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This report describes an analysis ofKikeh Truss Spar subjected a regular wave loading. 

Many innovative floating offshore structures have been constructed over the world 

nowadays. This is because shallow water hydrocarbon reserves continue to reduce while 

global demand increases. One such type of floating offshore structures is the Spar 

platform. Recently, the first Malaysia deepwater platform was installed which is Kikeh 

Truss Spar. A Study on this Kikeh Spar Platform was conducted to analyze its dynamic 

behavior when subjected to regular waves. Generally, the spar platform is described as a 

rigid body with six degree of freedom at the Center of Gravity (COG). A unidirectional 

regular wave is used for computing the incident wave kinematics by Airy's wave theory 

and excitation forces by Morison equation. Severe storm wave was predicted using the 

P-M model. The response analysis was conducted in frequency domain approach 

without any iteration by using Response-Amplitude Operator as transfer function. It is 

important to analyze the motion response of spar in order to ensure its stability even 

during extreme wave condition. Parametric study was also conducted to observe the 

response behavior with changing parameters. The results obtained from the analysis are 

presented using graphs and tables. 

Key words: Regular wave, Kikeh Truss Spar, dynamic analysis, frequency domain, 

parametric study 
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CHAPTER I 

INTRODUCTION 

1.1 Background 

1.1.1 Spar Technology 

As oil and gas exploration are pushed into deeper water, many innovative floating 

offshore structures are being constructed and installed worldwide. This is due to 

increasing global demand for oil while in contrast shallow water oil reserves continue to 

reduce. Those floating structures such as Tension Leg Platform, Spar and FPSO are 

therefore become main interest for water depth region of 1000 to 3000 m. 

Spar platform is one of the compliant floating offshore structures used for deep and very 

deep water application which are more than 600 m water depth. This type of platform is 

among the largest offshore platforms in use and designed to support drilling, 

production, processing, storage and offloading operation. It consists of large cylinder 

which floats vertically in the water and tethered to the seafloor with multiple taut 

mooring lines. This cylinder serves to stabilize the platform in the water and allows for 

movement to absorb the force of potential hurricanes [Luis, 2001]. The main function of 

the mooring lines is to provide restoring force to the cylinder and reduce its degree of 

freedom. Other than that, the floating spar platform is designed so that its center of 

gravity is lower than its center of buoyancy for stability. Its buoyancy is used to support 

facilities above the water surface. The concept of spar platform was widely recognized 

due to its adaptation of wide range of water depth and benign motion characteristics 

[Zhang et a!., 2006]. This type of platform is commonly used in the Gulf of Mexico for 
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oil production. For example, the world's first production spar was the Neptune Spar 

installed in 1996 by Kerr-McGee. Figure 1. I shows the progression of spars technology 

built by Technip Offshore, Inc. 

Classic Spar Trusses Spar Cell Spar 

Figure 1.1: Progression of Spars (Technip Offshore) 

Generally, spar platform can be divided into three types which are classic, truss and cell 

spar. The first generation classic spar basically has large vertical cylinder that may used 

as a production, storage and off-loading platform. Converse and Bridges (1996) noted 

that the hull of the classic spar may has diameter and total length of up to 40 m and 250 

m deep respectively depending on its application and the environments of its location. 

Ma and Patel (200 1) mentioned several advantages of classic spar compared with other 

floating platforms which including structural simplicity, insensitivity to water depth, 

good protection of riser connections to the sea bed and also low overall cost. Besides, 

the main feature of the classic spar is its excellent motion characteristics even in severe 
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sea states due to its deep-draft vertical cylinder hull. However, in some sea area, where 

the ambient deep current becomes a major factor, the drag on the large cylindrical shape 

can be significant [Zhang et al., 2006]. Other than that, it was discovered [Adee, 1970] 

that a long circular cylinder has a large heave motion near its natural period due to small 

damping. 

In such cases, a truss spar is an attractive alternative since the lower cylindrical part of 

typical classic spar is replaced with an open truss structure to reduce the draft portion. 

The truss spar configuration consists of a top hard tank and a bottom soft tank separated 

by the truss section. Horizontal plates were included between the truss bays to minimize 

heave motion by increasing both added mass and damping in the vertical direction. 

Downie et al. (2000) mentioned some advantages of truss spar over the classic spar 

such as lower cost, lower drag area and therefore reduced current and mooring loads, 

and less sensitivity to vortex-induced vibrations. In addition, the truss spar is also more 

structurally efficient when there is no oil storage required. All these advantages have 

made the spar platform generally and the truss spar in particular, attractive for the 

offshore industry. 

A third generation of spar which is cell spar was introduced in 2004 which has similar 

function with the other spar but different in physical characteristics. Instead of single 

hull, it consist a cluster of smaller cylinders which are connected by horizontal and 

vertical plates. The upper portion of the multiple hulls is composed of six outer cells 

surrounding a center cell to provide the buoyancy. Otherwise, the lower portion is 

formed by extending three of the outer cells down to the keel. Zhang et al. (2006) noted 

that the cell spar concept is efficient and can be considered to reduce the fabrication and 

installation difficulty as well as the cost since the standard rolling technique could be 

utilised. Furthermore this method of construction is cheaper than the traditional plate 

and frame methods. 
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1.1.2 Kikeh Truss Spar 

In this project, a truss spar platfonn which is Kikeh Spar was selected to be analyzed 

upon its responses due to regular waves. Kikeh Truss Spar is the first Malaysian 

deepwater development located in Blok K, 125 km offshore Sabah and lies at a water 

depth of 1330 m. It is the first spar application outside the Gulf of Mexico and the 

topside was first ever installed by float over technique onto a spar on the November 

2006. This structure which also called as Kikeh Dry Tree Unit (DTU) consists of a 

Truss Spar floating structure with the topsides located above the Spar Deck (Deck 7) 

and has 10 legs mooring system. The truss spar consists of a cylindrical upper hull 

(Hard tank) with a square center well, a jacket-type middle-section truss with heave 

plates, and a soft tank (keel tank) at the keel (refer to Figure 1.2). The soft tank is 

provided on the east side of the spar so as to provide buoyancy during horizontal wet 

tow. In order to conduct the analysis, the principle dimensions and some particulars 

regarding the Kikeh Spar is needed and is given as follows: 

Total hull Spar Length = 141.732 m 

Total draft = 131.064 m 

TOpSide Hard Tank diameter = 32.300 m 

Hard Tank freeboard = 10.668 m 
Hardtank 

Hard tank length 67.054 m = 

No. of heave plates = 2.0 

Truss leg spacing = 22.86 m 

Truss Topside weight = 4.323 X } 06 kg 
Section 

13.535 X 106 kg Hull weight = 

Well system = 3.839 X 106 kg 
Soft tank 

33.562 X 106 kg Total weight = 

Figure 1.2: Kikeh DTU spar (PETRONAS Carigali) 
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With the depletion of onshore and offshore shallow water oil reserves, the exploration 

and production of oil in deep water oil fields present challenge to the offshore industry. 

It is because deep water floating structures basically involve high development cost and 

technological uncertainty. In this regard, an innovative, reliable and cost-effective 

platform concept need to be explored to justify such investment and risk involved in 

ultra-deepwater development [Ran et at., 1996]. Therefore, a study on the update 

technology especially the spar platform concept becomes important nowadays in order 

to produce oil in regions, which are inaccessible to exploit with the existing 

technologies. 

Furthermore the first deepwater development has been installed in our country recently 

which is Kikeh Truss Spar (as mentioned previously). Like others offshore structures, it 

also has been designed against extreme weather and wave condition. Since all 

components in spar are subjected to environmental forces, dynamic response is 

therefore a key consideration in the design of such system. Furthermore, various aspects 

of the physics of deepwater system make dynamic analysis a particularly challenging 

computational task [Low, 2006]. 

The floating spar platform also permits motions in six degrees of freedom. If structure is 

free to move in waves, its motion may be critical near the resonance of the structure. An 

analysis was conducted based on this platform to observe the dynamic behavior of this 

platform when subjected to regular wave. It is important to study the overall response of 

the structure in order to determine its stability with respect to the motion in six degree 

of freedom. The motion response of the spar platform, the heave mode of which is of 

special interest, should be adequately low to satisfy the installation of rigid riser with 

dry heads [Tao, 2001]. 

5 
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> To prepare a detailed literature survey about the spar technology, existing spars, 

truss spars, and dynamic analysis. 

> To analyse the hydrodynamic responses of the spar such as surge, heave and pitch 

by conducting rigid body analysis in frequency domain and compare with analysis 

done by using any software such as the SACS Software. 

> To determine the effect of various parameters on the above responses like wave 

period, wave height, hard tank diameter and also heave plate effect. 

1.4 Scope of Study 

This project analyses the motion responses of spar for its dominant degrees of freedom 

which is surge, heave and pitch. A one directional regular wave is used for computing 

the incident wave kinematics by using Linear Airy Wave Theory and hydrodynamic 

forces by Morison's equation. This project is only concerned about the wave loading 

since its effect on the offshore structure is more severe compare to other environmental 

loading. The analysis is conducted in frequency domain to solve the dynamic behavior 

of the moored spar platform using simpler approach which is without any iteration. All 

sea states are generated using the Pierson-Moskowitz Spectrum. In this analysis also, 

the wave directions are assumed heading toward positive x-axis and the analysis was 

done for both operating and storm condition. Apart from the frequency domain analysis, 

the dynamic response analysis ofKikeh Truss Spar was also conducted by using SACS 

Software for comparison purposes. 

6 
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CHAPTER2 

LITERATURE REVIEW 

2.1 Global Axis Coordinate System 

The wave analysis of a Kikeh spar platform comprising hull and mooring system is 

perform by considering the wave propagate in one direction which is positive x 

direction. The platform global axis system used for Center of Gravity (COG) is shown in 

Figure 2.1. All locations are specified based on this coordinate system. The origin of the 

reference coordinate axes is taken at the centerline of the hull at the Sea Water Level 

(SWL) as shown in Figure 2.2. 

