can be 

formulated as 

w+ = W + ,u[! + g(s)sr ]w (2-40) 

where s = wv, J.l is the learning rate and g is a function of the pdf of the IC: 

g = J,' I f 1 where the J, is the pdf of an IC. 

Besides gradient-based methods, the FastiCA could be an alternative to estimate 

the maximum likelihood and formulated as 

w+ = w + diag(a;)[diag(jJ,) + E{g(s)sT} ]w (2-41) 

with ,8, = ·-E{s,g(S,)} and a, =• -11(,8, + E{g'(sJ}. The matrix w needs to be 

symmetrically orthogonalised iteratively. 

By comparing (2-40) and (2-41 ), the FastiCA can be considered as a fast fixed­

point algorithm for maximum likelihood estimation. The choice of the matrices 

diag( O.i) and diag(~i) optimises the convergence speed in the Fast! CA. In ML, the 

problem may arise when the densities are not properly estimated and leading the 

overall estimation to be incorrect [154]. However, different from the gradient-based 

methods merely working for a given class of distribution (either it is super-Gaussian 
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or sub-Gaussian), the FastiCA offers advantages for being able to estimate both sub 

and super-Gaussian ICs. 

2.5.6.3 Minimisation of Mutual Information 

Another approach based on information theory is the minimisation of mutual 

information among random variables. Mutual information I refer to a dependence 

measure among m random variables that can be formulated as 

m 

I(s" s 2 , •• ~m) = '[, H(s;)- H(s) 
(2-42) 

i=l 

where His the entropy of random variables. The term H (s;) refers to the measured 

entropy of each variable s; and H(s) refers to measured entropy of all variables. 

Hence, mutual information shows information reduction that is obtained by 

subtracting the entropy of the whole vectors from that of the separated components. 

The mutual information can be minimised by maximising H(s) and that can be 

obtained if all s; are independent. If all s; are independent, no information is given 

from one to another, thus, H(s) will be the same asH(s;)· Mutual information is 

always non-negative and it is zero if and only if the variables are statistically 

independent. The formula stated in (2-42) is similar to negentropy given in (2-30) 

that also aims to find non-Gaussian components. In general, ICA algorithms by 

minimisation of mutual information are fundamentally equivalent to the ones for 

maximum likelihood estimation or maximising the sum of non-Gaussianities of the 

estimates ofthe ICs [154]. 

Compared to the other ICA algorithms, such as gradient-based methods, the 

FastiCA offers several advantages, such as its simplicity, high computational speed 

and good accuracy for high dimensional data [162]. The main drawback of gradient­

based algorithms is however on their slow convergence and dependence on a good 

choice of the learning rate sequence. Inaccurate choice of the learning rate can 

annihilate the convergence of the gradient-based algorithms. The FastiCA, unequal to 

gradient-based algorithms for ICA, does not need adjustable parameters such as 
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learning rate. The convergence of the FastiCA additionally is fast. On an 

independent experiment, the p<~rformance ofFastiCA was found to be up to 100 times 

faster than conventional gradient-based methods for ICA [163]. Moreover, 

comparison study on ICA algorithms given by [164] also showed that FastiCA [147, 

165] outperformed other ICA algorithms, such as Infomax [114], extended Infomax 

[166], neural gradient algorithm [167], EASI algorithm [168] with its shortest 

processing time, fastest convergence speed with small residual error. This is 

predictable since FastiCA is not gradient descent but ~ approximative Newton 

method that can provide cubic or at least quadratic speed of convergence. In terms of 

floating-point operations per second (flops), the required amount computation for 

FastiCA to converge is the smallest at around 107 flops in comparison to EASI [168] 

that has converged at around 1.5xl08 flops and neural gradient algorithm [167] along 

with Infomax [114] at approximately 2.0x108 flops. Short computation time is 

becoming important in the development of a medical system related its use for mass 

screening such as DR mass screming. 

2.5. 7 A][lplications ofiCA in Image Processing 

In image processing, as well as in the field of medical imaging, ICA has been applied 

to solve the problems of image feature extraction [169-170], edge detection [171], 

texture analysis and classification [172] and blind deconvolution [115]. Wu and Liu 

[149] used ICA on dynamic contrast-enhanced imaging data for assessment of 

cerebral blood perfusion without any prior knowledge of arterial input function and 

underlying tissue. Promising results show that ICA is able to extract physiologically 

significant components from the DCE imaging data and the acquired IC maps allow 

for a reliable reference to identify venous and arterial structures. These results are 

able to provide better demarcation of the tumour territories. In mammographic 

imaging, ICA further has been used to improve the quality of digital mammographic 

images contributing to more accurate diagnosis [ 173]. 

An ICA-based method with sdective filtering has been proposed by Li et al. to 

estimate functional activation regions in functional MRI (fMRI) [174]. Boroomand et 
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al. [175] also applied two most frequent ICA algorithms, i.e. FastiCA [147, 165] and 

Infomax [114] to extract true activated temporal and spatial sources on simulated 

fMRI datasets in the presence of several different noise levels. In skin imaging, 

Tsumura et al. showed that spatial distributions of haemoglobin and melanin from a 

skin colour image can be separated by using ICA [176-177]. Moreover, Nugroho et 

al. successfully applied a technique based on PCA and ICA to convert the RGB skin 

image into a skin image that represents skin areas merely due to melanin and 

haemoglobin [178]. 

2.6 Summary 

A general evaluation on the literature review concludes four problems in medical 

images. First, it is found that varied contrast is a problem in medical images due to 

the geometrical surface of the objects and configuration of the acquisition system. 

Varied contrast is defined as smooth variation of image intensity that needs to be 

normalised as part of image enhancement. In retinal image, the varied contrast occurs 

due to the spherical surface of the retina and the geometrical configuration of the light 

source and camera. Second, low contrast tiny objects of interest in medical images 

are related to biological structure of the objects and the amount of light being 

absorbed or reflected by these particular objects. This low contrast tiny objects need 

to be extracted and selectively enhanced to facilitate diagnosis based on direct 

observation or automated image analysis. These problems are very crucial when the 

diagnosis process involves an observation of these particular low contrast tiny objects 

to diagnose or to grade the severity level of a disease. Third, the best method to 

enhance the low contrast is based on invasive method. In retinal image, fundus 

fluorescein angiography (FF A) is used to enhance the retinal blood vessels and 

pathologies. However, this invasive method is not preferable due to its side effects 

that may cause physiological problems and even death for the worst case. 

Fourth, the problem of increasing noise and creating artefacts may appear in most 

of existing enhancement methods based on filtering and histogram. Surface fitting and 

segmentation-based methods need to define objects as reference prior to enhancement 

process. For defining nonparametric model of object classes from the data themselves 
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and employing an iterative optimisation approach to estimate both smooth 

multiplicative illumination component and the distribution of the true object classes, 

statistical-based methods are found to be the best technique for enhancement in 

contrast normalisation. For contrast enhancement, adaptive contrast enhancement in 

tum are found to be the best; however, these histogram manipulation-based methods 

face the problem of increasing noise and creating artefacts. 

Current image contrast measurements are only suitable to find the contrast 

between two or more images without involving specific image features. Image 

contrast measurement by Rubin and Siegel [53] given in (2-5) is basically the same as 

to find the variance of the pixels intensity distribution in the image. Even though, it is 

suitable to compare the contrast between two images in general, it does not correctly 

measure the contrast between two or more specific features. Using an image model, 

specific image features can be iidentified and the contrast between two specific image 

features, i.e. object of interest ;md the background can be determined by the ratio of 

the average of intensities between these two specific features. Instead of measuring 

contrast enhancement, the formulation given in (2-5) can however be used to measure 

the varied contrast normalisation since the lower the variance is, the more uniform the 

intensities are. 

Retinex theory is initially developed to solve the problem of colour constancy that 

corresponds to characteristics of the objects, i.e. reflectanc<: and makes the perceived 

colour of the objects relatively constant regardless the ilhunination condition. The 

use of the Retinex theory in which image intensity is a product of illumination and 

reflectance, enables to minimise the problem of varied contrast due to illumination by 

separating the illumination part from the reflectance part of the image. The 

reflectance part is obtained by estimating the illumination part of the original image 

and subsequently subtracting this estimated illumination from the original image. The 

objective of the Retinex theory is to optimise both dynamic range compression and 

tonal rendition. Retinex algorithm is applied to achieve optimal results for contrast 

normalisation indicated by the maximum compression of image intensity dynamic 

range without losing the details of the objects. In this thesis, the iterative method 

based on McCarm algorithm [125-126] is adapted since it only needs to determine the 
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number of iteration for its operation. The operation of this iterative Retinex method is 

simpler than that of the non-iterative ones in which several parameters, such as the 

weighted scale, must be predetermined to obtain good dynamic range and tonal 

rendition. However, the number of iteration used by McCann algorithm is fixed and 

must be determined in prior. Therefore, in our developed algorithm, we improve 

McCann algorithm by setting up a parameter to determine the optimum number of 

iteration for the Retinex rather than to use a fixed and predetermined number of 

iteration. 

I CA, which is a blind statistical method used to determine the underlying 

components, can be applied as an algorithm to separate the features or objects from 

their mixtures. The ICA searches for a linear transformation of a random variable that 

minimises the statistical dependence between its components. In order to defme 

suitable search criteria, some parameters, such as maximisation of non-Gaussianity, 

maximum likelihood estimation and minimisation of mutual information can be 

utilised. In the case of image processing, ICA can be applied to extract the features 

from their mixtures observed from the image. It is believed that each of these features 

will have distribution which is more non-Gaussian than that of their mixtures. 

Extracting a specific feature in the image and separating it from the others by 

maximising non-Gaussianity of each feature result in the contrast enhancement of this 

specific feature. Nevertheless, before applying ICA algorithms, several steps can be 

applied to reduce the complexity of the separation process. The most common ICA 

pre-processing steps are centring and whitening. Centring is useful to normalise data 

variability, whilst whitening is useful either to decorrelate the mixed components or to 

reduce data dimension and noise in the observed data. However, any pre-processing 

steps can be added depending on the complexity of the problem. In this thesis, since 

the problem faced is varied and low contrast image, contrast normalisation based on 

Retinex is proposed to overcome the problem of varied contrast image prior to 

applying ICA for contrast enhancement. Due to its simplicity, high computational 

speed and good accuracy for high dimensional data [162], the FastiCA algorithm 

[147], which is an efficient fixed-point iterative algorithm is adapted in this research 

to maximise the non-Gaussianity of the components to achieving contrast 

enhancement. 
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CHAPTER3 

MODELING OF VARIED AND LOW CONTRAST COLOUR RETINAL 

FUNDUS IMAGES 

3.1 Introduction 

The objective of the research is to develop a non-invasive linage enhancement method 

for varied and low contrast colour retinal fundus linages. Varied and low contrast 

retinal fundus linage models are developed to evaluate: the performance of the 

proposed linage enhancement method. The work involves the use of colour retinal 

fundus images that may suffer Ji·om problems of both varied and low contrast. Varied 

contrast may occur in within a colour fundus image and between two colour fundus 

images of the same retina. Figure 3.1 shows an example of varied contrast within an 

image in which retinal blood vessels may have different contrast. 

Figure 3.1 Varied contrast occurs in the colour iundus image 

Another example of varied contrast between two linages is shown in Figure 3.2. 

Although using the same fundus camera to acquire these two colour fundus images, 

the results show varied contrast between them. 
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Figure 3.2 Varied contrast between two colour retinal fundus images of the same eye 
acquired using the same fundus camera 

Besides varied contrast, colour retinal fundus images also suffer from low contrast 

particularly between very fme retinal capillaries and the background in the macular 

region as shown in Figure 3.3. The appearance of retinal blood vessels and capillaries 

in the macular region are important for diagnosing several retinal diseases, such as 

diabetic retinopathy (DR) and diabetic maculopathy (DM). 

Figure 3.3 Low contrast of retinal vessels and capillaries in the macular region 

Three retinal fundus image parametric models, i.e. varied contrast image, low 

contrast image, and varied and low contrast image are developed based on the 

probability distribution functions of macular pigment, haemoglobin and melanin to 

represent macular region, retinal vasculature and background, respectively. Data for 

modelling were collected from a clinical observational study NMRR-08-842-1997 

(Appendix B) that had been approved by the Clinical Research Centre, Ministry of 

Health, Malaysia and was conducted at Hospital Selayang, Malaysia from July 2008 

to March 2009. This database called as Fundus Image for No~r-invasive Diabetic 

Retinopathy System (FINDeRS) consists of 315 colour retinal fundus images [179) 
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which forty-four of them, for this modelling, are randomly selected. 

3.2 Structure ofthe Eye and the Retina 

In general, the structure of the eye shown in Figure 3.4 can be classified into two main 

groups, namely ocular media and ocular fundus [ 19]. 

Vitreous humor 

Cornea 

} 

Retina 

Lens 

Optic disc -+1 

Choroid and Retinal 
pigment epithelium 

Figure 3.4 Schematic diagram of structure of the eye 

Ocular media, which is located between the ocular fundus and the observer, 

consists of cornea, lens and vitreous humour; the ocular fundus meanwhile consists of 

the retina, retinal pigment epithelium, choroid and sclera. A diagrarmnatic cross­

section of the eye inferred from p9, 180-181] is illustrated in Figure 3.5. 
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Figure 3.5 Diagrammatic cross-section of the eye 

Figure 3.5 illustrates the eye in terms of layers. Whilst the ocular media consists 

of cornea, lens and vitreous humour; the ocular fundus comprises three main different 

layers - the retina, choroid, and sclera. The centre of the retina is called the macula 

that has a pale yellow pigmentation and is visible through an ophthalmoscope. The 

macula contains macular pigment (xanthophyll) - a mixture of three carotenoids, 

namely lutein, zeaxanthin and meso-zeaxanthin [182]. The distribution of 

xanthophyll is correlated to the concentration of photoreceptors which are composed 

of light-sensitive cells called the rods and cones, and also characterised by different 

sensitivity to light. Photoreceptor cells convert light into nerve signals that are sent 

to the brain through the optic nerves. The cones are smaller than rods and highly 

concentrated in the fovea located at the very centre of macula and responsible for 

central vision. The layers of other cells and blood vessels covering the peripheral 

retina dilute and disappear over the fovea, allowing uninterrupted exposure of the 

image. The rods do not exist in the fovea but dominate peripheral (non-central) 

vision. 

Under photoreceptors is a dark layer called retinal pigment epithelium (RPE). 

The RPE contains melanin granules that absorb excess light and transport oxygen, 

nutrients and cellular wastes between the photoreceptors and choroid. The choroid 

is a layer of blood vessels containing a large amount of blood or haemoglobin that 
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supplies oxygen and nutrients to the outer layers of the retina. The innermost choroid 

called the choriocapillaris is a dense net of flattened capillaries that forms a blood­

filled shell lying parallel to the basal side of the RPE. Bruch's membrane in turn 

separates the blood vessels of the choroid from the retinal pigment epithelium layer. 

The rest of the choroid is filled with larger blood vessels and melanin-containing 

melanocytes. The melanin content of the retinal pigment epithelium varies among 

individuals. However, only the melanin content of the choroid depends on skin 

pigmentation resulting in different eye colours among different ethnic groups. The 

choroidal layer also scatters light that originates from the underlying collagen tissues. 

The final layer of significance is the sclera- the fibrous, thick, white outer layer of the 

eyeball. The scleral layer, located nndemeath the choroidal layer and composed by 

collagen tissues reflects around 50% of the incident light [183]. Characteristics of the 

ocular fundus are strongly inflwmced by the absorption of light by melanin pigment in 

the RPE and choroid, by macul1ar pigment in the fovea and by blood throughout the 

ocular fundus part as shown in Figure 3.5 [180]. Therefore, the appearance of the 

retinal fundus image depends on the presence of melanin, macular pigment and blood, 

which is characterised by haemoglobin. 

Retinal pigments, i.e. macular pigment, melanin, and haemoglobin are present in 

the macular region. Macular pigment exists in the retinal layer [ 184] and melanin is 

distributed in the retinal pigment epithelium and the choroidal layer [185]. 

Haemoglobin meanwhile is contained in the blood distributed in the retinal blood 

vessels, namely arteries, veins, and capillaries. Figure 3.6 shows the spectral 

absorbance or optical density of macular pigment, melanin and haemoglobin in the 

visible spectrum [186]. 
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Figure 3.6 Optical density (spectral absorbance) of macular pigment, retinal blood 
(haemoglobin) and melanin based on data obtained from [186] 

Figure 3.6 shows that the macular pigment optical density is 0.5 at 460 nrn. 

Haemoglobin is almost transparent for wavelength 'A > 600 nrn. It causes the retinal 

blood vessels to present the greatest contrast from the surrounding retinal tissue in the 

spectral region from 540 to 580 nrn. Haemoglobin in the blood can be oxygenated or 

deoxygenated. While oxygenated blood is closely related to arteries, deoxygenated 

blood corresponds to veins that are darker than arteries of similar calibre. However, 

the veins present low intensity reflectance throughout this spectral range. In the 

visible spectrum, oxygenated blood shows local maxima at 416, 542 and 577 nrn and 

local minima at 510 and 560 nrn, while deoxygenated blood shows a local minimum 

at 470 nrn and a local maximum 559 nrn. Contrast is diminished below 540 and for 

wavelengths it is greater than 580 nrn. On its way through in the fundus, light is 

absorbed by blood in the retinal vessels, retinal capillaries and choroid. Yet, the light 

absorption in the capillaries is minimal due to their thickness, only 71.5 rnrn [186]. 

The melanin density is 0.8 at 500 nrn in which its absorption spectrum decreases 

consistently with the increasing value of wavelength. 

In general, melanin, macular pigment and haemoglobin that present in the ocular 

fundus affect the appearance of the fundus image due to light absorption by these 

components. As shown in Figure 3.6, these three components have different spectral 
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reflectance and do not interfere with each other. It means that the spectral reflectance 

or absorbance of these components is independent to each other. This characteristic is 

advantageous for the development of our non-invasive image enhancement technique 

in which the haemoglobin that relates to retinal blood vessels is separated from the 

other two components, i.e. melanin and macular pigment to obtain a high contrast of 

retinal blood vessels. To the best of our knowledge, this approach has never been 

implemented to solve the problem of low contrast of retinal blood vessels in colour 

retinal fundus image. 

3.3 Light Interaction 

The eye's optics limits the view of the fundus. In general, the retina is mostly 

invisible since most of the incident light is absorbed by the retinal tissues; only 5% is 

reflected [187]. To capture the retinal surface, the light must enter the eye and the 

reflected light must leave the retinal through the pupil. However, the cornea and lens 

have surface reflections that must be avoided. 

The retinal fundus image is acquired using a fundus camera, a specialised low 

power microscope with an attached camera to capture the interior surface of the eye 

(i.e. fundus), consisting of the retina, optic disc, macula, and posterior pole. 

Optometrists, ophthalmologists, and trained medical professionals utilise fundus 

cameras to obtain retinal fundu:; images for monitoring progression, diagnosing and 

treating eye-related diseases, such as DR and DM. 

A digital fundus camera acquires retinal fundus images by capturing the 

illumination reflected from the :retinal surface. The principle of fundus cameras as 

shown in Figure 3.7 is similar to that of indirect ophthalmoscopy in which the 

illumination and imaging systems follow dissimilar paths surface [188]. The only 

difference is that the observer's eye in indirect ophthalmoscopy is now replaced by a 

camera as a sensor to photograph the fundus on a film or to capture as a digital image. 
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Zoom lens 

Figure 3.7 diagram of principle of fundus camera reproduced from [188) 

A fundus camera is a complex optical system that provides an upright, magnified 

view of the retina of the eye. Unlike indirect ophthalmoscope which uses only one 

source of illumination, the fundus camera is equipped with two illumination systems, 

i.e. flash tube for flash photography and viewing lamp for observation. Both ofthese 

lights follow the same path through any further optics in the illumination system. The 

sources of these two light are required since the intensity of light used for visual 

observation of the retinal surface is not sufficient for photographing the image of 

retinal surface. In comparison to fundus camera, the use of only one source of 

illumination in indirect ophthalmoscope has become a major drawback, i.e. prolonged 

exposure to high intensity indirect ophthalmoscope illumination. Applying prolonged 

exposure of sufficient intensity for taking an image however can cause patient's 

discomfort and possibly lead to the damage of the retina. The illumination system 

passes the light from the source to the retinal surface through a condensing lens. 

The condensing lens has two main objectives. First, it projects the illuminated 

light to form a ring-like illumination at the pupil allowing the retinal surface to be 

illuminated through the outer part of the pupil. The ring-like illumination shown in 

Figure 3. 8 has the imaging pupil or exit aperture used for imaging path and 

illumination annulus or entrance aperture used for illumination path that are separated 

by a buffer. Moreover, the entrance aperture with radius Rii is larger than the exit 

aperture with radius Rim· 
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Figure 3.8 Fundus illumination and imaging paths using a fundus camera from (a) 
side view and (b) front view 

Second, the converging !em: collects the reflected diverging light from the retinal 

surface and passes it to further optics to form an image. The field of view (FOV) of 

the retinal surface is determined by the ratio of the condensing lens and its focal 

length. A typical fundus cam<:ra can cover a FOV of retinal area from 20 to 60 

degrees with a magnification of around 2.5 times. A modification can be made via 

additional zoom lens such as wide angle lens to extend the FOV from 15 to 140 

degrees with a magnification of around 5 times. 

Dissimilar paths between il'.lumination and imaging are necessary to provide 

optimum illumination to the retina as well as to minimise the reflection of the light 

sources captured in the acquired image. Two filters, i.e. barrier and excitor, are used 

to eliminate back reflections from the zoom lens and the condensing lens, respectively 

by absorbing the back reflected light. 

As shown in the principle offundus camera from Figure 3.7, the light pathways in 

the human fundus is determined when a light ray enters the eye, passes the ocular 

media and a series of layers in the retina and eventually strikes the opaque white 

sclera in the back of the eye. The acquired retinal fundus image shows a different 
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intensity of reflectance that depends on the wavelength, architecture of fundus' layer, 

optical densities and quantities of retinal pigments in the ocular fundus. Optical 

density or absorbance, A(-1) at a given wavelength A is defined as a Jog expression of 

a ratio between the intensity of incident light Io and the intensity of light /(A-) at a 

specified wavelength A that passed through a substance. Opposed to the definition of 

the absorbance, transmittance, T(-1) of an optical element for a given wavelength A is 

defined as a fraction of incident light I0 that passed through a substance. These 

aforementioned definitions can be formulated as 

A(A.)=log (I,(A.)J 
10 !(A.) 

(3-1) 

(3-2) 

The higher the optical density (absorbance) is, the lower the transmittance is. The 

incident light from a fundus camera can be reflected, absorbed, scattered or 

transmitted by the retinal tissues. The differences in the light interaction of any 

fundus' pigment or tissue can be quantified to determine the components of ocular 

fundus based on their reflectance. 

Berendschot et al. [186] comprehensively summarised several important works in 

fundus reflectance and provided the simplest model for the fundus reflectance where 

the entire incident light is transmitted by the retinal and choroidal layers, reflected by 

the sclera and retransmitted by the choroid and retina. This reflected light is captured 

by the fundus camera and forms the colour retinal fundus image. The reflectance, 

R(A), is given by 

R(A.) = R (A.)l0-2D,,,(A) 
sclera 

(3-3) 

Rsclera(A) is the reflectance of the sclera and D101(A) is the total optical density of all the 

absorbers, through which the light has passed. 

One of the important works on light interaction of the ocular fundus was 
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conducted by van Norren and Tiemeijer [189]. Van Norren and Tiemeijer modelled a 

light int<:raction in the ocular fundus for foveal fundus ret1ection with two spectrally 

neutral reflectors (the sclera and a reflector) located anteriorly to the retinal pigment 

epithelium but posteriorly to the macular pigment. A schematic presentation of van 

Norren and Tiemeijer model is shown in Figure 3.9. · 

ocular 
media 

ocular 
fundus 

{ 

mm~: :~ -~~~~~~~ ~~~~~i;allayer 
---"---- sclera 

Figure 3.9 Schematic presentations of the van Norren and Tiemeijer model 

As shown in Figure 3.9, incident light enters the eye from the top passing through 

several layers in the ocular media and in the ocular fundus. The incident iight is 

reflected by different layers emerging from the eye represented by upward pointing 

arrows and is subsequently detected by a sensor. The model used four parameters 

acting as spectral absorbers, i.e. the lens which is part of ocular media, macular 

pigment, melanin and blood. 

A modification to van Norren and Tiemeijer model has been proposed by Delori 

and Pflibsen [180]. Delori and Pflibsen model includes light scattering in the choroid 

and comprises a scleral reflector, an absorbing-scattering layer simulating the 

choroid, a blood layer for the choriocapillaris, a melanin layer for the retinal pigment 

epithelium, and a spectrally neutral reflector. In this model, the choroid was 

simulated by a homogeneous scattering layer, in which blood and melanin are 

uniformly distributed. The results gave more realistic data for melanin and blood in a 

physiological sense than the van Norren and Tiemeijer data. Moreover, Orihuela et 
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al. showed that fundus colour are related to spectral reflectance of the ocular fundus 

[190]. 

Based on the aforementioned explanation, in van Norrenn and Tiemeijer model, 

incident light passing through the ocular fundus is absorbed by three components, 

namely macular pigment, melanin and blood. This model of light interaction with 

several fundus layers has been improved in the Delori and Pflibsen model by taking 

into account the presence of these three components in every possible layer mainly in 

the ocular fundus. In general, both these models describe the reflectance of the 

fundus in the terms of the retinal layers. Figure 3.10 depicts a model of ocular fundus 

showing possible pathways of the remitted light based on the presence of melanin, 

macular pigment and haemoglobin, which is related to the blood in the ocular fundus 

layers. As a result, slight changes of the biological structure and retinal pigment 

construction lead to variation in colour ofthe fundus [191]. Therefore, it is necessary 

to understand the colour retinal fundus image based on the structure and pigment 

construction to model fundus spectral absorbance image. 

T pupil plane 

ocular lens 

media 

1 inner limiting 

T 
membrane 

retina 

ocular 
fundus 

1 choroid 

sclera 

Figure 3.10 A model of ocular fundus showing light propagation 

From the principle of fundus camera, providing adequate illumination is the main 

limiting factor of the fundus camera. The illuminating light goes through a small 

pupillary aperture (which sometimes needs to be fully dilated) reaching the retinal 

layers until the bottom layer of the retina called the sclera. The light is then reflected 
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passing through several fundus layers and fmally captured by the sensor. However, 

the size of the pupil affects the amount of the illuminating light that can reach the 

retinal layers and the reflected light from the retinal surface varies due to spherical 

surface of the retina. Both pupil size and spherical surface of the retina therefore 

influence the characteristic of the reflected light and lead to varied contrast of the 

acquired colour retinal fundus image. 

Moreover, as previously discussed in the light interaction with several ocular 

fundus layers based on the presence of macular pigment, haemoglobin and melanin, it 

can be inferred that the colour of the retinal fundus image is a mixture between three 

retinal pigments, i.e. macular pigment, haemoglobin and melanin as illustrated in 

Figure 3.11. The differences in the optical density between these retinal pigments 

influence the reflected light and significantly affect the colour of the acquired retinal 

fundus image. This subsequently results in the low contrast of a specific retinal 

pigment, i.e. haemoglobin that exists in the retinal capillaries and distributed in the 

choroidal layers. 

:------"' J Blue channeQ 
mixture 

Retinal 
pigments 

RGB retin21l 
fundus image 

Figure 3.11 Retinal pigments are mixed in the colour retinal fundus image 

3.4 Retinal Fundus Image Models 

In this research, 44 fundus images from FINDeRS database, taken using nonmydriatic 

fundus camera Kowa nonmyd 7 as shown in Figure 3.12 and containing macular 

region, are used to develop three fundus image models. Compared with several other 

image enhancement algorithms, those image models are used to test the performance 
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of the proposed image enhancement method algorithm. In each fundus image, areas 

of macular pigment, retinal vessels and melanin are sampled and their normalised 

intensity distributions are used to model retinal fundus image. 

Figure 3.12 Nonmydriatic fundus camera Kowa 7 used to capture colour retinal 
fundus images 

The objective of this sampling is to develop an intensity distribution of the 

components, i.e. melanin, macular pigment and haemoglobin for the colour fundus 

image model. The sampling method is conducted by selecting several random colour 

fundus images. In each image, areas of macular pigment, retinal vessels and melanin 

are sampled and their intensity distributions are used to model retinal fundus image. 

Ideally, the greater the number of sample size, the better the sample in representing 

the population. Therefore, it is important to determine the minimum sample size for a 

specific parameter required. The sample size is determined to a specific level of 

significant and margin of error using Cochran's formula as follows [192-193], 

n=(Z~uJ 
(3-4) 

where n is the sample size, a is the estimated population standard deviation and a is 

the required significant level. In the case of the standard normal distribution, Z'?i is 

the critical sample value that will produce the required significant leveL a. The error 

(E) between population and sample mean is set to a maximum of 1% of the intensity 

range of a specific class. Each point of sample is determined as pixel intensity of the 
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corresponding component in each channel. Whilst the minimum sample size is 

calculated using (3-4), the sample size obtained shows the number of pixels collected 

to develop the colour retina.! fundus image model. These pixel intensities are 

collected from 44 random colour retinal fundus images. A calculation of minimum 

sample size along with their corresponding sample size obtained for modelling of 

retinal fundus image model is shown in Table 3-1. 

Table 3-1 Comparison between minimum sample size and sample size obtained of 
the component in each colour channel 

Colour Significant Error Standard Min. Sample 
Component channel level z'Yz (E) dev. (a) sample SIZe 

size (N) obtained 
Red 0.025 2.241 0.50 25.660 13318.50 108203 

Melanin Green 0.025 2.241 0.50 22.129 9982.90 108203 
Blue O.D25 2.241 0.50 20.358 8399.60 108203 

Macular 
Red 0.025 2.241 0.50 32.547 21574.40 34769 
Green O.D25 2.241 0.50 15.644 4865.60 34769 

pigment 
Blue 0.025 2.2414 0.50 6.32 803.30 34769 
Red 0.025 2.2414 1.00 29.79 4457.50 4462 

Haemoglobin Green 0.025 2.2414 1.00 18.09 1643.50 4462 
Blue 0.025 2.2414 0.75 11.09 1070.50 4462 

As shown in Table 3-1, each component has different minimum sample size. 

Based on these minimum numbers, the collected sample can now be determined 

whether its sample size is suffi,;ient. The comparison in Table 3-1 shows that the 

sample size obtained is greater than the minimum sample size calculated; hence, the 

data sample size is sufficient for modelling of colour retinal fundus image. Therefore, 

these 44 random colour retinal fundus images are considered to be sufficient for 

statistical measurement. 

In colour retinal fundus images, the lowest contrast of retinal blood vessels is 

shown by retinal capillaries in the macular region that will be used to determine the 

foveal avascular zone. For this, the optical angle of the fundus camera was set to 

capture 45° colour fundus image with an internal fixation target on the central 

showing the centre on the macula. The quality of the captured images depends on the 

attached external digital camera. This fundus camera is equipped with external Nikon 

D-80 digital camera that can capture images with resolution of 3872 x 2592 pixels or 

up to 10 mega pixels. However, in this research work, the linage resolution used is 
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1936 x 1296 pixels to reduce the processing time. 

