
MOTION PLANNING ALGORITHM FOR VEHICLE PARKING

SIMULATION

by

Amirul Ehsan b. Mohd Hilmi

Dissertation submitted in partial fulfillment of

the requirements for the

Bachelor of Technology (Hons)

(Information Communication Technology)

JANUARY 2008

Universiti Teknologi PETRONAS

Bandar Seri Iskandar

31750 Tronoh

Perak Daml Ridzuan

CERTIFICATION OF APPROVAL

MOTION PLANNING ALGORITHM FOR VEHICLE PARKING

SIMULATION

by
Amirul Ehsan bin Mohd Hilmi

Dissertation submitted in partial fulfilment of

the requirement for the

Bachelor of Technology (Hons)

(Information and Communication Technology)

JANUARY 2008

Approved by,

(YEW/KWANG HOOI)

Universiti Teknologi PETRONAS

Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in references and acknowledgements, and

thatoriginal work contained herein have not beenundertaken or done by unspecific

sources or persons.

Amirul Ehsan bin Mohd Hilmi

II

ABSTRACT

This project implements an intelligent autonomous vehicle parking control system.

Intelligence of the system means that the car is capable of analyzing its own

environment and act accordingly to it as a human being would do. This project focuses

on creation of the motion planning algorithm of the system and developing a simulation

to simulate the vehicle movements. The system controls the vehicle based on the vehicle

and the target parking space coordinates. It will automatically generate the steering

commands in order to park itself inside the parking space. Prototyping method is used in

this project, where the prototype of the system is developed as soon as possible and it is

then enhanced by adding more functions. The development of the system is using C#

.net programming language. The system is successfully working as it has been tested

multiple times in the simulation environment.

Ill

ACKNOWLEDGEMENT

First and foremost, I would like to thank Allah the Almighty for His blessings thatmade

all things possible while doing this project. I would like to express my deepest gratitude

to my parents for their love and support. To my supervisor, Mr Yew Kwang Hooi, thank

you so much for the guidance and support that he gave throughout the project. Without

his advices and helps, this project may not beable to be completed within the given

timeline. I also would like to thank other lecturers for their suggestions to improve the

project.

I would also like to thank Matt Kincaid for allowing me to use his 2D car physics

simulation to integrate it with my algorithm.

Lastbut not least, I would liketo thank all my friends for the help and support that they

have given me throughout the period ofthis project. They are the one who tested my

system and with their feedback and suggestions I manage to achieve what I have now.

IV

TABLE OF CONTENTS

CERTIFICATION OF APPROVAL I

CERTIFICATION OF ORIGINALITY II

ABSTRACT HI

ACKNOWLEDGEMENT IV

TABLE OF CONTENTS .>., V

LIST OF FIGURES VII

CHAPTER 1: INTRODUCTION 1

1.1 Background study 1

1.2 Problem Statement 2

1.2.1 Problem Identification 2

1.2.2 Significant of the Project 2

1.3 Previous Work 4

1.4 Objectives and Scope 4

1.3.1 Objectives 4

1.3.2 Scope of Study 4

CHAPTER 2: LITERATURE REVIEW 6

2.1 Comparison with Related Works 6

2.2 Artificial Neural Network 8

2.2.1 Feed-Forward Neural Network Model 9

2.2.2 Back Propagation (BP) 11

2.3 Fuzzy Logic 12

2.3.1 Advantages of Fuzzy Logic 13

2.4 Cars Physics 15

CHAPTER 3: METHODOLOGY 17

3.1 Planning 18

V

3.3 Design 21

3.4 Development 27

3.5 Implementation and Prototyping :... 30

CHAPTER 4: RESULT AND DISCUSSION 31

4.1 Result 31

4.1.1 Simulation environment setup 31

4.1.2 Automated Parking Result 35

4.2 Discussion t.\\ 39

CHAPTER 5: RECOMMENDATION AND CONCLUSION 41

5.1 Recommendation 41

5.1.1 Test with real vehicle 41

5.1.2 Develop the Vision System 42

5.2 Conclusion 43

REFERENCES 45

APPENDIX 48

VI

LIST OF FIGURES

Figure 2.1: Basic Neural Network 10

Figure 2.2: Neural Network with weighted inputs and limiter 10

Figure 2.3: Range of logical value for Boolean 12

Figure 2.4: Range of logical value for Fuzzy Logic 12

Figure 3.1: Prototype Model 17

Figure 3.2: Gantt Chart for the project 18

Figure 3.3: Basic Process Flow 21

Figure 3.4: Process Flow for the whole system 23

Figure 3.5: Process Flow in Auto-Park 25

Figure 4.1: Screenshot of simulation 32

Figure 4.2: Dropdown Menu of the Simulation 34

Figure 4.3: Initial state of thecar 36

Figure 4.4: The carsteer to the right 36

Figure 4.5: The carwill steer straight 38

Figure 4.6: The car in the parking space 38

VII

CHAPTER 1

INTRODUCTION

CHAPTER 1: INTRODUCTION

1.1 Background study

The Autonomous Vehicle and Robots (Autonomous Mobile Robots - AMR) have

attracted a great number of researches due to the great challenge that this new domain of

research offers: to endow these system with an intelligent reasoning capability,

exploring their abilities to interact with the environment where they are inserted. The

AMRs will recognize the environments through their sensors (e.g. Infrared, sonar, lasers

and cameras) and from the information obtain, they will be able to plan and execute

their actions.

Nowadays, mobile robots are used in a variety, of different areas. A few examples are, to

locate and disarm bombs, to transport materials, to explore hostile environment such as

volcanoes and also other planets terrains.

1.2 Problem Statement

1.2.1 Problem Identification

For automated control ofvehicular motions, there are basically two typical

scenarios: a) driving on road and b) automatic parking. For the first scenario,

quite anumber of solutions have been developed for the case of following alane
or lane changing. The second scenario is more difficult to implement due to the
space is less structured and more skills are required to plan the motion. Even for
human beings, some still have difficulties in properly parked their cars. It is not
an easy task to develop automatic parking skills for acar. The car needs to

strictly follow a few sets of rules.

Besides that, there are only a few well documented research papers that are

being published for the public usage regarding this topic. Even though all of us
already know the big automobile company has already developed this type of
technology, but their research papers are still being kept secret.

1.2.2 Significant of the Project

The goal of this project is to come up with aworking algorithm that will
automatically park the vehicle. This will be greatly beneficial to the automobile
industry and also the public. Consumer will surely want a car that can allow
them to avoid the hassle of having to adjust their car to enter the parking space.

And the automobile industry can moved one step ahead in term oftechnology

and develop more advance features for a car inthe future.

This research paperwill alsobe available to everyone. This is to help other

people that have the same intention as the author, which would like to pursue the

research of more new technologies in this field.

1.3 Previous Work

The researches on The Automated Guided Vehicle (AGV) have already been done-by

some researchgroups and companies (BMW, Mercedes-Benz, Toyota, and GMC) in the

USA, Japan, UK, Italy, Germany and France. One of the outstanding studies was by the

INRIA researchers, which implemented a control system used to park a vehicle in an

autonomous way. They built up complete sensorbased control architecture for the

vehicle. They use the model-based approach that decomposes the motion into a number

of "parallel parking" series. At eachstep of the motion, the orientation of the vehicle is

identical at the beginning and at the end.

1.4 Objectives and Scope

1.3.1 Objectives

• To develop an autonomous motion planning system that will allow a

mobile vehicle to automatically park itself efficiently.

1.3.2 Scope of Study

The study will focus on developing the algorithm that will allow the car to

autonomously move into empty parking space and avoiding any existing

obstacles between the car and the parking space. This project will put greater

emphasis only on the algorithm of the car movements. Due to the restricted

amount of time and resources, this paper will not be covering the car's Vision

System.

The algorithm will do the following tasks:

1. Planning the motion

2. Simulate the motion

3. Provide the best motion with minimal efforts

There are a few assumptions made during the development of this algorithm:

1. Since, I will not be covering the car's Vision System; the car will be

given the positions of the empty -parking space beforehand as if it has

foreseen it. • •-

2. The car will also be given the coordinates of its center point and the front

point of the car.