~r---__;;"',"'-'·"'~11 
0~4A'< 

m i» 

. .... 

Figure 2.1: Global co-ordinate system (Kikeh Figure 2.2: Side view co-ordinate system 

Global Weight Report) (Kikeh Global Weight Report) 
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2.2 Design Wave 

Generally, there are two basic approaches applicable for choosing the design wave 

environment of an offshore structure. It can use either single wave method or wave 

spectrum. Wave spectrum is used to represent the random sea state on a short term basis. 

In reality, waves are normally in the form of random waves instead of ideal form. 

However, throughout this project, a single wave method or regular wave is selected 

which represented by a wave period and a wave height. Chakrabarti (1987) states the 

prediction of response of an offshore structure is generally made in regular wave 

because of the simplicity of the desigu analysis. 

Regular wave basically is the ocean wave in its simplest form of sinusoidal where the 

wave amplitude does not vary throughout the time. This kind of wave oscillates about 

the still water level (SWL) and has simpler characteristics compare to random wave. 

Figure 2.3 below shows the parameters that define a simple, progressive wave as it 

passes a fixed point in the ocean. 

c 

L 

'<,'111.. __ 

z=O 0 

Traugh 

d s 

Figure 2.3: Single wave desigu parameters [Chakrarbarti, 1987] 
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This simple, periodic wave propagating along the bottom may be characterized by wave 

height, H wave length, L and water depth, d, As shown in Figure 2.3, the highest point 

of the wave is crest and the lowest point is the trough. For linear or small amplitude 

wave, the wave height, H is the vertical distance from crest to trough. The wavelength, L 

is the horizontal distance between two identical points on two successive wave crests or 

two successive wave troughs. The time interval between two successive wave crests or 

troughs at a given point is the wave period, T. All these parameters are the key 

consideration in Linear Airy wave theory. Normally, for the analysis of offshore 

platforms, the environmental parameter such as wave heights is considered as much as 

21 m depending on the water depth [Luis, 2001]. 

2.3 Dynamic Analysis 

In general, spar platforms show excellent motion behavior even in extreme sea states. 

Thus it is regarded as an attractive design solution for regions of ultra deepwater where 

the water conditions are relatively harsh [Hang, 2005]. This is because spar has long 

natural period of motion due to the deep draft of the hull and relatively small water 

plane area. 

However, the prediction of wave loads on offshore structures is an important component 

of offshore design. It is because once this structure is taken into production, it mostly 

stays at the field for 15 or 20 years, without the possibility of sailing away when a storm 

is approaching. Therefore, they must be designed against all weather and wave 

conditions. Furthermore, harsh environment require that the motions of structure be 

small to allow the use of dry trees and SCRs [Luis, 200 1]. 

9 



FINAL YEAR PROJECT 
FINAL REPORT 

Low and Langley (2007) state: 
' tiNIVCRI!TI 
TrKNllLiX;'i 
PFTRONAS 

'Although spar structure is connected to the sea floor by mooring lines to promote 

restoring forces to the vessel, the action of the mooring system cannot be approximated 

by simple nonlinear quasi-static springs. It is because the inertia and damping forces 

arising from the moorings may be comparable to those acting directly on the floating 

vessel'. 

In other word, floating structure such as spar is free to move within certain range 

although it is restrained with the mooring lines. Thus, a simple dynamic analysis and 

numerical simulation method is developed to predict the extreme spar motion due to the 

wave forces on it. The dynamic analysis of Kikeh Truss Spar is performed by 

considering motion of structure in six degrees of freedom at the COG which are surge, 

sway, heave, roll, yaw and pitch. However the most dominant are surge, heave and pitch 

while effect of the other motions are relatively small [Agarwal, 2001]. Figure 2.4 shows 

the six degrees of freedom. 

Heave (y) 

t 
Sway (z) 

I 
Yaw Pitch 

-· Roll w Surge (x) 
l!·li 

Figure 2.4: Six Degrees of Freedom [Agarwal, 2001] 

Based on above figure, floating structure undergoes three translational and rotational 

motions. Surge response is basically the longitudinal motion along x while heave is the 

10 
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vertical motion along y. The transverse motion along z is sway. Pitch otherwise is the 

angular or rotational motion about z, about x is roll and about the vertical axis, y is yaw. 

2.4 Frequency Domain 

In numerical simulations there are two basic approaches involving frequency-domain or 

time-domain analyses. Gunther et al. (2002) states that in order to detect local extreme 

motion or extreme loads due to splitting forces and bending moments, it is necessary to 

analyze the hydrodynamic behavior in time-domain. However, due to time constraints, 

for this particular project the analysis only been done for frequency domain. 

Chakrabarti [1987, pp.329-30] states: 

'Frequency domain analysis is performed for the simplified method solution. It is widely 

used in problems related to floating structure dynamics and is particularly useful for 

long term response prediction. Other than that, the frequency domain computation is 

simpler than the time domain and the results are easier to interpret and apply for further 

analyses'. 

The frequency-domain technique basically has advantage of computational cost and 

faster than the time domain approach since requires fewer computing resources. It also 

can be solved without any iteration or sometimes by simple iterative technique. 

However, the frequency-domain technique has been applicable only for linearized 

equations of motion, where large error or an overestimation of viscous effects may occur 

[Keyvan et al., 2004]. In the frequency-domain analysis, an extreme storm is described 

as a spectrum. The key approximation used in a frequency-domain approach is the 

technique for linearising any non-linear features in the process. 

11 
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2.5 Numerical Computation 

2.5.1 Linear Airy wave theory 

Small Amplitude or Linear Airy wave theory is the most useful and simplest among 

other wave theories. It can be used for determining the incident wave kinematics by 

using a one directional regular wave model. It is based on the assumption that the wave 

height is small compared to the wave length or water depth. This theory is easy to apply 

and give a reasonable approximation of wave characteristics for a wide range of wave 

parameters. Although there are limitations to its applicability, linear theory can still be 

useful provided the assumption made in developing this theory are not grossly violated 

[Zhang et al., 2006]. In this project, Linear Airy wave theory is mainly used for 

computation ofthe wave parameters such as following: 

1. Wave length, L 

2. Wave Celerity, c 

3. Wavenumber,k 

4. Wave frequency, m 

5. Horizontal and vertical water particle velocity, u and v 

6. Horizontal and vertical water particle acceleration, u' and v' 

Formulation regarding those parameters can be found in Chapter 3 (Methodology). All 

these parameters are required during wave force computation. 

12 
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2.5.2 Morison Equation 

When dealing with the design of an offshore structure, it is very important to compute 

the wave forces exerted on the structure. Since the process involves the complexity of 

the interaction of waves with the structure, the process is one of the most difficult tasks. 

?Basically, there are different ways applicable to calculate the wave forces base on the 

type and size of the members in an offshore structure. One of the methods is by Morison 

equation. 

Chakrabarti [2005, pp.l68-75] states: 

'The Morison equation is developed for describing the horizontal wave forces acting on 

a vertical pile which extend from the bottom through the free surface. This equation 

basically composes of inertia and drag forces which are linearly added together. It is 

applicable when the drag force is significant such as when the structure is small 

compared to the water wave length. The principle behind the inertia force is that a water 

particle moving in a wave carries a momentum with it. The principle cause of the drag 

force term is the presence of a wake region on the "downstream" side of the cylinder'. 

Basically, there are three cases related to Morrison's Equation which are: 

- Vertical cylindrical structure 

- Moving body and fluid 

- Inclined cylindrical structure 

However, this project only considers the wave loads on a vertical cylindrical structure 

since the wave analysis will be done to the spar hull in its upright position. Suppose the 

vertical cylinder is subjected to a wave with horizontal velocity changing both in time 

and vertically in the y-direction: u(y, t) (refer to Figure 2.5). 

13 
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In this case, the force acting on a small cylinder at each depth, d is done by integrating 

the Morrison's Equation to get the total force. 

+ 
I 

7 

1-----'1...--:...> 

~----~,~.,~,~,~~~,~~~------
Figure 2.5: Waves Forces Acting on a Vertical Cylinder [Chakrabarti, 1987] 

2.5.3 Pierson-Moskowitz Spectrum 

As mentioned previously, waves are normally in the form of random waves instead of 

ideal form. However, since a single sinusoidal wave or regular wave is taken into 

consideration. The maximum wave height is being used instead of the significant wave 

height. This is to make the energy distribution of the single wave approach compatible 

with the energy exerted by the random wave approach. 

In order to generate the maximum wave height, a mathematical spectrum model is 

required. This spectrum models are generally based on one or more parameters such as 

significant wave height, wave period, shape factor, etc. For this project, a single­

parameter spectrum which is Pierson-Moskowitz spectrum is being used. The Pierson­

Moskowitz Spectrum was developed by offshore industry for fully developed seas in the 

North Sea. 

14 
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According to Chakrabarti [1987, pp.102-106]: 

'Pierson-Moskowitz model is the most common spectrum used and based on significant 

wave height or wind speed. This spectrum which is commonly known as P-M model 

represents the energy density distribution of the single wave. It has been extensively 

used as one of the most representative spectrum for water all over the world. 

Furthermore, this P-M model is very useful in representing a severe storm wave in 

offshore structure design'. 

Therefore, the prediction for extreme seastate can be generated by using this P-M model. 

2.5.4 Response-Amplitude Operator (RAO) 

In designing an offshore structure, the extreme response of the structure due to ocean 

waves must be known. This can be obtained by using the Response-Amplitude Operator 

(RAO). This RAO generally translate the regular wave responses to responses in the 

presence of random ocean wave. 

According to Chakrabarti (1987, pp.391-93): 

'Response Amplitude Operator (RAO) also called as Transfer Function since it allows 

the transfer of the exciting waves into the responses of the structure. It is often found in 

practice that an RAO is defined as amplitude of response per unit wave amplitude'. 

