Performance Evaluation of Hollow Fiber Membrane

for Carbon Dioxide Separation: An Experimental Approach

by

CHENG SYN YANG 11114

Dissertation submitted in partial fulfilment of

the requirements for the

Bachelor of Engineering (Hons)

(Chemical Engineering)

SEPT 2012

Universiti Teknologi PETRONAS Bandar Seri Iskandar 31750 Tronoh Perak Darul Ridzuan

CERTIFICATION OF APPROVAL

Performance Evaluation of Hollow Fiber Membrane

for Carbon Dioxide Separation: An Experimental Approach

by

CHENG SYN YANG

A project dissertation submitted to the Chemical Engineering Programme Universiti Teknologi PETRONAS In partial fulfilment of the requirement for the BACHELOR OF ENGINEERING (Hons) (CHEMICAL ENGINEERING)

Approved (Dr. Lau Kok Keong)

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

SEPT 2012

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the original work is my own except as specified in the references and acknowledgements, and that the original work contained herein have not been undertaken or done by unspecified sources or persons.

29/8/12

(CHENG SYN YANG)

ABSTRACT

This report outlines the background of the project "Performance Evaluation of Hollow Fiber Membrane for Carbon Dioxide Separation: An Experimental Approach". Due to the fact that carbon dioxide (CO_2) is present in all natural gas sources worldwide, there is much attention placed on the efficiency in separating CO_2 from natural gas. Recent developments have discovered the benefits of utilizing membrane for this purpose.

The scope of this study is on the performance of hollow fiber in removing carbon dioxide with respect to the variations in pressure, composition, feed gas flow and membrane area or better represented as number of hollow fibers used in a membrane module. The procedures are conducted in the Research Centre for Carbon Dioxide Capture (RCCO₂C) with the Carbon Dioxide Separation Membrane Unit (CO₂SMU). The performance is evaluated based on experimental approach and the results are to be analyzed and discussed with reference to previous works as well as separation theories and principles.

In the first chapter, a general introduction is given on the separation techniques available in the current market which is followed by the problem statement on the drawbacks of the conventional separation techniques, of which supports the use of membrane for CO_2 capture. Next, the objectives and the scope of this study are defined.

In the following chapter, literature review is conducted to find out on membrane separation technology including general principles, key characteristics of membrane, its classifications, separation theories and principles, as well as the benefits of membrane for separation processes.

In Chapter 3, the general approach on the conduct of this study is illustrated, which generally summarizes the scope of work for this project. Also, the experimental procedures are illustrated in a detailed manner to ensure that the steps are that required to obtain satisfacatory results. Besides, all the chemicals required are also listed while each the equipments in the setup are defined for its function and purpose.

Next, reports on the findings of the experiments are illustrated. The experimental parameters conducted in the study includes pressure, feed composition, feed gas flow as well as membrane area. It was found that the stage cut and the selectivity of the membrane increases with pressure and feed composition while these two parameters shows a decrease when the feed gas flow rate is increased. Generally, the number of fibers used does not affect the selectivity of the membrane but the stage cut of the membrane is largely increased when the number of fibers used is increased. In terms of permeance, it was found that the gas permeance increases with increasing feed composition, feed gas flow rate as well as number of fibers or membrane area but decreases with increasing feed pressure.

Last but not least, the conclusion of this report summarizes the document as a whole together with the obtained results of this experimental work, in terms of the focus of this study, which is the effect of pressure, feed gas flow, CO_2 composition, and number of fibers in a module on the performance of the hollow fiber membrane.

ACKNOWLEDGEMENT

First and foremost, I would like to express my thankfulness and gratitude to my Final Year Project (FYP) Supervisor, Dr. Lau Kok Keong from the Chemical Engineering Department of Universiti Teknologi PETRONAS for his valuable guidance and assistance throughout the project. Dr Lau has inspired me greatly to work in this project and at the same time giving constructive comments and advice that provided the motivation to make this project a successful one.

Besides, I would also like to thank all the FYP coordinators, who consistently provided me with information on this project such as providing advice on issues students faced, conducting briefing sessions on thesis writing and so on. There were also constant reminders being posted on E-Learning providing guidelines and reminders on the datelines for submissions of documents.

Apart from that, I would also like to thank the Management of Universiti Teknologi PETRONAS, especially the Chemical Engineering Department for providing the facilities such as the pilot plant (RCCO₂C) for my research purpose as well as experienced technicians for the great assistance during conduct of the experiments. Also, gratitude are extended my family members for their unconditional love and support throughout the process of completing the project.

Last but not least, I would like to thank all those whose names were not mentioned above that contributed directly or indirectly in any respect during the completion of this project, realizing the restriction of this written page. However, your assistance, advice and guidance are greatly appreciated.

Thank you all.

TABLE OF CONTENTS

Contents

CERTI	FICATION OF APPROVALi
CERTII	FICATION OF ORIGINALITYü
ABSTR	4CTiii
TABLE	OF CONTENTS
LIST O	F TABLES
LIST O	F FIGURES
СНАРТ	`ER 11
INTRO	DUCTION
1.1	Background1
1.2	Problem Statement
1.3	Objective
1.4	Scope of Study
СНАРТ	ER 2
LITER	ATURE REVIEW
2.1	Introduction on Membrane
2.2	Classification of Membrane Processes7
2.3	General Hollow Fiber Membrane Characteristics
2.4	Advantages of CO ₂ Separation using Hollow Fiber Membrane
2.5	Membrane Separation Principles
2.5	.1 Permeability
2.5	.2 Selectivity
2.5	.3 Stage Cut
2.5	.4 Mass Transfer Rate of CO ₂
2.5	.5 Methane Recovery
СНАРТ	°ER 3
METH	DDOLOGY
3.1	Scope
3.2	Research Methodology
3.3	Experimental Parameters

3.4	Specifications of the Hollow Fiber & Membrane Module	16
3.5	Preparation of Hollow Fibers and Membrane Module	16
3.6	Experimental Setup	
3.7	Experimental Procedure	
3.8	Tools	21
3	3.8.1 Chemicals	21
3	3.8.2 List of Equipment and their Functions	21
3.9	Process Flow Diagram	25
3.10	0 Process Parameter Monitoring Tool for CO ₂ SMU	
3.1	1 Key Milestone & Gantt Chart	27
3	3.11.1 Key Milestone	
3	3.11.2 Gantt Chart	
CHA	PTER 4	
CHAI RESU	PTER 4 ULTS & DISCUSSION	29
CHAI RESU 4.1	PTER 4 ULTS & DISCUSSION Effects of Feed Gas Pressure	
CHAI RESU 4.1 4.2	PTER 4 ULTS & DISCUSSION Effects of Feed Gas Pressure Effects of Feed Gas Composition	
CHAJ RESU 4.1 4.2 4.3	PTER 4 ULTS & DISCUSSION Effects of Feed Gas Pressure Effects of Feed Gas Composition Effects of Feed Gas Flow Rate	
CHAJ RESU 4.1 4.2 4.3 4.4	PTER 4 ULTS & DISCUSSION Effects of Feed Gas Pressure Effects of Feed Gas Composition Effects of Feed Gas Flow Rate Effects of Number of Fibers/Membrane Area	
CHAI RESU 4.1 4.2 4.3 4.4 CHAI	PTER 4 ULTS & DISCUSSION Effects of Feed Gas Pressure Effects of Feed Gas Composition Effects of Feed Gas Flow Rate Effects of Number of Fibers/Membrane Area PTER 5	
CHAI RESU 4.1 4.2 4.3 4.4 CHAI CON	PTER 4 ULTS & DISCUSSION Effects of Feed Gas Pressure Effects of Feed Gas Composition Effects of Feed Gas Flow Rate Effects of Feed Gas Flow Rate Effects of Number of Fibers/Membrane Area PTER 5 CLUSIONS & RECOMMENDATIONS	29
CHAI RESU 4.1 4.2 4.3 4.4 CHAI CON REFE	PTER 4 ULTS & DISCUSSION Effects of Feed Gas Pressure Effects of Feed Gas Composition Effects of Feed Gas Flow Rate Effects of Feed Gas Flow Rate Effects of Number of Fibers/Membrane Area PTER 5 CLUSIONS & RECOMMENDATIONS ERENCES	
CHAI RESU 4.1 4.2 4.3 4.4 CHAI CONO REFE APPE	PTER 4 ULTS & DISCUSSION Effects of Feed Gas Pressure Effects of Feed Gas Composition Effects of Feed Gas Composition Effects of Feed Gas Flow Rate Effects of Feed Gas Flow Rate Effects of Number of Fibers/Membrane Area PTER 5 CLUSIONS & RECOMMENDATIONS ERENCES ENDIX	
CHAI RESU 4.1 4.2 4.3 4.4 CHAI CONU REFE APPE A.	PTER 4 ULTS & DISCUSSION Effects of Feed Gas Pressure Effects of Feed Gas Composition Effects of Feed Gas Composition Effects of Feed Gas Flow Rate Effects of Feed Gas Flow Rate Effects of Number of Fibers/Membrane Area PTER 5	
CHAI RESU 4.1 4.2 4.3 4.4 CHAI CONO REFE APPE A. B.	PTER 4 ULTS & DISCUSSION Effects of Feed Gas Pressure Effects of Feed Gas Composition Effects of Feed Gas Composition Effects of Feed Gas Flow Rate Effects of Feed Gas Flow Rate Effects of Number of Fibers/Membrane Area PTER 5 CLUSIONS & RECOMMENDATIONS ERENCES ENDIX	