A simulation of this project will be developed as to prove that the algorithm

proposed is working and efficient. The project will be developed by using

Microsoft Visual Studio 2008, using C#.Net programming language.

CHAPTER 2

LITERATURE REVIEW

CHAPTER 2: LITERATURE REVIEW

2.1 Comparison with Related Works

As mentioned earlier, one ef the earliest outstanding studies was by the INRIA

researchers, which implemented a control system used to park a vehicle in an

autonomous way. The vehicle was equipped with 14 sonar sensors and it used a

customized set of rules to accomplish the tasks.

Since this project will not be covering the Vision System for the car to be compared

with, the author will straightly go to the motion planning. It is assumed that based on the

information of the parking space positions and obstacles obtained from the Vision

System, a local map will be built. The next step shouldbe the motion planning of the

car. This motion problem is still being debated by many researchers. According to Jin

Xu, Guang Chen and Ming Xie (n.d.), there are two different categories of approaches.

The first category is skill-based. The control commands are generated in real time

according to the current state. Fuzzy Logic and Neural Network are used to transfer

skills of human beings to an intelligent vehicle. The secondcategory aims to plan the

whole motion series in advance and then send these commands consequently to the

controllers to act. The project by INRIA falls under the second category while the

propose solutions in this paper falls under the first category.

For the INRIA project, when the car finds a parking space with enough size, the system

will estimates the beginning maneuver positions and moves the vehicle back to that

position. Once the vehicle is correctly positioned, the parking maneuver will start. This

task is accomplished by the usage of sinus based functions. The car movement has -

already been defined in the first place. M.R. Heinen, F.S. Osorio, F.J. Heinen and C.

Kelber (2006) say that by using this sinus based functions to control the vehicle will

produce softer and smoother movements. They said that the drawback for this technique

is that it requires a curb barrier installation so that it can calculate the depth of the

parking space; which restricts the usage of this method on conventional streets. They

also said that this algorithm is quite limited because it only works specifically in parallel

parking tasks and it needs to be manually coded.

The author's proposed solution is to break the whole motion down into several more

steps instead of just one. This will allow the system to re-evaluate its own environment

and then create a new motion movement. The cars will be shown a few sets of examples

on how to perform parking motions correctly. The usage of back propagation in

Artificial Neural Network (ANN) will allow the car to learn from this set of examples.

The usage of fuzzy logic will allow the car to make the decisions on which route to

follow. This will allow the car to react to any unexpected situations.

2.2 Artificial Neural Network

According to Christos Stergiou and Dimitrios Siganos (n.d.), an Artificial Neural

Network (ANN) is an information processing paradigm that is inspired by the way

biological nervous systems, such as the brain, process information. The key element of

this paradigm is the novel structure of the information processing system. It is composed

of a large number of highly interconnected processing elements (neurones) working in

unison to solve specific problems. ANN, like people, learns by example. An ANN is

configured for a specific application, such as pattern recognition or data classification,

through a learning process. Learning in biological systems involves adjustments to the

synaptic connections that exist between the neurones. This applies to ANN as well.

From Christos Stergiou and Dimitrios Siganos (n.d.), neural networks, have a

remarkable ability to derive meaning from complicated or imprecise data, can be used to

extractpatterns and detect trends that are too complex to be noticed by either humans or

other computer techniques. A trained neural network can be thought of as an "expert" in

the category of informationit has been given to analyse. This expert can then be used to

provide projections given new situations of interest and answer "what if questions.

Other advantages include:

1. Adaptive learning: An ability to learn how to do tasks based on the data given for

training or initial experience.

2. Self-Organisation: An ANN can create its own organisation or representation of

the information it receives during learning time.

3. Real Time Operation: ANN computations may be carried out in parallel, and

special hardware devices are being designed and manufactured which take

advantage of this capability.

4. Fault Tolerance via Redundant Information Coding: Partial destruction of a

network leads to the corresponding degradation of performance. However, some

network capabilities may beretained even with major network damage.

2.2.1 Feed-Forward Neural Network Model

Feed-forward neural network is an artificial neural network where connections

between the units do not form a directed cycle. The feed-forward neural network

was the first and arguably the simplest type of artificial neural network devised.

The information moves in only one direction, forward, from the input nodes,

through the hidden nodes (if any) and to the output nodes.

Referring to Figure 2.1 and Figure 2.2, each neurons will received a signal from

the previous layer of neuron, and each of those signals is multiplied bya separate

weight value. The weighted inputs are summed, and passed through a limiting

function which scales the output to a fixed range of values. The output of the

limiter is then broadcast to all of the neurons in the next layer. So, to use the

network to solve a problem, we apply the input values to the inputs of the first

layer, allow the signals to propagate through the network, and read the output

values. For Figure 2.1, the stimulation is applied to the inputs of the first layer,

and signals propagate through the middle (hidden) layer(s) to the output layer.

Each link between neurons has a unique weighting value. For Figure 2.2, inputs

from one or more previous neurons are individually weighted, then summed. The

result is non-linearly scaled between 0 and +1, and the output value is passed on

to the neurons in the next layer.

Inputs

Hidden :|ayer

Figure 2.1: Basic Neural Network

-G- -3>

Weighted •
.Input's

SUM V

Llmfter

(sigmoid function)

Outputs

J9

^
Output to
other neurons

Figure 2.2: Neural Network with weighted inputs and Hmiter

10

2.2.2 Back Propagation (BP)

Since the real uniqueness or "intelligence" of the network exists in the values of

the weights between the neurons, a method to adjust the weights to .solve

problems is needed. The most common type of learning algorithm is called Back

Propagation (BP). It was first described by Paul Werbos in 1974, and further

developed by David E. Rumelhart, Geoffrey E. Hinton and Ronald J. Williams

in 1986.

A BP network learns by example, it means that we must provide it with a

learning set that consists of some input example and the known correct output

for each of those cases. These input-output examples are needed to show the

network what types of solutions are expected and the BP algorithm will allow

the network to adapt.

11

2.3 Fuzzy Logic

Fuzzy logic is derived from fuzzy set theory dealing with reasoning that is approximate

rather than precisely deduced from classical predicate logic. It can be thought of as the

application side of fuzzy set theory dealing with well thought out real world expert

values for a complex problem. The main reasoning behind this theory is that people do

not require precise, numerical information input, yet they are capable of highly adaptive

control. Fuzzy Logic provides a simple way to arrive at a definite conclusion based on

vague, ambiguous, imprecise, noisy or missing input. Fuzzy Logic mimics how we as

human make a decision, only much faster.

Unlike the Boolean Logic that has only two values that is 1 and 0, Fuzzy Logic is multi

valued. It deals with degrees of membership and degrees of truth. Fuzzy Logic uses the

range of logical values between 0(completely false) and 1(completely true). Figure 2.3

and Figure 2.4 shows the range of logical value for Boolean and Fuzzy logic

respectively.

0 0 Oil 1 1

Figure 2.3: Range of logical value for Boolean

0 0 0.2 0.4 0.6 O.S 1 1

Figure 2.4: Range of logical value for Fuzzy Logic

12

Fuzzy Logic incorporates a simple, rule-based IF XAND Y, THEN Z, or constructs that

are equivalent approach to solve problems rather than attempting to model a system

mathematically. As an example, we take a look at a simple temperature regulator that

uses fan.

IF temperature IS hot THEN speed up fan

IF temperature IS normal THEN maintain fan speed

IF temperature IS cold THEN slow down fan

IF temperature IS very cold THEN stop fan

These terms are imprecise yet can be very descriptive on what should happen. Fuzzy

Logic is capable ofdetermining the decisions when given this set ofterms.

2.3.1 Advantages of Fuzzy Logic

Below are the advantages of using Fuzzy Logic (FL) according to Steven D.

