
PET ROBOT

By

FARALIZA BT MOHAMED

FINAL PROJECT REPORT

Submitted to the Eleetrieal & Eleetronics Engineering Programme

in Partial Fulfillment of the Requirements

for the Degree

Bachelor of Engineering (Hons)

(Electrical & Electronics Engineering)

Universiti Teknologi Petronas

Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

© Copyright 2008

hy
Faraliza Bt Mohamed, 2008

ii

Approved:

CERTIFICATION OF APPROVAL

Pet Robot

by

Faraliza Bt Mohamed

A project dissertation submitted to the
Electrical & Electronics Engineering Programme

Universiti Teknologi PETRONAS

in partial fulfilment of the requirement for the
Bachelor of Engineering (Hons)

(Electrical & Electronics Engineering)

Dr Mumtaj Begam

Project Supervisor

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

June 2008

iii

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the original

work is my own except as specified in the references and acknowledgements, and that the

original work contained herein have not been undertaken or done by unspecified sources or

persons.

ill

ABSTRACT

The idea of the PET ROBOT is highly appropriate due to the r-apid changing technology

in the modem world and the h\llllans changing ways of life. This teclmology could not

only be the replacement for house pets but with detailed design and innovation it could

be an assistant to humans at homes. Pet robot uses a microcontroller to control its

functions. The micr{)controller will carry out instructions from the designed coding that

is implemented to the microcontroller. Coding is designed and compiled using PIC

Programming software. Different types of sensors are placed to the robot to give it

intelligence. The pet robot will be not only be able to move forward, backward and tum

but with the ability to 'see' by implementing sensol'S, the r{)bot is also able to avoid

object obstacles along the way. Besides that, the robot can react to certain external input

such as performing certain functions when it detects light and can react to sound. The

project work requires both mechanical field for movement and electrical field for

contr{)lling the r{)bot.

ACKNOWLEDGEMENT

Alhamdulillah, thank you to Allah s.w.t for giving me the strength to complete this project.

First of all, I would like to thank Dr Mumtaj Begam, my project supervisor fur leading me and

~how:ing m~: the corr~:ct. ways in pursuing this project. Without her I would be lost and may not

be able to complete this project on time.

I would also like to thank the technicians for giving me a chance to use the equipments in the lab

as well as giving me guidance on how to use them properly and safely, They are most

appreciated.

Secondly, I would like to thank my parents as well as my friends who had indirectly supperted in

completing this project. Their eagerness to see my project complete raises my spirit and

strengthens my motivation to complete this project. Thank you.

vi

TABLE OF CONTENTS

ABSTRACT .. v

ACKNOWLEDGEMENT vi

LIST OF FIGURES ix

LIST OF TABLES ... xi

CHAPTER!: INTRODUCTION 1

1 Pet Robot.1
1.1 Background ... 1
1.2 Problem Statement .. 2
U Objective and Scope of Study3

1.3 .1 Objective .. .5
1.3.2 Scope OfStudy j

CHAP-TER2! LITERATURE REVIEW AND/OR THEOR¥ 7

2.1 Microcontroller and Cireuits .. 7
2.1.1 Main Circuits 7

2.1.1.1 Micr{)contmller S
2.1.1.2 Voltage RegulatorIO
2.1.1.3 Oscillator Clock 12

2.1.2 H.Bridge 13
2.1.3 Infrared .. .14
2.1.4 Light Sensor 1S

2.1.4.1 Light Dependent Resistor 15
2.2 Mechanical Movement17

2.2.1 Four Wheeled Robot18.
2.3 Printable Circuit Boards (PCB) .. 20

2.3.1 Patterning (etohing) 20
2.3.2 Lamination 2l
2.3.3 Drilling .. 21

vii

CHAPTER3: MEmODOLOGY/PROJECT WORK 23

3.1 The Body .. 24
3.1.1 Wheeled Robot 24

3.2 Designing the Cir{)uit .. 26
3.3 Programing the PIC .. 27

3.3.1 PIC C Compiler Software 28
3.4 Implementing The circuits ... 3.l

3.4.1 Printable Circuit Board Method 31

CHAPTER4: RESULTS & DISCUSSIONS ..••... .33

4.1 Results ... 33
4.1.1 Robot Function Flow Diagram 33
4.1.2 Main Circuit 34

4.1.2.1 Microcontroller PIC16F84A ... 34
4.1.3 PIC Programming37
4.1.4 Light Sensor Circuit40
4.1.5 Infrared Transmiter & Reciever42
4.1.6 Overall Cir{)uit Connection43
4.1.7 Pictures of Pet Robot.45

4.2 Discussion46
4.2.1 Speed Control.46
4.2.2 Circuit's Stability & Sensitivity46
4.2.3. Light Sensor Sensitivity 4 7
4.2.3 Reprogrammable Chip 47

CHAPTERS: CONCLUSION & RECOMMENDATIONS48

5.1 Conclusion ... 48
5.2 Recommendations .. .49

REFERENCES50

APPENDIXES .. .51

APPENDIX A PIC 16F84A Datasheet .. 52

APPENDIXB BoostC C Compiler Manual..53

viii

LIST OF FIGURES

Figure 1: Pin diagram efPIC16F84A .. 10

Figure 2: Veltage Regulator 78SO .. 11

Figure 3: Veltage Regulator Cennectien Diagram .. .12

Figure 4: Crystal Clock Oscillator .. 13

FigureS: H-Bridge Connection Diagram .. .l3

Figure 6: Two States ofH-Bridgel4

Figure 7: LDR Circuit .. 16

Figure 8: Light Dependent Resistor,16

Figure 9: Legged Robot and Wheeled Robot... .. .17

Figure 10: Wheeled Robot with One Motor ... 1 8

Figure 11: Wheeled Rebot with Two Metor ... 19

Figure 12: Wheeled Rebet with Two Metor .. 20

Figure 13: Flow Diagram of Building the Robot .. : 23

Figure 14: Motoi'Connection ... ,.2S

Figure 15: Front Wheels and Back Wheels .. 25

Figure 16: Designing the Circuit Flow Diagram ... 26

Figure 17: Programming the Chip Flow Diagram .. 27

Figure 18: C Compiler Software .. 28

Figure 19: PIC Simulator IDE .. 29

Figure 20: PIC Programming Seftware30

ix

Figure 21: PIC Pmgramming Device30

Figure 22: Schematics DFawings in Eagle 4.13 Light .. .31

Figure 23: PCB Route Designing .. .32

Figure 24: Function Flow Diagr~ .. .34

Figure 2S: Pin Cenneetien efPIC 16F84A ... 3S

Figure 26: Main Cir-cuit ... 36

Figure 27: Light Sensor Circuit ... 40

Figure 28: Infrared Transmitter Circuit. ... 42

Figure 29: Infrared Reeiever Circuit..42

Figure 30: Overall Circuit Connection .. .43

LIST OF TABLES

Table I: H-Bridge Summarize Function .. 17

xi

CHAPTER I

INTRODUCTION

1. PETROBOT

The title of this project is 'PET ROBOT'. The idea is to build a robot that acts

and behaves similar to a pet. It is called a pet robot due to its ability to perform

functions imitating a real life pet. The functions of the robot will be controlled by a

programmed chip.

1.1 Background of Study

The word robot gives meaning of a machine that can do work by itself, often

work that humans do. [10] The concept of robots is a very old yet the actual word

robot was invented in the 20th century from the Czechoslovakian word robota or

robotnik meaning slave, servant, or forced labor. [12] Robots are very visible

machines, ranging from small, miniature machines, to large crane size constructions

with intelligence varying from simple programming to perform mechanical tasks,

such as painting a car or lifting cargo, to highly complex reasoning algorithms

mimicking human thought. [II] Historically, we have sought to endow inanimate

objects that resemble the human form with human abilities and attributes. From this

is derived the word anthrobots, robots in human form. Robots are especially

desirable for certain work functions because, unlike humans, they never get tired;

they can endure physical conditions that are uncomfortable

or even dangerous; they can operate in airless conditions; they do not get bored by

repetition; and they cannot be distracted from the task at hand. Robots have been

useful in industrials, hazardous duty, maintenance work, fire - fighting, medical,

space explorations as well as wars. Early industrial robots handled radioactive

material in atomic labs and were called master/slave manipulators. They were

connected together with mechanical linkages and steel cables. Remote arm

manipulators can now be moved by push buttons, switches or joysticks. Current

robots have advanced sensory systems that process information and appear to

function as if they have brains. Their "brain" is actually a form of computerized

artificial intelligence (AI). AI allows a robot to perceive conditions and decide upon

a course of action based on those conditions. [12]

1.2 Problem statement

The ability to produce a functioning robot with good stability and control takes

high technology as well as research. Robots are closely related to AI (artificial

intelligence) where scientists are still on research to produce a robot which is capable

of thinking and making its own decision (unprogrammed).

The main idea of this project is to build a robot that can imitate a pet (for

example a cat or a dog). There are a few points of significance in having a pet robot

to human beings. When pet robots are designed as close as being to a real life pet, it

could be the next innovation of replacing real life pets. Owning a pet is something

people desire to have but in this modem evolving era, people are too busy to handle

and take care of pets at home. By having a pet robot instead of a real one, people can

now have the pleasure of owning a pet without the fuss of maintaining or care taking

them. Besides that, pet robots can also be a companion to humans. It can play the

role of a 'mans best friend' just like dogs. For example with the rising statistics of

senior citizens, pets can be a

2

great companion to them and accompany them throughout their remaining life.

Unfortunately, majority of them do not have the capability of holding the

responsibility of maintaining a pet (for example giving them baths and feeding

them). By replacing these pets with a pet robot, they are able to keep a pet without

pressuring their ability to take care of these them. Another application of pet robot in

our everyday life is that it can be a good assistant to humans. By enhancing and

adding more features to the robot, it can help people in various ways. For example, it

can help blind people guiding them in walks by implementing sensors to the robot to

detect object obstacles blocking their way. It can also be enhanced to supervise

children. The pet robot can be a toy to the child and also be a nanny for parents to

ensure their child is safe and sound.

Throughout the years many robots have been built and enhanced to perform

different tasks for humans. Every type of robot was given specific functions and task

just by enhancing the basic foundation of a robot. In this project, the author is

rebuilding the foundation of all robots and adding features to make it as similar as a

pet robot. The pet robot will have basic fundamental functions. By building the basic

pet robot it can later be enhanced with more features and more sophisticated code

programming to achieve the goals mentioned above.

1.3 Objective and Scope of Study

The main idea of this project is not only to build a robot, but to make it able to

imitate the behavior of pets. It is difficult to make the robot to fully imitate all the

behaviors of a cat or a dog, but some personality can be implemented to the robot as

so it is acceptable as a pet. The behavior and characteristics of the robot is very

subjective and general. Some of the ideas considered for this project are:

1) Random movement functions

Most pets have their own behavior and characteristics. We need not order

them on how to move or how to act. In order to implement these criteria to

3

the robot, it will need to have random movements on its own. It will choose

its own path and its own way of movements to go forward, reverse, turn or

turn, reverse and turn again, it is all to be decided randomly. The movements

will be different in each cycle. This will give the robot an essence of life. It

will also make the robot seem more active.

2) Detecting and avoiding object obstacles

Like most living creatures, the robot has 'eyes' which enable it to see what is

in front of it. With this feature, the robot is able to see the object blocking its

path. The robot is then given the intelligence to avoid the object and prevent

it from bumping into things. This gives the robot a characteristic of

independence.

3) Light detecting

Every living creature has a natural feeling of fear. Therefore by

implementing this feature it could reduce the impression of robotic towards

the robot. The robot will have a fear of darkness. When it is in the dark, it

will stop and start to glow in the dark as if it wants us to find it. Besides

glowing in the dark, it will also start to behave strangely by moving in a

peculiar way (for example shaking) to show its reaction of fear.

These are the mam characteristics that the author has considered to

implement in the robot. Once the main circuit has been completed, more functions

and characteristics could be added to enhance the robot.

4

1.3.1 Objective:

1) To design and build a robot with the ability to:·

• Move forward

• Move backward

• Tum right and tum left

• Detect object obstacles

• Avoid object obstacles

• Detect light

• React to light

2) To design the codings and implement them in a microcontroller to control the

functions and movements of the robot.

3) To program the robot to have its own behavior and characteristics by having

random

movements

1.3.2 Scope of study

To achieve the objective of this project, studies and research on areas related

with robotics is concentrated. In order to build a basic robot, basic functions such as

moving forward, reverse and turning will have to be applied to tbe robot. This will

require a combination of electrical and mechanical field knowledge and application

where integrated electrical circuits will guide tbe mechanical movements of the

robot.

In the mechanical area, the robot must have components that will enable it to

move forward, reverse and turn. Commonly there are two types of robot to enable

these basic functions. First is the walking legged robot and tbe other is a wheeled

robot. Both of these two options are considered to design a robot most suitable for

the specifications of a pet robot.

5

In the electrical area, the circuit for the brain of the robot is built. The main

component of the brain is a microcontroller which will control the movement of the

robot. A programmable microcontroller is needed to provide flexibility to the

functions and its special features. There are many types of microcontroller and the

most suitable one will be selected to be used in this project. To control the robots

basic movement (forward, reverse, turn), a de motor is needed and it will be

controlled by the chip.

In order to program the microcontroller, a basic knowledge in programming

is needed. Flexibility in coding can provide a wider variety and possibility to the

functions of the robot. Software in these areas is needed to design and implement the

coding to the chip.

Since the robot is required to detect objects and lights, sensors are needed to

perform these functions. When these sensors are triggered, they will send a signal to

the microcontroller. The microcontroller will then send out a signal to the necessary

component to show reaction to the sensors. There are many types of sensors to

choose from but for this project only two types of sensors are being considered that

is the infrared sensor and the ultrasonic sensor. Another type of sensor needed for the

robot is the light sensor. Photocells are used and will serve the purpose of detecting

light when they are illuminated. It will be integrated to a circuit to send signal to the

microcontroller to perform the appropriate action. This will enable the robot to

differentiate between dark and bright areas.

6

CHAPTER2

LITERATURE REVIEW AND/OR THEORY

Research has been done on different areas of this project to learn more on

how to build a pet robot. The research of this project has been divided into three

sections which is the microcontroller circuits, the mechanical movements and the

programming.

2.1 Microcontroller and Circuits

There will be several circuits implemented to the robot. All of these circuits

will be combined and integrated together to create the fundamental of a basic robot.

All input and output signals of each circuit will be sent to the main circuit which will

play the role of commanding and giving instructions to other components. Basically

there are three major circuits:

a) Main circuit

b) H-bridge circuit

c) Infrared sensor circuit

d) Light sensor circuit

2.1.1 Main Circuit

All the movements and decisions of the robot will be controlled by one main

circuit. This circuit contains the PIC microcontroller which is programmed to control

7

the functions of the robot. The output the pms of the microcontroller is then

connected to the motors of the robot and other output components.

The main circuit contains these major components:

• Microcontroller PIC 16F84A

• Voltage Regulator

• Oscillator Clock

2.1.1.1 Microcontroller

The brain of the robot will be controlled by a microcontroller chip. Various

types of chip have been researched and the author prefers to use PIC 16F84A. This is

due to a few advantages that this chip holds. This programmable microcontroller is

commonly used in integrated circuits. The size of the robot is designed to be small to

achieve its motive of imitating a pet. PIC 16F84A is small enough to be placed in

the main circuit of the robot. Although it has less number of inputs and output pins,

it is enough to cater for all the functions for the pet robot in this project. This chip

will be programmed to perform the required tasks. The program memory contains

I K words, which translates to I 024 instructions, since each 14-bit program memory

word is the same width as each device instruction .The data memory (RAM)

contains 68 bytes. Data EEPROM is 64 bytes.

There are also 13 1/0 pins that are user-configured on a pin-to-pin basis.

Some pins are multiplexed with other device functions. These functions include:

• External interrupt
• Change on PORTB interrupts
• TimerO clock input

Features:
• Operating speed: DC - 20 MHz clock input
DC - 200 ns instruction cycle
• 1024 words of program memory

• 68 bytes of Data RAM

• 64 bytes of Data EEPROM

8

• 14-bit wide instruction words
• 8-bit wide data bytes
• 15 Special Function Hardware registers
• Eigbt-level deep hardware stack
• Direct, indirect and relative addressing modes
• Four interrupt sources:
- External RBOIINT pin
- TMRO timer overflow
- PORTB<7:4> interrupt-on-change
- Data EEPROM write complete

Peripheral Features:
• 13 I/0 pins with individual direction control
• High current sink/source for direct LED drive
- 25 rnA sink max. per pin
- 25 rnA source max. per pin
• TMRO: 8-bit timer/counter with 8-bit
programmable prescaler

Special Microcoutroller Features:
• I 0,000 erase/write cycles Enhanced FLASH
Program memory typical
• I 0,000,000 typical erase/write cycles EEPROM
Data memory typical
• EEPROM Data Retention > 40 years
• In-Circuit Serial Programming™ (ICSP™) - via
two pins
• Power-on Reset (POR), Power-up Timer (PWRT),
Oscillator Start-up Timer (OST)
• Watchdog Timer (WDT) with its own On-Chip RC
Oscillator for reliable operation
• Code protection
• Power saving SLEEP mode
• Selectable oscillator options

9

Below is a pin diagram of PIC 16F84A:

PDIP,SOIC

RA2-

RA3-
R~41TDCKI­

MCLR~ 4

Vss---.
RBOIINT­

RB1-

RB2-

RB3-

-RAI

-RAO

~OSC11CLKIN

~ OSC21CLKOUT

-RB7

-RB6

11 -RB5
.._..R84

Figure 1: Pin Diagram of PIC 16F84A

The software that the author used to program the PIC16F84A is the PIC C

Compiler and it will be simulated by PIC simulator IDE. The datasheet for PIC

16F84A is shown in appendix A.

2.1.1.2 Voltage Regulator

A voltage regulator is an electrical regulator designed to automatically

maintain a constant voltage level. Essentially, all a voltage regulator does is,

obviously, regulate voltage; That is, it limits the voltage that passes through it. Each

regulator has a voltage rating; For example, the 7805 IC (these regulators are often

considered to be ICs) is a 5-volt voltage regulator. No matter how many volts is put

into it, it will output only 5 volts. This means that by connecting 9-volt battery, a 12-

volt power supply, or virtually anything else that's over 5 volts, and have the 7805

will give a of5 volts out. There are also 7812 (12-volt) and 7815 (15-volt) three-pin

regulators in common use. The pinout for a three-pin voltage regulator is as follows

[13]:

10

I. Voltage in

2. Ground

3. Voltage out

For example, with a 9-volt battery, connect the positive end to pin I and the

negative (or ground) end to pin 2. A 7805 would then give a +5 volts on pin 3.

Voltage regulators are simple and useful. There are only two important drawbacks to

them: First, the input voltage must be higher than the output voltage. For example,

we cannot give a 7805 only 2 or 3 volts and expect it to give a 5 volts in return.

Generally, the input voltage must be at least 2 volts higher than the desired output

voltage, so a 7805 would require about 7 volts to work properly. The other problem:

The excess voltage is dissipated as heat. At low voltages (such as using a 9-volt

battery with a 7805), this is not a problem. At higher voltages, however, it becomes a

very real problem and you must have some way of controlling the temperature so

you don't melt your regulator[13).

This is why most voltage regulators have a metal plate with a hole in it; That

plate is intended for attaching a heat sink to [13). Figure 2 shows the voltage

regulator pins.

(3) __.t.__
(1) input

(2) GND

Figure 2: Voltage Regulator 7805

11

The circuit is supplied with a 9Volt Battery. The PIC only uses 5volts. A 5 volt

voltage regulator 7850 is used to step down the power supply from 9V to 5V. Figure

3 shows the connection diagram of the voltage regulator.

2.1.1.3

Voltag
e

LJ
- 9V + 'IL ~I +'lV

I Gnrl

figure 3: Voltage Regulator Connection
Diagram

Oscillator Clock

A crystal oscillator is an electronic circuit that uses the mechanical resonance

of a vibrating crystal of piezoelectric material to create an electrical signal with a

very precise frequency. This frequency is commonly used to keep track of time (as in

quartz wristwatches), to provide a stable clock signal for digital integrated circuits,

and to stabilize frequencies for radio transmitters/receivers.

The crystal oscillator circuit sustains osci llation by taking a voltage signal

from the quartz resonator, amplifying it, and feeding it back to the resonator. A

regular timing crystal contains two electrically conductive plates, with a slice or

tuning fork of quartz crystal sandwiched between them. During startup, the circuit

around the crystal applies a random noise AC signal to it, and purely by chance, a

tiny fraction of the noise wi II be at the resonant frequency of the crystal. The crystal

will therefore start osci llating in synchrony with that signal. As the osci llator

ampl ifies the signals coming out of the crystal, the signals in the crystal's frequency

band will become stronger, eventually dominating the output of the osci llator.

Natural resistance in the circuit and in the quartz crystal filter out all the unwanted

12

frequencies. One of the most important traits of quartz crystal oscillators is that they

can exhibit very low phase noise. In many oscillators, any spectral energy at the

resonant frequency will be amplified by the oscillator, resulting in a collection of

tones at different phases. In a crystal oscillator, the crystal mostly vibrates in one

axis. Therefore, only one phase is dominant. This property of low phase noise makes

them particularly useful in telecommunications where stable signals are needed, and

in scientific equipment where very precise time references are needed.[2]

Figure 4: Crystal Clock Oscillator

2.1.2 H-BRIDGE

An H-bridge is an electronic circuit which enables DC electric motors to be

run forwards or backwards. These circuits are often used in robotics. H-bridges are

available as integrated circuits, or can be built from discrete components. Figure 5

shows the H-bridge connection circuit.

Figure 5: H-Bridge Connection circuit

13

~ I r--
I }

(o· 0 v. ~- ® l ® -1
L V, ~ v~ (I I ...

Figure 6: Two States of H-Bridge

Using the nomenclature above, the switches S I and S2 should never be

closed at the same time, as this would cause a short circuit on the input voltage

source. The same applies to the switches S3 and S4. This condition is known as

shoot-through.

The H-Bridge arrangement is generally used to reverse the polarity of the

motor, but can also be used to 'brake' the motor, where the motor comes to a sudden

stop, as the motors terminals are shorted, or to let the motor 'free run' to a stop, as the

motor is effectively disconnected from the circuit. Table 7 summarises the operation

[3].

Table 1: H-Brldge Summarize Function

S1 S2 S3 S~ Result

0 0 Motor moves right

0 0 Motor moves left

0 0 0 0 Motor free runs

0 0 Motor brakes

2.1.3 Infrared Radiation

Infrared (IR) radiation is electromagnetic radiation of a wavelength longer

than that of visible light, but shorter than that of microwaves. The name means

"below red" (from the Latin infra, "below"), red being the color of visible light with

the longest wavelength. Infrared radiation has wavelengths between about 750 nm

14

and I mm, spanning five orders of magnitude. Humans at normal body temperature

can radiate at a wavelength of I 0 microns.

