PET ROBOT

By

FARALIZA BT MOHAMED

FINAL PROJECT REPORT

Submitted to the Electrical & Electronics Engineering Programme
in Partial Fulfillment of the Requirements
for the Degree
Bachelor of Engineering (Hons)

(Electrical & Eleetronics Engineering)

Universiti Teknologi Petronas
Bandar Seri Iskandar
31750 Tronoh
Perak Darul Ridzuan

© Copyright 2008
by
Faraliza Bt Mohamed, 2008

ii

CERTIFICATION OF APPROVAL

Pet Robot

by

Faraliza Bt Mohamed

A project dissertation submitted to the
Electrical & Electronics Engineering Programme
Universiti Teknologi PETRONAS
in partial fulfilment of the requirement for the
Bachelor of Engineering (Hons)
(Electrical & Electronics Engineering)

Approved:

Dr Mumtaj Begam

Project Supervisor

UNIVERSITI TEKNOLOGI PETRONAS
TRONOH, PERAK

June 2008

ii

CERTIFICATION OF ORIGINALITY

This is to certify that] am responsible for the work submitted in this projeet, that the original
work is my own except as specified in the references and acknowledgements, and that the
original work contained herein have not been undertaken or done by unspecified sources or

persons.

b

Faraliza Bt Mohamed

iv

ABSTRACT

The idea of the PET ROBOT is highly appropriate due to the rapid changing technology.
in the modern world and the humans changing ways of life. This technology could not
only be the replacement for house pets but with detailed design and innovation it could
be an assistant to humans at homes. Pet robot uses a microcontroller to control its
funetions. The microcontroller will carry out instructions from the designed coding that
is implemented to the microcontroller, Coding is designed and compiled using PIC
Programming software. Different types of sensors are placed to the robot to give it
intelligence. The pet robot will be not only be able to move forward, backward and turn
but with the ability to ‘see’ by implementing sensors, the robot is also able to avoid
object obstacles along the way. Besides that, the robot can react to certain external input
such as performing certain functions when it detects light and can react to sound. The
project work requires both mechanical ficld for movement and electrical field for
controlling the robot.

ACKNOWLEDGEMENT

Alhamdulillah, thank you to Allah s.w.t for giving me the strength to complete this project.

First of all, I would like to thank Dr Mumtaj Begam, my project supervisor for leading me and
showing me the correct ways in pursuing this project. Without her I would be lost and may not

be able to complete this project on time.

I would also like to thank the technicians for giving me a chance to use the equipments in the lab

as well as giving me guidance on how to use them properly and safely. They are most
appreciated.

Secondly, I would like to thank my parents as well as my friends who had indirectly supperted in

completing this project. Their cagerness to see my project compiete raises my spint and
strengthens my motivation to complete this project. Thank you.

vi

TABLE OF CONTENTS

ABSTRACT ... ittt st eaetrearaas it s e as e s rsrarase s easaasnereetsntnsnnsmnenne v
ACKNOWLEDGEMENT ..ottt vt etee e et eenen e e ea e e e aenaes vi
LIST OF FIGURES.ottt et et e e e aee e reaasasarnananenenrasarnsasns ix
LIST OF TABLES. ... ettt ettt e e e e e ers e en s xi
CHAPTER 1: INTRODUCTION. ... et e e e neannas 1
1 Pet RobBot.......ovveiiiiiiiccie e e 1

1.1 Background..........ooovniiiiiiiiiii e eeeaas 1

1.2 Problem Statement............coeoviriiiieriie i v 2

1.3 Objective and Scope of Study.......oeveeviieiiniiiiie e, 3

1.3.1 Objective......covvvervrveniniiiineiiieeennns 5

1.3.2 Scope Of Study........ooviiiiiiiininnininnn. 5

CHAPTER 2: LITERATURE REVIEW AND/ORTHEORY...............ccovennnnennn. 7
2.1 Mierocontroller and Cireuits...........co.oviviireiiiniieeniriiienennans 7