Kaehler (n.d.):

1) It is inherently robust since it does not require precise, noise-free inputs and

can be programmed to fail safely ifa feedback sensor quits or is destroyed. The

output control is a smooth control function despite a wide range ofinput

variations.

2) Since the FL controller processes user-defined rules governing the target

control system* it can be modified and tweaked easily to improve ordrastically

alter system performance. New sensors can easily be incorporated into the

system simply bygenerating appropriate governing rules.

13

3) FL is not limited to a few feedback inputs and one or two control outputs, nor

is it necessary to measure or compute rate-of-change parameters in order for it to

be implemented. Any sensor data that provides some indication of a system's

actions and reactions is sufficient. This allows the sensors to be inexpensive and

imprecise thus keeping the overall system cost and complexity low.

4) Because of the rule-based operation, any reasonable number of inputs can be

processed (1-8 or more) and numerous outputs (1-4 or more) generated, although

defining the rulebasequickly becomes complex if too many inputs and outputs

are chosen for a single implementation since rules defining their interrelations

must also be defined. It would be better to break the control system into smaller

chunks and use several smaller FL controllers distributed on the system, each

with more limited responsibilities.

5) FLcan control nonlinear systems thatwould be difficult or impossible to

model mathematically. This opens doors for control systems that would

normally be deemed unfeasible for automation.

14

2.4 Cars Physics

This project involves in planning the motion of the car, and also creating asimulation
for it. Therefore, the car physics is an important thing to take into consideration. When
talking about motion, everything will be related to the famous Newton's Law of motion.

1. Law 1- Abody tend to remain at rest orcontinue to move ina straight line at a

constant velocity unless it isacted upon by an external force. This is the concept

of inertia.

2. Law 2- The acceleration of a body is proportional to the resultant force acting

on the body, and this acceleration is in the same direction ofthe resultant force.

3. Law 3- For every force acting on abody (action) there is an equal and opposite

reacting force (reaction) in which the reaction is collinear to the acting force.

(DavidM.Bourg, 2002, p.1)

In the study ofdynamics and motion, one particular formula that is often used that is
based from the second law; F= mA, where F isforce, mfor the mass and Aisfor the

acceleration.

For the simulation, each frame ofthe simulation, the system will accumulate the force

from the wheels of thevehicle and will then calculate the resultant acceleration. So, the

formula will be as below:

A = F/m

Based on this formula, the first Newton law can now be modified. The acceleration will

be calculated and integrate it in the velocity. Without the acceleration, the velocity

would be constant; hence the car will stay inmotion, if no forces should act on it.

15

Next, the third Newton Law will also be applied in the simulation; any potential force

the vehicle is applying to the ground, gets applied in the opposite direction of the

vehicle.

According to Matt Kincaid (n.d.), with a constant mass, and some generated forces,

acceleration will be generated, which in turn will generate velocity, which will then

generate the displacement (vehicle position). So, the given formula is as below where, A

is the acceleration, F is the net force applied to it, m is the mass, P is the vehicle

position, V is its linear velocity and T is the time step generated by the system:

A = F / m

V=V+A*T

P=P+V*T

Next is the rotation of the vehicle. Since this is 2D simulation, therefore the angular

cases is quite similar to the linearcase. Basedon the formula above, instead of P, there

is an Angle, instead of V, there is an angularVelocity, instead of a, there is an angular

acceleration, instead of F, there is Torque and m will be the inertia. According to Matt

Kincaid (n.d), the formula should look like this:

AngA = Torque / Inertia

AngV = AngV + AngA * T

Angle = Angle + AngV * T

16

CHAPTER 3

METHODOLOGY

CHAPTER 3: METHODOLOGY

As for the methodology, the author has decided to use the System Development Life

Cycle (SDLC), Prototype model as shownin Figure 3.1.

Analysis

Design

Development

Implementation Prototype System

Figure 3.1: Prototype Model

By choosing this mojiel, the author plans to come out with a simple and functional

prototype of the system as soon as possible. The prototype will be fully tested, and any

more necessary functions will be added. And from then on, the prototype will be tested,

added with more functions and refined to perfection. The author plans to have at least 3

or 4 prototypes.

17

3.1 Planning

During the planning stage, the author has defined the system that is going to be

developed. This basically means that, the author has identified the problem statements,

the scope of project, and the exact tasks that the system is required to do.

The scope of the project has also been identified during this planning stage. As mention

earlier in this report, the scope of the project is focus more on the development of the

algorithm. This project will not cover the Vision System of the car as it will require

great amount of resources and time. This project also will only prove the algorithm by

using simulation and not the actual vehicle.

In order to properly manage the project plan, the author has created a Gantt chart and

divides the project into a few phases. This will allow easier project management and

monitoring because the author will only need to focus on only certain tasks. Figure 3.2

shows the Gantt chart for the project:

DurationID

1

i 2
h~——

LA

j 5

' 7

Task Name

Planning

Analysis

Design

Development

Simulation

Algorithm

Implementation

Prototyping

20 days

25 days

30 days

45 days

25 days

20 days

50 days

50 days

07

Jul JAug J Sep | Oct j Nov [Dec

Figure 3.2: Gantt Chart for the project

18

20

Jan | Feb | Mar j Apr] May | Jun

Each phase has its own milestone. The phases and its milestones are as shown below:

1. Phase 1- Come out with the system requirements.

2. Phase 2- Develop the algorithm and simulation. Thoroughly test them ,

3. Phase 3- Integrate the algorithm into the simulation and test it to prove that the

algorithm is working properly.

4. Phase 4 - Enhancing the prototype

The milestone for each phase needs to be accomplished first before the project can

proceed to the next phase.

The software that will be used in this project will be the Microsoft Visual Studio 2008

as this system will be programmed using the C# programming language.

3.2 Analysis

The analysis stage is where the research regarding this project is being done. There are
quite a number of subjects need to studied first in order for the author to fully
understand the topics that will be involves in this project. The author need to full
understands regarding Artificial Intelligence, analogy ofthe car, and also vectors.

It is identified that the system will consists of three major parts. The first one is that the
car needs to have its own self awareness. This means that the car should be able to

determine its position and its orientation. The car should be able to evaluate and sense
its surrounding to find the empty parking space and also to detect any obstacles. All of
this information is considered as the input for the car.

19

Next, the car should be able to plan the proper route based on the information that it has

obtained earlier. This is basically the processing part of the system. The car should be

able to plan its motion relevant to the input. For this part, the Neural Control

Architecture will play and important role.

Finally, the car should be able to execute the motion planned. This is the output part of

the system. In this part, the author needs to know and master the analogy ofa realistic

car motion. With all its restriction and the correct trajectory.needs to be considered for

this project to succeed.

From the analysis and research done, the final finding for the requirements for the

algorithm have been identified. It is required that the car should be able to:

1. Determine its own positionand its orientation

2. Determine the empty parking space position

3. Calculate the distance between the car and the empty parking space.

4. Detects any obstacle between the car and the parking space.

5. Calculate its path from the given input.

6. Plan the motion of movement by its own.

7. Execute the planned motion properly.

20

3.3 Design

Vision System
(Environment)

Motion Planning ^\
Control (ANN
Model)

Motors

(Simulation)

i L

Figure 3.3: Basic Process Flow

Figure 3.3 shows the basic process flow of the system. Based on the requirements, it is

identified that the car must have its self awareness. Where it can determine its position

and orientation and also determine and detects its environment. This is the part that the

Vision System will handle. Since the Vision System is not going to be developed, the

author has discussed this matter with the instructor Mr. Yew Kwang Hooi to find some

other alternatives for this matter.

From the discussion, an alternative way of giving the car its self awareness is by

creating a grid view of everything in the simulation. Base on the grid value, the center

point for the car will be given as the input to the system. This will allow the car to lcnow

its position. Next, in order to determine the car orientation, another point will need to be

given to the system; this point will be the front point of the car. From these two points,

the car can now lcnow where its position is and where it is facing (orientation). The car's

orientation will be calculated in form of degrees. This means the cars angle from the

parking space. The size of the car is fixed from the start. Therefore, from these two

points, the length and the width of the car can be determined.