LIST OF TABLES

Table 1: Membrane Processes Classification	7
Table 2: Separation Techniques and their Range of Specific Area	9
Table 3: Separation Techniques and their Range of Energy requirement	9
Table 4: Experimental Parameters with its range	16
Table 5: Specifications of the Hollow Fiber & Membrane Module	16
Table 6: Chemicals Required and its Specifications	21
Table 7: List of Equipments	21
Table 8: Key Milestone of FYP II	27

LIST OF FIGURES

Figure 1: Spiral Wound Membrane Element	6
Figure 2: Hollow-Fiber Membrane Element	6
Figure 3: Schematic of Membrane Gas Separation	10
Figure 4: Schematic Representation of CH ₄ and CO ₂	12
Figure 5: Hollow Fiber and Membrane Module Preparation Steps	17
Figure 6: Carbon Dioxide Separation Membrane Unit (CO2SMU)	
Figure 7: Membrane module with Feed, Permeate and Retentate Streams .	
Figure 8: Process Flow Diagram of the Experimental Setup	25
Figure 9: Process Parameter Monitoring Tool for CO ₂ SMU	26
Figure 10: Effect of feed pressure on Selectivity and Stage Cut at 35 ^o C, 50)% CO ₂ /50%
CH ₄ composition, flow of 6 SLPM with 15 fibers	
Figure 11: Effect of feed pressure on CO ₂ and CH ₄ Permeance at 35 ^o C, 50	1% CO ₂ /50%
CH ₄ composition, flow of 6 SLPM with 15 fibers	
Figure 12: Effect of feed composition on Selectivity and Stage Cut at 35%	C, pressure of
5 bar, flow of 6 SLPM with 15 fibers	
Figure 13: Effect of feed composition on CO ₂ and CH ₄ Permeance at 35 ^o C	, pressure of
5 bar, flow of 6 SLPM with 15 fibers	

CHAPTER 1

INTRODUCTION

1.1 Background

The hike in the emission of carbon dioxide (CO_2) and the resulting environmental impacts has driven the development of sustainability as well as Carbon Capture and Storage (CCS). Fossil fuels are with 86% the dominant energy source utilized in the world where more than one-third of the CO₂ emissions come from the combustion of fossil fuels in power plants worldwide while the emission of CO₂ associated with the use of CH₄ is more than significant.

Natural gas (NG) is a vital component of the world's supply of energy. It is one of the cleanest, safest, and most useful types of energy sources. In recent years, due to the sharp increase in the price of oil, natural gas and processes related to its purification have attracted more attention than before. The increasing world-wide demand for energy has resulted in the exploration of NG with higher contamination of CO_2 as the number of easily accessible and NG sources containing low percentage of CO_2 is very limited.

The main sources of commercial CO_2 emissions include synthetic ammonia and hydrogen plants, flue gas from fossil fuel combustion processes, fermentation, lime-kiln operations, sodium phosphate manufacture, and natural gas wells (Othmer, 1999). There are in fact three incentives in removing carbon dioxide from a process stream. Firstly, it can be removed from a valuable product gas, such as hydrogen where it is emitted to the atmosphere as a waste by-product. Secondly, the recovered CO_2 from process gas, such as in ethanol production, can be marketed as a saleable product. Thirdly, CO_2 is recovered simply to prevent it from being released to the atmophere but this necessarily requires sequestration of the recovered CO₂ (Ritter & Ebner, 2004).

Besides its environmental impacts of global warming, CO_2 poses drawbacks such as reducing the heating value of natural gas. CO_2 by nature displays acidic characteristic that can lead to severe corrosions in equipments and pipelines in processing plants. The allowable CO_2 content in pipelines is marked at 2-5% while for Liquefied Natural Gas (LNG) applications, the content must be reduced to 50-100ppm, as they will freeze under cryogenic temperatures. This makes the removal of CO_2 from natural gas of crucial importance. Hence, development efforts are underway to improve the efficiency of separation processes to mitigate CO_2 emissions.

 CO_2 separation technologies varies from techniques such as reversible solvent absorption using alkanoamines, molecular sieve adsorption, cryogenic distillation and more recently, membrane separation. The most widely used technique for removing carbon dioxide is absorption into alkanolamines solutions in classical contactor equipments. However, besides occupying huge spaces, these processes require high initial investment costs. Membrane technology is considered as an alternative technology which can potentially overcome the operational shortcomings encountered in traditional processes such as entrainment and flooding at high flowrates and reduces considerably the foaming effects (Noureddine Boucif 2011).

The current market depicts that the membrane market devoted to CO_2 separation from natural gas is about 20% which is only 2% of the total separation markets for natural gas. Amine-based absorption processes dominates the market. However, membranes are used in situations where the produced gas contains high levels of CO_2 . In spite of this, the membrane must be protected from heavier heavy hydrocarbon such as C_{5+} , which can immediately degrade the performance and can cause irreversible damage to the membranes. Currently, membrane units has seen a number of applications such as for H_2 purification in reforming processes by UOP and Air Products and Chemicals and is seen to be a promising alternative to the other technologies with acticipated improvements and breakthroughs in membrane development which will lead to significant reductions in energy consumption, environmental impacts and feedstock requirements, and therefore considerable improvements in the process economics (Ritter & Ebner, 2004).

1.2 Problem Statement

With the limited sources of natural gas with low CO_2 content, it is then inevitable that exploration of lower quality sources must be done to keep up with the energy demand. It is then of crucial importance to remove the carbon dioxide content in the natural gas efficiently to an acceptable range so as to protect plant equipments, at a minimal cost. Also, the U.S. Department of Energy has shown that the separation of CO_2 represents 75% of the overall cost associated with its separation, storage, transport, and sequestration. Hence, more energy-efficient CO_2 separation processes are needed.

Current carbon dioxide capture techniques suffer from problems such as flooding, foaming, entraining, channeling, as well as high capital and operating costs (Sutrasno Kartohardjono 2009; Moradi 2010; Majid Mahdavian 2012). The most prominent capture technology is based on liquid-gas column absorption involving chemisorption of the CO_2 into aqueous alkanolamine solutions, such as monoethanolamine (MEA) and monodiethanolamine (MDEA). However, in this technology, there is an intensive energy requirement for solvent regeneration using steam to strip off the carbon dioxide, often using a kettle reboiler (Ryan P. Lively 2009). Besides, losses of the absorbent is also inevitable due to the evaporation at high temperatures which adds to the operating cost for solvent make-up.

Therefore, there is an urge for the development of separation technologies that could overcome the drawbacks in the conventional techniques and one of the promising techniques is the use of polymeric hollow fiber membrane which offers several obvious advantages compared to the earlier technologies.

1.3 Objective

To evaluate the performance of the polyimide hollow fiber membrane under different experimental conditions of pressure, feed composition (CO₂-CH₄), feed gas flow and number of fibers in a module.

1.4 Scope of Study

For this experimental study, the scope includes the fabrication of the hollow fiber membrane module whereas the focus is to study the effects of pressure, feed gas composition, feed gas flow as well as the membrane area on the performance of the hollow fiber. A binary system of CO_2/CH_4 is studied where carbon dioxide is to be removed from methane. The effects on the performance of the polyimide hollow fiber membrane is studied by varying the experimental parameters of pressure, feed composition, feed gas flow and number of fibers in a module. The results are presented in terms of quantitative measure (stage cut) as well as qualitative measure (selectivity and permeance) as an evaluation of the performance of the hollow fiber membrane.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction on Membrane

Membrane-based CO_2 removal systems have become an established technology in the oil and natural gas industry (David R. Koch). The first use of membrane for carbon dioxide removal is in 1981 which initially had slow acceptance and is limited to smaller streams due to the economic risks. However, the multiple benefits of membrane technology have been proven in a wide variety of installations in locations around the world (David Dortmumdt 1999).

Membranes are thin semipermeable barriers that selectively separate some compounds from others. There are basically two types of polymeric membranes, namely glassy and rubbery. The glassy polymeric membranes have a glass transition temperature that is higher than room temperature. On the other hand, the rubbery polymeric membranes have a glass transition temperature that is well below room temperature. In most industrial applications, the glassy polymeric materials are preferred as opposed to their rubbery counterparts because of their superior mechanical properties and overall permeability-selectivity tradeoffs. Common glassy polymeric materials are such as cellulose acetate, polysulfones, polyimides, polyaramides, polyetherimide and polycarbonates.

The most widely used and tested material is cellulose acetate. Polyimide has some potential in certain CO_2 removal applications due to its thermal, chemical and plasticization resistance and considerably high mechanical strength, but it has not received sufficient testing to be used in large applications. Both permeability and

selectivity are important considerations when selecting a membrane. The higher the permeability, the less membrane area is required for a given separation and therefore the lower the system cost. The higher the selectivity, the lower the losses of hydrocarbons as CO_2 is removed and therefore the higher the volume of salable product. Highly permeable materials are often low in selectivity, and vice versa due to the permeability-selectivity tradeoff, though achieving this combination is a constant goal for membrane scientists (David Dortmumdt 1999).

The membrane used in gas separation are manufactured either in the form of flat sheet or hollow fibers (85% of the market). The flat sheets are typically combined into a spiralwound element, and the hollow fibers are combined into a bundle similar to a shell and tube heat exchanger (David Dortmumdt 1999). In this document however, the focus would be on the hollow fiber membrane as the scope of the study involves investigation on the performance of hollow fiber membrane under different experimental parameters. The element types of membranes are illustrated in the figures that follows.

Figure 1: Spiral Wound Membrane Element

Figure 2: Hollow-Fiber Membrane Element

Adopted from "Recent Developments in CO2 Removal Membrane Technology" by Dortmundt & Doshi (1999).