Therefore, the amplitude of structure's response is generally normalized with respect to 

the amplitude of wave. In the computation of RAO, the waves are considered regular 

and a sufficient number of frequencies are chosen to cover the entire range of 

frequencies covered by the wave spectrum. The RAO could be theoretical or measured. 

The theoretical RAO' s are obtained from simplified mathematical formulas as described 
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in Chapter 3. Based on the formula, the spar response due to surge, heave and pitch can 

be obtained. 

2.6 Analysis using SACS Software 

Since the Kikeh Truss Spar does not have experimental result yet regarding its dynamic 

response. Thus the response analysis can also be done by using SACS Software for 

comparison. The dynamic analysis using SACS Software is done by using the Wave 

Response program module. This program generally used to generate loading for fatigue 

or extreme wave analysis or to determine dynamic amplification factors. It is also 

designed to compute the dynamic responses of a structure subjected to wave action 

including forces due to water particle velocities and accelerations. This program uses the 

dynamic characteristics calculated by Dynpac and hydrodynamic properties along with 

wave kinematics calculated by Seastate program module. 

This Wave Response program requires a SACS model file, Seastate input, and dynamic 

mode shape and mass file in addition to the Wave Response input file. It can be run in 

two basic modes which is deterministic wave mode (regular wave) or the random wave 

mode. In either procedure, the structural compliance effects can be determined by an 

iterative procedure and all Seastate override capabilities are supported. However, for 

this project, the analysis only focuses on the deterministic wave mode only. 
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The overall methodology used in the numerical computation is summarized in Figure 

3.1 below. 

Developed Pierson-Moskowitz Wave profile determination 
Wave forces computation Spectrum model .. • for a single sinusoidal wave 

- compute maximum wave and random wave 
height, Hm., . v 

Horizontal wave forces for 
Upward wave forces for surge response using Motion Response-Amplitude 
heave response toward the ~ ...... Morison equation and Linear Operator determination for 
bottom of hard tank Air Wave Theory each degree of freedom 

-hard tank . - main leg trusses system T v 
Moment of inertia for pitch Surge, heave and pitch 
response based on Center of response determination 
Gravity (CoG) of the -. structure Changing parameter 

- return period 
- heave plates effect 

~ ..... Conduct parametric study 
- wave height 
- wave period 
- hard tank diameter 

Dynamic Analysis using 
SACS Software 

v 
Prepare input file for Wave 
Response program module 

Figure 3.1: Summary of Numerical Computation 
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To initiate frequency domain analysis, a P-M spectral model is developed to get the 

energy spectrum distribution of wave. Then it is used to determine the maximum wave 

height, Hrnax· The P-M spectrum model is given in term of single-parameter which is the 

significant wave height, H, at the location ofKikeh Truss Spar (Table 3.1). 

Table 3.1: Extreme Wave Return Period 

Return Period Hs Tp 

(m) (sec) 

!-year 3.5 12.2 

10-years 4.9 12.7 

50-years 5.9 13.0 

100-years 6.3 13.1 

From the above table, a significant wave height is selected with respect to its return 

period. For this project, the overall analysis is done based on storm condition happening 

once in I 00 years. However, for parametric study later on, the analysis also done for I 

year normal operating condition, I 0 years and 50 years return period. 

The P.M spectrum model is written as 

S(f) = O.OOS!g' F' exp[-1.2s(.L r] 
(2n") 4 fo) (3.1) 
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Wherefis the range of frequencies between 0.005 to 0.205 Hz andfo equal to w012n. 

The peak frequency, w0 is related to the significant wave height, H, by 

0.16lg 

H, 
(3.2) 

Then, from the P-M model the root-mean-square wave height, Hnns is related to the total 

area under the wave energy density spectrum, m0 and the formula is given by: 

Hrms = 2 ~2m0 (3.3) 

Next, the maximum wave height at a particular frequency can be calculated as 

following: 

[ 
rc:;;r 0.2886] 

Hmax= -ylnN + ~lnN H,m, (3.4) 

And the corresponding number of waves, N is calculated based on design life of Kikeh 

Truss Spar which is 20 years. The average period, T is the taken from table 3.1 for its 

corresponding significant wave height, H, for 100 years storm condition. 

N = Design period 

Average Period 

19 
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Please refer to Appendix A for calculation regarding the P-M spectrum model and the 

maximum wave height, Hmax· 

3.2 Wave Forces Computation 

3.2.1 Horizontal Wave Forces 

As mentioned in Chapter 2, horizontal wave forces on the element of the structure are 

estimated using Morison equation, ignoring the diffraction effects. The application of 

the Morison equation in regular wave is straightforward in principle and requires that the 

wave particle kinematics be obtained by the appropriate wave theory (Linear Airy wave 

theory). The Morison Equation is given as: 

Where; 

Cm - inertia coefficient 

cd -drag coefficient 

p - seawater density 

D - diameter of cylinder 

u- velocity 

u'- acceleration 

1 2 1 I I f= -Cmp;rD u +-CdpD u u 
4 2 

(3.6) 

To initiate the computation, all the parameters in the equation 3.6 such as velocity and 

acceleration should be determined by the Linear Airy wave theory as following: 
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Horizontal water particle velocity, 

H coshks 
U =IT- COS 0 

T sinhkd 

Vertical water particle velocity, 

H sinhks 
v=Jr- sin0 

T sinhkd 

Horizontal water acceleration velocity, 

u' =Z~r2H coshks sin 0 
T sinhkd 

Vertical water acceleration velocity, 

v' = Z1r 2 H cosh ks cos 0 
T sinhkd 

Where: 

Wave length, L0 = g T2 I 2JT (for d/L > 0.5, L0 = L) 

Gravity, g = 9.806 kgm/s2 

Number of wave, k = 21r I L 

Wave frequency, m= 21T IT 

Vertical distance from seabed, s = y + d 

Phase angle, 0 = kx - m t 

' ISNIVE,B,I,I,J.! 
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(3.7) 

(3.8) 

(3.9) 

(3.10) 

All data related to the calculation such as the dimensions of the spar and wave 

information can be obtained from the drawing (see Appendix B) and table 3.1. Below is 

the information needed in the wave forces calculation; 
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Water depth, d 

Wave period, T 

Wave height , H 

= 1330 m 

= 13.10m} 

= 6.30m 

Seawater density, p = 1030 kg/m 

Hard Tank diameter, D = 32.30 m 

Truss leg diameter, D = 1.80 m 

Freeboard = 10.67 m 

Total hard tank length = 67.05 m 

Hard tank draft = 56.39 m 

Truss leg draft = 64.0 m 

Refer to Table 3.1 for target environmental 
condition of I 00 years wave 

' UNIVfi\,\ITI 
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The computation of wave forces is done on cylindrical members of the spar hull which 

comprises a hard tank and fonr main leg of trusses system. The diagonal bracing 

member of trusses is ignored since the dimension is small and insignificant. The wave 

forces are calculated at mid depth of each I m length of the cylindrical member. The 

design spreadsheets in Appendix C shows the wave forces computation on hard tank 

and trusses leg. 

Basically, the wave forces obtained from the Morison equation is used for determining 

the surge response. For computation of heave and pitch response, upward forces and 

moment of inertia is required. 

3.2.2 Upward Wave Forces 

The upward forces basically are the total forces on y-direction which is related to the 

heave motion. The computation is done by multiplying the upward pressure exerted 

toward the bottom of hard tank with the cross sectional area of the hard tank (see 

equation 3.11) 
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(3 .11) 

The dynamic pressure, p is given as 

H coshks 
p = pg( cosE>) 

2 coshkd 
(3.12) 

3.3 Moment oflnertia Computation 

Moment of inertia is computed by multiplying the calculated wave forces for each m 

length (see Appendix C) with its vertical distance to the Center of Gravity (COG) of 

whole system. For Kikeh Truss spar, the COG is x = 0.71, y = -46.27 and z = 0. All 

values is measured from the origin of global axis which located at centerline of hull at 

the Sea Water Level (SWL). The moment is basically used for determining the pitch 

response. 

3.4 Wave Profile 

Wave profile for a single sinusoidal wave of frequency, I1J , is given as 

Choosing the origin at x = 0, 

H 
1J =-cos (loc-11Jt) 

2 

H 
1] = -cos 11)( 

2 
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Where H is the significant wave height, H, for 100 years storm condition and time, t is 

taken from 0 tilll 00 sec. For comparison, random wave profile also been done by using 

wave combination with multiples of the fundamental frequency. The random wave 

profile may be given as 

17 (x,t)= I:=, H~n) cos[k(n)x-2~rf(n)t+e(n)] (3.15) 

Where c represent the random number. The wave height, H wave number, k and range 

of wave frequencies, f is obtained from the P-M spectrum model as computed in 

Appendix A. 

3.5 Responses-Amplitude Operator (RAO) Computation 

Response-Amplitude Operator is used to transfer the exciting waves into the responses 

of the structure in surge, heave and pitch. The mathematical formula which describing 

the RAO function is given as following: 

FI 

RAO= .,.----0._5 H __ -,;-;:;-

[(K -mw' r + (Cw)' r 

Where, 

F1- Total wave forces 

H - Maximum wave height 

K- Stiffuess of the structure 

m- Total mass of the system 

24 
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3.5.1 Total Forces, Fr 

For surge, the total wave forces, Fr are based on the previous value obtained by the 

Morison equation. For heave response, the wave forces are based on computation in Part 

3.2.2. While for pitch response the wave forces is replaced with the moment of inertia as 

mentioned in Part 3.3. 