2.1.1 Main CirCuits......ovevrrrieerneiirnrerseneinn 7

2.1.1.1 Microcontroller..................... 8

2.1.1.2 Voltage Regulator................. 10

2.1.1.3 Oscillator Clock.................. 12

2.1.2 H-Bridge.........coooveviiiiriiniiieicinenn. 13

213 Infrared.........cooevinininiiiiiee 14

2.1.4 Light Sensor.........c.ccocovuviiinvininieninn 15

2.14.1 Light Dependent Resistor 15
2.2 Mechanical MOVEMENT.oveieiriniiieenine v eneiee e 17

2.2.1 Four Wheeled Robot.......coovvvvveiinnnnnn. 18

2.3 Printable Circuit Boards (PCB)........covvaivniiciiiiirnieeeenas 20
2.3.1 Patterning (etching)............................ 20

232 Lamination........cc.covveevirivniemineennnnnn 21

233 Drilling.....covvveiiiiiniiiiiiie i 21

vii

CHAPTER 3: METHODOLOGY/PROJECTWORK.............ooiiiiiiaanen, 23
31 TheBody........oooviiiiiiiiii e 24
' 3.1.1 WheeledRobot............cccoocoivinvnnnnnn 24
3.2 Designing the Cireuit..............ccocoiiiiiviiiniiien 26
33 Programing the PIC..............c..oiiiiiiiinie 27
3.3.1 PIC C Compiler Software.................... 28
3.4 Implementing The Circuits.........cccoooviiiiiiiivininiiniiininn. 3i
3.4.1 Printable Circuit Board Method............31
CHAPTER 4: RESULTS & DISCUSSIONS........ccooiiiiiiiie e 33
81 RESUS....ooreoeeeeeeeeeerereeerenns et 33
4.1.1 Robot Function Flow Diagram............ 33
4.1.2 Main Circuit............occvvvevenernnnnnn.. 34
4.1.2.1 Microcontroller PIC16F84A...34
4.1.3 PIC Programming...........c..c.coeenvnannn 37
414 Light Sensor Cirenit..............cccevvennnn. 40
4.1.5 Infrared Transmiter & Reciever............. 42
4.1.6 Overall Circuit Connection.................. 43
4.1.7 Pictures of Pet Robot........................ 45
4.2 DiISCUSSION.......ucueeiieiiet et eeee e e e e e e aaaas 46
42.1 SpeedControl...........coovviemviiienennns 46
42.2 Circuit’s Stability & Sensitivity............ 46
42.3 Light Sensor Sensitivity..............c...... 47
42.3 Reprogrammable Chip....................... 47
CHAPTER 5: CONCLUSION & RECOMMENDATIONS..............covviieenae, 48
5.1 ConeluSION.coir it 48
52 Recommendations...........cocvevererrinereeenrvsereenierronnrienens 49
REFERENCES. ... oiiiiiiiiiiiiiiieieternrreraa e aemrreretrssanasasaanannasrtasamamsatrnnarsessanns 50
APPENDIXES.ottt e e et e e et s e s eea e st e e aaenan e rrraaans 51
APPENDIX A PIC 16F84A Datasheet..........cc.cevveiinmiicinininnennnnn. 52
APPENDIX B BoostC C Compiler Manual...............coeeeiiieinnnnne. 53

viii

LIST OF FIGURES

Figure 1: Pin diagram of PICI6F84A.........coiiiiiiiii i e, 10

Figure 2: Voltage Regulator 7850....... .. i 11

Figure 3: Voltage Regulator Connection Diagram...........ccovvveeeiiiiiiniieiiniierenireeeaenns 12
Figure 4: Crystal Clock Oscillator.oooiviiiiiiiiiii i e eeea e 13
Figure 5: H-Bridge Connection Diagram............c.ocovriiiiiiiimiee e ir e e s e 13
Figure 6: Two States of H-Bridge.........coooviiiiiiiiiiiiiiie v eersn e e s e e 14
Figure 7: LDR CIPCUIL.covinieeii ittt e e een e e s e e en e s s enran s ees 16