Theoretically, the diameter of retinal blood vessel ranges from 60 f.!m to 1600 f.!m, 

the largest diameter of which belongs to the inferior temporal vein [ 194]. Based on 

our direct observation on the colour retinal fundus image with resolution 1936 x 1296, 

the largest diameter of inferior temporal vein estimated could be around 25 pixels as 

shown in Figure 3.13. Assuming that the 25 pixel of retinal blood vessels equals to 

1600 f.!m, it is found that one pixel represents 64 f.!m which is 4 f.!m different from its 

expected value. Hence, the use of colour retinal fundus image at this current 

resolution yields 0.93 for accuracy. The accuracy can be increased by increasing 

image resolution; however, it predictably will increase the processing time. Nikon D-

80 attached to the fundus camera is able to produce resolution up to I 0 mega pixels -

four times larger than the current resolution. 

(b) (c) 

Figure 3.13 (a) An example of retinal colour fundus image with (b) a sample of 
inferior temporal retinal blood vessels and (c) pixel's intensities of the corresponding 

areas 

Assuming that the 25 pixel of retinal blood vessels equals to 1600 f.!m, it is found 

that one pixel represents 64 f.!m which is 4 f.!m different from its expected value. 

Hence, the use of colour retinal fundus image at this current resolution yields 0.93 for 
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accuracy. The accuracy can be increased by increasing image resolution; however, it 

predictably will increase the processing time. Nikon D·80 attached to the fundus 

camera is able to produce resolution up to I 0 mega pixels - four times larger than the 

current resolution. 

A simulation has been conducted to calculate the processmg time of the 

enhancement of two image models with different resolution at several numbers of 

iteration. The objective of the simulation is to show the effect of increasing resolution 

to the processing time. Adapted from typical size of macular region, the first image 

model has a resolution of 320x320 pixels and the second one has four times larger 

resolution that is 1280 x 1280 pixels. Figure 3.14 shows two image models being 

subjected to the proposed image: enhancement method and a comparison of processing 

time. 
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Figure 3.14 (a) Processing time of two images with different resolution at several 
numbers of iteration, (b) ratio between processing time of the two image models 

As illustrated in Figure 3.14(a), an increase of the number of iteration of the 

proposed enhancement method re:sults in a linear increase in processing time for both 

image modds. However, image model with higher resolution has significantly higher 

processing time of around fifteen to twenty times than that of the lower resolution as 

shown in Figure 3.14(b). Comidering more calculation in the proposed image 

enhancement method and the spe,ed of computer to process, a significant increase in 

processing time comes to be expected. In this research, the computer uses Intel Core 
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i5-460 2.53 GHz and 4GB DDR3 as its processor and memory respectively. Based 

on the aforementioned results, the four-time increase in resolution is not proportional 

for the increase in the processing time, i.e. fifteen times at the minimum. Therefore, 

to increase the resolution for higher accuracy in detecting retinal blood vessels is not 

efficient. 

Another experiment to measure the width of retinal blood vessels (in pixels) 

specifically in macular region from a colour retinal fundus image with resolution of 

1936 x 1296 shows that the current resolution is sufficient to reveal the smallest width 

of retinal blood vessels. The example of colour fundus image shown in Figure 3.15(a) 

underwent the proposed image enhancement method on its macular region (Figure 

3.15 (b)) with samples of pixel's intensities ofthe corresponding areas (Figure 3.15 

(c), (d) and (e)). 
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(c) 

Figure 3.15 (a) An example of retinal colour fundus image with (b) its cropped 
macular region and (c), (d) and (e) show pixel's intensities of the corresponding areas 

From the three different selected retinal blood vessels in the macular region 

(Figure 3.15 (b)) with their corresponding pixel intensities, the width ofretina1 blood 

vessels is estimated to be from 1 to 13 pixels in range as shown in Figure 3.15(c) to 

Figure 3.15(e). This range will be used in the development of colour fundus image 

models. The increase of the curr<~nt resolution will also increase the width of retinal 

blood vessels. In this case, the range of width of retinal blood vessels is expected to 

expand from 4 to 52 pixels. The advantage is that the small objects, i.e. retinal 

capillaries can be more clearly noticed resulting in greater accuracy in detecting 

74 



retinal blood vessels. However, it also causes a major disadvantage for, as previously 

discussed, the significantly increasing processing time. Besides its long processing 

time, the smallest width of retinal blood vessels has already been able to be detected 

as small as one pixel with this current resolution. As the smallest width of retinal 

blood vessels equals to one pixel, the use colour fundus image with this current 

resolution comes to be sufficient. In other words, it is not efficient to increase the 

current resolution (1936 x 1296 pixels) into the higher or even the highest resolution 

that can be produced by Nikon D-80 in order to increase the accuracy in detecting 

retinal blood vessels. Moreover, in the proposed image enhancement method, the 

number of iteration is automatically determined and will be discussed in Chapter 4 

(Section 4.2). 

There are three fundus image models, i.e. (1) varied contrast image model, (2) low 

contrast image model and (3) varied and low contrast image model to be developed to 

deal with the problem of varied and low contrast. The problem of varied contrast and 

low contrast is investigated separately using the first and the second image models 

respectively. The third image model is used to deal with the problem of both varied 

and low contrast. 

To model fundus images, 44 fundus images are randomly selected from FINDeRS 

database. As previously discussed, there are three components - macular pigment, 

melanin and haemoglobin - that significantly influence the appearance of colour 

retinal fundus images. For modelling, these three. components are estimated from the 

real colour retinal fundus images. Whilst the macular pigment is estimated from the 

centre area of the retina, the haemoglobin and the melanin are estimated from the 

sample of retinal blood vessels and the background, respectively. An example of 

colour retinal fundus images showing the selection of these three components is 

shown in Figure 3.16. 
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Figure 3.16 A colour retinal fundus image with enlarged macular region 

The statistics of macular pigment, haemoglobin and melanin from three charmels, 

i.e. red, green and blue are sho"m in Table 3-2. 

Table 3-2 Statistical data of macular pigment, haemoglobin and melanin intensities in 
RGB charmels 

Hae,moglobi'n I Melanin I I 

R G B R G B R G B 
mean 93.40 46.21 7.77 120.88 62.21 15.64 158.16 95.93 35.29 
stdev 37.76 17.656 6.21 34.23 20.37 11.45 29.44 25.20 22.07 
min 0 0 0 18 0 0 35 0 0 
max 228 124 33 227 115 55 255 197 120 
skewness 0.048 0.0796 0.695 -0.036 -0.066 0.416 -0.045 -0.026 0.232 
kurtosis -0.107 0.056 -0.016 -0.018 0.025 -0.363 0.022 0.167 -0.416 

From Table 3-2, it can be se:en that the intensity means of the three components 

are different in each colour charmel. The macular pigment and melanin have the 

lowest and the highest mean respectively. The difference in intensity mean of 

macular pigment, haemoglobin and melanin is expected due to difference in spectral 

absorbance of these three components as previously discussed in Section 3 .2. The 

difference is advantageous for fUrther confirming the possibility to separate these 

three components. Standard deviation and minimum-maximum intensities vary 

among these three components. Standard deviations and intensity ranges shown in 

Table 3-2 indicate the homogem~ity of intensity distribution of each component in 

each charmel. A low standard d~eviation implies that intensity distribution tends to 

centre on the mean indicating a more homogeneous intensity distribution. 

Conversely, a high standard deviation implies that data intensities are spread out over 

a large range of values indicating a more inhomogeneous intensity distribution. The 

variation of standard deviation and intensity range is expected and implies that the 

contrast of the retinal fundus image is varied. Like standard deviation, the highest 
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intensity range belongs to the red channel followed by the green and the blue channel. 

It implies that intensity variation mostly occurs in the red channels rather than in the 

other two colour channels. Nevertheless, the overlap of intensity ranges between the 

components is one of the problems in the separation process that will be discussed in 

Chapter 4 (Section 4.3). The minimum and maximum of intensity are important to set 

up the intensity range of the varied contrast fundus image model that will be 

developed in the next section. Moreover, skewness and kurtosis of the components 

show that the intensities of the three components tend to have normal (Gaussian) 

distribution. This is expected since the data intensities of the three components are 

sampled from real colour fundus images. Probability density functions (pdfs) of the 

components are used to develop the low contrast fundus image model that will be 

discussed in Section 3.4.2. Statistics of the components shown in Table 3-2 is 

important to characterise the intensity distribution of samples used in the development 

of varied contrast and low-contrast image models based on the real colour fundus 

images. 

3.4.1 Varied Contrast Image Model 

Varied contrast image model is developed to evaluate the proposed algorithm in 

dealing with the problem of varied contrast. Varied contrast in an image is 

characterised by spurious smooth variation of image intensities. Variation of image 

intensities is mainly due to the effect of illumination. Illumination will determine the 

lightness of an image. Land showed that the relationship between reflectance and 

lightness is not linear but, generally can be approximated with cube root, square root 

and logarithmic functions [119]. In this research, smooth variation of image 

intensities is modelled using a mathematical function 

Y = k.Xa (3-5) 

with k and a are some constants. The above function is a general function in which 

cube root and square root are obtained for a equal to _!_ and _!__ . A smooth image 
3 2 

intensity variation i(x) as a function of pixel's position x is mathematically 
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formulated as 

i(x) = k.x" (3-6) 

Using the statistics of the samples as shown in Table 3-2, the mean I and the 

standard deviation a of image intensities are used to model smooth variation of 

image intensity i(x) so that im;, =I- 2a and im,. =I+ 20'. The value of I± 2a is 

chosen for im;n and im,. instead of minimum and maximum intensity values due to the 

problem of extreme values (outliers) raised by the use of minimum and maximum 

intensity values. Moreover, the range l ± 2a covers 95% of all possible values [195]. 

Whilst the value of x represents the position of specific pixel in the image, the value 

of i has the range as follow:-

(3-7) 

Having knownintin ,imax' Xm;n and xmax' the constants k and a can be obtained for the 

three components on each red, green and blue channel based on the collected data 

from 44 retinal fundus images as shown in Table 3-3. 

Table 3-3 Constants k and a obtained for macular pigment, haemoglobin and melanin 
in ROB channels 

~acular1pigrnent Haemoglobin Melanin 
k a k a K a 

Red 17 0.453 53 0.263 100 0.152 
Green 10 0.415 22 0.3177 46 0.228 
Blue I 0.590 I 0.753 I 0.861 

A difference in constants of k and a obtained for macular pigment, haemoglobin 

and melanin in ROB channels is expected considering a difference in statistical values 

(mean, standard deviation and intensity range) among the three components. These 

constants in tum will affect the intensity variation of the components in the varied 

contrast fundus image model. Applying the obtained constants on (3-6), the function 

i(x) showing variation of image :intensities based on pixel's position x for macular 

pigment, melanin and haemoglobin in each colour channel can be generated as shown 

in Figure 3.17. 
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Figure 3.17 Image intensity variation i(x) as a function of pixel's position x for (a) 

Macular pigment, (b) Haemoglobin and (c) Melanin on each red, green and blue 
charmel 

As shown in the graphs from Figure 3.17, image intensities increase as the pixel 

position increases. The increase in intensity variation is expected due to intensity 

ranges of the sample distribution and a result of applying (3-6). The greater the 

intensity range is, the greater the increase of intensity will be. The variation of image 

intensities occurs in a vertical profile line in the image model. In the image model, a 

pixel position is vertically set up from 0 started at the top of the image to 160 at the 

bottom of the image for macular pigment and melanin. For haemoglobin, the pixel 

position at the bottom of the image is set up to 125. The choice of these lengths is 

determined by the size of the related components, i.e. macular pigment, melanin and 

haemoglobin in the developed fundus image model. Two fundus image models of 

160xl60 pixels showing the variations of image intensities for macular pigment and 

melanin and one fundus image model of 125xl25 pixels showing the variations of 

image intensities for haemoglobin are depicted in Figure 3.18. 
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(0) (b) (<) 

Figure 3.18 Variation of image intensities in fundus image models for (a) Macular 
pigment, (b) Melanin and (c) Haemoglobin with the referred vertical pixel position 

As shown in Figure 3.18, the image intensities increase as the pixel position 

increases vertically. In the image model, each vertical line shows an equal variation 

of intensities. Since the image model is square, for instance, in the image model of 

macular pigment, there are 160 e:qual vertical lines containing 160 pixels each used to 

form the image model. In othm words, each horizontal profile line consists of 160 

same pixel intensity values. The highest intensity value belongs to the pixels 

positioned at the top of the image. Reversely, the lowest intensity value belongs to 

the pixels laid at the bottom of the image. Therefore, the image models look darkest 

at the top and brightest at the bottom of the image. The variation of these image 

intensities tor macular pigment, melanin and haemoglobin is then used to model the 

varied contrast fundus image model where all of these components appear in one 

Image. 

The varied contrast image model of 320 x 320 pixels represents the macular 

region and its surrounding. As previously mentioned, the selection of resolution for 

the fundus image model- 320 x 320 pixels- is determined based on the resolution of 

typical macular region in colour fundus image with resolution of 1936 x 1296 pixels. 

The image model consists of three components, i.e. macular pigment, haemoglobin 

and melanin. In the real fundus image, retinal blood vessels where the haemoglobin is 

fairly distributed exist in both the fovea where the macular pigment are fairly 

distributed and the background where the melanin is fairly distributed. The area of 

the fundus image model is divid,~d into two, i.e. top half of the image model 
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representing the fovea and bottom half of the image model representing the 

background. Retinal blood vessels are modelled in 9 straight lines with the same 

height parallel to each other with the width ranges from 1 to 13 pixels representing the 

width of retinal blood vessels from the real retinal fundus image. Whilst the thin lines 

represents the retinal capillaries where mostly exists in the macular region, the wider 

lines represents wider blood vessels where mainly exist in the background. A varied 

contrast fundus image model is shown in Figure 3.19. 

Melanin 

Haenwglcbin 

Figure 3.19 Varied contrast fundus image model 

The varied contrast fundus image model as illustrated in Figure 3.19 is developed 

by applying (3-5) to generate the function of image intensity variation of macular 

pigment, haemoglobin and melanin. In the varied contrast image model, the melanin 

has the lowest intensity value at the top of the image. The melanin intensity increases 

as the pixel position moves down and reaches the highest value towards the middle of 

the image where the pixel position is 160 as depicted in Figure 3.20. 
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Figure 3.20 (a) Varied contrast fundus image model and its related intensity variation 
of melanin in (b) red, (c) green and (d) blue channels 

The three graphs shown in Figure 3.20 illustrate the variation of in1age intensities 

of melanin in a vertical profile line for each colour channel. The same as that of 

shown in Figure 3.20(c), these graphs show the lowest intensity value at the top of the 

image model where the pixel position is 0 as referred in Figure 3.20(a). In this image 

model, each horizontal profile line ofthe image is filled with the equal pixel intensity 

values; hence, the variation of image intensity appears vertically from the top of the 

image to the middle of the image. 

For the haemoglobin that represents the blood vessels model, its intensity in the 

retinal fundus image model is varied leading both melanin and macular pigment as the 

backgrounds to contain 12 lines of blood vessel model. The total length of each 

blood vessel model is 250 pixels and divided into two so that each background 

contains 125 pixel length of blood vessel model. For the blood vessels, the highest 

intensity value belongs to the pixels of the haemoglobin that are laid in the middle of 

the image where the pixel position is 160. The intensity value decreases as the pixel 

position vertically moves both up and down. The lowest intensity value meanwhile 

belongs to the pixels position at 35 as it moves up and to that of at 285 as it moves 

down. The details of the intensity variation for haemoglobin are shown in Figure 

3.21. 
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Figure 3.21 Varied contrast fundus image model and its related intensity variation of 
haemoglobin in (b) red, (c) green and (d) blue channels 

Unlike that of the melanin, the intensity of the macular pigment has the highest 

value at the middle of the image model. The intensity value decreases as the pixels 

position vertically increases and reaches its maximum value for the pixels located at 

the bottom ofthe image model as depicted in Figure 3.22. 

-.. -... 
Figure 3.22 Varied contrast fundus image model and its related intensity variation of 

macular pigment in (b) red, (c) green and (d) blue channels 

3.4.2 Low Contrast Image Model 

Based on the 44 collected image samples and the statistics shown in Table 3-2, 

normalised intensity distributions of the samples, i.e. macular pigment, haemoglobin 

and melanin are shown in Figure 3.23. 
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Figure 3.23 Probability distribution function of the normalised pixel intensities of 
Macular Pigment of(a) Red channel, (b) Green channel, (c) Green channel, 

Haemoglobin of (d) Red channel, (e) Green channel, (f) Green channel and Melanin 
of (g) Red channel, (h) Green channel, (i) Green channel 

These normalised intensity distributions are obtained from the estimated samples 

of macular pigment, haemoglobin and melanin in each colour channel. Based on 

these normalised intensity distributions, pixel values are generated to model the three 
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related components used in the low contrast retinal fundus image model. A diagram 

of the development oflow contrast fundus image model is illustrated in Figure 3.24. 
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Figure 3.24 Development oflow-contrast retinal fundus image model 

Based on the obtained probability density functions (pdfs) and the mean of the 

components, colour distribution of each component are generated as shown in Figure 

3.25. 

(a) (b) (c) 

Figure 3.25 Colour distribution of(a) Macular pigment, (b) Haemoglobin and (c) 
Melanin generated in an image model of320 x 320 pixels 

These three different colour distributions representing macular pigment, 

haemoglobin and melanin are used to develop the low contrast retinal fundus image 

that contains these three components. Similar to the varied contrast image model, the 

low contrast image model of 320 x 320 pixels as depicted in Figure 3.26 represents 
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the macular region and its surrounding. 

Melanin 

Haemoglobin 

Macul.orpigment 

Figure 3.26 Low contrast fundus image model 

In this image model, macular region containing the fovea is taken to identity the 

enhancement of retinal capillaries, which have a very low contrast of retinal blood 

vessels - also known as the retinal vasculature. The area of the image model is 

divided into two, i.e. top-half and bottom-half to represent the ·melanin and the 

macular pigment, respectively. Again, 9 parallel straight lines with the width varied 

from 1 to 13 pixels are used to represent the retinal blood vessels. These three 

components are filled up by the generated pixels with the intensity values that are 

determined from the normalised pdfs obtained from the sample. 

3.4.3 Varied and Low Contrast: Image Model 

In the physics of light, brightness of a point (x,y), which in the image plane also 

known as the image intensity and is independent for viewer direction, is defmed as the 

amplitude of a function of illumination and surface properties at a particular 

wavelength A [196-198]. In the image formation model, the function of i(A.,x,y) is 

formed as a product of these two components- illumination (/) and reflectance (r) -

that can be formulated as [ 46] 

i(A.,x,y) •= l(A.,x,y).r(A.,x,y) (3-8) 

A varied contrast in the image mostly occurs because of uneven illumination and 
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low contrast is due to presence of the tiny objects or other objects in the image that 

have some similar characteristics resulting in a subtle difference in the reflectance. 

Responding this, the varied and low contrast image model is then developed based on 

a combination of the two previous image models on varied contrast image model and 

low contrast image model. At this point, the varied contrast image model represents 

an illumination part and the low contrast one represents a reflectance part. Hence, the 

varied and low contrast image model can be developed as a product of these two 

image models using (3-8). Since the varied and low contrast image model is 

developed based on colour image, matrix element-by-element multiplication between 

illumination and reflectance parts - represented by the varied contrast and low 

contrast image models - is conducted in each colour channel. As shown in Figure 

3.27, results of three multiplications between varied contrast image model and low­

contrast image model in each channel are combined to obtain the varied and low­

contrast retinal fundus image model. The obtained varied and low-contrast image 

model is shown in Figure 3.28. 
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Figure 3.27 Varied and low contrast fundus image model is obtained from 
multiplication between low contrast and varied contrast image models in (a) Red 

channel, (b) Green channel and (c) Blue channel. (d) Colour fundus image models for 
low-contrast, varied contrast, and varied and low-contrast. 
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Figure 3.28 Varied and low-contrast fundus image model 

3.5 Retinal Fundus Spectral Absorbance 

The reflected light from the ocular fundus are strongly affected by the absorption of 

light by blood throughout the fundus, melanin pigment in the choroid, retinal 

pigmented epithelium (RPE), and macular pigment in the fovea. The spectral 

absorbance image provides useful information to identifY the absorbance components. 

Analysing the spectral absorbance image further is advantageous to reduce the effect 

of luminance [177]. In this research, distribution of macular pigment, haemoglobin 

and melanin is used to model spectral absorbance ofthe retinal fundus. 

The information of the retinal fundus image is contained in its colour. The light 

reflection from tissues with different optical density results in the differences in the 

colour of the image. Having acquired the colour retinal fundus image, the 

information can be extracted from its colour channel to obtain the characteristics of 

the reflectance by analysing the spectral absorbance. A linear model is developed 

based on the absorption coefficients of melanin, haemoglobin and macular pigment 

from three absorbencies; namely f!a(A.I), f!a(A.z) and f!a(A.J) at three wavelengths of A.1, 

A.z and A.3. These three wavelengths represent three colour channels: red, green and 

blue. Fundus spectral absorbance image shows spectral characteristics of the 

absorbance components in the retinal fundus. Two conditions are assumed when 

analysing fundus spectral absorbance. First, the colour observed in the fundus image 

is due to distributions of three main components, namely haemoglobin, melanin and 
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macular pigment. Second, the quantities of these components are spatially 

independent of each other. The spectral absorbance in the fundus image represents a 

linear combination of the absorption coefficients of melanin, haemoglobin and 

macular pigment. Figure 3.29 depicts the absorbance of the retinal fundus which 

consists of pure spectral vectors of melanin, haemoglobin, and macular pigment. 

Distributi<m of fundus 
'P"''u~< absorbance 

pigmenta3 

Figure 3.29 Model of spectral absorbance ofthe ocular fundus 

As shown in Figure 3.29, Let Sx,y and Vx,y designate the three-dimensional (3-D) 

quantity vector and composite colour vector on the image coordinate (x, y) of the 

digital colour image. The mixing matrix A with a1, a2 and a3 represents pure colour 

vectors of the three components per unit quantity. It is assumed that linear 

combination of mutually independent pure colour vectors with the quantities of SJx,y, 

s2x.y and SJx,y result in the compositt~ colour vectors of VJx,y, V2x,y and V3x,y on the image 

coordinate (x, y). The following equation illustrates the transformation matrix, where 

T denotes the transpose. 

vx,y = Asx,y (3-9) 

sx,y = [slx,y,s2x,y' 8 3x,yY (3-1 0) 

The pixel value of each channel corresponds to each element of the colour vector. 

The reason for using the fundus Sjpectral absorbance model is to find a suitable 

transformation from the ROB colour channels leading the sources constituted in the 

retinal colour fimdus image to be extractable. As shown in Figure 3.29, distribution 
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of fundus spectral absorbance is illustrated as a mixture of three components. 

However, as previously discussed, those components have their own different spectral 

reflectance and do not interfere with each other; in a word, each of them is 

independent. In a central limit theorem (156], distribution of a sum of independent 

random sources tends to be more Gaussian (normal) than the distribution of each 

independent random source. Hence, a transformation to maximise the non­

Gaussianity is necessary to obtain the original sources, which, in this case, are 

macular pigment, melanin and haemoglobin - as independent as possible from their 

mixture in RGB image. Having separated the components from their mixture, the 

haemoglobin-related component is hypothesised to have the highest contrast of retinal 

blood vessels of the other two components and also any RGB images. The proposed 

method to separate the components from their mixture by maximising their non­

Gaussianity will be discussed in Chapter 4 (Section 4.3). 

3.6 Summary 

As the objective of the research is to develop a non-invasive image enhancement 

method for varied and low contrast image, this chapter explains about the 

development of varied and low contrast image models used to validate the proposed 

image enhancement technique and to evaluate .the performance of the proposed 

method. Three image parametric models, i.e. varied contrast image, low-contrast 

image, and varied and low-contrast image are developed based on colour retinal 

fundus images that may suffer from problems of both varied and low contrast. Data 

for modelling are randomly selected from a colour fundus image database called 

FINDeRS. 

As the structure of eye is divided into two, i.e. ocular media and ocular fundus, a 

colour retinal fundus image depicts the ocular fundus part, which is the structure of 

the back of the eye. Characteristics of the ocular fundus are strongly influenced by 

the light absorption by melanin pigment in the RPE and choroid, macular pigment in 

the fovea and haemoglobin throughout the ocular fundus part. Hence, the appearance 

of the retinal fundus image will highly depend on the presence of melanin, macular 

pigment and blood characterised by haemoglobin. These three components have 
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different spectral absorbance (and reflectance) and are independent to each other. 

This characteristic in tum is advantageous for the development of our non-invasive 

image enhancement technique in which the haemoglobin related to retinal blood 

vessels is separated from the other two components - melanin and macular pigment -

to obtain a high contrast of retinal vessels. 

To capture the retinal surfac<:, the light must enter the eye, pass the ocular media 

and a series of layers in the retina, and strike the opaque white sclera in the back of 

the eye. The reflected light then must leave the retinal through the pupil. A fundus 

camera acquires retinal fundus images by capturing the illumination reflected from 

the retinal surface. The acquired retinal fundus image shows a different intensity of 

reflectance that depends on the wavelength, architecture of fundus' layer, optical 

densities and quantities of the biological structure and retinal pigment construction 

retinal pigments in the ocular fundus. Slight changes lead to variation in colour of the 

fundus. 

The retinal fundus image model is composed from three colour charmels as a 

mixture of three main sources, i.e. macular pigment, haemoglobin and melanin. 

These three main sources with different quantities and locations in the retinal layers 

reflect the incident light from the illumination source and also form the colour retinal 

fundus image. The 44 fundus images randomly selected from FINDeRS are used to 

develop the three fundus image models - varied contrast, low-contrast and varied and 

low-contrast -representing the problems occurred in most of medical images, 

particularly in retinal fundus images. The problem of varied contrast and low contrast 

is investigated separately using the first and second image models respectively. The 

third image model meanwhile is used to cope with the problem of both varied and low 

contrast. Whilst the varied contrast fundus image model is developed to represent the 

problem of illumination, the low contrast one is developed to represent that of 

reflectance. Again, different from the low contrast image developed from the 

normalised pdfs obtained from the collected samples, the varied contrast image model 

is developed by applying a smooth variation of intensities. A product of these image 

models is subsequently used to develop the varied and low-contrast image model. 
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Assuming that the colour observed in the retinal fundus image is due to the 

distributions of three main sources spatially independent to each other, the sources 

can be analysed from the fundus spectral absorbance. The spectral absorbance in the 

fundus image represents a linear combination of the absorption coefficients of 

melanin, haemoglobin and macular pigment. A suitable transformation technique can 

be applied to obtain these main sources from the observed RGB charmels. Based on 

central limit theorem, a transformation, purposively used to separate a mixture of 

components, can be applied by maximising non-Gaussianity distribution of the 

components that consequently will be as independent as possible. If the components 

can be separated, the haemoglobin-related component is predicted to have a higher 

contrast of retinal blood vessels than that of the contrast measured from any of the 

RGB images. 
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CHAPTER4 

DEVELOPMENT OF NON-INVASIVE IMAGE ENHANCEMENT 

METHOD (RETICA) 

4.1 Introduction 

In this research, varied and low contrast nature of colour retinal fundus images is 

addressed. The objective is to develop a non-invasive digital imaging enhancement 

scheme capable of enhancing vari<:d and lbw-contrast medical images to be similar to, 

or better than the contrast produce~d by an invasive method without introducing noise 

or artefacts. In this chapter, the: detail of the proposed method is discussed and 

applied to the varied and low-contrast fundus images. It is validated using developed 

retinal fundus image models in which its performance is evaluated and compared 

against other selected non-invasive image enhancement methods. 

Image intensity according to the hypotheses (as discussed in Chapter 1) is a 

product of illumination and reflecumce. In the image, the varied contrast occurs due 

to slowly varied illmnination, whereas the low contrast in some objects of interest is 

related to the reflectance. If th(~ varied contrast can be determined in a local 

neighbourhood, it is possible to normalise the contrast by some specialised methods 

such as Retinex. Meanwhile, by determining the actual sources that resulted in the 

observed (low contrast) RGB image~ using methods such as ICA, the .objects or areas 

due the source that is of interest, can then be enhanced separately without introducing 

some unwanted artefacts. The advantage of contrast normalisation and enhancement 

is an increase in accuracy, sensitivity and specificity of the diagnosis through either a 

direct observation or a computer assisted diagnosis system. 

In general, the proposed method called as RETICA enhances the varied and low 

contrast colour retinal fundus images using two processes, i.e. contrast normalisation 

based on Retinex and contrast enhancement based on I CA. The input of RETICA 
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refers to colour image that has been separated into three channels, i.e. red, green and 

blue channels. RETICA first normalises the varied contrast using an improved 

iterative Retinex, a method to separate the illumination from the reflectance part of 

the image. The improved iterative Retinex -one of the contributions of this research 

work to body of knowledge - uses kurtosis to determine the optimum number of 

iteration and overcomes the problem of standard iterative Retinex in which the 

number of iteration is fixed and pre-determined. . Normalisation of varied contrast is 

followed by separating the retinal pigments makeup, namely macular pigment, 

haemoglobin and melanin, using Independent Component Analysis (ICA). 

Independent component image due to haemoglobin exhibits higher contrast of retinal 

vessels. The use of ICA to enhance the contrast of retinal vessels by revealing the 

underlying sources in colour retinal fundus images is another contribution of this 

work since most of the image enhancement methods use pixel manipulation. A block 

diagram ofRETICA is depicted in Figure 4.1. 

Figure 4.1 Proposed method (RETICA) for contrast normalisation and contrast 
enhancement of retinal blood vessels on colour fundus image 

As illustrated in Figure 4.1, the three channels, i.e. red, green and blue channels 

are inputted to the first stage of RETICA, i.e. contrast normalisation based on 

Retinex. These images are processed to obtain three contrast-normalised output 

images. Prior to inputting these images into the second stage, a pre-processing step 

that converts the image matrix into row matrices is required to speed up the 

computation at the second stage. 

The ICA at the second stage is performed for contrast enhancement by separating 

the independent components from their mixture. The outputs of the second stage, 

which are the independent components, are then converted back from row matrices to 

image matrix. Details of the process in each stage are explained in the following 

subsections. 
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4.2 Contrast Normalisation 

The contrast normalisation stage is based on the Retinex algorithm (presented in 

Chapter 2) purposively to normalise the varied contrast of the retinal fundus image by 

predicting the sensory response of lightness in the image. The contrast-normalised 

image is advantageous for the subsequent image processing techniques, e.g. contrast 

enhancement, as it will enable an effective enhancement on the overall image. 

Among the Retinex algorithms, the iterative method based on McCann algorithm 

[125-126] which is an improvem<mt of the random walks Retinex algorithm [118], is 

chosen. Unlike non-iterative methods in which several parameters, such as the 

weighted scale, must be predetermined to obtain good dynamic range and tonal 

rendition, the iterative Retinex method only needs to determine the number of 

iteration. A typical number of iteration for natural image is 4 as been suggested by 

Funt et al. [127]. However, in our developed algorithm, a parameter to measure 

contrast normalisation based on kurtosis is used to determine the optimum number of 

iteration for the Retinex rather than to use a fixed number of iteration. A flowchart 

showing the algorithm for contrast normalisation based on the iterative Retinex is 

depicted in Figure 4.2. 
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Figure 4.2 Flowchart for contrast normalisation based on Retinex algorithm 

Referring to Figure 4.2, the ROB input image is initially separated into three 
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channels, each of which undergoes Retinex algorithm. For each colour channel the 
' 

input image is transformed from linear to logarithmic fomt to simplify the process 

from multiplication to addition or from division to subtraction. In the iterative 

Retinex, a multi resolution pyramid from the input is created by averaging fundus 

tmage. These iterative Retinex methods [125-126] calculates the long-distance 

interactions and then gradually moves to short-distance interactions among pixels. 

The method then compares the pixel at the most highly averaged or top level of the 

pyramid. 