3.5.2 Stiffness, K 

The stiffuess, K is based on following equation; 

Surge, K11 = (~A sin B x numbers of mooring lines in one direction) (3.17) 

Heave,K, = (~A cosB x totalnumberofmooring lines) + : pgD' (3.18) 

(3.19) 

(3.20) 

(3.21) 

25 



FINAL YEAR PROJECT 
FINAL REPORT ' ---------------------------- ~~x~~~1~66: 

Where, 

E, Elastic modulus of the mooring line 

A, Cross section of the mooring line 

L, Total length of the mooring line 

(}, The angle in between the hull and mooring line at fair lead 

R, Radius of the Hard Tank 

kx, The initial stiffuess of the horizontal spring 

~HI\ONAS 

Scg, Scb and Ssp are the distances from the keel of the spar to the center of gravity, to the 

center of buoyancy and to the fairleads, respectively 

3.5.3 Total mass, m 

The total mass, m for surge, heave and pitch which used in equation 3.16 are given as 

following 

Surge,mll = (m +mall) (3.22) 

Heave,m 22 = (m + ma22 ) (3.23) 

Pitch, m33 = (MI +Mia) (3.24) 

mall =(AxDrajixp) (3.25) 

pmJ' 
(3.26) m =--a22 12 

2 ( D' L
2 

2) Ml=mJ Lp,pa' 4 +U+d1 (3.27) 

Mia =7rD 2Lp -+-+d,' ( D
2 

1
2 

) 

4 12 
(3.28) 
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Where, 

m, Mass of the structure 

m.n.Added mass of the structure in surge motion 

ma2z. Added mass of the structure in heave motion 

A, Cross section area of the Hard Tank 

D, Diameter of the Hard Tank 

L, Total length of the Kikeh Truss Spar 

I, Total length of the Draft section 

3.6 Responses of Structure 

PHRON.~I 

After the RAO has been computed for surge, heave and pitch then the response of spar 

with respect to the three degree of freedom motion can be obtained. For a linear system, 

the response function at a wave frequency can be written as: 

Response (t) = (RAO) 17 (t) (3.28) 

Below are the equations use for determining the surge, heave and pitch responses 

respectively. 

Surge response,ry'"'"' =(RAO,.,.,) H;,.x cos(kx- wt) 

Pitch response,rypitch =(RAOpitch) Hmox cos(kx-rot) 
2 
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After the surge, heave and pitch response has been determined, graph of each response 

versus time is plotted. The time, t is taken from 0 till 33 seconds. Please refer to 

Appendix D for the RAO and response computation for all three degree of freedom 

motion. 

3.7 Parametric Study 

Parametric study is done to observe the structure responses with respect to some 

parameter changing such as heave plates, wave height, wave period and hard tank 

diameter. 

3.7.1 Effect of Heave Plates 

The heave response computed previously is done by considering the volume of heave 

plates in the vertical added mass. As mentioned in earlier chapter, the main function of 

heave plates is to reduce the heave motion by trapping mass in vertical direction. 

Furthermore, it also increases the damping of the structure. Thus, to observe the 

effectiveness of this heave plate, an analysis regarding heave motion is conducted 

without considering the heave plates. The graph then is plotted and the result is 

compared with the previous result. 

3.7.2 One Year, 10 Years and 50 Years Return Period 

This parametric study is conducted to sea the response of the spar for different 

environmental condition. This study in conducted by changing two parameters 

simultaneously which is the wave period, T and the significant wave height, H,. For each 

different return period, the procedures basically similar with the analysis conducted for 

the 100 years return period. All the input data required is taken from table 3.1 and graph 
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for all three degree of freedom with different environmental condition is plotted for 

companson. 

3.7.3 Change in Wave Height, Wave Period and Hard Tank Diameter 

This analysis basically similar with those conducted in part 3.7.2. However, only one 

parameter is changed at one time instead of two parameters. Other parameters are 

remaining same throughout the analysis. This is to observe the dynamic response pattern 

with respect to single parameter change which is significant wave height, H,, wave 

period, T or hard tank diameter, D. 

For significant wave height, H, the value is varies from 1.9 m to 7.9 m while wave 

period, T the values is varies from 3.2 sec till 15.2 sec. For hard tank diameter, D the 

values is varies from 23.3 m to 27.3 m. Once completed, the maximum response for 

each different parameter values is tabulated. Then, graph of maximum dynamic response 

versus wave height, H, wave period, T and hard tank diameter are plotted separately. 

From the graphs, the relationship between each parameters and the maximum dynamic 

response is determined. 

3.8 Wave Response Program 

The analysis using Wave Response program is done based on deterministic wave mode. 

In the deterministic procedure, the steady state response of the structure is calculated 

due to the passage of infinite wave train composed of a single repeatable wave. The 

wave theory available in the Seastate program such as Airy wave theory can be used. 

Before initiate the Wave Response program, the SACS model file, Seastate input and 

Wave Response input file has to be prepared (Please refer to Appendix E). In the SACS 

model file, only a hard tank and mooring lines is modeled to represent the Kikeh Truss 
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Spar. Total mass and buoyancy of the structure is put as point load at joint of hard tank. 

Member and joint fixities is set at appropriate location which is at the connection of 

mooring lines with seabed and fairleads. In the Seastate input file, the water depth, wave 

height and wave period is specified while in the Wave Response input file, the type of 

spectrum being used and other wave information is specified. The details procedures 

used while preparing the input files is obtained form manual provided in the SACS 

Software. 

Then, once the input files is prepared, the Wave Response program can be run and the 

output file such as the plot of joint deflection with respect to surge, heave and pitch is 

generated. 

3.9 Hazard Analysis 

3.9.1 Potential Hazards 

While perform the analysis ofK.ikeh Truss Spar, the main activities involve is computer 

use. Other activities involve are filing, printing and photocopying and also stationary 

use. While performing those activities, potential hazards has to be identified since it may 

cause unsafe working condition. For this kind of office work, many potential hazards are 

fall under the category of ergonomics. 

Ergonomic hazards refer to workplace conditions that pose the risk of injury to the 

musculoskeletal system of the worker. Examples of musculoskeletal injuries include 

tennis elbow (an inflammation of a tendon in the elbow) and carpal tunnel syndrome (a 

condition affecting the hand and wrist). This kind of hazard should not be ignored since 

it has adverse effect on health such as blood circulation, fatigue to the muscles, bones, 

tendons and ligaments, and also reduced heart and lung efficiency, and digestive 

problems. Below are examples of potential hazards that may arise at the workplace. 
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• Repetitive motion injuries caused by repeatedly performing the same motion 

over significant periods of time such as while using the computer keyboard or 

mouse, sitting in the same position without changing or taking break 

• Awkward postures due to non-adjustable chair that are too high or low for a 

user's body size and shape 

• The physical arrangement of work space elements such as work surfaces, tools 

and equipment may not correspond with the reaches and clearances of seated 

user. 

• Strikes and bumps which common accidents happen when striking doors, desks, 

file cabinets, and open drawers 

• Strains and overexertion which due to lifting incorrectly, although the job may 

not involve lifting large or heavy objects, still can cause discomfort and injuries 

to back, neck and shoulders 

• Electrical equipment which can cause senous shock and bum mJunes if 

improperly used or maintained 

3.9.2 Precautions 

After identify and analyze potential hazard that may cause harm, some rules and 

procedures have to be adopt to minimize the hazard or even get rid them completely. 

Here are some controls that can be considered especially when dealing with computer 

usage: 

> When working, maintain good posture. Sit all the way back in the chair against 

the backrest. Keep the knees equal to, or lower, than the hips with feet supported. 

> Keep elbows in a slightly open angle (1 00° to 11 0°) with wrists in a straight 

position. 

> Avoid overreaching. Keep the mouse and keyboard within close reach. Center 

the most frequently used section of the keyboard directly in front of user. 

31 



FINAL YEAR PROJECT 
FINAL REPORT ' UNIVERStn 
----------------------------- l'EKNOlOOt 

PHRONAS 

)> Place source documents on a document folder positioned between monitor and 

keyboard. If there is not enough space, place documents on an elevated surface 

close to screen. 

)> Use good typing technique. Float anns above the keyboard and keep wrist 

straight when keying. If use a wristrest, use it to support palms when pausing, 

not while keying. 

)> Hit the keyboard keys with light force. The average user keys four times harder 

than necessary. 

)> Use adjustable chair to set height and angle for comfortable position 

)> Reduce glare. Place monitor away from bright lights and windows. Use an 

optical glass glare filter when necessary. 

)> Take eye breaks and intermittently refocus on distant objects once every I 0 

minutes. Try palming your eyes in your hands to reduce eye fatigue. 

)> Work at a reasonable pace and take frequent stretch breaks. Take I or 2 minute 

breaks every 20-30 minutes, and 5 minute breaks every hour. Every few hours, 

try to get up and move around. 

)> Handle electrical component properly. Make sure all electrical connections are 

tight, clean, and dry. To prevent shock, it is advisable to keep work areas, 

equipment, and clothing dry at all times 
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Figure 4.1 below shows the P-M model and the wave energy spectrum distribution for 

H, equal to 6.3 m in I 00 years storm condition. 

Pierson-Moskowitz Spectrum 
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Figure 4.1: Wave Energy Spectrum 

Based on Figure 4.1, total area below the spectrum is denoted as m0 and is used to 

compute total number of waves and the maximum wave height throughout the target 

service life of the spar (20years). The maximum wave height obtained from this P-M 

model is 18.745 m. Basically, this P-M model is very useful in representing a severe 

storm wave in offshore structure design. 
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Based on that maximum wave height, total wave forces coming from x-direction, F, (for 

surge) and upward forces, Fy (for heave) is computed by using the Morison's equation 

and dynamic pressure equation respectively. From the design spreadsheet in Appendix 

C, the total horizontal wave force, F, for hard tank and main leg truss system is 

47674.75 kN the and the upward forces, Fy toward the hard tank base is 6926.04kN. The 

moment of inertia, MI about the center of gravity, COG of the structure is equal to 

1110689.47kN.m. 

4.2 Regular and Random Wave Profile 

Figure 4.2 below shows the regular wave profile, 17 with respect to time, t = 0 until t = 

I 00 sec for a single wave design of frequency, m in spar location. This graph basically 

represents the ocean wave pattern in its simplest form which is pure sinusoidal 

oscillation. 
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Figure 4.2: Regular Wave Profile 
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In real situation however, nonlinear regular wave is often used instead of regular wave. 