Infrared light lies between the visible and microwave portions of the

electromagnetic spectrum. Infrared light has a range of wavelengths, just like visible

light having wavelengths that range from red light to violet. "Near infrared" light is

closest in wavelength to visible light and "far infrared" is closer to the microwave

region of the electromagnetic spectrum. The longer, far infrared wavelengths are

about the size of a pin head and the shorter, near infrared ones are the size of cells, or

are microscopic.

Shorter and near infrared waves are not hot at all - in fact you cannot even

feel them. These shorter wavelengths are the ones in TV's remote control [7).

The Infrared emitter detector circuit is very useful to make a line following

robot, or a robot with basic object or obstacle detection. Infrared emitter detector pair

sensors are fairly easy to implement, although involved some level of testing and

calibration to get right. They can be used for obstacle detection, motion detection,

transmitters, encoders, and color detection (such as for line following) [8].

2.1.4 Light Sensor

One of the functions of the robot is when it detects that there is no lights, it

will stop every movement and blink a set of LEOs. Light Dependent Resistor (LOR)

is a light sensor that can be used for this function.

2.1.4.1 Light Dependent Resistor (LDR)

LDRs or Light Dependent Resistors are very useful especially in light/dark

sensor circuits. Normally the resistance of an LOR is very high, sometimes as high

as I 000 000 ohms, but when they are illuminated with light, resistance drops

dramatically.

15

Figure 7: LOR Circuit

The figure above shows a simple LDR circuit with transistors and LEOs.

When the light level is low the resistance of the LDR is high. This prevents current

from flowing to the base of the transistors. Consequently the LED does not light.

However, when light shines onto the LDR its resistance falls and current flows into

the base of the first transistor and then the second transistor. The LED lights. The

preset resistor can be turned up or down to increase or decrease resistance, in this

way it can make the circuit more or less sensitive [4].

Figure 8: Light Dependent Resistor

16

2.2 Mechanical Movement

The most important mechanical aspects of this robot is it is constructed so it

can perfonn the basic functions of a robot which is moving forward, reverse and

tum. In the early stage of this project, two types of robot are considered which are

the legged type and the wheeled type. The author has done studies on the

mechanical attachment of these two types of robot and the advantages and

disadvantages are considered. For legged robot, it is more sophisticated compared to

a wheeled robot. It will required much more control and more motors. It will require

a more complex circuit to give it more control over the legs. Legged robot is useful

in unlevel terrains where as wheeled is robot require more control to establish

stability. The ultimate problem with legged robot is balancing. The robot's body and

legs need to be designed to achieve proper balancing to ensure stability during its

different movements.

The wheeled robot requires a simpler circuit and minimum number of motors

can be used. It is much faster and easier to balance compared to a legged robot. It is

less complicated to build and requires less control.

Figure 9: legged Robot (left) and Wheeled Robot
(Right)

17

The figure 9 shows a six legged robot (right) and a four wheeled robot (left).

Most legged robot is built on six legs to achieve maximum stability and most

wheeled robot are built with four wheels. The figure shows the difference of

construction complexity between a legged robot and a wheeled robot.

2.2.1 Four Wheeled Robot

A four wheeled robot is suitable to build a pet robot. When deciding to build a

four wheeled robot, the author needs to decide the different mechanical wheel

connection of the pet robot.

I. Using one motor to connect all wheels.

In this method, all four wheels are dependent on one another. There will be

only one motor controlling all the wheels at one time. The functions therefore

will only be limited to move forward and backward. The robot will not be

able to make a turn.

Figure 1 0: Wheel robot with one motor

2. Using two motors for four wheels, each front and back.

In this method, one motor is connected to two wheels. Two wheels in the

front are connected to one motor and the other two at the back to another

18

motor. The wheels at the back are connected to the motor in a function that it

moves forward and backward. As for the front two wheels it is connected in

such a way that it can move forward and backward and the angular position

of the motor can be changed. This can cause the robot to be able to make a

turn.

Figure 11: Wheel robot with two motors (front, back)

3. Two motors, side by side

In this method, one motor is connected to two wheels. Two wheels at one

side will be connected to a motor and the other will be connected to a

different motor. These two sets of wheels will move independently. By

having this connection, the robot is able to move forward, reverse and turn. It

can turn to a large radius by having one side of the wheels to move and the

other is not.

19

It is also able to turn in a smaller radius by having one side of the

wheels to move forward and the other side to move in reverse.

Figure 12: Wheel robot with two motors (left,right)

2.3 Printable Circuit Board (PCB)

A printed circuit board, or PCB, is used to mechanically support and electrically

connect electronic components using conductive pathways, or traces, etched from

copper sheets laminated onto a non-conductive substrate. Alternative names are

printed wiring board (PWB), and etched wiring board. A PCB populated with

electronic components is a printed circuit assembly (PCA), also known as a printed

circuit board assembly (PCBA).

PCBs are rugged, inexpensive, and can be highly reliable. They require much more

layout effort and higher initial cost than either wire-wrapped or point-to-point

constructed circuits, but are much cheaper, faster, and consistent in high volume

production. Much of the electronics industry's PCB design, assembly, and quality

control needs are set by standards that are published by the IPC organization [9].

2.3.1 Patterning (etching)

The vast majority of printed circuit boards are made by bonding a layer of copper

over the entire substrate, sometimes on both sides, (creating a "blank PCB") then

removing unwanted copper after applying a temporary mask (eg. by etching),

leaving only the desired copper traces. A few PCBs are made by adding traces to the

20

bare substrate (or a substrate with a very thin layer of copper) usually by a complex

process of multiple electroplating steps [9].

There are three common "subtractive" methods (methods that remove

copper) used for the production of printed circuit boards:

I. Silk screen printing uses etch-resistant inks to protect the copper foil.

Subsequent etching removes the unwanted copper. Alternatively, the ink may be

conductive, printed on a blank (non-conductive) board. The latter technique is also

used in the manufacture of hybrid circuits.

2. Photoengraving uses a photomask and chemical etching to remove the copper

foil from the substrate. The photomask is usually prepared with a photoplotter from
I

data produced by a technician using CAM, or computer-aided manufacturing

software. Laser-printed transparencies are typically employed for phototools;

however, direct laser imaging techniques are being employed to replace phototools

for high-resolution requirements.

3. PCB milling uses a two or three-axis mechanical milling system to mill away

the copper foil from the substrate. A PCB milling machine (referred to as a 'PCB

Prototyper') operates in a similar way to a plotter, receiving commands from the host

software that control the position of the milling head in the x, y, and (if relevant) z

axis. Data to drive the Prototyper is extracted from files generated in PCB design

software and stored in HPGL or Gerber file format. [9]

2.3.2 Lamination

Some PCBs have trace layers inside the PCB and are called multi-layer

PCBs. These are formed by bonding together separately etched thin boards.[9]

2.3.3 Drilling

Holes, or vias, through a PCB are typically drilled with tiny drill bits made of

solid tungsten carbide. The drilling is performed by automated drilling machines

21

with placement controlled by a drill tape or drill file. These computer-generated files

are also called numerically controlled drill (NCD) files or "Excellon files". The drill

file describes the location and size of each drilled hole.

When very small vias are required, drilling with mechanical bits is costly because of

high rates of wear and breakage. In this case, the vias may be evaporated by lasers.

Laser-drilled vias typically have an inferior surface finish inside the hole. These

holes are called micro vias.

It is also possible with controlled-depth drilling, laser drilling, or by pre-drilling the

individual sheets of the PCB before lamination, to produce holes that connect only

some of the copper layers, rather than passing through the entire board. These holes

are called blind vias when they connect an internal copper layer to an outer layer, or

buried vias when they connect two or more internal copper layers and no outer

layers.

The walls of the holes, for boards with 2 or more layers, are plated with copper to

form plated-through holes that electrically connect the conducting layers of the PCB.

For multilayer boards, those with 4 layers or more, drilling typically produces a

smear comprised of the bonding agent in the laminate system. Before the holes can

be plated through, this smear must be removed by a chemical de-smear process, or

by plasma-etch.[9]

22

CHAPTER3

METHODOLOGY/PROJECT WORK

The robot was built step- by-step through different sections. Figure 13 shows

the flow diagram of the building the robot.

Identify the
Define the J Research problem

statement obJective

Select Evaluate Identify
Alternative consequences alternative

I Set Constrain I
Set criteria and
specification

~
NO

J Analysis

Meet ~
requirement

YES

ProJect
Accomplish

Figure 13: Project Flow Diagram

23

Process of designing the robot consists of three different sections, the body

(mechanical parts), circuit (electrical) and programming (PIC16F84A).

3.1 The Body

The bottom part of the body is very important to determine how the robot

will be able to move. The options of weather to build a legged robot or wheeled

robot was laid out in theory and after all advantages and disadvantages has been

considered, the author has decided to build a wheeled robot. In this project, the

auther will not be building the robots body but will use the base of the robot from

what is available on the market and reconstruct its circuitry to function as required.

3.1.1 Wheeled Robot

The robot is designed to be a wheeled robot. This is because robots with

wheels are able to move faster and has better balancing control compared with

legged robots. This is type of mechanical connection is suitable for this project as

common pets are usually fast and need to have better stability to be able to move in

different ways. The robot will have 4 wheels controlled by two motors. Each motor

will control two sets of wheels independently. Two wheels are placed in front and

the other two at the back. Figure 14 shows the motor connections to the wheels:

24

Figure 14: Motor

Connection

The mechanical connection of the back wheels to its motor will enable the

robot to move forward and reverse. The wheels will move forward when the motor is

connected to the positive voltage and reverse when the motor is connected to

negative voltage. The positive and negative voltage input to the motor can be

controlled by the PIC. The mechanical connection of the front motor to its wheels

will enable the wheels to change angle and thus allowing the robot to move right or

left. Whether the wheels are to tum left or right is once again controlled by the

positive or negative input voltage to the motor.

Figure 15: Front Wheels and Back

Wheels

25

3.2 Designing the Circuit

The fi rst step is to design
the circuit for the
PIC 16F84A. This wi ll be
the main circuit.

The secound step is to
build the circuit for the
sensors

Finally a circuit for light
sensor to enable the
robot to detect light

Circuit for

PIC16F84A

Circuit

for sensors

Circuit for
light

sensor

Figure 16: Designing the Circuits flow Diagram

26

3.3 Programming the PIC

The first step is to do

research and self

learning on how to

program a PIC using C

Compi ler

The Code is then

designed in the software

according to the

functions. It is compiled,

and errors are checked

and corrected.

The code is then

implemented to the

PICI6F877

Research on
coding PIC and

using C
Compiler

1
Designing the

code
according to its

f11nrtinnc:

1
Implementing

code to
PIC16F877

Figure 17: Programming the chip flow diagram

27

3.3.1 PIC C Compiler Software

There are many soft wares used to program a PIC. In this project, the PIC C

compiler Software is used to program the PJC 16F877. This software is chosen

because it is easy to work with and is user friendly.

11(W l tomptlt'r 1111 : ~ ~

Flo - Eel ()ooaro ~ v T ... Ooh.og liCI

.) ~ liiiiQ iill .!. - .., cSti I
.., " "I 1t :.:1 !E o 8 t u

""'-'o• .,Z.c J
liocludo(16fl77 .h>
h s• dPl~y(cloc;k-...111111)

owln()
(

""ilr(trur)

J; l

if (input(PIH_BI))
(

output_ high(PIH_ D2);
output_ high(PIH_ C7);

IF (input(PIH_81))
(

output_high(PIH_C6) ;

f } SP

if (1nput(PIH_ B2))
(

Figure 18: C Compiler Software

The figure 18 shows the interface of PIC C Compiler. The code is written and

designed in the workspace area.

After the code is completed, it is compiled. Codes with errors are then

analyzed and corrected.

The successfully compiled codes need to be tested whether it functions

properly before it is implemented onto the chip. This is done by using software

called PIC

28

Simulator IDE. The code is loaded into this software and the simulation. The inputs

and outputs of the microcontroller can be viewed from the virtual microcontroller

view window and any errors from the coding can be detected.

I PlO!Jam l.ocahon r
I MICioconbolol 'I ~PI;:::C1::-:6Fli4A=,--

Lesllntlrucbon N~l~~~~---------

PtO!JomC.......andWR~ l lnstrucbomCoori,. I 0
rPC riO) rrrrrr;-rrrrr-r IOoclr.C)detCoorieo I 0

I WRegosteo roo r-r-rrrr-r I ReaiTmeO .. aoon I OO~t

..!.J - 1 RA2

...!J - r RA3

..!J- 1 RA4/TOCIQ

\MCLR

v ..

..!.I I RBOIINT

..!.J- 1 RB1

..!.I- I AB2

.!.1- 1 RB3

- Alwl!yo On Top

Figure 19: PIC Simulator IDE

Figure 19 shows the interface of PIC simulator IDE. By using the PIC

simulator IDE, errors can be detected easi ly and time can be saved. This is because

the codings are checked before implementing them onto the PIC.

After the code is checked with the PIC Simulator IDE, it now can be

implemented onto

29

- ..!J
- .ll

- ..!.J
- ..!J
- ..!J
- ..!.]

IO:JCiiL I

oooo : oon oon OOl'l' oon 001'1' a orr oon oou fYf'ltYh ,.
oooe: oon oorr oorr oorr 001'1' a orr oon oou rrrrrrn
0010 : 001'1' 001'1' 001'1' OOFF OOFJ' 001.'1!' OOPP OOFF rrrrrrn
0011: oorr oorr oOrP oarr oow a orr oo:rr oorr fY"trrYYY
0020 I OOIT OOrr Oon' OOI'r OO!"P GOFF OO!"P OOFF fY"trrYYY
0021: OOPP oorr 001'1' OOI'P 001'1' GOFF ODFP OOI'F rt1'l'lfff
0030: 001'1' 001'1' 001'1' 001'1' OOIT 001'1' 001'1' 001'1' nfitth'
oo3e : oOFr oorr oon oorr oon a orr OOl'l' oorr Y"IYYYriY
oo•o: oorr a orr DOl'!" oon oorr ao·f'!' oorF ooPr r17FtrrY
oo .. : 001'1' oorr 001'1' oou oorr eorr oorr oorr rnririY
oo" 1 OOIT oorr oorr oorr oorr oorr oorr OOl'l' nrnrn
eon: oorr a orr oOFr oorr oorr oorr oorr oorr rrtYYm
oo6o: oorr oorr oou oorr oorr oon oorr oou rrJnFh
oo'•: oon a orr oon oo.rr oorr oorr oorr oorr rrrrrrn

oorr oorr oon oo:rr oorr oorr oorr oo_!'r YrYrtrtY
0078; oorr oorr oo:rr oo:rr oo:rr uon oorr DDI'P rrrrrriY
ooeo: oorr a orr a orr oorr oorr oorr oon oorr fi'tY11W

ooee: oorr oorr oon oorr oorr oorr oorr oorr YrtYff'ff

oo": oorr oorr oorr oou oorr oorr oorr oorr rrrrrrn
OOPP OOFP OO.FP Oo:PP OOPP ODFP DOFf' DOPF rnrnTY
oDFr oorr oorr oOFr OOFF oorr oorr ooFF rrJnFh
nn .. nn- nn- nn .. nn- nn .. nn .. nnw•

""""" SDA25<6 (58)

Figure 20: PIC Programming Software

the microcontroller. This is done by using a PIC Programming Software (as shown

in figure 20) and a universal PIC programming device. The code that have been

compiled and checked is loaded to the PIC programming software. The chip Is

inserted in the PIC programming device as shown below:

Figure 21: PIC Programming Device

The microcontroller chip is now pl'ogrammed and is ready to be used m the

main circuit of the robot.

30

3.4 Implementing the Circuits

After collecting all the components for the circuits, it can be implemented to

the circuit board. For initial implementation for designing and testing, the

components are soldered onto a simple breadboard. Although this circuit board is

functioning correctly and successfully, it is not a very stable circuit. Short circuits

can occur because the cuprum line is connected all over the board. This problem can

be solved by implementing the circuits onto a printable circuit boards (PCB)

3.4.1 Printable Circuit Board Method

Creating a PCB involves 2 main process. The first process involves using a

software called Eagle 4.13 Light. The schematic drawing of the designed circuit is

first created using this software. The figure 22 is an example of a schematic drawing

using Eagle software:

t•~o • ..-~ ..,_.. .-. ..._~

• Iii•# o '" ~ • r.~ ' 'A'-• ~ · C l 7
I . !il t:"iil! T J

• l!
+tt
<Jf>

•
~ '·
X <

"'~ . "
""' r'
/ T
0") •• ,
•

+

--...
-... -.... ---... . ..
v ...

-...
......-,sftJrt • • • • o -~ ' . .. ' . •:- ·- . .. r '(: - · . , ~ •

Figure 22: Schematics Drawings in Eagle 4.13 Light
Software

31

After all the components are in place, the next step is to convert the drawings to a

virtual circuit board as shown below. Here all the components will be arranged in a

way where no wires can cross each other and cause a short circuit. The software will

automatically create a route for the path of the cuprum line which will be etched

later.

t'o ... - .. IJ*o~

•a•• • • =-w ' 'Q."• ... • • 1

Figure 23: PCB Route Designing

... -"" -.. -CEJ -.. ... --... -.... -..

The second process involves drilling holes and etching cuprum onto the

circuit board. This will be done at the lab assisted by the technician on duty.

32

CHAPTER4

RESULTS & DISCUSSIONS

4.1 RESULTS

After considering the theories and methods of each section of the robot, the

author has implemented and design the to robot to meet the objective of this project.

4.1 .1 Robot Function Flow Diagram

l

Figure 24: Function Flow Diagram

33

Figure 24 shows a flow diagram designed to lay out the functions of the

robots. It consists of the main and basic functions of the robot. The codings designed

will be base on this flow diagram.

Firstly, the robot is started. This consists of turning on the power switch of

the robot. An LED indicator which is placed on the main circuit will light up to

indicate that it has been powered up.

Next, the robot will be in idle mode. This means that the robot will delay any

movements for a few seconds before performing any functions. This mode is

important to ease the flow of the next step.

The robot will now check for the first condition that is to check weather there

is any light. If there is light, then the robot will go to a mode where a number of

LEOs will blink. The LEOs will blink until there is light turned on and move on to

the next step function.

If there is no light detected, the robot will then check for the next condition

which is to check weather there is an object blocking its way in front of it. If there is

an object, the robot will reverse, turn and move forward avoiding the object.

If there is no object detected, the robot will then go to having random

movements mode. In this mode, the robot will constantly check weather there is light

detected and object detected and interrupt the random movement when one of the

condition is met.

4.1.2 Main Circuit

4.1.2.1 Microcoutroller PIC16F84A Circuit

Figure below shows the pins of the PIC 16F84A. Pin 14 (VDD) and pin 4

(MCLR) is connected to 5V. Pin 5 (VSS) is connected to ground. Pin 15 and 16

(OSC1&2) is connected to a 4MHz two legged clock which will run the circuit. The

outputs that will connect to the motor circuit are 84,85, 86, and 87. Pin 84 and 85

34

is connected to the back motor. Pin 85 will allow negative voltage to flow to the

motor which will make the wheels turn in reserve mode. Pin 84 will allow positive

voltage to flow to the motor which will make the wheels turn in forward mode. Pin

86 and 87 is connected to the front motor which will determine weather the robot is

to turn left or right. Pin 86 will allow positive voltage to flow through the motor and

enables the wheel to turn right while pin 87 enables flow of negative voltage

through the motor and enables the wheel to turn left. An LED is connected to pin 83

as an 'ON' indicator. This LED will light up when the circuit is connected to a

power supply.

Gn

I LED I

A2 Al

A3 AO

A4 osc
MCLR 1
vss osc
BO 2

Bl VDD
B2 B7

B3 B6

B5

B4

Figure 25: Pin Connection of PIC
16F84A

+5V

4MHZ

l.IK

Left

Righ

Forwar
revers

The circuit diagram is then implemented to a circuit board. All the

components are soldered accordingly. Figure below shows the completed main

circuit:

35

Figure 26: Main Circuit

When the circuit is successfully connected, a simple program is encoded to

the PIC to test the movement of the robot. Below shows a simple coding used to test

the robot.

main()

I
while(true)
{

output_high(PIN _ 83);
output_ low(PIN_ 84);
output_ high(PIN _ 85);
output_low(PIN _ 86);
output_(ow(PIN_87);
delay_ms(5000);

output_high(PIN _83);
output_high(PIN_84);
output_low(PIN_85);
output_low(PIN _86);
output_(ow(PIN _87);
delay_ ms(5000);

output_ high(PIN _83);
output_(ow(PIN_84);
output_low(PIN _l35};
output_high(PIN_B6);
output_low(PIN_B7);
delay_ ms(5000);

output_ high(P!N _ 83);
output_ low(PIN_ 84);
output_low(PIN_I35):
output_low(PIN_86);
output_high(PIN_ 87);
delay_ms(5000);

//LED ON indicator lights up
//reverse mode on'
//forward mode on
//right mode off
//left mode off

II delay for 5 sees

//LED ON indicator lights up
//reverse mode on
//forward mode off
//right mode ofT
//left mode off

//delay for 5 sees

//LED ON indicator lights up
//reverse mode off
//forward mode oiT
//right mode on
/!left mode off

//delay for 5 sees

//LED ON indicator lights up
//reverse mode ofr
//forward mode off
//right mode on
//left mode off

//delay for 5 sees

36

After the code is implemented to the pic, the robot seems to function

correctly according to the code. This shows the implementation of the main circuit is

successful.

4.1.3 PIC Programming

Below is the coding that has been redesigned. Sub functions has been

included inside the previous coding to simplify it. An initial start -up sequence was

also inserted to check the initial condition of the robot when it is turned on before

starting any other functions. The initial start-up sequence will check each forward,

reverse, left and right mode of the robot is fully functioning.

#include<I6F84a.h>
#use delay(clock='4000000)
#fuses XT,NOPROTECT,NOWDT

//all subfunctions
void all_pause(void);
void delay _gap(void);
void intervention(void);

//start main function

mainO
{
//INITIATE START-UP SEQUENCE

output_ high(PIN_ B3);
output_low(PIN _B4);
output high(PIN B5);

- -
output_low(PIN _B6);
output_low(PIN _ B7);
delay_ ms(200);

output_low(PIN _ B3);
output_ high(PIN _ B3);
output_low(PIN _B4);
output_]ow(PIN _ B5);

//B3 is POWER indicator LED ON
//B4 is LEFT
//B5 is RIGHT
//B6 is FORWARD
//B7 is REVERSE

//DELAY BEGIN AFTER STARTUP

//B3 is POWER indicator LED ON
//B3 is POWER indicator LED ON

//B4 is LEFT
//B5 is RIGHT

37

outputJow(PlN _B6);

output low(PIN B7);
- -

delay_ ms(200);

output_ high(PIN _ B3);

outputJow(PIN _ B3);

outputJow(PIN _B4);

outputJow(PIN _ BS);

output high(PIN B6);
- -

outputJow(PIN _ B7);

delay_ms(lOO);

outputJow(PIN_ B3);

outputJow(PIN _B3);
outputJow(PlN _ B4);
output_low(PIN _BS);

outputJow(PIN _B6);

outputJligh(PIN _ B7);

delay_ ms(lOO);

/IB6 is FORWARD

/IB7 is REVERSE

//DELAY BEGIN AFTER STARTUP

//B3 is POWER indicator LED ON

/IB3 is POWER indicator LED ON

//B4 is LEFT

fiBS is RIGHT

I!B6 is FORWARD

/IB7 is REVERSE

//DELAY BEGIN AFTER STARTUP

//B3 is POWER indicator LED ON

I IB3 is POWER indicator LED ON

/IB4 is LEFT
fiBS is RIGHT

IIB6 is FORWARD

I IB7 is REVERSE
//DELAY BEGIN AFTER STARTUP

This coding will create an initiate start up sequence. In this sequence, the robot will
first check weather all of the wheels movements are working. It will command the back

wheels to go forward, then to go reverse. This is to check the functionality of the back

wheels. Then it will check the functionality of the front wheels and command the wheels to

go right first and then left.