2.2 Classification of Membrane Processes

In membrane separation, separation occurs by the membrane controlling the rate of movement of various molecules between two liquid phases, two gas phases, or a liquid and a gas phase. The two fluid phases are usually miscible and the membrane barrier prevents actual, ordinary hydrodynamic flow. The table on the following page summarizes the main types of membrane separation processes.

Membrane Processes	Description
Gas diffusion in porous solid	 A gas phase is present on both sides of the membrane, which is a microporous solid. The rate of molecular diffusion depends on the pore size and molecular weight.
Liquid permeation or dialysis	 The small solutes in one liquid phase diffuse readily because of concentration differences through a porous membrane to the second liquid/vapour phase. Passage of large molecules through the membrane is more difficuly.
Gas permeation in a membrane	 The membrane is usually a polymer such as rubber, polyamide and so on, and is not a porous solid. The solute gas first dissolves in the membrane and then diffuses in the solid to the other gas phase and separation occurs as each type of molecule diffuses at a different rate through the membrane.
Reverse osmosis	 A membrane, which impedes the passage of a low-molecular-weight solute, is place between a solute-solvent solution and a pure solvent. The solvent diffusses into the solution by osmosis and in reverse osmosis, a reverse pressure difference is imposed which causes the flow of solvent to reverse, as in the desalination of seawater.
Ultrafiltration membrane process	 Pressure is used to obtain a separation of molecules by means of a semipermeable polymeric membrane. The membrane discriminates based on the molecular size, shape, or chemical structure and separates relatively high-molecular-weight solutes such as proteins, polymers, colloidal materials such as minerals, etc.

apple 1: wiemprane processes Classification	Table 1:	Membrane	Processes	Classification
---	----------	----------	-----------	----------------

Microfiltration	- Pressure-driven flow through the membrane is used to		
membrane	separate micron-size particles from fluids which are typically		
process	larger than those in ultrafiltration.		
Gel permeation chromotography	 The porous gel retards the diffusion of the high-molecular-weight solutes whereby the driving force is concentration. This process is useful in analyzing complex chemical solutions and in the purification of very specialized and/or valuable components. 		

2.3 General Hollow Fiber Membrane Characteristics

Hollow fibes are similar to a tube with very small diameter and often, the inside diameter of the fibers is in the range of $100 - 500 \mu m$ and the outside diameter is in the range of $200 - 1000 \mu m$, with length up to 3 - 5 m. Thousands of fine tubes are bound together at each end into a tube sheet that is surrounded by a metal shell having a diameter of 0.1 - 0.2 m, so that the membrane area per unit volume is up to $10,000m^2/m^3$. A typical large industrial permeator has fibers of $200 \mu m$ ID and $400 \mu m$ OD in a shell of 6 inch inner diameter and with length of 10 ft.

Typically, the high-pressure feed enters the shell side at one end and leaves at the other end. The hollow fibers are closed at one end of the tube bundles, commonly sealed with epoxy. The permeate gas inside the fibers flows countercurrent to shell-side flow and is collected in a chamber where the open ends of the fibers terminate. Then, the permeate exits the device. In some lower pressure operations, such as separation of air to produce nitrogen, the feed enters inside the tubes (Geankoplis, 2003).

2.4 Advantages of CO₂ Separation using Hollow Fiber Membrane

Unlike conventional CO_2 separation techniques using columns such as packed and tray towers, bubble columns, venture scrubbers and spray towers, membrane contactor has several obvious advantages. These include higher mass transfer rates, known and constant interfacial area, easy scale-up due to its modular design, no operational problems such as foaming, flooding and entrainment, as well as lower capital and operating cost. By forming the membranes as hollow fibers, a very compact unit can be made with a specific area $1600-6500 \text{ (m}^2/\text{m}^3)$, which is higher than $30-330 \text{ (m}^2/\text{m}^3)$ offered by packed/tray towers and $160-500 \text{ (m}^2/\text{m}^3)$ for mechanically agitated columns. Although the membrane wall introduces an additional resistance, which does not exist in conventional towers, the higher and fixed surface area in this type of modules offers much higher mass transfer rates (P. Keshavarz 2007), which all leads to significant operational and capital cost savings.

Besides, the membrane separation of CO_2 requires relative low energy consumption comparing to absorption or distillation type. Khoo and Tan (2006) stated that membrane technology uses 70-75 kWh per ton of recovered CO_2 compared to significantly higher values for pressure swing adsorption (160-180 kWh), cryogenic distillation (600-800 kWh) or amine absorption (330-340 kWh), making membrane technology an attractive alternative. It can be operated easily and inexpensively since it is a physical separation mechanism. Also, it is suitable to apply in a small-to-medium scale of CO_2 separation process (Dae-Hwan Lee 2004). These figures can be better compared in Table 2 and Table 3.

Separation Techniques	Specific Area (m ² /m ³)
Hollow Fiber	16006500
Packed/tray towers	30330
Mechanically agitated columns	160-500

Table 2: Separation Techniques and their Range of Specific Area

Table 3: Separation Techniques and their Range of Energy requirement

Separation Techniques	Energy requirement/ton of recovered CO ₂ (kWh)
Membrane	70-75
Pressure swing adsorption	160-180
Cryogenic distillation	600-800
Amine absorption	330-340

2.5 Membrane Separation Principles

Membranes act as filters to separate one or more gases from a feed mixture and generate a specific gas rich permeate. Two characteristics which dictates membrane performance is permeability and selectivity. Permeability refers to the flux of a specific gas through the membrane while selectivity is the membrane's preference to pass one gas species and not the other (Colin A. Scholes 2007). A schematic diagram of membrane gas separation is shown below:

Figure 3: Schematic of Membrane Gas Separation

Adopted from "Carbon Dioxide Separation through Polymeric Membrane Systems for Flue Gas Applications" by Scholes et al. (2008).

Fick's Law, as shown below, is widely used to approximate the solution-diffusion process:

$$J = \frac{k \times D \times \Delta p}{l}$$

where,

J = membrane flux of CO_2 , that is, the molar flow of CO_2 through the membrane per unit area of membrane.

k = solubility of CO_2 through the membrane

 $D = diffusion coefficient of CO_2 through the membrane$

- Δp = partial pressure difference of CO₂ between the feed (high pressure) and permeate (low pressure) side of the membrane
- l =membrane thickness

2.5.1 Permeability

In general, the relationship between permeability, diffusivity and solubility in an ideal case can be described by:

$$P = D.S$$

where,

P = the permeability coefficient
$$[cm^{3}(STP)cm^{2}s^{-1}cmHg^{-1}]$$
.

D = the diffusivity coefficient $[cm^2 s^{-1}]$

S = the solubility coefficient $[cm3(STP)cmHg^{-1}]$

The solubility and diffusion coefficients are usually combined into a new variable called *permeability* (P). Fick's law can therefore be split into two portions; a membranedependent portion, (P/l) and a process-dependent portion, (Δp). Hence, in order to achieve a high flux, the correct membrane material and the correct process conditions are needed. Note that P/l is not a constant; it is sensitive to a variety of operating conditions such as temperature and pressure (Dortmumdt, 1999).

For ideal gases, the permeability is related to the gas permeation rate though the membrane (Q), the surface area of the membrane (A), the thickness of the membrane, l and the driving force for separation, the pressure difference across the membrane (Δp).

$$\frac{P}{l} = \frac{Q}{A.\,\Delta p}$$

In our binary gas system, CO_2 is more condensable and more polar than CH_4 and a higher CO_2 solubility in the polymer membrane can be expected. As for diffusivity, it is influenced by the size of the gas molecules and the diffusion coefficient decreases with increasing kinetic diameter of the gas. As can be seen from the figure below, the diameter of CO_2 is smaller compared to CH_4 which aids the diffusivity across the membrane. In fact, the linear orientation of the carbon dioxide molecule also aids in the diffusion through the membrane.

Figure 4: Schematic Representation of CH4 and CO2

Adopted from "Membrane Technologies for CO2 Capture", by Simon (2010).

Membranes are an attractive option for carbon dioxide separation, mainly because of the inherent permeating properties of this species. Besides being a fast gas, CO_2 also has a relatively high molecular weight and a large quadraple moment, enabling it to absorb more stongly to or dissolve at much higher concentrations in these membrane materials compared to other gas species. These properties give rise to very high CO_2 permeation rates and selectivities over many other gas species.

The accurate prediction of permeabilities of gases in membrane is generally not possible, and experimental values are needed. For the effect of temperature T in K, $\ln P_A$ ' for gas A is approximately a function of 1/T and increases with T. However, operation at high temperatures can often degrade the membranes. When a mixture of gases is present, reductions of permeability of an individual component up to 10% or so can occur and in certain cases, much larger reductions have been observed. Hence, when using a mixture of gases, experimental data should be obtained to determine if there is any interactions between the gases. The presence of water vapour can have similar effects on the permeabilities and can also possibly damage the membranes (Geankoplis, 2003).

2.5.2 Selectivity

As for selectivity, the ideal selectivity for pure gases is given by the ratio of permeability as shown, permeability of carbon dioxide over that of methane as follows. We can also relate it to the previous equation of permeability to obtain the equation below.

$$\alpha_{ideal} = \frac{P_{CO_2}}{P_{CH_4}} = \frac{D_{CO_2}}{D_{CH_4}} \cdot \frac{S_{CO_2}}{S_{CH_4}}$$

However, for a mixture of gases, the feed composition has to be accounted for so the selectivity is given by the equation below, where Y_i is the concentration of component i in the permeate stream and X_i the concentration of component i in the feed stream. Normally, the range of selectivity for natural gas applications ranges from 15-25 which means that the carbon dioxide permeates through the membrane 15 to 25 times faster than methane.

$$\alpha = \frac{Y_{CO_2}/Y_{CH_4}}{X_{CO_2}/X_{CH_4}}$$

2.5.3 Stage Cut

Stage cut is a measure of the performance of the membrane from the perspective of quantity as it is the ratio of the permeate flow rate to the feed flow rate.