The random wave profile is generated by considering a regular wave and a sufficient 

range of the fundamental frequencies covered by the spectrum in the P-M model. Refer 

to Figure 4.3 for the random wave profile with respect to time, t = 0 until t = 200sec. 
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Figure 4.3: Random Wave Profile 

Both graphs represent the wave profile for I 00 years storm condition with significant 

wave height of 6.3 m and wave period of 13.1 sec. By comparison, it is observed that the 

wave profile in figure 4.2 shows uniform pattern and its wave amplitude is almost same 

throughout the time, t. In contrast, the random wave profile in figure 4.3 shows irregular 

wave pattern and the wave amplitude also varies throughout the time, t. 

4.3 Surge, Heave and Pitch Response 

Based on Appendix D, the Response-Amplitude Operator (RAO) obtained for surge, 

heave and pitch is 0.2485, 0.0757 and 0.0049 respectively. These values represent the 

ratio amplitude of response to the amplitude of wave. Using those values, the surge, 
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heave and pitch response are computed and the response graph with time are shown in 

Figure 4.4, Figure 4.5 and Figure 4.6 respectively fort= 0 until t = 33 seconds. 

Surge Response 
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Figure 4.4: Surge Response in I 00 Years Storm Condition 

Heave Response (with heave plate) 
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Figure 4.5: Heave Response in 100 Years Storm Condition 
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Pitch Response 
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Figure 4.6: Pitch Response in 100 Years Storm Condition 

Based on the above graphs, it can be observed that the surge, heave and pitch responses 

are in the form of sinusoidal which represent the regular wave effect. This is because the 

RAO values obtained are same throughout the time, t (refer to Appendix D). Thus, the 

amplitude of response is also same throughout the time, t similar in behavior with the 

amplitude of regular wave profile. 

Other than that, the surge response is highest compare to heave and pitch where the max 

deflection or offset is 2.329 m from the original position. The maximum value for heave 

and pitch response is 0. 709 m and 0.045 rad respectively. The greater value for surge 

response which is the horizontal motion along x -axis is due to the wave is assumed to 

come from x -direction. Furthermore the horizontal wave forces itself is higher compare 

to the upward forces. Therefore, the impact on the structures movement for surge is 

greater due to larger amount of wave forces strike directly on the hull part. However, the 

surge response during this storm condition is considerable and will not affect the spar 

performance since displacement in x -direction is allowed up to Sm. 
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The dynamic responses of spar due to surge, heave and pitch for one year, 10 years, 50 

years and 100 years is summarized in Table 4.1 below. 

Table 4.1: Summarize ofDynamic Response for 1 Year, 10 Years, 50 Years and 

100 Years Condition 

Parameter Maximum Response (m) 
Condition Wave height, Wave period, 

H, T 
Surge Heave Pitch 

1 year 3.50 12.20 1.280 0.237 0.027 

10 years 4.90 12.70 1.822 0.442 0.037 

50 years 5.90 13.00 2.188 0.629 0.042 

100 years 6.30 13.10 2.329 0.710 0.045 

Since the graphs obtained are also in sinusoidal pattern for all responses with different 

return period, thus the maximum value for each response is taken for comparison. From 

Table 4.1, it is observed that the overall dynamic responses are increasing as the wave 

height and the wave period increase from 1 year to 100 years return period. Besides that, 

in all environmental conditions the impact of surge response which is the translational 

along x -axis is most significant among the other. The reason has been discussed in 

previous part. Furthermore, the surge, heave and pitch response are highest for 100 years 

storm condition and hence represent the worst cases scenario. However, the values are 

still within the allowable limit. 
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Figure 4.7 illustrate the heave response for the spar without consider the heave plate. As 

observed, the maximum value for the dynamic heave response is 2.32 m. However, 

Figure 4.5 previously shows the heave motion of spar by considering the volume of the 

two heave plates in the vertical added mass. The maximum heave response obtained is 

0.7096 m which is much lower than the 2.32m. 

Heave Response (without heave plate) 
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~ 
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~ 1.0 .c 
'i: 

..9! 0.0 1;::: e 
a. 
G) 

-1.0 

> 
111 

-2.0 G) 
..c:: 

-3.0 

time, t (sec) 

Figure 4.7: Heave Response without Heave Plate 

Therefore, the two heave plates included in the Kikeh truss spar is very useful in 

minimizing the heave motion by increase the trapped mass in vertical direction. Other 

than that, the heave plates also act as damping devices since it increase the damping of 

the structure. It is important because small damping will cause large heave motion near 

its natural period. Thus, heave plates damping features is very effective for reducing the 

heave resonant motion and ensure the truss spar obtains its satisfactory heave motion 

performance. 
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4.4.3 Variation in Significant Wave Height, H, 

Table 4.2 below represents the maximum wave height, Hmax and maximum response for 

surge, heave and pitch with respect to different significant wave height, H, which vary 

from 1.9 to 7.9 m. 

Table 4.2: Maximum Responses with Variation of Wave Height 

H, (m) Hmax (m} IJsurge f/heave l7pitch 

1.9 4.831 0.654 0.214 0.013 

2.9 8.139 1.078 0.327 0.021 

3.9 11.314 1.470 0.439 0.029 

4.9 14.431 1.840 0.552 0.036 

5.9 17.516 2.192 0.665 0.043 

6.9 20.584 2.529 0.777 0.049 

7.9 23.642 2.851 0.890 0.055 

Based on Table 4.2, it is observed that the maximum wave height, Hmax increase 

significantly as the significant wave height increase. The effect of maximum wave 

height on the dynamic responses is shown in Figure 4.8, Figure 4.9, and Figure 4.10. 

Maximum Surge Response 
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Figure 4.8: Surge Response Behavior with Variation Maximum 

Wave Height 

40 



FINAL YEAR PROJECT 
FINAL REPORT 

1.0 

~ 
jj 0.8 
0. 

~ 0.6 

~ 
0.4 Q. 

~ 0.2 ! 
0.0 

0.0 

Maximum Heave Response 

5.0 10.0 15.0 20.0 25.0 

wave height,Hmax (m) 

Figure 4.9: Heave Response Behavior with Variation Maximum 

Wave Height 
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Figure 4.10: Pitch Response Behavior with Variation Maximum 

Wave Height 
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Based on Figure 4.8 till Figure 4.1 0, all three graphs show same pattern which is linear 

relationship. As observed, the maximum responses increases linearly as the maximum 

wave height, Hrnax increase. Therefore, the surge, heave and pitch response is directly 

proportionally to the Hrnax and thus the H,. 
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4.4.4 Variation in Wave Period, T 

Table 4.3 below shows the maximum wave height, Hmax and the corresponding 

responses for surge, heave and pitch when wave period, Tis varies from 3.2 til115.2 sec. 

Table 4.3: Maximum Responses with Variation of Wave Period 

Wave Period, T Max Wave 
(sec) Height, Hmax (m) !Jsurge fJheave !Jpitch 

3.2 19.454 0.374 1.5E-11 0.015 
4.2 19.319 0.692 3.0E-07 0.026 
5.2 19.212 0.992 4.3E-05 0.035 
6.2 19.124 1.273 7.7E-04 0.042 
7.2 19.049 1.533 5.1 E-03 0.046 
8.2 18.983 1.761 1.9E-02 0.049 
9.2 18.925 1.950 5.3E-02 0.050 
10.2 18.872 2.098 1.2E-01 0.049 
11.2 18.825 2.207 2.3E-01 0.048 
12.2 18.781 2.283 4.3E-01 0.047 
13.2 18.741 2.333 7.5E-01 0.045 
14.2 18.703 2.364 1.3E+OO 0.044 
15.2 18.668 2.382 2.2E+OO 0.042 

Based on table 4.3, it is observed that changes in wave period, T has small effect on the 

maximum wave height, Hmax and hence its dynamic response. To observe the 

relationship between the wave period, T with the maximum wave height and also the 

maximum dynamic responses please refer to Figure 4.11, Figure 4.12, Figure 4.13 and 

Figure 4.14. 
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Figure 4.11: Maximum Wave height Behavior with Variation 

Wave Period 

16 

Referring to Figure 4.11, it is observed that the maximum wave height, Hmax decreased 

exponentially with increasing of wave period, T. 

-3.0 
E 
:- 2.5 

E' 
~ 2.0 
c;: 
-~ 1.5 -0 
;;_ 1.0 .. 
Cl 0.5 
~ 

::> 
en 0.0 

.. 
0 2 

Maximum Surge Response 

---~ 
7 

7 

4 6 8 10 12 14 16 

wave period,T (sec) 

Figure 4.12: Surge Response Behavior with Variation Wave Period 
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Figure 4.12 shows that the surge profile increases exponentially with increase in wave 

period, T. This is because, increase in wave period, T will cause maximum wave height 

decrease exponentially so as to the total forces, F, exerting on the hard tank. This will 

indirectly increase the motion RAO value which eventually causes the surge response 

increase exponentially with wave period, T. 
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Figure 4.13: Heave Response Behavior with Variation Wave Period 

Figure 4.13 also shows that the heave profile increases exponentially with changing in 

wave period, T. However the behavior is slightly different with surge profile. By 

comparing both surge and heave response, it is observed that the surge response increase 

almost equally from T = 3.2 sec till T = 11.2 sec and the increment become smaller after 

that point. This behavior is vice versa for the heave response where the increment is 

quite small at the beginning. However, after T= 11.2 sec the heave response increase 

significantly with wave period, T. Therefore, it can be said that changing in wave 

period, T has more significant effect on surge rather than heave response. 
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While in Figure 4.14 the pitch profile is increase exponentially from T = 3.2 till T = 9.2 

which is the maximum pitch response. After that point, the pitch profile decrease 

exponentially with wave period, T. This is because as the wave period, T increases the 

maximum wave height decrease exponentially. The moment of inertia is also decrease. 