//START LOOP
while(true)

{
output_ high(PIN _ B3);

if (INPUT(PIN _ B2))

{

intervention();

}

else
{

/IB3 is POWER indicator LED ON

//FORWARD LEFT FOR S MILLISECONDS
output_ high(PIN _B4);

outputJow(PlN _ BS);
output_ high(PIN _ B6);
output_low(PIN _B7);

delay_ ms(700);

38

all_pause();

//REVERSE RIGHT FOR 5 MILLISECONDS
output_low(PIN _ B4);
output_ high(PIN _ B5);
output_low(PIN _ B6);
output_ high(PIN _B7);
delay_ ms(400);

all _pause();

//FORWARD LEFT FOR 5 MILLISECONDS
output_ high(PIN_ B4);
output_low(PIN _B5);
output_ high(PIN _ B6);
output_low(PIN _ B7);
delay ms(700);

This is the loop function that will make the robot go forward for 5 milisecounds and
stop for 5 milliseconds repeating constantly. This will make the robot move slower that just
making it go forward without stopping for a few seconds. The speed of the robot is
controlled by using this coding method.

void delaygap()
{

}

output_ high(PIN _ B3);
output low(PIN B4);

- -
output low(PIN B5); - -
output low(PIN B6);

- -
output low(PIN B7);

- -
delay ms(200);

This is the sub function for stopping all movements for 200 milliseconds.

void all_pause()
{ output low(PIN B4);

- -
output Iow(PIN B5); - -
output Iow(PIN B6);

- -
output low(PIN B7); - -
delay ms(500);

}

This is the sub function for pausing all movements for 5 miliseconds.

39

void intervention()
{

output_ high(PIN _ B4);
output_low(PIN _ B5);
output_low(PIN _ B6);
output_low(PIN _ B7);
delay_ ms(200);

output_low(PIN _ B4);
output_ high(PIN _ B5);
output_low(PIN _ B6);
output_low(PIN _ B7);
delay_ ms(200);}

This is the sub function that will put a high output to the forward mode of the robot.

4.1.4 Light Sensor Circuit

When the LDR detects light, it will give a signal to the PIC and the PIC will

command the robot to perform its normal function such as moving forward,

backward and turning under certain conditions. But if the photocell does not detect

any light, the PIC will command the robot to be in idle mode while blinking the

LED. Below is the diagram of the light sensor circuit:

+9V

LIGHT
DEPEND

POTENTIOM

IOk

IC-

1.2K 1 uF
0.1 F

Figure 27: Light Sensor Circuit

40

When LDR detects light, a signal will be sent to a relay. This signal will

trigger the relay. The output of the relay is then connected to the main circuit which

contains the pic. Pin B2 is assigned as an input to the pic and is then connected to the

output of the relay. By this connection, when ever the LDR detects light, a an input

signal will be sent to the pic. By using programming, the pic can be set to control the

function that the robot should perform when there light. Below is a simple code

program that shows an output function when the LDR sends a signal to the input pic

indicating there is light. This function uses an 'If Else' function in the programming.

If there is an input signal in pin B2, the output signal B4 will be high. Else, B4 will

be low. This means if there is light, the back wheels will move forward. If there is

not light, the robot will not move at all.

mainO
{while(true)
{

}
}

output_ high(PIN _ B3);
if (input(PIN _ B2))

{
output_ high(PIN _ B4);

}
else
{

output_low(PJN _B4);
}

I /if there is light

//forward mode on

//if there is no light

//forward mode off

After implementing the following program to the circuit, the robots seems to

function as instructed in the coding. this shows the circuit successfully detects the

input from the LDR when there is light and gives command to the output to perform

certain functions.

41

4.1.5 Infrared Transmitter and Receiver

In order for the robot to detect object obstacles, an infrared circuit will be

implemented to the robot. The infrared circuit consists of sender circuit which

contains the infrared emitter diode and receiver circuit which consists of infrared

receiver device. Below is a circuit of the infrared circuit sender and receiver.

VDD

3~! 9
~---+----~.--~~~,~~

~ ~witch
J.2Kohm

~nfrared Diode 139kohm
~

Figure 28: Infrared Transmitter Circuit

Ki Ki
~ JJM2W-1~

~elay

Q•!
NTE103.A

R2

_)R Reciever

Figure 29: Infrared Receiver Circuit

42

R1

.to

VDD

Both of these circuits will be placed in front of the robot. It is powered up by

an on switch placed at the side of the robot. The transmitter circuit contains the

infrared diode and will emit the infrared wave. The infrared wave can not be seen by

the human eye. There for an LED in placed to this circuit to indicate that the infrared

diode is emitting the waves. When there is an object in front of it, the infrared wave

will hit the object, reflecting it and making it bounce back hitting the receiver circuit

which contains the infrared receiver component. This will then trigger the relay in

the receiver circuit which acts as a switch allowing current to flow through and

signal to pass by to the PIC. The PIC will then send a signal to the appropriate output

to change the movement of the robot to avoid from bumping into the object.

4.1.6 Overall circuit connection

When all the circuits are finished, they are all connected and integrated together to

form a robot. Below is a diagram of the overall connection:

Infrared
transmitter

circuit

Main Circuit

Figure 30: Overall Circuit Connection

43

All inputs and outputs will be connected to the main circuit. The input

circuits are the infrared receiver circuit and the light sensor circuit. The infrared

transmitter circuit is connected to the infrared receiver circuit. The output circuits are

the LED circuits and the motor circuit which will then be connected to the wheels.

44

4.1.6 Pictures of Pet Robot

Top View Left View

Back View Front View

45

4.2 Discussion

4.2.1 Speed Control

When the first code was implemented to the robot, the author noticed that the robot

was moving very fast with a constant speed. The robot like pets, must be able to

move slowly or very fast every now and then. The speed needs to vary differently to

give some characteristics an essence of life. It is also important to slower down the

speed in situations where a condition need to be checked. For example, the robot

needs to move slowly before checking for object obstacles else it will end up

bumping into it. To control the speed, the author needs to implement a coding to the

PIC which will slow down the signal sent out to the motor which controls the

wheels. Each time a high signal is sent to an output of the wheels, it will be followed

by a low signal to the same output and delay it for a certain time. This is repeated for

a number of times. For example, the speed control for forward mode is as below:

output_ high(PIN _ B5); I !high output to forward pin

delay_ ms(lOO); //forward mode for 0.1 sees

output_low(PIN_B5); //low output to forward pin

delay_ ms(l 00); //delay stop for 0.1 sees

Implementation of this code to the chip will cause the forward wheels to run for 0.1

second and stop running for 0.1 second. When this cycle is repeated constantly, it

will make the robot seem to be moving smoothly but at a slower rate then by just

making the signal high all the time.

4.2.2 Circuit's Stability and Sensitivity

During troubleshooting, all the components were connected onto a regular

simple breadboard. After the circuits are finalized, it is then transferred onto a

veraboard which is a type of board that has cuprum connected all over the circuit.

This board requires soldering of the components onto the board. When this is done,

46

all the circuits are then put together and tested. The author later notices that the

circuit is not very stabile and is very sensitive as the connection of cuprum under the

board can easily cause a short circuit which can cause failure to the robot's functions

and can also cause chips and components to bum. This is later avoided by

transferring these circuits on to a printable circuit board which has better connections

and the probability of a short circuit is less compared to a vera board. The main

circuit remains connected to a veraboard. This is because by using this board,

additional inputs and outputs can easily be implemented without changing the main

circuits. This makes the robot more flexible and provides a wider range of

possibilities to its functions.

4.2.3 Light sensor sensitivity

A light sensor is implemented onto the robot to enable it to detect light. A

variable resistor is placed in the circuit to adjust the sensitivity of the LDR. Although

the variable resistor helps adjust the robot to react to how much brightness and

darkness, there is still a problem when the robot is a situation where it's not so bright

and not so dark. At this point the robot will confuse and start to do movements in

dark mode and bright mode alternately. The robot can only work in a condition

where it is purely bright or purely dark.

4.2.4 Reprogrammable chip

This robot uses a microcontroller PIC 16F84A. This PIC can be

reprogrammed over and over again. This feature allows can us to change the

movement of the robot from time to time. Changes can be made easily by just

altering the codes and implement them back onto the PIC. The robot is more flexible

on its functions and features. It can be enhanced by adding more inputs and outputs.

Additional circuits could be easily added without building a new main circuit or

changing other existing circuits. More intelligence could be added that enables it to

meet certain goals depending on its purposes.

47

CHAPTERS

CONCLUSION & RECOMMENDATIONS

5.1 Conclusion

The robot is now able to perform all the basic functions such as moving

forward, reverse and tum. The main circuit which contains the microcontroller PIC

16F84A is built and implemented onto the robot that controls all functions. it is

connected to the motor circuit and is able to move the mechanical movement of the

robot. This circuit is also able to detect input signals by other external circuits and

trigger the appropriate output according to the codes designed. The codes are

designed to move the basic movements of the robot and conditions have been

implemented to enable the robot to make decisions according to certain inputs. The

circuit of the light sensor is designed, built and implemented onto the robot to enable

it to detect light. When light is detected, a signal will be sent to the PIC of the main

circuit and the PIC will instruct the robot to react to it. The robot is able to

differentiate between brightness and darkness. The infrared sensor has also been

designed, built and implemented onto the robot. it is placed in front of the robot to

detect object in front of it. The robot is able to detect object blocking its way about

one feet away. All the circuits to achieve the objective of this project is now

completed and running successfully. The robot is now able to move forward, reverse,

tum, detect and avoid object obstacles, move randomly and sense

48

light. Enhancement of the coding will be done which will add more feature to the

robot and make it more similar to a pet robot. Once this coding is completed, the

overall coding can be finalize and thus implemented onto the robot to finalize the

final product of the Pet Robot.

5.2 Recommendations

The objective of this project is to built a basic robot which imitates the

behavior of a pet. The robot is built through designing basic circuits to perform basic

functions. This topic of a pet robot is very wide and general. The functions and

purposes of this pet robot is not limited to a specific standard. Improvements and

enhancements can be easily done by adding more circuits to implement more inputs

and outputs of the robot making it more sophisticated and interesting. The PIC used

is a PIC16f84A which is a reprogrammable chip. This enables us to alter the codings

of the robot to change its movements and add inputs and output easily. The

characteristics and behavior of this robot can be erased and a new personality can be

implemented to it. Other features such as sound detecting and sound making can be

implemented later to make the pet robot more real and give it more life.

This PIC 16f84A can be changed to a PTC16F877 which has the same

function but with more input and output pins. This enables us to add more circuits

and widen the robots functions and features by using the same coding designed in

PIC 16f84A.

More sensors can be added to the robot to give it more intelligence to on

avoiding bumping into objects. The infrared sensor can be implemented not only at

the front of the robot but also at the back to ensure the robot does not crash into

anything while it is in reverse mode.

49

REFERENCES

1. http:/ /en.wikipedia.org/wikiN o1tage _regulator

2. http:/ /en.wikipedia.org/wiki/Crystal_ oscillator

3. http://en.wikipedia.org/wiki/H-bridge

4. http://www.technologystudent.com/elec 1/ldrl.htm

5. www.reuk.co.uk

6. en.wikipedia.org/wiki/lnfrared

7. http://science.hq.nasa.gov/kids/imagers/ems/infrared.html

8. http://www.societyofrobots.com/schematics _infraredemitdet.shtm1

9. http://en.wikipedia.org/wiki/Circuit_ board

I 0. Macmillan English Dictionary Fundamental Student Edition

11. http://links999 .net/robotics/robots/robots _introduction.htm1

12. http:/ /inventors.about.com/library /inventors/b1robots.htm

13. http://www.geocities.com/siliconvalley/2072/3pinvolt.htm

50

APPENDIX

51

~
MICROCHIP PIC16F84A
18-pin Enhanced FLASH/EEPROM 8-Bit Microcontroller

High P~rformance RISC CPU Features:

Only 35 single word instructions to learn
All instructions single-cyde except for program
branches which are two-cycle
Operating speed: DC - 20 MHz dock input

DC - 200 ns instruction cycle
1024 words.ofprogram.memory
68 bytes of Data RAM
64 bytes of Data EEPROM
14•bit wide instruction words
!J..Ilit wide data bytes
15 Special Function Hardware registers
Eight-level deep hardware stack
Direct. indirect and relative addressing mode&
Four interrupt sources:

External RBO/INT pin

- TMRO Umer pyerflow
- PORTB<7:4> interrupt-on-change
- Data !:EPROM llllfite complete

Peripheral Features:

13 1/0 pins with individual direction control
High current sink/source for direct LED drive
- 25 mA sink max. per pin
- 25 mA source max. per pin
TMRO: 8-bit timer/counter with 8-bit
programmable prescaler

Special Microcontroller Features:

10,000 erase/write cycles Enhanced FLASH
Program memory iypical
10,000,000 typical era&elwrite cycles EEPROM
Data memory typical
EEPROM Data Retention > 40 years
In-Circuit Serial Programming~ (ICSP~) - via
\IN<I pins
Power-on Reset (POR), P<>Wer-up limer (PWRT),
Oscillator Start-up limer (OST)
Watchdoglimer (WDT) with its own On-Chip RC
Oscillator for reliable operation
Code protection
Power saving SLEEP mode
Selectable oscillator options

© 2001 Microchip T echnolagy Inc.

Pin Diagrams

PDIP,SOIC

RA2-
AA3-

RM/fOCKI­
MCLR- 4

vss­
RBOJtNT­

RB1- 7

-RAl
-AAO
-OSC1/CLKIN

- OSC2/CLKOUT
-Voo
-RB7
-RB6

11 -RBS
-RB4

SSOP

-AA1
RA3- -AAo

RA41TOCKI- -oSC1/CLKIN

MCLR~ --7 .OSC2/CLKOUT
vss- -voo
Vss- -voo

RBOIINT- -RB7

RB1- -RB6

RB2- -RB5

RB3-

CMOS Enhanced FLASH/EEPROM
Technology:

Low power, high speed technology
Fully static design
Wide operating vollage range:
- Commercial: 2.0V to 5.5V
- Industrial: 2.0V to 5.5V
Low power consumption:

< 2 rnA tyPical @ 5V, 4 MHZ
15 1-lA typical @ 2V, 32 kHz
< 0.51-lA typical standby current@ 2V

DS350078-page 1

.. : .:· ... :.··
... : ..•...... : ... ::: ... :

Cl

~ .. ·······
~···

Booste.,. Manual SourceBoost Technologies

I.

I.

age 4 Sourceaoost T echnologles

·~ .. "
Page 3

....
" ...
" " " ·" " "
"
"
·"

Booste"' Manual

6 SourceBoost
J' Technologies

Index

BoostC C Compiler
-..... , __ .· .. ~o_r_~~<::rnic:;ro , ... '"-_: :·_,_
Reference Man1.1al :

BoostC complfer .. ,, ,_,,,.,,, ... ll
~--··--""''"----···············-----·························-·····-·-·-·········-········-······-~
Bqgetr:: C<HDpjlm specjfipatlpn_ .. 1

BneDitl"""" I
l!!!!clal Di1p b!!!!5 - - --- l
!ll!""!allj!ngu"•fta!,•rn ·-------------·----· I Cgdt Prplfl!sfflm !!n!l ~limlq«on fgf!KWI ____ I