21

Once the car knows its orientation, now it will sense its surrounding by using the Vision

System. This Vision System will detect any empty parking space and will give the
coordinates to the car. To emulate this case in the simulation, the car will directly be

given the coordinates of the parking space and the obstacles. From the obtained
coordinates, the car's algorithm will then calculate the area ofthe parking space whether

it is big enough for the car to be parked inside it. The car will then calculate its distance

from the parking space.

Before the car executes the planned motion, we need to lcnow the possible vector for the

car. In order to make this simulation as realistic as possible, the study of the real car

movement is required. The car physics has been described earlier in the literature review

and will be used for the simulation.

22

No

Yes

End

Figure 3.4: Process Flow for the whole svstem

23

Based on Figure 3.4, once the system has detected its environment and obtain all the
necessary inputs, it will then find the best possible route that is to be embarked by the
car. For the possible movement solutions, the author will create afew possible solutions
depending on the situations. Different situations required different solutions. Such as,
when is it better to do a reverse side parking, when to just go ahead and park from
behind. This scenario is created in order to help the car to select which is better and it
will then follow the solutions given. But there is a major weakness in this method. It is

impossible to list down all the possible solutions as.the as it will consume alot of time.

The idea to overcome this is to break down the solutions into smaller ones. These small

solutions, when combined, will provide the complete route for the car to the parking
space. To implement this, the author will create afew simple points or route that the car
can follow before it enter the parking space. These points or route will allow the car to

calculate and analyze which is the correct and nearest route that the car should take.
From this few given point, the car will later learned which route that it will need to take
in order to reach the goal. Figure 3.5 summarizes the process flow on how the vehicle

will find the correct possible route.

24

Auto-Park

f Return

Figure 3.5: Process Flow in Auto-Park

25

Once the correct path is selected, the car will then execute the path plan. Itwill then

check whether ithas completely park itself inthe parking space ornot, if not, then the

system will again detect its environment, and repeat the process offinding the correct

solution until the car is correctly park itselfinside the parking space.

26

3.4 Development

For the development stage, 2 things will be developed. The first one is the simulation

and its environment. The simulation will need to be created first before the algorithm. In

the simulation there is a car, and a parking space. The car should have all the right

physics and vectors assigned to it, as this will make it more realistic. This is quite a

challenge for the author as the author has only learned physics during the secondary

school period. Luckily, the author was able to find a simulation sample posted by Matt

Kincaid in his tutorial to 2D Game Physics. The author decided to use the simulation as

the basis and will then on improved what has been done by Matt Kincaid. The use of the

simulation has been approved by Matt Kincaid himself in an email attached in the

appendix.

The simulation is being created first instead of the algorithm is because, the

environment is really important since the motion planning system can only calculate and

plan the motion based on the inputs that the system obtain from the environment.

Therefore, the author needs to identify earlier what are the inputs that are going to be

available for the vehicle to capture. Based on this few information, the author is able to

decide on what the control system will basically take in as the input and the system will

respond to these inputs only. This allows the author to focused on the desired inputs

rather than catering for all the inputs that are unnecessary.

Next, the algorithm for the control system is developed. This is the tricky part as it

requires the system to process the value of all the obtained input and then plan on what

is the car is going to do next. How the car will move is planned properly based on the

inputs. The car's movements will be restricted to its physical boundaries and the control

system will need to consider this before planning the motion of the car.

27

As for the algorithm for the project, the author has decided to use fuzzy logic to make

the decisions. The input for the system will be:

• Coordinates of the center point of the car

• Coordinates of the center point of the parking space

• Angle

From the two coordinate points, the system will then calculates where the parking space

is located, whether it is at the left hand side, or right hand side. The angle will be used to

determine where the car is currently facing. Here is the if- else code for checking the

system:

if ((car angle >= -0.05 && car_angle <= 0.05) && (VectorX >= -3.0
&& VectorX <= 3.0))

if (vehicle.m_velocity.X >= 8 |I vehicle.m_velocity.Y >= 8
|| vehicle.m_angularVelocity >= 8)

throttle = no_throttle;
else

throttle = full_forward;

}
else if (VectorX <= -20)

{
if (vehicle.m_velocity.X >= 8 ||

vehicle.m_velocity.Y >= 8 II vehicle.m_angularVelocity >= 8)
throttle = no_throttle;

else

throttle = semi_forward;

steering = right;
if (car_angle <= -1.3)

steering = straight;

}
else if (VectorX >= -20)

{
if (vehicle.m_velocity.X >= 8 |I

vehicle.m_velocity.Y >=8 II vehicle.m_angularVelocity >=8)
> throttle = no_throttle; steering = left;

if (car_angle >= 0.05)
steering = right;

else if (car__angle <= -0.05)
steering = left;

else

steering = straight;

28

The system will keep on looping for this section of codes to continuously check where

and how to move the vehicle around. The system will also continuously check whether

the car is inside the parking space or not by repeating this line of code every time the

graphics is being rendered.

float x = vehicle,m_position.X;
float y = vehicle.imposition.Y;

if (y > ParkPointA.Y + 8 && y < ParkPointC.Y - 8 && x > ParkPointA.X +
1.5 && x < ParkPointB.X - 1.5)

inParking = true;

29

3.5 Implementation and Prototyping

This is the stage where the developed algorithm will be integrated into the simulation

that has been created in the previous stage. Basically, when the development process of

the system is finished, itwill become the prototype system only. The whole system can

now be fully tested to prove whether the algorithm iscorrect or there are still some

errors. The prototype system then is tested by the author and other people to get their

feedbacks regarding the system's performance.

Based onthese feedbacks, the author will go back to the analysis phase to analyze all the

new improved requirements or functions that needs to be added into the system. Next is
the design phase, where the author makes a few changes in the system design to cater

for the new functions and requirements added. These cycles are going to be repeated a

few times until the prototype is operating at an optimal performance with less bugs and

errors.

30

CHAPTER 4

RESULT AND DISCUSSION

CHAPTER 4: RESULT AND DISCUSSION

4.1 Result

The prototype that has been developed has been producing quite an excellent result. The

simulation environment which is theparking space, the car and also the car's physics

engine has been properly setup to allow the system to run. The algorithm is working

brilliantly. The car now is able to park itself inside the parking system without any

problems.

4.1.1 Simulation environment setup

The simulation environment for the system has been properly setup where most

of the required variable will be made available to the car to process and reacts

based on this information. The simulation contains a car and an empty parking

space setup in a flat 2D background. The car has a marker to indicate that that is

the front side of the car. Since it can be quite confusing which is the front and

which is the rear without the indicator. The placement of everything in the

simulation world is based on the coordinates that is based on the car's initial

position. To simplify the matters and tomake for easier calculations for the

physics of thecar, the car's center of gravity initial position will bethe origin of

the coordinates. Therefore, the car's initial position is where the coordinate of (0,

0) will be. Figure 4.1 shows the simulation background with the car and the

empty parking space is in position.

31

Figure 4.1: Screenshot of simulation environment

32

As shown in Figure 4.1, notice that on the bottom left side of the windows form

is the position of the car. The initial position for x - axis and the y - axis will be

both 0. Figure 4.2 below shows the selectable options from the drop down

menu. When the user wanted to park the car, the user will need to select the

"automate parking" option from the menu. By default, the system is in the

manual drive state where the user will be able to control the car using the up,

down, left, right arrow button and also the shift button. The up arrow button will

throttle the car forward while the down arrow button will make the car reverse.

Left and Right arrow button will steer the car to the left and right respectively.

The shift button is the brake button and the car will stop when the shift button is

held.