From T = 3.2 till T = 9.2 the motion RAO is rapidly increase which resulting increase in 

pitch response. However, after T = 9.2 the motion RAO is decrease which cause the 

pitch response to decrease. 
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4.4.5 Variation in Hard Tank Diameter, D 

Table 4.4 represents the maximum response for surge, heave and pitch with changing 

parameter which is the hard tank diameter, D. The values ofD vary from 23.3 to 37.3 m 

with increment of2 m. 

Table 4.4: Maximum Responses with Variation of 

Hard Tank Diameter 

Hard Tank Diameter, 
D (m) !Jsurge fJheave 

23.3 1.564 3.0E-01 

25.3 1.749 3.7E-01 

27.3 1.926 4.5E-01 

29.3 2.094 5.4E-01 

31.3 2.253 6.5E-01 

33.3 2.402 7.8E-01 

35.3 2.542 9.2E-01 

37.3 2.672 1.1E+OO 

l7pitch 

0.023 

0.027 

0.032 

0.037 

0.042 

0.048 

0.054 

0.060 

Based on the information in Table 4.4, the graph of maximum response for surge, heave 

and pitch with respect to the hard tank diameter, D is shown in Figure 4.15, Figure 4.16 

and Figure 4.17 respectively. 
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Figure 4.15: Surge Response Behavior with Variation Hard Tank Diameter 
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Figure 4.16: Heave Response Behavior with Variation Hard Tank Diameter 
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Based on Figure 4.15, Figure 4.16 and Figure 4.17, the graphs show almost a straight 

line for all cases. As the hard tank diameter increase, the dynamic response will also 

increase. Therefore, the surge, heave and pitch response is directly proportional to the 

hard tank diameter. 

4.5 Comparison with Wave Response Program Output 

Figure 4.18, Figure 4.19 and Figure 4.20 below show the dynamic responses that 

obtained from SACS Software by using the Wave Response program module. The 

deflection is taken at one joint Qoint 1000) which located at the hard tank and represent 

the structures dynamic movement. 
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Figure 4.19: Heave Response using SACS Software 
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Figure 4.20: Pitch Response using SACS Software 

Based on the above figures, the dynamic responses obtained from the SACS Software 

are compared with the responses obtained from frequency domain analysis and the 

results is shown in table 4.5. 

Table 4.5: Dynamic Responses Comparison between Frequency Domain Analysis and 

Wave Response Program 

Dynamic Responses 
Frequency Domain Wave Response Program 

Analysis (SACS Software) 

Surge 2.329m 1.400 m 

Heave 0.709 m 0.013 m 

Pitch 0.045 rad 0.043 rad 

From the above table, it is observed that the dynamic responses obtained for surge and 

pitch are slightly different between two approaches where the values in frequency 

domain is slightly higher than the values in Wave Response Program. For heave 
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response otherwise, the values is significantly different where the heave in frequency 

domain is much greater than the value in Wave Response Program. 

The results obtained from the Wave Response Program basically act as parameter for 

determining the accuracy of the results obtained from the frequency domain analysis. It 

is because, the analysis done by using software such as the SACS Software is more 

accurate and reliable. Therefore, the different values from the Wave Response program 

might due to presence of errors while conducting the frequency domain analysis. For 

example, the error might occur because of incorrect value taken for the computation. 

Furthermore, in the frequency domain analysis, there are many assumptions and 

simplifications were used due to lack of certain data and information. 
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Discussion on overall dynamic response of the Kikeh Truss Spar has been made based 

on results obtained. The following conclusions were drawn from the frequency domain 

analysis which was conducted: 

I. Regular wave profile represented uniform pattern throughout the time, t and was 

easier to be analyzed while random wave profile showed irregular characteristics 

and the amplitudes varied throughout the time, t. 

2. The spar response due to three main degree of freedom motions surge, heave and 

pitch were within allowable values for all environmental conditions which was 1 

year, I 0 years, 50 years and I 00 years return period. 

3. The maximum responses among all environmental conditions were 2.33 m for 

surge, 0.709 m for heave and 0.045 rad for pitch which taken from 100 Years 

return period. 

4. The steel heave plates between the truss system was very useful in reducing the 

heave resonant motion by increasing both added mass and damping for the 

structure. 

5. From parametric study, it was determined that the dynamic response of the 

structure was directly proportional to the significant wave height, H, and the hard 

tank diameter, D while exponentially increased with the wave period, T. 

6. The overall dynamic responses obtained from the frequency domain analysis 

were slightly different from the results obtained in Wave Response program 

(SACS Software) due to some errors. 
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In order to improve the accuracy of the projects outcome, below are some 

recommendations for further work that could be made in the future: 

1. The analysis should proceed with time-domain technique by using some iteration 

schemes such as the iterative incremental Newmark's Beta approach. 

2. Appropriate software should be used such as Matlab 7.0 for doing iteration in 

time-domain analysis. 

3. Model study should be conducted to obtain the experimental data for comparison 

purposes. 
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APPENDIX A 

Calculation Spreadsheet for Pierson-Moskowitz Speetrum 



H, 

a 

Wo 
2 

D 

f (Hz) 

0.005 

O.Dl5 

0.025 

O.D35 

0.045 

0.055 

0.065 

0.075 

0.085 

0.095 

0.105 

0.115 

0.125 

0.135 

0.145 

0.155 

0.165 

0.175 

0.185 

0.195 

Design life 

Number of 
waves, N 

H, 

6.30 m Wo 0.501 rad/sec 

0.0081 fo 0.080 Hz 

0.2506 T 13.1 sec 

32.3 m ( 0.10 

a fo H{t) 
S(t) (m2.s) Area S(t)M(m2

) (m) 

0.0081 0.07967 0.000 0.000 0.000 

0.0081 0.07967 0.000 0.000 0.000 

0.0081 0.07967 0.000 0.000 0.000 

0.0081 0.07967 0.000 0.000 0.000 

0.0081 0.07967 0.032 0.013 0.000 

0.0081 0.07967 0.569 4.041 0.040 

0.0081 0.07967 1.432 25.632 0.256 

0.0081 0.07967 1.852 42.866 0.429 

0.0081 0.07967 1.853 42.916 0.429 

0.0081 0.07967 1.669 34.800 0.348 

0.0081 0.07967 1.439 25.873 0.259 

0.0081 0.07967 1.221 18.629 0.186 

0.0081 0.07967 1.032 13.323 0.133 

0.0081 0.07967 0.875 9.577 0.096 

0.0081 0.07967 0.746 6.957 0.070 

0.0081 0.07967 0.640 5.119 0.051 

0.0081 0.07967 0.553 3.818 O.D38 

0.0081 0.07967 0.480 2.886 0.029 

0.0081 0.07967 0.420 2.209 0.022 

0.0081 0.07967 0.370 1.712 O.D17 

Total= 2.404 

= 20 years 

= (20 X 365 X 24 X 3600) I 13.1 

= 48146564.89 waves 

= 4 (IDo)0.5 Where ffio is total area under P-M spectrum 

= 6.202 m 



= 2 (2XI11o) 0.5 

= 4.385 m 

= [ y'"(ln N) + (0.2886 I y'"(ln N) ] Hrrns 

= 18.745 m 
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Drawing Details 
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APPENDIXC 

Calculation Spreadsheet for Wave Forces and Moment of Inertia 



Wave forces on Hard Tank 

Depth, d 

Wave Period, T 

Wave Height, H 

Water Density, p 

Diameter Cylinder, D 
Inertia Coefficient, Cm 

Drag Coefficient, Cd 

Length of cylinder 

t 

COG X 

y 

..Q.5 

-1.5 

-2.5 

-3.5 

-4.5 

-5.5 

·6.5 
-7.5 

-8.5 

·9.5 
-10.5 

-11.5 

-12.5 

-13.5 

·14.5 
-15.5 

-16.5 

·17.5 
-18.5 

-19.5 

:20.5 . 

s 

1329.5 

1328.5 

1327.5 

1326.5 

1325.5 

1324.5 

1323.5 

1322.5 

1321.5 

1320.5 

1319.5 

1318.5 

1317.5 

1316.5 

1315.5 

1314.5 

1313.5 

1312.5 

1311.5 

1310.5 

1309.5 

y 

z 

= 
= 

= 

= 

k 

0.02346 

0.02346 

0.02346 

0.02346 

0.02346 

0.02346 

0.02346 

0.02346 

0.02346 

0.02346 

0.02346 

0.02346 

0.02346 

0.02346 

0.02346 

0.02346 

0.02346 

0.02346 

0.02346 

0.02346 

0.02346 

1330.0 m 

13.1 sec 

18.7 m 

1030.0 kg/m3 

32.3 m 
2.0 

1.0 

56.4 m 
1.0 sec 

0.7 

-46.3 

0.0 

ks kd 

31.18987241 31.2016 

31.16641256 31.2016 

31.14295271 31.2016 

31.11949286 31.2016 
31.09603300 31.2016 

31.07257315 31.2016 

31.04911330 31.2016 
31.02565345 31.2016 

31.00219360 31.2016 

30.97873375 31.2016 

30.95527390 31.2016 

30.93181404 31.2016 

30.90835419 31.2016 

30.88489434 31.2016 
30.86143449 31.2016 
30.83797464 31.2016 

30.81451479 31.2016 
30.79105494 31.2016 

30.76759508 31.2016 

30.74413523 31.2016 
30.72067538 31.2016 

w e 

0.4796 ..().480 

0.4796 -0.480 

0.4796 -0.480 

0.4796 -0.480 

0.4796 ·0.480 

0.4796 -0.480 

0.4796 -0.480 

0.4796 ·0.480 

0.4796 -0.480 

0.4796 ·0.480 

0.4796 -0.480 

0.4796 -0.480 

0.4796 -0.480 

0.4796 -0.480 

0.4796 ·0.480 

0.4796 -0.480 

0.4796 -0.480 

0.4796 ·0.480 

0.4796 -0.480 

0.4796 -0.480 

0.4796 ·0.480 

a) Find wavelength, L 

LO 

d/LO = 

From Wave Table 

267.827 m 

4.966 

d/L = I 0.9811 

L = 

b) Wave Number, k 
k 

c) Wave Frequency, w 

w = 

u v 

3.942 -2.050 

3.850 -2.003 

3.761 -1.956 

3.674 -1.911 

3.588 -1.867 

3.505 -1.823 

3.424 -1.781 

3.345 -1.740 

3.267 -1.699 

3.191 -1.660 

3.117 -1.621 

3.045 -1.584 

2.974 -1.547 

2.905 -1.511 

2.838 -1.476 

2.772 -1.442 

2.708 ·1.409 

2.645 -1.376 

2.584 -1.344 

2.524 ·1.313 

2.465 -1.282 

267.827 m 

0.023 

0.480 rad 

u' v' 