Pobupglngfl!;tfnrn ---·--·---·-- jJ!
Full MP! AB.!n"'9nHon ---·--------- jJ!
~~~ ~ 

Cpd, Analv'"----- .... ~ 

~-----·--·--··-····--·--·-----------····-·····-·---.. ---··-····--·-····.11 
CC!!!)p!bt!on rnqdgl fnd l!!pk;ha!n --·"·---..................................... , __________ ,_ •• .,1} 

Pm!'t!!:!!Aio•--- ----------- ll -- ----------" ----------- " """""·--- ----------·---- " p!DttmnCH. w!lfl C2C sgmm!ai!Df! mqdel, _______________ tl 

Mpt AR !ntaqpHon """"'"""""""""""'--·--·---··----····""'"""""""""-·"-"""""""""""'""""-"""""""'"'1.6. ---------- ,. 
Sfning lflt MPJ AS i.tlh<!Ujl!!l! Tt!ol I 9e!!llont.,. D. 
Cmtlna umlm;t unlfn MPJ AB !Df - fi 
...,..,.,._ ----- --------- 11 

c....,mand !log gpt!gM -··-···---····-·--·-·-·---··-""'"""·-··---···--·-......... _ ........ n 
ilqmi!C sQ!pmpnd ljne___ l2 
Oplimlp!lttp --- " 
BoqsU.Ipk U!!Dmand Dpo ___ _ " 

~---····-·····--·--""'"""""""'""""'"""' ........................ 2J 
~--·-··--··----------- ··----·----·---··-·--·---·----- ............ - ............................ ____ .u 
~-----·-- ·---------------------· 2t 
~........... .. .. -._ .............. --.. .. u 
.di:!IZ....__.. ............ -........ .. .............. _.................. • ... .u 
~-.......................... . ............. _................. . .. ..... .u 
~----·---· ......................................... .u 

Cqd« mrtry qq/nll ~ 
SQY"'!!B991J IQE,.,,.,..... .. ..... - ....................... _, .. ,. .................................................... _,,,21 
Ptepmsg•tor '"'""""""'""""""'"'"""""-'"""-'"""""""'""" ___ ..... ,_,_ ..................... Z!i 
~--- ................ _ ..................... - ... - .................... _ .......... _____ ,, __ ,,,_,2f 
~- ................................................................................................................................................ Z1 il!dRiia8.----·-·--·--•-. ... - .............................. - ................................................. ____________________ .u l!tuJWI ................... _ ... _________________________________________________________ ............... - ... n 
ljf lp!:;p. krldif ............................... ____ ................... .. ......... ____________ ..,__________ 211 
ltiflfllt------~--·- . .u 
!lbl!!t .......... , .. ............................. . .. - ................ " .................... JZ 
iltall!:---.............. . "'"""""""-·-·-· ..... ·-----·- JJ 
~.................................................... . ....................................... ~ 

Pragma di!'1!F.Ityttl ................. ____ ,, _______ , .... , .... _ ............. - ... - ............ ,_ ........ a! 
~ .... - ...................... -........ . ..................... --~·---·------·-· ....................... M 
lp!!!QPM Q OQI' EREQ ... .. .... - ..................................... ~ 
#pmwtl!! np11MI?f. ................ - ................ -........... . , ... _............. . .............. ............. 11. 

Mnq Dayfr;o Cgnflguradgn Optlgno ........ - .................... ,_, .............................. , .. _,,,,)!! 
lnH!al!zjdlgn gt EEpROM DaJa.,,.,._, ........... - ....................... ,, ................ __ ,_, .............. ~ 

C language ......................................................................................................... !Hl 

Page 2 SourceBoost Technologies Booste'" Manual 



BoostC"' Manual SourceBoost T edlnologles Page 1 

•age 8 Sourceeoost T echnologles Booste- Manual 

I. 
1 •• 

BoostC"' Manual SourceBoost Technologies 

••••••••••••••••••••• 

.11 
... rr. 

11 
r1 

PageS 

Legal Information ••. - ..•• , •. _.,_,,_ •..••. --... -············· ... -·····-·············-······· ... - .... §! 

Page 6 Sourceeoost Technologies Booste"'" Manual 



stallation 
e BoostC compiler cannot be downloaded or installed on its own. BoostC Is part 
the SourceBoost software package that Includes the SourceBoost IDE and other 
,guage Suites. It Is available for download from our site 
p•//www.smlrrehnnst com 

1en ynu buy a license, you will activation code(s) and detailed Instructions on 
w to activate the compiler and other tools you have licensed. 

install SourceBoost IDE and BoostC on your system, please follow these simple 
:ps: 

Execute the installer sourceboost.exe and foRow on-screen directions. 

Please pay attention to the integration dialog: 

lologr-RoliiPUB 
St<U<IBCIOIIC~i'teg!.,.NoMI'I.AII? 

To i'!I0!1 ... 90<a!Ccmp.t-...,MFVS locoloMPLAI! ......... <hcla)!i1&.e 
O<ri!olbolownil>lnpoOS>ibo~lliS'IU!xn ToJI<:i>MFUBi'lrogr"""'po ... 
tn.'N..tWtonatNbollml.tllii<W>g. 

.. -~-:.:) :wi-~----

•.;;,;.J ... 
~ .::JJGidl 
_, ;:) tAN~N-~S­

;;)M"'"""""' 
21~ 
.·,~-~ 
•.5MiaooofiH""""'" 
~- :JM>:oooai!O~ro>t 
-•-~Mif'SI..-

--;-,_M.,...M-

To Integrate Boostc with MPlAB, choose the correct Microchip Installation 
directory, then dick on ~Integrate~ before stepping to the next Installation 
wizard dialog. 

•The rest of the Installation process Is straightforward. At the end, 
SourceBoost JOE Is-ready to be·used on·yoursystem. Should.any.dlfficuity 
arise, please double .check.your system conflguratlon and mall aU details 
to sqppnrt®sourceboost com 

loostC"" Manual Sourceeoost Technologies Page 11 

Please note: If the Installation step ~MPlAB IntegratiOn~ Is skipped, the 
necessary MPLAB integration files will be installed to the \fllpiab 
subdirectory of the chosen SourceBoost Installation directory. These files 
can always be manually copied to the correct location - please see the 
•MPlAB Integration" section later tn tt11s manual. 

1ge 12 SourceBoost Technologies BoostC'" Manual 

BoostC compiler 

Introduction 
Thank you ror choosing BoostC. Booste Is our next generation C compiler that 
wor!Cs with PlC16, PlC18 and some PIC12 processors. 

This ANSI C compatible compiler supports features like source level symbolic 
debugging, signed data types, structures/unions and pointers. 

The Booste complier can be used within our sourceBoost IPE (Integrated 
Development Environment), or It can be Integrated Into Microchip MPLAB. 

BoostC Compiler specification 

Base Data types 

SID Type name Specffieation 

1 bit bit, boo/ boolean 
8 bit "'" signed, unsigned 
:16 bit short, lnt signed, unsigned 
32 bit long signed, unsigned 

Special Data types 
Single bit· single bit data type for efficient flag storage. 
Fixed address • fixed address data types allow easy access to target device 
registers. 
Read only· code memory based constants. 

Special Language Features 
References as function arguments. 

. Function overloading. 
• Function templates. 

Code Production and Optimization Features 
ANSI 'C' compatible - Makes code highly portable. 
Produces optimized code for both PIC16 (14blt core) and PIC18 (l6bit core) 
targets. 
Support for Data structures and Unions • Data structures and arrays can 
be comprised of base data types or other data stn.lctures. Arrays of b;,se 
data types or data structures can be created. 
Support for polntet"S - pointers can be used in ~au the usual ways". 
Inllne Assembly - Inllne assembly allows hand crafted assembly code to be 
-used when-necessary. 
Inllne Functions - lnllne functions allows a section of code to be written as 
a function, but when a reference Is made to It the lnllne fundion code Is 
Inserted Instead of a function call. This speeds up code execution. 

Booste'"' Manual SourceBoost Technologies Page 9 

Eliminates unreachable (or dead) code - reduces code memory USZige. 
Removal of Orphan (uncalled) functions • reduces code memory usage. 
Minimal Code Page switching - code where necessary for targets with 
multiple code pages, 
Automatic Banks SWitching for Variables - allows carefree use of 
variables. 
Efficient RAM usage ~ local variables In different rode sections can share 
memory. The linker analyzes the program to prevent any dashes. 
Dynamic memory management. 

Debugging features 
Sourca Level and Instruction Level Debuner - linker Generates COF file 
output for source level debugging under SourceBoost D...._,.· 
step Into, step over, step out and step Bade - these functions operate 
both at source level and Instruction level. 
Multiple Execution VIews • see where the execution of the COde Is at 
source level and assembly level at the same time. 
Manito!'lng variables - variables can be added to the watch windows to 
allow their Viiilues to be examined and modJHed. There Is no need to know 
where a variable Is stored. 

Full MPLAB integration 
Use of the MPlAB ProJect Manager within MPLAB IDE.. 
Creation and Editing of source code from within MPlAB lDE. 
Build a project without leaving MPlAB IDE environment. 
Source level debugging and variable monitoring using: 

MPLAB simulator; 
• MPLAB ICD2; 
• MPLAB ICE2000, 

Ubrarian 
Allows generation of library files • this simplifies management and conb'ol 
of regularly used, shared code. 
Reduce compilation time - using library files reduces compilation time. 

Code Analysis 
Call tree view • sourceBoost IDE can display the function call tree. 
Target COde Usage ~ From tile complete program, down to Function level 
the code space usage can be v1ewed In SourceBoost IDE. 
Target RAM Usage - From the complete program, down to Function level 
the RAM usage can be examined and reviewed In SO!JrceBoost IDE. 

Page 10 Sourceeoost Technologies Booste'" Manual 



•LAB integration 
:tStC c compiler can be integrated into Microchips MPLAa Integrated 
elopment environment (IDE). The MPlAB Integration option should be selected 
ing the SourceBoost software package installation. 

:ase note_: To use BoostC under MPIAB the r-1,PlAB Integration button must be 
ssed ~uring the SourceBoost package ln~llatl~:m. This copies some flies' and 
s the required _registry keys requJre:ffor lntl!gratlon to work: 

case the _Installation. _Step. ·_MPlAB :.1nte9rati0n'" ·.·failed, the flies rn the 
ourceBoost>\mplab dlreci>iy c;.n be ritanuaiiY: ~led Tnto · 

IPLAB IDE>\Thlrd Parl:Y\MTC Suit~ for MPLJU17.)r, or' 

IPLAB IDE>\LegacylaOguageSultes ~~ MPLAB 6~x. 

the above examples,- <MPlAB IDE_> ·reren; to· the MPlAB Installation directory 
d <SOurceBoost> refers to the Soun::eaoost: IDE and compilers Installation 
ectory. - · 

:atures 
1en BoostC Is Integrated Into MPLAB IDE It allows the following: 

Use of the MPLAB Project Manager within MPLAB IDE. 
Creation and Editing of source code from within MPI.AB IDE. 
Build a project without leaving MPLAB IDE. 
Source level debugging and variable monitoring using: MPLAB simulator, 
MPLAB ICDZ, MPLAB ICEZOOO. 

~tting the MPLAB Language Tool Locations 
1te: this process only needs to be performed once. 

oe procedure below specifies paths assuming the default Installation folder has 
1en used for the SourceBoost software package. 

1. Start MPlAB IDE. 

2. Menu Project,_. Set Language Tool Locations. 
Note: If BoostC C compiler dGeS not appear In the Registered Tools list, then 
the Integration process during the SourceBoost Installation was not 
performed or was unsuccessful. 

looste- Manual SourceBoost Technologies 

;, Set BoostC C complier for PIC16 location: 

Lfl! .. 1/.l. !.ill! fli· 

4. Now set BoostLlnk Unker location: 

[~~~~~~ ---··-----, ~_:]1 
~ QD.~~ 

1ge 16 SourceBoost Technologies 

Page 15 

BoostC"' Manual 

Compilation model and too/chain 

Prepror:essor 
The preprocessor pp.exe Is automatically Invoked by the complier. 

Complier 
There are actually two separate compliers: one for plc16 and one for plclS targets. 

When you work under SourceSoost IDE, there Is no need to specify which one to 
use: the IDE plck.s the correct complier based on the selected target. 

The output of the complier Is one or more .obj flies, that are further processed by 
libraria.n-or-linker,-ln order to get a .llb--or-.hex file. 

BoostC"' Manual SourceBoost Technologies Page 13 

Linker 
BoostUnk Optimizing Unker links .obj files generated by compiler Into a .hex file 
that Is ready to send to target. It also generates some auxiliary files used for 
debugging and code analysis. 

Ubrarlan 
Ubrarian Is built Into BoostUnk linker executable and gets activated by -lib 
command line argument, There Is a dedicated box In the Option dialog Inside 
source Boost IDE that changes project target to llbrary Instead of hex file. 

To create a @met independent library, lndude boostc.h Instead of system.h Into 
the library sources. This way no target spedflc Information (like target dependent 
constants or variables mapped to target specific registers) Is lnduded Into the 
library. Note that this Is the only case In Which system.h does not be lnduded Into 
the code. 

Differences with C2C compilation model 
The main difference between BoostC and our previous generation C2C complier Is 
that the latter had a bullt·ln linker and aeated an .a5m file needing to be 
assembled using an external assembler (like MPASM), while the BoostC toolsulte 
doesn't need any external tools and dlrectiy generates the target .hex flle. 

Another difference Is In how compliers handle read-only variables located In code 
memory. BoostC uses the spedal data type spedfter 'mm', while C2C placed any 
variable defined as 'consr Into code memory, 

Page 14 Sourcelloost Technologies BoostC,... Manual 



4. Menu File~ Sav.e As, Locate the project folder using the Save As dialog 
box. 

,_ "1~",,---~--~ 
r A<ldFioTol'rcjod 

5. Add the test.c source file to the project by right clicking on Source Files In 
the project tree- as shown below. 

:'i LJ C\P'Id'tovr-\l.ot~ 

g! - j 
LJ<: -
c..:!U..~Fmo 
WUi«o-So'C>I< 
Watt...- Flo< 

oostC"' Manual SourceBoost Technologies Page 19 

. Add the llbc.plc16.11b file (found In the C:\Program Ales\SourceBoost\Ub 
folder) to the project by right cUcklng on Ubrary Ales in the project tree. 

-.::~:5..'}''' .:.lQ!ltll 

: ·.: ·.'·.···· 

'.Check the final project. It should look as below: 

3U 
i'iLJ~-

:.:o\l'kPJ<>:r~-· 
U~l'tos 

.. t:Jo::t>)od.FIM 
aU~~><..,.fhl 

=:c\Pfoor""~"*'t6.11b 
·u~.Hoo<So'C>I< 

Wott..-ft.. 

8. Menu Project • Build (or press the build button on the tool bar). The code 
should then be built. 

1 can now use the MPlAB simulator, 1C02 or ICE to run the code, or a 
grammer to program a device. Please refer to the ~using ICD2" section of this 
:ument before using ICD2 to avoid potential problems. 

ease of project browsing, you can also add the project header files to the 
ject tree tn the same way as the source files where added. 

Je 20 SourceBoost Technologies BoostC"' Manual 

5. Set _BoostC C compiler for PIC18 location: 

I iii! 

,-Loc:otion ' 
· j~"""~"""FJooiS.,..,.Q_._pooro.... ~I ---------------------1 
----""'.-~ ~ ~ ~ 

6. Eventually, set BoostLink Unker location in the PIC18 tree: 

§#I I I !·i!iilfi t 

IRogiltendT ... 
' •. 8 ~Ootoca£ 

•>. 800<1CCCoordo.-koP1C1S 

7~~~kof'1C18 

iiillliii'f'"PIC10 

:o Oold.S ...... Ptll·dD._ 
r>- B!'!oC.olt-....lC~ 
;,:a:sc~ 

1 a:sC~krP1C12lf<4116118 
~ HI·TtOIP!CCT-

~i 

Ji 
-- _J 

[~;;;;;~~---~~ 
----""'.-~ . . ~ ·~ ~ 

Creating a project under HPlAB IDE 
&efore- attempting to do- this, -please· ensure that the -~-setting the- MPLAB 
language tool locations" process Illustrated In the above section has been 
successfully performed, 

BoostC"' Manual SourceBoost Technologies Page 17 

The following steps wlll help you create a project under MPLAB IDE, that will be 
built using the BoostC C compiler, complllng for a PIC16 Target. The project name 
Is test and the project and source code wlll be located In folder 
C:\PlcPrograms\test 

1. Menu Project• New. Enter a project name and directory. 
Note: this can be an existing directory containing a Source6oost IDE project. 

~W~i':· .. :·· ~ 
,.· ,-.·_· : ," _._- ':"' :- _-· 

2. Menu Project ... 5elect Language Toolsuite. Select the 8oastC c 
Complier for PIC16. 

3.Menu FUe .. New. Type code Into the Untitled window. 
Note: If you already have Source Ales, thls step and steps 4 can be skipped. 

Page 18 SourceBoost Technologies BoostC'"' Manual 



Dstlink command line 
stLink optimizing linker Version x.Jtx 
~ ;f /www. sourceboost. c:o111 
~right(C) 2004~2007 Pavel Baranow 
yrlght(C) 2004~2007 David Hobday 

ensed tG <11cense info> 

~~~5~stlink.pic.exe (options} files 

t name ta~et processor
0!'1 optlmization level 0-1 (default rFl)

' d path

~/~:~ ..
rb address
rt address

n"'O - no opti~aization
n"'l - pattern matching and bank s,.,;tctdng optimize on
verbose mgde
llirectory for project output
projec.t (output) name for multiple .obj file linking
directory for library search
ROit base (star-t) address to use
ROM top (end) address to use

wcs sl sZ s3 Use software call stack. 1\ardware stack is allocated by
specifying stack depths sl,s2,s3 (optional)
sl = Nin and task routines hardware stack allocation
s2 : ISR ttanlware stack allocation
s3 ~ PIC18 low priority ISR hardware stack allocation

zmoshadow ISR No use of shadow r<~ghters
srnocontext ISR No context Save/restore is added to ISR{PIC18 only)
Cd2 Add NOI' at first Raot address for correct ICOl operation

1exela Always add extended linear address record to .hex file

itches for making libraries:

:~i~ame :~~~e~~bm~r!~e0~~=ts~~~!~e~an,~bj and .lib files

Is command line option causes the code generated by the linker to start at the
dress spedfied. Boot loaders often reside In the low area of ROM.

ample

1 OxOSOO

oostC""' Manui!ll SourceBoost Technologies Page 23

ssls2s3

command line option to the linker tells It to use a software call stack In
Jon to the hardware call stack. This allows subroutine calls deeper than the
1ardware call stack of the PIC. A function call that Is made on the software call
: uses an extra byte of RAM to hold the retum point number. This option must
sed when using Novo RTOS. Where possible the hardware stack Is used for
ency, By specifying the depth of hardware stack to use for main (and Novo
;) sl., JSR (lntem.Jpt service routine) s2 and low priority lSR (PIC18 only) s3,
des control over when the software call stack Is used Instead of the hardware
ltack. The software call stack Is applied to functions higher up In the call tree,
Ills lower down the call tree still use the hardware call stack, If no hardware
t depths are specified, then the software stack Is only used In functions that
~In or call fUnctions that contain a Novo RTOS Sys_Yield() function.

nple:
,,2
routine will use hardware call stack up to a depth of 6 and then start using

ware call stack. Intem.Jpt routine will use hardware call stack Up to a depth of 2
start using software call stack. An ISR uses hardware call stack depth of 1 to
:the address of the point where the code was JntemJpted, so In this example It
leaves a hardware call stack depth 1 for subsequent calls within the ISR.

ftoshadow

commanclllne switch tells the linker not to use the PIC113 shadow registers for
rrupt service routine (ISR) context saving. This option Is required as a work
tnd for silicon bugs In some P1C18's.

nocontext

; option only works with PIC18's. When use thiS prevents the linker adding
a code for context saving. This allow the programmer to generate their own
lmallSR context saving code, or have none at all.

tmple;
:ontext saving example .- ... ·
U$UIIIeS that. the .ISR COdlii will Only lll!ldif'Y.- W-and ani! bsr

~·~~~,t~Xi~=~~-~f~[·.·_.~,~: ?~~:;·~-~~:~.e~~
d: ·interrUpt 0

-.:~~~ ~-:isr;- .. ~,:~
' i$11, _cont~-tl

··_·::;;;~-·~~~~

, ... SourceBoost Technologies BoostC"" Manual

Using ICD2

The are a few things to be aware of when using or planning using ICD2:

1. RAM usage: ICD2 uses some of the target devices RAM, leaving less room
for the actual application.

In order to reserve the RAM required by ICD2, and prevent Boost Linker
from using It, the lcd2.h header file must be Included In the source code, eg:

linclude qysteiut:>
linclude <iCd2.h>

iOid'lil.in()

while(l);

II allocates iwt' used by ICD2

2. SFR usage: ICD2 uses some Spedal Function Registers. This prevents the
use of some peripheral devices when using ICD2 to debug code.

Important It Is down the user to ensure that the ICDl special function
registers are not accessed. On some targets these registers reside at the
same address as other perlphera.l device spedal function registers. Please
check the documentation provided in the MPlAB IDE help for ICD2 resource
usage In order to prevent problems.

3. Break pGint overrun: Due to timing skew In the target device (caused by
Instruction prefetch), execution wUI pass the instruction address where a
breakpoint Is set before It stops.

4. NOP at ROM address o: See the SoostUnk command line option ·lcd2 to
add a NOP at ROM address 0.

BoostC"" Manual SourceBoost Technologies Page 21

Command line options
To get full list of Boostc complier and BoostUnk. linker command line options run
complier or linker from command line.