In each step, the spacing between the pixels being compared decreases. The 

direction among pixels also alters at each step in a clockwise order. In each step, the 

comparison of pixels is implemented to estimate the reflectance part using the ratio­

product-reset-average operation, which is iteratively computed in a certain amount of 

times. This nuntber of iteration turns out to be an important image-dependent 

parameter of the algorithm. After estimating the reflectance part of the image at the 

longest-distance, the resulting values are used as an initial estimation of reflectance 

for the next level of interaction. Subsequent comparisons between pixels are 

continually performed to refine the: estimated reflectance until the spacing decreases 

to one pixel and the final product is obtained. 

Ratio and product are processes of accumulating and comparing resulting in the 

revision of a newer product in each process of pixel comparison. Reset operation is to 

normalise the newer product exceeding the sustainable maximmn. Averaging aims to 

estimate and update one pixel's luminance. The ratio-product-reset-average operation 

is performed by calculating the ratio between images I (in a specific channel) and its 

spatially shifted version and offset by some displacement distances formulated as 

, Reset l(loglxy -logi"Y')+iogO"Y']+iogOx lo 0 = t · · · · ·Y 
g ~ 2 

(4-1) 

represents the product. Reset operation is performed to update the maximunt intensity 

of the image scene L:'::: if[ log Ix,y -log Ix,,y, +log O"'.Y')] > log L:;:'. The term 
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log o;,y is a result of averaging with log ox,y and o;,y itself is an updated output 

produced iteratively that will be used as an input for the next iteration. 

The kurtosis of the data, melanin, macular pigment and haemoglobin is measured 

and saved iteratively. After all iterations have been performed, the maximum kurtosis 

can be found and the related number of iteration is determined as the optimum 

number of iteration for the Retinex. 

4.3 Contrast Enhancement 

The proposed method for contrast enhancement is based on ICA, a technique to 

determine the original signals from mixtures of several independent sources [145, 

154]. It is purposively to enhance the contrast of a specific object or component, 

which, in this case, is the contrast of retinal blood vessels by separating each of the 

components, namely macular pigment, haemoglobin and melanin from their mixtures. 

The ICA is applied on fundus spectral absorbance model that shows spectral 

characteristics of the absorbance components in the ocular fundus and provides useful 

information to identity the absorbance components [199]. Basis oflinear combination 

of the absorption coefficients of melanin, haemoglobin and macular pigment is 

modelled from three absorbance J.la0-I), J.la(/.,2) and J.la0-3) at three wavelengths A.,, "-2 

and A.3. These wavelengths represent the red (R), green (G) and blue (B) charmels. A 

model of spectral absorbance of the ocular fundus has been explained in the previous 

chapter and is shown in Figure 4.3 to illustrate the idea of using ICA in separating the 

spatial distributions of melanin, haemoglobin, and macular pigment in the ocular 

fundus. 
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Figure 4.3 Model of spectral absorbance of the ocular fundus 

According to the model of spe:ctral absorbance of the ocular fundus from Figure 

4.3, the colour density vector of the fundus can be stated as 

(4-2) 

- r- - - ]r 
sx,y = LStx,y,s2x,y'S3x,y 

(4-3) 

with the mixing matrix A = [a, ,a2 ,a3 ] and sx,y representing pure colour vectors of the 

three components (melanin, haemoglobin and macular pigment) per unit quantity. It 

is assumed that a linear combination of mutually independent pure colour vectors of 

s;x,y , s 2x,y and s,x,y with the mixing matrix A results in the composite colour 

vectors ofv1x,y, v 2x,y and v 3x,y on tne image coordinate(x, y). The composite colour 

vector v x,y is determined based on the output of the Retinex algorithm in which the 

input images to the ICA is contrast-normalised. The input for the ICA is determined 

as 

(4-4) 

Here, the values of Rrx,y , Rg x,y and Rg x,y correspond to pixel intensity in the 

channels of red, green and blue respectively as the outputs of the Retinex for contrast 

normalisation. The composite colour vector is denoted as 
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(4-5) 

By applying the ICA to the composite colour vectors in the image, the relative 

quantity and pure colour vectors of each independent component are determined with 

no prior information on both the quantity and colour vector. The quantities of the 

melanin, haemoglobin and macular pigment are assumed to be mutually independent 

for the image coordinate. The separating matrix W is defined to separate vector sx,y 

using the following equations. 

(4-6) 

The estimated independent components s 1x,y , s,x,y and s 3x,y may be similar to s lx,y , 

s2x,y ands3x,y, respectively. A flowchart showing the ICA algorithm is depicted in 

Figure 4.4. 
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Figure 4.4 A flowchart of contrast enhancement of retinal vessels based on ICA 

Data v as the input for ICA consists of three colour channels that have been 

previously processed by Retinex for contrast normalisation. The cmtputs of the 
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Retinex are three images from three different colour channels, i.e. red, green and blue. 

Each of these images is transformed from matrix of m x n into a row matrix 1 x ( mn) . 

Since there are 3 colour channels, data v will be 3x(mn). Data v is initially centred 

and whitened prior to performing the ICA algorithm. The result of this process is 

zero-mean and whitened data v. Following this, data v undergoes the ICA 

algorithm. The algorithm uses the FastiCA [147], which is based on a fixed-point 

iteration for maximisation of non-Gaussianity of wv to obtain the estimated IC s as 

indicated in ( 4-6). Since FastiCA uses approximation of negentropy, the maxima of 

the approximation of wrv are obtained at certain optima E{ G( wrv)}. 

For estimation of several independent components (ICs), a symmetrical 

orthogonalisation that obtains the ICs in a parallel process is used and detailed steps 

are described as follows: 

1. Choose h ICs and set iteration i=l. In this study, number ofiCs h is equals to 

3, i.e. melanin, macular pigment and haemoglobin. 

2. Initialise random w,, i = I, 2, 3 to unit form and do orthogonalisation of the 

matrixw. 

3. For each i: w; =E{vg(wiv)}-E(g'(wiv)}w, and update each column of the 

separating matrix w from the previous iteration. 

4. Orthogonalisation of w• = (wwr J' 12 
w. 

5. Check the criteria for convergence. If lw- w +I ~ & is not fulfilled, the process 

will be back to step 3. The convergence parameter & is set to 0.0001. 

The iteration process ends when the convergence is achieved or the iteration has 

reached its maximum number of iteration, which is 1000. Once the optimum 

· separating matrix W is obtained, the estimated ICs can be determined. 

However, since the order of the ICs cannot be determined, the haemoglobin­

related IC cannot be automatically selected. Therefore, the fourth order statistics, i.e. 

kurtosis, is used to differentiate the haemoglobin-related IC from the other 
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components. Kurtosis is a measure of how peaked or flat the distribution of the data 

1s. Kurtosis is formulated as 

(4-7) 

kurtosis 
(M -l)o-4 

' 

where I, refers to the intensity value of data point i from the total data pointM, I is 

the mean of the intensity and CJ is the standard deviation of the data. For normal 

distribution, the kurtosis of the data equals to 3. In both the melanin-related rc and 

the macular pigment-related rc images, the contrast of retinal blood vessels comes to 

be low for the intensity distribution dominated by the intensities of the melanin and 

that of the macular pigment respectively. Whilst in the haemoglobin-related rc 

image, the contrast of retinal vessels is significantly higher than tha1; of the other two 

rc images since the intensity distribution of haemoglobin represented by the nine 

parallel lines is maximised to be as non-Gaussian as possible leading the haemoglobin 

to be distinct. However, due to significantly smaller area of haemoglobin (retinal 

blood vessels) compared to that of macular pigment and melanin in the fundus image 

model (as discussed in Chapter 3 ), the kurtosis measured from the haemoglobin­

related IC therefore comes to be smaller than that of the other two res. The 

haemoglobin-related rc is distinguished from the other two res since it has the least 

value of kurtosis. As the fundus image model is developed based on real fundus 

images, the use of kurtosis to differentiate the haemoglobin-related from the other two 

res can be applied not only in the fundus image model but also in' the real colour 

fundus images in which both macular pigment and melanin are also significantly 

dominant compared to haemoglobin (retinal blood vessels). 

4.4 Validation ofRETICA 

The objective of the validation is to prove that RETrCA really norrnalises and 

enhances the contrast of the image, in particular the enhancement of the retinal blood 

vessels in fundus images. Validation of RETICA in this study purposively is 

conducted in three parts; those are for (1) contrast normalisation, (2) contrast 
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enhancement and (3) contrast normalisation and enhancement. Three developed 

retinal fundus image models as described in the previous chapter are going to be used. 

Two problems are addressed in this validation study, i.e. contrast normalisation 

and contrast enhancement. Firstly, to measure the contrast normalisation, the kurtosis 

of the components, i.e. the melanin, the macular pigment and the haemoglobin is 

used. As previously described, the kurtosis is used as a parameter to determine the 

optimum number of iteration of the Retinex. The highest kurtosis of the data 

corresponds to the optimum number of iteration of the Retinex and leads to the most 

homogenous intensity of the image. Secondly, to measure the contrast enhancement 

of the retinal blood vessels, the contrast between the retinal blood vessels and the 

background needs to be determined. There are two kinds of background namely 

melanin and macular pigment in which the retinal blood vessels are fairly distributed. 

Hence, to validate RETICA, four reference masks as shown in Figure 4.5 are used to 

extract the region of interest (ROI) of a processed image. The mask is created in a 

binary form in which the value of I and that of 0 represent the ROI and the 

background respectively. Hence, when the mask is multiplied with the enhanced 

image model, the result will be the extraction of ROI from the enhanced image model. 

From the extracted ROI, contrast normalisation and enhancement are validated. 
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(a) (b) 

(c) (d) 

Figure 4.5 Reference masks for (a) Melanin, (b) Macular pigment, (c) Haemoglobin 
(retinal blood vessels) on melanin and (d) Haemoglobin (retinal bl~od vessels) on 

macular pigment 

The first mask (Figure 4.5(a)) shows the area of melanin and the second mask 

(Figure 4.5(b)) shows the area of macular pigment. The third (Figure 4.5( c)) and the 

fourth (Figure 4.5( d)) masks show the retinal blood vessels (haemoglobin) in the 

melanin and in the macular pigment respectively. 

After performing RETICA on the fundus image model, the enhanced image is 

multiplied with each of the masks to obtain the four areas of interest, Le. the melanin, 

the macular pigment, the retinal blood vessels in the melanin and the retinal blood 

vessels in the macular pigment. By identifying these areas, the contrast between the 

retinal blood vessels and each background can be determined. The contrast between 

retinal blood vessels and the backgmund ( c1b'-'•i) is defined as the .absolute mean 

intensity difference between retinal blood vessels and the background and is 

formulated as 
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(4-8) 

with Ibv and Ibg are the intensities of the retinal blood vessels and the background 

respectively. The values of u and v indicate the number of pixels of the retinal blood 

vessels and the background in the fundus image model. The higher the value of the 

c1h,-hgl , the better the contrast of retinal blood vessels in the image will be. Since 

there are two kinds of background where the retinal blood vessels are located, the 

contrast of retinal blood vessels is then defined as the average of contrast between 

retinal blood vessels in the macular pigment and retinal blood vessels in the melanin. 

The contrast of retinal blood vessels ( C av) in the fundus image model is formulated as 

1" 1b 1' 1d 
~ "fJvm/1 -~ 'I1mel, +- 'IIvmck -- 'IImac1 
a 1=1 b J=l c k=J d 1=1 

Ca, =~--------~----~~-----------------C 
2 

(4-9) 

Ivml and Ivmc are the intensities of retinal blood vessels in melanin and in macular 

pigment, whilst !mel and !mac are intensities of melanin and macular pigment 

respectively. The values of a and c indicate the number of pixels of the retinal blood 

vessels both in melanin and in macular pigment correspondingly; whilst the values of 

b and d indicate the number of pixels both in melanin and in macular pigment of the 

fundus image model. The higher the Cav, the better the contrast of retinal blood 

vessels will be. 

4.5 Algorithms for Comparative Study 

There are so many algorithms for image enhancement. However, not only does each 

algorithm offer its own advantages but also does suffer from some disadvantages. 

The algorithms that are selected for comparison must fulfil some criteria to set up; 

namely (1) they should include the classical and state-of-the-art ones in the area of 

image enhancement, (2) they are not a combination of two or more principal 

algorithms and (3) their implementation should not be highly complicated with lots 
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of parameters that need to be adjusted. These criteria are set up for the simplicity of 

choosing the algorithms for comparison due to many existing image enhancement 

algorithms in which each of them offers its own benefit in a specific application. 

Nevertheless, our proposed non-invasive image enhancement method has already a 

gold standard one, i.e. the invasive FFA, to compare as stated in the objective of this 

research. 

In this study, s1x algorithms, i.e. contrast stretching (CS) [ 46], histogram 

equalisation (HE) [39], adaptive histogram equalisation (AHE) [40], adaptive contrast 

enhancement (ACE) [ 41], contrast limited adaptive histogram equalisation (CLAHE) 

[88] and homomorphic filtering (HF) [46] commonly used for image enhancement for 

general application, are selected to evaluate the performance of the proposed 

algorithm. In the application of retinal image enhancement, Yousiff et al. [35] 

particularly show that adaptive histogram equalisation is the most effective method 

among the other seven algorithms being compared. 

The objective of this comparative study is to measure the quality of the contrast­

enhanced image produced by the proposed method compared to that of the selected 

algorithms. 'Three criteria are set up to compare the results of image enhancement 

process. The first criterion is image contrast that is represented by the contrast of 

retinal blood vessels ( Ca,) as explained in (4-9). The second one is the image 

contrast normalisation ( R,dJ that is defined as the ratio between standard deviation cr 

and the average contrast C a' of an image with the size of m x n . The second criterion 

is derived from the standard deviation that has been widely used to ,measure image 

contrast [52-54, 200-201]. Rubin and Siegel showed that images with an equal 

standard deviation will have an equail contrast [53]. 

Theoretically, a standard deviation shows a spread of data from its mean value in 

which a low standard deviation indicates that most of the data eoncentrated on their 

mean value ar.td vice versa. In term of image intensities, low staridard deviation 

indicates that most of the intensity values are close to the mean value. Whereas a 

high standard deviation indicates that the intensity values are spread out over a large 

range of values. Hence, the star.tdard deviation can be used to indicate the 
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homogeneity of intensity distribution. A low standard deviation obtained from an 

image area represents more homogeneous image intensities compared to the high one. 

This is in line with the objective of contrast normalisation in which the intensity 

distribution is made to be as homogeneous as possible. However, to use only one 

standard deviation is not sufficient if several objects in the image present. 

As our objective is also to enhance the contrast between an object and its 

background, we use not only standard deviation cr but also average contrast Cav to 

measure contrast normalisation of the image since the average contrast shows the 

average of intensity difference between different objects, which in the. fundus image 

model is the average of contrast between retinal blood vessels in the macular pigment 

and retinal blood vessels in the melanin. If the average contrast C av is significantly 

high compared to the intensity variation indicated by its standard deviation cr, the 

image will be considered to have more homogeneous intensities. Conversely, if the 

average contrast Cav is significantly low compared to the intensity variation 

represented by its standard deviation cr, the image is considered to have more non­

homogeneous intensities. Hence, the lower the R,d)s, the better the contrast 

normalisation of the image will be. 

Having incorporated both standard deviation cr and average contrast C av between 

objects in an image, the R,d, actually measures not only pure contrast normalisation, 

but also contrast enhancement. However, both the aforementioned criteria can only 

be implemented in the image model where the objects have been determined in prior. 

Whereas in the real image, the objects cannot be determined and separated one and 

another in prior by such a system; hence, the average contrast that shows the average 

of intensity difference between different objects cannot be practically measured. 

For the second criterion - image contrast normalisation ( R,d,) - , standard 

deviation is formulated as 

1 (mn) 

a=-IJ; -I 
mn i=l 

(4-1 0) 
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Therefore, the image contrast nonnalisation ( R,d,) can be formulated as 

1~ -
~].j,-1 

R - _m_n---'='":c.l -­
'd'- c 

"' 

(4-11) 

where I and I denote image intensity and its average correspondingly. The lower 

the R,d)s, the more homogeneous the intensity is; the more normalised the contrast 

thus is obtained. This criterion can also be used to measure noise reduction because 

of performing a specified image enhancement process. Noise can be characterised by 

the standard deviation of the image intensities. Ideally, the image without any noise 

will have one value of intensities or uniform intensity distribution,' which is almost 

impossible to get from the real image. The idea of using R,d, can be seen if the value 

of R,d, obtained is small enough, meaning that the standard deviation is also small. 

The smaller the standard deviation is, the smaller the intensity variation will be. It 

also means that the more homogenous the intensity distribution will b~. 

The third one is the contrast improvement factor ( CIF ) that is defined as a ratio 

between the contrast of retinal blood vessels obtained by a specified algorithm ( C 'P ) 

and that of the reference ( C "1 ). In this case, C "f uses the contrast of the retinal 

blood vessels in the green band image. The CIF is therefore formulated as 

(4-12) 

The higher theCIF, the better the performance of the algorithm will be. 

4.6 Results ~md Analysis 

Three fundus image models, i.e. the: varied contrast image model, the low-contrast 

image model and the varied and low-contrast image model are used to validate each 

stage and the whole stage of RETICA. Using the fundus image model, the 

performance of RETICA is evaluated and compared to several image enhancement 
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algorithms. A smaller region containing the macular area is taken to see the 

enhancement of retinal capillaries, which usually has a very low contrast between 

retinal vasculature and the background. As explained in the previous chapter, the area 

of the fundus image model is divided into two, i.e. the melanin and the macular 

pigment that are located at the top half and the bottom half of the image model 

respectively. Retinal blood vessels are modelled in 9 straight lines paralleling in 

height and ranging from I to 12 pixels in width, representing the width of retinal 

blood vessels from the real retinal fundus image. The thin lines are to represent the 

retinal capillaries where mostly exist in the macular region; while the wider lines are 

to represent wider retinal blood vessels where mainly exist in the background. 

4.6.1 Contrast Normalisation 

The first model, namely the varied-contrast fundus image model as shown in Figure 

4.6(a) is used to validate the frrst stage ofRETICA known as contrast normalisation. 

Figure 4.6 Varied contrast fundus image and its (b) Red, (c) Green and (d) Blue 
channel images 

As shown in Figure 4.6, the varied-contrast fundus image is separated into three 
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channels, i.e. red, green and blue channels that are inputted to the frrst stage of 

RETICA, which is based on the Retinex. Validation of thr~ Retinex on the varied­

contrast fundus image model is performed by observing the distribution of each 

component (melanin, macular pigment and haemoglobin) and determining the 

optimum iteration of the Retinex-based algorithm that results in the most homogenous 

pixel intensity distribution of each component. 

The varied-contrast fundus image model is developed by varying the intensity 

from low to high values as the position changes vertically. By performing the 

Retinex-based algorithm, the variation of intensities is reduced resulting in more 

homogeneous intensity distribution. Using the mask from Figure 4.5, each 

component of the fundus image model is separated. 

A vertical line profile is then selected from the area of each component to show its 

homogeneity of the intensity variation. Referred to the pixel position in the varied 

contrast image model shown in Figure 4.6, the original melanin intensity shows the 

lowest value at the top of the image and increases as the pixel position moves down 

and reaches the highest value towards the middle of the image where the pixel 

position is 160. Figure 4. 7, Figure 4. 8 and Figure 4. 9 depict the comparison of 

melanin's intensity variation on a vertical line profile taken from red, green and blue 

charmel images after performing Retinex algorithm with several different numbers of 

iterations. The optimum number of iteration of the Retinex is determined when the 

most homogenous intensity distribution is achieved. 
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Figure 4.7 Comparison of melanin's intensity variation on an image profile between 
red channel image model and its Retinex output images with several iterations 
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Figure 4.8 Comparison of melanin's intensity variation on an image profile between 
green channel image model and its Retinex output images with several iterations 
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Figure ~.9 Comparison of melanin's intensity variation on an image profile between 
blue 'channel image model and its Retinex output images with several iterations 

' 

It can be seen from the graphs that different number of iteration gives a different 
' 

intensit~ variation. Ideally, a homogenous intensity distribution is indicated by a 

complet~ly flat line - meaning that all values of intensity are the same. However, it is 

difficult ',or even not possible to have a completely flat line in the real situation due to 

presence, of several different objects and/or a varying illumination. From the three 
' 

aforementioned figures, the more homogeneous the intensities is, the flatter the line 
' 

will be. ', Qualitatively, all the three graphs show a similar pattern in which the 
' 

melanin has the highest intensity when the number of iterations of the Retinex equals 
i 

to 1. Th\s result is expected since the Retinex -based proposed algorithm is applied on 

the varied-contrast fundus image model in which the intensity variation is regular and 

not random. 1be intensities of pixel!; in the operated image will be updated iteratively 
' 

based on: the ratio-product-reset-average operation of the Retinex as previously 

discussed': in S:ection 4.2. The more random the intensity variation is, the higher the 

optimum 'number of iterations of Retinex is. Performing Retinex on the varied-
' 

contrast fUndus image model, as the number of iteration of the Retinex increases, the 
' 

melanin's' intensity values tend to decrease. It means that the most homogeneous 
I 

melanin's', intensity distribution is obtained when the number equals to 1 that makes 

this as th~ optimum number of iteration of the Retinex for the melanin in red, green 
' 

and blue channels. 
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Opposed to that of the melanin, the intensity of the macular pigment has the 

highest value at the middle of the image model (Figure 4.6). The intensity value 

decreases as the pixels position increases and reaches its minimum intensity value for 

the pixels located at the bottom of the image model where the position is 320 as 

shown in Figure 4.6. Similar results occur with the macular pigment's intensity 

variation for red, green and blue channels in which the highest intensity is obtained by 

the Retinex with the number of iteration equal to I as shown in Figure 4.1 0, Figure 

4.11 and Figure 4.12. 
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Figure 4.10 Comparison of macular pigment's intensity variation on an image profile 
between red channel image model and its Retinex output images with several 

iterations 
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Figure 4.11 Comparison of macular pigment's intensity variation on an image profile 
between green channel image model and its Retinex output images with several 

iterations 
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Figure 4.12 Comparison of macular pigment's intensity variation on an image profile 
between blue channel image model and its Retinex output images with several 

iterations 

In all cases of its variation, the macular pigment's intensity values tend to 

decrease as the number of iteration of the Retinex increases. These similar results to 

that of the melanin are expected since the Retinex-based proposed algorithm is 

applied on the varied-contrast fundus image model in which the intensity variation is 

regular (not random). Moreover, in the fundus image model, the melanin and the 

macular pigment have some similar characteristics such as the size of area and regular 

intensity variation. The increase of the number of iterations of Retinex results in the 

change of intensities of the operated image according to the ratio-product-reset­

average operation of the Retinex. Nevertheless, the objective is to get the most 

homogeneous intensity distribution. The more random the intensity variation is, the 

higher the optimum number of iteration of Retinex will be. Qualitatively, the image 

undergoing Retinex will look brighter indicated by the increase of intensity values. 

Quantitatively, the optimum number of iteration of Retinex is obtained when the 

operated image has the highest kurtosis measured from its intensity distribution. 

Quantitative results based on kurtosis will be further discussed in this section. 

Moreover, similar to the melanin, the macular pigment obtained by the Retinex with 

the number of iteration equal to 1 has the most homogeneous melanin's intensity 

distribution and appears brighter than that of the Retinex with more numbers of 

iteration. Hence, the optimum number of iteration of the Retinex for the macular 
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pigment in red, green and blue channels is equal to I. The increase of the number of 

iteration greater than the optimum one will result in more non-homogeneous intensity 

distributions. It is because the ratio between one image scene and the previous one 

used in the ratio operation is getting closer to one and the maximum intensity used in 

the reset operation is also getting smaller due to the regular intensity variation of the 

fundus image model. Hence, in the fundus image model, increasing the number of 

iteration of Retinex greater than the optimum one makes the image darker indicated 

by the reduction of image intensity values. 

Moreover, a small difference in the optimum number of iteration of the Retinex is 

found in the case of the haemoglobin's intensity variation compared to that of the 

melanin and the macular pigment. Referred to the fundus image model shown in 

Figure 4.6, the haemoglobin is modelled by 9 vertical straight lines of retinal blood 

vessel model parallel with varied width from I to 12 pixels and the same length that is 

250 pixels. The retinal blood vessel model has the highest intensity value at the 

middle of the image where the pixel position is 160 and its intensity values decrease 

as the pixel position vertically moves both up and down. The lowest intensity value 

meanwhile belongs to the pixels position at 35 as it moves up and to that of at 285 as 

it moves down. Results for applying different number of iteration of the Retinex on 

the haemoglobin are shown in Figure 4.13, Figure 4.14 and Figure 4.15. 
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Figure 4.13 Comparison of haemoglobin's intensity variation on an image profile 
between red channel image model and its Retinex output images with several 

iterations 
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Figure 4.14 Comparison of haemoglobin's intensity changes on an image profile 
between green channel image model and its Retinex output images with several 

iterations 
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Figure 4.15 Comparison of haemoglobin's intensity changes on an image profile 
betv:reen blue channel image model and its Retinex output images with several 

iterations 

Unlike that of the melanin and the macular pigment that have the same optimum 

number 'of iteration for all the included channels, the optimum number of iteration of 

the Retihex for the haemoglobin is different in each channel. It is found that the 

optimum numbers of iteration of the Retinex in red, green and blue channels are 2, 4 

and 3 re~pectively. These results obtained by the haemoglobin are a little bit different 

from tha~ of the previous two. It is because the size and structure of the retinal blood 

vessel (haemoglobin) represented by nine vertical lines is different from that of the 

melanin ',and macular pigment. However, since the intensity variation of the 
I 

haemoglc)bin is regular (not being random), the optimum number of iteration of 

Retinex i~ relatively small then. 

Qualitativdy, it is easy to determine the optimum number of iteration by 

observing the graphs in which the line showing the image intensity distribution tends 

to be flat):er. However, in such an automated algorithm, a specified parameter is 

needed to•,dete1mine this optimum number of iteration. Since the optimum number of 

iteration ~f the Retinex is related to the homogeneity of the intensity distribution, 

kurtosis is, then used as a parameter to determine this number. The higher the kurtosis 

is, the more homogenous the intensity will be. In other words, the highest kurtosis 
' 

that can !i>e obtained after performing several iterations corresponds to the most 
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homogenous intensity distribution that can be achieved. Once the highest kurtosis is 

determined, the related number of iteration is selected as the optimum number and its 

corresponding Retinex output image can be used as the best output images. Table 4-1 

shows the highest kurtosis of melanin, macular pigment and haemoglobin data 

obtained from red, green and blue channel in relation to the optimum number of 

iteration of the Retinex. 

Table 4-1 Kurtosis and related optimum number of iteration for Retinex algorithm for 
melanin, macular pigment and haemoglobin in each colour channel 

Melanin Macular pigment Haemoglobin 
Red Green Blue Red Green Blue Red Green Blue 

Kurtosis 7.76 8.26 7.75 6.98 8.06 8.20 6.25 6.58 7.23 
Optimum number 

I I I 1 I I 2 4 3 
of iteration 

However, in the application, the optimum number of iteration is possibly different 

between one and another component. For instance, as shown in Table 4-1, even 

though the optimum number of iteration of the Retinex between the melanin and the 

macular pigment is the same, it does not occur for the haemoglobin. In the case of the 

fundus image model, even though these three components, i.e. the melanin, the 

macular pigment and the haemoglobin present all together, it is easy to separate these 

components using the reference masks shown in Figure 4.5. Hence, it is possible to 

use different optimum number of iteration for each of the components in the fundus 

image model. However, in the real application, there is no reference mask; thus, only 

one of the components is used as the reference in order to determine the optimum 

number of iteration. 

In the real fundus images, the problem of varied contrast, particularly in the 

macular region, is due to the macular pigment. Therefore, the highest kurtosis 

obtained from the macular pigment data is used to determine the optimum number of 

iteration of the Retinex in each channel. These Retinex output images consisting of 

three colour channels are subsequently used as the input for the contrast enhancement 

process based on I CA. Figure 4.16 shows the original red, green and blue channels of 

the retinal fundus image model and their corresponding Retinex output images in red, 

green and blue channels based on the optimum number of iteration obtained from the 

macular pigment. 
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Figure 4.16 Retinal fundus image model in (a) Red, (b) Green and (c) Blue channel 
images and their corresponding Retinex outputs in (d) Red, (e) Green and (f) Blue 

channel images 

As depicted in Figure 4.16, the Retinex output images shows better visualisation 

than that of the original images as the image intensity is more homogenous. The 

lower intensity values of the original input images that make the image seemingly to 

be darker have been brought up to higher intensity values in the output images that in 

turn make the output image seemingly to be brighter. As a result, the retinal blood 

vessel model in the output image is more clearly visible than that of the input image. 

A significant improvement can be seen from blue channel image of the Retinex 

(Figure 4.16(f)) with more homogeneous intensity than that of the original blue 

channel input images (Figure 4.16(c)). Retinal blood vessel model particularly in the 

macular pigment from the blue channel image that cannot be clearly seen is better 

visualised in the corresponding Retinex output image because of more homogenous 

intensity of the macular pigment. 

The more homogenous intensity obtained implies that the varied contrast of the 
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image model has been reduced. Retinex is able convert the darker area or sometimes 

referred as shadow area into brighter appearance. With the objective of contrast 

normalisation, the dynamic contrast of the image has been significantly reduced by 

applying the Retinex algorithm. 

In some cases, noise present in the image is represented as the standard deviation 

or the variance of image pixels. The more homogenous intensity then could lead to a 

lower standard deviation. This implies that the noise of the image is also reduced. 

Hence, the normalisation of the varied contrast significantly improves the quality of 

the image by reducing the intensity variation as well as the noise present in the image. 

With the normalised intensity and reduced noise, the contrast of image can be further 

enhanced without enhancing the noise (artefacts). 

The result of more homogeneous intensity distribution is expected since the use of 

Retinex algorithm with its ratio-product-reset-average operation reduces the dynamic 

contrast of the image intensities. With the reference of the maximum intensity of the 

image scene, the lower intensities are brought up into higher values, which result in 

reduction of dynamic contrast. If a maximum intensity value is found in the iteration 

process, it will be used in the reset operation to update the reference. Therefore, not 

only does the dynamic range of intensity values reduce but also the lower intensities 

are brought up into the higher ones resulting in brighter appearance of the image. 

This contrast-normalised image is advantageous for the contrast enhancement 

process since the intensity distribution of an image component is set to be as more 

homogeneous as possible and the noise present in the image has been reduced. 

Hence, the subsequent contrast enhancement process will enhance the contrast among 

the image components. 

4.6.2 Contrast Enhancement 

The validation of RETICA for contrast enhancement stage is performed on the low­

contrast fundus image model as shown in Figure 4.17. 
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Figure 4.17 (a) Low-contrast fundus image model and its (b) Red, (c) Green and (d) 
Blue channel images 

The low-contrast fundus image model (Figure 4.17(a)) is separated into three, i.e. 

red (Figure 4.17(b)), green (Figure 4.17(c)) and blue (Figure 4.17(d)) channel images 

and these images are inputted to the second stage of RETICA for contrast 

enhancement based on the ICA. The validation of the ICA on the low-contrast fundus 

image model is performed by separating the components (melanin, macular pigment 

and haemoglobin) that are mixed in the red, green and blue channel images and 

determining the haemoglobin-related independent component that gives the best 

contrast of the retinal blood vessels. 

The ICA algorithm works based on an assumption that the independent 

components are mixed in the input images. The output images that show the 

separation of the independent components are obtained by maximisation of the non­

Gaussianity of the components since non-Gaussianity is related to the independence. 

In this work, the objective is to enhance the contrast of the retinal blood vessels. 