Figure 8: Light Dependent ReSiStOr.covvimiriiiieriineneernceraretirree e e e eeeaneens 16

Figure 9: Legged Robot and Wheeled Robot...........c..cccoveiiveniiiiie 17
Figure 10: Wheeled Robot with One MOtOE.coiiiiiiiiiiii e 18
Figure 11: Wheeled Robot with TWo Metor........c..ocoiviriivin i enaens 19
Figure 12: Wheeled Robot with TWo Motor.........cooviiiiiiiiici i rere e e e e 20
Figure 13: Flow Diagram of Building the Robotcccoooiiiiiiiiiiiiiiee, R 23

Figure 14: Motor ComBEOtiON.vuiiieiiiiieie it vneneaererarnsreeeearnrasreserinenrnnnees 23
Figure 15: Front Wheels and Back Wheels...............coooiiiiiiiiiiiiii e 25
Figure 16: Designing the Circuit Flow Diagram.ccovoiiiiiiiiiiiiiiiinc e 26
Figure 17: Programming the Chip Flow Diagram.............c..ooiiiiiiiiiiiinii e 27
Figure 18: C Compiler SOftWare...........ccovveveruiiiniiiercriiviiiein et enevmneceenenan s enneanns 28
Figure 19: PIC Simulator IDE.........c.ooiiiiiiiiii e rien e e vn e 29
Figure 20: PIC Programming Software............cccviiiiiiiiiiiiiiiioiiea i rer e receeaee e 30

Figure 21: PIC Programming Device.cooiiiniiiiiiiie i e ee i ee e e i e 30

Figure 22: Schematics Drawings in Eagle 4.13 Light..........o..oo i 31

Figure 23: PCB Route Designing.......................... e P 32
Figure 24: Function Flow Diagram.....................ccoo L0l e 34
Figure 25: Pin Conneetion of PIC 16F84A............oiiiiiii e 35
Figure 26: Main Cirolit.cco.iueiiiii i ittt ce e e e e v et ee e rre e s e e ree e e b erens 36
Figure 27: Light 8ensor CIFCUIL..........coouiiriiiiiiiii i e e e eenre s e e 40

Figure 28: Infrared Transmitter Circuit.......................... ettt reee e e et taaa it raenee e e 42
Figure 29: Infrared Reciever Ciretit...........ooevniiiniiiriii e ee e e e e 42
Figure 30: Overall Circutt COmBeetion.ocovuvniriniiieiin e e e raen e eeneanas 43

LIST OF TABLES

Table 1: H-Bridge Summarize Function..............cooooiiiiiiiii i

Xi

CHAPTER 1

INTRODUCTION

1. PET ROBOT

The title of this project is ‘PET ROBOT”. The idea is to build a robot that acts
and behaves similar to a pet. It is called a pet robot due to its ability to perform
functions imitating a real life pet. The functions of the robot will be controlled by a

programmed chip.

1.1 Background of Study

The word robot gives meaning of a machine that can do work by itself, often
work that humans do. [10] The concept of robots is a very old yet the actual word
robot was invented in the 20th century from the Czechoslovakian word robota or
robotnik meaning slave, servant, or forced labor. [12] Robots are very visible
machines, ranging from small, miniature machines, to large crane size constructions
with intelligence varying from simple programming to perform mechanical tasks,
such as painting a car or lifting cargo, to highly complex reasoning algorithfns
mimicking human thought. [11] Historically, we have sought to endow inanimate
objects that resemble the human form with human abilities and attributes. From this
is derived the word anthrobots, robots in human form. Robots are especially
desirable for certain work functions because, unlike humans, they never get tired;

they can endure physical conditions that are uncomfortable

or even dangerous; they can operate in airless conditions; they do not get bored by
repetition; and they cannot be distracted from the task at hand. Robots have been
useful in industrials, hazardous duty, maintenance work, fire — fighting, medical,
space explorations as well as wars. Early industrial robots handled radioactive
material in atomic labs and were called master/slave manipulators. They were
connected together with mechanical linkages and steel cables. Remote arm
manipulators can now be moved by push buttons, switches or joysticks. Current
robots have advanced sensory systems that process information and appear to
function as if they have brains. Their "brain" is actually a form of computerized
artificial intelligence (Al). Al allows a robot to perceive conditions and decide upon

a course of action based on those conditions. [12]

1.2 Problem statement

The ability to produce a functioning robot with good stability and control takes
high technology as well as research. Robots are closely related to Al (artificial
intelligence) where scientists are stiil on research to produce a robot which is capable

of thinking and making its own decision (unprogrammed).