-0.983 -1.890 

-0.961 -1.847 

-0.938 -1.804 

-0.916 -1.762 

-0.895 -1.721 

-0.874 -1.681 

-0.854 -1.642 

-0.834 -1.604 

-0.815 -1.567 

·0.796 -1.531 

-0.778 -1.495 

·0.760 -1.460 

-0.742 -1.427 

-0.725 -1.394 

-0.708 -1.361 

-0.692 -1.330 

-0.676 -1.299 

·0.660 -1.269 

-0.645 -1.239 

·0.630 -1.211 

-0.615 -1.183 

F/m Fx(kN) Moment (kN.m) 

1401378.935 1401.379 -64146.719 
1374738.555 1374.739 -61552.544 
1348447.597 1348.448 ·59026.945 
1322510.256 1322.510 -56569.054 
1296930.065 1296.930 -54177.957 
1271709.939 1271.710 -51852.701 
1246852.213 1246.852 -49592.300 
1222358.675 1222.359 -47395.735 
1198230.608 1198.231 -45261.963 
1174468.816 1174.469 -43189.916 
1151073.661 1151.074 -41178.509 
1128045.092 1128.045 -39226.640 
1105382.669 1105.383 -37333.194 
1083085.594 1083.086 -35497.047 
1061152.736 1061.153 -33717.067 
1039582.652 1039.583 -31992.117 
1018373.613 1018.374 -30321.056 
997523.623 997.524 -28702.745 
977030.440 977.030 ·27136.043 
956891.595 956.892 ·25619.816 
937104.411 937.104 -24152.929 



-21.5 1308.5 0.02346 30.69721553 31.2016 0.4796 -0.480 2.408 -1.253 -0.601 -1.155 917666.019 917.666 -22734.258 
-22.5 1307.5 0.02346 30.67375568 31.2016 0.4796 -0.480 2.352 -1.224 -0.587 -1.128 898573.374 898.573 -21362.683 

-23.5 1306.5 0.02346 30.65029583 31.2016 0.4796 -0.480 2.298 -1.195 -0.573 -1.102 879823.270 879.823 -20037.095 
-24.5 1305.5 0.02346 30.62683598 31.2016 0.4796 -0.480 2.245 -1.168 -0.560 -1.077 861412.355 861.412 -18756.393 

-25.5 1304.5 0.02346 30.60337612 31.2016 0.4796 -0.480 2.193 -1.140 -0.547 -1.052 843337.146 843.337 -17519.486 

-26.5 1303.5 0.02346 30.57991627 31.2016 0.4796 -0.480 2.142 -1.114 -0.534 -1.027 825594.037 825.594 -16325.296 
-27.5 1302.5 0.02346 30.55645642 31.2016 0.4796 -0.480 2.092 -1.088 -0.522 -1.003 808179.317 808.179 -15172.759 
-28.5 1301.5 0.02346 30.53299657 31.2016 0.4796 -0.480 2.044 -1.063 -0.510 -0.980 791089.176 791.089 -14060.819 

-29.5 1300.5 0.02346 30.50953672 31.2016 0.4796 -0.480 1.996 -1.038 -0.498 -0.957 774319.720 774.320 -12988.439 
-30.5 1299.5 0.02346 30.48607687 31.2016 0.4796 -0.480 1.950 -1.014 -0.486 -0.935 757866.976 757.867 -11954.594 

-31.5 1298.5 0.02346 30.46261702 31.2016 0.4796 -0.480 1.905 -0.991 -0.475 -0.914 741726.908 741.727 -10958.273 

-32.5 1297.5 0.02346 30.43915717 31.2016 0.4796 -0.480 1.861 -0.968 -0.464 -0.892 725895.418 725.895 -9998.483 

-33.5 1296.5 0.02346 30.41569731 31.2016 0.4796 -0.480 1.817 -0.945 -0.453 -0.872 710368.362 710.368 -9074.245 
-34.5 1295.5 0.02346 30.39223746 31.2016 0.4796 -0.480 1.775 -0.923 -0.443 -0.851 695141.552 695.142 -8184.597 

-35.5 1294.5 0.02346 30.36877761 31.2016 0.4796 -0.480 1.734 -0.902 -0.433 -0.832 680210.766 680.211 -7328.591 

-36.5 1293.5 0.02346 30.34531776 31.2016 0.4796 -0.480 1.694 -0.881 -0.423 -0.812 665571.756 665.572 -6505.298 

-37.5 1292.5 0.02346 30.32185791 31.2016 0.4796 -0.480 1.655 -0.861 -0.413 -0.794 651220.249 651.220 -5713.806 
-38.5 1291.5 0.02346 30.29839806 31.2016 0.4796 -0.480 1.616 -0.841 -0.403 -0.775 637151.961 637.152 -4953.219 

-39.5 1290.5 0.02346 30.27493821 31.2016 0.4796 -0.480 1.579 -0.821 -0.394 -0.757 623362.594 623.363 -4222.658 

-40.5 1289.5 0.02346 30.25147835 31.2016 0.4796 -0.480 1.542 -0.802 -0.385 -0.740 609847.849 609.848 -3521.261 

-41.5 1288.5 0.02346 30.22801850 31.2016 0.4796 -0.480 1.506 -0.784 -0.376 -0.723 596603.426 596.603 -2848.185 

-42.5 1287.5 0.02346 30.20455865 31.2016 0.4796 -0.480 1.471 -0.765 -0.367 -0.706 583625.030 583.625 -2202.601 

-43.5 1286.5 0.02346 30.18109880 31.2016 0.4796 -0.480 1.437 -0.748 -0.359 -0.689 570908.374 570.908 -1583.700 

-44.5 1285.5 0.02346 30.15763895 31.2016 0.4796 -0.480 1.404 -0.730 -0.350 -0.673 558449.187 558.449 -990.689 

-45.5 1284.5 0.02346 30.13417910 31.2016 0.4796 -0.480 1.371 -0.713 -0.342 -0.658 546243.212 546.243 -422.792 

-46.5 1283.5 0.02346 30.11071925 31.2016 0.4796 -0.480 1.340 -0.697 -0.334 -0.643 534286.213 534.286 120.749 

-47.5 1282.5 0.02346 30.08725939 31.2016 0.4796 -0.480 1.309 -0.681 -0.326 -0.628 522573.977 522.574 640.676 

-48.5 1281.5 0.02346 30.06379954 31.2016 0.4796 -0.480 1.278 -0.665 -0.319 -0.613 511102.319 511.102 1137.714 
-49.5 1280.5 0.02346 30.04033969 31.2016 0.4796 -0.480 1.249 -0.649 -0.312 -0.599 499867.080 499.867 1612.571 

-50.5 1279.5 0.02346 30.01687984 31.2016 0.4796 -0.480 1.220 -0.634 -0.304 -0.585 488864.134 488.864 2065.940 

-51.5 1278.5 0.02346 29.99341999 31.2016 0.4796 -0.480 1.191 -0.620 -0.297 -0.571 478089.388 478.089 2498.495 

-52.5 1277.5 0.02346 29.96996014 31.2016 0.4796 -0.480 1.164 -0.605 -0.290 -0.558 467538.786 467.539 2910.896 

-53.5 1276.5 0.02346 29.94650029 31.2016 0.4796 -0.480 1.137 -0.591 -0.284 -0.545 457208.306 457.208 3303.787 

-54.5 1275.5 0.02346 29.92304043 31.2016 0.4796 -0.480 1.110 -0.578 -0.277 -0.533 447093.970 447.094 3677.795 

-55.5 1274.5 0.02346 29.89958058 31.2016 0.4796 -0.480 1.085 -0.564 -0.271 -0.520 437191.836 437.192 4033.532 

-56.5 1273.5 0.02346 29.87612073 31.2016 0.4796 -0.480 1.060 -0.551 -0.264 -0.508 427498.009 427.498 4371.595 
SUM 47538.374 -1110689.470 



APPENDIXD 

Calculation Spreadsheet ofRAO and Dynamic Response 



Surge Response 

Mass of structure, m 5.09E+07 kg 
Added mass, m,11 5.35E+07 kg 

Total mass, m11 (m+m,11) 104372644.3 kg 

Stiffuess, k 11 3622029.8 N/m 

WN I 0.1863 rad/sec 

Damping ratio, ~ 0.1 
Damping, c (2m~wN) 3888654.41 N-sec/m 



20 0.076336 0.479632 18.745 47674753.800 415695641113669 3478690909459 0.2485 4.65716 -2.29585 
21 0.076336 0.479632 18.745 47674753.800 415695641113669 3478690909459 0.2485 4.65716 -1.85726 
22 0.076336 0.479632 18.745 47674753.800 415695641113669 3478690909459 0.2485 4.65716 -0.99954 
23 0.076336 0.479632 18.745 47674753.800 415695641113669 3478690909459 0.2485 4.65716 0.08375 
24 0.076336 0.479632 18.745 47674753.800 415695641113669 3478690909459 0.2485 4.65716 1.14813 
25 0.076336 0.479632 18.745 47674753.800 415695641113669 3478690909459 0.2485 4.65716 1.95342 
26 0.076336 0.479632 18.745 47674753.800 415695641113669 3478690909459 0.2485 4.65716 2.31787 
27 0.076336 0.479632 18.745 47674753.800 415695641113669 3478690909459 0.2485 4.65716 2.15925 
28 0.076336 0.479632 18.745 47674753.800 415695641113669 3478690909459 0.2485 4.65716 1.51335 
29 0.076336 0.479632 18.745 47674753.800 415695641113669 3478690909459 0.2485 4.65716 0.52593 
30 0.076336 0.479632 18.745 47674753.800 415695641113669 3478690909459 0.2485 4.65716 -0.58018 
31 0.076336 0.479632 18.745 47674753.800 415695641113669 3478690909459 0.2485 4.65716 -1.55536 
32 0.076336 0.479632 18.745 47674753.800 415695641113669 3478690909459 0.2485 4.65716 -2.17954 