Therefore, the haemoglobin-related independent component is selected since the best 
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contrast of retinal blood vessels is obtained from the haemoglobin-related IC image. 

Results of performing the ICA on the low-contrast fundus image model with the 

comparison to the green band image are shown in Figure 4.18. 

(a) (<) (e) 

Figure 4.18 (a) Green band image with (b) its corresponding histogram, (c) ICA 1'' 
component image with (d) its corresponding histogram, (e) ICA 2nd component image 

with (f) its corresponding histogram, (g) ICA 3'd component image with (h) its 
corresponding histogram 

It can be seen from Figure 4.18 that the proposed algorithm successfully separates 

the components into three independent components. The 1st and 2nd independent 

components are related to the melanin and the macular pigment respectively. The 3'd 

independent component is related to the haemoglobin. The order of the components 

is not unique meaning that if the fundus image model undergoes the ICA for the 

second, third and so forth, the order of the components might be different. However, 

it is not a problem since the independent components can be identified either 

qualitatively or quantitatively. 

Qualitatively, the IC image is identified by visual inspection. Moreover, the 

histogram of the green band image (Figure 4.18(b)) has been shifted from lower to 

higher intensity values and more fairly distributed as shown by histograms of the IC 

images. In Figure 4.18( d) and Figure 4.18(f), the histograms tend to be normal having 

specific mean values. Nevertheless, unlike the previous two histograms of 1st and 2nd 

IC images, the histogram of 3'd IC shown in Figure 4.18(h) has two peaks and fairly 
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distributed in the whole intensity ranging from 0 to around 250. These two peaks are 

related to the mean values of the intensity of the melanin and the macular pigment. 

Furthermore, the mean of haemoglobin's intensity is predicted to lie between these 

two peaks. The higher the difference between the mean of haemoglobin's intensity 

and that of the melanin is, the higher the contrast of retinal blood vessels will be. This 

situation also occurs for the haemoglobin and the macular pigment in which the 

higher the difference between the mean of intensity of the haemoglobin and that of the 

macular pigment is, the higher the contrast of retinal blood vessels will be. 

Quantitatively, the IC image meanwhile is identified based on the statistics of 

intensity distribution of the related components as shown in Table 4-2. The parameter 

of contrast of retinal blood vessels (C"") as defined in equation (4-9) is used to select 

the haemoglobin-related IC image, which has the highestC"". 

Table 4-2 Statistics of green band of low-contrast image model and ICA component 
Images 

Green band 
ICA ICA ICA 

I'' component 2"d component 3 'd component 

Mean St.dev Mean St.dev Mean 
St. 

Mean St. dev 
dev 

Melanin (Mel) 78.84 13.14 134.23 18.73 99.04 27.53 168.18 22.38 
Macular pigment 

35.18 9.73 133.73 16.11 98.58 12.82 63.21 15.67 
(MP) 

Haemoglobin 
62.13 20.17 128.50 30.62 99.91 36.16 133.70 32.35 

(BV) 
IBV-Mell 16.71 7.02 5.73 11.89 0.86 8.62 34.48 9.97 
IBV-MPI 26.95 ]0,43 5.23 14.51 1.33 23.34 70.49 16.68 
Contrast of 

retinal blood 21.83 5.48 1.10 52.78 
vessels ( C'"') 

As can be seen from Table 4-2, among the IC images, the best contrast of retinal 

blood vessels indicated by the highest Ca, belongs to the 3'd IC image with C"" of 

52. 78. The 3'd IC image which is also the haemoglobin-related IC image has 

significantly higher contrast of retinal blood vessels than that of the green band. 

Expectedly, the best contrast of retinal blood vessels belongs to the haemoglobin­

related IC image since the haemoglobin, which is related to retinal blood vessels, is 

extracted from its mixture with melanin and macular pigment and results in the 

126 



contrast enhancement of retinal blood vessels. With the extraction of the retinal blood 

vessels, the contrast of retinal blood vessels with two kinds of background, namely 

the melanin and the macular pigment, is also enhanced. Using the contrast of retinal 

blood vessels in the green band as the reference, the haemoglobin-related IC image 

achieves CIF of 2.42. This haemoglobin-related IC image is advantageous for 

showing the most-contrasted retinal blood vessels. 

From the validation result for the contrast enhancement, the ICA successfully 

separates the independent components, i.e. the melanin, the macular pigment and the 

haemoglobin. The haemoglobin-related IC image shows higher contrast of retinal 

blood vessels than that of the green band image with CIF of2.42 for the low-contrast 

fundus image model. 

4.6.3 RETICA for Image Enhancement 

The third validation of RETICA for image enhancement that contains both contrast 

normalisation and contrast enhancement is conducted on the varied and low-contrast 

fundus image model as shown in Figure 4.19(a). 
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(c) (d) 

Figure 4.19 Varied and low-contrast fundus image model and its (b) Red, (c) Green 
and (d) Blue channel images 

As shown in Figure 4.19, the varied and low-contrast fundus image model is 

separated into three, i.e. red (Figure 4.19(b)), green (Figure 4.19(c)) and blue (Figure 

4.19( d)) channel images inputted to RETICA. In RETICA, the first stage is for 

contrast normalisation based on the Retinex and followed by the second stage i.e. 

contrast enhancement based on the I CA. The same technique for contrast 

normalisation, as previously explained, is applied for this varied and low-contrast 

image model. Maximum kurtosis and its related optimum number of iteration 

obtained from the macular pigment are shown in Table 4-3 and the Retinex output 

images are shown in Figure 4.20. 
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Table 4-3 Kurtosis and related optimum number of iteration ofRETICA for melanin, 
macular pigment and haemoglobin in each colour channel of the varied and low­

contrast image model 

Melanin Macular pigment Haemoglobin 
Red Green Blue Red Green Blue Red Green Blue 

Kurtosis 6.30 5.76 5.36 5.06 4.23 3.66 5.60 7.14 2.38 
Optimum number of 

I I I I 2 29 I 7 I 
iteration 

The Retinex output images as shown from Figure 4.20(d) to Figure 4.20(f) are 

obtained based on these optimum numbers of iteration of the Retinex. They are 

subsequently inputted to the second stage of RETICA, namely contrast enhancement 

based on the ICA. As previously explained, the same technique for contrast 

enhancement is applied to separate the components (melanin, macular pigment and 

haemoglobin) that are mixed in the contrast-normalised red, green and blue channel 

images. The haemoglobin-related IC that gives the best contrast of the retinal blood 

vessels is then determined. Figure 4.20(g) to Figure 4.20(i) show the output images 

of contrast enhancement based on the I CA. 
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Figure 4.20 Varied and low-contrast fundus image model in (a) Red, (b) Green and 
(c) Blue channel images and their corresponding contrast normalisation outputs in (d) 

Red, (e) Green and (f) Blue channel images and contrast enhancement outputs 
showing (g) 1st IC image, (h) 2"d IC image and (i) 3'd IC image 

RETI CA successfully separates the components into three independent 

components. It was mentioned earlier that the order of the components is not unique; 

the order of the components for this reason might be different if the related input 

image undergoes RETICA for the second, third and so forth. Referring to the results 

obtained, the haemoglobin is shown by the 2"d IC, while the l st and 3'd independent 

components are related to the melanin and the macular pigment respectively. Even 

though the haemoglobin-related IC can be qualitatively determined by visual 

inspection, quantitative results are required so that RETI CA is applied in such a 

computerised medical diagnosis system. RETICA determines the haemoglobin­

related IC by measuring the kurtosis of each IC and determining the least value of 
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kurtosis among the related ICs. Table 4-4 shows the statistics of the green band of the 

varied and low-contrast fundus image model with its corresponding ICA images. The 

intensity I is measured in two forms, i.e. I""'m and!, in which I""'m shows 

normalisation of!. I""'m ranges from 0 to I, whilst I ranges from 0 to 255. 

Table 4-4 Statistics of green band of varied and low-contrast image model and ICA 
images 

Green band ICA I" comp. ICA 2"" comp. ICA 3ru comp. 
(Intensity I ) (Intensity I ) (Intensity I ) (Intensity I ) 

] norm I /norm I ] norm I /norm I 
Melanin (Mel) 0.14 36.40 0.63 159.51 0.72 183.78 0.61 154.45 
Macular 

0.03 7.87 0.59 149.93 0.32 80.70 0.64 163.66 
pigment (MP) 
BV (Mel) 0.07 18.95 0.62 157.09 0.40 101.43 0.62 157.38 
BV(MP) 0.07 18.94 0.64 164.04 0.60 152.Dl 0.64 163.04 
Contrast of BV 
( co,l 0.06 14.26 0.03 8.27 0.30 76.83 0.01 1.77 

St. dev 0.06 15.11 0.11 28.12 0.23 57.86 0.11 27.48 
Contrast norm. 
( R,dcl 1.060 3.403 0.753 15.486 

As shown in Table 4-4, the highest C
0

, belongs to the 2"d IC image which is also 

the haemoglobin-related IC image with C
0

, of 76.83. Moreover, the 2"d IC image has 

R,dc of 0.753 which is the lowest among the IC images. It means that the 2"d IC has 

the best contrast of retinal blood vessels as well as the least varied contrast among the 

IC images. As expected, the contrast of the retinal blood vessel is enhanced since the 

haemoglobin IC, which is related to retinal blood vessels, can be extracted from its 

mixture with the melanin and the macular pigment. This contrast normalised and 

enhanced image is advantageous as a pre-processed image to be further segmented 

and analysed in a computerised medical diagnosis system. 

4.6.4 Comparative Study 

To evaluate the performance of RETICA, the varied and low-contrast fundus image 

model undergoes the proposed algorithm and the other six selected algorithms as well. 

The parameters, i.e. the contrast of retinal blood vessels ( C
0
,), the image contrast 
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normalisation measured as the ratio between standard deviation and average contrast ( 

R,d,), and the contrast improvement factor ( CIF ), are used for the comparative study. 

The six selected algorithms for comparative study work only at one charmel out of 

three charmels. Therefore, the charmel showing the best image quality in relation to 

optimum contrast of retinal blood vessels and the less noise present in the image must 

be selected prior to undergoing the algorithms. To select the optimum image quality, 

three parameters, i.e. C "' as defined in ( 4-9), standard deviation of component's 

intensity (cr) and R,dc as defined in (4-11) are measured. Even though the Ca, shows 

the contrast of retinal blood vessels measured from a specific charmel, it is not enough 

to determine which charmel has to be selected. The other parameters, such as cr and 

R,d, are required since these parameters represent the quality of the image in relation 

to the noise present in the image. The more the noise present in the image is, the 

worse the quality of the image will be. Moreover, performing selected image 

enhancement algorithm on the image with noise leads to the enhancement of noise in 

the enhanced image. Hence, the selected algorithms must be performed on the image 

charmel with as high contrast as possible but with as less noise as possible. A 

comparison of contrast of retinal blood vessels among three charmels of the varied 

and low-contrast fundus image model is shown in Table 4-5. 

Table 4-5 Statistics of Red, Green and Blue charmels of the varied and low-contrast 
fundus image model 

Red channel Green channel Blue channel 
(Intensity I ) (Intensity I ) (Intensity I ) 

]norm I /norm I /norm I 
Melanin (mean) 0.40 100.63 0.14 36.40 O.QIS 3.77 
Macular pigment (mean) 0.13 32.07 0.03 7.87 0.004 I 
BY in melanin (mean) 0.28 71.03 0.07 18.95 0.007 1.89 
BY in macular pigment (mean) 0.28 71.16 0.07 18.94 0.007 1.87 
Contrast of retinal vessels ( C "') 0.14 34.35 0.06 14.26 0.005 1.38 
Standard deviation ( cr) 0.15 37.04 0.06 15.11 0.009 2.32 
Contrast normalisation ( R,dc) 1.078 1.060 1.686 

According to the statistics shown in Table 4-5, the highest C"' belongs to the red 

charmel image with C"' of 34.35 followed by the green charmel image with Ca, of 

14.26. However, the red charmel has a significantly higher cr than that of the other 
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two channels. The lowest a, which is 2.32, belongs to the blue channel; yet the 

contrast of retinal blood vessels of the blue channel is significantly low with C av of 

only 1.38. Ideally, the image will be selected for that with the standard deviation a is 

as low as possible and the contrast of retinal blood vessels C"" is as high as possible. 

Nevertheless, those two conditions are not agreeable in this situation. Thus, the ratio 

R,d, is used to further determine the best enhanced image. As previously discussed in 

Section 4.5, instead of specifically measuring contrast normalisation of the image, the 

ratio R,d, also indirectly measures image contrast enhancement since it incorporates 

both a and Ca,. The ratio R,d, is derived from the standard deviation a, which 

measures the variation of data from its mean value and thus, specifically indicating 

the homogeneity of image intensity variation. The more homogeneous the intensities 

is, the more normalised the image contrast will be. Nevertheless, the use of mere 

standard deviation a is suitable to measure the homogeneity of one object or area in 

the image. If there are more than one object, each of which has a different intensity 

variation, measuring contrast normalisation based on mere standard deviation a is no 

longer appropriate. Therefore, the average contrastCa,, which measures the average 

of intensity difference between different objects, is incorporated in the ratio R,dc that 

specifically measures the contrast normalisation of the image and indirectly measures 

the contrast enhancement of the image. Moreover, the ratio R,dc of the green channel 

is the lowest among the others. The lower the ratio R,d, is, the better the contrast 

normalisation will be as well as the contrast enhancement. Therefore, the green 

channel is selected to undergo the algorithms for comparative study. In the real 

application, the green channel is usually selected for enhancement of retinal blood 

vessels. Here, it is proved from the image model that the contrast of retinal blood 

vessels in the green channel is actually lower than that of the red one. However, the 

green channel has the lowest R,d, (1.060) that shows the best contrast normalisation 

among the three colour channels. The green channel image undergoes six selected 

algorithms, i.e. CS, HE, AHE, ACE, CLAHE and HF and the results are shown in 

Figure 4.21. 
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(a) (I>) (c) (d) 

(i) (j) (k) 

(p} 

Figure 4.21 (a) Green band image with (e) its corresponding histogram, (b) green 
band image after HE with (f) its corresponding histogram, (c) green band image after 
CS with (g) its corresponding histogram, (d) green band image after AHE with (h) its 
corresponding histogram, (i) green band image after ACE with (m) its corresponding 
histogram, G) green band image after CLAHE with (n) its corresponding histogram, 

(k) green band image after HF with ( o) its corresponding histogram and (I) 
haemoglobin-related component image with (p) its corresponding histogram 

As depicted in Figure 4.21, the green band image suffers from both varied and 

low-contrast. The contrast of the retinal blood vessel model in the macular pigment 

especially at the bottom of the image is very low. Its histogram (Figure 4.2l(e)) also 

shows that the intensity distribution is concentrated at the low intensities values, 

meaning that the contrast of the image is low. Applying different image enhancement 

methods on the varied and low image model changes the histogram of the image 
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model. Enhanced images obtained by HE (Figure 4.21(b)) and CS (Figure 4.21(c)) 

have similar pattern of histograms (Figure 4.21(f-g)). These histograms show 

moderately and the equalised intensity distribution from 0 to 255 results in better 

contrast of retinal blood vessel model. Unlike CS and HE, AHE does not 

qualitatively produce better enhanced image (Figure 4.21(d)) even though the contrast 

of retinal vessel model is further enhanced due to amplification of noise. Although 

the contrast of retinal vessels model in the melanin backhroud is significantly 

enhanced, AHE fails to enhance the low contrast of retinal vessels in the macular 

pigment due to low and varied contrast occured in the image model. Furthermore, 

ACE produces slightly better contrast of retinal vessels model (as shown in Figure 

4.21 (i)) with no significant noise amplification as suffered by AHE. In general, these 

techniques- CS, HE, AHE and ACE- effectively enhance the contrast of the objects 

in the image model, but they do not overcome the problem of varied contrast occurred 

in the image model. 

Unlike the aforementioned comparative selected algorithms, CLAHE and HF are 

better in solving the problem of varied contrast since it does not cause over­

enhancement in the image models (Figure 4.210-k)). Nevertheless, the contrast 

enhancement of the object obtained by CLAHE is not as good as CS and HE as seen 

from the histogram of the image model by CLAHE (Figure 4.21(n)). However, 

CLAHE succesfully increases its dynamic contrast resulting in better contrast of 

retinal blood vessel model than that of the green band image. In qualitative, HF 

produces better contrast of retinal vessels model (as shown in Figure 4.21(k)) than 

that of CLAHE. This result is further confirmed by its histogram (Figure 4.21(o)) 

showing more equalised intesity distribution than that of CLAHE. Nevertheless, it 

fails to overcome the problem of over-enhancement resulting in the 'washed-out' 

appearance of the image moodel. 

RETICA overcomes both the problems of varied and low-contrast of the image 

model as in the haemoglobin-related IC image (Figure 4.21(1)). The haemoglobin­

related IC image qualitatively shows a better contrast of retinal blood vessel model 

than that of the enhanced images produced by other selected enhancement methods. 
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Moreover, the histogram of the haemoglobin-related IC image (Figure 4.2l(p)) 

shows better dynamic range than that of the green band and the CLAHE due to its 

more equalised histogram; yet, the histogram of the haemoglobin-related IC image is 

more concentrated than that of other comparative selected algorithms resulting in 

higher contrast of retinal blood vessel model. 

Histogram of an image with better contrast will normally have a non Gaussian 

distribution. Ideally, if there are two or more objects appearing in the image, the 

histogram will have the number of peaks that are the same as the number of objects. 

Each peak relates to the mean intensity value of the corresponding object that is 

represented by some specific intensity distribution. The further the distance between 

these peaks is, the better the contrast of the image will be and the more non-Gaussian 

distribution the intensity of the object has, the less varied contrast the image is. In the 

case of the haemoglobin-related IC image, the histogram of 3'd IC as previously 

explained has two peaks that are related to the mean values of the melanin's and the 

macular pigment's intensity. A higher difference between the mean of haemoglobin's 

intensity that is predictably located between these two peaks and that of the melanin 

or the macular pigment, will result in a higher contrast of retinal blood vessels. 

Quantitative results represented by three parameters, i.e. contrast of retinal blood 

vessels (Ca,), standard deviation (cr) and contrast normalisation (R,dJ are used to 

measure the quality of the enhanced image as shown in Table 4-6. 

As shown in Table 4-6, RETICA achieves the best contrast of retinal blood vessel 

model with the highest Ca, of76.83 among the selected image enhancement methods 

followed by AHE and CS in the second and the third column respectively. However, 

to determine the quality of the enhanced image needs not only the contrast of the 

retinal blood vessels, but also the contrast normalisation of the image represented by 

the reduction of the varied contrast including noise that results from the enhancement 

process. Hence, cr and R,d, are used to measure the contrast normalisation of the 

image. 
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Table 4-6 Comparative results of several image enhancement algorithms on the 
varied and low-contrast fundus image model 

Melanin 
Macular BV BV 

Ca, Rsdc pigment (mel) (mac) 
(J 

Green band /norm 0.143 0.031 0.074 0.074 0.056 0.059 
1.060 

(Intensity I ) I 36.40 7.87 18.95 18.94 14.26 15.11 

HE !norm 0.777 0.237 0.499 0.499 0.270 0.293 
1.086 

(Intensity I ) I 198.16 60.50 127.28 127.24 68.81 74.71 

cs /norm 0.660 0.119 0.329 0.329 0.271 0.289 
1.067 

(Intensity I ) I 168.37 30.24 83.83 83.83 69.11 73.73 

AHE /norm 0.599 0.031 0.092 0.093 0.285 0.368 
1.292 

(Intensity I ) I 152.73 7.87 23.49 23.95 72.66 93.86 

ACE /norm 0.196 0.031 0.076 0.076 0.083 0.93 
1.127 

(Intensity I ) I 50.00 7.87 19.46 19.50 21.08 23.77 

CLARE !norm 0.357 0.095 0.151 0.225 0.168 0.147 
0.876 

(Intensity I ) I 91.02 24.16 38.62 57.39 42.81 37.51 

HF /norm 0.720 0.097 0.349 0.253 0.264 0.329 
1.248 

(Intensity I ) I 183.59 24.80 88.87 64.63 67.27 83.97 

ICA J norm 0.577 0.177 0.388 0.388 0.200 0.210 
1.051 (Intensity I ) I 147.23 45.15 98.84 98.98 51.11 53.67 

RETICA ] norm 0.721 0.316 0.398 0.596 0.301 0.227 
0.753 (Intensity I ) I 183.78 80.70 101.43 152.01 76.83 57.86 

The green band image has the value of cr which is 15.11 and after performing 

several enhancement methods, the minimum value of cr belongs to the enhanced 

image after ACE followed by CLAHE. Even though the enhanced images obtained 

by AHE, CS, HE and HF show better contrast of retinal blood vessels model than that 

of CLAHE and ACE, they have significantly higher value of cr than that of CLAHE 

and RETICA. It means that the varied contrast and noise are more in AHE, CS and 

HE than that in CLAHE and RETICA. It occurs due to the nature of the AHE, CS 

and HE in which they enhance not only specific objects, but also noise that presents in 

the image. It can be seen from their histograms in which the distribution is made 

more equalised and spread out. Therefore, not only objects of interest, but also noise 

and the varied contrast are being enhanced resulting in the over-enhanced image. 

Parameter R,d, as previously explained is used to measure image quality in terms of 

contrast normalisation and enhancement by considering the ratio between cr and C a•. 

Moreover, as shown in the Table 4-6, ICA with C a• of 51.11 produces higher contrast 

of retinal vessels model than that of CLAHE with Ca, of 42.81; however, cr of 
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CLAHE is less than that of I CA. It means, merely applying ICA to the green band 

image can produced better contrast of retinal vessels model in the enhanced image but 

still enhance the noise. 

RETICA achieves the lowestR,dc' which is 0.753 among the selected image 

enhancement methods and the green band image. It means that RETICA can enhance 

image with the optimum contrast normalisation and enhancement compared to other 

image enhancement methods. Moreover, using the green band image as the reference, 

a contrast improvement achieved from the selected image enhancement methods can 

be measured. A comparative result is illustrated in Figure 4.22. 

Figure 4.22 Contrast improvement factor ( CIF) and ratio ( R,JJ between standard 

deviation and average contrast of the varied and low fundus image model after 
performing seven different algorithms 

Figure 4.22 shows that among the selected non-invasive digital imaging 

enhancement methods, RETICA is the one achieving the highest contrast of the 

retinal blood vessels in the varied and low-contrast fundus image model with CIF of 

5.389 which is slightly lower than that of the FFA with CIF of 5.796. The highest 

contrast improvement obtained by RETICA compared to other non-invasive image 

enhancement methods, such as AHE with 5.097, CS with 4.848, HE with 4.826, HF 
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with 4.719, followed by ICA wih 3.595 and CLAHE with 3.003 and the ICA with 

3.595 is predicted. Since the fundus image model is varied and low in contrast, 

RETICA first addresses the problem of varied contrast using the contrast 

normalisation based on the Retinex and is followed by contrast enhancement based on 

the ICA. Contrast normalisation significantly reduces the intensity variation and 

minimises the noise present in the image so that the image can be further enhanced 

without enhancing the noise. Noise in the image is represented as a standard 

deviation or a variance of image intensities, which moreover can also be used to 

compare the contrast oftwo different images [52-53]. 

The two common problems, i.e. varied contrast and low contrast have been 

addressed by RETICA, and expectedly, the result of image enhancement is better than 

that of the other selected non-invasive image enhancement methods that address 

mostly only the problem of low contrast. The common image enhancement methods 

such as AHE, CS and HE fail to produce better-enhanced images in that they do not 

specifically address the problem of noise present in the image. They are mainly 

focused to enhance the contrast of the image. For this reason, if the image being 

enhanced contains noise, it will also result in an enhancement of the noise during the 

process. 

The improvement of contrast achieved by RETICA is significantly important to 

reduce the use of invasive procedure such as the FFA that has the best contrast of 

retinal blood vessels. Nevertheless, due to its invasiveness by injecting contrasting 

agent into the blood vessels, this method may also lead to physiological problems 

such as nausea, vomiting and dizziness [25]. The worst case of adverse reactions 

following fluorescein injection could be fatal anaphylactic shock, which eventually 

leads to death [26]. Furthermore, RETICA can be implemented as part of 

computerised medical diagnosis system to process the image prior to segmenting and 

analysing the results. The use of RETICA as an image enhancement method is 

advantageous to increase sensitivity, specificity and accuracy of the system in 

diagnosing retina-related eye diseases, e.g. Diabetic Retinopathy (DR). 
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4.7 Summary 

A non-invasive image enhancement scheme called RETICA has been developed. 

RETICA addresses the problem of varied and low contrast image, accommodated by 

using the Retinex for contrast normalisation and ICA for contrast enhancement. The 

three developed fundus image models are used to validate RETICA. The 

performance of RETICA is evaluated and compared to three common 1mage 

enhancement methods. 

The first stage of RETICA is to normalise the varied contrast and to be developed 

based on the Retinex. Among the various Retinex algorithms, the iterative Retinex 

method is selected since only one parameter needs to be determined, that is the 

number of iteration. The existing iterative Retinex method uses a predetermined 

number of iteration, which does not always yield the optimum results. Since the 

optimum number of iteration of the Retinex is related to the homogeneity of the 

intensity distribution, an iterative Retinex based on the kurtosis is developed to 

normalise the varied contrast by determining an optimum number of iteration. The 

higher the kurtosis is, the more homogenous the intensity will be. The contrast­

normalised images are subsequently inputted to the second stage of RETICA. 

The second stage of RETICA is to enhance the low contrast and to be developed 

based on the ICA, which in turn enhances the contrast of a specific object or 

component by separating each of the components that are mixed in the input images. 

The FastiCA algorithm with symmetrical orthogonalisation is used to get the 

estimated independent components because of its good accuracy and high 

computational speed. One of the problems in the ICA is that the order of the 

components is not unique. In the case of fundus image model in which the related 

independent components are the melanin, the macular pigment and the haemoglobin, 

the fourth order statistics, i.e. kurtosis, is used to differentiate the haemoglobin-related 

IC from the other components. The haemoglobin-related IC image gives the best 

contrast of retinal blood vessels among the IC images and higher contrast of retinal 

blood vessels than that of the green band image. 

Three fundus image models, i.e. varied contrast image model, low-contrast image 
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model and varied and low-contrast image models are developed to validate RETICA. 

Validation is performed in each stage of RETICA, i.e. contrast normalisation and 

contrast enhancement and RETICA as an entire process. Three parameters, namely 

contrast of retinal blood vessels ( Cav ), image contrast normalisation ( R,JJ and 

contrast improvement factor ( CIF) are set up to measure quality of the contrast­

enhanced image. Furthermore, the varied and low-contrast fundus image model 

undergoes RETICA and six selected image enhancement methods, i.e. CS, HE, AHE, 

ACE, CLAHE and HF to evaluate the performance ofRETICA. 

Results of validation study for contrast normalisation show that the Retinex 

successfully normalises the varied contrast of fundus image model. Different 

numbers of iteration yield different results of contrast normalisation. Since three 

components are involved; the use of kurtosis may result in different number of 

iteration of the Retinex in each component. However, only one optimum number of 

iteration needs to be used. The optimum number of iteration obtained from the 

macular pigment is used in that the macular region in the application of RETICA for 

computerised DR system is selected for determination ofF AZ and the varied contrast 

mainly occurs in the macular pigment. For contrast enhancement, the ICA 

successfully separates the components into three independent components, i.e. 

melanin, macular pigment and haemoglobin. Even though the order of the component 

is not unique, the use of kurtosis is able to determine the haemoglobin-related IC that 

gives the best contrast of retinal blood vessels among the IC images. 

Results of comparative study show that RETICA successfully normalises the 

varied contrast with R,Jc of 0.756 better than that of the other selected non-invasive 

image enhancement methods. RETICA outperforms other enhancement methods in 

producing higher contrast of retinal blood vessels with cav of 76.83 followed by 

AHE, CS, HE, HF, CLAHE and ACE with C"' of 72.66, 69.11, 68.81, 67.27, 42.81 

and 21.08, respectively. Using C"' of the green band image (i.e. 14.25) as the 

reference, RETICA achieves CIF of 5.389 that is slightly lower than that of the 

invasive FF A with CIF of 5. 796. It means that without doing invasively, the contrast 

of retinal blood vessels can be enhanced at similar level to that obtained by the 
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invasive procedure, which possibly causes some physiological side effects. 

In short, RETICA is able to reduce the varied contrast and significantly enhance 

the low contrast of the varied and low-contrast fundus image model. The contrast 

normalised and enhanced image produces a higher contrast of retinal blood vessels 

and is advantageous for the diagnosis of the retina-related eye diseases, such as 

Diabetic Retinopathy (DR) through a direct observation or computerised medical 

diagnosis system. RETICA can be beneficial for retinal vasculature segmentation and 

determination of foveal avascular zone (FAZ) for grading of DR. This improvement 

in contrast avoids the need of applying contrasting agent on patients. In the next 

chapter, RETICA is applied on the computerised DR system to increase sensitivity, 

specificity and accuracy in grading of DR severity level. 
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CHAPTERS 

RETICA FOR A COMPUTERISED DIABETIC RETIONOPATHY 

MONITORING AND GRADING SYSTEM (RETINO) 

5.1 Introduction 

Diabetic Retinopathy (DR), a complication threatening the sight due to diabetes 

mellitus affecting the retina, has become one of the leading causes of blindness in the 

world [202]. According to the National Eye Database 2007, of 10,856 cases with 

diabetes in Malaysia, 36.8% has some forms of DR, 7.1% of which comprises 

proliferative diabetic retinopathy (PDR) as depicted in Figure 5.1 [203]. International 

Diabetes Federation (IDF) 2009 also reported that approximately 285 million people 

worldwide have suffered from diabetes [204] with a prediction of the increasing 

number to be 438 millions within 20 years at the rate of 7 million people developing 

diabetes per year [204]. 

Model ale NPIJIK/ 

10% 

Mild 

Figure 5.1 DR statistics of registered diabetic patients in Malaysia [203] 

A determination of DR severity is deemed essential in treating disease. In grading 

DR, an International Clinical Diabetic Retinopathy Disease Severity Scale shown in 

Table 3-2 is now used [205] in which an ophthalmologist using this scale needs to 

observe and determine DR-related abnormalities in the retinal fundus image. The 
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above pathology-based method, however, is time-consuming for approximately taking 

20 to 30 minutes and often requires fundus fluorescein angiography (FF A) for an 

accurate diagnosis as well as highly trained and skilled clinicians to perform the DR 

severity grading method. Fundus fluorescein angiography (FF A) refers to an invasive 

imaging procedure to highlight the retinal and choroidal circulation by injecting a 

contrasting agent (sodium fluorescein) into blood vessels to obtain an angiogram of 

well-contrasted retinal blood vessels for diagnosis of retinal and choroidal pathologies 

[206]. Pathologies such as micro-aneurysms in a same eye and captured in both 

colour fundus and FFA images are shown in Figure 5.2. 

Table 5-l International Clinical DR Disease Severity Scale [205] 

Proposed Disease Findings Observable npon Dilated 
Severity Level Ophthalmoscopy 

No apparent Retinopathy No abnormalities 
Mild Non-Proliferative DR Micro-aneurysms only 
Moderate Non-proliferative More than just micro-aneurysms but less than 
DR SevereNPDR 
Severe Non-Proliferative Any of the following: 
DR I. >20 intra-retinal haemorrhages in each of 4 

quadrants. 
2. Definite venous beading in 2+ quadrants. 
3. Prominent intra-retinal micro-vascular 

abnormalities in I+ quadrant. 
4. No signs of proliferative retinopathy. 