33

-2GPSjntiuiation;i

Menu

Automate Parking

Manual Drive

Position 0 0

Figure 4.2: Dropdown Menu of the Simulation

34

4.1.2 Automated Parking Result

After the simulation environment is completely developed, it is time to develop

the algorithm for the parking system. The algorithm is considered to be a

successful one as the system is able to park the car inside the empty parking

space successfully. The system only requires these two inputs from the

environment:

The (X, Y) coordinates of the car

The (X, Y) coordinates of the parking space

Fromthese points, the system is able to project the size of the car and also the

size of the parking space. The distance of the car from the parking space and also

its orientation from the parking space can be calculated by calculating the

vectors of these two points. Let say for example, the car is at the origin, while

the coordinates for the parking space is at (10, 25). So the vectors between the

two coordinates would be lOi + 25j. This means that the parking space is 25

grids in front of the car, and 10 grids to the right hand side of the car. If the value

is -Xi + -Yj, we can safely say that the parking space is locatedX grids to the

left hand side of the car and Y grids to the rear of the car.

Once the car knows the distance between itself and the parking space, the car is

able to compute and calculate its next movements. The system will need to

check for certain conditions and if meets the condition, the system will then

select the suitable actions.

35

Position 0

Figure 4.3: Initial state of the car

36

Figure 4.3 shows the initial state of the car. During this state the car will scan its
surrounding looking for any empty parking space. But in this case the

coordinates ofthe parking space is being given to the car. From this information,

the car will then calculate the vectors between itself and the parking space. This

will provide the information on the distance and the orientation ofthe car. Once
the car learned that the parking space is located infront and to the right hand

side ofthe vehicle, the car will then initiate its motion. The car will drive straight

on ahead, until it reaches a certain point where it is near enough to the parking

space, it will then start to steer the car to the right. This is as shown in Figure

4.4.

The car will continuously check the orientation ofitself and also the parking

space. As shown in Figure 4.5, when the car checked that it is now aligned with
the parking space, it will then stop so steer to the right anymore and will just
throttle ahead. Finally, in Figure 4.6 shows that when the car is inside the

parking space it will totally halt its motion as it has successfully accomplished

its tasks.

37

Figure 4.5: The car will steer straight

Figure 4.6: The car in the parking space

4.2 Discussion

As ofnow, the author has been able to reach all of the milestones that have been set

during the planning stage of this project. The project is at the moment in the Phase 4
which is the enhancing the prototype phase. The author considers that this phase can be
a never ending one as improvement will always be required. There are still a lot of
things that can be done to improve this system. But due to the limited amount of time
that the author has, the project will have to end at some point.

All the other phases of this" project can be considered as a success. During the phase 2
and 3of this project, this project's progress is not according to the timeline as it falls
behind schedule for a few weeks. This is during the part where the author has to develop

the 2D simulation for the system. This is especially challenging as the author has little to

no background at all in the graphics programming. The author then came across a
simulation created by Matt Kincaid, in his tutorial for 2D game physics, and then
decided to use his simulation and modify it accordingly instead of creating everything

from scratch. Matt Kincaid has approved of the use ofhis simulation. This has greatly

helps the progress of this project.

The project is now successfully working in the situation that has been set by the author.
The vehicle should now be able to park itself no matter where it is. The user can drive

the vehicle to where ever the location is, and when the automate parking is selected, the

car will be able to detect the parking space and then will be able to maneuver itself to

enter the empty parking space.

39

The author now plans to further develop the system by adding more functions that will
allow the user to add objects as obstacles. These will really test the vehicle's intelligence

inplanning its motion and executing it.

40

CHAPTER 5

RECOMMENDATION AND CONCLUSION

CHAPTER 5: RECOMMENDATION AND CONCLUSION

5.1 Recommendation

Due to the time and resource constraint in the development of this project, the author

can only do so much during these two semesters. The author focuses on the main

functions that are going to allowthe system to workwith optimal performance. So, quite

a number of assumptions havebeen made. As for the recommendation, there are quite a

lot of things that can be improved to the systemthat has been created.

5.1.1 Test with real vehicle

Since in this project the system is only tested using a simulation, it is highly

recommended that this system will next be tested in the real world to see how

the algorithm will work. One way to do this is by using a modified remote

control vehicle. This can be considered as the "small scale" testing. The remote

control vehicle will be equipped with the chips and the algorithm will be

downloaded into the chip and this will allow the car to process the inputs and

plan its motion.

For the "large scale" testing, a real car can be used and equipped with the

necessaryhardwareand systemto allow it to plan and executethe motion.

41

This is really challengmg as when testing in real world, there are a lot of other

factors that will come into action. The developer will have to consider the

vehicle's traction with the ground, the real force that opposes the vehicle's

movement, the gravity force that acts on the vehicle. These factors are highly

important when trying to test the vehicle in real life.

5.1.2 Develop the Yision System

Since in this project, the author did not create the Vision System, it is a good

thing for future improvements. This will allow the car to be tested in real life

environment insteadof just in simulations. It will enhance the capability of the

system greatly. In order to do this, the car will need to be equipped with a

number of detectingdevices,be it infra-red sensors or even cameras. Then, the

vision systemwill have to be able to filter only the necessaryinformation and

will then pass it to the system. The filteringprocess of the inputs is challenging.

The vision system will need to determine what exactly it wants to capture and

then it will need to dispose of all the unnecessaryinformation. There will also be

a lot of noises in the capture inputs; this has to be taken care of as well.

42

5.2 Conclusion

As for the conclusion, the project can be considered as a successful one. All the

milestones set for this project has been reached and most importantly the objectives of

this project which is "To develop an autonomous motion planning system that will

allow a mobile vehicle to automatically park itself efficiently" has been successfully

achieved. The system that has been developed is now able to plan the motion and

executing it perfectly.

Fromthis project, the authormanages to learn lots of things. Among them is the project

management skill. An important thing in a project is the duration of the project.

Therefore the planning of the project can be. considered as crucial for the success of a

project. The planning stage need to really be able to allocate theright amount of time for

certain tasks. Key milestones need to be set as this will serve as a guide for the

developer regarding the time line of the project. The key milestone is a great way to

make sure that the developer is alert on the important dates. The resource management

such as cost and money is of less issue in this project as this project doesn't really

require any expensive hardware to be bought. The author also learns how to manage

stress the rightway. Duringthis two semester period, the author feels that the pressure is

high during the last few months towards the end of the project.

For the technical part, the author manages to learn on the physics of a moving object.

How the Newton's Law is applied to the objects and how it is done in the programming

codes. The author also manages to learn a few things on graphics programming from the

simulation by Matt Kincaid. The author also notice that the object - oriented

programming is really important when developing quite a long program as tough

solutions can be made easy with the aid of object - orientedprogramming.

43

Lastly, the author has really learned a lot during this project period. The author really
hopes that this project will serve its purpose to help the community and the automobile
industry to grow further inthe technological area.

44

REFERENCES

1. Steven M. Lavalle, 2006, "Planning Algorithms", Cambridge University Press

2. David M. Bourg, 2002, "Physics for Game Developers", O'Reilly & Associates,

Inc.

3. Wolfgang A. Daxwanger, Gunther K. Schmidt 1995, "Skill-based Visual

Parking Control Using Neural andFuzzy Networks", Department for Automatic

ControlEngineering, TechnicalUniversityof Munich.

4. Milten Roberto Heinen, Fernando Santos Osorio, Farlei Jose Heinen, Christian

Kelber, 2006, "SEVA3D: Autonomous Vehicles Parking Simulator in a three

dimensional environment"

5. Jin Xu, Guang Chen, Ming Xie,(n.d.) "Vision-Guided Automatic Parking For

Smart Car"

6. Se-Young Oh, Senior Member, IEEE, Jeong-Hoon Lee and Doo Hyun Chooi,

2000, "A New Reinforcement Learning Vehicle ControlArchitecture For Vision-

Based Road Following"

7. Dario Maravall, Miguel Angel Patricio and Javier de Lope, 2003, "Automatic

CarParking: A Reinforcement Learning Approach "Departmentof A.I, Faculty

of ComputerScience, Universidad Politecnica de Madrid.

45

8. A. Atreya, B. Cattle, S. Momen, B. Colhns, A. Downey, G. Franken, J. Glass, Z.

Glass, J. Herbach, A. Saxe, I. Ashwash, C. Baldassano, W. Hu, U. Javed, J.