The main idea of this project is to build a robot that can imitate a pet (for
example a cat or a dog). There are a few points of significance in having a pet robot
to human beings. When pet robots are designed as close as being to a real life pet, it
could be the next innovation of replacing real life pets. Owning a pet is something
people desire to have but in this modern evolving era, people are too busy to handle
and take care of pets at home. By having a pet robot instead of a real one, people can
now have the pleasure of owning a pet without the fuss of maintaining or care taking
them. Besides that, pet robots can also be a companion to humans. It can play the
role of a ‘mans best friend’ just like dogs. For example with the rising statistics of

senior citizens, pets can be a

great companion to them and accompany them throughout their remaining life.
Unfortunately, majority of them do not have the capability of holding the
responsibility of maintaining a pet (for example giving them baths and feeding
them). By replacing these pets with a pet robot, they are able to keep a pet without
pressuring their ability to take care of these them. Another application of pet robot in
our everyday life is that it can be a good assistant to humans. By enhancing and
adding more features to the robot, it can help people in various ways. For example, it
can help blind people guiding them in walks by implementing sensors to the robot to
detect object obstacles blocking their way. It can also be enhanced to supervise
children. The pet robot can be a toy to the child and also be a nanny for parents to

ensure their child is safe and sound.

Throughout the years many robots have been built and enhanced to perform
different tasks for humans. Every type of robot was given specific functions and task
just by enhancing the basic foundation of a robot. In this project, the author is
rebuilding the foundation of all robots and adding features to make it as similar as a
pet robot. The pet robot will have basic fundamental functions. By building the basic
pet robot it can later be enhanced with more features and more sophisticated code

programming to achieve the goals mentioned above.

1.3 Objective and Scope of Study

The main idea of this project is not only to build a robot, but to make it able to
imitate the behavior of pets. It is difficult to make the robot to fully imitate all the
behaviors of a cat or a dog, but some personality can be implemented to the robot as
so it is acceptable as a pet. The behavior and characteristics of the robot is very

subjective and general. Some of the ideas considered for this project are:

1} Random movement functions

Most pets have their own behavior and characteristics. We need not order

them on how to move or how to act. In order to implement these criteria to

3

the robot, it will need to have randém movements on its own. It will choose
its own path and its own way of movements to go forward, reverse, turn or
turn, reverse and turn again, it is all to be decided randomly. The movements
will be different in each cycle. This will give the robot an essence of life. It

will alse make the robot seem more active.

2) Detecting and avoiding object obstacles

Like most living creatures, the robot has ‘eyes’” which enable it to see what is
in front of it. With this feature, the robot is able to see the object blocking its
path. The robot is then given the intelligence to avoid the object and prevent
it from bumping into things. This gives the robot a characteristic of

independence.

3) Light detecting

Every living creature has a natural feeling of fear. Therefore by
implementing this feature it could reduce the impression of robotic towards
the robot. The robot will have a fear of darkness. When it is in the dark, it
will stop and start to glow in the dark as if it wants us to find it. Besides
glowing in the dark, it will also start to behave strangely by moving in a

peculiar way (for example shaking) to show its reaction of fear.

These are the main characteristics that the author has considered to
implement in the robot. Once the main circuit has been completed, more functions

and characteristics could be added to enhance the robot.

1.3.1 Objective:

1) To design and build a robot with the ability to:

e Move forward

s Move backward

e Turnright and turn left
s Detect object obstacles
¢ Avoid object obstacles
e Detect light

¢ React to light

2) To design the codings and implement them in a microcontroller to control the
functions and movements of the robot.