Proliferative DR One or more of the following: 
1. N eo-vascularisation 
2. Vitreous/ pre-retinal haemorrhage 
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(a) (b) 

Figure 5.2 Extensive micro-aneurysms in both (a) colour fundus and (b) FFA images 
[179] 

As reported in several scientific literatures [207-212], a number of automatic 

detecting systems for DR is based on one or more features including retinal blood 

vessels, exudates, micro-aneurysms, texture, and distances (between the exudates and 

foveae). These systems use different classifiers for different types of feature. Yun et 

al. [209] for instance reported the use of area and perimeter features of the RGB 

components of retinal blood vessels in retinal fundus images with feed-forward neural 

network classifiers to determine DR stages - normal, mild moderate NPDR, severe 

NPDR and PDR. The system then achieved 84% for average efficiency, 90% for 

sensitivity and 100% for specificity. Nayak eta!. [208] meanwhile proposed a neural 

network system based on area of exudates, retinal blood vessels and texture 

parameters to be classified into normal, NPDR and PDR stages. The system then 

achieved 93% of detection accuracy, 90% and 100% of sensitivity and specificity 

respectively. In Kahai et al. [213] a Bayes' decision support system with optimality 

criteria is used to identify early stages of DR based on micro-aneurysms with 100% of 

sensitivity and 67% of specificity. 

An enlargement of the foveal avascular zone (F AZ), as reported in medical 

literature, also can biologically occur in diabetic retinopathy (DR) cases due to loss of 

capillaries in the perifoveal capillary network [214-216). FAZ is the fovea devoid of 

capillaries in the macula and can be represented as a dark circle zone without vessels 

at the centre of macula as shown in Figure 5.3 [206]. Even though being various in 

sizes for healthy subjects, F AZ usually has roughly 500 Jlm [217-219] in diameter and 
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about 0.4 mm2 in size [220-223]. The enlargement ofF AZ is not readily observable 

in colour retinal fundus images, but its effects are identifiable in invasive fundus 

fluorescein angiograms for both non-proliferative DR (NPDR) and proliferative DR 

(PDR) cases [224]. Determination of FAZ area on FFA that have been studied tends 

to use either Bayesian statistical methods [225] or thresholding techniques based on 

morphological operators and Sobel edge detector area [226]. However, no studies on 

the measurement ofF AZ from digital colour fundus images have been found so far. 

An early detection ofF AZ enlargement at NPDR stage will enable clinicians to advise 

their patients on better metabolic control to prevent progression ofthe disease to PDR 

stage and loss of vision. Several studies in addition have shown that early treatment 

on DR patients can reduce the risk of severe loss vision by 57% [227-228]. 

Figure 5.3 FFA shows the perifoveal capillary network in F AZ 

A non-invasive computerised DR system, RETINO, is developed to implement a 

DR grading protocol based on FAZ enlargement using colour retinal fundus images 

[229-231]. The system uses an external fundus camera (KOWA Non-Myd 7) that 

allows the capture of non-mydriatic retinal images, which is connected to an image­

processing computer that digitises and analyses the retinal images (Figure 5.4). 
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Figure 5.4 Computerised DR Monitoring and Grading System (RETINO) 

In this DR grading system, the 1936 x 1296 pixel fundus images captured at 45 

degrees are stored in a file format of JPEG (Joint Photographic Experts Group) that is 

chosen for several practical reasons such as storage media capacity, time processing 

and limitation of an external camera in producing ready-processed raw images. An 

external fundus camera is equipped with a digital camera (Nikon D80) capable of 

capturing a raw image in Nikon' s file format, i.e. NEF (Nikon Electronic Format). 

The NEF contains metadata including information about lens, settings, camera's 

identification and image information received from a camera sensor. However, it 

cannot be directly processed and must be converted into ready-processed image 

format such as JPEG and TIFF. Nikon D80 directly converts the raw NEF images 

into ready-processed image in JPEG as Fine (1 :4 jpeg), Normal (1 :8 jpeg), and Basic 

(1: 16 jpeg). Conversion of NEF format to another ready-processed image format 

such as lossless TIFF (Tagged Image File Format) is also possible to avoid actual 

quality loss due to compression level as in JPEG. For this, since Nikon D80 does not 

directly convert it, additional specific software is needed. The size of the TIFF files 

produced is four times greater than that of the original NEF files. For instance, using 

the Nikon D80, the size of NEF file of around 8 megabytes is directly reduced to 

around 2 megabytes in ready-processed JPEG image. Nevertheless, using the 

additional specific software could make the size of the image produced four times 

greater (around 30 megabytes) when converted from NEF to TIFF. Hence, JPEG 

image format is used in this application. 
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To grade DR severity level, two algorithms, i.e. semi-automated and fully 

automated are developed. Initially, the semi-automated algorithm is developed based 

on CLAHE and ICA for image enhancement. For the improvement of the DR grading 

system, a fully automated algorithm is then developed based on RETI CA. In this 

chapter, these two developed algorithms are explained along with their results and 

analyses. 

For effectiveness in DR grading, two clinical studies, i.e. observational and 

interventional clinical studies, have been conducted clinically to test and evaluate the 

performance of the computerised DR monitoring and grading system. An 

observational clinical study is to evaluate the performance of DR grading system by 

using digital analysis of colour retinal fundus images. An interventional clinical study 

meanwhile is to determine the accuracy of the new DR grading protocol by 

comparing FAZ values obtained either from ground truth or from DR system using 

both colour retinal fundus and FF A images. 

5.2 Semi-Automated RETINO DR Grading System 

The algorithm of the semi-automated computerised DR grading system based on F AZ 

analysis as shown in Figure 5.5 performs four main tasks, i.e. image enhancement of 

retinal blood vessels, segmentation of retinal vessels, determination of F AZ and 

analysis ofF AZ for DR grading. 
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Figure 5.5 Flowchart of the semi-automated DR algorithm 

After the fundus camera acquires a colour retinal image, the image is initially 

enhanced using two image enhancement methods - CLAHE and RETICA. The first 

method is used to produce CLAHE-enhanced image that is subsequently used for the 

automated segmentation of retinal vessels and FAZ determination. The CLARE­

enhanced image undergoes segmentation of retinal blood vessels based on Otsu's 

threshold [232] before the F AZ area is determined based on the obtained retinal vessel 

end-points of retinal vessels in the macular region showing its exact area formed by 

joining these retinal vessel end-points. The latter method, i.e. RETICA aims to 

enhance the retinal vessels of the colour fundus image, which in turn will be used to 

assist the user to detect correctly retinal vessel end-points for F AZ determination. 

The RETICA method is applied as a part of the semi-automated DR algorithm 

considering that the CLAHE-based method does not always produce correct retinal 

vessel end-points due to poor image quality (dark or blur images and shadowy image) 

resulting from an improper acquisition process. Based on a direct observation and 

comparison between vessel end-points obtained from CLAHE-enhanced image and 
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RETICA-enhanced image, the user, if necessary, will manually determine the correct 

vessel end-points for a more accurate F AZ determination. Finally, the determined 

FAZ area is analysed using Gaussian Bayes classifier [233] for DR grading. A cross­

validation technique as mentioned in [234-235] is used to evaluate the performance of 

the classifier. Details of the techniques used are discussed in the following sections. 

5.2.1 Enhancement of Retinal Blood Vessels 

The first stage of enhancement of retinal blood vessels m colour fundus image 

involves a process called contrast enhancement of retinal blood vessels that, as its 

name implies, is to enhance the contrast of the retinal blood vessels against the 

background image. This process involves two methods - Contrast Limited Adaptive 

Histogram Equalisation (CLAHE) [88] and RETICA (as discussed in Chapter 4). 

CLAHE, a window or tile based enhancement technique, is applied to increase the 

contrast of retinal blood vessels to the background in both dark and bright regions for 

being more effective in enhancing vessels in varying surroundings evenly. It 

outperforms other global enhancement methods such as contrast stretching and 

normal histogram equalisation in turn [236]. Iznita found that the contrast 

improvement using CLAHE on colour retinal fundus images ranges between 1.7 and 

3 [96]. Our initial experiment on retinal fundus image model developed using 20 test 

images from DRIVE [237] showed that CLAHE has the contrast enhancement factor 

of3.15 [238]. 

CLAHE is primarily used to apply histogram equalisation within small windows 

in an image. Gray level values are then evenly distributed within the window to 

ensure hidden features in it more visible. Window size selection is crucial since it can 

affect the result of enhancement. The optimum size of window itself will be 

dependent on the image and the features. Hence, the optimum window size is 

determined based on the features being enhanced, which in this case are the retinal 

blood vessels. Applying large window size may also lose the enhancement of tiny 

features. Conversely, applying small window size may increase the possibility for 

noise enhancement. 
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An experiment to determine the optimum window size for CLAHE using varied 

and low contrast fundus image model has been conducted (as discussed in Chapter 3). 

Having the highest contrast among the three colour bands (as proven in Chapter 4), 

the green band of the varied contrast fundus model is selected for image enhancement 

using CLAHE. The contrasts of enhanced images obtained by applying CLAHE with 

different window size are measured. The contrast improvement factor ( CIF) is 

measured as the contrast ratio between the CLAHE-enhanced image and its green 

band image. The results are shown in Table 5-2. 

Table 5-2 Contrast and Contrast Improvement Factor (CIF) obtained from applying 
different window size for CLAHE 

Window size for CLARE 
Green 
band 2x2 3x3 4x4 5x5 6x6 7x7 8x8 9x9 !Ox!O 

Contrast 14.26 42.26 41.67 42.81 40.29 39.41 37.72 38.19 36.96 34.88 

CIF I 2.96 2.92 3.00 2.82 2.76 2.64 2.68 2.59 2.44 

From Table 5-2, applying different window size in CLAHE results in a different 

contrast of the enhanced image with the highest contrast of 42.81 and CIF of 3.00 

obtained using 4x4 pixel window. Therefore, the optimal 4x4 window size is used for 

CLAHE enhancement of retinal blood vessels for the semi-automated DR algorithm. 

For vessel detection, the fundus image is initially enhanced using a mean filter 

followed by CLAHE and a bottom-hat morphological transformation to extract retinal 

vasculature (retinal blood vessels). Background noise removal followed by contrast 

stretching is then carried out to reduce the unwanted line features in the background 

due to morphological transformation. 

RETICA (as discussed in Chapter 4), a developed non-mvastve tmage 

enhancement based on Retinex and ICA [145, 154], meanwhile refers to a technique 

to normalise varied image contrast and to enhance low contrast. The contrast 

normalisation based on Retinex is performed by separating the illumination part from 

the reflectance part of the image. The reflectance part is used for the subsequent 

enhancement method using I CA. Enhancement of the low contrast of retinal blood 

vessels in the digital fundus image is performed by determining the retinal pigments 
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makeup consisting of haemoglobin, melanin and macular pigment using I CA. ICA 

images due to the obtained haemoglobin exhibit higher contrast retinal blood vessels. 

The details of the work have been published in [199, 239]. 

5.2.2 Segmentation of Retinal Blood Vessels 

The aim of this second stage is to segment retinal blood vessels in the fundus image 

based on Otsu's threshold [232]. Otsu uses an inter-class variance as a measure of 

separability among classes by utilising the histogram information derived from the 

input image. In order to evaluate the threshold value for segmentation, the inter-class 

variance is used as a discriminant measure of class separability. The threshold value, 

which optimises the inter-class variance, here is chosen then. 

5.2.3 Determination of Foveal Avascular Zone 

The third stage is to detect and to select retinal blood vessel end-points at perifoveal 

capillary network for both determination and calculation of the F AZ area by 

connecting the end-points of retinal blood vessels. At this stage, all nearest points to 

the centre of macula are detected whereby the FAZ area is then formed by connecting 

the detected points encircling the perimeter of macula. 

In practice, a point representing the centre of the macular region is initially chosen 

and a 600x600 pixel square area centred at this point is selected as the region of 

interest. The segmented pixels resulted from the second stage are then grouped into 

objects (object labelling) using 3x3 neighbourhood. The distances between the centre 

point and all of pixels of the labelled objects are then measured. The end-point is 

defined as a pixel nearest to the centre point for a particular labelled object. Eight 

equal radial segments from the centre point are created. In each radial segment, the 

end-points with the minimum distance from the centre, d;, are selected. The end­

points that are less than the mean distance of all selected end-points are then 

connected to form the F AZ area. Figure 5.6 shows a schematic diagram of vessel 

end-points selection for determination ofF AZ based on its area. 
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Figure 5.6 FAZ determination by connecting vessel end-points inside the circle (with 
the radius, which is the mean distance of all end-points from the centre point) from 

eight radial segments 

The area ofthe determined FAZ is computed below. 

i j 

A(S) = :L~l(X;Y;) 
(5-1) 

i:::O j=O 

I(x,y)is 1 if the pixel is within the shape, (x,y) E S, and 0 otherwise. 

Using the CLAHE-enhanced image, the F AZ is determined by selecting centre 

point at the macula followed by automatically connecting the selected vessel end­

points around the macula. The automatic algorithm is based on the nearest distance of 

retinal vessels end-points from the centre point. 

5.2.4 Gaussian Bayes Classifier for Grading of DR 

The distribution ofF AZ area in pixels for each DR severity class is determined and 

modelled with Gaussian (normal) probability density function. Suitability of the data 

distribution with that of Gaussian distribution is qualitatively observed from its 

probability mass function and quantitatively measured using goodness-of-fit. One of 

the methods to measure goodness-of-fit is by using the coefficient of determination R 

squared ( R2
) to indicate the strength of fit between two variables implied by a 
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particular value between 0 and I. For Gaussian distribution, R2 measure of goodness 

of fit is formulated as [240] 

(5-2) 

RSS is residual sum-of-squares, TSS is total sum-of-squares, y, is observed value for 

data i, j) is predicted value and y is mean of observed values. The value of R 2 lies 

from 0 to 1 in which 0 represents the worst and 1 represents the best goodness of fit. 

A Gaussian Bayes classifier is developed to determine DR severity based on the 

measured FAZ area (in pixels) obtained from digital colour retinal fundus images. 

The classifier uses Bayes theorem for pattern classification and assumes that the 

classes have Gaussian distribution [241-244]. According to Bayes theorem, 

probability of continuous data x that belongs to class cv, is determined as 

(5-3) 

(5-4) 

To simplifY the above equation, the logarithm of the equation is taken. 

logP(cv, I x) = iogp(xl cvJ + logP(cvJ (5-5) 

(5-6) 

Note that LP(cv, I x) is the log posterior probability, LL(x I cvJ is the log likelihood 

and LP(cvJ is the log prior probability. The log posterior probability ratio (LPPR) is 

then defined as 
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P(w I x) 
log a = LP(wa I x)- LP(w, I x) 

P(w, I x) 

log P(wa I x) = (LL(x I wa)- LL(x I w,)) + (LP(wa)- LP(w,)) 
P(w, I x) 

(5-7) 

(5-8) 

For one-dimensional case, the Gaussian probability density function has a form of 

p(x)= I exj_(x-~YJ 
..fiia- ~ 2a-

(5-9) 

If the probability density function is assumed as Gaussian, the log likelihood will 

become 

(5-10) 

(x-JJ)2) 
(j2 

(5-11) 

Therefore, the log posterior probability will be 

(5-12) 

In the case of Gaussian Bayes classifier, if class wa and class wh are modelled by 

Gaussian distribution with mean 1-Ja and f.Jh and variances a a 2 and a/ , the log 

posterior probabilities ratio (LPPR) can be written as 

(5-13) 
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If the ratio is greater than 0, data x will belong to class OJ a • Otherwise, data x 

belongs to class aJh [241]. 

In grading of DR severity, the FAZ area (in pixels) is measured for several 

identified DR related fundus images to obtain F AZ area ranges corresponding to the 

severity of DR. The overlapping ranges of F AZ area show a progression of the 

disease from a DR stage to the next. The categories of the ranges used in this work 

are as follows:-

( a) Range I -No DR stage 

(b) Range 2- Progression range from no DR to mild NPDR 

(c) Range 3- Mild NPDR 

(d) Range 4- Prog1ression range from mild NPDR to moderate NPDR 

(e) Range 5 -Moderate NPDR 

(f) Range 6- Progression range from moderate NPDR to severe NPDR/ PDR 

(g) Range 7- Severe NPDR/ PDR 

5.2.5 V-Fold Cross Validation for Performance Evaluation 

Used to evaluate the perforrnance of the classifier, a V-Fold Cross Validation (VFCV) 

[235, 245-246], due to the quite small number of samples (number of samples for 

moderate NPDR is only 32), is chosen. The VFCV algorithm randomly divides data 

set D into V disjoint subsets Tv. v= 1, 2, 3 ... V with approximately equal size 

iteratively perfotms the cross-validation V times. V-1 of the subsets is used as a 

learning set and the rest is used as a test set. An av,erage of the results is used to 

measure the performance of the developed system. The VFCV is also 

computationally feasible since V can be chosen (generally between 5 and 1 0). Vis set 

to 5 (i.e. each subset consiists of 20% of total number of data) since the smallest 

sample size of the DR severity level is 32 (i.e. moderate NPDR) in order to maintain 

sufficient training sample size. 
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5.3 Fully Automated RETINO DR Grading Algorithm 

The fully automated DR algorithm is developed as a subsequent improvement from 

the semi-automated DR algorithm. In this fully automated DR algorithm, RETICA is 

applied for the image enhancement followed by the automated segmentation of retinal 

vessels and the analysis ofF AZ for DR grading. Having the same image acquisition 

process with the semi-automated one, the fully automated DR algorithm offers a 

greater advantage than does the semi -automated one. The user through the fully 

automated DR algorithm simply selects the centre point of the macular region prior to 

running the algorithm. On the other hand, the user through the semi-automated DR 

algorithm needs to give inputs several times for the algorithm (Figure 5.5). Moreover, 

once the semi-automated DR algorithm does not produce the correct vessel end-points 

as produced by the CLAHE, the user needs to adjust these vessel end-points based on 

the direct observation on the RETICA-enhanced fundus image. 

In addition to the fully automated process ofF AZ determination and analysis, the 

main difference between semi-automated and fully automated DR algorithms is the 

indicator used to determine the FAZ. In the semi-automated DR algorithm, FAZ is 

indicated by the area of the obtained F AZ, whilst in the fully automated case, F AZ is 

indicated by the radius of the determined F AZ that both are measured in pixels. The 

radius functions to reduce the error between the F AZ obtained and the actual F AZ as 

a result as of performing square factor on the radius of the F AZ with an assumption 

that its area is a circle and is defined as half of the longest line connecting two 

detected points encircling the perimeter of macula. A flowchart of the algorithm of 

the fully automated DR algorithm based on FAZ analysis is depicted in Figure 5.7. 
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Figure 5.7 Flowchart of the fully automated DR algorithm 

The process starts by inputting the colour retinal fundus-image into the system 

either by direct acquisition of the image using fundus camera or by manually selecting 

the retinal fundus image that is going to be processed. In this application, the 

resolution of the retinal fundus image is 1936x 1296 pixels. A user then selects a 

point representing the centr'~ of the macular region and a 518x518 pixel square area 

centred at this point is subsequently cropped. Unlike the semi-automated DR 

algorithm that uses a fixed cropped image of 600 x 600 pixels; the fully automated 

one uses a ratio of resolution of the input image to determine the resolution of the 

cropped image, thus enabling it to be applied for any inputted image resolution. The 

process continues with the enhancement of retinal vessels as shown in Figure 5. 7. 
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5.3.1 Enhancement of Retinal Blood Vessels 

In the fully automated DR algorithm, the enhancement of retinal vessels is performed 

using RETICA. In general, the inputs of RETICA are the three colour channels and 

its outputs are the haemoglobin-related component image that has high contrast of 

retinal blood vessels. 

5.3.2 Segmentation of Retinal Blood Vessels 

The second process aims to segment automatically retinal blood vessels in the retinal 

fundus image. Several methods have been developed for vessel extraction. With the 

intentions on automated segmentation of retinal blood vessels in the retinal fundus 

image, the approaches can be categorised into three, i.e. matched-filter [44-45, 247-

248], mathematical morphology [249] and region-growing [250]. Matched-filter 

technique aims to extract objects of interest, e.g. retinal blood vessels, by convolving 

the image with multiple matched-filters. Since retinal blood vessels are with different 

orientation and size, it is important to design several filters to match the profile of 

these retinal blood vessels. Chaudhuri et al. [ 45] noted that the gray-level intensity 

profiles of the cross-sections of the retinal blood vessels can be approximated by a 

Gaussian. For this, they proposed a Gaussian function as a model for retinal blood 

vessel profile by applying a set of 2-D segment profiles that consists of 12 different 

kernels. These kernels are designed by rotating the initial matched-filter at an angular 

resolution of !5°. The green band of the colour retinal fundus image is convolved 

with these 12 kernels. The corresponding responses are subsequently compared and 

the maximum response is retained for each pixel. This technique is able to achieve 

accuracy of 0.8773 in detecting retinal blood vessels from DRIVE [237] as has been 

reported in [251]. In practice, matched-filter is simple and good in detecting large 

retinal blood vessels, but it has a disadvantage in detecting retinal capillaries since the 

tiny vessels can be missed in detection. 

Mathematical morphology approaches segment the objects of interest by filling 

holes and eliminating undesirable patterns. Structuring elements are applied to 

perform morphological operations such as dilation, erosion, closing and opening. A 
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method developed by Zana and Klein used the mathematical morphology followed by 

curvature estimation to segment retinal vasculature [252]. This method achieved an 

accuracy of 0.9377 indicating a better performance in detecting retinal blood vessels 

than that of Chaudhuri et al. [ 45] with accuracy of 0.8773 as has been reported in 

[251]. However, like the matched-filter by Chaudhuri et al. [45], the mathematical 

morphology approach by Zana and Klein [252] also fails to detect retinal capillaries. 

The third approach, i.e. region growing offers advantages such as it is able to 

generate smooth parametric cwves or surfaces and it is robust to noise. From some 

initial seed-points, surrounding pixels are incrementally recruited to define a region 

based on some criteria, e.g. spatial proximity and similarity of intensity values. In 

region growing, pixels close to each other are assumed to have similar intensity values 

and belong to the same object. Higgins et al. [250] applie;d an iterative seeded region 

growing to segment out the arterial tree from a 3-D angiogram. For each of iteration, 

a set of voxels adjacent to the confirmed seed regions is examined by comparing their 

intensity values to some predetermined values to classify whether these voxels - the 

candidate seeds - are to be included into the confirrned seed region. However, a 

major disadvantage of region growing approach is that it generally needs initial seed­

points provided by the user for the starting points of the segmentation process. User 

interaction therefore is required and becomes a problem for such automated process. 

Hence, an automated process for generating initial seed-points is required. Moreover, 

due to variations in image intensities, region growing may result in holes and over 

segmentation. Nevertheless, this problem can b1: overcome by minimising varied 

image intensities. 

Our approach for segmentation of retinal blood vessels is based on the automated 

region growing that combines a series of digital filters used to detect retinal blood 

vessels and region growing used to segment the retinal blood vessels. First, a 

matched-filter technique by Chaudhuri et al. [ 45] is adapted to detect the retinal blood 

vessels by convolving a set of 12 ke:mels that have the 35x35 pixels with the retinal 

fundus image due to its simplicity; yet, it still produc,es high accuracy in detecting 

retinal· blood vessels. The method of Chaudhuri et al. [45] has been implemented on 

the green band of retinal fundus image and achieved accuracy of 0.8773 in detecting 
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retinal blood vessels. Compared with our method, the matched filters are 

implemented on the RETICA-enhanced image, which has contrast 5.389 times better 

than that of the green band image according to our results described in Chapter 4. 

Hence, it leads to significantly better accuracy of retinal blood vessel detection. A 

sample of l kernel out of 12 kernels is shown in Appendix G. 

The kernel (Appendix G) is used to cover retinal blood vessels on vertical 

orientation. In this work, the kernel is designed to have an angular resolution of !5° 

to make the total number of kernels needed to be 12 for covering all possible 

orientations of retinal blood vessels as suggested by Chaudhuri et al. [45]. The 

angular resolution can be made smaller; yet it would result in more processing time 

needed and possibly increase the noise. These 12 kernels are convolved with the 

RETICA-enhanced image to obtain matched-filter responses. The corresponding 

responses are compared and the maximum response for each pixel is retained. Output 

of this matched-filter technique is then processed with Higgins et al. filter [250] in 

which the detected retinal blood vessels, characterised by bright and connected 

regions, are extracted and these bright regions are isolated to form the initial seed­

points for the region growing. The region growing, as previously explained, needs 

initial seed-points to start the process. Considering the automated process, 

determination of initial seed-points must also be automatically done. Hence, the first 

step of the segmentation of retinal blood vessels in the fully automated DR algorithm 

is important to provide automatically initial seed-points for the region growing. 

Next step is to apply region growing to segment the retinal blood vessels. Region 

growing is chosen for being capable of maintaining connectivity among pixels that are 

close together and have similar intensity values. These connected pixels are related to 

the same objects, thus being suitable with the characteristics of the retinal blood 

vessels. In the region growing method, two homogeneity parameters, i.e. similarity of 

intensity values and spatial proximity are set up to determine whether a pixel should 

be included in the regions. For the first parameter, a similarity threshold value (Ll. R) is 

needed to determine whether a candidate seed (x,y) should be included in the 

confirmed seed region(rJ based on its intensity value. In this case, Ll.R is defined as 
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the minimum intensity value of all selected seed-points obtained from applying a 

series of digital filters. The determined region because of region growing must have 

greater intensity values than the AR in the segmented image. The second parameter, 

i.e. spatial proximity, is determined by examining a set of 8 neighbouring pixels to the 

confirmed seed pixel sa (x, y) <md checking whether these neighbouring pixels should 

be included in the confirmed seed region (ra). Using the two aforementioned 

parameters, a candidate seed c(x,y) having greyscale intensity value i,(x,y) is added 

into ra if i, (x, y) is greater than A R and its location is within 8 neighbouring pixels 

centred onsa(x,y). The added pixels ca(x,y) will be the next confirmed seed 

sa(x,y) and the process continues until no further pixels are added to ra. Region 

growing creates a segmented retinal vessel image that is subsequently used to detect 

retinal blood vessels end-points at perifoveal capillary. 

5.3.3 Determination and Analysis of Foveal Avascular Zone 

Similar to that of the semi-automated DR algorithm, determination of FAZ is by 

detecting all the nearest points to the centre of mawla and the F AZ area is formed by 

connecting these detected points encircling the perimeter of macula. However, in 

determining the FAZ, two differences between the semi-automated and the fully 

automated ones exist. The first one deals with the method used in determining the 

retinal vessel end-points to form the F AZ and the second one is about the use of FAZ 

radius instead of the area as a parameter to measure the F AZ. Radius of F AZ is 

defined as half of the longest line, i.e. F AZ diameter, c.onnecting two detected points 

encircling the perimeter of macula. 

The segmented pixels resulted from the previous stage are grouped into objects 

(object labelling) using 3x3 neighbourhood. Then, the: distances between the centre 

point and all of pixels in the labelled objects are measured. The end-point is defined 

as the pixel with the shortest distance to the centre point of a particular labelled 

object. However, unlike the semi-automated system that uses eight equal radial 

segments from the centre point, the fully automated one, determined based on an 
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experiment, uses 60 equal radial segments to determine retinal vessel end-points. The 

experiment purposively to find an acceptable and optimum number of radial segments 

is conducted by measuring 2 kinds of correlation. The first correlation is between 

radius and the FAZ area obtained by applying a specific number of radial segments 

and second correlation is between F AZ radii obtained by applying a specific number 

of segments and that of manually obtained to be used as the reference. Since the fully 

automated system has to select the retinal vessel end-points to determine the F AZ area 

prior to determining the FAZ radius, it is important to find an acceptable number of 

radial segments which correlation between the radius and the area of the F AZ is 

sufficiently high. The sufficiently high correlation indicates that the radius can be 

used as a parameter to indicate the F AZ besides the F AZ area. Whilst for the second 

correlation, the highest correlation factor obtained indicates the optimum number of 

radial segments. From eight samples of number of radial segments, the acceptable 

and optimum number of radial segments for the fully automated DR algorithm 

indicated by coefficient correlation is shown in Table 5-3. 

Table 5-3 Correlation coefficients (CC) measured (1) between radius and area of 
FAZ obtained by applying a specific number of radial segments and (2) between F AZ 

radius obtained by applying a specific number of radial segments and FAZ radius 
obtained manually (reference) 

Number of equal radial segments 
8 12 16 20 30 60 90 120 

cc 1 0.19 0.73 0.86 0.73 0.79 0.85 0.72 0.91 

Significance 1 0.590 O.oi8 0.001 0.018 0.006 0.002 0.019 0.0002 

CC2 0.15 0.27 0.21 -0.06 0.53 0.56 0.34 0.47 

Significance 2 0.671 0.446 0.560 0.867 0.107 0.097 0.335 0.167 

As shown in Table 5-3, different correlations are obtained with varying number of 

radial segments. For the first correlation coefficient (CC 1), it can be seen that 120 

radial segments have the strongest correlation coefficient of 0.91 at significant level 

of 0.002 followed by 16 radial segments with correlation coefficient of 0.86 at 

significant level of 0.001 and 60 radial segments with correlation coefficient of 0.85 

at significant level of 0.002 in the third. Of eight numbers of radial segments shown 
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in Table 5-3, only three (16, 60 and 120) have correlation coefficient greater than 0.80 

while the rest are less than 0.80. 

Different correlation coefficients and significance obtained by applying different 

number of radial segments was expected as it will result in a different F AZ. A higher 

correlation coefficient along with a lower significance indicates that the F AZ obtained 

by applying a specific number of radial segments is more accurate. At first, it was 

predicted that the more the number of radial segments is, the more accurate the 

determined F AZ will be for more retinal vessel end-points selected to form the FAZ. 

The more accurate the F AZ is, the more consistent the F AZ to be characterised in the 

form of its radius and ar·ea resulting in higher correlation coefficient and lower 

significance obtained will be. However, since the FAZ is formed based on retinal 

vessel end-points, applying more numbers of radial segments at certain value may 

result in a false selection of retinal vessel end-points leading to inaccuracy of F AZ 

determination. It is clearly shown in Table 5-3 that by increasing the number of radial 

segments at some points enables the correlation coefficient to increase, but at certain 

values the correlation coefficient goes down even after the number of radial segments 

is increased. It occurs due to the false selection of retinal vessel end-points used to 

determine the FAZ. According to results shown in Table 5-3, the three numbers of 

radial segments, i.e. 16, 60 and 120, by considering their correlation coefficient 

greater than 0.80 with significant level obtained less than 0.0 I, are to be used in the 

application. However, the optimum number of radial segments must also be 

determined. 

Based on the second correlation coefficient (CC 2) as shown in Table 5-3, the 

strongest correlation coefficient belongs to the 60 radial segments, which, 

furthermore, also have the lowest significant level of 0.097 among other numbers of 

radial segments. In essence, the 60 radial segments have the most linear dependence 

to the reference. For the refmence, the correlation coefficient between radius and area 

of the FAZ is found to be 0.99 at significant i<:vel of 0.00000146. The second 

correlation coefficient and significance are necessary to find the optimum number of 

radial segments from the tln·ee acceptable numbers of radial segments obtained from 

CC 1. The optimum number of radial segments is selected if it has the highest 
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correlation coefficient (CC2) along with the lowest significance (Significance 2). As 

expected, the highest CCI does not always produce the highest CC2. It is because in 

the case of CC2 the F AZ is specifically characterised by its radius. Whilst in the case 

of CCI, the FAZ is characterised by both radius and area. It is important to compare 

the radius of F AZ obtained by the system with that of manually obtained by the 

reference to know which number of equal radial segments needs to be selected -

considering the manually obtained one is the most accurate one in determining the 

FAZ from its radius. Whereas the CCI indicates the consistence of the DR system in 

obtaining the F AZ using both the radius and area, the CC2 indicates a relationship 

between the DR system and the reference in obtaining the F AZ based on its radius. 