BooHC command line
Boostc Optinrlzing c COIIIPiler version x.xx
http://"""· sourcel>oost.com

~~~:~~~g ~gg::~gg~ ~:~~ ~~ra~ 
Li~ensed to <license infO> 

usage: boostc.pic16.exe [options] files 

Options: 
·t name _., 

-·· 
·Werr _, _, 
·d name 

Optimization 
Code optlmiZO!tton Is controlled by ·0 command line ~;~ptlon and #pragma, 

Optlmll:e flags: 
-00 no or very minimal optimiZation 

( 

-01 regular optimiUitlon (this option Is recommended for most appllt:atlons) 
-oa aggressive optimization (produces shorter code and optimizes out some 

variables· this can make debugging more difficult!) 
-Op promotes results of some 16 bit operations to 32 bits (can result In 

more effldent code Is some cases). 

Page 22 SourceBoost Technologies BoostC'"' Manual 

---------------------------~L---------------------------------



ntax: lincJude <filenue.h> 

" #include ''filenue,h" 

~ments: filename Is any valid PC filename. It may Include standard drive 
and path Information, 
In the event no path Is given, the following applies: 

a) If filename appears between"", the directory of the projects Is 
searched first. 

b) If the delimiters <> are used, only the IDE fncfude path fist is 
searched for filename. 

If the file is not found, an error Will be Issued and compilation shall 
stop. 

1rpose: Text from the include file filename.h is Inserted at the point of the 
source where this directive appears, at compile time. 

~amples: #include <SYSteM.tr.. 

looste"" Manual Sourceaoost Technologies Page 27 

... 
tax: #define td statement 

" tdefine id(a, b ... ) statement 

11ents: ld Is any valid preprocessor ldentlner. 

statement Is any valid text. 

pose: 

mples: 

~e 28 

a, b and so on are local preprocessor Identifiers, that In the given 
fonn model a function's fonnal parameters, separated by commas, 

Both forms produce a basic str1ng replacement of ld with the given 
text. Replacement will take place from the point where the #define 
statement appears in the program, and below. 

The second fonn represents a preprocessor pseudo•functlon. The 
local Jdentlners are positionally matched up with the original text, 
and are replaced with the text passed to the macro wherever It Is 
used. 

tdefine LEN 16 
tdefine Ullo'HIBBLE(x) .((x). 6 ~ 

a .;. 69; 

.le • a.+ LEN; 

IJ • L~BBLE(a); 
//·becomlls 1e -.,·a"+ 16; 

11 .same ils b:,; a & ·OXOF; 

Source Boost Technologies BoostC"" Manual 

-/r:d2 

Use this command line switch to add a NOP instruction at the first ROM address 
used (usually address 0). This Is required on some devices for correct operation or 
Microchip !C02 (In Circuit Debugger). 

-hexela 

Always add extended linear address record to .hex file. Without this switch an 
extended linear address record Is only added to the .hex file If required by 
addresses Included In the .hex ftle. 

IIIK: l.ibn.ry 

When a project 15 being linked, SOurceBoost IDE adds l/bc.picl6./lb or 
libc.pic18.fib to the linker command line, if It can find this library In its default 
location. 
The libc 11brary contains necessary code for multiplication, division and dynamic 
memory allocation. It also Includes code for string operations. 

Code enby points 

Entry points depend on the code address range using by the BoostUnk linker. By 
derault, the linker uses aU available code space, but It's also possible to specify 
code start and end addresses that linker should use through linker command line 
options. 

For PIC16: 
Reset {main) entry point 
Interrupt entry point 

For PJC18: 
Reset (main) entry point 
Interrupt entry point 
Low priority ISR entry point 

SourceBoost IDE 

<COde start> + OxOO 
<code start> + Ox04 

<code start> + OxQO 
<code start> + Ox08 
<code start> + Ox18 

The SourceBoost IDE Is thoroughly covered In a separate manual. 

BoostC"' Manuill SourceBoost Technologies Page 25 

Preprocessor 
The pp.exe preprm:essor is automatically Invoked by the compiler. It executes a 
series of parametrized text substitutions and replacement (macro processing), 
besides evaluating spedal directives, 

All preprocessor directives start with a '#'. Non standard directives are always 
contained In statements with a leading ANSI keyword #pragma, so to avoid 
potential conflicts when porting code to other compliers and/or with advanced 
source analysis tools (lint. static checkers, code fonnatters, now analyzers and so 
on). 

Directives 
The following directives are supported by pp: 

#Include 

#define 

#undef 

.if ..... 
#endH 

#Hdef 

#Hndef 

#error 

#warning 

These directives are IndividuallY explained In the following pages. 

Page 26 SourceBoost Technologies BoostC"' Manual 

------------------------------~L--------------------



,., 
1tax: 

ments: 

rpose: 

amples: 

#ifdef 1d 

"''' #endif 

id is any valid preprocessor Identifier. 

code Is one or more lines of valid C source code. 

When the preprocessor encountErs this directlve. it evaluates 
whether the identifier ld Is In its symbol table {eg previously 
specified within a #define statement). 
In case ld Is defined, the lines of c:ode between #ifdef and #endff 
(or an optional #else, If present) will be processed. 

In the opposite case, code statements between #ifdef and #endif 
will be Ignored by the compiler. 

NOTE: ld can· not be·a C. Variable ! _Only i;ln!processor Identifiers 
created via #define can be used. · 

#define OE8UG 

ti fdef DEBUG 
Printf("'teachd test poirrt tl~; 

lend1f 

loostC"' Manual SourceBoost Technologies Page 31 

del" 

tax: 

nents: 

pose: 

1mpies: 

1ge 32 

lifndef 1d 

"''' lendif 

ld Is any valid preprocessor Identifier. 

code Is one or more lines of valid C source code. 

When the preprocessor encounters this directive, It evaluates 
whether the Identifier ld Is In Its symbol table (eg previously 
specified within a #define statement). 

In case ld Is not defined, the lines of code between #ifndef and 
#endlf (or an optional #else, if present) will be processed, 

In the opposite case, code statements between #ifndef and 
#endif wlll be Ignored by the complier. 

~ctrE: id. Ca:_n_ not .be a .C: vatlabJe· r.Onty pre_ProoiisSor identifiers 
created via #define can be Used. · ' 

lifndef DEBUG- . - , - - · ·" -
·. printf~·Debug-disabled l~)i-
lelse. : ... ·-::.··,··, .. ,,-:_,.---,._.· 

prlntf(•Reach~6" te$t ·poi. nt #lG): 
fend1f -_ .. · · ·-

sourceBoost Technologies BoostC'" Manual 

#UIIdef 

Syntax: 

Elements: 

Purpose: 

#undef 1d 

id is any valid preprocessor identifier previously defined via #define. 

Starting with the ltne where this lfrective appears, id will no more 
have meaning for the preprocessor, I.e. a subsequent #lfrief ld shall 
evaluate to logical FALSE. 

Please note that ld can then be reused and assigned a different 
value. 

Examples: #define UJt 16 
ldefl~. UIWNIBBt.E(x) ((x) I oitoF) 
i,':O:. 69; .. 
le •.a +LEN; -!1 become5 ·-le "' a +- 16; 

#o,mdef -LEN II L~ h--~~t· ~~c·o·g~i~ed·a,;~·re.-by--pp 

#deftile LEH 24 · . /* This is now valid' and dcies: nOt cause 
"double de.fi11ition attempt" errors. ~1 

BoostC"" Manual Source6oost Technologies Page 29 

Syntax: 

Elements: 

Purpose: 

Examples: 

Page 30 

#1f expr .,.,, 
le1se .,.,, 
lendif 

expr Is any valid expression using constants, standard operators 
and preprocessor Identifiers. 
c:ode Is one or more valid C source code nne. 

The preprocessor evaluates the constant expression p,:pr and, If It 
Is non~zero, will process the lines up to the optional #else or the 
#endlf. otherwise the optional #else branch code w111 be processed, 
If present. 

The latter two preprocessor directives are also used With specialized 
forms of the #If directive (see #1/def, #lfndef). 

Ncm::: elqlr ctiriOot c:ontalri C_ variables_'!, Onfy._COr(sta.Trt; exp_~ions 
and operators·can t~e·usel;j. · · · ·· - · 

II Co!>dit1ona11Y .:lni·t;jalize.a 

SourceBoost Technologies BoostC"' Manual 

----------------------------~l--------------------------------



tragma DATA 

ntax: 

~ments: 

1rpose: 

:amples: 

#pragm~ DATA addr, ell, dZ, , , , 

" #pragma DATA addr, "abedefg1", "abcdefgZ", 
addr is any valid cGCie memory address. 

d1, d2. •• are 8-blt Integer constants. 

"abcdefgX" Is il character string, the ASCli values of the 
charcters will be stored iiS B bit value. 

User data can be placed at a specific location using this construct 
1n Pilrtfcular, this can be used to specify target configuration word 
or to set some calibration/configuration data Into on-chip eeprom. 

looste ... Manual SourceBoost Technologle5 Pilge 35 

tax: 

nents: 

pose: 

mples: 

#pragma CLOCK_FR.EQ Frequency_inJCZ 

Frequency_ln_Hz Is the processor's dock speed. 

The CLOCK_FREQ directive tells the complier under what dock 
frequency the rode Is expected to run. 

Note: delily code generated by the linker Is based on this figure. 

_,, __ ._· ______________ '_"_"_~_._,,_,_n __ T_•'_'_"_~_"_''_5 ________ ,_·_•_R<-____ "_'_"_"_'_' ________ ~l . 

Syntax: 

Elements: 

Purpose: 

Examples: 

#error t.ext 

text Is any valid text. 

When the preprocessor encounters this directive, it stops 
compilation and Issues and error. The user supplied text Is 
printed iiS an lnformiltlonal message. 

This directive Is useful when coupled with the expression checking 
features of the preprocessor, to validate the coherence of 
configuration choices and defines made elsewhere In the sources 
and Include flies {or on the command line). 

li fndef P'IIK.JIEFAUL T 
le~~f.rr MtiiST deft.ne a deh.ult value. for speed ,~ 

BoostC"" Manual SourceBoost Technologies Pilge 33 

#warning 

Syntax: 

Elements: 

Purpose: 

Examples: 

~warning text: 

text Is any valid text. 

When the preprocessor encounters this directive, It forces the 
complier to Issue a wamlng. The user supplied text Is printed as 
an Informational message. 

This directive Is useful when coupled With the expression checking 
features of the preprocessor, to valldilte the coherence of 
configuration choices and defines made elsewhere In the sources 
and lndude files {or on the command line). 

lifndefMODENJDR.-::.--·'--_-,.. ,-- -··. · -,,, , .. 
h~ffi.nv. ·~ADOR ·not. d!!-fi_~ed; ·"ill -~~r:·d~:C IMide.:~ 

Pragma directives 

Spedfic BoostC preprocessor directives all follow the ANSI keyword #pragma, so 
to avoid potential conntcts when porting rode to other romplters and/or with 
advanced source analysis tools (lint, static checkers, code formatters, now 
analyzers and so on). 

The following directives ilre supported by pp: 

#pragma DATA 

#pragma CLOCILFREQ 

#pragma omMIZE 

These directives are individually explillned In the following page5. 

Pilge 34 SourceBoost Technologies BoostC"' Manual 



itializatlon of EEPROM Data 

i often desirable to program the PIC on board EEPROM with initial data as part 
he programming process. This Initial d<1ta can be Included In the source code. 
'ROM Initialization data is set using the pragma directive: #pragma DATA. 

•mple: 

Initialhes EEPROM witt! data; OC ;!2 38 48 45 4C 4C 4F 00 FE 99 
ragma DATA _EEPROM, 12,. 34, 56, ~HELLOa, OxFE, Ob10011001 

oostC'"' Manual SourceBoost Technologies Page 39 

Syntax: 

Elements: 

Purpose: 

Examples: 

#pragtffa OPTIMIZE ""Flags" 

Flags are the optimization Hags also used on the command line. 

This directive sets new optimization, at function level. 
It must be used In the global scope and applies to the function 
that follows this pragma. 

The pragma argument should be enclosed Into quotes and Is 
same as argument of the ..0 compiler command line options. 

Empty quotes reset the optimization level previously set by this 
pragma. 

This Is the current list of valid optimization Hags; 

o no or very minimal optimization 
1 regular optimization (recommended) 
a aggressive optimization 
p promotes results of some 16 bit operations to 32 bits 

//Use aggressive optt:n1_uttoR for· f1.1nction -'foo" 
lpragma OPTIMIZE "an 

void fooO 
{ 

BoostC'" Manual SourceBoost Technologies Page 37 

--------------------------------,,---------------------------------------

~guage 

;ectlon of the manual contains a condensed list of Boostc C compiler features. 
In no way Intended to replace a complete C language manual or ANSI/ISO 
rlcatlon. It Is targeted, Instead, at the already expert C programmer that 
o a quick reference of Boostc and Its peculiarities due to tile spedtlc PIC 
t platfonn. 

Jram structure 

r soun:e file should indude the general system header file, that In tum 
:les target specific header (containing register mapped variables specific for 
:arget), some Internal functions prototypes needed for code generation and 
l manipulation function prototypes: 

luil~ ·:~st9..h> 

a types 

'data types 

Size Type 

1 bit bit, bool 

B bits char, unsigned char, signed char 

L6 bits short, unsigned Short, signed short 

L6 bits lnt, unsigned lnt, signed lnt 

I:Z. bits long, unsigned long, signed long 

difference between bit and bool data types Is In the way how an expression 
~er than 1 bit) Is assigned to a bit or boot operands. 

1it operands receive the least significant bit of the right side expression; 

1001 operands receive the value of the right side expression casted to bool. 

example: .. . , 
. x; 

X & 2; II 'a' 1<11ll be' ''true' 1f the lilt #I iii 'lC' 1's ~et 
. . -II and 'false' othervlse : 

x & 2;. ;/. ·;b;- .wiii. :_a,wa:_;; b'~- .fa1S~.: ~~ca~se bit. ikJ ·.- :· 
·.· II ('the lust stgnl.ficant blt) -in 'the: eJCpressio .. n. 

If result is zero -··regardless of "the value. of ':.t' 

lc:tures and unions 
1 struct and union keywords are supported. 

... SourceBoost Technologies BoostC'" Manual 

Setting Device Configuration Options 
In order for a program to be able to run on a target device the device 
configuration options need to be correctly set. For example having the wrong 
oscillator configuration setting may mean that the device has no dack, making It 
Impossible for any code to be executed. Configuration data Is set using the pragma 
directive: #pragma DATA. 

Configuration options typically control: 

Osdllator amfiguratlon 

Brown out reset 

Power up reset timer 

Watchdog configuration 

Peripheral configurations 

Pin amflgurations 

Low voltage programming 

Memory protection 

Table read protl!ctlon 

Stack overflow handling 

The exact configuration options available depend on exactly which device Is being 
used. The PIC18 devices have many more configuration options that the 
PIC16/PIC12 devices. 

Configuration Example 1: 

P.ero-~fi9t.lratioi5~r-:~ct's~s74A. -, .. ': _. . ,_··,.-.· · 
.tpra~ DATA ~FIG, ·..D-fJFF & ~FF &.J!D.T.Jif!" &_~C &,--.+Y!'.J?ff 

Confituration Example :Z.: 

Po:~ge 38 Sourceeoost Technologies BoostC'" Manual 



oiat'ile -bit PinB~6."1: //declar-e bit vaM'ilhie-mapped. t'o pin 1, po_rt B 

JrrentiV co~PII~r g~nerates d1fi~rent cod~- o~ly for e~Pr~s~l~~; til~t ~~~~~'~a!ues 
volatile bit variables. Also volatile variables are not checked for being Initialized. . .., 

lth global and local variables can be declared CIS static. This limits their scope to 
e current module. 

,nstams 
mstants can be expressed In binary, octll, decimal and hexadecimal forms: 

ObXXXX binary number, where X Is either 1 oro 

" XXXXb 

OXXXX octal number, where X Is a number between 0 and 7 
XXXX dedmal number, where X Is a number between 0 and 9 

OxXXXX hexadecimal number, where X Is a number between o and 9 
orAandf 

:rlngs 
:Sides regular characters, strings can lndude escape sequences: 

\nn ASCII character, value nn is dedmal 

""" ASCII character, value nn Is hexadecimal ,, ASCII character Ox07 (ALERn 

\b ASCII character Ox08 (Backspace) ,, ASCII character Ox09 (Horizontal Tab) 

" ASCII character OxOO (LF, Une Feed) ,, ASCII character OXOB (Vertical Tab) 

\f ASCU character OxOC (Form Feed) 

\c. ASCII character OxOA (CR, carrtage Return) 

\\ ASCII character OxSC (the «\» character} 

\ ASCII character Ox27 (the «'» character) 

\" ASCII character Ox22 (the «"» character} 

\? ASCII character Ox3F (the «?» character) 

ostC.,. Manual SourceBoost Technologies Page 43 

bles 
es can be declared and used In the standard ANSI C way. 
ker will place variables at specific addresses. BoostUnk analyzes the call and 
trees, so that it can re-use the same pool of RAM memory locations for 
es that don't colllde with each other, being used disjolnt1y by unrelated 
s active at different times. 

a very effective way to minimize data memory usage. 

er m•pped v•rlables 
es can be forced to be placed at certain addresses. Syntax Is the same as In 
acy C2C complier: 

l,kdd..;·:':" 

<~~~~; ~~-~~:-.h~ ~rd~-~~~'~d~~s. 
:hnlque Is used to access target spedHc registers from code, 
note that system header Illes already OJntaln all target specffic registers, so 
1 no need to define them again In the user's OJde. 

ables can also have fixed addresses. Their address Includes bit position and 
made In 2 forms: 

)iVa~{~l~·-:~~11 · i.e.. ·I?. l_a~d. 'li)._'.-'l;n.:k~r: .. ~t :i~ .. ·i.i:."~ar.y\>o!;{tto~ 
10x40.1; // dotted::.access bt't'-1· of.~egist.er--Ox40' .,·,;- ·"'>"-'""'-'"··" ,:.­
~02:; .fJ..bit·'.of\~-~.~:,af_ces,s;:~i't _2 of,.r-!l'g_i_~ter:.~x4,Q_ COX4(1~_8 +;:2) 

-1 'bit' variables, individual bits of every variable can be accessed using the',' 
1r: 

,._.-. __ ·- . .. '• 

~ri; -Ji~~'li-~t 2_-of vari~~~·.·-~_ar•.' 

s 
can have any number of dimensions. The only constraint Is that an array 
t lrto a srngle RAM bank. 

,,. 
; can be used In the standard general way, the only exception being 
~ declared with the rom storage specifiers, that can only be accessed 
1 the [] operators, 

Sourceaoost Technologies Booste"" Manual 

Typedef 

New names for data types can be defined using typedef operation: 

tyPedef unsigned· char· uchar; 

£num 

Enumerated data types are an handy type of automatically defined constant series. 
The declaration assigns a value of zero to the first symbdlc constant of the list, 
and the assigns subsequent values (automatically Incremented) to the following 
constants. 

The user can, as well, arbitrarily assJgn numet1cal (signed} values at the beginning 
as well as In the middle of the series. Values following an explicit assignment use 
that value as a base and keep on Incrementing from that point. 

The data type for an enum type or typedef variable Is, as per ANSI definition, the 
smaller type !:hat can contain the absolute maximum value of the amstant series. 

enlllll mpes' (E....JtONE~, E....RED; LCOREEM, E...ILUE }; 

II same-as: -. 
II #define £..NONE· 0 
II #define LRED · 1 
II #define .E..GREEN 2 . 
II ~fin.e ·E.:.B.WE- 3 

Code ~ze vs OiJiit 7)'pes 

Be sure to always use the smallet data types possible. The rule Is simple: the 
bigger data types are used, the bigger code wi!J be generated. 
Thus, always follow these rUes af thumb~ 

• Use char (8--blt or byte) as the default, everywhere; 

• Use short or lnt (16-bit or word) for common arithmetic, counters and to hold 
ADC conversion resull::5 on advanced cores (With lO·blt or more Jrt.ernal ADC}. 

• Only as a as last resort, and only where absolutely necessary, use long (32-blt, 
dword) variables. 

Another rule that also affects the siZe of produced code, though In a much smaller 
degree, Is about sign. 

Use unsigned data types wherever you can, and signed only when necessary, 
Unsigned math always generntes :smaller (and tvplca!ly fa5tgr> code than signed. 

Booste"' Manual SourceBoo.st Technologies Page 41 

Rom 

Strings or arrays of data can be placed into program memory. 

Such variables are declared using regular data types and rom storage specifier. 

Such rom variables must hi! Initialized w[thln Mdarntlnn: 

~=·-~~~:·-~~- .. :·· ~&4{L."{U:!· ~:- ;·- '-~~- ~~:!~~ ~~~n~~~-eb~; · ~~o 
ron!, char, .. data:~.'-{ Ox64', _ll;·:li _h II·~ .. data bytes·:· OX64,' .~OB, _ oxoc 
Please keep In mind that the rom storage specifier has severalllmttatlons: 

• rom can be used with char data types only; 
• there Is no lmplk:Jt cast between rom and regular data types. ThOugh Boostc 

wiD not generate an explldt error for such a cast, It Is expected that the 
operand should be casted back to 11::5 original type. 
If this ls not done, the resulting code will behave unpredictably. 

• a rom pointer Is Internally limited to S·brts: the constant array size Is thus 
limited to 256 elements. This Is coherent with smaller cores constraints; 

• access to rom elements has to be done exduslvely through the [] operators 
and they cannot be referenced with substring pointer Initialized at 
runtime, Please keep In mind that rom variables mu:¢ always and mcdus!yetv 
bet: !o\tl;illzffi witbln m.r!im®m· 

Example of wrong referencing with a runtime Initialized pointer: 

'l~";~p~'··~li~''.:·/_:._,,·:·:.-::;~:-~:~";~tl(- .'(';:,~~~---~~"~-ri~-· 
~ilrla.lly· create·.~e~nter to'·II)'St'r[Of:F~-.tten the.J~y.Str_ amy .1~ 
zratec~·.fn ROM._ .. ·,:. ': . .. :_.,--:··· ....... .- _., .-::->.-. -.,· .. _,_ ·:_::< .-· · .. -.-, ·-.-; .. , .. _,., .-. · .,,.- ·. 
~ -~~-::~~r·._;;..-;~st~J.~e- w -~tr.::~· ·w;;l·:: 
{~ ~f::~i; ~1-~te·~-··-~;St · .ri~'· !~?j:iair~~~i_:i:~:.- d;~; a r2_.ti~·ry_- ~;_: :: , .. 

~UbStr_-::_.~·;tor:~EJ.J ~ 
cc •:ASubstr[O];-_. ·.,·." 

~ ~-.-ys~r(OFFSm ; 

Vohttlle 

•Jj.'~·-.~~ -~ .. 
//~1<--~·H 

1r cOrrect 

The volatile type specifier should be used with variables that: 

a) can be changed outside the nonnal program flow, and 

b) Should not receive Jntennediate values within expressions. 

For example, if a bit variable Is mapped to a port pin, it is a good programming 
practice to dedare such variable as volatile. 

Code generated for expressions with volatile variables Is a little longer when 
compared to 'regular' code: 

Page 42 Sourceaoost Technologies Booste"' Manual 



is a· un;i;r}' ··Oj:i~rat~r:. ·I1; is" use~· fo>. iir~~d~crementing 
or post~decreJl!~Dting·.an operand, · 

' Examples: 

X ~ 10; 
c .. --x; 

ssignment 

= +"' 

// Post-d~creme.n-c. 
//·Aft.er the; operation x ~ .9. c." 10 

I I Pre-·decremet~t. 
II After tl1<1 operation x'" 9, c ".9 

-._, I"' o/o= &= I= ""' <<= >>= 

sslgnment Operator EXIJmples 

' = is the ASSIGN. operator. The value of the variable or 
1 expression on the ri!Jht side .. of the aqual:-is asstgned. 
' ' to the variable on tne left ~itli: of. tlie equak: · · .. · 

I ExampleS: 

II Whatever was in the'vai'iable x 
II has been replaced witl!. 1, 

II Whati!ver was 'in ·.tlie .variable ·x 
II has·been··rep_laced ;ri1:h 6,' · 

C."' X+ y; Jl. If ·)(·_.has.~ .Yiiluii· ~f ~ ~~ti Y h·a~ ~ 'va.lue of 16·. 
II Wllate.ver wa5·.in .the v.•.riable c. will. 
/I be replaced·.wim 28. 

+= .. is the CQIIIbined AOO·and· -~~iGI-1. iiperato.r..-: .The<v~r'iable 
' on· the left si<le·:.ot. ·the-.·o.~rator ·'iii }l. b~i ·added·. to the . 

variable or: expression .. on. the ·.right side. "f11e. result: is 
then assigned .to. the var.i.abla .on· the. l_efr side 'of. t:he 
operiltor.···. · · · .. · · · 

1 Exalnpl~s: · 

X·+:"" 2; 1/If·x·,:~:u:··~il .l.nitial·val~e o/lA .. :Aft~r-
. ·.'/f..th~ :.operatiol)· x ~ll"be 16: · 

C :""'X:+ YO. 11·· I~ c: h~s-a~ i:~i-~i.~l··.~a~·~~-· ~f· io 'ilrid ·:~:has 
~~ :!~.ie~l~:.:.~;e~~~iK~~~~ .. f~f- .:~~~; .. ~6:-. · 

r -~.. is. the ~61ilbirie4. sUsr,AAtT···~i·~~Gt!· ~~~r~tor. ·.'T!)e: ~<l~i~le 

·Ooste"' Manual SourceBoost Technologies 

... ~~b~~~i~~\~~e v~~6Jr:~~- ~~~ t~:~P~t~~~r J!l}~~i~ 
is -tlltn assfgiled to the variable. on:the"left side ·of .the 
Op.erln;or~· · .. · · · • · · · · 

;a"rnPles:·. 

·~,_.~ :z;:·: ... )/ z/·x'ha~· ... a'K .. illi·~i~i·· ·-j~1:u.{~i'·ii':;:;".~f~~~- ' 
'l(:.th~.·QpQ_r_a-cf\'".'·x .. will .. be .U.'·.. · · 

c<,~.i.:..)·i :·'If ·If ·crnas · a:n .. fi!it.ii1·:V'aiiie'·ot 3!1 ·an,f k :has· ·' 
1/.th~ Va.)ue. 12 ·and·Y.'.hU. ''.' .. _;talue ··16;. •.· ·.· fl Af¢er: the opera-cfOfl· c \11"111. !le'.lO. · '· • ·· ... ·. 