Stage Cut (%) =
$$\frac{Permeate Flow Rate}{Feed Flow Rate} \times 100\%$$

2.5.4 Mass Transfer Rate of CO₂

As proposed by Kumar et al. (2002), and Yeon et al. (2005), the mass transfer rate of carbon dioxide (J_{CO_2}) can be described by the following equations:

Mass Transfer rate of CO₂,
$$J_{CO_2} = \frac{(Q_{in} \times C_{in} - Q_{out} \times C_{out}) \times 273.15}{0.0224 \times T_g \times S}$$

where,

 $\eta = CO_2$ removal efficiency, %

 $J_{CO_2} = CO_2$ mass transfer rate, mol/(m².h)

 Q_{in} = inlet gas flow rate, m³/h

$$Q_{out} = outlet gas flow rate, m3/h$$

 $C_{in} = CO_2$ volumetric fraction in the gas inlet, %

 $C_{out} = CO_2$ volumetric fraction in the gas outlet, %

 $T_g = gas temperature, K$

S = gas-liquid mass transfer area/effective membrane area,
$$m^2$$

2.5.5 Methane Recovery

The efficiency of the membrane separation can also be measure from another perspective which is the methane recovery. It measures the methane that remains in the retentate stream upon exiting the system, relative to the inlet methane content.

Methane Recovery(%) =
$$\frac{Q_{out} \times C_{out}}{Q_{in} \times C_{in}} \times 100\%$$

where,

CHAPTER 3

METHODOLOGY

3.1 Scope

This project aims to study the performance of the polyimide hollow fiber membrane under different parametric conditions such as pressure, composition, feed gas flow rate and membrane area.

3.2 Research Methodology

3.3 Experimental Parameters

The range of the experimentals parameters to be studied are summarized in the table below:

Parameters	Range
Pressure [bar]	5-10
CO ₂ composition [%]	20-70
Feed gas flow [SLPM]	5-20
Number of fibers	5-50

Table 4: Experimental Parameters with its range

3.4 Specifications of the Hollow Fiber & Membrane Module

Parameter	Value
Module material	Stainless Steel 316
Module inner diameter (inch)	1. 0.75
(2 modules)	2. 1.0
Module length (mm)	300
Fiber inner diameter (µm)	180
Fiber outer diameter (µm)	400
Fiber length (mm)	250-280
Number of fibers	10-15 (0.5 inch module)
	30-50 (1.0 inch module)
Pure gas separation at 25°C (GPU)	40
CO ₂ /CH ₄ Selectivity	35

Table 5: Specifications of the Hollow Fiber & Membrane Module

3.5 Preparation of Hollow Fibers and Membrane Module

The preparation of the hollow fibers are done before the testing in the test rig so as to prepare the fibers to be fitted into the membrane module. The ultimate aim of the fiber preparation is to seal one end of the bundle of hollow fibers so as to prevent the permeate from flowing back into the shell side of the module. The other end of the fibers would be left open to allow the permeate flow for composition measurement as well as flow measurement using the bubble flowmeter.

Figure 5: Hollow Fiber and Membrane Module Preparation Steps

3.6 Experimental Setup

Figure 7: Membrane module with Feed, Permeate and Retentate Streams

3.7 Experimental Procedure

1.0 Start-up of CO₂SMU System

- 1.1 The main power supply is switched on (inside the control panel MCCB).
- 1.2 The main power supply to the computer is turned on.
- 1.3 The National Instrument (NI) lab view is activated and allowed to completely load in the system.
- 1.4 The analyzer switch is turned ON.

2.0 Heating-up of Hot Water System

- 2.1 The main power is switched on.
- 2.2 The heater is set to 80° C.
- 2.3 The water pump is run to circulate the hot water inside the heat exchanger.

3.0 Setup of Feed Gases

- 3.1 The type of gases to be used for experimental purpose is determined.
- 3.2 The valve at the cylinder is opened.
- 3.3 The valves at the heat exchanger associated with the CO₂SMU test rig is opened.

4.0 Setup of Feed Gases at Feed Panel

- 4.1 The inlet and outlet valves for CO_2 and CH_4 are opened.
- 4.2 The feed regulator is set at 7 bar.
- 4.3 The flow rate for both type of gases is set at the mass flow controller (MFC).

5.0 Setup of MFC and Data Acquisition

- 5.1 The values of both mass flow controller is set according to the composition of intended feed gas percentage.
- 5.2 The toggle is tapped ON on the monitoring system to start collecting data for analysis.
- 5.3 Valves are opened according the intended experiment which are whether:
 - i. Through saturation vessel or bypass
 - ii. Permeate line or retentate line
 - iii. Manual back-pressure regulator (BPR) or Auto back-pressure regulator (BPR)

6.0 Setup of Manual Back-Pressure Regulator (BPR)

- 6.1 The high pressure regulator is used to regulate.
- 6.2 The knob is turned clockwise to set the pressure, which is the system set pressure.

NOTE: Make sure that the feed gas pressure is always higher than the set value.

7.0 Start-up of Compressor

- 7.1 The compressor switch at the control panel is switched ON.
- 7.2 The "START" button at the compressor is pressed.
- 7.3 The inlet COMP1 valve is opened immediately.
- 7.4 The inlet pressure is set to 0.4 bar.

8.0 Monitoring of Readings

8.1 The monitoring is done through the National Instrument (NI) Interface.

8.2 The monitoring can also be done via the instrument indicator at the test rig.

9.0 Sampling

- 9.1 Needle valve at the manifold to be tested is opened slowly.
- 9.2 The ball valve at the Infrared Analyzer is opened.
- 9.3 The sampling pressure is set at 1 psig while the flow is set at 0.4 liter/min.

10.0 Shutdown of Compressor

- 10.1 The inlet ball valve to Compressor 1 is closed.
- 10.2 The "STOP" button at the compressor is pressed immediately.
- 10.3 "COMP1" switch is turned OFF to stop compressor 1.

11.0 Special Conditions

CASE 1: If the conditions of the intended experiment is higher or lower than the compressor capacity, proceed to "spill-back" procedure.

CASE 2: Controlling the system pressure via automatic back-pressure regulator (Bronkhost BPR).

- 11.1 Steps 1 to 5 are repeated.
- 11.2 The valve prior to the Bronkhost BPR is opened.
- 11.3 The pressure is set at the NI interface.
- 11.4 Step 7 is followed.
- 11.5 The inlet and outlet valves to the spill-back regulator are opened to start regulating.
- 11.6 Steps 8 to 10 are followed.

NOTE: f the spill back of mass is not enough, the value at MFC will be unstable.

12.0 Control of Environment Temperature

12.1 To maintain the environment temperature of the test rig, the temperature of the oven (Hot Box) is set within the range of ambient temperature up to 70° C.

3.8 Tools

3.8.1 Chemicals

NO.	Chemical	Specifications
1.	Carbon dioxide	25kg
2.	Natural gas	50L
3.	Methane	50L
4.	Nitrogen	50L
		1

3.8.2 List of Equipment and their Functions Table 7: List of Equipments

No	Equipment / Item	Quantity	Function
1.	Feed gas storage	8	1. Gas supply line (CH4, CO2, N2 and
	unit	(3x25kg)CO2	natural gas and one additional point for
		(3x50L) NG	other gases)
		(1x50L)CH4	2. Minimum amount of tank for each type of
1		(1X50L) N2	gas
2.	Pressure		1. Regulate pressure coming out from gas
	regulating system		tank/before reaching mass flow controller
			2. Pressure regulating system can be operated with inlet pressure up to 200barg
			3. Outlet pressure from pressure regulating
			system = 10barg-80barg
1			
3.	Automatic mass	3	1. Measure mass of gas volume under
	flow controller		STANDARD conditions of pressure and
			temperature
			2. Range of mass flow controller: 10-100
			SLPM
4.	Feed vessel	1	1. Mix multiple gas streams before entering
			static mixer
			2. Able to withstand operating pressure of
_	a .		80bar
5.	Gas mixer	· · · · · ·	1. Mix multiple gas streams homogenously
			before entering saturation vessel or
			memorane test cell or passing through gas
			compressor
			2. Adde to withstand operating pressure of
	· · · ·		ovdar