Showing the consistence of the system (CCI) here also indirectly indicates the 

system's precision, whilst the relationship of the system (CC2) is indirectly indicates 

the system's accuracy. In other words, the higher the CCI is, the more precise the 

system will be; and the higher the CC2 is, the more accurate the system is will be. 

Hence, the number of radial segment, i.e. 60 that has the highest correlation 

coefficient with the reference is used to select the retinal vessel end-points followed 

by the determination ofF AZ indicated by its obtained radius. 

Additionally, unlike the semi-automated DR algorithm, which only determines the 

F AZ area, the fully automated DR algorithm can determine both area and radius of 

the FAZ. The FAZ area is computed using (5-I) and the radius ofFAZ is defined as 

half of the longest line connecting two detected points encircling the perimeter of 

macula. Nevertheless, at present, only the FAZ radius is analysed to grade DR 

severity levels for clinical practice. 

In the last process, DR severity is determined based on the radius of F AZ (in 

pixels) using Gaussian Bayes classifier [233] similar to that of the semi-automated 

DR algorithm (as described in Section 5.2.4). The DR severity levels in the semi­

automated DR algorithm are indicated by the range ofF AZ area, whilst in the fully 

automated DR algorithm, they are indicated by the range ofF AZ radii. 

Results of determination ofF AZ area and FAZ radius using both semi-automated 

and fully automated DR algorithms are analysed using statistical correlation analysis. 
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The correlation analysis shows tlle strength of linear relationship between two 

variables - the FAZ parameters (area and radius) obtained by the DR algorithms and 

the corresponding DR severity level graded by the ophthalmologists. The objective of 

the analysis is to prove if the FAZ measured from c:olour fundus images using the 

developed DR algorithms can be used to grade DR severity. If the correlation 

between the F AZ parameters and DR grades is high, FAZ determined from the colour 

retinal fundus image using the developed DR system inevitably can be effectively 

used to grade DR severity. 

Furthermore, performance of the DR algorithms in grading of DR severity levels 

is evaluated based on agre<ement test [253] and performance test. In the agreement 

test, the DR severity graded by the fully automated DR algorithm is compared to that 

of the ophthalmologists used as a reference. Ideally, a new developed method should 

produce an identical result as the reference, yet, it might not be fulfilled. An 

agreement test will describe to what extent the new developed method is likely to 

differ from the reference. If the difference is sufficiently small such that it will not 

cause undesired problems in clinical practice, the developed DR system can be 

implemented to assist the ophthalmologists in monitoring and grading of DR. 

The performance test on the other side is measured in terms of sensitivity, 

specificity and accuracy [254]. In medical application, sensitivity measures the 

ability of a system in detecting a patient actually suffering from a specific stage of 

disease. Moreover, speciJlcity ob~ectively measures the ability of a system in 

detecting a patient actually not suffering from a specific stage of disease. Accuracy 

furthermore combines sensitivity and speciJlcity without speciJlcally informing which 

of these two has a higher value. Therefore, both sensitivity and specificity are very 

important to describe the ability of system to detect separately a class as a class and a 

non-class as a non-class. In medical practice, an erroneous diagnosis is very 

dangerous and may lead to patient's death. Thus, it is not only accuracy to be 

important to measure, but also sensitivity and specificity of the developed system to 

be required for indicating the: ability of such a medical system. Sensitivity is given by 
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Sensitivity 
TP (5-14) 

TP+FN 

True positive (TP) is when the system correctly classifies the particular desired DR 

stage, while false negative (FN) is when the system incorrectly classifies the 

particular desired DR stage. Specificity is formulated as 

S ifi
. TN 

'/)eCl zczty = --­
TN+FP 

(5-15) 

True negative (TN) is when the system correctly classifies the particular undesired 

DR stage while false positive (FP) is when the system incorrectly classifies the 

particular undesired DR stage. Accuracy is defmed as 

TP+TN Accuracy= __ c:.:... ___ _ 
TP +TN+ FP + FN 

(5-16) 

The values of sensitivity, specificity and accuracy lie from 0 to 1 representing the 

worst and the best performance of the system respectively. 

5.4 Accuracy Analysis on Determination ofFAZ 

At present, ophthahnologists use FF A images to determine the F AZ due to high 

contrast of retinal blood vessels obtained from FFA images. With implementation of 

RETICA on the colour retinal fundus image that can produce contrast of retinal blood 

vessels at par to that of the FF A image, the F AZ can be determined from the colour 

retinal fundus image by detecting and connecting retinal end-points in the macular 

region. The objective of the accuracy analysis is to measure the accuracy of the DR 

system in determining the F AZ from the colour retinal fundus image. It is performed 

by comparing F AZ parameters obtained from ground truth and that of DR system. 

Two accuracy analyses are conducted. 

The frrst analysis is performed by comparing F AZ parameters (area and radius) 

obtained from ground truth using FF A and those obtained by the DR system, which 

digitally analyses colour fundus image. Unlike the ground truth detecting the retinal 
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vessel end-points from the FF A image, the DR system obtains the retinal vessel end­

points from colour fundm: image. The DR system determines the area and radius of 

the F AZ from a colour reltinal fundus image and compares the F AZ radius to that of 

the ground truth obtained by manual F AZ determination using the FF A image. A 

schematic diagram depic:ted in Figure 5.8 shows the difference of the F AZ 

determination between th(! ground truth and the DR system. Since the contrast of 

retinal blood vessels is higher in the FF A image than the one in the colour fundus 

image, more retinal capillaries could be detected in the FF A image. Hence, the F AZ 

obtained from the ground truth tends to be smaller than that of the DR system as 

shown in Figure 5.8. 

- Retinal vessels 
- Retinal capillaries 

- FAZ (FFA ground truth) 
c·:_: FAZ (colour fundus DR system) 

Figure 5.8 A schematic diagram ofF AZ obtained by the ground truth and the DR 
system 

Defmed as an area that encircles the macular area devoid of retinal capillary 

networks, the F AZ assurnedly refers to a circle in this analysis. In the case of DR 

system, the F AZ area is digitally analysed from normal colour fundus images using 

the automatically selected retinal blood vessel end-points. For ground truth 

measurements, the actual FAZ area is visually determined from FFA images by 

connecting the correct end-points of retinal vessels in the macular region. All 

unbiased retinal blood vessel end-points encircling the macula are determined by two 

trained research personnel. Like the DR system, a MATLAB® program then 

automatically selects two end-points that, when connected, give the longest diameter 

(and radius) for the F AZ. Microsoft Excel® and SPSS® software are used to analyse 

the F AZ obtained by the DR system against the ground truth. A flowchart showing 

accuracy analysis on determination ofF AZ by comparing the F AZ radius obtained by 
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the ground truth and that ofthe DR system is depicted in Figure 5.9. 

-------------------------------~ 
Colour fundus image 

DR system 

Selection/ 
adjustment of 

vessel end-points 

I 
I 
I 

L-------------------------------1 

Ground truth 

Accuracy analysis by 
comparing PAZ radius 
from the colour fundus 

image to that of the FFA 

Accuracy of DR system 
in determining the FAZ 

Figure 5.9 A flowchart of accuracy analysis on determination ofF AZ 

Illustrated in Figure 5.9, the DR system digitally processes and analyses the 

colour fundus image to determine the FAZ diameter (and radius). The DR system 

used for the accuracy analysis is the semi-automated one with modification on the 

fmal output. Instead of the use of area as the parameter of the F AZ, the DR system 

for accuracy analysis determines the F AZ diameter and radius. Even though both area 

and diameter of F AZ can be used to grade DR severity level as proven in several 

studies [214-215, 223, 255], ophthalmologists in daily practice generally use the FAZ 

diameter rather than F AZ area measured from FF A images to indicate DR severity 

level for simplicity in direct observation. This fact has been confirmed with 

consultant ophthalmologists at Selayang Hospital, Malaysia as our collaborators in 

this research study. Hence, the F AZ diameter and radius are used for accuracy 

analysis of DR system on F AZ determination. As previously explained (in Section 

5.2) the semi-automated DR algorithm has four main steps to process the inputted 
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colour retinal fundus image. However, for accuracy analysis, it only uses three steps, 

i.e. enhancement of retinal blood vessels (as described in Section 5.2.1), segmentation 

of retinal blood vessels (as described in Section 5.2.2.), and determination ofFAZ (as 

described in Section 5.2.3). The output of the third step is the retinal vessel end­

points. A MATLAB® program then automatically chooses two of selected end-points 

that, when com1ected, give the longest diameter (and radius) for the F AZ. Table 5-4 

illustrates a comparison of th(: F AZ radius determination between the ground truth 

and the DR system. 

Table 5-4 FAZ determination (radius) based on ground truth and DR system 
measurements 

Finally, to obtain the DR system error(Ear-DR)the radius of the determined FAZ 

by the DR system (RFAZ DR) is compared to the ground truth(RFAZ0r). 

EGT-DR = RFAZGT- RFAZ DR (5-17) 

The second analysis is aimed only for the fully automated DR algoritlun to 

determine the accuracy and precision of the algoritlun in determining the F AZ radius 

compared to that of in determining the F AZ area. However, unlike the first analysis 

using F AZ obtained from FF A images as ground truth, the second analysis uses the 

average of FAZ radii measured from several observations on one image as ground 

truth. It is related to the characteristics ofthe fully automated DR algoritlun in which 

the user has to determine only one point, i.e. the centre of macular region at the 

beginning of the process. Moreover, a user unlikely will select an identical point at 

the next use of the algoritlun. Therefore, it is important to determine the accuracy and 

precision of the fully automated DR algoritlun in determination ofF AZ radius. The 

F AZ radius obtained for a pmticular colour retinal fundus image in an observation is 
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compared to its reference (ground truth) and error between them is analysed. Due to 

the use of F AZ radius in the fully automated DR algorithm, it also comes to be 

important in the second analysis to show whether F AZ radius is more reliable to use 

than F AZ area as F AZ parameter. 

5.5 Study Protocol 

Two clinical studies, i.e. interventional and observational clinical studies, have been 

conducted to clinically test and evaluate the performance of the computerised DR 

monitoring and grading system. In these studies, inclusion and exclusion criteria for 

the patient were set. The inclusion criteria are as follows: 

1. The participant ranges from 21 to 60 years old. 

2. The participant has clear ocular media 

The exclusion criteria are as follows: 

1. The participant is less than 21 years old and not more than 60 years old. 

2. The participant has media opacity. 

3. The participant has allergy to any dye, seafood and asthma 

4. The participant has any medical illness. 

5. The participant has maculopathy. 

The interventional clinical study MOH/CRC/CTA004/100209-rvdl30309 

(Appendix A) was approved by the Ministry of Health Ethics Committee and 

conducted at Selayang Hospital, Malaysia from August 2009 to April 2010. Figure 

5.10 shows the interventional clinical study that was designed based on several 

activities. 
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F AZ radii determination by 
computerised DR system 

Saving :fundus images 
into database 

~--------·----------

F AZradii determination by 
ophthalmologist 

Saving fundus images 
into database 

L------------------

Figure 5.10 Flowchart of the interventional dinical study protocol 

All participants initially are given information sheet and required to sign the 

consent form. Their retinal images in the second step are captured using KOWA VX-

1 0 mydriatic and non-mydriatic camera attached to an image-processing computer for 

both colour fundus image and FFA image acquisition .. The FAZ of the participant is 

afterward measured using the DR system from colour fundus images. FF A images are 

acquired by ophthalmologists of Selayang Hospital using FA standard procedure, i.e. 

patients are injected with a contrasting agent to obtain well-contrasted retinal blood 

vessels. The acquired colour fundus images and FF A images are at last saved into a 

database. 

Meanwhile, the observational clinical study NMRR-08-842-1997 (Appendix B) 

was approved by the Clinkal Research Centre, Ministry of Health and conducted at 

Selayang Hospital, Malaysia from August 2008 to March 2009. The study protocol 

that also followed the tenets of Declaration of Helsinki was designed based on the 

following activities shown in Figure 5.11. 
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Sign the informed 
consent form 

Acquire patient colour 
fundus images 

No 
Apply eye drops 

Grading DR severity by ~----' 
clinician/ paramedic 

Save fundus images 
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Database 

No Grading DR severity 
by ophthalmologist 

Figure 5.11 Flowchart of the observational clinical study protocol 

Firstly, the informed consent forms were obtained from all the participating 

patients and then the retinal fundus images of the patients were taken using non­

mydriatic fundus camera Kowa non-myd 7 attached with Nikon D80. Performed by 

trained personnel, the optical angle was set to capture 45° colour retinal fundus image 

with internal fixation target on the central showing the centre on the macula. Patients 

with small pupil preventing a clear and good colour retinal fundus image to be 

captured have their pupil dilated using one drop of I% of gutt tropicamide. Thirdly, 

the state of DR was graded using the International Clinical Diabetic Retinopathy 

Disease Severity Scale by two clinicians, who, when in doubt, could consult two 

senior ophthalmologists at Selayang Hospital. Finally, the graded retinal fundus 
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images were then stored into a database. These retinal fundus images were then 

analysed by the computerised DR system. The grading ranges of the computerised 

DR monitoring and grading system were calibrated for optimum accuracy needed for 

medical practice. 

5.6 Results and Analysis 

5.6.1 Analysis of FAZ 

A digital colour retinal flmdus nnage undergoes both semi-automated and fully 

automated DR algorithms according to the flowchar:s illustrated in Figure 5.5 and 

Figure 5.7, respectively. Results of the developed semi-automated DR algorithm 

performance on an example of colour fundus image are shown in Figure 5.12. 
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(c) (d) 

Figure 5.12 Fundus image analysis ofF AZ using semi-automated DR algorithm, (a) 
Digital retinal fundus image showing macular region, (b) Extracted retinal vessels 

with end points in macular region using CLARE-based method, (c) Vessel end points 
in macular region are overlaid with the RETICA-enhanced image, (d) More accurate 

estimation of vessel end points shown by F AZ area 

Figure 5.12 illustrates the result of segmenting the macular regions of a digital 

retinal fundus image (Figure 5.12(a)) using the CLARE-based method (Figure 

5.12(b)). Since the automated segmentation on CLARE-based image does not always 

give accurate vessel end-points and pathologies close to macula, the selected end­

points are then overlaid on the RETICA-based image to be manually processed to 

obtain a more accurate estimation and better visualization of retinal vessel end-points 

in the perifoveal area (Figure 5.12(c)). It is then followed by connecting the obtained 

retinal vessel end-points to each other for F AZ determination and analysis (Figure 

5.12(d)). In other word, the determination of FAZ in the semi-automated DR 

algorithm could be considered as a combination of automated process using CLARE­

enhanced image and manual process using RETICA-enhanced image. 

In the fully automated DR algorithm, the determination ofFAZ is improved from 

combination of automated and manual process to fully automated process. RETICA 

175 



is incorporated into the fully automated DR algorithm for image enhancement 

followed by automated segmentation of retinal blood vessels and F AZ determination. 

Results of performing the fully automated DR algorithm on a colour retinal fundus 

image are shown in Figure 5.13. 

(c) (d) 

Figure 5.13 Fundus image analysis ofFAZ using fully automated DR algorithm, (a) 
Digital retinal fundus image showing macular region, (b) RETICA-enhanced image 

on macular region overlaid with the colour fundus image, (c) Segmented retinal 
vessels and detected vesse:l end-points on macular region, (d) The determined F AZ 

area and radius 

An example of colour retinal fundus image (Figure 5.13(a)) is cropped at the 

macular region. The cropped area undergoes RETICA for image enhancement and 

the enhanced image is overlaid on the colour fundus image (Figure 5.13(b)). This 

RETICA-enhanced image is subsequently processed by automated segmentation in 

which the segmented retinal blood vessels obtained (Figure 5.13(c)) are then analysed 

to obtain retinal vessel end-points. The F AZ area and radius are determined based on 

the selected retinal vessel end-points as depicted in Figure 5.13(d). 

Comparing the results obtained from the two developed DR algorithms, it is found 

that the F AZ area obtained in the semi-automated DR case is smaller than that of 

obtained by the fully automated case. Predictably, this is because retinal capillary 

end-points that are more clearly seen through direct observation in the RETICA-
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enhanced image can be adjusted during manual process in the semi-automated DR 

algorithm. Even though using the same image (RETICA-enhanced image), the 

automated retinal blood vessels segmentation of the fully automated DR algorithm 

cannot produce the identical retinal vessel end-points as that of manually adjusted 

using the semi-automated one. It makes the F AZ area obtained by the fully 

automated DR algorithm greater than that of obtained by the semi-automated one. 

Therefore, F AZ radius, which is defined as half of the longest line connecting two 

detected points encircling the perimeter of macula, is used as F AZ parameter instead 

of the area. The use ofFAZ radius is predicted to be more consistent in characterising 

the F AZ and this will be discussed in details in the next section of accuracy analysis. 

5.6.2 Statistics of Diabetic Patients 

Two clinical studies - interventional and observational - have been conducted. In the 

interventional clinical study MOH/CRC/CTA004/100209-rvd130309, 21 patients 

were involved. The patient distribution based on DR severity and the corresponding 

number of usable fundus and FFA images is tabulated in Table 5-5. 

Table 5-5 Colour fundus image and FFA image distribution 

DR Grades Patients involved in the study Colour fundus ima2e FFA ima2es 
No DR 6 10 10 

Mild 4 6 6 
Moderate 3 6 6 
Severe 4 7 7 
PDR 4 7 7 
Total 21 36 36 

In the observational clinical study NMRR--08-842-1997, a total of 256 patients 

were involved. The FAZ area is analysed for 315 fundus images (175 no DR, 52 mild 

NPDR, 32 moderate NPDR, 18 severe NPDR and 38 PDR) and the statistics of the 

FAZ areas according to DR severity is shown in Table 5-6. Having an equal clinical 

treatment, severe NPDR and PDR cases, as suggested by the ophthalmologists, are 

grouped into one in the analysis. The collected 315 fundus images are saved into a 

database called Fundus Image for Non-invasive Diabetic Retinopathy System 

(FINDeRS) [ 179]. 
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Table 5-6 Statistics ofF AZ areas for semi-automated DR algorithm 

FAZareas 
No DR Mild Moderate Severe/PDR 

Sample size 175 52 32 56 
Mean (pixels) 13644.20 21041.17 27198.31 33933 
Std. dev (pixels) 2727.29 3709.95 3180.89 6787.10 
Median (pixels) 13817.00 20177.50 27271.00 32211.50 
Min (pixels) 6124 14002 21132 27051 
Max (pixels) 18667 28202 33358 66558 

As seen in Table 5-6, statistically speaking, the sample size is sufficient in each of 

DR stages to consider the distribution of the FAZ area as a normal distribution that 

will be analysed in the following section. The mean and median of the F AZ area 

increase as the DR stage progresses to a more severe level. Standard deviation that 

indicates most of the distribution ofF AZ area around its mean for a particular stage 

varies among DR stages. Moreover, based on the standard deviation, the distribution 

of FAZ area in each DR stage is generally separated leading to possibility of 

classification of DR stages. However, based on the maximum and minimum values 

of FAZ areas of each DR stage, the ranges of FAZ area for the DR stages are 

overlapping. Hence, to handle this, an effective ;md reliable DR severity 

classification technique has to be developed and implemented as a part of the semi­

automated DR algorithm ba:;ed on the obtained F AZ areas. 

Less than the image number used in the analysis of the semi-automated DR 

algorithm, the fully automated one selects a total of 133 colour retinal fundus images 

consisting of 85 images of no DR, 25 images of mild NPDR, 13 images of moderate 

NPDR and 10 images of severe NPDR and PDR. This is because not all images from 

FINDeRS can be used by the fully automated DR algorithm for improper acquisition 

process (dark or blur image:s and shadowy image) and pathologies near the macula 

(exudates, haemorrhages, micro-aneurysms, and drusens) that may lead to incorrect 

detection of retinal blood vessel end-points in the macular region. The selected 

images undergo the fully automated DR algorithm to obtain the F AZ radii; the 

statistics of which is shown in Table 5-7. 
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Table 5-7 Statistics ofF AZ radii for fully automated DR algorithm 

FAZ radii 
No DR Mild Moderate Severe/PDR 

Samole size 85 25 13 10 
Mean (pixels) I 01.28 104.58 123.37 103.12 
Std. dev (pixels) 11.34 10.56 10.57 23.62 
Median (pixels) 101.18 105.31 123.86 106.97 
Min (pixels) 67.31 75.90 106.90 58.05 
Max (oixels) 120.51 120.18 143.69 133.83 

Based on the results tabulated in Table 5-7, the sample size is statistically 

sufficient only for no DR and mild NPDR stages, while the rest i.e. moderate NPDR, 

severe and PDR are statistically lacking. It comes to be important to draw a general 

conclusion based on data with statistically sufficient sample size, yet, in order to 

present all DR stages, data from moderate, severe and PDR are still included in the 

analysis and performance evaluation of fully automated DR algorithm. The mean of 

F AZ radius for severe and PDR in addition is lower than that of mild and moderate 

NPDR. The standard deviation of severe and PDR is also more than twice as large as 

the other three DR stages. Nevertheless, since the sample size of severe and PDR is 

statistically insufficient, it cannot be said that their F AZ radii are normally lower than 

that of mild NPDR. Referring to the results shown in Table 5-6 in which the mean 

and median ofF AZ area increase as the DR stage progresses to a more severe level, in 

general, the increase of F AZ radius also shows a similar trend. A statistical 

correlation analysis between F AZ area obtained by the semi-automated DR algorithm 

and F AZ radius obtained by the fully automated DR algorithm will further show 

quantitative results to prove a similar trend between these two DR algorithms. 

Overlapping between two adjacent stages also occurs according to the maximum and 

minimum values ofF AZ radii of each DR stage. A classification technique similar to 

that of the semi-automated DR algorithm is implemented in the fully automated DR 

algorithm based on the obtained F AZ radii. 

5.6.3 DR Grading Using Gaussian Bayes Classifier 

Prior to applying Gaussian Bayes Classifier for grading of DR severity level, the 

suitability of the data distribution with that of Gaussian distribution is determined 
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both qualitatively and quantitatively. Qualitatively, the probability mass functions for 

most of the DR stages are shown in Figure 5.14. 
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Figure 5.14 Probability mass function ofF AZ area for each DR severity level and its 
estimated Gaussian distribution 

The R 2 measure of goodness of fit test that quantitatively determines the suitability of 

the data distribution with the Gaussian distribution also yields the results as shown in 

Table 5-8. 

Table 5-8 Measure of goodness of fit for Gaussian distribution on FINDeRS 

FAZ area 
No DR Mild Moderate Severe/PDR 

Sample size 175 52 32 56 
R2 0.9299 0.9003 0.6772 0.9948 

As illustrated in Figure 5.14, though the probability mass functions for most of the 

DR stages show similar characteristics of a Gaussian distribution, most of the DR 

stages overlap between one and another. Gaussian Bayes classifier, for being able to 

classify DR stages based on probability, comes to be suitable for grading of DR 

severity level. Moreover, as depicted in Table 5-8, the results for most of the DR 

stages showing sufficiently high R2 values are expected. Except moderate NPDR 

that has R2 of 0.6772, the other DR stages have R2 greater than 0.90. It may occur 

since the sample size of moderate NPDR is smaller than that of the other DR stages. 
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Increasing the sample size of moderate NPDR in turn may lead to an increase inR'. 

In general, the results of R' measure of goodness of fit are in line with the probability 

mass function ofFAZ area as illustrated in Figure 5.14. Since the distribution ofFAZ 

follows a Gaussian distribution, the Gaussian Bayes classifier is suitable to classify 

DR severity levels in this application and subsequently is designed to classify DR 

severity levels based on the measured F AZ area using the LPPR. 

The LPPR between two selected stages can be computed using the corresponding 

mean and standard deviation data from Table 5-6 and applying (5-13). From the 

LPPR, the thresholds ofFAZ area ranges for DR grading are determined as shown in 

Figure 5.15. The selected two stages are as follows: no DR and mild NPDR, mild 

NPDR and moderate NPDR, moderate NPDR and severe NPDR/ PDR. If LPPR 

between no DR and mild NPDR, for example, is greater than 0, the DR grade will be 

categorised as no DR. Otherwise, the DR grade will be categorised as mild NPDR. 

The LPPR is also calculated for other DR stages. 
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Figure 5.15 LPPRs for DR grading 

Table 5-9 shows the range ofF AZ area (in pixels) for the DR grade for different 

LPPR settings for the Gaussian Bayes classifier. If LPPR = 0, the Gaussian Bayes 

classifier does not include progression (in between) stages of DR grades. Progression 

stages, which in the Gaussian Bayes classifier can be obtained by setting LPPR * 0, 
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are important to give early indication to patients of the DR progression to more severe 

stages. Here, the receiver operating characteristic (ROC) analysis is used to find the 

optimum non-zero LPPR setting. 

Table 5-9 DR Gaussian Bayes classifier based on F AZ area with progression stages 
for different LPPRs 

DR stage 

31704-100000 

For receiver operating characteristic (ROC), the sensitivity and specificity must be 

determined [254, 256-257]. Sensitivity measures the proportion of actual positives, 

which is correctly identified, while specificity measur,es the proportion of negatives, 

which is correctly identified. ROC curve is a plot of sensitivity against !-specificity 

across a range of possible thresholds. In addition, accuracy gives an overall 

performance of the classifier. 

Using ROC analysis, an optimum threshold is determined for the system by 

choosing a threshold, which gives an operating point nearest to the reference point. 

Based on the nearest distance between an operating point and the reference point in 

the ROC curve, the optimum classifier for each DR stage can be determined. For 

each of iteration of VFCV method, ROC analysis is applied on training data to 

evaluate the performance of the DR system. Using VFCV, data is divided into 5 

subsets to perform 5 iterations in which four subsets are used to train the system and 

the rest is used to test the system. An example of optimal Gaussian Bayes classifiers 

obtained from one of the iterations is shown in Table 5-10. 
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Table 5-10 Optimal Gaussian Bayes classifiers for all DR stages 

Optimum Gaussian Bayes classifiers for DR Stages (1-Specificity) Sensitivity 
No DR (-2<LPPR<2) 0.02 I 
Mild (-2<LPPR<2) 0.07 0.93 
Moderate (-0.75<LPPR< 0.75) 0.23 0.77 
Severe/ PDR (-0.75<LPPR<0.75) O.Q3 0.98 

Based on the above settings, the corresponding FAZ area range of DR stages as 

shown in Table 5-11 can be clearly defined. 

Table 5-11 DR Gaussian Bayes classifier with progression range 

Stage FAZ area range (pixels) 
No DR 1-16204 
Pro~ssi~lin:C!2li/R'iomH(!l'zyD;&•.'tt ., , ;,,;;,,:~.~6~P~.tc:t2091~ :·,;; 
Mild NPDR 20913-20654 
Pt~e's~i9n'lll:i1d'l'I!PDllito·m61Jt\rate'l'I!POR'•+ '''i'i ':'·2<)655W~6~~W! .•.. 
Moderate NPDR 26867-27054 
Prow6ssiontm64enite NPo'R to seve~PDR:~ 'i''': ' ·~:t-'7o~s~2'iJt 
Severe/ PDR 31674- 100000 

As shown in Table 5-11, the DR grading system is able to identify DR severity 

even though the FAZ area lies in the progression range (highlighted rows). To 

doctors and patients, these ranges can be used to indicate if the DR condition is 

progressing to a severe level or at the borderline between two stages. 

The results of DR grading based on F AZ area enlargement are analysed using 

non-parametric statistical correlation analysis based on Spearman's rank correlation 

coefficient [258]. This analysis shows significance and correlation of the FAZ 

indicated by area for the semi-automated DR algorithm and by radius for the fully 

automated one with DR severity levels graded by ophthalmologists. The strongest 

correlation is represented by value of 1 and the weakest one is represented by value of 

0. Non-parametric analysis is conducted on the DR data because of a statistically 

insufficient sample size of one or two DR stages indicated by less than 25 samples. 

For the analysis of semi-automated DR algorithm, the insufficient sample size is from 

severe NPDR with only 18 images and for the analysis of fully automated DR 

algorithm, only two DR stages - no DR and mild NPDR stages - meet statistically 

sufficient sample size with 87 images and 25 images respectively. The other two DR 

stages, i.e. moderate NPDR with 13 images and severe PDR with 10 images do not 

183 



have a sufficient sample size. Therefore, non-parametric statistical analysis to 

measure correlation coefficient between F AZ area and DR severity is conducted. 

Correlation coefficient measures the strength of the llinear dependence between two 

variables. Table 5-12 shows the results of statistical correlation analysis measured for 

two situations, i.e. (1) the correlation measured for no DR and all DR stages and (2) 

the correlation measured for DR stages only (without no DR) for both semi­

automated and fully automated DR algorithms. 

Table 5-12 Correlation between FAZ area and (1) DR severity 1 (no DR, mild 
NPDR, moderate NPDR, severe NPDR and PDR), (2) DR severity 2 (mild NPDR, 

mod(:rate NPDR, severe NPDR and PDR) 

Semi-automated Full v-automated 
Correlation Significance 

N Correlation Significance 
N coefficient (2-tailed) coefficient (2-tailed) 

No DR-DR 0.877 J.40x10-IUI 315 0.805 1.62 X10-JI 133 
Mild-mod- 0.845 2.12x1 o-39 140 0.744 3.1 x10-9 46 severe/ PDR 

As shown in Table 5-12, in the first situation, i.e. correlation measured for no DR 

and all DR stages (mild NPDR, moderate NPDR, severe NPDR and PDR), both semi­

automated and fully automated DR algorithms have a strong correlation more than 

0.80 at significance (P) less than 0.01. In the second situation, which measures a 

correlation for DR stages only, the F AZ area det<:rmined by the semi-automated DR 

algorithm strongly correlates with DR stages graded by ophthalmologists with 

correlation coefficient of 0.845 higher than that of obtained by the fully automated 

DR algorithm with correlation coefficient of 0.744 at significance (P) less than 0.01. 

As expected, the correlation between F AZ parameters (area and radius) obtained by 

both semi-automated and fully automated DR grading systems and their 

corresponding DR severity level graded by the ophthalmologists for no DR and all 

DR stages is higher than that of DR stages only. This is because of the limitation of 

the sample size for specific DR stages. It can be seen that for DR stages only, the 

correlation between FAZ radii determined by the fully automated DR algorithm and 

their corresponding DR grades has the lowest con·elation coefficient of 0.744 due to 

insufficient sample size of moderate NPDR, severe and PDR. It is believed that 

increasing the sample size of these specific DR stages will increase the correlation 

between FAZ radii and their corresponding DR stages. 
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In general, the findings from this study show a strong correlation between F AZ 

enlargements measured from colour fundus images and DR severity with correlation 

factor up to 0.877 for the semi-automated DR algorithm and 0.805 for the fully 

automated DR algorithm both at a very high significance (P) of less than 0.01. This 

strong correlation indicates that the F AZ obtained by the developed DR algorithms 

using colour fundus images can be used to grade DR severity. These findings further 

confirm F AZ enlargement in DR measured from fluorescein angiograrns as previously 

reported by Bresnick eta/. [214], Arend eta/. [255], Sander eta/. [223] and Conrath 

et a/. [215]. In addition, several detection and segmentation methods on FAZ 

determination have been developed by Ballerini [259], Conrath et at. [216], Zheng et 

a/. [260] and Haddouche et a/. [261]. However, all the aforementioned reports on 

FAZ enlargement in DR and the developed methods on FAZ determination were 

applied only on FF A images and not on colour fundus images. So far as we know, 

early papers on determination of F AZ using colour fundus image merely were 

published by Fadzil et a/. [262-265]. One of the main reasons is due to the high 

contrast of retinal blood vessels and capillaries in the FF A image that makes F AZ 

detection in FF A images easier. Conversely, F AZ determination in colour fundus 

image may come to be more difficult for the low contrast of retinal blood vessels and 

capillaries but it is possible still that the contrast of retinal blood vessels can be 

significantly enhanced. Our developed method, RETICA, is proven to successfully 

enhance the contrast of retinal blood vessels in the colour fundus image and even 

achieves CIF of 5.389 slightly lower than that of the FFA image with CIF of 5.796 

(as described in Chapter 4). 