Mayer, D. Benjamin, L. Gorman, D. Yu, 2006, "DARPA Urban Challenge

Princeton University TechnicalPaper", Princeton University

9. Matt Kincaid, "2D Car Physics"

10. Ingrid Russell of the University of Hartford, "Neural Networks Module",

1996<http://uhavax.hartford.edu/compsci/neural-networks-defimtion.html>

11. Pete McCollum, "An Introduction to Back-Propagation Neural

Networks",<http://www.seattlerobotics.org/encoder/nov98/neural.html>

12. Steven D. Kaehler, "FUZZY LOGIC - AN INTRODUCTION",

<http://www.seattlerobotics.org/encoder/mar98/fuz/fl partl.html#lNTROD

UCTION>

13. F. Markus Jonsson, "An optimal pathfinder for vehicles in real-world digital

terrain maps", 1997 <http://www.stiident.nada.bth.se/~f93-

mai/pathfinder/contents.html>

14. Christos Stergiou and Dimitrios Siganos, "NEURAL

NETWORKS"^<http://www.doc.ic.ac.uk/~nd/surprise 96/iournal/vol4/csll/r

eport.html#Introduction%20to%20neural%2Qnetworks>

15. http://www.defmethat.com/hitting.asp?ID=3601

46

16. http://en.wikipedia.org/wiki/ArtificiaI neural network

17. http://en.wikipedia.org/wiki/Fuzzv logic#Misconceptions and controversie

47

APPENDIX

48

Here isthe email snippet from Matt Kincaid allowing the author to use his simulation in

this project:

hi amirul,

Feel free to use the demo how ever you'd like, just

remember to give me credit.

I'm not sure why a negative throttle wasnt working for you.

it worked fine for"me.

I modified this line:

vehicle.SetThrottle(throttle, menu.Checked);

to be

vehicle.SetThrottle(-throttle, menu.Checked);

To make the vehicle stop instantly you'll have to zero its velocity.

So in the RigidBody object add a function that can set the

value of m_velocity. And call this with a vector of zero

zero.

Good luck!

On Sun, Mar 23, 2008 at 4:37 AM, amirul ehsan

<azurieza@yahoo*. com> wrote:

Hello there,

I'm Amirul. I'm doing a project on vehicle parking simulation when I

came across your 2D car physics tutorial. Can I use your simulation

from the tutorial for my project..?I'd like to integrate my algorithm

into your simulation.

49

But, there's few things I'd like to know, I've tried to set the

throttle value to negative to make the car reverse, but the car moti'on

doesn't seems right..and how do I make the car to instant stop..?

Cheers-"

-Amirul™

Be a better friend,- --newshound, and know-it-all with Yahoo!

Mobile. Try it now.

Matt Kincaid

Programmer - -

kincaid05@gmail.com

Cell: (260) 241-4002

50

Here is the source code for the whole system:

using System;

using System.Collections.Generic-

using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Drawing.Drawing2D;

using System.Text;
using System.Windows.Forms;

namespace Simulation_2D

{

static class Program

{
/// <summary>

/// The main entry point for the application.
/// </summary>
[STATfrread]

static void Main()

{
Application.EnableVisualStyles();
Application.SetCompatibleTextRenderingDefault(false)
Application.Runfnew frmMain());

}

}

//our main application form
public partial class frmMain : Form

{
//graphics
Graphics graphics; //gdi+
Bitmap backbuffer;

Size buffersize;

const float screenScale = 3.Of;

Timer timer = new Timer(};

public B.ectangle ParkRect = new Rectangle (
float VectcrX, VectorY;

bool inParking, Parkl, Park2;
float car_angle;

Vector ParkPointA = new Vector();

Vector ParkPointB = new Vector();

Vector ParkPointC ~ new Vector();

Vector ParkPointD = new Vector();

Vector ParkCenterPoint = new Vector{);

51

right

Vector CarPointA = new Vector{

Vector CarPointB » new Vector(

Vector CarPointC = new Vector(

Vector CarPointD = new Vector(

//keyboard controls
bool leftHeld = false, rightHeld = false;
bool upHeld = false, downHeld = false;
bool shiftHeld = false;

bool Automate = false;

//vehicle controls
float steering = 0; //-I is full left, 0 is center, 1 is full

float throttle = 0; //0 is coasting, 1 is full throttle
float reverse =0; //0 is stop, -1 is full reverse

bool brakes = false;

//game objects
Vehicle vehicle = new Vehicle();

public frmMain()

{
InitializeComponent();
Application.Idle += new EventHandler(Applicationldle);

screen.Paint += new PaintEventHandler(screen_Paint);
this.KeyDown += new KeyEventHandler(onKeyDown);
this.KeyUp += new KeyEventHandler(onKeyUp);

Init(screen.Size);

}

//intialize rendering

private void InitfSise size)
{

//setup rendering device
buffersize = size;
backbuffer = new Bitmap(buffersize.Width,

buffersize.Height);
graphics = Graphics.Fromlmage(backbuffer);

timer.GetETime(); //reset timer

vehicle.Setup(new Vector(7, 12) /2,0f, 5,- Color.Red);
vehicle.SetLocation(new Vector(0, 0), 0);

}

//main rendering function
private void Render(Graphics g)

52

//clear back buffer
graphics.Clear(Color.Gray);
graphics.ResetTransformO;
graphics.ScaleTransformfscreenScale, -screenScale);
graphics.TranslateTransformfbuffersize.Width / 2.Of /

screenScale, -buffersize.Height / 2.Of / screenScale);

//draw to back buffer

DrawScreen();

CalculateDistance();

car_angle = CalculateAngle(};

//display coordinate of the vehicle
labell.Text = vehicle.m_position.X.ToStringO;
labe!2.Text = vehicle,imposition.Y.ToStringO;

//Display the distance between car and parking space
label5.Text = VectorX.ToString();

label6.Text = VectorY.ToString();

//Display vehicle's velocity and angle for testing purposes
label3.Text = vehicle.m_velocity.X.ToString(};
label4.Text = vehicle.m_velocity.Y.ToStringO;
//labe!7.Text = car_angle.ToString();

//labels.Text = vehicle.rect-X.ToString();
//label9.Text = vehicle.rect.Y.ToStringO;

//labellO.Text = timer.etime.ToString {);
//labelll.Text = timer.lastTime.ToString();

//present back buffer
g.DrawImage(backbuffer, new Rectangle(0, 0,

buffersize.Width, buffersize.Height), 0, 0, buffersize.Width,
buffersize.Height, GraphicsUnit.Pixel);

}

//draw the screen

private void DrawScreenO

{
vehicle.Draw(graphics, buffersize);
DrawParkSpace(graphics, buffersize);

}

//process game logic
private void DoFrame0

{

53

//get elapsed time since last frame
float etime = timer.GetETime0;

//process input
InitPoint();

//MainSelectRouteO ;

if (Automate)

MainAutoParkO ;

else

Processlnput(};

//apply vehicle controls
vehicle.SetSteering(steering);
vehicle.SetThrottle(throttle, menu.Checked);
vehicle.SetThrottle(reverse, menu.Checked);
vehicle.SetBrakes(brakes);

//integrate vehicle physics
vehicle.Update(etime);

//keep the vehicle on the screen
ConstrainVehicle();

//redraw our screen

screen.Invalidate 0;

}

//keep the vehicle on the screen
private void ConstrainVehicle.()

{
Vector position = vehicle.GetPosition();
Vector screenSize = new Vector(screen.Width / screenScale,

screen.Height / screenScale);

while (position.X > screenSize.X / 2.Of) { position.X -=
screenSize.X; }

while (position.Y > screenSize.Y / 2.Of) { position.Y —
screenSize.Y; }

while (position.X < -screenSize.X / 2.Of) { position.X +=
screenSize.X; } •>

while (position.Y < -screenSize.Y / 2.Of) { position.Y +=
screenSize.Y; }

}

//process keyboard input
private void Processlnput()

{
if (leftHeld)

steering - -1,"