No	Equipment / Item	Quantity	Function
6.	Compressor	1	1. Increase the mixed gas pressure for
			operating condition up until 80 barg
			2. Can be used for natural gas application
. :			with the high content of carbon dioxide up
			to 70%.
			3. SMOOTH AND CONTINUOUS flow of
			outlet gas. There shall be NO reciprocating
			motion of pulsation of outlet gas flow.
			4. Able to operate under these condition:
			flowrate with varied pressure and vice
ļ			versa
			5 Flowrate of compressor shall be $10-100$
			SLPM
			6. A by-pass line so that it is optional to
			operate CO2SMU without compressor
7.	Mixed gas flow	2	1. Measure and indicate the flow rate of
- 10 A	meter		mixed gas before entering and after leaving
			the membrane test cell
			2. Coriolis type.
	· · ·		3. Flowrate range= 10-100 SLPM
0	G	1	4. Resistant to corrosion
ð.	Saturation vessel	I I	1. Saturate mixed gases with water or neavy
			2 Able to withstand operating pressure of 80
			harg
			3. Equipped with heater to heat process fluid
			until 100°C which can be controlled and
			adjusted at control panel.
			4. Have opening for easy cleaning and
			maintenance purpose as well as draining
			system for change of solution.
9.	Membrane Test	1	1. Milipore pressure filter holder (XX45 047
	Cell	i e	.00).
			2. Resistant to corrosion.
			5. Equipped with pressure relief value A Operating pressure = ambient pressure to
			7. Operating pressure – antorent pressure to 80 haro
		· · · · · · · · · · · · · · · · · · ·	5. Operating temperature = ambient
		и -	temperature to 70°C
10.	Back Pressure	2	1. Maintain system pressure at particular set
	Regulator		point.
			2. ONE automatic BPR and ONE manual
			BPR
			3. Able to regulate pressure from ambient to

No	Equipment / Item	Quantity	Function
			80 barg
			4. Able to withstand operating temperature
		_ •	between ambient to 70°C
11.	Steam Trap	2	1. Collect any liquid carry over from the
			All pages leaving from the storm two shall
			2. All gases leaving from the steam trap shall be vented out to safe location and follows
			UTP's Health Safety and the Environment
			(HSE) requirement.
12.	Online Infrared	1	1. Measure concentration of CO_2 and
	Gas Analyzer		methane (CH ₄)
			2. Detection range : CH4: 0-100%, C02:0-
			100% and CO2-CH4 mixture at any
			combination between 0-100%
10	0	1	3. Minimal lag time (3 minute)
13.	Oven	1	1. Able to control and set by the users from ambient to 100° C
			2. Accommodate the process piping and
			equipment except compressor, gas
			analyzer, gas feeding and gas storage
		÷.	system.
			3. The front door of oven should be
			transparent
			4. Additional space of 25% from the oven
			size should be reversed for future
14.	Toxican Fume	1	1 Accommodate the process piping and
.#-74	Hood	*	equipment including oven except compressor.
			gas analyzer, gas feeding and gas storage
			system.
			2. 2 levels of molecular filters that can filter
			impurities
			3. Equipped with fan failure alarm to alarm
			system notification in case of ventilation
15.	Data Acquisition	· ·	1. Include interface and software for the
	System		temperature, gas concentration and
			pressure readings.
			2. Measurement data can be viewed on
		ta da sera	computer's monitor via data acquisition
			souware, and can be stored and exported
			3. Minimum Requirement for Data Collection
		· ·	= temperature (T), pressure (P), time (t).
			flow rate (F) and gas concentration from

No	Equipment / Item	Quantity	Function
			analytical equipment (C)
16.	Control Panel		1. Show the measurement of all instruments
			covering pressure, temperature, flowrate
			and concentration.
17.	Pressure		1. Measure the gas pressure for particular gas
	transducer	· · ·	stream line and send electrical signals to
			Data Acquisition System
18.	Pressure gauge		1. Measure and indicate the gas pressure for
	~ ~		particular gas stream line
19.	Thermocouple		1. Measure and indicate the temperature for
			particular gas/liquid stream line and send
			electrical signals to Data Acquisition
			System
20.	Temperature		1. Measure and indicate the temperature
	gauge		for particular gas/liquid stream line
21.	Pressure Relief	1	1. Installed at necessary equipment/gas line as
	Valve		mechanical protection against the event of
			excessive pressure
		· · · · ·	2. Pressure relief valve with 10% of
- 57			maximum pressure rating
22	Computer	1	1. Intel i5 processor, or better
			2. 2 GB of RAM, or better
			3. HDD 500GB, or better
			4. Drives = Internal hard disk and DVD-ROM
			(read, write, rewrite)
			5. Monochrome LaserJet Printer

Process Flow Diagram

3.9

25

Figure 9: Process Parameter Monitoring Tool for CO₂SMU

3.11 Key Milestone & Gantt Chart

3.11.1 Key Milestone

Table	8:	Key	Milestone	of	\mathbf{FYP}	Π
-------	----	-----	-----------	----	----------------	---

No	Action Item	Remarks
1.	Regular meeting with supervisor to discuss the project and prepare project proposal	Week 1-14
2.	FYP II Briefing	Week 2
3.	Submission of Progress Report	Week 8
4.	Pre-EDX	Week 11
5.	Submission of Draft Report	Week 12
6.	Submission of Dissertation (Soft-bound)	Week13
7.	Submission of Technical Paper	Week 13
8.	Final Oral Presentation	Week 14
9.	Submission of Project Dissertation (Hard-bound)	Week 15

3.11.2 Gantt Chart

NO.	ACTIVITY WE	EK 1	2	3	4	5	6	7		8	9	10	11	12	13	14	15
1.	Continuation of Project Work			n sin e s Sil Merche													
2.	Submission of Progress Report							1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -									
3.	Continuation of Project Work								Break								
4.	Pre-EDX								ester F							salk	
5.	Submission of Draft Report								d-Sem							iya Bre	
6.	Submission of Dissertation (soft bound)								W							Ra	
7.	Submission of Technical Paper																
8.	Oral Presentation																
9.	Submission of Dissertation (hard bound)																

CHAPTER 4

RESULTS & DISCUSSION

The two main performance indicators are permeability and selectivity of the hollow fiber membrane. The gas permeance P/l (in GPU = $1 \cdot 10-6 \text{ cm}^3(\text{STP})/\text{cm}^2 \cdot \text{s} \cdot \text{cmHg}$) is calculated as the flow rate of a specific gas of the permeate stream, Q divided by the partial pressure difference over the membrane (Δp) and the membrane area A of one membrane module.

$$\frac{P}{l} = \frac{Q}{A.\,\Delta p}$$

The selectivity α (CO₂/CH₄) is calculated as:

$$\alpha = \frac{Y_{CO_2}/Y_{CH_4}}{X_{CO_2}/X_{CH_4}}$$

Where Y_i is the concentration of component i in the permeate stream that leaves the desorber and X_i is the concentration of component i in the feed.

In fact, the results can also be represented in other forms such as stage cut, mass transfer rate of CO_2 as well as methane recovery. These representations can all illustrate the performance of the membrane in separating CO_2 from natural gas, as shown earlier in Chapter 2 of this report. In this report, the results will be reported in terms of permeance, selectivity as well as stage cut.

Stage Cut (%) =
$$\frac{Permeate Flow Rate}{Feed Flow Rate} \times 100\%$$

4.1 Effects of Feed Gas Pressure

Figure 10: Effect of feed pressure on Selectivity and Stage Cut at 35°C, 50% CO₂/50% CH₄ composition, flow of 6 SLPM with 15 fibers

Figure 11: Effect of feed pressure on CO₂ and CH₄ Permeance at 35°C, 50% CO₃/50% CH₄ composition, flow of 6 SLPM with 15 fibers

As can be seen from Fig. 10 and Fig.11 on the previous page, the effect of increasing the feed pressure has an positive impact on the selectivity and stage cut but decreases the permeance of methane and carbon dioxide. In studying the effect of pressure, the flow is fixed at 6 SLPM, composition at 50%CO₂ - 50%CH₄, at ambient temperature, with 15 fibers in the module.

Both selectivity and stage cut increases with the increase in pressure. The increase in pressure provides a greater driving force to facilitate the diffusion of the gases through the membrane. Therefore, more CO_2 can permeate through the membrane to reach the permeate stream and create a higher flow of permeate stream and therefore a higher stage cut. As the pressure increases, the stage cut will increase proportionally as higher flow is measured at the permeate stream. As for the selectivity of the membrane, the selectivity is generally not affectly much in terms of magnitude, but a trend of increasing selectivity with increasing feed gas pressure can be observed. In terms of permeance, the permeance of both gases decreases with increasing pressure. This can be explained mathematically by the equation below:

$$\frac{P}{l} = \frac{Q}{A.\,\Delta p}$$

As the pressure is increased, the pressure drop increases as well as the permeate side pressure is always atmospheric. As the pressure is increased from 5 to 7 then to 10 bar, the pressure drop increases and caused a decreasing permeance, although the flow of the permeate stream increases, with the membrane surface area being constant. It can also be seen that the permeance of CO_2 is consistently above that of CH_4 , due to the fact that CO_2 is a "fast" gas and therefore diffuses faster through the membrane compared to CH_4 .

4.2 Effects of Feed Gas Composition

Figure 12: Effect of feed composition on Selectivity and Stage Cut at 35°C, pressure of 5 bar, flow of 6 SLPM with 15 fibers

Figure 13: Effect of feed composition on CO₂ and CH₄ Permeance at 35⁶C, pressure of 5 bar, flow of 6 SLPM with 15 fibers

In studying the effects of feed composition, or better represented as the percentage of carbon dioxide in the feed gas, the system is maintained at a flow of 15 SLPM, pressure of 5 bar and at ambient temperature, with a total of 15 fibers for the experiment.

When the content of CO_2 increases in the feed gas, there is an increase in all three parameters of selectivity, stage cut and permeance, whereby the CO_2 composition ranges from 20-70 vol %. The trends can be clearly observed in Fig. 12 and Fig. 13 on the previous page and this effect is attributed to the fact that as when the content of CO_2 increases, there are more gas for permeation and therefore results in the increase in stage cut, or better said as the permeate flow. The selectivity is generally not affected as the increase in selectivity is minimal from the experimental results.