In evaluating the performance of the DR algoritluns in grading of DR severity, 

agreement test and performance test are conducted. An agreement test using Cohen's 

kappa coefficient measures the strength of inter-observer agreement that in this case is 

between the ophthalmologists and both semi-automated and fully automated DR 

algorithms in grading of DR severity. Kappa coefficient equals to 1 if there is a 

complete agreement between observers when giving response to a variable of N 

subjects. Results of agreement test are shown in Table 5-13. 
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Table 5-13 Measure of ag;reement using Kappa coefficient between ophthalmologist 
and DR algorithms in grading of (1) DR severity 1 (no DR and DR- all stages), (2) 
DR severity 2 (no DR and mild) and DR severity 3 (no DR, mild and moderate) and 

DR severity 4 (no DR, mild, moderate <md severe/ PDR) 

Ophthalmologists vs. Semi- Ophthalmologists vs. Fully-
automated automated 

Kappa Significance 
N 

Kappa Significance 
N coefficie:nt (2-tailed) coefficient (Z-tailed) 

No DR-DR 0.994 1.34x1 o·" 315 0.901 2.48x10"" 133 
NoDR-mild 0.973 4.05x10"" 224 0.840 1.1 Ox! o·" 110 
NoDR-mild 

0.918 4.21xl0-83 256 0.889 9.80x10"36 121 -mod 
NoDR-mild 
-mod - severe 0.918 1.62x1 0"146 315 0.787 2.68x!0-40 133 
PDR 

As shown in Table 5-13, the agreement test between ophthalmologists and each 

semi-automated and fully automated DR algorithm is measured in four situations, i.e. 

(1) no DR and DR, (2) no DR and mild NPDR, (3) no DR, mild and moderate NPDR 

and (4) no DR, mild, moderate, severe NPDR and PDR. In the first situation, the 

class is categorised into two, i.e:. (1) no DR and DR arrd (2) all DR stages (i.e. mild, 

moderate, severe NPDR and PDR) are combined into one category. Results show that 

both semi-automated and f1ully automated DR algorithms have Kappa coefficient of 

0.994 and 0.901 indicating a strong agreement with ophthalmologists in grading of 

DR severity. Importantly, it shows the effectiveness of the developed DR algorithms 

for DR mass screening. 

Having categorised into two classes, the second situation shows similar results. 

However, instead of no DR and DR as in the first situation, the class is divided into no 

DR and mild NPDR as its adjacent class. A strong agreement obtained from the 

second situation with Kappa coefficients of 0.973 and 0.840 for semi-automated an.d 

fully automated DR algorithms points out that the developed algorithms are able to 

differentiate between no DR and the early DR stage, i.e. mild NPDR. This important 

result indicates that the developed DR system is suitable for early detection of DR. 
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Furthermore, results obtained from the third and fourth situations confirm those 

obtained from previous situations. Whilst in the third situation the class is categorised 

into three (i.e. no DR, mild and moderate NPDR), the fourth situation is divided into 

four representing no DR and all specific DR stages. In both of these situations, Kappa 

coefficient obtained by semi-automated DR algorithm is 0.918 at a very high 

significance (P) of less than 0.01. For the fully automated algorithm, Kappa 

coefficients obtained are lower than that of the semi-automated algorithm. However, 

these values (i.e. 0.889 and 0.787) obtained by the fully automated algorithm are still 

considered as high and represent a strong agreement between observers, which in this 

case are the ophthalmologists and the developed algorithm. This strong agreement 

indicates that both semi-automated and fully automated DR algorithms are suitable 

for monitoring and grading of DR severity. 

Generally, in all of the compared situations, Kappa coefficients obtained by the 

fully automated DR algorithm are consistently lower than that of the semi-automated 

one. As expected, it is because the sample size of colour fundus image used in the 

analysis of the fully automated DR algorithm is smaller than the one in the analysis of 

the semi-automated one. Increasing the sample size of DR images data perhaps will 

increase the strength of agreement between observers. Unlike the semi-automated DR 

algorithm which uses all 315 colour fundus images in FINDeRS, the fully automated 

DR algorithm only uses a total of 133 colour fundus images from FINDeRS to be 

analysed. It is due to improper acquisition process (dark or blur images and shadowy 

image) and presence of pathologies close to the macula (exudates, haemorrhages, 

micro-aneurysms, and drusens) that lead to inaccurate FAZ determination. The 

stronger agreement in the semi-automated DR algorithm comes to be reasonable due 

to its manual process. The manual process itself is useful to handle colour fundus 

images with low image quality and possible presence of pathologies in the macular 

region. However, the fully automated DR algorithm still has a significantly strong 

agreement with the ophthalmologists in grading of DR severity, thus enabling it to be 

effectively used to assist ophthalmologists for early DR detection, DR mass 

screening, and monitoring and grading of DR severity. 

The performance of each semi-automated and fully automated DR algorithm is 
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evaluated in tenns of sensitivity, specificity and accuracy. In the semi-automated DR 

algorithm, it is measured based on the average valm:s of sensitivity, specificity and 

accuracy from the total of 5 subsets taken from all 315 fundus images from FINDeRS. 

For the fully automated, the performance is analysed fi·om the total of 133 fundus 

images from FINDeRS (87 images of no DR, 23 images of mild NPDR, 13 images of 

moderate NPDR and 10 images of severe NPDR/ PDR). As previously mentioned, 

not all images from FINDeRS are analysed using the fully automated DR algorithm 

due to and presence of pathologies in macular region and improper acquisition 

process yielding dark or blur images and shadO\'V)' images leading to an inaccurate 

FAZ determination. The performance is measured by comparing a particular DR 

stage with its adjacent stages as, for instance, in the classifier of 'mild NPDR versus 

adjacent DR stages', the DR system classifies between mild NPDR and its adjacent 

DR stages, i.e. no DR and moderate NPDR. Results of performance analysis of both 

semi and fully automated DR algorithms are showrr in Table 5-14. 

Table 5-14 Performance analysis of the semi-automated and fully automated DR 
algorithms in classifying DR severity levels 

Classifier Sensitivity Specificity Accuracy 

Semi-auto Fully-auto Semi-auto Fully-auto Semi-auto Fully-auto 

No DR-mild NPDR I 0.954 0.979±0.31 0 0.905 0.991±0.140 0.944 

Mild NPDR- adjacent 
0.841±0.114 0.913 0.992±0.100 0.960 0.968±0.190 0.951 

stages -· 
Moderate NPDR-

0.84:2±0.168 0.846 0.971±0.360 0.939 0.959±0.450 0.913 
adjacent stages 

Severe/ PDR- adjacent 
0.950±0.750 0.300 0.988±0.110 0.846 0.981±0.200 0.609 

stages 

As shown in Table 5-14, the values of sensitivity, specificity and accuracy vary 

among DR stages for both semi-automated and fully automated DR algorithms. For 

the semi-automated DR algorithm, the values of sensitivity, specificity and accuracy 

for 'no DR versus mild NPDR' are significantly high (greater than 0.979). As 

expected, these high values are consistent with the strong agreement (Kappa 

coefficient of 0.973) obtained from the previous agreement test between the 

ophthalmologists and the semi-automated DR algorithm in the same situation (Table 

5-13). This performance result further indicates the high ability of the semi­

automated DR algorithm to differentiate between no DR and its adjacent stage, i.e. 

mild NPDR. A perfect value of sensitivity (i.e. I) obtained by the classifier 'no DR 
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versus mild NPDR' shows that the algorithm is able to diagnose correctly a patient 

having no DR when the patient is actually having no DR without any erroneous 

diagnoses. Moreover, a significantly high value of sensitivity (i.e. 0.979) shows that 

the algorithm is also able to correctly diagnose most of the patients actually suffering 

from mild NPDR. High sensitivity and specificity result in high accuracy obtained by 

the classifier for this particular class. Compared with the sensitivity, the value of 

specificity is a slightly lower indicating that some of patients are mistakenly classified 

as no DR when they are actually having mild NPDR. It may occur when the patient's 

stage is close to the progressing stage between no DR and mild NPDR. 

Using the developed algorithm, when the patient is in the progression stage, both 

the most and the second probable DR stages the patient suffers from could be 

informed. The algorithm may mistakenly decide which of these two stages is the 

most probable due to slight difference in measuring F AZ area even if the difference is 

only one pixel. Hence, it is recommended for the user to decide carefully a stage 

when the algorithm classifies the patient's stage as progression stage. However, this 

value of specificity is considered as high (above 90%) and generally accepted for such 

a medical system. In case of the classifier 'no DR versus mild NPDR', high values 

obtained for both sensitivity and specificity indicate that the semi-automated DR 

algorithm is accurate and suitable for early DR detection and thus, the developed DR 

system is also effective for DR mass screening. 

Moreover, the sensitivity value for the semi-automated DR classifier of mild 

NPDR has similar value to that of moderate NPDR (around 0.84). This indicates that 

the classifier has lower ability to correctly detect a patient actually suffering from 

mild or moderate NPDR compared to other DR stages (no DR and severe/ PDR 

stages). It occurs since the overlapping FAZ areas in mild and moderate NPDR are 

more than that of other DR stages. It can be minimised by increasing the number of 

training data for mild and moderate NPDR. Even though the semi-automated DR 

classifier for mild and moderate NPDR has lower sensitivity, the classifier shows high 

specificity for mild and moderate NPDR (0.971) that have been predicted since the 

classifiers for other DR stages, i.e. no DR and severe/ PDR have high values of 

sensitivity. That is to say, the classifier has high probability in detecting a specific 
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DR stage correctly rather than mild and moderate NPDR. 

The high values of accuracy for all DR stages imply that the semi-automated DR 

classifier can detect a particular stage with high sensitivity and specificity. The 

accuracy indicates the ability of the classifier in correctly detect both a specific class 

as the class and a non-class as the non-class. Since the semi-automated DR algorithm 

shows high sensitivity and specificity in classifYing all of DR stages, high accuracy 

values obtained for all DR stages have also been predicted. Hence, the semi­

automated DR classifier having high sensitivity, specificity and accuracy has a 

potential to be used for early detection of DR, DR mass screening, monitoring and 

grading DR severity and for effective treatment of severe cases. 

For the fully automat·~d DR algorithm shown in Table 5-14, the values of 

sensitivity, specificity and accuracy for all DR classifiers are relatively high (~ 0.846), 

except for the severe and PDR stages with only 0.30 of sensitivity and 0.609 of 

accuracy. It occurs as the number of selected severe and PDR fundus images is quite 

low, i.e. I 0 images and th<: distribution of F AZ areas for severe and PDR overlaps 

more with its adjacent stag<:, i.e .. moderate NPDR and even with mild NPDR. Based 

on statistics, the sample size of I 0 is also considered as significantly low to draw a 

general conclusion. After all, in a most severe c:ase, the ophthalmologists must be 

involved to determine and monitor a proper treatment for the patient. Therefore, 

general conclusion on performance analysis of the fully automated DR classifier will 

exclude the performance result of the system on detecting specific severe and PDR 

stage. 

For moderate NPDR, the fully automated DR classifier obtains 0.846 of 

sensitivity, 0.939 of specificity and 0.913 of accuracy. Higher specificity compared to 

sensitivity indicates that the system has lower false positive rate detection than false 

negative rate. In other words, among the collected samples of moderate NPDR, the 

DR classifier more mistakenly diagnoses a patient not suffering from moderate NPDR 

when the patient is actually suffering from moderate NPDR compared to diagnose a 

patient suffering from moderate NPDR when the patient is actually not suffering from 

moderate NPDR. For such a medical system, it is quite dangerous to detect wrongly a 
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patient for not suffering from a particular disease when the patient is actually 

suffering from that disease rather than to detect its inverse situation. However, since 

this particular stage (moderate NPDR) is detected in corresponding to its adjacent 

stages (mild NPDR and severe/ PDR), two images out of only 13 images of moderate 

NPDR are misclassified as severe/ PDR contributing to false negative rate. Even 

though the DR classifier gives the wrong result of DR grade, the misclassification of 

the moderate NPDR to severe/ PDR should have given an early warning for 

ophthalmologist about the condition of the patient. 

This can also be observed in the classifier 'severe NPDRIPDR- adjacent stages' 

in which adjacent stage is identified as moderate NPDR. In this case, the classifier 

has higher specificity (0.846) than sensitivity (0.30) indicating a similar situation as in 

the classifier 'moderate NPDR- adjacent stages'. From a small sample size of only 

10 for severe/ PDR, most of them are mistakenly diagnosed for not suffering from 

severe/ PDR. It happens due to presence of pathologies in the macular region mostly 

occurred in the severe stages. Even though colour retinal fundus images in this 

evaluation of the fully automated DR algorithm has been carefully selected, it is not 

possible to select colour fundus images without pathologies at this current DR stage 

due to the nature of severe and PDR stages. The more severe the stage is, the more 

the presence of pathologies is. Two samples of severe/ PDR images are shown in 

Figure 5.16. 

(a) (b) 
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Figure 5.16 Two samples of colour fundus images (a) severe misclassified as 
moderate NPDR (b) PDR correctly classified as PDR 

The colour retinal fundus image in Figure 5.16(a) was graded by the 

ophthalmologists as severe NPDR. However, the fully automated DR algorithm 

classifies this in1age as moderate NPDR due to presence of small parts of exudates in 

the macular region. These exudates indicated by yellowish patches have been 

wrongly detected as retinal vessel end-points; thus, it causes an inaccurate F AZ 

determination leading to misclassification of DR grade. Another colour retinal fundus 

image shown in Figure 5.16(b) was graded by the ophthahnologists as PDR similar 

with what has been succeso:fully classified by the fully automated DR algorithm. Due 

to the presence of pathologies, such as exudates and haemorrhages out of the macular 

region, the retinal end-point at the macular region can be correctly detected. Thus, the 

fully automated DR algoritlun is able to accurately determine the F AZ that leads to an 

accurate DR severity grading. 

In general, excluding the specific severe and PDR stage, the fully automated DR 

algorithm consistently maintains high sensitivity (2: 0.846), specificity (2: 0.905) and 

accuracy (2: 0.913) for most of DR stages. This indicates the potentiality of the fully 

automated DR system to be used for early DR detection, DR mass screening, 

monitoring and grading DR severity. 

By comparing two developed DR algorithms, ve. semi-automated and fully­

automated, the semi-automated DR algorithm shows better performance and has a 

greater potential of the DR grading system according to its statistical correlation 

analysis and performance analysis. However, due to some practical reasons such as to 

allow untrained operators to use, the fully automated DR algorithm is developed with 

some reductions but still acceptable on its performance. 

5.6.4 Accuracy Analysis ofFAZ 

Ahead of data analysis, outliers need to be determined and excluded from the data. 

Boxplot used as a graphical display to indicate outliers [266] uses the first and third 

quartiles, Ql and Q3, with some ·constant k to determine outliers. Table 5-15 shows 
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details of quartile values in each type of error (EGT-OP and EGT-Dn)- Outliers are 

determined for being outside of the range: 

(5-18) 

Table 5-15 Quartile and Boxplot Range ofDR Stages 

Ground truth- DR system (EGT-nn) 
Quartile I 13.30 
Quartile 2 18.29 
Quartile 3 21.99 

Boxplot range minimum 4.61 

Boxplot range maximum 30.67 

From the Boxplot analysis, one outlier for ophthalmologist error (EGT-OP) data is 

found while four outliers are for the DR system error (EGT-nn) data. The statistical 

analysis in Table 5-16 uses 32 pairs of fundus images and FF A images for DR system 

error (EGT-Dn). 

Table 5-16 Statistics ofFAZ radii for accuracy analysis of DR grading system 

Ground truth- DR system (EGT-nn) 
No. of data 32 
Mean absolute error (pixels) 18.68 
Std. deviation (pixels) 5.28 
Skewness -0.45 
Kurtosis -0.21 
Lower bound (pixels) 6.37 
Upper bound (pixels) 28.34 
Range (pixels) 21.97 

Shown in Table 5-16, the mean absolute error for DR system is relatively large 

predictably because the DR system uses colour fundus images, which have lower 

contrast resulting in large errors. It is observed that the standard deviation (i.e. 5.28) 

of the DR system error (EGT-nn) data is significantly small. This can be further 

analysed using relationship plots of DR system against ground truth data as shown in 

Figure 5.17. 
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Figure 5.17 FAZ radii DR system against ground truth 

The regression analysis of Figure 5.17 shows a strong linear relationship of DR 

system with ground truth data (R 2 = 0.8769) indicating a high precision of the 

system. In addition, the correlation analysis between ground truth and DR system 

shows how linear the relationship is. In Table 5-16, the error distributions are 

considered normal (skewness and kurtosis are close to 0) and the data samples are 

sufficient for parametrical statistical analysis such as Pearson correlation coefficient 

analysis to deterrnine the linear relationships between ground truth and DR system for 

the radius measmement. 

Table 5-17 describes a correlation between radius ofthe F AZ area obtained by the 

DR system and radius of the F AZ area obtained from the ground truth. There is a 

strong correlation, 0.936 (P·~arson correlation) at a very high significant level (P) < 

O.ol. 

Table 5-17 Correlation between radius ofFAZ obtained by DR system and ground 
truth 

FAZ radii obtained by DR system (pixels) 

FAZ radii Correlation coefficient 0.936 
obtained from Significance (2-tailed) 3.48 X 10-IS 
ground truth 
(pixels) N 32 
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Inferentially, the DR system is consistent and objective in determining the FAZ 

area. The above analysis that the DR system has a low standard deviation of error and 

strong linear relationship (R 2 = 0.8769) with ground truth and correlation coefficient 

analysis (0.936) also implies that the error can be considered as a systematic error. In 

the actual implementation of the DR grading system, the systematic error has been 

overcome by the Gaussian Bayes classifiers. The DR system based on colour fundus 

images, therefore, can provide an accurate and precise measurement of F AZ 

enlargement. 

For the fully automated DR algorithm, the consistency of the algorithm in 

determining the F AZ radius is compared to that of in determining the F AZ area. As 

stated earlier (Section 5.3), the radius is preferred to reduce error of area in 

determining F AZ as a result of performing square factor on the radius of the F AZ 

assuming its area as a circle. To measure the consistency of the fully automated DR 

algorithm, two users ran the algorithm on eight colour retinal fundus images randomly 

selected from FINDeRS. Each of selected images underwent three to four simulations 

and average of F AZ radii was measured as the reference (ground truth) for each 

image. A total of 30 observations have been recorded. In each observation, the F AZ 

radius obtained for a particular colour retinal fundus image was compared to its 

reference (ground truth) and error between these two were analysed. Statistics of 

FAZ radii and areas' differences for the accuracy analysis of the fully automated DR 

algorithm is shown in Table 5-18. 

Table 5-18 Statistics of error ofF AZ radii and areas for the accuracy analysis of the 
fully automated DR algorithm 

Ground truth- DR system Ground truth- DR system 
(F AZ radius) (FAZ area) 

No. of data 30 30 
Mean absolute 0.797 1707 
Std. deviation 0.637 1923 
Lower bound 0.023 216 
Upper bound 2.572 8474 
Range (pixels) 2.549 8258 

From Table 5-18, the mean absolute error of the fully automated DR algorithm 

when using F AZ radius as parameter is significantly small (less than I pixel) 
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compared to that of when using F AZ area with mean absolute error of 1707 pixels. 

This indicates that the use of radius as parameter ofF AZ results in high accuracy of 

the fully automated DR allgorithm.. Moreover, from a total of 30 observations, the 

maximum error produced by the fully automated DR algorithm when using FAZ 

radius is less than 3 pixels with a significantly small standard deviation (less than 1 

pixel) compared to that of when using F AZ area with standard deviation of around 

2000 pixels and maximum error of more than 8000 pixels. It indicates that the fully 

automated DR algorithm has not only high accuracy, but also high precision. This 

can be further analysed using relationship plots of DR system against ground truth 

data as shown in Figure 5.18. 
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(b) 

Figure 5.18 (a) FAZ radii obtained by the fully automated DR algorithm against 
ground truth (b) F AZ areas obtained by the fully automated DR algorithm against 

ground truth 

Illustrated in Figure 5.18, both radius and area obtained by the fully automated 

DR algorithm have a strong linear relationship with the ground truth data indicated by 

their most perfectly linear regression line. However, the fully automated DR 

algorithm with F AZ radius as parameter (R 2 = 0.9797) has a stronger relationship 

than that of with FAZ area as parameter (R 2 = 0.8376) according to their 

coefficients of determination R2
• It further proves that the algorithm with radius as its 

F AZ parameter has a high precision as previously shown by its significantly small 

standard deviation. These results also indicate that the use of FAZ radius in the fully 

automated DR system is more reliable and consistent in determining the F AZ rather 

than the use ofF AZ area. It is important to choose a parameter that measures F AZ as 

accurate and precise as possible since the result of measurement will be inputted into 

the DR classifier. The more accurate and precise the result ofF AZ measurement is, 

the more accurate the DR grading is. 

Compared to other FAZ analysis-based methods used to grade DR severity [216, 

259-260], the developed computerised DR system offers two main advantages. 

Firstly, the developed DR system (both semi-automated and fully automated DR 

algorithms) is able to determine the F AZ only using colour fundus images whilst the 

others require invasive FFA. Ophthalmologists may argue that FAZ can only be 

determined using FF A image since the retinal vessel end-points are clearly seen from 

high contrast of retinal blood vessels produced by invasive FFA. However, RETICA 

applied on colour retinal fundus images provably is able to produce contrast of retinal 

blood vessels slightly lower than that of the FF A. Moreover, accuracy analysis of 

FAZ shows that the error between FAZ estimated from both colour fundus images 

and FF A images is equally considered as a systematic error. It means that the 

estimated F AZ obtained from colour fundus image using the developed algorithm is 

similar to the F AZ produced by the invasive FF A and indicates that the estimated 

FAZ obtained from colour fundus image can be used as effectively as the FAZ 
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obtained from FF A image. 

Secondly, as an alternative to existing pathology-based DR grading systems, the 

FAZ which is determined and analysed using the developed DR system can be used as 

a parameter for a new protocol to grade DR severity. Based on the aforementioned 

performance analysis, sem:itivity and specificity of the developed DR system (both 

semi-automated and fully automated DR algorithms) in differentiating between the 

normal fundus and the DR fundus images are above 0.954 and 0.905 respectively. A 

comparison of performanct~ and description among these aforementioned DR grading 

systems is summarised in Table 5-19. 

Table 5-19 Comparison of performance among several computerised DR grading 
systems 

Sensitivitv Snecificitv Remarks 

Automated detection of DR (without any 

Olson eta/. 
0.83 0.71 

specific levels) based on the presence of 

[267] haemorrhages and or aneurysms using digital 

colour fundus images. 

Computerised system to differentiate between 

normal (no DR) and DR (without any specific 

Singalavanija 
0.748 0.827 

severity levels) using digital colour fundus 

eta/. [268] images by detection of DR pathologies (hard 

exudates, cotton wool spots, micro-aneurysms 
and retinal haemorrhages) 

Grading of DR uses pathology-based method 
[270] conducted on non-mydriatic 
stereoscopic fundus images that are manually 

NMDSRI 
0.98 I 

examined by retina specialists. DR grading is 

[269] categorised into five severity levels [205]. 
However, due to its manual assessment, the 

process is time-consuming (roughly 20 
minutes per im~. 

Automated monitoring and grading of DR 

S-A: I S-A: 0.979 
severity levels based on F AZ analysis using 

RETINO 
F-A: 0.954 F-A: 0.905 

digital colour fundus images. (note: S-A is 

semi-automated DR algorithm and F-A is 

fullv automated DR alzorithm) 

Shown in Table 5-19, the performance ofRETINO with minimum sensitivity and 
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specificity of 0.954 and 0.905 respectively is better than that of by Olson et al. [267] 

with sensitivity of 0.83 and specificity of 0.71 by also applying an automated grading 

protocol to the digital colour fundus images. Our findings are also better than that of 

Singalavanija et al. [268] with sensitivity of 0.748 and specificity of 0.827. 

Singalavanija et al. [268] developed an automated computerised DR screening 

program to analyse colour retinal images based on the presence of diabetic features 

such as exudates, haemorrhages, and micro-aneurysms. Both automated DR grading 

systems by Olson et al. [267] and Singalavanija et al. [268] aim only to differentiate 

DR from non-DR patients by analysing the pathologies, such as haemorrhages, 

aneurysms, exudates and cotton wool spots in colour retinal fundus image without 

informing a specific DR severity level the patient suffers from. Therefore, these two 

developed automated DR systems are effective only for DR screening. Moreover, the 

RETINO system specifically applying the semi-automated DR algorithm with 

sensitivity of I and specificity of 0.979 is comparable to Joslin Vision Network non­

mydriatic digital stereoscopic retinal imaging (NMDSRI) [269] with sensitivity and 

specificity of 0.98 and I respectively for grading of DR severity. Both these DR 

computerised systems are able to classify DR severity into five levels as categorised 

in [205]. However, the assessment of colour retinal fundus images in NMDSRI is 

conducted manually by retina specialists. Though the fully automated RETINO with 

sensitivity and specificity of 0.954 and 0.905 respectively has a lower performance 

than the NMDSRI, it still has a greater advantage since the whole process is of 

automated and the user needs to input once only at the beginning of the process when 

the centre of macular region is selected. 

In general, the developed DR system (RETINO) either by semi-automated or by 

fully automated DR algorithms is sensitive enough to detect a particular DR stage and 

specific enough to exclude the non-affected individuals. For effectiveness in DR 

grading, the RETINO has been tested and evaluated in two clinical studies -

interventional and observational - and achieved optimum accuracy, sensitivity and 

specificity in detecting DR severity needed for medical and thus enables an effective 

DR grading using colour fundus images. This new grading protocol based on FAZ 

analysis using the developed DR system can be implemented as an alternative to the 

current DR grading method using pathology-based direct ophthalmoscopy. Thus the 
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RETINO has a great potential to assist the ophthalmologists in early detection of DR, 

DR mass screening, as well as for monitoring and grading of DR severity. 

For future research, the data used can be enlarged for further confidence of the 

results. The validity of the proposed DR grading method can be also established by 

performing cross-validation based on expert opinions. The performance of this DR 

grading method can be evaluated for different demographic data as well. For the fully 

automated DR algorithm, the automated segmentation of retinal blood vessels can be 

further improved so that the detection of retinal vessels end-points would be more 

accurate. Research of image quality can also be conducted to quantify the image that 

will be inputted into the system .and to standardise the quality of the acquired image. 

5.7 Summary 

Diabetic Retinopathy, a complication threatening the sight due to diabetes mellitus 

affecting the retina, has become one of the leading causes of blindness in the world 

and has affected around 1.5 million populations in Malaysia (National Eye Database). 

DR severity consists of four levels: mild NPDR, moderate NPDR, severe NPDR and 

PDR in which to grade it ophthalmologists now use pathology-based direct 

ophthalmoscopy method using the International Clinical Diabetic Retinopathy 

Disease Severity Scale. This method, however, is time-consuming for requiring a 

direct observation and determination by ophthalmologists in the retinal fundus image 

and even being longer for employing fundus fluorescein angiography (FFA), an 

invasive procedure to get higher contrast of retinal blood vessels produced from 

fluorescein angiograms, for an accurate diagnosis due to varied and low contrast of 

colour retinal fundus image.. Being invasive, the lFF A is disadvantageous leading to 

physiological problems or even death to patients. Hence, a computerised DR system, 

RETINO, is developed to monitor and grade DR severity based on a F AZ analysis 

using colour retinal fundus image. This system has applied RETICA, proposed digital 

image enhancement towards the contrast of retinal blood vessels without any 

invasiveness. Two algorithms - semi-automated ar1d fully automated - are developed 

to grade DR severity. 

200 



Initially, a semi-automated DR grading algorithm combining automated and 

manual processes ofF AZ determination is developed based on CLAHE and RETICA 

for image enhancement. In grading DR, it performs four main tasks in sequence, i.e. 

image enhancement of retinal blood vessels, segmentation of retinal vessels, 

determination of F AZ and analysis of F AZ. Image enhancement is automatically 

processed based on CLAHE, followed by segmentation of retinal blood vessels based 

on Otsu's thresholding technique and FAZ determination using the obtained retinal 

blood vessel end-points. In F AZ determination, the manual process is incorporated 

using RETICA as CLAHE-based method does not always produce correct retinal 

vessel end-points due to poor image quality resulted from improper acquisition 

process. Thus, comparing vessel end-points obtained from both CLAHE and 

RETICA based on direct observation, the user, if necessary, will manually adjust 

these obtained vessel end-points for more accurate FAZ determination. Finally, the 

determined F AZ area is analysed using Gaussian Bayes classifier. 

The fully automated DR algorithm is developed based on RETICA for improving 

the DR grading system in terms of minimising user intervention. Unlike the semi­

automated DR algorithm requiring inputs several times for the algorithm by the user, 

the fully automated one offers a greater advantage enabling the user to input once 

only when selecting the centre point of the macular region prior to running the 

algorithm. Another difference between these two DR algorithms is on the indicator 

for the FAZ determination. While the semi-automated DR algorithm uses area to 

indicate the determined F AZ, the fully automated one uses radius to reduce the error 

between the F AZ obtained and the actual F AZ as a result of performing square factor 

on the radius of the F AZ assuming its area as a circle. Having been defined as half of 

the longest line connecting two detected points encircling the perimeter of macula, the 

radius of F AZ obtained eventually is analysed using Gaussian Bayes classifier to 

grade DR severity. 

To determine the FAZ ophthalmologists at present use FFA images offering high 

contrast of retinal blood vessels. With implementation of RETICA on the colour 

retinal fundus image, contrast of retinal blood vessels can be enhanced at par to that of 

the FF A image, thus, enabling the F AZ to be determined from the colour retinal 
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fundus image by detecting and connecting retinal end-points in the macular region. 

Accuracy analysis of the DR system is important to measure the accuracy of the DR 

system in determining the: F AZ from the colour retinal fundus image. Accuracy 

analysis comprises two analyses: - (1) comparing FAZ parameters (area and radius) 

obtained either from ground tmth using FFA or from the DR system, and (2) aimed 

for the fully automated DR algorithm by determining the accuracy and precision of 

the algorithm in determining the F AZ radius compared to that of in determining the 

F AZ area. Importantly, it is to show whether F AZ radius is more reliable to use than 

F AZ area as F AZ parameter. 

Observational and interventional clinical studies have been conducted to test 

clinically and evaluate the performance of the computerised DR grading system. The 

observational clinical study is to evaluate DR grading system by using digital analysis 

of colour retinal fundus images and the interventional one is to investigate 1m 

accuracy analysis of the new DR grading protocol. 