54

}

else if (rightHeld)
steering = 1;

else

steering = 0;

if (upHeld)

throttle = 1;

else

throttle = 0;

if (downHeld)

reverse = -1;

else

reverse = 0;

if (shiftHeld)

brakes = true;

else

brakes = false;

private void onKeyDown(object sender, KeyEventArgs e)

{
switch (e.KeyCode)

{
case Keys.Left:

leftHeld = true;

break;

case Keys.Right:
rightHeld = true;.
break;

case Keys.Up:

upHeld = true;
break;

case Keys.Down:
downHeld = true;

break;

case Keys.ShiftKey:
shiftHeld = true;

break;

default: //no match found

return; //return so handled dosnt get set

}

//match found

e.Handled = true;

1

private void onKeyUp(object sender, KeyEventArgs e)

{

55

switch (e.KeyCode)

{

case Keys.Left:

leftHeld = false;

break;

case Keys.Right:

rightHeld = false;
break;

case Keys.Up:

upHeld = false;
break;

case Keys.Down:

downHeld = false;

break;

case Keys.ShiftKey:
shiftHeld = false;

break;

default: //no match found

return; //return so handled dosnt get set
}

//match found

e.Handled = true;

}

//rendering - only when screen is invalidated
private void screen_Paint(object sender, PaintEventArgs e)
{

Render(e.Graphics);

}

//when the os gives us time, run the game
private void Applicationldle(object sender, EventArgs e)
{

// While the application is still idle, run frame routine.
DoFrame();

}

private void MenuExit_Click(object sender, EventArgs e)
{

this.Close();

}

///
/////////

//draw the parking space
public void DrawParkSpace(Graphics g, Size buffersize)
{

//ParkRect.X = -4; //for reverse park

56

}

//ParkRect.Y = -28;

//ParkRect.X = -4; //for straight park

//ParkRect.Y = 20;

//park = 1;
//ParkRect.Width = 9;

//ParkRect.Height = 15;

//ParkRect.X = -35;

//ParkRect.Y = 25;

ParkRect.X = 30;

ParkRect.Y = 40;

ParkRect.Width = 13;

ParkRect.Height =20;

g.DrawRectangle(new Pen(Color.White), ParkRect);

public void InitPoint()

{
ParkPointA.X = ParkRect.X;

ParkPointA.Y = ParkRect.Y;

ParkPointB.X = ParkPointA.X + ParkRect.Width;

ParkPointB.Y *= ParkPointA.Y;

ParkPointC.X = ParkPointA.X;

ParkPointC.Y = ParkPointA.Y + ParkRect.Height;

ParkPointD.X = ParkPointB.X;

ParkPointD.Y = ParkPointC.Y;

ParkCenterPoint.X = ParkPointA.X + ParkRect.Width / 2;
ParkCenterPoint.Y = ParkPointA.Y + ParkRect.Height / 2;

• }

public void MainAutoParkO

{
//check if in parking space

float x = vehicle.m_position.X;
float y = vehicle.m_position.Y;
if (y > ParkPointA.Y +8 && y < ParkPointC.Y - 8 && x >

ParkPointA.X + 1.5 && x < ParkPointB.X - 1.5)

inParking = true;

//if Ucar_angle >= -0.05 && car_angle <=-0.05) f|
(car_angle >= -3.15 &S car_angle <= -3.05} I!

// (car_angle >= 3.05 S& car_angle <= 3.15))
if (inParking)

brakes = true;

else

FuzzyControl0 ;

}

public void CalculateDistance()

57

{
VectorX = vehicle.reposition.X - ParkCenterPoint.X;
VectorY = vehicle.reposition.Y - ParkCenterPoint.Y;

}

public void FuzzyControl()

{
// for throttle

float full_forward= l.Of;
float semi_forward = O.lf;
float no_throttle = O.Of;
float full_backward = -l.Of;
float semijbackward = -0.05f;

//for steering

float left = -l.Of;

float semi_left - -0.5f;
float right = l.Of;

float semi_right = 0.5f;
float straight = O.Of;

if ((car_angle >= -0.05 && car_angle <= 0.05) &&
(VectorX >= -3.0 && VectorX <= 3.0))

{
if (vehicle.m_velocity.X >= 8 (|

vehicle.m_velocity.Y >= 8 || vehicle.m_angularVelocity >= 8)
throttle = no_throttle;

else

throttle = full_forward;

}
else if (VectorX <= -20)

{
if (vehicle.m_velocity.X >= 8 i1

vehicle.m_velocity.Y >= 8 || vehicle.m_angularVelocity >= 8)
throttle = no_jthrottle;

else

throttle = semi_forward;

steering = right;
if (car_angle <= -1.3)

* steering = straight;

}
else if (VectorX >= -20)

{
if (vehicle.ra_velocity.X >= 8 ||

vehicle.m_velocity.Y >=8 || vehicle.m_angularVelocity >=8)
throttle = no_throttle; steering = left;

if (car_angle >= 0.05)
steering = right;

58

else if (car_angle <= -0.05)
steering = left;

else

steering = straight;

}

//else

// brakes = true;

}

public float CalculateAngleO

{
float newAngle *» vehicle.m_angle;;

while (newAngle >= 6)
newAngle = newAngle - 6;

while (newAngle <= -6)
newAngle = newAngle + 6;

return newAngle;

}

private void testToolStripMenuItem_Click(object sender,
EventArgs e)

{
Automate = true;

}

private void manualDriveToolStripMenuItem_Click(object sender,
EventArgs e)

{
Automate = false;

}

/iiiiiftiniiiimmmummimnmmnummutmmttmu/
/////////

}

//mini 2d vector :)

class Vector

{
public float X, Y;

public Vector{) { X = 0; Y = 0; }
public Vector(float x, float y) { X = x; Y = y; }

//length property

59

public float Length
(

get

return (float)Math.Sqrt((double)(X * X + Y * Y));
}

}

//addition •
public static Vector operator +(Vector L, Vector R)

return new Vector(L.X + R.X, L.Y + R.Y);

}

//subtraction ^_
public static Vector operator -(Vector L, ./ec.or K)

return new Vector(L.X - R.X, L.Y - R.Y);

}

//negative
public static Vector operator -(Vector R)

Vector temp = new Vector(-R.X, -R.Y);
return temp;

}

//scalar multiply
public static Vector operator *(Vector L, float R)

return new Vector(L.X * R, L.Y * R);

}

//divide multiply
public static Vector operator /(Vector L, float R)

return new Vector(L.X / R, L.Y / R);

}

//dot product
public static float operator *(Vector L, Vector R)

return (L.X * R.X + L.Y * R.Y);

}

//cross product, in 2d this is a scalar since we know it points
in the Z direction

public static float operator %(Vector L, Vector R)

return (L.X * R.Y - L.Y * R.X);

60

}-

}

//normalize the vector

public void normalized

{
float mag = Length;

X /= mag;

Y /= mag;

}

//project this vector on to v
public Vector Project(Vector v)

{
//projected vector = (this dot v) * v;
float thisDotV = this * v;

return v * thisDotV;

}

//project this vector on to v, return signed magnatude
public Vector Project(Vector v, out float mag)
{

//projected vector = (this dot v) * v;
float thisDotV = this * v;

mag = thisDotV;
return v * thisDotV;

}

//keep track of time between frames
class Timer

{
//store last time sample
public int lastTime = Environment.TickCount;
public float etime;

//calculate and return elapsed time since last call
public float GetETimeO

{
etime = (Environment.TickCount - lastTime) / 1000.Of;
lastTime = Environment.TickCount; .

return etime;

61

//our simulation object

class RigidBody

{
//linear properties
public Vector reposition = new Vector();
public Vector m_velocity = new Vector();
public Vector m__forces = new Vector ();
public float m_mass;

//angular properties
public float m_angle;
public float m_angularVelocity;
public float ro^torque;
public float m_inertia;

//graphical properties
public Vector m_halfSize = new Vector();
public Rectangle rect = new Rectangle();
public Color m_color;

public RigidBody()