When more CO_2 is present in the feed gas, the feed stream contains more gas molecules which can permeate through the membrane owing to the fact that it is a "fast" gas, as explained earlier. As a result, the permeate stream has a higher flow, and therefore increasing the stage cut and permeance. This observation can also be explained by the fact that as the CO2 percentage increases, there is a larger concentration gradient between the feed and permeate stream and therefore creating a larger driving force, which leads to the increase of CO_2 diffusion mass transfer rate.

The increasing permeance as the feed composition increases can be explained mathematically. Permeance in the unit of GPU, equals the permeate flow divided by the multiplication of area and pressure drop. As CO_2 composition increases, the flow in permeate stream increases while the active surface area of the membrane and the pressure drop across the membrane remains constant. Therefore, the increase in permeance can be expected.

4.3 Effects of Feed Gas Flow Rate

Figure 14: Effect of feed gas flow rate on Selectivity and Stage Cut at 35°C, pressure of 5 bar, 50% CO₂/50% CH₄ composition with 15 fibers

Figure 15: Effect of feed gas flow rate on CO₂ and CH₄ Permeance at 35^oC, pressure of 5 bar, 50% CO₂/50% CH₄ composition with 15 fibers

While the flow rate of the feed gas in increases from 6 SLPM to 10 SLPM and then to 20 SLPM, the other parameters of composition is fixed at $50\%CO_2 - 50\%CH_4$, pressure at 5 bar, with a 15-fibers module at ambient temperature.

As the flow rate of the feed gas is increased, it can be observed that the selectivity of the membrane as well as the stage cut decreases proportionally. In other words, it can be said that the CO_2 removal efficiency decreases with increasing feed gas flow rate but this on the other hand will lead to an increase in the mass transfer rate across the membrane, or better known as permeance, which is represented by Fig. 15 on the previous page.

The effect on flow rate on the decreasing selectivity and stage cut can be explained to the fact that when the flow rate is incressed, the contact time for the gases to permeate through the membrane decreases and therefore causes such observations. The amount of CO_2 that permeates through the membrane decreases and hence, a decrease in the stage cut of the system. On the other hand, the permeance of both the gases increases due to the increase in the mass transfer rate. Also, the permeance of CO_2 is consistently higher than that of CH_4 , similar to the previous observations on effects of feed pressure and feed composition. This is due to the characteristics of carbon dioxide, being smaller in kinetic diameter, in addition to being more condensable and more polar than CH_4 .

Mathematically, the observation on the increase in permeance can be explained, again with the same equation of P/l. An increase in the feed flow rate will cause an increase in the mass transfer rate across the membrane and hence higher permeate flow. With the pressure and membrane surface area remain constant, the flow (Q) of each of the gases increases and this in turn increases the permeance of both methane and carbon dioxide across the membrane.

4.4 Effects of Number of Fibers/Membrane Area

Figure 16: Effect of number of fibers on Selectivity and Stage Cut at 35^dC, pressure of 10 bar, 50% CO₂/50% CH₄ composition, at flow of 10 SLPM

Figure 17: Effect of of number of fibers on CO₂ and CH₄ Permeance at 35⁶C, pressure of 10 bar, 50% CO₂/50% CH₄ composition, at flow of 10 SLPM

Generally, variating the number of fibers equal changing the effective surface area for gas permeation. For this purpose, the number of fibers is changed from 5 to 50 fibers to observe the effects, while maintaining the pressure at 10 bar, total feed gas flow at 10 SLPM, 50% CO₂ and at ambient temperature.

From Fig. 16, it can be seen that the selectivity of the membrane is not affected much by the change in the number of fibers as selectivity is an intrinsic property of a membrane that is not affected by the number of fibers used. The number of fibers used will only affact the stage cut and permeance, which can be seen in Fig. 16 and Fig. 17. As the number of fibers/membrane surface area is increased, the stage cut and permeance increases proportionally to the rise.

When the number of fibers used increases, there is more surface area for gas permeation through the membrane and therefore, the permeate flow will increase resulting in an increase in the stage cut, which is the percentage of permeate stream in relation to the feed stream. Permeance can also be explained in a similar manner whereby when the number of fibers increase, more gas permeates through the larger membrane area resulting in a larger permeate flow. The increase in permeate flow corresponds to higher individual gas flow of CO_2 and CH_4 and hence, the permeance increases with pressure remain constant. From the increasing trend of permeance, we can justify that the increase in the permeate flow rate is larger then the increase in active surface area and as a result, the permeance increases as the number of fibers used is increased.

CHAPTER 5

CONCLUSIONS & RECOMMENDATIONS

This study is conducted to observe the performance of hollow fiber membrane when parameters such as pressure, composition, gas feed flow and the number of fibers used in a hollow fiber membrane module variates in a binary gas system through experimental methods.

A detailed literature review on membrane general characteristics and theories relating the principles of solution-diffusion across membrane has been conducted, together with the governing equations. Besides, a detailed methodology accompanies the report highlighting the steps in performing the experiments, the chemicals required as well as the equipments involved in the experimental setup.

The results obtained from this experiment is found to be in line with literatures researched and from this point onwards, more work can be conducted to bring the technology a step forward in this university. It was found that the stage cut and the selectivity of the membrane increases with pressure and feed composition while these two parameters showed a decrease when the feed gas flow rate is increased. Generally, the number of fibers used does not affect the selectivity of the membrane but the stage cut of the membrane is largely increased when the number of fibers used is increased. In terms of permeance, it was found that the gas permeance increases with increasing feed composition, feed gas flow rate as well as number of fibers or membrane area but decreases with increasing feed pressure.

To make the experimental work a more reliable and accurate one, some improvements can be made to the current equipment setup. It was realize through the conduct of the experiments that the IR analyzer do not give very accurate results and therefore can be replaced with a gas chromatography analyzer. Besides, the range of the measuring instrument such as the rotameter should also be improved for the measurement of the permeate flow.

Membrane gas separation is seen as a promising separation technology which offers several advantages compared to its earlier counterparts and is therefore given much attention recent years, with acticipated breakthroughs and improvements to enhance the CO_2 separation process. Despite the many advantages of membrane for CO2 capture, its potential drawbacks such as membrane fouling and wall-wetting should be addressed in the future work to make this technology a superior choice over the others, especially in offshore applications.

REFERENCES

- A.L. Lee, H.L. Feldkirchner, S.A. Stern, A.Y. Houde, J.P. Gomez, and H.S. Meyer, "Field tests of membrane modules for the separation of carbon dioxide from low quality natural gas", Gas sep. Purif., pp 35-43. Vol. 9, 10 May 1994.
- Colin A. Scholes, S. E. K., Geoff W. Stevens (2007). "Carbon Dioxide Separation through Polymeric Membrane Systems for Flue Gas Applications."
- Dae-Hwan Lee, H.-T. K. (2004). "Simulation Study of CO2 Separation Process by Using Hollow Fiber Membrane".
- David Dortmumdt, K. D. (1999). "Recent Developments in CO2 Removal Membrane Technology."
- David R. Koch, W. R. B., Tom Cnop "Proper Pretreatment Systems Reduce Membrane Replacement Element Costs and Improve Reliability."
- Geankoplis, C. J. (2003). <u>Transport Processes and Separation Process Principles</u>, Prentice Hall.
- H.H. Khoo, R.B.H. Tan(2006). "Life cycle investigation of CO2 Recovery and Sequestration", Environmental Science and Technology, 40 (4016)
- James A. Ritter, A. D. E. (2004). "Carbon Dioxide Separation Technology: R&D Needs for Chemical and Petrochemical Industries."
- Kirk-Othmer, "Concise encyclopedia of chemical technology," Vol. I, 4th Ed. John Wiley and Sons, Hoboken, New Jersey (1999).
- Majid Mahdavian, H. A., Morteza Zivdar, Mahmood Mousavi (2012). "Simulation of CO2 and H2S Removal Using Methanol in Hollow Fiber Membrane Gas Absorber (HFMGA)." Advances in Chemical Engineering and Science: 50-61.
- Moradi, S. (2010). "Investigation of CO2 Absorption in Hollow Fiber Membrane with Experimental and Simulation Methods." <u>World Applied Sciences Journal</u> 9(8).
- Noureddine Boucif, J. P. C., Denis Roizard, Eric Favre (2011). "Carbon Dioxide Absorption by Monoethanolamine in Hollow Fiber Membrane Contactors: A Parametric Investigation." <u>AIChE Journal</u>.
- P. Keshavarz, J. F., S. Ayatollahi (2007). "Analysis of CO2 Separation and Simulation of a Partially Wetted Hollow Fiber Membrane Contactor."

- P.S. Kumar, J.A. Hogendoorn, P.H.M. Feron, G.F.Versteeg. 2002. New absorption liquids for the removal of CO2 from dilute gas streams using membrane contactors. *Chemical Engineering Science* 57: 1639-1651.
- Ryan P. Lively, R. R. C., B.T. Kelley, Harry W. Deckman, Jeffery H. Drese, Christopher W. Jones, William J. Koros (2009). "Hollow Fiber Adsorbents for CO2 Removal from Flue Gas."
- S.-H. Yeon, K.-S. Lee, B. Sea, Y.-I. Park, K.-H. Lee. 2005. Application of pilot-scale membrane contactor hybrid system for removal of carbon dioxide from flue gas. *Journal of Membrane Science* 257: 156-160.
- Sutrasno Kartohardjono, P. A. N., Eko Prasetio, Yuliusman (2009). "Performance of Hollow Fiber Membrane Gas-Liquid Contactors to Absorb CO2 Using Diethanolamine (DEA) as a Solvent."