j:; '.\~~. ·'~~b~.~~d'~~-(-ri'fi~':·~·~-~·':;J;~i .. ~-:~~~~~·t~·'~:: ... 'iii~·:· ~-~1;~~i -~ .. ·'; 
~~J~~ i~ ~~ .::!g~~~~i·~e ci~~~~!7.~~~~·~_!i~:.~;~~~!~t t~~~-~~ .. 0::. ·' 
then· ass.igned. to· .. the ;.oarijible ;on;:the:. left:· side ,of'·.the::·.,. ·. ' ... 

'tti~\";j},,x ,,;.t.i~:"~:i,,SLC·ir,:.i ' 
II ~tie·. oPeration x'wlll.be'28./ · · 

:;rx~ .. { h~i · ~~· .. 1nit~·al;· ·~i'~~· ~f-".1~-:.-~~d:·.~·. ·h~~ · 
ll.the·value U and yhas.:the·value·16. · · · 
Jl ,After .. th~ operation c wi 11. be: 280. '' 

i"! .}it;~:. ·~~i:·nJ ,:~~~'tiE' -~~~::'.~i·~~·~-{~~·~~i~:;·}r~~ ;~~·~~1,~/·; 
: .... e~i~~; l"~~ · ~!~~~~i~e ~~~~~~~g~?!1 ~: :d{j:;! ~~er~~~ .. 

is -then assigntd ·,o the v;irfable on the Jeft· side Of 
. the. operator ... :.::··". ··. · .... ,:·,, ·. . .. ; .; ... , ... '."· · '." : ·.'. · ··.' 

tamples: .. · .. _> .·,· .·,_.· .. ··:: ... _ .. ·; .. ::.·:.,;:·._.>-:·.:,,.,:,_-:'.' .':::·. ·....,_·::-: ··:.~ 
· i./~::2; .) i., If·,~ 6~s-·i~·,:~·ni~i~·i. ~al~~ of.i~J';.~~~· 

//"t~.operaifon .. x·Win be·.1.· .):.· .. "."'' ";. 

~ ):..~.''f ~: y:· )i ~f:·.<:'·h~·,/i!i.:1~·fif~l ·vai'u~:·:ijj:"z~O' ·~d· x has 
II the.valve:.12.·anil. y .. has. the. value ·1.6,·; ' 
//.After·.th.e'operation c will be·.lO. · · 

~ :::.·i~\h·t~~&i·n~~ ·~~~~- .~;{~~i'~' ·:~l~;i~~~.,~~::~~~·i~li,:& '>· · 
'· :ezt~~~i!e~~··!!:~~~j·~~.e o~~.:~!~-~~1\i1 s1~::~.d~~d~~S~t"~~e_.::~· ._: ~· 

which is ... a. remainder only,:· is .then. assigl'led· ,to· :the '·. ·."· · 
va~i.al:lle· ore ·_the .left,.side of the .. operator~· · 

~~·mj;;;~;· 

·x ""' 2; 

. ::: ;· ·.:: : .. ' ... '::: ,· ·': · .. ::· .... ·:;~ .. ;_'·,:·:·.; .. ' ..... · :·.. '' ; 

'/;.if.:·~~ ~n ~~ii~'a,: ~iu~-~f t{ 
II 1=he -operation x will·b.e 1:. 

.y~··7;: Ji rr·y llis.'aii.:lil.1i1~{~~lici(~F-1-7:· .Afte!i-
1/ the op_eration y·wnl be .. ·l, · .... 

Pi!ge 47 

, .. SourceBoost Technologies BoostC"' Manual 

strings as function arguments 

If a function has one or more char* arguments, It can be called with a ~;onstant 
string passed as an argument. 
The oompller will reuse the same RAM memory allotated for seJtll arguments when 
several similar calls 11re made within same code block. 
For example, the code below will use the same memory block to temporarily store 
the strings "Date' and "TTme': 

Operators 
If an operation result is not explidtly casted, it is promoted by default to 16 bit 
predslon, For example, given the following expres.sion: 

lonil.l •:i.-~.-ior); b:· //.'a' andO:b'.:.a~e 16 b1t l~ng v~rhbles 
the result of the muitlplicatton wilt be stored In a 16-blt long (word) temporary 
variable, that will be then divided by b. This 16-bit long result wilt eventually be 
stored in I. This Is the ANSI 'C' standard behavior. 

This behavior can be changed using the ...()p compiler command line option or a 
local #pragma OPnMIZE directive. 
When this optimization Is applied to the given expression, the multiplication result 
will be promoted to 32-bit long (dword) temporary variable, that will then be 
divided by b: the result, that is now 32 bit long, will eventually be stored In I. 

Arirhmt!tk 

+ • • I % ++ --

Arithmetic Operator Example:> 

jj ·:,+ :(~·s ·a ··~i:~ary op~~~i·~~;,.:~i·t :~·s .. ~~·ed .. to)~d~·,,~~·. P.~~diCe 
I! · · :' · .th!!··.arf~hm~t1£ SUI!i of ,two .o~era11ds; " ·.' · ·. , .. : · 

c' ;..:·a·+. b: · .. , · 

or C.·:;. :.5; :* J::· · I /~fte~ · ~ti·e· ?pe(~:~i~~· .... t .. ~;·ji:~ 

BoostC"' Manual SourceBaost Technologies Page 45 

II ·-
·.:' :· ' . . ' .... :,, ', .,:·;:· .. ·:·: .. :'·: .. .-.,·.,_ .. ·,. .. .'·'·:. 'ii. a·.binarY .op~rat~r.· ri:. ~5' u~ed ~- ~!.lbtnlct.or p~uce _.: 

th~ differ.ence of two op~railds. ·.In otl)er words, ·the se~ond 
operand ·,is. subtracted fr0111. the _first operand. ;' · ' ~~ 

// EXam~le:· 

II 
' ·;··,:.~ ',i .. ·:.:::.b; 

(j~' 
: (.;/U.'~·.;ii; .· 'i('Ah:er\:h~ ~pe.rittio~-.~··-;: 6 

1 Fl ·::·1~~-~;.'bi_n·a~··,~~·~~~~o~:>~~·, ·~(·~·;ed :~~-.. d~~id·} or -~~~-u~~,.··. 
11 .. · the quot.int of-,.~·operarJds.: I~ other-. Words, ¢!! .. first 
II · ·.opel'i\nd',is div:ided, by the,second:.OJ:Iet:and.. · 

II' Exampl~< 

II 
c.~ a"t.b: ., ._., •'"·''· 
·J:.~ 24' I. 8; 

1
!
1
1 % ." : i.s. ~- -~il'iary·· (!p.era,:~·r:;~::I~- :~s \JS.ei.l :·t~ .·jlro~~c~· .. ih~·:lllO~ulu's or raaoai~der·_when two. oPe.rands are· ~1vi.~ed,,, -:· . 

li .Ex~les: 

no~~·~~=. , .. ·"· ., . 
·. c;: * ZS" 11: ~I Ats:er,.ihe._.~erilt,1'o .. ~ c.·., •. ·i 

c *-17 "·3:··: ·,//.17 ,;· .. 3·~ s.:it1"-ch ~·remainder of:2 
II After :the o~_ration c ... 2. · ·, · 
/117'%··:4'·;.;'_{~·~;;·; ~·,:~e~i~d~/.~f:,"·l 
II. After·. the' operation c .. 1: .··. -'. ·. 

/
ill ::++.·.is a ~~~;ry operator._ ·~t ':Is' u·s.~;rfo,r p,.:~ ... in~re~~~e~·t.1ng 

or. post-in_c~en~enting· an oper:'n~: ·· . . . ' 

II Ex_amples: 

X_; 10: 
C" X++l /f mi~1~~;e_:;~ii_~i0ri:?'- "'-l,l; e·= 10 

-~ ;. ~i: :If Pre-inCrement. · : . 
'//.After the operation x "! 11." c,al~ 

Page 46 Source Boost Technologies Booste""' Manual 

____________________________ jL_ _______________________________ _ 



I= is il'.liinary oper'ilt(lr·. ;It is use!l."to see:.if.one-op~r.i~d 
is NUT equal _to ilf\oti!er __ operand.· __ .- . _,. '-: 

EXample:£: 

~f( _x ] .. Y )_ 
} C '"X *· Yl 

Example2i 

}f(xl_"'Y) 

C ,. X '" y; 

/1-'rf (:has an "initial.ValUe' of'o,-:aild 
II x has the value 8-'and y' flaS the value 5. 
II The final value fur c will_ be 40. 

II If c !las an. initial value _of 0, and_._. 
II :I has the value 8 and y·flas the value 8. 
II The final value fo,. c will b-e 0. · 

< is a b-inarY Clperator. _It is used to see if one Dperand 
is l'ESS :tha11 another op~rand, 

Examj,lel: 

lf( x·_<Y} 

}~•y-x; 

'Elfampl_e2;· 

lf(x<y) 

c .. y - x; 

II i_f c-h~s an.int'ti'al, value Of 0-,,and 
II x lias the value· 40 and y has the -.value 65. 
II Th<! f_~nal value for .:_will_ be. ZS. · 

~=; .-_ tS a binii)-. oPerator: -it' .'-ls·.'-uSed' .to .. sei!:.H")rie_ :Qp_e~imd 
i_s -1,-ESS"-tlian;or EQI,IAL ~o.anot~_er oper.and .. ·, -. ·· -· .... ; 

· [)(ampiel: .. . _ . , _. . 

if( X<-. y· >' . .'// If X haS-_i..value ·.t.f 'i(~~~- y'. has a::V~lue of. 33,. 
·set..Jrlt(-POIU"A, LEDJrlt );·:·--,_-•.ii/TUr/1 LEU ON -.- .. · . · 

else ',. ·. -.- -.--·. _ _.,.._ : ---- - -~ .·-_ •, - ·. 
,:learJrl'!=(-,PORTA,::LEO_bit .); lf·Tur:n .lED t1FF 

'In thiiF oi~~,-~ -t;.e:\_~--;~il_l._b·~· -~-~~~~--~·:;'-, 

' ExaniPle2: · 

if( x·-~:-y') _'_.---j, ±t .-x:'nas_ a ~~lue·:~f- ~s -'~nd ··/tta~.-: i/;;..-~;-~{o/a. 
el·~:~i~(_:_'1f!A•_-:~~-~:._>; ,.··-_- .:--.·. ;: .:/_t:~~11 .. :,~E-D · .. ~~--· -,.·.:- :·:·.'- .. _-__:, 

cl_ear-bit<·PMrA;'_:_"LED.:bit _>:·-H·TUrn uo iiFI:., · -
:·'i~ -ttii~, e·)(~le :¥ -;~~-'-~ii':b·e. iu~~~~~- OF~._ 

ooste"" Manual SourceBoo:st Technologies Page 51 

else -. '· : ' --. .·- '. ·. · " - -· ... '·' 
·clear-.,..bit( POHTA, ~Eo..irit.): Jl·Turii'l.eo '!:IFF. 

;'_,_-· -:._.' 
. "thiS :e~ampie · th~ L£0- W-lil ;_be ·turned ·QH.' 

.· \,W ~~~~? ~rra;~i~~~~~~:~~r~~~~-;:Eo_- _¥~~:'i_~- ·q-~:~-~-o~-i~~- · .. ,,j_._,. :-> 

:ami) lei:' 

· _ .-i s:-~·-_:b-~·n'~ry '_o;;~-r~~~(:\~_ .. '.i ·s·.'_·:~~~~ \:~· .. ~~~--\/.~!1~.---_~,~~-r~"-~ ._. 
h._GREATER:-than .or,,-e~L _to anothe~ -_operand •... ,-_.,_,. :r ---,.; 

'7i:;~lc4~.cr~{f(;)~· ~[,7·~Jif~;~; .~f,. ?'i'' , •.. 
·ctear..:bh( PDRTA,· LEJUrlt·:); fl. Tum .I..ED:OFF 

;·-~~i-s e~~P1·~ '~;;~ .~Eo_·-~·Jf.. b~-:-i:ut~~~ -_~:. 
~~i·~i:' 
t'f( ~: -~ --~ '·;.·-::;--·y;_...If' ·'~---~a.~---~:'~1~:\f· a: :aird'\·- h-.is:~--~·!·~at·~ii· iif 'is:· · .,_. 

set...b1t(-PORTA; Lm.JJtt-);-,,.,·,-,,·- .. JI .Tllrl'l LEU-ON_"-----·:·;' · -... 
el,s~l~~ji·t(-' -~~-';-..-.'~eOi~':.)-~':j';-_'~~h;· .'~~ ;~¢~'.:.-·-.,;_.·. _-·{-,-;:. ·. . 

1· ~~is·- --~~~~p,-~'.-:ihe:. '(Ell- ~';:1 . b~ ·t~·rn~d :~F~-~---

·;;~r<>0Ut~t;;,~•J~(i',)'~;(i~''~.~,,~./;; ...•.•. · .• • 
els~lea~..tri~( _·fc«rA~'- -LS:Unt.··)';"//TU~ · L~o· :<ifF· .. ·- . 

n thi~- eiainp-1~-\t.e\w-wif(J~ t~Ar~- .. ~~ 

SourceBoost Technolt1gles Booste"" Manual 

~~_:l~~~:ai~!· i~~~ilo~"-~---~~1 u~!ut l., 

// &=-is tl.e C::,~1-n~a';srri.il~E~~ lind.ASSIG»·.~erato~: i1Je va!-iab-le 
I! ~n the left __ side,' of tile_ ope_rator _will _b-e At!Ded on _a b-it-hy~bi t 
II basis'with the,variable .or <:onstant on .the right side •. The 
)~ ~~~u!~e;~t:~~~ assig_ned to·the'-vari_a!tle.'on the left side of' 

!I E_Kat.rpl~s:· 

x &- y; jf -~:l:e h;~ ;~~;i;~:l o:;iii~O:· ;~a1nf ~ehi~·-.-~-e 

.... 
c , .. _1Jx97_J 

/ ... _._Q#ci.J:~:,:- :-:ii>If·,;--h~ :~_-,-i:h:~ti~l.\alu~- ~i;:o~l!l®iU~~--' 
,-~~ ~~g~+~~~Jror~~iO!!. ·,>j·-~_,t ..... .--,:'--·. ,-.... :_ '-:·!_,:'.'_, __ 

I!- 'A= ·_;_ ;·_. the· -~~j ~-~d:-'·~I~SE ~)(~ .a;rid<ASs~(i~ ':?t~~~~-~-~ ., ~{'~i-~H_bJ e :. 
II '·on· the .l ef:t· side_ of the .. opeMltor ·Will_ be XOJled':ofl· a· tiit:,IW~bi:t_:.,, · 
If -_-,. ~~is _with .the". :variable _or_ constant:.qn the.-.tlght/.side>.~ ,--_,:_.·; __ ,_: 1/ . · ."·'.resul t-."j s"."-then·: :usigned-·"to--,the ~riilbloi' Jln, "the: 1 tft· 'Side ··of:,'·'._-. ,; ·.·-.the·:operati>l'~·-' · ·- _.,. __ , .. ,, .·.-... ·, "' ·· · · ":- "' ·'' -•·- ,,._ --·-·· ·-.. · ... , .. -- '·'-' ·"· 

c\~ -~i};- -'1/if.-·i_: .-j;~~--'~: -~~i~~~:-;~; -~~~~:-:·~ft~r;:i6~ 
lro~ration;C'Ii11l:.~·o*og·;_-·· _- · · , __ ,_ ,,_. __ ,-. 

. ~- :6kfuili00i- .. · -'-! /if'~.Vk;~;;~~·- iiri:ii-~ ~·:··_;;a;·~~ --_~f. ·bbOOOiri~iJ-~-­
.~~ ~rP~i~go~&~~_':i_on:r ~n;.-- ::---. , __ ,_-,_._.-_ .. _. .. 

l/:'1:.91. 

BoostC"' Manual SourceSO<lst Technologies Page 49 

- · qri the -left ·Side.:o_f the·; Ol'(irator·:J(ill- .=ne:··sl)i~ed _,]'eft:·~ cthfi: _-:, 
:nUII!ber of place$-_indit;'!-ted-by·_the;var.table_-or-.C!)(Is~t -o!'l .. -'.' 
' .. ''. ".~gh~ •.. T_hl!. ". '."'.' .. ;ls·:,t;b. en- .U$.'."' .. e~ ... to:_th .. • .. · .. :va. '. _i.ab._ le-_:_o.'.·:. _._.,, -, the :left· sider.of :-the· o,pe_rato_r .. --.:· ;,: '·· ,_. -:~- .; .. ---.·:· _ .. · ,.---, ·-·_-__ ..... ,_ 

ii ExMP:i'~s~:--
.,. ::--:~::~~''ri_.>f;Jk~!,:~:-~ --:~-~~i:~:~-~~~~{!t.;trrfJ~-~~r.~~i.: ;~_;:':_.'; :,; .. 

! c··-~ .. :~!; ,_.->ff:-i~~~~-a~·:~f{f~:~,:Yr~*7'/:1~-.. ~~~:,-:::·::~~~~:j';~}··; 
. ::.':,:t-,:~t:;j~-:~\--~~~ .. ~i~rt~-~-~~{t{::i~~~;;!;;i\:~;~,~~;~:;··_).:';\:·~::-·; 

ComtMrlsoP 

== I= < <= > >= 

Page 50 SourceBoost Ter.:hnologJes BoostC"" Manual 



I I is-a-·binary op<:rat:or .. It-b-used to.,rOduce tne·.lriciical sUn __ Of 
~ .'~e-~!~a~~p~~c!"~~~-~~~!l:b~;~u1ts~ o~ran~s -.ar~ ORed 

I ~amples: 

c ;.. x r y: II If X ·Ita~ a. valil~'of-lfa~(fy·haS'~ valiie 
II of S. A~ter the. ope~a-tion cwill tie H. 

X .. y r ·ox07: II If y has i.i value of dxoe>Afte.r .the 
II operation x win ~·ox<IF'. 

x a y _I ObllUOOOO; II If y hilS. a vitlue of Cb10oi)l110. 

5~ ~t:~hlruliTg~~tion_ x_ wl~_l 

~it~e~~~~~ o1~~tc::;,~ .. ~~d~~: ~1~ i~~i~~~~~\~~~ ~f'l~l operands 
are XOR~ togetlter to !lroduce· _tile _final· rasults_. 

f)(amples: 

x·Y~Cix07; .II If y has a valUe of.-OxOE. After thi= 
I I ope_rati on .It. win be o"o9 ~ . 

x'" Y."' Ob111UOOO; II If y has a.value of ObOOOllllO. 
II After· the operation "'will · · 
II be O!!luoouo. 

.. is a unary operatOr.- It i.s-tii-ed t'o'pi-oduc~.ttie' cdmplement of·an 
operand. Ttl& individual bits of the_ ope.rand are complemented. 
Tile ones becOille zeros and the zeros become.cOnes.- ·- '.'._ , 

~amples: 

II If.y_ha.s il virtluo~-of OxOE.·Afttir'-the,-.­
//operation. x·. will-be_ OxF1. · "_,.-. · . 

. x • -qbqlol.Oiu: /i-.Aftei- the OPe~atioii· x will 
I/. be OblOlOlOOO. '. 

« .i.s. a biriary lipe_rator • .- The OPf:·r.and_-on-~e.l'efi:~S1de of_th.l!. 
·ope.rator wi.ll. be- shifted ]aft by ··.the :llullber· of. places · . 
i~dicated by ·t~e operand O'! tfte _right.· ' · 

E)(amples: 

c .• X « y; : 'i i If x h~s. a ·.vaTu,{Of :14. and)" haS _·a ·_value 
II of 2 ..... fter. the operatian c Will ·be 56. 

1stC"' Manual SourceBoost Technologies 

operator wfl] be-slt'ifud right- bY tlie-:nll!llber.:of. place:;· 
"indicated by the·operand.on the right.·.":.-:-o:.'· _:.--::_:' 

· .. · ·:;.·.-. ·-,·,;,.,.-,_·.:-.. ·.- .. 
•les.: 

• ·n·>. Y( II t/~' _has ,a ~lu~.'o·f:_::4·_-~~;(~ hil~- ~ -~ai~·e_·-~f ./, . 
.J I. After the operatl_on c mll- be- 3-;. ,· . · .. · · . . :, - - -_ .. -

nals 

else statement 
tch statement 
ternary operator 

trill Examples 

r!~f~~-~A~\~~a~.ra}·u,~:.:of:':~'::re~yl~s~--~ai:~_a. oi_:_·l_i~ 
~1ur_b1~( P'Okf'A,' ~~t-): -/~ :..Ur11 LED -oFF: . 

s. ,~·~amPle:~~ -~~--~pi_ -~e-:t~~-~~~--~~ 
e2: 

·x.:~_ y f --//_ rf £has·-,a-'-~~.lue_:-~,--s- ~~d_-Y ·-~i a .. ~,ul!··af·.-~~; 
;et_b1t(~~· -~~t-li ·'_.-:-;·· .. ' ':// ·TIJ/'n. -~EO ON - '. 

;lear~tP'Oirr~ •.. -LED...Jri1: ldi 1-urn .. LED .oFf . . 

s e~i~-~~~_:iEn ~J,·-~\~~ed:o~F-· 

~ is a inultf ~w~Y dic.fs_.fo~ ~king'' ~tateim!nt'; ·-i-h~ v~:riabl~ .fS 
corlll!ar.ed with the dif.fere'1t case.s •. The case-that ~~~atches .. ' 
will ~ave its.statements_e~e-~uted.-'--, --" --. ,_:- _.>·.· 

~1: 

Page 55 

SourceBoost Technologies Boostc- Manual 

Loglctll 

&&. If l 

Logical Operator Enmples 

II && is a.-binarY oP.!rator. lt is 1,1sed to deter<11ir~e if both operands 
~j ~~ef!f~:: ·"~:he· operands are·_.expression~ that ·evaluai:e- to true 

II ExaDqile1_:. , _- __ . . 

if(cf~~~,SO~~ ~it-~--~-)// Ttl~ fllaMl OFF 
else'' .. ·- · - - .'--.': ·: ·. ·-- ,-_ · ---- . . · 

-HtJY!t( I'ORfA• ·.W.R!Lbtt )! -(/'TUrn .alarm ON 

//If te~J~i! has il valiie';of_70 "th;·a~~rm \!(ill_ be· tilrl\~d OFF. 

II EXillllple2: 

_if(cfe!~i~(S~~- ~i!:&t;~) .>//TUrn alarm oFF 

els:~t:J.:i~( ·:-.m.ri-~. ·:~it.-)·t, j T\1~~ .- alanil' _ON 

1;. If .. tem~ ha.s_. a· __ :yai~~ 'o{ lOS.-:t_h~· ·;ll·~:,m· w;·li_ -~~ ,t'urni!d bt.,_. 
//_E.::oc.in.P1~3_: .. , . . . . . 

if(_.-.-~" t~:> so>---- ( •. _<-100·')'')''." -- .... -:,' 
.- .. ,c ear.....b1_t( p()j:Q"A.- ~it:·,);_· .. ·:. //_.Turn al_arro (IFF. 

else · · ·:- ·. -_ · .. .-.. _.-_ . ,.: _ .. .-·... .. , , : 
·.stt.h1t(-PORTA, IUM..bit'·l:.'l/ \Ui"ll ·alarm.OH 

11 if:',;~~~- ·h·a'~\·'~a~u{~· ·i~::·;t~~---~i~hri:~:,·,_ -,;~--\~~ell _6.N:'' 

II II 
~~ 

.is .a. biMrY. O~r.itcir •. : i~ ;_/~sed ·~o :dei~rsi-1 ~~ _-i.f. liftll~~ 
o!)erand)s _true,._ The. ~pera'nd.s- :aN.!· expressi~i'ls ,~lla't· evaluat~ 
totrueorfal.se. - .. -.--_--,_. .... ___ . _ :-· ·- . 

1 1,-~-x~-~·1_~--~_;.;_ >_: -'-, _ -,· _ .. :·,:·,'-:,-_ '.~::: ... :;.·:,,'·-~::'::.·,::;::::_/:.::Y'·,:_ 
__ :.--f_f<s~~t~!-1L~f)1 5}'}: 1/Tu111 uo oN 

· els~,'~~~.if~c":·~~~-:--:~~-~'ij';·_.j/Tu~-\~ -~F~': · 
,;"·-~/_;~! t ···h.~ .. :~.- ~~ 1~.~::' ~ta.; t·~~-... ~~~-:~ \i b~- ~~r~~a_.-_00:~ ·· 

-·._if'<"t~,t·~··r j.'·i;·:('·voti·Y./5'-'J, _ . 
.. ~~~~~;~-( ~~·;_;,_~~--~: }_.; .:<_ ·, <;_ -_,(!.:_~~~--:-~-~.-ON, .. 

clear..bit("POIO"A,--.. LED.Jilt_); //:Turn 'LED OFF.· 

1i .. I_f ;,~Jf'- ti~s_;:~·::~.il'~~ '~f-:·:~ :i~~\i~· -;iJ{_'b~': t~~~~d-:_(iF~·.' 

Booste"" Manual SourceBoost Technofog'es 

II Example3: 

·if( (vol~ >' 1. ·) -~ r ={'~i·i_~ :~:)'-'.)_~. - . 
-st=_Urlt(_·POitTA,.·~;, ):..: ?_'-,: ._ //'fui-ii-'tED' Oti 

E!he- ·· --.. ·, : .. ·. · _ _. .. _.,.- .. -,. ·,., · ,·: _ _. ·.:·:· .. 
·. _ -_ .. ;: __ : ; cl.~~f"_.~<;;~~:_;:_·_.~:~:i.t:.',):_ {f --!~Jf:"_-_,~~- _D~-~:.·~_ .. _· 

il If_--volt __ ha~ ·a- v_a.l!le .. <;~t 4_- the.-LED.Will be :tumed .ON.. 

)J· I : i~-:-~:=-~-~~-;:y>i~-e'~a~~~~~----~~-.-i·~.::~-s~~-' to::COO?Pi~nt .: ~~ ~;~i~~-te'ii'-.' 
~ 

operand; "The· op-erand _.-j:s: an· _expres.$i flit. that:evaluate_s_ -to 
true 'or·:false·~:- · .i''•>. · · :. -.-, ·:.-. :. '":· ,., ':-_.,: __ ,,._.._, ... _._,: -- ·,..:_:-, -.. -. 

lf"_~~~~i~i}';'.~"-':. :·_,· . -,. ,_ ·:,~·:;;''"·.=''/" 

.-:~~~~-f~~fi~~~it~~-~,::-~~-.i_:·~-.:'(<;~--~ti-"}1~,§-::.6~:'~- .. ~-: -: 
-·osetJrlt( POkTA,--Al.AioUI~t .);.- Jf. :rom:.ilam -ON_=, .. 

i/.it:-~~~-s~;:~-. h~~:·-~;'~~-,-u/~(N\h~'~i~~'··~ i '1.' b~ \1J'rii·'~_:··tii;: ··- ... -
// ~.W~'i'~ii''': ·.-,·_=. '-'';;_-~_·:_::- -:· ': .. , ·.·.-.- -'- --- <: .;''<;:·::·.·.- :· -·<·--:..--:<-~~- : __ :~_./:_.-·:. 

-'; -~f(~lL~~rife~ftii~~'i.;_:)f :- )j- TU~h.--a i'~j~: ~-FF .. 
eh~~11i(-' p;,;;.;, ~.:.wLb1t' };:'::;; :Tilr~\la·~- oti 

if:_;j ·p;e=~'s~r:~.:-ir~i.:'{J~-;~~-,-~4-f .i'2s··~~t~l=~~ ·~i'li'-'-6~> ~;;~-~d: ·6i,',-," 

Bitwise 

& I ..... << >:> 

Bitwise Oper3Wr Exampkls 

Page 53 

Ji .. -~ .:: ~-5;" ~\~~~~-'-~p~-r~to~-~ ·It -i_s. u-~ed- to. pr:od~tei t)le_. -~;o.'gical pNidli'C't 
II·_ · -:.- -.. of. -.two op. ~r<inds:. :.Tne. i.iHifvil!ua1 -bits 9f- two_ ~pe_f"41!ds_-~r:e-_,ANDed .. 
!! .'together.t9 prOduce: the: final results·. · ., ' · · · 

;j ~a~ph;~·; 
~ ... ~ x··a-y: 

Page 54 

i/lf-. Y h:U-' ~-~l~e ·oi ObWOonn, 
11 After the oPeration l(.wnl 
II b:e OblOOOOOQ1. 

sourceBoost Technologies Booste- Manual 



continue·_ the !!Xe.ciltion. · 

Exampld: 

do 
{ 

factorial •~ nllllber; 
- .. 1\u.ber; 

} while( n~r > 0 ); 

II 'factoMal'-1s init:i'aHz~d to 1 
II bef~re entering 1:he loop. 

If 'number' has a value of. 4 'factorial-' will -become 24. 
factorial "' 4 x 3 x 2 x 1 ; 

Example2; 

do 
{ 

-!&-nc;!~: "'" nUIIber: ~~ 'f~~~~a~t!~~~;~~!l{~g.to 1 

} while( 1)\Rer > o ); 

If •:n~i.~r·-· h'as a v'alue of 0, ·•fac.'to;isl' will- betOiiie. 0 'ooCa.Us~ 
the loop was entered, before the_e~ressfon 1Tas evalLiated. 

for is· a ltmp control caMtru~;t;. It:. controls tile number.of. time~ 
a block nf statell!ents is exf!~uted. · lhe construct has an _: 
initial value, a final value, and a-loop-count value .that is 
incr~enhd ·each time after_.the: ~l.ock -is e:(ecute_d._ --, · _-

Exarnpl_el: 

fOr( VOlts ;. 0; volts -<··7; VoltS++ )' 
{ 

SLIII +-Volts; 
} 

11· 'sUm~.' is ini-tialiZed to·O 
II before l!lltering .the. loop .. 

IJpon ell.itil\9 the ·_loop ·~um' Wnf ba~e a 'ii~lue .of -i.i.':. 

br"tak-- fs an 'opdon th~t. can '.be il~e~i to i:!xit· o~t .of-~- for-loop, 
based upon the ev~lu,;tion _of_ alt expression.: . · · "---_ ·: · 

EJ(amplel; 

fur{~ itS·- o; v01tS < ·7: -~~,i~ > 
· { _ii(·:~lts - 5 ) . . 

break: 

~--+;.. Wt~s: /J''~U~· ii ii:li±ialized\o··o:: 
11 ·before: entering·, thO'!. loop. 

\IP·~' ~iti:ng_ '~h·e-:ioop 's~111' ~il' .:nav~-;:-..::· ,;a,·~e' ~f: . .-~n,·y-_ti):." .: 

·continue· is an O{'ti.on Used -1:~ 'r~N!i:l: ~ for-l~~p -~~ed ~po~- 'the 
evaluat1_on.11f;an exprll.SSion •. If.·tlle expres~ion e>~aluauS 
to·true; 'the block .of.stateilents will not be exeCuted.-. 

'.Examplei; 

oostC""' Manual SourceBoost Technologies 

fof.(v_olu ~ 0;_ ~i.u. < 7·,~.'~;·-t;;..t.) 
{- -' . :, ' ,_ - .·- ;'-

if(. volts --s) · 
· continue~ .·· ·- _. 

_.:suni'_.,.. ..;Q1t5'; 
} ,', _. ; .. _ .. __ -. '·_.--.·. 

-J!"•·~·Uin· _:.iS:init:iiHi:o!d'.to o·_ 
II· -before ,ent~ring .the-_lopp·;_-.-

Page 59 

1e vast majority of programming books, the usage of 'goto' Is heavily 
!Cated. This Is true for BoostC and PIC C coding as well: It should normally be 
od. 

tare, anyway, some very specific drcumstances where It may still be useful: 
tlmize early exrt cases wrthln complex nested control structures or to simplify 
errDf" handling (it can somehow mlmlc: try/catch exception handling syntax). 
~( ... --) 
,,ec.·:·.;_ 
~1~_e_~· -~_.>: _: ·. 
f goto exf~; 

ne assembly 
:lle asm or _asm operators to embed a!iSembly Into C ~e. 

switching and code page switching code should NOT be added to lnllne 
Tlbly code. 'The Unker will add the appropriate Bank switching and code page 
hlng code. 

twill be affected as follows: 

Bank switching added automatically. 

Code page switching added automatically. 

m 

twill be affected as follows: 

Bank switching added automatically. 

Code page switching added automatically. 

Other optimizations applied (including dead code removal). 

SourceBoost Technologies Booste"" Manual 

II Eiampli2i 

~witch~ ...... ,_gh_t .) 

q.se 5: ,.,. _ .. ·._, .- .... -.-,. ---: 

~~Jftr-"~l~---);· II TUrn' red' LEo-·_00 
(I Tur_n gr~en LEO _OFF' 

tas!rlf:.~--;; __ ;_< .. ·_._:, ::·_: -~,--· · 
_set,;bi~( -POI[I'A, greetL.J.m -); II TUrn gi-een "LEO· ON 
clear'-.Mt~-- PDitTA, redJ..m:->: Jf_:ruro redJ.EO' -~F 

def~~~.-L-·,,i"_.,:_-: __ --:~-.-: ;:--~>.: -:--iij _. -· · · ·- · · '·: -.:. __ ·. ·: · 
. :-~l=~:t_:~~-:-=~-:· ... :~t·:. ?1·~.-~~-.-·~-~~~,~~fu~."~-:--

1/ x/the;: ·~ei'gt.~<~~~i~~l-~---t,'~i-... ~-..-~~-,.;~\f i~ _.th~ _.~r~~~ 'i::'ED-·Wi'lj 
//_he ~ur.ned ~---~n~·,,~_e.-,red: L~ __ will,:be·t\lf!\l!d .OFF; .,,,;·: ____ : 

·: J/-Tui:ro: re~·- ~~'~:·oo'" 
I I. TUrn .. green LEll Off.: 

J I. TU~~i:~ .. ~~-:--s~:-'~ 
-:I j'.Tur_n __ ,.e;~- tEo· o~_F ., · 

If- If. th~· ·~~'j-~ht; :.-~'adabi-~ ~-as'-'~~~--~~1-Ue --~-ther· -~~~-n ·:S' _:'~r ·~o, . · 
II' bath .the- graen· ''i'lld. i-ed LEOs"will·.'.be .. turned_OFF_;· .' , __ ,'. -·,- '--_. 

1i -··: 1 .-::-·--i~"'~-~·_-:ifl~,-s~ fJ~r'ilt~·r.; :.+ni·s ·Oper~·wr- ca_n· . .-:be :~~e_:r..;'~side- :an 
II ~------ _,·e~pres~ion to':detefll!ine"-if-_,a: pi!rLof it is t_ru~ .or-, false. 

BoostC"" Manual SourceBoost Technologies Page 57 

(volts'> 5) 1 set..Mt(I'OitfA;··LED...bit). clear...bit:CPORTA~·LED..bttJ;_ 

if· if ;Vol~~; ~;~\ 'i~fi:~J"; 't·~~--~~~--i~b'-~~-:· ·, . : ::.·:, __ .: _., _-::: _ _.-._~:_>_:·.· .. ; 

1 i. ExWi.plei :· - '-"~~~~. t·h}·i~ ~N- . _t~:-~-- ~h-~ ,~~:,_·?~~·-
.-: _ _.(~~J '~ A:t~~~-,·~tf~j~-~) 'i ~lftrJift(Poi~#_;~ ... :~f~Y:: 

1, 1i ;J~iis;--~~·s·~,v~i~~-,~;:~ ~~-~~- t~-~.-tEti'c,-~i.-

Program Flow 
while 
do 1 while 

'" break 
continue-

Progn~m Flow Examples 

ti. ~t->n~imi~.-r··. 'has· -~<·al·~-~- ~ .o; .. :;f~_i;toi-ia_l •:_ili .. s~~Y 
I I. equal to l.be<;ause. ,t.he loop -was: III!VI!r· _en-tered ..... .-. · 

11 d~'-1 ~11~·:: 1s i loop ~ont.~oi. ia-~~i:'~~e~. n·' con troiS: i:h,i~/ ~iiiltuti~B 
j I of:" a· 'block of. sta.temen"ts 'for.- a~ Jong as -an· expression; 

)

!
1
!

1 

evaluates .to -tru~. •.i11e · blo.;k is exi!Ctlt.ed:-~t'. least.-once: 

.· ~~{~~~- ~~P l!~~e~~:;;~~n~~lu~i~~vaf~a~~s "~~1-~~~~---~o_ . 

Page 58 Source.Boost Technologies BoostC'" Manual 



~ heavy usage of inline functiom obviously augments code si;u~. 

~1111 j\lnc:~Hms 

1id u.tn(void) 

·ogram entry point. This function Is mandatory for every C program, 

•id interrupt(void) 

•terrupt handler function. ls linked to high priority Interrupts for PIC18 parts. 

dd interi'\IPt ... JIIIII(v0id) 

1w prlor!ty Interrupt handler, can be used only on the PIC18 family. 

e~ral functions and interrupts 

:andard user functions are not thread-sate: their local variables are not saved 
hen function execution gets Interrupted by an Interrupt. This can lead to very 
1rd to trace errors. 

l prevent this pltl'all, the linker does not allow to call a given function rrom both 
a in() and lntem.tpt threads. 

you really need to use same function in both threads, you need to duplicate its 
1de and assign a different name to the second copy. 

oostC"' Manual Soun:eBoost Technologies 

s· _function gets called from main thread 
fooQ ' . . . . 

·_:··,· .. _;.:, -'·:. -· •. 
:errupt -tlii-ead :'_ 
interrupt( Void ) 

L;0~-i~~--b_i-.. _:_-:~---~ 
·>.:;_:':::_:: __ ,-::.:· .. -:::::::-~·-_ .. ·:·' '· 
n-, tbrei!cd : '· · - ·· 
.ain( void ) 

~:~-,; ;_:_ 

1amlc memory management 

Page 63 

1mlc memory management Is used to dynamically create and desttoy objects 
ntlme, 
example, this functionality may be needed when a program needs to keep 
ral data packets. Memory for this packets can also be allocated at compile 
, but this way the memory may not be available for other-variables even If It's 
•sed. 
solution is to use dynamic memory allocation. Objects to store data are 
:ed as soon as they are needed and destroyed after data gets processed. 
way all avallable target data memory is used most effldently. 

amount of possible objects that com be allgcated depends on the specific PIC 
at hand, and on the application. 

r1 the application Is built, the Unket uses RAM memory left after allocation of 
~I and local variables as a heap. When some memory gets allocated at run 
by the 'alloe' call, it gets allocated from this heap. The bigger the heap, the 

! run time objects can exist at any giVen time. 

* ~1,-.;i(~sig~-~d .cha~· siz~) : . . 