~ {
//set these defaults so we dont get divide by zeros

m_mass = l.Of;
m_inertia = l.Of;

}

//intialize out parameters
public void Setup(Vector halfSize, float mass. Color color)
(

//store physical parameters

m_halfSize = halfSize;
m_mass = mass;

m_color = color;
m_inertia = (l.Of / 12.Of) * (halfSize.X * halfSize.X} *

[halfSize.Y * halfSize.Y) * mass;

//generate our viewable rectangle
rect.X = (int)-m_halfSize.X;
rect.Y = (int)-m_halfSize.Y;
rect.Width = (int) (mJialfSize.X * 2.0f);
rect.Height = (int)(m_halfSize.Y * 2.Of);
//rect.X = 0;

//rect.Y = 0;

//rect.Height = 11;
//rect.Width = 6;

}

public void SetLocation(Vector position, float angle)

{

62

180.Of!

m_position = position;
m__angle = angle;

}

public Vector GetPositionO

{
return m_position;

}

public void Update(float timeStep)

{
//integrate physics

//linear _,
Vector acceleration = m_forces / m_mass;
m_velocity += acceleration * timeStep;
mjposition += m_velocity * timeStep;
m_forces = new Vector(0, 0); //clear forces

//angular
float angAcc = m_torque / m_inertia;
m__angularVelocity += angAcc * timeStep;
m_angle += m_angularVelocity * timeStep;
m_torque = 0; //clear torque

}

public void Draw(Graphics graphics, Size buffersize)

{
//store transform, (like opengl's glPushMatrix())
Matrix matl = graphics.Transform;

//transform into position
graphics.TranslateTransform(m_jposition.X, m_position.Y);
graphics.RotateTransform(m_angle / (float)Math.PI *

try

{
//draw body
graphics.DrawRectangle(new Pen(m_color), rect);

//draw line in the "forward direction"
//graphics.DrawLine(new Pen(Color.Yellow), 1, 0, 1, 5

//draw line in the "forward direction"
graphics.DrawLine(new Pen(Color.Yellow), rect.X +

rect.Width / 2, rect.Y + rect.Height / 2, rect.X + rect.Width / 2,
rect.Y + rect.Height);

, }
catch (OverflowException exc)

{

63

//physics overflow :(

}

//restore transform
graphics.Transform = matl;

}

//take a relative vector and make it a world vector
public Vector RelativeToWorld(Vector relative)
{

Matrix mat = new Matrix();
PointFt] vectors = new PointF[l];

vectors [Ol'.'X = relative.X;
vectors[0].Y = relative.Y;

mat.Rotate(m_angle / (float)Math.PI * 180.Of);
mat.TransformVectors(vectors);

return new Vector(vectors[0].X, vectors[0].Y);

}

//take a world vector and make it a relative vector
public Vector WorldToRelative(Vector world)
{

Matrix mat = new Matrix ();
PointF[] vectors = new PointF[l];

vectors[0]-X = world.X;
vectors[0].Y = world.Y; .

mat.Rotate(-m_angle / (float)Math.PI * 180.Of);
mat.TransformVectors(vectors);

return new Vector(vectors[0].X, vectors[0],Y);
}

//velocity of a point on body
public Vector PointVel(Vector worldOffset)

Vector tangent - new Vector(-worldOffset.Y, worldOffset.X);
return tangent * m_angularVelocity + mjvelocity;

}

public void AddForce(Vector worldForce, Vector worldOffset)
{

//add linar force

m_forces += worldForce;
//and it's associated torque
m_torque += worldOffset % worldForce;

64

//our vehicle object
class Vehicle : RigidBody

{
public class Wheel

{
public Vector m_forwardAxis, m_sideAxis;
public float m_wheelTorque, m_wheelSpeed, m_wheellnertia,

m_wheelRadius;
public VectjOr m_Position = new Vector ();

public Wheel(Vector position, float radius)
{

m_Position = position;
SetSteeringAngle(0);
m_wheelSpeed = 0;
m_wheelRadius = radius;
m_wheellnertia = radius * radius; //fake value

}

public void SetSteeringAngle(float newAngle)
{

Matrix mat = new Matrix(};

PointF[] vectors = new PointF[2];

//foward vector

vectors[0].X = 0;

vectors[0].Y = 1;

//side vector

vectors[l].X = -1;

vectors[l]-Y = 0;

mat.Rotate(newAngle / (float)Math.PI * 180.Of);
mat.TransformVectors(vectors);

m_forwardAxis - new Vector(vectors[0].X, vectors[0].Y);
m_sideAxis = new Vector(vectors[1]-X, vectors[1].Y);

}

public void AddTransmissionTorque(float newValue)
{

m_wheelTorque +«= newValue;
}

public float GetWheelSpeedO

{
return m_wheelSpeed;

65

}

public Vector GetAttachPoint()

{
return m_Position;

}

public Vector CalculateForce(Vector relativeGroundSpeed,
float timeStep)

{
//calculate speed of tire patch at ground
Vector patchSpeed = -m_forwardAxis * m_wheelSpeed *

m wheelRadius;

//get velocity difference between ground and patch

Vector velDifference = relativeGroundSpeed +

patchSpeed;

//project ground speed onto side axis
float forwardMag =0;
Vector sideVel = velDifference.Project(m_sideAxis);
Vector forwardVel =

velDifference.Project(m__forwardAxis, out forwardMag);

//calculate super fake friction forces
//calculate response force
Vector responseForce = -sideVel * 2.Of;

responseForce -= forwardVel;

//calculate torque on. wheel
m_wheelTorque += forwardMag * m_wheelRadius;

//integrate total torque into wheel
m_wheelSpeed += m_wheelTorque / m_wheelInertia *

timeStep;

0.5f);

//clear our transmission torque accumulator

m wheelTorque =0;

//return force acting on body

return responseForce;

}

}
private Wheel[] wheels = new Wheel£4];

new public void Setup(Vector halfSize, float mass, Color color\

{
//front wheels

wheels[0] = new Wheel(new Vector(halfSize.X, halfSize.Y),

66

o.5f:

o.5f;

0.5f]

}

wheels[1] = new Wheel(new Vector(-halfSize.X, halfSize.Y),

//rear wheels

wheels[2] = new Wheel(new Vector(halfSize.X, -halfSize.Y),

wheels[3] = new Wheel(new Vector(-halfSize.X, -halfSize.Y),

base.Setup(halfSize, mass, color);

public void SetJSteering (float steering)
{

const float steeringLock ~ 0.75f;

//apply steering angle to front wheels
wheels[0].SetSteeringAngle(-steering * steeringLock);
wheels[1].SetSteeringAngle(-steering * steeringLock);

}

public void SetThrottle(float throttle, bool allWheel)

{
const float torque = 20.Of;

//apply transmission torque to back wheels

if (allWheel)

{
wheels[0].AddTransmissionTorque(throttle•* torque);
wheels[1].AddTransmissionTorque(throttle * torque);

}

}

wheels[2] .AddTransmissionTorque(throttle * torque);
wheels[3] .AddTransmissionTorque(throttle * torque);

//

public void SetBrakes(bool brakes)

{
if (brakes)

{
m_velocity.Y = O.Of;
m_velocity.X - O.Of;
m_angularVelocity = O.Of;
foreach (Wheel wheel in wheels)

wheel.m wheelSpeed = 0;

}

67

new public void Update(float timeStep)

{
foreach (Wheel wheel in wheels)

{
//wheel.m_wheelSpeed = 30.Of;
Vector worldWheelOffset =

base.RelativeToWorld(wheel.GetAttachPoint 0);

Vector worldGroundVel =

base.PointVel(worldWheelOffset);

Vector relativeGroundSpeed ~
base.WorldToRelative(worldGroundVel);

Vector relativeResponseForce =

wheel.CalculateForce(relativeGroundSpeed, timeStep);
Vector worldResponseForce =

base.RelativeToWorld(relativeResponseForce);

base.AddForce(worldResponseForce, worldWheelOffset);

}

base.Update(timeStep);

68