_____}3 0.076336 0.479632 18.745 47674753.800 415695641113669 3478690909459 0.2485 4.65716 -2.31186 



Heave Response 

Mass of structure, m 50870895.37 kg 

Added mass, Illa22 51627291.63 kg 

Total mass, rn22 (m+Illa22) 102498187.00 kg 

Stiffuess, k22 , ; jJ:454:9!lofr .4 N/m 

WN I 0.3768 

Damping ratio, ~ 0.1 
Damping, c (2m~wN) 7723492.433 N-sec/m 

' 



19 0.076336 0.479632 18.745 6926044.019 81537721553428 13722858847397 0.0757 1.41925 -0.67542 
20 0.076336 0.479632 18.745 6926044.019 81537721553428 13722858847397 0.0757 1.41925 -0.69965 
21 0.076336 0.479632 18.745 6926044.019 81537721553428 13722858847397 0.0757 1.41925 -0.56599 
22 0.076336 0.479632 18.745 6926044.019 81537721553428 13722858847397 0.0757 1.41925 -0.30460 
23 0.076336 0.479632 18.745 6926044.019 81537721553428 13722858847397 0.0757 1.41925 0.02552 
24 0.076336 0.479632 18.745 6926044.019 81537721553428 13722858847397 0.0757 1.41925 0.34989 
25 0.076336 0.479632 18.745 6926044.019 81537721553428 13722858847397 0.0757 1.41925 0.59530 
26 0.076336 0.479632 18.745 6926044.019 81537721553428 13722858847397 0.0757 1.41925 0.70636 
27 0.076336 0.479632 18.745 6926044.019 81537721553428 13722858847397 0.0757 1.41925 0.65802 
28 0.076336 0.479632 18.745 6926044.019 81537721553428 13722858847397 0.0757 1.41925 0.46119 
29 0.076336 0.479632 18.745 6926044.019 81537721553428 13722858847397 0.0757 1.41925 0.16028 
30 0.076336 0.479632 18.745 6926044.019 81537721553428 13722858847397 0.0757 1.41925 -0.17681 
31 0.076336 0.479632 18.745 6926044.019 81537721553428 13722858847397 0.0757 1.41925 -0.47399 
32 0.076336 0.479632 18.745 6926044.019 81537721553428 13722858847397 0.0757 1.41925 -0.66420 
33 0.076336 0.479632 18.745 6926044.019 81537721553428 13722858847397 0.0757 1.41925 -0.70453 



Pitch Response 

Mass of structure, m I 8.10E+10 kg 
Added mass, m,11 3.34E+10 kg 

Total mass, mn (m+m.u) 1.14E+ll 
2 kg.m 

Stiffness, kll 2000000000 N.rnlrad 

WN I 0.1322 rad/sec 

Damping ratio, ~ 0.1 
Damping, c (2~wN) 3025528267.63 N-m-sec 

- ·--



22 0.07634 0.479632 18.745 -1110689469.576 591591241255423000000 2105811898420480000 -0.0049 -0.09117 0.01957 
23 0.07634 0.479632 18.745 -1110689469.576 591591241255423000000 2105811898420480000 -0.0049 -0.09117 -0.00164 
24 0.07634 0.479632 18.745 -1110689469.576 591591241255423000000 2105811898420480000 -0.0049 -0.09117 -0.02248 
25 0.07634 0.479632 18.745 -1110689469.576 591591241255423000000 2105811898420480000 -0.0049 -0.09117 -0.03824 
26 0.07634 0.479632 18.745 -1110689469.576 591591241255423000000 2105811898420480000 -0.0049 -0.09117 -0.04537 
27 0.07634 0.479632 18.745 -1110689469.576 591591241255423000000 2105811898420480000 -0.0049 -0.09117 -0.04227 
28 0.07634 0.479632 18.745 -1110689469.576 591591241255423000000 2105811898420480000 -0.0049 -0.09117 -0.02963 
29 0.07634 0.479632 18.745 -1110689469.576 591591241255423000000 2105811898420480000 -0.0049 -0.09117 -0.01030 
30 0.07634 0.479632 18.745 -1110689469.576 591591241255423000000 2105811898420480000 -0.0049 -0.09117 0.01136 
31 0.07634 0.479632 18.745 -1110689469.576 591591241255423000000 2105811898420480000 -0.0049 -0.09117 0.03045 
32 0.07634 0.479632 18.745 -1110689469.576 591591241255423000000 2105811898420480000 -0.0049 -0.09117 0.04267 
33 0.07634 0.479632 18.745 -1110689469.576 591591241255423000000 2105811898420480000 -0.0049 -0.09117 0.04526 

--



APPENDIXE 

Wave Response Program Input Files 



SACS Model File 

LDOPT IN NF+Z 1.030 9.03-1330.00 1330.00 MN DYN 
OPTIONS MN SDUCJT 5 5 PTPT PT PT 
LCSELDY 1 2 
LCFAC DY 1.000 1 2 
UCPART 0.00 0.70 0.70 1.00 1.00 
SECT 
SECT SPAR TUB 3200.0100.0 
GRUP 
GRUP CBL 10.795 3.000Tl.+04 8.0034.50 1 1.001.00 
GRUP DUM 152.40 6.000 200.0 8.0034.50 1 1.001.00 
GRUP SPR SPAR 20.00 8.0034.50 1 1.001.00 
MEMBER 
MEMBER 10021008 CBL 000000000111 
MEMBER 10031007 CBL 000000000111 
MEMBER 10041009 CBL 000000000111 
MEMBER 10051010 CBL 000000000111 
MEMBER 10171012 CBL 000000000111 
MEMBER 10161013 CBL 000000000111 
MEMBER 10181014 CBL 000000000111 
MEMBER 10191015 CBL 000000000111 
MEMBER 10061007 DUM 
MEMBER 10061008 DUM 
MEMBER 10061009 DUM 
MEMBER 10061010 DUM 
MEMBER 10061012 DUM 
MEMBER 10061013 DUM 
MEMBER 10061014 DUM 
MEMBER 10061015 DUM 
MEMBER 10001006 SPR 
MEMBER 10061001 SPR 
JOINT 
JOINT 1000 
JOINT 1001 
JOINT 1002 
JOINT 1003 
JOINT 1004 
JOINT 1005 
JOINT 1006 
JOINT 1007 
JOINT 1008 
JOINT 1009 
JOINT 1010 
JOINT 1012 

0. 0. -56. -38.800 222000 
0. 0. 10. 66.800 222000 

-783. 0. -1330.-88.000 111111 
783. 0. -1330. 88.000 111111 

0. 783. -1330. 88.000 111111 
0. -783.-1330. -88.000 111111 
0. 0. -50. - 90.160 222000 
16. 0. -50. -90.160 222000 

-16. 0. -50. -90.160 222000 
0. 16. -50. -90.160 222000 
0. -16. -50. -90.160 222000 
11. 11. -50. 31.400 31.400-90.200 222000 

NPNP 

0.50Nl.OE-9 
0.50N1.0E-9 

Fl.OE-9 



JOINT 1013 
JOINT 1014 
JOINT 1015 
JOINT 1016 
JOINT 1017 
JOINT 1018 
JOINT 1019 
LOAD 

-11. 11. -50.-31.400 31.400-90.200 222000 
11. -11. -50. 31.400-31.400-90.200 222000 

-11. -11. -50.-31.400-31.400-90.200 222000 
-779. 779.-1330.-18.903 18.903 111111 
779. 779.-1330. 18.903 18.903 111111 
779. -779.-1330.18.903-18.903 111111 
-779. -779.-1330.-18.903-18.903 111111 

************************************************************************ 
****** 
LOADCN 1 
LOAD 1001 -4.98+5 GLOB JOIN DEAD 
************************************************************************ 
****** 
LOADCN 2 
LOAD 1001 
END 

520359. GLOB JOIN BOUYNCY 

***SPMB** 10061012 1006101210061013 1006101310061014 10061014 
***SPMB** 10061015 10061015 
END 

Seastate Input 

LDOPT IN +Z 1.030 9.028-1330.001330.00 MNDYN 
FILES 
CDM 
CDMAP 
MGROV 
MGROV 
MGROV 
GRPOV 
GRPOV 
LOAD 

0.000 10.000 2.500 
10.000 45.000 5.000 

SPRF 

LOADCN200 

NPNP 

WAVE 
WAVEl.OOAIRY 06.3 13.1 0.00 D 0.00 20.0 18MS10 1 0 7 



Wave Response Input 

WROPT MNPSL MAXSES 20 -1 
*PSEL JO MF OM BS 
PSEL SPBGFBMCBMVBMABJOBMFBOMBBSBHFBWSBWVB S 
*PLTTF OMBBSB PFS 
PSJO 1000DX1000DY1000DZ1000VX1000VY1000VZ1000RX1000RY1000RZ 
PSMF 10001006FYA10061001FYA 
*WAVTlM +Z 90.0-90.0 0.5 30 ST 1.0 
*WSPEC PM 06.3 13.1 400.0 
DAMP 2.0 
*ELVSEL -5.0-10.0-15.0-25.0-30.0-35.0-40.0 
*PTSEL 1 25 50 
END 