~~~~an·Y atiOc~lt~ -~~~~r/•Siz~' bYtes l~ng. Max size ~- 1i:i bvt~. RetUrns 
• If memory can't be allocated.

frM.CVofd ~r)

... SourceBoost Technologies BoostC"" Manual

Variable Referendllfl in asm

To refer to a C variable t'rom lnUne assembly, simply prellx its name with an
underscore '-'· If a C variable name Is used with the 'movlw' Instruction, the
address of this variable Is copied Into w.
Labels are ldent!Hed with a trailing semicolon':' after the label name.

lnllne 11ssembty ex•mple l

""~~l_!;;~~~g~uf~ of· ~it-test~ an~ lab"els in inlin~_ asserrrli?_Y

void fooQ
{ . ·- " _. ..
~n!i3~ cl'!ar .1, b;

b- il; ...
{- - .

I I

sun:
btfs_c: -i , . 4

~.~.·
goto i_ter

iter:
-1•0 ..
..,..,b:

""''
lnllne 11s:sembly example 2

II E·~wi.~~:~·:ro~-Pi:·da-~8i_i~- ~fg~t. showi.hg·-h-ow'to aeCess·-tiYtes ~f
"~~~~-e~;,;~:~~ts_._·.,_· __ -.:-. ,- _·.-: ;·,··.-' ... :-:.:_-_··,_' ·· · · · . , _::-; _ _-.-:-_;'_.-~:: :- .
i'nt Getn~i-lval'O
~-fnt._.st:'.:_-_- -.

~~ ·-.. ·.:._.-_ ·';·" -. - . ._ ... -... .
-:!;~1:,~-~·lWnt~' t;; _'iai~h·-~·:afvari~,-~-- x

-ovf.;.tllr:ll,-w ---:·.-_-. -: : .. ·:· _______ -.. _, __ ,.-... · ·
}' ~ _x' :·:: ;_ wri-.;e .. t~ _la. byt~ of :var-!ali!le x ·

rdu_rn x: ._-

Booste"' Manual SourceBoost Technologies

lnline 11554Jmbly f!XiJmpfe 3

User Data

Page 61

User data can be placed at the current location using the 'data' assembly
Instruction followed by comma separated numbers or strings.
Example:

1/ c;;de· ·b~,:a/~·~li_ -pt.iCe ·bYt~s·-·1. ~.~.· .. ·.'. i6;-I61·,·Ii5;.i16.·,'_o. /1 •t: ctkrent·code--lo.cation ·. '·· ·. -, ... · ,.,.·. __ -· ...
aslll_-.lktlf: ~.·~a, .'"nst~ ·· ... '·

Functions

lnlln~ fvnc:tlons

Functions declared as lnllne are repeatedly embedded Into the code for each
occurrence. When a function Is deHned as Jnllne, Its body must be defined before It
gets caUed for the first time.

Though any function can be declared as inllne, procedures (functions with no
return value and a possibly empty argument list) are best suited to be used as
lnllne. An exception to this rule are lnllne functions with referenct~ arguments. Such
functions will not over1oad variables passed as arguments but will operate directly
on them:

lnurie· v_oi4 fc:iOc char •Port)
{

Page 62 SourceBoost Technologies BoostC"' Manual

d foo(void) I/' foo'_ -number. 1

d foo(cllar *ptr) //'for,' 'number 2

d f~(cllar· a, char b) //'foo' number 3

//'foo' nwnber 1 gi!tS .called
//'foo' number-2 gets c;t11ed
//~foo' number 3 gets called

! compiler will generate Internal references to the functions so that no
blgulty Is possible {name mangling), and will select which function will be
oked for each call analyzing how many parameters are passed, as well as their •.
nction templates
lctions can be declared and defined using dat<J type placeholders.
s feature allows writing very general code (for example, linked lists handling)
ot Is not tied to a particular data type and, what may be more Important, allows
: user to create template libraries contained In header files:

lpla-t:e-<class T>
~-·too.<-:r *t}

d' lilain(void)

:hart s;
yo.cchar>(_Mtel!'t"),;
'00<1hort>~ ~-); · .

ostC"' Manual

. .
//'fo0(:cfiaiir)'- 9ets. c'alled
//'foo(sllo~t~.)-~ get_s_cal1ed-'

SourceBoost Technologies

netric timing functions

f software based timing functions are strictly dependent on clock speed.

Page 67

s parameter Is usually well known at linking tlme, depending only on
1re design and Implementation, such functions can be dynamically
1ted, once the dock frequency Is correctly assigned with the CLOCK_FREQ

'·
_functions can be used In the standard way when writing any program for

1elay_us(unsigned chart)

ated function) Delays execution for 't' micro seconds. Declared In boostc.h
nctlon gets generated every time a project Is linked and Is controlled by the
__ FREQ pragma. In some cases when dock frequency Is too low It's not
~fly possible to generate this function. If that's the case Unker will Issue a
g.

8hty_JOus(unsigned r:Mr t J
ated function) Delays execution for 't*lO' micro seconds. Declared In
.h This function gets generated every time a project Is linked and Is
lied by the Cl.OCK_FREQ pragma. In some cases, when clock frequency is
w, 'it's not physically possible to generate this function.
's the case, the linker will Issue a warning.

telay_JOOu.s(unsigned chart)

ated function) Delays execution for 't*lOO' micro seconds. Declared Jn
• h This function gets generated every time a project ls linked and Is
fled by the O.OCK_FREQ pragma. In some cases, when dock. frequency is
v, It's not physically possible to generate this function.
's the case, the linker will Issue a warning,

tetay....ms(unsigned r::har t)

-ated fUnction) Delays execution for 't' mill\ seconds, Declared In boostc.h
Jnction gets generated every time a project Is linked and Is controlled by the
LFREQ pragma.

lelay_s(ualgned clulr t)

-ated function) Delays execution for 't' seconds. Declared In boostc.h This
1n gets generated every time a project Is llnked and Is controlled by the
LFREQ pragma.

: about detays: The delays provided are ilt IHst the value specified, the
will be longer rather than shorter. The delays produced may be larger than

:ed If the delay routine Is Interrupted by an Interrupt

the dock frequency Is such that the delay becomes highly Inaccurate then
!lay overhead, unit delay and delay resolution of the delay are displayed
the linking process.

Free memory previously allocated by 'attoc'. Passing any other pointer will lead to
unpredictable results,

BoostC:"' Manual SourceBoost Technologies Page 65

C language superset
The BoostC compiler has some advanced features "borrowed" from C++ language.
These features allow development of more flexible and powerful code, but their
use Is merely optional.

References as function arguments
Function arguments can be references to other variables,
When such argument changes Inside a function the original variable used In
function call changes too,
This Is a very powerful way to alter the data How without blowing up the generated
code:

f~-~---~,--~~r·~:&-.> .
}·-~.-:~.:~:--.
Vo-·hfiia:ln(Vofd)

<,,.;· ••••..
foo(__ a.);

Notes - using references as function arguments

For general efficiency, the mechanism used to pass a variable by reference is that
of taking a copy of the variable data when the function 1$ called, and by copying
the data back to the original variable after the function has been exited •

Passing a large structure by reference will generate a large amount of code to copy
the data back and fourth. Passing volatile variables (those declared using the
volatile type specifier) may result In not the behavior you would expect. despite
being a volatile variable Its value will only get updated on exit of the function.

General guidelines:

• Don't pass large data structures by reference.

• Don't pass volatile data by reference,

Function overloading
There can be more than one function In the same application having a given name.
Such functions must ahyway differ by the number and type or their arguments:

_·· _______________ s._._._,._._·_·_··_T_ .. __ ""_._,._._, .. _________ ._ .. _..,. ____ ~ ~~~L_ ______ ·_·_·_·_·_· ______________ s_._,_~_·_·_··_~ __ T_"_"_"_._,._._, .. ________ ._....,. ______ "_·_·_·_·_, ______ __

lid st:Tat(char *dst,. const chi.r *:src)
'ld strcat(ch•r *dst. rom ch•r *src)

rid stmcat(char *dst. const char *sn;. unsigned char len }
rid stmGtt{ char *dst, rom char *sn;. unsigned char len)

unction) Appends zero terminated string 'src' to destination string 'dst'.
2Stlnation buffer must be big enough for string to fit. Dedared In string.h

lar* strpbrir(const char *ptrl, const ch111r *ptr2}
Jar* st:rpbrlc(const ch•r *src;. t'Dm char *src)

rrsigned char strc:spn(c:onst char *.srcJ, const char *sn:2)
Mlgned char strapn(rom ch•r *srcl, con.st char *Mel)
r,slgned char stn;spn(const dnJr •sn:l, ro:n chlllr *src2)
ulgned char 8trapn(rom dri!lr *sn:l, rom ebar •:ua)
unction) locates the first OCC\Jrrence of a character in the string that doesn't
atch any character in the search string. Declared in strlng.h

'JS/gned char str.spn(const chltr *src11 COIUt chillr •.src2)
'signed char strspn(rom chiJr *md., const char *sn:2)
'signed chilli' stnpn(const th•r •srtJ, rom char *MC2)
'signed char strspn(rom dr11r *srcl, rom char *src:2)

unction} Locates the first occurrence of a character In the string. Declared In
ring.h

tar* strtok(const char *ptr1, const chat' *ptr2)
t11r* strtok(const char *sn:; 1'011'1 char •src)

unction) Breaks string pointed Into a sequence of tokens, each of which Is
!limited by a character from delimiter string. Declared In strlng.h

tal'* stn::hr(const char *src, chal' ch }

~nction} locates the first occurrence of a charactt.:r In the string. Deci<Jred in
rlng.h

1ar* strn:hr(const char •sn;. char ch }

unction} Locates the last occurrence of a character in the string. Declared In
ring.h

1ar* str.str(constchar *ptr1, const char *ptr2}
tar* sfrstr(const char *sn;.. rom char *.s.rc:)
Jnction} Locates the first occurrence of a sub-string In the string. Declared In
ring.h

t:tostC"" Manual SourceBoost Technologies Page 71

rerslon Functions
When using conversion functions that store the ASOI result Jn a buffer, be

o provide a buffer of suffldent size or other memory may get overwritten.
uffer needs to be enough to store the resulting characters and a null
tator.

rned char sprlntf(char* buffer, const char *fonnat. unsigned Jnt val)

1ts a numerical value to a string in the specified format. The buffer must be
~nough to hold the result. Only one numerical value can be output at a time.
red In stdlo.h.

1t spedfled In the format string with the following format:

~sJ[wldthJ[radiX spedfler]

' Example output Description
~-120~ decimal signed Integer

"150" decimal unsigned Integer
"773~ octal unsigned Integer

"ABFl~ hex unsigned Integer
~101101" binary unsigned integer -

flcation Example output I Description ,. "231 . left justified, padded to 8 c;haracters length
.6u~ "0000000000045102" ~~eftjustlfled, padded with zeroes to 16

characters length

•• . 10" light justified, padded 8 characters length

lay of Example output I Description

"" .+972 .]~eft justified, padded 8 characters length,
signed always displayed ,. "765 . I :eft Justified, padded 8 characters length,
positive signed displayed as' '

~y of sign only applies to signed decimal radix. Radix and field width addeQ
o show complete format specification

SourceBoost Technologies aooste"' Manual

Delay Overhud - The delay created in calling, setting up and returning from the
delay function.

Unit Delay - The amount of additional delay generated for a delay value increase
of 1.

Delay Resolution- The amount the delay value has to be Increased before an
actual increase In the delay occur.;. A delay resolution of 4 would mean that the
delay value may need to be increased by a value of up to 4 in order to see an
Increase in the delay.