A. Results and Calculations

Data from National Instruments (NI) Data Logging A.1

Data Time

These in minimary reactions for the second field concerned in the second se

								1947 - A. 1947 - A.													
107/2	9:24:01 PM	4362	8/6/5	5.168	5.313	0.628	25.559	75,983	12.002	2.62	106.0	0.926	0.033	a	•	.0	0	32.848 2	34.498 3	4.187	34.778 Permeste
1/0/1/	M4 ES/LS/8	2794	5,869	6.058	5.155	0.026	24.026	19.7784	12,026	3,065	0.951	0.775	0.033	¢	0	0	•	33.097 5	34,747 3	4,405	34.903 Retentate
1/10/12	8:44:10 PM	1721	5.679	5.854	5,156	0.025	24.207	77.619	11.77	3.048	0.759	0.769	0.033	Ģ	•	0	¢	33.191	34.809 3	4,498	34.903 Feed
		and the second se	02 (N) CF 25 (TEUT) 7 25 (TEUT) 7 25 (TEUT) 7 25 (TEUT) 7	4 (%) 6 22705 6 40134 6 40134				• • •							•						
			•			•															
ĺ																					
1/07/1	7:46:44 PM	4938	5.513	5.687	5.073	610.0	33,365	67.964	7.017	3.048	0.694	0.705	0.025	•	0	•	Ģ	33.471	E 460,46	4.591	35,307 Panmoate
1/01/2	6:48:07 PM	1421	5.347	5,532	4.923	0.02	31.292	70.135	7.159	3.047	0.669	0.491	62010	•	a	0	٥	5963EE	35.743 3	S.463	36.023 Rejentate
C/ LO 17	. 6:42:23 PM	1101	5.172	5.353	4.906	0.02	31.447	1.07	1.01.7	3.07	0.45	0.461	520'0	0	0	•	٥.	34.062	35.774 3	5.463	35.899 Feed
Voimelsed	Nation 1	and Month	02 (%) - (%) 90.36739 - (32.82739 - 6 90.45375 - 6	4 (%) 6 03207 77 07261 9 14825			·								·			· · ·			
				į							Sections.										
2/10/1/2	Bit6:31 PM	3475	4,902	5,241	4,863	0:056	649,04	59.151	0.056	0.056	235,0	0.41	Q.D29	a	•	•	¢	61 \$8	35,899 3,	5,588	36,241 Permente
21010	5:31:41 PM	782	116.3	7,102	•	210.0	39.058	60.942	0.044	0.049	0	•	TEOTD	0	0	0	•	34.311 3	36.272 3	4.996	36.335 Retentate
2/10/12	5:20:40 PM	124	6.539	6.784	4.267	0.015	39.814	60.386	2.504	0.054	D	ø	620'0	•		•	•	34.125	36.335 3	5.774	1770 Feed

35,65 35,098 35,089		38.0.5E	33.875 33.813			32.475- 32.975	33.16	•
36.054 35.525 35.525	· . ·	33.284	34,156 34,062			33,755 - 33,284	33,44	
33.066 23.066	· ·	97.1£	32.475 32.381	2		81.728 817.18	31.634	
		•	¢ 0		•	0 0	Ð.	
	· .	•	••	:		o o	Þ	
					•			
		•	• •		ŀ	00	n	
·								
		6	00			••	۰	
	· · ·		•			5		
0.024 0.024 0.024		0.031	0.03t 0.031			0.033	0.033	
0.367 0.16 0.299	т	0.634	0.389			0.298	0.199	
		8 8	8 5			57 ·	9	
		90 97	50		1.000	0.2	0.2	
3.035		4.551	4,542 4,542			7.051 7.079	7,067	
058		947	553			063 058	90	
ਜੇ ਜੇ ਦੇ	· .		ต์ ต่			ले ले		
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		42.7Sa	44.515 44.652			23.62 31.046	32.651	
		42	3.F			727 159	16	
64 6		Ŕ	38.38			33 33	5.65	
810.0 0.015 0.015		0.021	0.019 0.019			0.018 0.018	0.017	
4.848 4.761	· ·	4.923	4.793			4.722	4.721	
553	(%) 88061 30853 30853	5,452	5.31 5,323	(%) 28664 37375 23807		5.086	5,046	(%) 10128 10217
5.043 1.958 4.978	M) CH4 1998 52 1998 52 1998 53 1998 53	1/2 5	5128 5.141	1 4 4 4 1 4 4 4		4,917	4.874	40 60 60 60 60 60 60 60 60 60 60 60 60 60
885	8.49.49	Ę	3 5	8383		13	25	
9 6 6	feed ferment	¥.	17	Leed Writtents Tetentiote		57 A	2	Feed Synthesite Vectoritate
557 PM 1.27 PM 9.20 PM		8:24 PM	2:36 PM 9:08 PM			5:44 AM 2:57 AM	5:24 AM	
8 X X	teed/vature	11:11	201	and Value		111	12:01	auleVour
24/07/2 24/07/2 24/07/2	Nem al	24/07/2	24/07/2 2/10/45	New York		25/07/2 25/07/2	25/07/2	Nom

1770 Permeate 1779 Retantate 1770 Feed

nations/value

33.595 Permonto 34.342 Retentate 34.311 Feed

33.004 Permeste 33.44 Retentate 33.471 feed

42

APPENDIX

Time Tun	4 (s) =	TOI(hav) P	TO2(bar) PI	10%(bar) FT	Delhard CO	2 Conc (%) CH	A Conc (%) FICOI	(apm) FIC(02)	Not FM01	ku/hri PMD2(10014 (JV) P1001	(bar) \$P, FK0	1(sipin) SP, Fi	co2(dem) 5P	, PICO1(bar) S	, VEDOL(T	01(dC] 72	05(4C) TR	1104 (JDA	(dC) Bemarks
4:05:57 PM 2:51:37 PM 2:49:20 PM	10769 6309 6172	5.043 4.953 4.978	5.23 5.133 5.16	4.848 4.761 4.804	0.018 0.015 0.015	49.686 47.069 47.363	50'905 821.55 59 154	3.058 3.058 3.069	3.084 3.052 3.075	0,356 0,355 0,294	0.367 0.16 0.299	0.024 0.024 0.024		000	000		34 33.066 33.44	36.054 35.528 35.528	35.65 35.058 35.089	1770 Permeate 1770 Retentate 1770 Feed
	d means	02 (M) 47 11936 48 69147 48 69147	74 (%) 52 280051 50 30251 51 20117					· · ·												
62623 PM 245.01 PM 241.01 PM	5218 2746 2516	5.021 5.021	5.323 5.208 5.208	4,989 4,953 4,953	0.019 10.0 110.0	52.451 49.979 50.881.	47.75 50.136 50.176	5.045 5.048 3.076	5.016 5.166 5.198	0.429 0.388 0.291	0.437 0.193 0.293	0.036 8.60.0 8.638	~ ~ ~	000	000	• • •	35.525 35.538 35.538	37,206 37,019 37,019	36.802 36.708 36.739	39.198 Permeate 39.012 Retentate 38,576 Feed
(allas	Maarte C	SIZES	749 (%) 49.65119 47.65422 SO.07841		:					-										
MA 56-90 2012 - 100 2012 - 100 20	3228 3228 1445 1445	5.166 5.125 6.127 6.127 5.125 5.176269 5.176269	6.355 6.321 6.321 5.321 9.4466 4974466 48274965	5,44 8 5,345 5,525	0.03 0.028 0.03	52.55 46.219 50.881	48.971 55.652 50.372	9.472 9.472 9.472	9.263 9.269 8.773 8.773	1.12 1.13 1.10 1.10 1.10 1.10 1.10 1.10 1.10	1.132 0.989 1.104 1.104	960.0 960.0 960.0	0 0 0	6 0 0 1 1	000	9 D D	34.903 35.089 35.152 35.152	36.739 36.739 36.739	35.93 36.335 36.49	41.669 Permente 49.907 Retentato 50.956 Feed
4:05:57 PM 2:51:37 PM 2:49:20 PM 2:49:20 PM 2:49:20 PM 2:49:20 PM	10769 6309 6172 6172 d d minute	5.043 4.975 4.977 4.977 4.711939 4.711939 4.6.000147	5.23 5.133 5.14 1.00 1.00 1.00 5.00 5.00 5.00 5.00 5.00	4.248 4.761 4.804	0.018 0.015 0.015	49.686 47.069 47.353	501303 53,728 53,154	3.058 3.058 3.089	3.084 3.052 3.075	0.356 0.355 0,294	0.167 0.259 0.259	0.024 0.024 0.024	000			~~ ~	34 33,44 33,44	36.054 35,525 35,525	35.058 35.058 35.089	1770 Permate 1770 Retentate 1776 Ferd
9-35-55 PM 8-35-55 PM 8-35-15 PM 8-35-15 PM 8-35-15 PM 8-85-15 8-15 8	34422 12551 9990 60 60 60 60 60 60 60 60 60 60 60 60 60	2017 2302 2018 2019 2019 2017 2019 2017 2017 2017 2017 2017 2017 2017 2017	7.155 7.155 7.155 7.154 7.154 1.154 51.42465 51.459628	6.832 6.792 6.792	0.02 0.018 0.029	53.279 49.022 49.25	48.059 51.465 51.12 52.12	3.053 3.135 3.035	3.346 3.347 0.153	1.484 0.484 0.338 0.338	0.45 0.219 0.332	95000 95000				000	33.44 34 34.249	34,747 35,588 35,805	34.525 35.556 35.556	1770 Permaste 1770 Retentatz 1770 Feed
10-40:05 AM 9:57:56 AM 9:52:37 AM 9:52:37 AM	3913 1384 1125 d	5.814 4.317 4.334 4.334 (9.09421 54.1033	808.8 808.8 9.89.9 9.89.9 9.89.9 87.206.02	8.466 9.587 9.575	0.015 0.015 0.015	54,818 49.012 50	46.503 51.845 51.845	1.061 3.075 3.065	0.054 3.721 2.808	0.386 0.386 0.105	0.101	160.0 1.80.0 1.031		565	404	8 8 9	29.922 27.494 27.37	31,696 29,642 29,518	- 341.156 591.82 59.5 59.5	1770 Permeste 1770 Retensate 1770 Papei