Results from observational and interventional clinical studies are presented artd 

analysed to clinically test and evaluate the performance of the computerised DR 

monitoring and grading system. From the observational clinical study, a database 

called. Fundus Image for Non .. invasive Diabetic Retinopathy System (FINDeRS) 

consisting of 315 fundus images (175 no DR, 52 mild NPDR, 32 moderate NPDR, 18 

severe NPDR and 38 PDR) :is cn!ated. Results of determination ofF AZ area and FAZ 

radius by both semi-automated and fully automated DR algorithms are analysed using 

a statistical correlation analysis. Performance of the DR algorithms in grading DR 

severity is evaluated based on agreement test and performance test. Using the 

Gaussian Bayes classifier, the range of F AZ area for each DR severity stage is 

calibrated for an optimum performance. Findings from statistical correlation analysis 

show a strong correlation between F AZ enlargement measured by DR algorithms 

from colour retinal fundus images and corresponding DR severity level graded by 

ophthalmologists. This strong correlation indicates the usability of the F AZ by the 

developed DR algorithms using colour fundus images to grade DR severity. In 

addition, results of agreement test show a strong agreement between the DR system 

and the ophthalmologists in grading of DR severity indicated by Kappa coefficient 
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Hence, the developed DR system can be effective to assist ophthalmologists for early 

DR detection, DR mass screening, and monitoring and grading of DR severity. 

Results of performance test on the developed DR system also support this statement 

in which the semi-automated DR algorithm achieves high sensitivity (> 0.84), 

specificity (> 0.97) and accuracy (0.95) for all DR stages. Moreover, high values of 

sensitivity (> 0.95), specificity (> 0.97) and accuracy (> 0.98) obtained for no DR and 

severe NPDR/ PDR stages indicate that the Gaussian Bayes classifier is suitable for 

an early detection of DR and effective for a treatment of severe cases. Moreover, the 

fully automated DR algorithm statistically achieves high sensitivity (~ 0.846), 

specificity (~ 0.905) and accuracy (~ 0.913) for most of DR stages indicating the 

potentiality of the fully automated algorithm-based DR system for early DR detection, 

DR mass screening, monitoring and grading of DR severity. 

From the interventional clinical study, of 36 fundus images (I 0 no DR and 26 any 

types of DR) used to analyse the accuracy of the computerised DR system, results 

show that the DR system error data has a small standard deviation (5.28) indicating a 

systematic error. In the actual implementation of the DR grading system, the 

systematic error has been overcome by the Gaussian Bayes classifiers. Moreover, a 

strong linear relationship between DR system and ground truth data (R 2 = 0.8769) is 

shown by regression analysis indicating a high precision. From the correlation 

analyses, the DR system has a significant and strong positive correlation coefficient 

up to 0.936 at a very high significant level (P) of less than 0.0 I. This further indicates 

accuracy and precision of the DR system in the F AZ measurement. 

The accuracy analysis also shows the significantly small mean absolute error and 

standard deviation (less than I pixel) of the fully automated DR algorithm based on 

FAZ radius indicating high accuracy and precision of the radius-based DR algorithm. 

Similarly, the regression analysis shows that the fully automated DR algorithm has 

stronger relationship with F AZ radius as parameter (R 2 = 0.9797) than that of with 

FAZ area as pararneter(R 2 = 0.8376) indicating a high precision of the DR algorithm 

in the F AZ determination. These high accuracy and precision are important as the 

measurement result will be inputted into the DR classifier. The more accurate and 
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precise the result of F AZ measurement is, the more accurate the DR grading is. 

Therefore, the DR system based on colour fundus images generally is able to provide 

an accurate and precise measurement ofF AZ enlargement. 

A non-invasive image enhancement, RETICA, has been applied on a developed 

computerised DR monitoring and grading system, RETINO. The DR system is 

developed based on two algorithms, i.e. semi-automated and fully-automated, 

clinically tested and evaluated on interventional and observational clinical studies, 

both to determine and analyse F AZ for an effective' DR monitoring and grading. 

Results show capability of the DR system to classify the DR severity levels and 

evidentially to have a strong agreement with the ophthalmologists. Based on the 

collected colour retinal fundus images in FINDeRS and developed grading protocol, 

DR grading thresholds are successfully calibrated using the F AZ areas and radius. 

The DR system achieves optimum accuracy, sensitivity ;md specificity in detecting 

DR severity needed for me,dical practice and thus enabl<:s an effective DR grading 

using colour fundus images. This new grading protocol can also be applied as an 

alternative to the current DR grading method using pathology-based direct 

ophthalmoscopy and beneficial for early detection of DR, DR mass screening, and 

monitoring and grading of DR severity. 

For future research, the data can be enlarged for further confidence of the results. 

The validity of the proposed DR grading method can be also established through 

cross-validation based on expert opinions as well as its performance to be evaluated 

for different demographic data. In the fully automated DR algorithm, the automated 

segmentation of retinal blood vessels can be further improved for a more accurate 

detection of retinal vessels <md-points. A research can also be conducted to quantify 

and standardise the quality of the acquired image prior to inputting into the algorithm. 
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6.1 Discussion 

CHAPTER6 

CONCLUSION 

Most of medical images produced by various medical imaging modalities suffer from 

the problems of varied and low contrast due to geometrical surface of the objects and 

configuration of the acquisition system. These problems may lead to inaccurate 

detection of pathologies and cause wrong diagnosis. Colour retinal fundus image 

produced by a fundus camera is one of the examples of medical images in which, 

through analysis of this medical image, some diseases related to the retina such as 

Diabetic Retinopathy (DR) can be determined. The contrast between retinal blood 

vessels and the background in colour retinal fundus images however is varied and 

very low, leading the analysis of tiny retinal blood vessels (retinal capillaries) from 

such colour fundus images to be difficult. To overcome this problem, in medical 

practice, fundus fluorescein angiography (FFA) that produces fundus angiograms 

having higher contrast of retinal blood vessels with contrast improvement factor 

(C!F) of 5.796 is used. Unfortunately, for being an invasive procedure, FFA may 

lead to physiological problems and at worst can cause death to the patients. 

The primary objective of this research is to develop a non-invasive digital imaging 

enhancement scheme that can enhance varied and low contrast medical images to be 

similar to or better than the contrast produced by invasive method (FF A) without 

introducing noise or artefacts. The significance of this research is to improve image 

quality for both direct observation and computer-based automated image analysis. 

The use of the enhanced images will increase the accuracy, sensitivity and specificity 

of the diagnosis through either direct observation or computer-assisted diagnosis 

system. In this research, a non-invasive image enhancement called RETICA was 

developed and applied in a developed computerised DR monitoring and grading 
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system called RETINO, a particular medical application to monitor and grade DR 

severity by enhancing the quality of digital colour retinal fundus image and analysing 

the FAZ. 

This research work begins by developing a non-invasive digital image 

enhancement scheme (RETICA) to enhance the varied and low contrast of retinal 

fundus images that is by normalising varied contrast using Retinex. It is then 

followed by separating the retinal pigments make-up, namely macular pigment, 

haemoglobin and melanin, using Independent Component Analysis (ICA). Due to the 

haemoglobin, independent component image exhibits higher contrast retinal blood 

vessels. Three fundus image models, i.e. varied contrast image model, low contrast 

image model and varied and low contrast image models are developed to validate and 

evaluate the perfom1ance of RETICA. The varied and low contrast fundus image 

model subsequently undergoes the RETICA process and six selected image 

enhancement methods, i.e. contrast stretching (CS), histogram equalisation (HE), 

adaptive histogram equalisation (AHE), adaptive contrast enhancement (ACE), 

contrast limited adaptive histogram equalisation (CLARE) and homomorphic 

filtering (HF) to evaluate the RETICA performance. Three criteria, namely contrast 

of retinal blood vessels ( Ca,), image contrast normalisation ( R,JJ and contrast 

improvement factor ( CJF) are set up to measure quality of the contrast-enhanced 

image. 

RETICA is applied as a part of a computerised DR system (RETINO), which is 

used to grade DR severity level based on the F AZ analysis. To implement RETICA 

for grading DR severity, two DR algorithms- semi-automated and fully-automated­

are developed. The semi-automated DR algorithm applies CLARE-based image 

enhancement method followed by automated segmentation of retinal blood vessels 

and determination of F AZ. However, since not all acquired colour retinal fundus 

images are of good quality in the implementation; RETICA is applied to further 

enhance the contrast of retinal blood vessels, especially the retinal capillaries in the 

macular region where the FAZ is located. In the semi-automated DR algorithm, 

RETICA-enhanced image which has better contrast of retinal blood vessels than that 

of the CLARE is used to determine correct vessel (md-points that have been obtained 
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by automated process usmg CLARE-enhanced image. The semi-automated DR 

algorithm which elaborates manual and automated technique to determine F AZ is 

further improved by developing the fully-automated DR algorithm. 

In the fully-automated DR algorithm, the manual correction of vessel end-points 

using RETICA-enhanced image applied in the semi-automated DR system is 

eliminated and the automated segmentation of retinal blood vessels based on 

thresholding technique is further improved by implementation of a series of digital 

filter and region-growing technique. RETICA is incorporated in the fully-automated 

DR algorithm for image enhancement prior to automated segmentation of retinal 

blood vessels and determination ofF AZ. The user through the fully-automated DR 

algorithm simply selects the centre point of the macular region prior to the beginning 

and the rest of the process of F AZ determination automatically runs. Both the 

developed DR algorithms are tested and evaluated in two studies, i.e. interventional 

and observation clinical studies. 

Results of validation study show that the proposed method successfully 

normalises the varied contrast in colour retinal fundus images with R,J, of 0.756 

better than that of the other non-invasive enhancement methods. RETICA 

outperforms other enhancement methods in producing better contrast of retinal blood 

vessels with C"' of76.83 followed by AHE, CS, HE, HF, CLARE and ACE with Ca, 

of72.66, 69.11, 68.81, 67.27, 42.81 and 21.08, respectively. Using of the green band 

image as the reference, RETICA achieves the highest contrast improvement among 

the other tested non-invasive image enhancement methods with C/F of 5.389, 

slightly lower than that of the FFA image with CIF of 5.796. Based on the results of 

the validation study, it is proven that the contrast of retinal blood vessels in the 

enhanced image obtained by RETICA has been significantly increased compared to 

the ordinary colour retinal fundus image. RETICA is then applied on a computerised 

DR system (RETINO) for grading of DR severity level based on F AZ analysis. 

Findings from observational clinical study show a strong correlation between F AZ 

enlargement measured by both DR algorithms from colour retinal fundus images and 

corresponding DR severity level graded by ophthalmologists. This strong correlation 
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indicates the usability of the FAZ by the developed DR algorithms using colour 

fundus images to grade DR severity. In addition, this indication is confirmed by 

results of agreement test showing a strong agreement between the DR system and the 

ophthalmologists in grading of DR severity. Hence, the developed DR system can be 

effective to assist ophthalmologists for early DR detection, DR mass screening, and 

monitoring and grading of DR severity. Results of performance test on the developed 

DR system also support this statement in which the semi-automated DR algorithm 

achieves high sensitivity (> 0.84), specificity (> 0.97) and accuracy (0.95) for all DR 

stages. In particular, high values of sensitivity (> 0.95), specificity (> 0.97) and 

accuracy(> 0.98) obtained for no DR and severe NPDRI PDR stages indicate that the 

Gaussian Bayes classifier is suitable for an early detection of DR and effective for a 

treatment of severe cases. For the fully-automated DR algorithm, high sensitivity (?. 

0.846), specificity(?. 0.905) and accuracy(?. 0.913) are achieved for no DR and mild 

NPDR. For moderate NPDR and severe/PDR, no conclusion is drawn due to lack of 

data images. In general, th•~ achievement of the developed DR system based on both 

semi-automated and fully-automated DR algorithms indicates a potential use of 

RETINO for early DR detection, DR mass screening, monitoring and grading of DR 

severity. 

Findings from interventional clinical study aimed for analysing the accuracy of 

the developed DR system for determining FAZ show a small standard deviation 

(5.28) of the DR system error data indicating a systematic error. In the actual 

implementation of the DR gmding system, this systematic error has been overcome by 

the Gaussian Bayes classifi·ers. Moreover, a strong linear relationship between DR 

system and ground truth data (R 2 = 0.8769) shown by regression analysis indicates a 

high precision. This achieve:ment on high accuracy and precision of the DR system in 

the F AZ measurement is further ·confirmed by results of correlation analyses in which 

the DR system has a significant and strong positive correlation coefficient up to 0.936 

at a very high significant level (P) of less than O.oJ. In particular, the analysis on 

accuracy also shows that the use ofF AZ radius as parameter has better precision than 

that of FAZ area as parameter indicated by its significantly small mean absolute error 

and standard deviation (less than I pixel) and its high coefficient of determination R 2 
• 
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Therefore, the fully-automated DR algorithm - an improvement of the semi­

automated one - uses F AZ radius as its parameter for F AZ determination. High 

accuracy and precision are important as the measurement result will be inputted into 

the DR classifier. The more accurate and precise the result of FAZ measurement is, 

the more accurate the DR grading will be. 

The developed method of non-invasive image enhancement method (RETICA) in 

general is to enhance the contrast of the very fine vessels in the macular region from 

varied and low colour retinal fundus images for an accurate determination ofF AZ in 

monitoring and grading of DR severity level, especially at its early stage. An early 

detection ofF AZ enlargement at NPDR stage will enable clinicians to advise patients 

on better metabolic control to prevent progression of the disease to PDR stage and 

loss of vision. Applying RETICA on the computerised DR system (RETINO) can 

establish a new non-invasive, simple and fast technique and can be done by non-eye 

trained healthcare providers, thus enabling a diabetic eye screening at primary 

healthcare setting. 

6.2 Contribution and Future Works 

Three major contributions could be achieved from this research. The first 

contribution is the development of the non-invasive image enhancement technique 

(RETICA), particularly for digital colour image obtained from non-invasive medical 

equipment to normalise varied contrast and increase the visible details and contrast of 

tiny biological tissues or objects of interest. This improvement in tum will avoid the 

need of applying contrasting agent on patients that can cause physiological problems 

to them. Having enhanced the contrast of retinal blood vessels in the colour retinal 

fundus image, RETICA is beneficial not only for diagnosis of retina-related diseases 

through direct observation, but also for segmentation of retinal vasculature using 

computer-based system. It moreover can be implemented as pre-processing step for 

medical image analysis to diagnose retina-related diseases. 

The second one is the development of DR system for monitoring and grading of 

DR severity based on semi-automated and fully-automated algorithms of FAZ 

209 



analysis on colour retinal fundus image in which ophthalmologists today utilise FF A 

to obtain fundus angiograms that have high contrast of retinal blood vessels against 

the background to examine FAZ in diagnosing retina-related diseases. The developed 

DR system (RETINO) incorporates RETICA to enhance the contrast of the very fme 

vessels in the macular region from varied and low colour retinal fundus images for an 

accurate determination of FAZ. 

Last but not least, the implementation of the d1:veloped technique on digital colour 

retinal fundus images and not fundus fluorescein angiograms for F AZ determination 

and measurement is also a major contribution in this research since no measurement 

ofF AZ was studied based on digital colour fundus image so far. The developed DR 

grading algorithms based on FAZ analysis is a new protocol for grading of DR 

severity, which at present uses pathology-based direct ophthalmology for daily 

practice. The development of DR grading system will be advantageous to assist 

ophthalmologists for DR mass screening and monitoring and grading of DR severity. 

For future research, the data can be enlarged for further confidence of the results. 

The validity of the propose:d DR grading method can also be established through a 

cross-validation based on expert opinions as well as its performance to be evaluated 

for different demographic data. In the fully-automated DR algorithm, the automated 

segmentation of retinal blood vessels can further be :improved for a more accurate 

detection of retinal vessels 1:nd-points. A research can also be conducted to quantify 

and to standardise the quality of the acquired image prior to inputting into the 

algorithm. RETICA at last can also be applied as a part of a medical system to solve 

other retina-related diseases. 
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APPENDIX C: RETICA ALGORITHM (MATLAB CODE) 

%RETICA 

% Input image is RGB and is processed to Retinex and followed by ICA to get 

%the results in which one of them is the haemoglobin-related component image. 

%LOAD IMAGE 

[FileName,PathName] = uigetfile('*.*','Select any RGB image'); 

y = [PathName,FileName]; 

I= imread(y); 

imgr = I(:,:,l); 

imgg = I(:,:,2); 

imgb = I(:,:,3); 

[M2 N2] = size(imgg); 

ratio= 0.4; 

% Automatic cropping by selecting centre of the macular region 

rect0ri=[(x-0.5*ratio*M2) (y-0.5*ratio*M2) (round(ratio*M2)) (round(ratio*M2))]; 

Icr = imcrop(I,rectOri); 

[xx yy] = size(Icr(:,:,2)); 

Icr = Icr(l :xx-mod(xx,2),1 :yy-mod(yy,2),:); 

figure( I 0), imshow(Icr) 

% to substitute variable Icr dengan I and transform into log 

Ircr = log( double(Icr(:,:, 1 )+1 ))/log(255); 

Igcr =log( double(Icr(:,:,2)+ 1 ))/log(255); 

Ibcr = log(double(Icr(:,:,3)+ 1))/log(255); 

maximuter = 10; 

dd=2; 
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for muter =1 :maximuter 

IrcrR2 = my3retinex_mccann99(Ircr, muter); 

IgcrR2 = my3retinex_mccann99(Igcr, muter); 

IbcrR2 = my3retinex_mccann99(Ibcr, muter); 

% Kurtosis Cropped An~a 

kur_IrcrR2 = kurtosis(nonzeros(IrcrR2(:))); 

kur_IgcrR2 = kurtosis(nonzeros(IgcrR2(:))); 

kur_IbcrR2 = kurtosis(nonzeros(IbcrR2(:))); 

kur_IcrR2(dd,l) = kur_IrcrR2; 

kur_IcrR2(dd,2) = kur_IgcrR2; 

kur_IcrR2(dd,3) = kur_TIJcrR2; 

dd=dd+l 

end 

% Select Component 

kur_IcrR2_r = kur_IcrR2(:,11); 

kur_IcrR2_g = kur_IcrR2(:,2); 

kur_IcrR2_b = kur_IcrR2(:,3); 

kur_IcrR2_max_r = find(kw:_IcrR2_r==max(kur_IcrR2_r)); 

kur_IcrR2_max_g = find(kur_IcrR2_g max(kur_IcrR2_g)); 

kur _IcrR2 _max_ b = :find(kur _IcrR2 _ b==max(kur _IcrR2 _b)); 

IrRkma = exp(my3retinex_mccann99(Ircr, kur_IcrR2_max_r)*log(255)); 

IgRkma = exp(my3retinex_mccann99(Igcr, kur_IcrR2_max_g)*log(255)); 

IbRkma = exp(my3retinex_mccann99(Ibcr, kur_IcrR2_max_b)*log(255)); 

%Output of Part 1 RETICA 
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imVCr = uint8(IrRkma); 

imVCg = uint8(IgRkma); 

im VCb = uint8(IbRkma); 

imgrl2 = im2double(imVCr); 

imggl2 = im2double(imVCg); 

imgbl2 = im2double(imVCb); 

% Input for PCA ICA 

img_in2 = [imgrl2(:) imggl2(:) imgbl2(:)]'; 

%the next process is using the FastiCA 

[img_est2, A_est2, W2]=fastica(img_in2, 'approach', 'symm', 'g', 

'tanh' 'stabilization' 'on')· 
' ' ' 

Rout2 = img_est2(1,:);Gout2 = img_est2(2,:);Bout2 = img_est2(3,:); 

% Rescale the image intensity value from min and max log into 0 to 255 

Romax2 = max(Rout2); 

Romin2 = min(Rout2); 

Ro2 = round((255*(Rout2- Romin2)/(Romax2-Romin2))); %With log 

Gomax2 = max(Gout2); 

Gomin2 = min(Gout2); 

Go2 = round((255*(Gout2- Gomin2)/(Gomax2-Gomin2))); %With log 

Bomax2 = max(Bout2); 

Bomin2 = min(Bout2); 

Bo2 = round((255*(Bout2- Bomin2)/(Bomax2-Bomin2))); %With log 

ROim2 = uint8(reshape(Ro2,M2,N2));G0im2 = uint8(reshape(Go2,M2,N2));B0im2 

= uint8(reshape(Bo2,M2,N2)); 
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%Find kurtosis for each of the components 

kur(l )=kurtosis( double(ROim2(: )) ); 

kur(2)=kurtosis( double(G0im2(:)) ); 

kur(3 )=kurtosis( double(B0im2(:)) ); 

%% Find haemoglobin-reilated image component 

[mkur pkur]=min(kur); 

ifpkur=-1 

A20=ROim2; 

end 

ifpkur--2 

A20=GOim2; 

end 

ifpkur==3 

A20=B0im2; 

end 

A21 =imcomplement( uint8(A20) ); 

if mean2(A20)>mean2(A21) 

Al=A20; 

else 

Al=A21; 

end 

imgica=Al; 

figure(20), imshow(imgica) 
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APPENDIX D: RETINO ALGORITHM (MATLAB CODE) 

% RETINO Fully-Automated 

% Input image is RGB, image is automatically cropped and is processed to RETICA 

% (Retinex and followed by ICA to get the results which one of them is the 

%haemoglobin related component image) 

% The haemoglobin related component image is inputted to segmentation 

% process by automated region growing developed based on combination of 

% Chauduri filters followed by Higgins technique. 

% The segmented vessels are inputted for F AZ determination. 

%The F AZ area is measured and inputted for DR stage classification. 

tic 

close all; 

clear all; 

clc; 

%Load Image 

[FileName,PathName] = uigetfile('*. *','Select any RGB image'); 

y = [PathName,FileName]; 

I = imread(y); 

figure(! ),imshow(I); 

[x,y] = ginput(l); 

x = round(x); 

y = round(y); 

c(l ).input= I; 

c(1 ).titik=[x,y]; 

c( 1 ).filename= FileName; 

imgr = 1(:,:,1); 

imgg = 1(:,:,2); 
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imgb = 1(:,:,3); 

[m n] = size(imgg); 

ratio= 0.4; 

% automatic cropping by selecting centre of the macular region 

rectOri=[(x-O.S*ratio*m) (y-0.5*ratio*m) (round(ratio*m)) (round(ratio*m))]; 

Icr = imcrop(I,rectOri); 

[xx yy] = size(Icr(:,:,2)); 

Icr = Icr(1 :xx-mod(xx,2),1 :yy-rnod(yy,2),: ); 

figure(10), imshow(Icr) 

% substitute variable Icr with I and transform into log 

Ircr = log(double(Icr(:,:,1)+1))/log(255); 

Igcr =log( double(Icr(:,:,2)+ 1 ))/log(255); 

Ibcr =log( double(Icr(:,:,3)+ 1 ))/log(255); 

[M2 N2] = size(Igcr); %Size of cropped image 

maximuter = 40; 

dd=2; 

for muter = 1 :maximuter 

IrcrR2 = my3retinex _ mcc:ann99(Ircr, muter); 

IgcrR2 = my3retinex_mccann99(Igcr, muter); 

IbcrR2 = my3retinex_mccann99(Ibcr, muter); 

% Kurtosis Cropped Area 

kur_IrcrR2 = kurtosis(nonzeros(IrcrR2(:))); 

kur_IgcrR2 = kurtosis(nonzeros(IgcrR2(:))); 

kur_IbcrR2 = kurtosis(nonzeros(IbcrR2(:))); 

kur_IcrR2(dd,1) = kur_IrcrR2; 

kur_IcrR2(dd,2) = kur_IgcrR2; 
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kur_IcrR2(dd,3) = kur_IbcrR2; 

dd=dd+l; 

end 

% Select Component 

kur_IcrR2_r = kur_IcrR2(:,1); 

kur_IcrR2_g = kur_IcrR2(:,2); 

kur_IcrR2_b = kur_IcrR2(:,3); 

kur_IcrR2_max_r = find(kur_IcrR2_r=max(kur_IcrR2_r)); 

kur_IcrR2_max_g = find(kur_IcrR2_g==max(kur_IcrR2_g)); 

kur_IcrR2_max_b = find(kur_IcrR2_b--max(kur_IcrR2_b)); 

IrRkma = exp(my3retinex_mccann99(Ircr, kur_IcrR2_max_r)*log(255)); 

IgRkma = exp(my3retinex_mccann99(Igcr, kur_IcrR2_max_g)*log(255)); 

IbRkma = exp(my3retinex_mccann99(Ibcr, kur_IcrR2_max_b)*Iog(255)); 

% Output ofPart I RETICA 

imVCr = uint8(IrRkma); 

im VCg = uint8(IgRkma); 

imVCb = uint8(IbRkma); 

imgrl2 = im2double(imVCr); 

imggl2 = im2double(imVCg); 

imgbl2 = im2double(im VCb ); 

% Input for PCA ICA 

img_in2 = [imgrl2(:) imggl2(:) imgbl2(:)]'; 

[img_est2, A_est2, W2]=fastica(img_in2, 'approach', 'symm', 'g', 

'tanh' 'stabilization' 'on')· , , , 
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Rout2 = img_est2(1,:);Gout2 = img_est2(2,:);Bout2 = img_est2(3,:); 

%Rescale the image intensity value from min and max log into 0 to 255 

Romax2 = max(Rout2); 

Romin2 = min(Rout2); 

Ro2 = round((255*(Rout2- Romin2)/(Romax2-Romin2))); %With log 

Gomax2 = max(Gout2); 

Gomin2 = min(Gout2); 

Go2 = round((255*(Gout2- Gomin2)/(Gomax2-Gomin2))); %With log 

Bomax2 = max(Bout2); 

Bomin2 = min(Bout2); 

Bo2 = round((255*(Bout2- Bomin2)/(Bomax2-Bomin2))); %With log 

% Bo2 = Bout2; %No log 

ROim2 = uint8(reshape(Ro2,M2,N2));GOim2 = uint8(reshape(Go2,M2,N2));B0im2 

= uint8(reshape(Bo2,M2,N2)); 

% Find kurtosis for each of the components 

kur(l) = kurtosis(double(R0im2(:))); 

kur(2) = kurtosis(double(G0im2(:))); 

kur(3) = kurtosis(double(B0im2(:))); 

%% Find hemoglobin image 

[mkur pkur] = max(kur); 

ifpkur==l 

A20=ROim2; 

end 

ifpkur==2 
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A20=G0im2; 

end 

ifpkur==3 

A20=B0im2; 

end 

A21 =imcomplement( uint8(A20) ); 

if mean2(A20)>mean2(A21) 

AI =A20; 

else 

Al=A21; 

end 

imgica =AI; 

figure(19), 

subplot(231 ),imshow(im VCr),title('RETICA pI RB'); 

subplot(232),imshow(imVCg),title('RETICA pi GB'); 

subplot(233),imshow(imVCb),title('RETICA p1 BB'); 

subplot(234),imshow(ROim2),title('IC 1'); 

subplot(235),imshow(G0im2),title('IC 2'); 

subplot(236),imshow(BOim2),title('IC 3'); 

figure(20), 

subplot(131 ),imshow(ROim2),title('IC 1'); 

subplot(132),imshow(G0im2),title('IC 2'); 

subplot(133),imshow(BOim2),title('IC 3'); 

figure(30), imshow(imgica), title('Haemoglobin-related component image'); 

figure(3 5), 

255 



subplot(331 ), imshow(Ircr), title('Red band'); 

subplot(334), imshow(Igcr), title('Green band'); 

subplot(337), imshow(Ibcr), title('Blue band'); 

subplot(132), imshow(imVCg), title('RETICA p1 GB'); 

subplot(133), imshow(imgica), title('RETICA p2 Haemo'); 

figure(3 7), 

subplot(131 ), imshow(Igcr), title(' Green band'); 

subplot(132), imshow(im VCg), title('RETICA p 1 GB'); 

subplot(133), imshow(imgica), title('RETICA p2 Haerno'); 

%% Segmentation of retinal blood vessels 

bufl =[]; 

buf2=[]; 

buf3=[]; 

% 12 matched filters analysis 

load(' 12cha04.mat') 

% Procedure to find blood vessel 

for i=1:12 

bufl (i).image = conv2(im2double(A1 ),fil(i).image,'same'); 

buf2 = reshape(bufl(i).image,1,[]); 

buf3 = [buf3;buf2]; 

end 

%Find max response from 12 filtered images 

buf4 = max(buf3); 

buf4 = reshape(buf4,M2,N2); 

mn = min(min(buf4)); 

bufS = buf4-mn; 
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mx = max(max(buf5)); 

buf6 = round(buf5/mx*255); 

buf7 = uint8(buf6); 

% Generate seeds 

thh = mean2(buf7); 

buf8 = im2bw(buf7,(thh)/255); 

figure( 40), 

subplot(l21 ),imshow(imgica), title('Haemoglobin-related component image'); 

subplot(122),imshow(buf4,[]),title('Output from Chauduri filter'); 

buf4_img = imagestretchminrnax(buf4); 

buf9 = 400*buf8; 

buf9 = double(buf9); 

out2 = imadd(buf9,double(buf7)); 

[xlist,ylist,BW] = HigginsPoints1107(buf8,double(buf7)); 

% Region growing 

A2 = imcomplement(Al); 

[ output2,outPlus,outMinus,intPoint] = ngalusin2(buf7 ,ylist,xlist); 

output4 = imadd( double(A2), I OO*output2); 

% figure(1236),subplot( 121 ),imshow( output2,[]),title('Output '); 

% figure(1236),subplot( 122),imshow( output4,[]); 

%toe 

% 

mnl = min(min(output2)); 

output2 _ buf = output2-nml; 
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mxl = max(max(output2_buf)); 

output3 = round(output2_bu£'mxl *255); 

output3 = uint8( output3); 

%% Procedure to find end points of blood vessels 

[labTitik posTitik] = fitur _II 07( output2); 

[endObjects imgEndPoints] = fltr_ll07(1abTitik,posTitik); 

pTitik = 60; 

[ areaNonLingkaran imgConnect BW2 

listEndPoints ]=akhiro _II 07(buf7 ,imgEndPoints,pTitik); 

out3 = imadd(output4,double(imgConnect)); 

figure( 60), 

subplot(131 ),imshow(imgEndPoints,[]),title('End-points detection'); 

subplot( 13 2),imshow( imgConnect, []), title('End -points connection'); 

subplot(133),imshow( out3,[]),title('FAZ area obtained'); 

imgEndPoints_img = imagestretchminmax(imgEndPoints); 

imgConnects _img = imagestretchminmax(imgConnect); 

out3_img = imagestretchminmax(out3); 

xk = listEndPoints(:,l); 

yk = listEndPoints(:,2); 

[t top tlow thigh radius] = ttbarull 07( out3,xk,yk,rect0ri); 

[ul u2] = size(out3); 

Z2 = zeros(ul ,u2); 

%%The FAZ area 

Z2 = func _ Drawline(Z2,tlow(l ),tlow(2),thigh(l ),thigh(2), 160); 
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Z3 = imadd(Z2,out3 ); 

radiusF AZ=radius; 

areaF AZ=areaNonLingkaran; 

kurt_r = kur_IcrR2_max_r-1; 

kurt_g = kur_IcrR2_max_g-1; 

kurt_b = kur_IcrR2_max_b-1; 

figure(70), 

imshow(Z3,[]),title(['FAZ with radius is ',num2str(radius),' pixels and area is 

',num2str(areaNonLingkaran),' pixels']) 

Z3_img = imagestretchminmax(Z3); 

kurr = kur_IcrR2_max_r-1; 

kurg = kur_IcrR2_max_g-l; 

kurb = kur_IcrR2_max_b-l; 

radiusFAZ; 

areaFAZ; 

X' , 

y; 

d(l )=radiusF AZ; 

d(2)=areaF AZ; 

d(3)=x; 

d(4)=y; 

d(5)=kurt_r; 

d( 6)=kurt _g; 

d(7)=kurt _ b; 

e(i, 1 ).output=imgica; 

e(i,2).output=output4; 

e(i,3).output=out3; 
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e(i,4 ).output=Z3; 

toe 
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APPENDIXG: 

A KERNEL USED IN THE SEGMENTATION OF RETINAL BLOOD VESSELS 

(SECTION 5.3.2) 
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