System Libraries

A number of standard functions are induded Into BoostC Installations. The number
of such functions isn't static. It Increases from release to release as new features
are added. Most of these functions are declared in boostc,h (It's not recommended
to lndude boostc.h directly Into your code.Instead Include system.h Which in turn
Included boostc.h)

General purpose functions

clear_bit(var, num)

(macro) dears bit 'num' In variable 'var'. Declared in b11ostc.h

seLblt(val', num)

(macro} Sets bit 'num' Jn variable 'var'. Declared In boostc.h

tesLblt{ var, num}

(macro) Tests 1r bit 'num' In variable 'var' Is set. Declared In b11ostc.h

NAKESHORT(~ lobyte, hlbybt)

(macro} Makes a 16 bit long value (stored In 'dst') from two &-bit long values (low
byte 'lobyte' and high byte 'hibyte'). 'dst' must be a 16-blt long variable. Declared
in boostc.h

',.llnsigned.-shon .re5;·.: ... '-.-- _,. ''· . - -- '·. - '- .. · '· . . .: . . : ,, . .'
ril~~~/:~~~~~s}~t~~:~a~i/<~~~- -1~,:~·-t va~~e._ ~~ _a_d_r:_sh:~_r,~_-Sl
LOBYn{ dst. .src)

(macro) Gets low byte tram 'src' and writes It Into 'clst'. Declared In boostc.h

HIIJYTE(dst, src}

(macro) Gets high byte from •src• and writes It Into 'dst'. 'src' must be a 16~bit lang
variable. Declared In boostc.h

vDld nop(--vold}

(lnllne function) Generates one 'nop' Instruction. Declared in boostc.h

Booste'"' Manual SourceBoost Technologies

void dear_wdt{ void)

(lnllne function) Generates one 'drwdt' lnstruc:tlon. Detlared In boostc.h

void sleep(void)

(lnllne function) Generates one 'sleep' Instruction. Declared In boostc.h

string and Character Functions

void strcpy(drar *lfst. oonst ch11r *src }
void strcpy(char *d.st,. 1'011'1 ch11r *sn=}

void stmcpy(drar *dst,. const char *sn;. unsigned char len)
void stmcpy(char *lfst. tvm chill' *.sn;. unsigned char len)

(function) COpies zero terminated string 'src' Into destination buffer 'd$t'.
Destination buffer must be big enough for string to fit. Dedared In slling.h

unsigned char strlen(const char *SIC)
unsigned dtar strlen(rom chtlr *src)

(func:tlon} Returns length of a string. Declared In strlng.h

slgnH chi!lr stl'cmp(const chill' *Sft'.f, const char *src:l!)
signed clulr stremp(tvm ch•r •sn:1, const dJIJr *sn:.2)
.signed dnlr stranp(a~nst dlar *Sid, rom char *sre2 }
signed ch•r strc:mp(rom chlrr *Mel, rom char *.ww:-2}

signed chllr strkmp{ const char *.srcl, const ch.r *sn:l)
sl11ned dnlr .stricmp(rom dlar •srcJ, eonst char •sra)
!1/gned char stricmp(const ch11r *SI'CJ, I'Om chlfr *src2 }
slgneddulrsflkmp(rom char •srcJ, t'Dm char •sn:2)

Page 69

(function) Compares two strings. Returns -llf string #11s tess than string #2, 1 If
string #1 Is greater than string #2 or 0 Is string #1 Is same as strlnQ #2. Declared
In strlng.h

s/glled char Hmcmp(char •Sid, clgr *sn:2, UM111ned char/en)
signed charlltmemp(tvm ch•r •smJ, char *sn:2,. unsigned char len)
signed dtar stmcmp(dtiJI' "'Sl'd; rom chllr *srd. unsigned drar len }
signed char stmcmp(rom char *sn:l., rom chill *srr:2, lllfSigned char len)

signed char strnkmp(char *src1, char *srt2, unsigned drarlen)
signed chllrstmkmp(tvm c,.r •s~l, char *src:2, unsigned char len)
signed chllr stmkmp(dMr •srt:11 tOm char *SI'd, unsigned char len }
signed char stmlcmp{ rom char •srcJ; rom char *src2,. uns/flned char len)

(function) Compares first 'len' characters of two strings. Returns -11f string #1 Is
less than string #2, 1 if string #1 Is greater than string #2 or 0 Is string #1 Is
same as string #2. Declared In string.h

Page 70 Source8oost Technologies Booste"" Manual

1signed int atoui_bin(const char* buffer)

unction) ASCII to unsigned integer, binary representation. This function converts
binary strlng value Into 16 bit unsigned integer.

1Signed int atoui_dec(r:onst char* buffer)

unction) ASOI to unsigned Integer, decimal representation. This function
1nverts a decimal string value into 16 bit unsigned integer.

haracter

1ar toupper(char ch)

unction) Converts lowercase character to uppercase. Declared in ctype.h

rar tolower(ch•r ch)

unction) Converts uppercase character to lowercase. Declared in ctype.h

1ar l$dlglt{ char ch)

unction) Checks if character 'ch' is a digit. Returns non .l!ero if this is a digit.
~dared In ctype.h

1ar lsalpha(char c:h)

unction) Checks If character 'ch' is a letter. Returns non .l!ero if this is a letter.
2clared In ctype.h

'lar isalnum(char c:h)

unction} Checks if character 'ch' Is a letter or a digit. Returns non zero If this Is a
tter or a digit. Declared in ctype.h

rar lsblank(char ch)

unction) Returns a 1 If the argument is a standard blank character. All other
puts will return a 0. The following are the standard blank characters:
{space) or '\t' (horizontal tab). Declared In ctype.h

'lar lscntrl(char ch)

unction) Returns a 1 rr the argument Is a valid control character. All other Inputs
Ill return a 0. Declared In ctype.h

far /sglilph(char ch)

unction) Returns a 1 If the argument Is a valid displayable ASCII character. All
:her Inputs will retu~ a 0. Declared In ctype.h

r•r 1$/owei'(char ch)

unction) Returns a 1 If-the argument-Is a-valld-lower·case-ASCII letter.--AU other
puts will return a 0. Declared in ctype.h

oostC'" Manual SourceBoost Technologies

isprint(char ch)

tion) Returns a 1 if the argument Is a valid printable ASOJ character. All
Inputs will return a 0. Declared In ctype.h

ispum:t(ch•r ch)

Page 75

tion) Returns a 1 if the argument is a vatld punctuation character. All other
; will return a 0. The following are the Implemented punctuation characters:
$%&' {)"' + ,-./:; < = > 1@ [\] ... _. { [} ...

isspac:e(char ch)

tion) Returns a 1 If the argument Is a standard white-space character. Ali
inputs will return a 0. Declared In ctype.h. The following are the standard

-space characters·

acter Description Character Character Escape
ASCII code sequence

' OX20 "
onta[tab 0•09 '\r
~I tab "'"' '\V'

'"' OxOA '"'' age return '""' '\o'
feed OxOC '\f

lsupper(char c:h)

tlon) Returns a 11f the argument Is a vatld upper-case ASOI letter. All other
swill retum a o. Declared In ctype.h

lsJtdlglt(char ch)

:tlon) Returns a 11f the argument Is a valid hexadecimal character. All other
s will return a 0. Declared In ctype.h

* memd!r(c:onst void *ptr, char ch, unsigned char ten}

:tlon) locates the first character In memory. Declared In memory.h

~ char memcmp(const VDid •ptr1, const IIOld *ptr2,. unsigned char

'
:tlon) Compares memory. Declared In memory.h

" memcpy(1101d *dsC. const 11old •src:,. unsigned char fen)

:tion) Copies memory. Declared in memory.h

• memmo11e(void *ds(, const 11old *src, unsigned char ten)

:tlon) Moves memory. Declared In memory.h

76 SourceBoost Technologies Booste'"' Manual

Implementation of field width Js non standard- If a justification width Is specined
the width will be padded or truncated to match the width provided. The most
significant digits and sign maybe truncated. Standard Implementations do not
truncate the output, which can cause unexpected buffer overrun.

unsigned char sprintf3Z(char* buffer, c:onst char *formllt, un:1lgned long
val)

Outputs a numerical value to a string In the specified format. The buffer must be
long enough to hold the result. Only one numerical value can be output at a time.
Dedared in stdlo.h. ·

This function operates as sprinl:f, but It handles a 32bit value. It also supports the
~%IN radix specifier, which Is handled the same as •%d~.

int strtoi(r:onst char• buffer, char-* endPfr, unsigned char radix}

(Function) String to integer. A function that converts the numerical character
string supplied Into a signed Integer {16 bit) value using the radix specified. Radix
valid range 2 to 26.

buffer: Pointer to a numerical string.

endPtr: Address of a pointer. This is filled by the function with the address where
str1ng scan has ended. Allows determination of where there Is the first non­
numerical character In the string. Passing a NUU Is valid and causes the end scan
address not to be saved.

radix: The radix {number base) to use for the conversion, typical values: 2
(binary), 8 (octal), 10 (decimal), 16 {hexadecimal).

Retum: The converted value.

h:mg stTtol(c:onst char* buffer,. chlH'** endptr, unsigned char radix);

(Function) Sb1ng to long Integer. A function that converts the numerical character
string supplied into a signed long Integer (32 bit) value using the radix specified,
Radix valid range 2 to 26.

buffer: Pointer to a numerical string

endPU: Address of a pointer. This Is filled by the Nnctlon wlth the address where
string scan has ended. Allows detennination of where there Is the first non­
numerfcal character In the string. Passing a NUU Is valid and causes the end scan
address not to be saved.

radix: The radix (number base) to use for the conversion, typical values: 2
(binary), 8 (octal), 10 {decimal), 16 {hexadecimal).

Return: The converted value.

lnt.atol(-c:onst char.* buffer)

{Macro) ASCU to Integer. A macro that converts the numerical character string
supplled Into a signed Integer (16 bit) value using a radix of 10.

BoastC""" Manual SourceBoost Technologies

buffer: Pointer to a numerical string.

Return: The converted value.

Note: Macro Implemented as: #define atol(buffer) strtol(buffer, NULL, 10)

long atol(const char• buffer)

{Macro) ASCII to long Integer. A macro that converts the numerical character
string supplied Into a signed tong Integer (32 bit) value using a radix or 10.

buffer: Pointer to a numerical string.

Return: The converted value.

Note: Macro Implemented as: #define atoi(buffer) strtoi(buffer, NUU.. 10)

d!ar* ltoll(lnt nJ.. char• buffer, unsigned char radix)

Page 73

(Function) Integer to ASOI. function that converts an lntegl!r {16 bit) value Into a
character string.

char• ltoa(long val, c:h•r• buffer, unsigned char radix)

(Function) Long integer to AScn. function that converts an long Integer (32 bit)
value Into a character string,

Ughtweight Conversion Functions
The standard conversion functions offer a lot of Hexlblllty at the cost of ROM, RAM
and execution time. for application that are short of RAM and ROM, or require
shorter execution time, it maybe desirable to use the following lightweight
functions.

void ultoa_he:x(c:h•r• lndfer, unsigned int val, unsigned char digits)

{Function) Unsigned integer to ASCII, hexadecimal representation. This function
converts a 16 bit unsigned Integer into a hex value with leading zeros. The number
or digits Is specified using by the digits parameter.

void ultoa_bln(char• buffer,. unsigned lnt val, unsigned char dfglls)

(Function) Unsigned Integer to ASC!I, binary representation. This function converts
a 16 bit unsigned Integer Into a binary value with leading zeros. The number of
digits Is specified using by the digits parameter.

1101d uima_dec(ch•r• buffer, unsigned Jnt IIlii. unsigned char dlglls)

{Function) Unsigned Integer to ASCII, decimal representation. This function
converts and 16 bit unsigned Integer Into a decimal value with leading zeros. The
number of digits Is specified using by the digits parameter,

unsigned int •toui_he:x(const c:h•r• buffer)

(Function) ASCII to unsigned integer, hexadecimal representation. This function
converts a hexadecimal string value into 16 bit unsigned Integer.

Page 74 SourceBoost Technologies BoostC'"' Manual

~ ij~,~~-r:~l~·~~ t~~~~s~0~~~- one_. wi'~e ·lih:ar,Y: two gl?i>a-1 bi.t: vari~les_· need to

~m!~~~~~~~~~n~~~o~a~!:~~f~_t:hat' c_o_nt_r-ol·"port "pin'_i_seci (or one_ Wire

~~irr~~~o~~i1r~~~ktjmc~h1~: connected·to pin 6 of port··a tile

~efine·-OCI...P<Nl"f ~
:lefine OO...iRIS ili.ISB
:leftn!! OQ....PIN 6

Jlatile -b;t oO_&Us t oO..J.o.n-. ; Oll..PIH;
Jlatile-bit oo_bus_trfs I OO_TAIS .·oci..PIN;

f Reset' the' one wire bus
J....busreSet.O:

I Start the ~onversion (non-blocl::ing function)
uurt...convers;ionO:

I wait fQ~. comple:tion, -you- .could do _other stuff here
I aut make sure ·that th1 s function return~ zero before

~{~¥t..~:;.~~~t!,o >
//handle conversion time out

I Read the- scrat<.;hpad
F(oo_read....scratchPadO)

//h~ndle _cOnversion e'rror

I .AAd extract the t.emperatui-e- i'nformation
10rt dau . .,. oo:...aet....dataQ;

~ort oo_gel;_daU.()

unction) Reads data from one wire bus. Dedared in oo.h Defined In oo.pic16.11b
1d oo.piclB.Iib

~ar oo_rNd_$Cratehpad{)

·unction} Reads scratchpad. Dedared In oo.h Defined In oo.plc16.1lb and
o.plc18.1ib

old OO_$tart_c:onverslon(}

Unction) Starts conversion. Dedared in oo.h Defined in oo.plc16.11b and
l.plclS.!lb

~ar oo_c:onversion_busy()

unction) ChecksJf-tonverslon Is In progress. Returns o If no conversion Is active.
ectared In oo.h Defined !n oo.p!c16.11b aM oo.plcl8Jlb

oostc- Manual SourceBoost Technologies Page 79

oo_wotiLfor_completlon(J

~on) Walts for a conversion to complete. Returns 0 If conversion completed
1 1 sec. Declared In oo.h Defined In oo.plc16.Ub and oo.plclS.IIb

80 Source Boost Technologies Booste'"' Manual

void• memset(VtJid •ptr, char ch, ull$lgned char len }

(function) sets memory. Dedared in mernory.h

Miscellaneous Functions

unsifll'ed short rand(void)

(function) Generates pseudo random number. Declared In rand.h Defined in
rand.lib

void sntnd(unsigned .Mort seed}

{function) Sets seed for pseudo random number generator. Declared In rand.h
Defined In rand.llb

max(II, b)

(Macro) Returns the value of the argument with the largest value.

min(a, b)

(Macro) Returns the value of the argument with the smallest value.

12C functions

l2c;_lnit, 12c_sta~ 12c:....resta~ 12c;_stop, 12c_teiid, 12c_wrlte
(for mo,.lnlomtatJon look lnte 12c_drlver.h and 12c_rest.c Rlt!$}

RS232 functions

uart_lnlt, kbhlt, getc;. getc:h, puk,. putch
(for more lnfomtaHon look Into ArlaLdriver.h 11nd prlal_test.c flies)

LCD functions

lod_setup, lprlntl, kd_dear, kd_wrlte, lod_funcmode, icd_datamode
(lor moNinlomMHon look Into lcd_drlver.h and lal.c file$)

Flash functions

short Rash_l'fNid{short 11ddr)

(function) Reads flash content !Tom address 'addr'. Worics with PIC16F87X devices.
Declared in ftash.h Defined in nash.plc16.1ib

void n/J!Ih_loadbuffer(shott data)

(function} stores 'data' In an internal buffer of 4 shorts long. Must be called four
times to·fltl the internal buffer. Data In this buffer Is used by~ to store
data In flash.,Works with PIC16F87X devlces;-Declared In flash.h-Delined in
ftash.plcl6,1lb

BoostC"" Manual SourceBoost Technologies Page 77

void nash_wrlte(short addr)

(function) Writes data from an internal buffer Into nash at address 'addr'. The
Internal buffer that Js 4 shorts long must be tilted using 4 calls to flash loadbutrer,
Works with PIC16F87X devices. D&lared In flash.h Defined In nash.plc16.1lb

EEPROM functions

drar eeprom_read(char addr)

(function) Reads eeprom content from address 'addr'. Works with PlC16F87X
devices. Declared In eeprom.h Defined In eeprom.plc16.11b

void eeprom_wrlte(dr11r addr, char data)

(function) Wr1tes 'data' Into eeprom at address 'addr'. Worics with PIC16F87X
devices. Declared In eeprom.h Defined In eeprom.plc16.11b

ADC functions

short adc:_measuN(drar dr)

(function) Reads ADC channel 'ch'. ADC must be Initialized before using this
function. Works with PJC16F devices that have ADC units. Declared In adc.h
Defined In adc.plcl6,lib

A sample AOC Initialization can look like:
vola~1l~ bit-'adt...Jin -• ADCOHO • ·ADCJio!; -//AC a<:tivn~ flag

~etii~rn,_• toft ... l./~)l~··ti- ~ rl!s~l~ ~~.!d:o-~: be' r1_~-n~- j~~t-:ifi_ed.
~:ttu:=t:-·.:::=i.~~;~!f:!1.~3.r~u~ -_· .. ·_:.-_:~:-
set ... b-1-t adconl; -.PCRil 1 //.\/ref-·"" Yss ·. · ·

~~~~*z~-~~~~--,~f~e~;cio'r~g -~~~~- ·~. T~~~ Cthi s _dep•mdS on the x-

cleir...bitladtQIII , OCSOil; 11 channel .o. - · - · 
clear.;.MtadconD;OfS ::11 · - · 
clur,Jtit adconO, CHS2 :-II. · · · .- · 
adc...on • ; /1 'Activa.te AD !ll(ldul e ·. . 

One wire bus functions 

chotr oo_busteset() 
(function) Resets the one wire bus. Dedared In oo.h Defined Jn oo.plc16.llb and 
oo.plc18.11b 

Here is a typical scenario how to use the one wire library: 

Page 78 SourceBoost Technologies BoostC"' Manual 



.oostC"" Manual SourceBoost Technologies Page 83 

allnformatlon 
! 1S NO WAAAAHfY ~ 'JloiE PROGAAH, TO THE EXTEHT PERMrrrEO 8Y APf'UCMU LAW. 
'I" WHEH O"llifllWISE 5rATED tH WIUTING THf CXlPI'IUGHT HOlDfllS I>HD/OR OTHER 
ES Pf\OVlOE THE PR<lGIW< "AS IS" WirnOUT WI<AANfN OF ANY IONO, m>ifR EXPRESSED 
PUfD, IIICI.lJOING, 81/T HOT UHITED TO, THE IMPliED WAI\AAHTIES 0# MEIICHAHTAOIUTY 
fTTNESS FOR A PAAnt\J\AA PURPOSE. THE BmRf RISK AS TO THE QUALITY AND 
11UW1CE 0# lHE PROGRAH IS WrrH YOU. SHOUtD 1l£ PROGRAM PROVE OEFECTIVf, YOU 
'IE THE COST 0# AU. NECfSSARY SEJI.VICIHG, REPAUl OR COAAECTIOH. 

I EVfNT UNL£55 AEQUIRED BY APPUCA!l£ LAW OR AGRffD TO IN WIUTING WIU. AHY 
UGHT HOUIER, OR ANY OTHER PAATY WHO MAY HOOIFY ANO{OR REOISTIU8UTE THE 
RAM AS PfllMmEO A0J:JV£. 8f UA8ll! TO YOU Rlll DAMIQS, IIICI.UDING ANY GEHEAAI.. 
AL.. INCIDENTAl. OR~ IW4AG6 ARISING DVT 0# THE USE OR tHAIIIUTY TO 
liE PROGRAH (IIICI.UOIHG 81/T HOT UMrrED TO lOSS 0# DATA OR DATA IIEING REHOERED 
:IJIIATE OR lOSSES SUSTAINED BY YOU OR THIRD PARnES OR A FAIUJRE 0# THE PROGRAM 
'£RATE WrrH ANY 01liEil PROGRAMS), MN IF 5UOi tiCli.DER OR OTHER PARTY HAS 8fEH 
lEO 0# THE POS5181UTY Of 5IJOi DAMAGES. 

liTHOR RESEil\15lHE RIGHT TO REJECT ANY UCENSf (REGisrAAnON) RfQUEST WrrHOVT 
~NING 1l1f RfASONS WHY 5IJOi RfQUEsr HAS 8fEN REJKTED. IN CASE YOUO. UCENSE 
srAAnON) RfQUEsr G£T5 RflfCTED YOU HUST STOP USING THE Source8oost IDE, !looltC. 
C++, -.K, OC·plus, OC++ ond P2C·plus COMPil.EIIS AHD II.EHOV!' THE Wl«ll.f 
tBoost IDE tNSTAt.LAT10H FROM YOUR COHPtJTEJL 

>Chip, PIC, P!Cmlcro and MPlAB are registered trademarl<s of Microchip 
nology Inc:. 
:tC, BoostC++ and BoostUnk are trademarl<s or SourceBoost Technologies. 
.- trademarl<s and reglstere<l trademarl<s used In this document are the 
erty or their respective owners. 

••• 

hng·llwww :sgurrrbpost c:pm 
CopynghtC 2004-2007 PaYd k.tncw 

Co9voi9ht02004-1007 Dovld Hobd.-, 

SourceBoost Technologies 

PC System Requirements 
In order to lnstllll And run the Compller{SourceBoost lntegnlted D""elopment 
Environment, a PC with !he following specll,catlon Is required: 

lflttlmum S)sNm Speclflatlon 

Mlcrosolt Windows 95/98/ME/IfT/2000{XP, 

Adobe Readl!'r and 1 web browser (to al~w acceu to help files and manuals). 

Pentium Proc6sor or equivalent, 

128M8 or RAM, 

CD ROM Drive, 

80MB or disk space, 

16Bit Color display Adapter at 800x600 Resolution. 

As the Minimum System SpedRcatlon, plus: 

2.0GHz (or raster) Processor, 

512MByte (or more) RAM, 

16Bit Color display Adapter at 1024x768 Resolutlon (or higher). 

8oostc~ """""' Source8oost Technologies 

Technical support 

Page 81 

for example projects and updates please refer to our website: 
http. 1/www sourceboo!t com 

Wo open~te 1 forum where ted"lnlcal and license Issue problems can be posted. 
This should be the nnt place to vtslt: 
btto· 1/fpoJm soycccbooR com 

BoostC Support Subscription 
By buying 1 support subsalptlon you wm receive prlor1ty technical support via 
email. This ensures that your query or problem wiM be at the front or the queue 
and receive the highest pr1or1ty attention. 

BoostC SUpport Subscr1ptlons ore here: 
htto· //www soyn:ebgost cpm/Prpductst8gostC/Buvt kJ:fMISyoportSubgrtotion btml 

Licensing Issues 
If you have licensing Issues, then please send a mall to: 
supooctOsoyrteboost tAm 

General Support 
For general support Issues, please use our support forum: 
btto· 1/Comm WJrcebggst rpm 

We •re .-w•ys pleased to hear your comments, th1s helps us to satisfy your needs • 
Post your comments on the SourceBoost forum or send an email to: 
supportlltsoycceboost com 

Page 8l SourceBoost Technologies Booste- Manual 