	100	10.00 10.00		A NUMBER OF STREET, ST	1.1.2.1.1.	and the second second	1999 - 19 Sec. 1999	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	and of the second	A selection of the selection of	Levis - Alwest				A		and and an	10 10 10 10 10	200 A. 1919 Z.	2	
																		a a A			
11:49 AM 38:48 AM 27:16 AM		5337 3356 2664	8.878 8.819 8.761	9.067 9.005 8.947	8,681 8,534 8,504	0.019 10.019 10.027	50,777 47,77 49,559	50.221 53.651 \$1.749	3.042 3.025 3.099	3.147 3.02 2.826	D.467 D.402 D.295	0,249 0.376 0.267	92010 62010	660	000	000	a o o '	29.796 29.424 29.113	31.728 31.105 30.981	31.292 30.825 30.669	1770 Permeate 1770 Retentato 1770 Feed
		d. Mainte	600 (N) (48.91914 50.27525 67.08213	044 (%) 51.08036 51.03036 52.93737 52.93737		· .				-									· · ·		
18:07 PM 35:39 PM 26:35 PM		4223 1675 1132	8,99 8,875 5,62	9.195 9.092 8.831	6.71 8.625 8.459	0.019 0.015 0.015	51.071 47.059 49.809	49.27 47.201 50.589	3.053 3.082 3.005	3.035 0.031 2.267	0.413 0.27 0.001	0.416 0.065 0	0.033 0.033 0.033	000		• • •	000	35.058 35.899 36.366	36.553 37.798 38.296	36.335 37.518 38.389	1770 Petmeate 1770 Retentate 1770 Feed
	Pent	and a second	002 (N) 49 57305 50 89744 49 92468	(%) \$67.15.03 \$67.15.03 \$92.10.25 \$0.07532					19 11 -						 н н Н		•			н. Н	
23:14 P	555	2528 1969 1409	502.6 572.9	9.484 9.484 9.435	9,154 711,9 7.9	0.019 2.017 2.017	51.361 47.893 50.852	47.855 54,337 51,218	3.067 3.064 9.089	1063 150.6 160.6	0.419 0.429 0.175	0.42 0.214 0.166	160.0 1.0031 0.031		0.6 6	000	••••	33.844 33.969 33.962	35.556 35.65 35.65	35.339 35.463 35.619	1770 Permeate 1770 Retentata 1770 Feed
	ja j	d Midde	602 (N) (S \$2071 (S \$2071 (S \$4520 (S \$4520	(%)%) 57671.02 57671.02					ata Association	•									-		
11.01 A 10:40 A 10:40 A	222	632 611 628	3.071 3.224 5.332	3.214 3.369 6.085	2.463 2.463 2.401 5.105	, 0.047 , 0.049 0.11	51.285 49,958 50.901	49.385 48.122 50.308	3.025 3.008 2.883	847.2 71.5 87.2	0.724 0.724 1.186		0.024 0.026 0.074		• • •	• • • •	000	27,276 27,245 27,494	29.56 29.611 30.109	29.206 29.268 30.638	1770 Permeate 1770 Rotentate 1770 Fead
1991 1991		d meate mitate	USEENS SELECTOS SELECTOS	0H4 (%) 49.70704 49.05632 49.06403					-		• •					•					

•

A.2 Sample Calculations

The set of data from effect of feed composition at 50% CO₂ is taken to illustrate the calculation steps required to obtain the values of selectivity, stage cut and permeance. Below are the composition of the feed, retentate and permeate streams required for the calculations:

Stream	Composition (%)		
	CO ₂	CH4	
Feed	47.36	53.15	
Retentate	47.07	53.73	
Permeate	49.69	50.30	

Step 1:

The first step is to normalize the values as the total percentage of the compositions is not 100% due to some limitations of the IR analyzer.

For the feed stream,

Percentage of
$$CO_2$$
 in feed stream = $\frac{47.36}{47.36 + 53.15} \times 100\% = 47.12\%$

*Percentage of CH*₄ *in feed stream* = 100% - 47.12% = 52.88%

The same steps are repeated for the retentate and permeate streams to obtain the following:

Stream	Composition (%)		
	CO ₂	CH4	
Feed	47.11939	52.88061	
Retentate	46.69683	53.30317	
Permeate	49.69147	50.30853	

Step 2:

After normalizing all the values, we can then calculate the selectivity with the following formula:

Selectivity,
$$\alpha = \frac{Y_{CO_2}/Y_{CH_4}}{X_{CO_2}/X_{CH_4}} = \frac{49.69/50.31}{47.12/52.88} = 1.1084$$

Step 3:

For the calculation of the stage cut, the flow rate of the permeate stream is required. The time for the permeate stream to travel 2ml in a bubble flow meter is measured to find the flow rate. The average time taken for the permeate stream to travel 2ml is 18.251 seconds.

Flow rate of permeate stream
$$=$$
 $\frac{2ml}{18.251s} = \frac{0.1096ml}{s}$

Then, the flow rate is converted to the flow rate at standard conditions:

Flow rate of permeate stream =
$$\frac{0.1096ml}{s} \times \frac{273.15K}{308.15K} = \frac{0.09714ml}{s}$$

Flow rate of permeate stream, SLPM =
$$\frac{0.09714ml}{s} \times \frac{1l}{1000ml} \times \frac{60s}{1min}$$

= 0.005828 SLPM

The stage cut can then be calculated using the formula:

Stage Cut (%) = $\frac{Permeate Flow Rate}{Feed Flow Rate} \times 100\% = \frac{0.005828}{15} \times 100\% = 0.03885\%$

Step 4:

To calculate the permeance of the gases, it is required to find the individual flow of the gases through the composition.

Flow rate of CO_2 in permeate stream = Composition × Permeate flow rate

$$=\frac{49.69}{100}\times\frac{0.09714ml}{s}=\frac{0.04827ml}{s}$$

Then, it is required to calculate the pressure drop across the membrane in unit of cmHg.

Pressure drop, Δp

$$= \left[\frac{CO_2 \ vol\% \ in \ feed}{100} \times P_{feed}\right] \\ - \left[\frac{CO_2 \ vol\% \ in \ permeate}{100} \times P_{permeate}\right] = \left[\frac{47.12}{100} \times 5\right] - \left[\frac{49.69}{100} \times 1\right] \\ = 1.8591 \ bar = 141.29 \ cmHg$$

For the calculation of permeance, the total surface area of the membrane is also required. For this set of data, 15 fibers are used with inner and outer diameter of $180\mu m$ and $400\mu m$, respectively. The length of the fiber is 25cm.

Total surface area = No. of fibers × Surface area for 1 fiber
=
$$15 \times [3.142 \times (400 \times 10^{-4}) \times 25] = 47.13 cm^2$$

Finally, the permeance (GPU) can be calculated.

$$\frac{P}{l} = \frac{Q}{A.\Delta p} = \frac{0.04827ml/s}{47.13 \times 141.29} \times 10^6 = 7.25 \ GPU$$

A.3 Summary of Calculated Results

Composition (% CO2)	Selectivity	Permeance (GPU) CO2 CH4		Stage Cut (%)
20	1.078585294	4.10901177	3.736493514	0.021913942
30	1.094336779	5.595667784	4.996951578	0.029683347
40	1.028020106	6.30718921	5.97670843	0.035001736
50	1.108503063	7.248713056	6.372465274	0.038854592
60	1.076543487	8.983510162	8.150814354	0.049348306
70	1.133487867	15.51532983	13.27737426	0.084622334
		n with the second s	an an thain an an taon an tao an t	
Flow (SLPM)	Selectivity	Permeance (GPU) CO2 CH4		Stage Cut (%)
	1.108503063	7.248713056	6.372465274	0.09713648
10	1.083230289	8.20281898	7.733886646	0.067152951
20	1.062349222	9.075873073	8.41506367	0.037586669
Pressure (bar)	Selectivity	Permeance (GPU)		Stage Cut (%)
	가는 가장 가장 가운 것은 것 것이다. 이 같은 것은 것은 것은 것이 같이	CO2	CH4	
	1,108503063	7.248713056	6.372465274	0.09713648
	1.173342051	7.836576174	6.503157738	0.153492459
10	1.222303598	6.352331799	5.082531011	0.183713772
			n sagan sa santa kata kata sa sa Manana sa sa sa sa sa	
No. of Fibers	Selectivity	Permeano CO2	e (GPU) CH4	Stage Cut (%)
	1.054450774	5.663262371	5.339269475	0.17728379
20	1.080987639	9.597214826	8.801727564	0.296461188
50 · ·	1.026374939	283.6706176	275.5828991	9.01488074

B. Materials & Equipments

B.1 Polyimide Hollow Fibers

B.2 Membrane Modules

B.3 Test Rig

B.4 Mass Flow Controllers

B.5 Compressor

B.6 Infrared (IR) Analyzer

B.7 Bubble Flow Meter

B.8 Hand drill to remove epoxy