3) To program the robot to have its own behavior and characteristics by having

random

movements

1.3.2 Scope of study

To achieve the objective of this project, studies and research on areas related
with robotics is concentrated. In order to build a basic robot, basic functions such as
moving forward, reverse and turning will have to be applied to the robot. This will
require a combination of electrical and mechanical field knowledge and application
where integrated clectrical circuits will guide the mechanical movements of the
robot.

In the mechanical area, the robot must have components that will enable it to
move forward, reverse and turn. Commonly there are two types of robot to enable
these basic functions. First is the walking legged robot and the other is a wheeled
robot. Both of these two options are considered to design a robot most suitable for

the specifications of a pet robot.

In the electrical area, the circuit for the brain of the robot is built. The main
component of the brain is a microcontroller which will control the movement of the
robot. A programmable microcontroller is needed to provide flexibility to the
functions and its special features. There are many types of microcontroller and the
most suitable one will be selected to be used in this project. To control the robots
basic movement (forward, reverse, turn), a dc motor is needed and it will be

controtled by the chip.

In order to program the microcontroller, a basic knowledge in programming
is needed. Flexibility in coding can provide a wider variety and possibility to the
functions of the robot. Software in these areas is needed to design and implement the

coding to the chip.

Since the robot is required to detect objects and lights, sensors are needed to
perform these functions. When these sensors are triggered, they will send a signal to
the microcontroller. The microcontroller will then send out a signal to the necessary
component to show reaction to the sensors. There are many types of sensors to
choose from but for this project only two types of sensors are being considered that
is the infrared sensor and the ultrasonic sensor. Another type of sensor needed for the
robot is the light sensor. Photocells are used and will serve the purpose of detecting
light when they are illuminated. It will be integrated to a circuit to send signal to the
microcontroller to perform the appropriate action. This will enable the robot to

differentiate between dark and bright areas.

CHAPTER 2

LITERATURE REVIEW AND/OR THEORY

Research has been done on different areas of this project to learn more on
how to build a pet robot. The research of this project has been divided into three
sections which is the microcontroller circuits, the mechanical movements and the

programming.
2.1 Microcontroller and Circuits

There will be several circuits implemented to the robot. All of these circuits
will be combined and integrated together to create the fundamental of a basic robot.
All input and output signals of each circuit will be sent to the main circuit which will
play the role of commanding and giving instructions to other components. Basically

there are three major circuits:
a) Main circuit
b) H-bridge circuit
¢) Infrared sensor circuit

d) Light sensor circuit

2.1.1 Main Circuit

All the movements and decisions of the robot will be conirotled by one main

circuit. This circuit contains the PIC microcontroller which is programmed to control

the functions of the robot. The output the pins of the microcontroller is then

connected to the motors of th¢ robot and other output components.
The main circuit contains these major components:
s Microcontroller PIC 16F84A
¢ Voltage Regulator

¢ Oscillator Clock

2.1.1.1 Microcontroller

The brain of the robot will be controlled by a microcontroller chip. Various
types of chip have been researched and the author prefers to use PIC 16F84A. This is
due to a few advantages that this chip holds. This programmable microcontroller is
commonly used in integrated circuits. The size of the robot is designed to be small to
achieve its motive of imitating a pet. PIC 16F84A is small enough to be placed in
the main circuit of the robot. Although it has less number of inputs and output pins,
it is enough to cater for all the functions for the pet robot in this project. This chip
will be programmed to perform the required tasks. The program memory contains
1K words, which translates to 1024 instructions, since each 14-bit program memory
word is the same width as each device instruction .The data memory (RAM)
contains 68 bytes. Data EEPROM is 64 bytes.

There are also 13 I/O pins that are user-configured on a pin-to-pin basis.

Some pins are multiplexed with other device functions. These functions include:

* External interrupt
* Change on PORTB interrupts
* Timer0 clock input
Features:
» Operating speed: DC - 20 MHz clock input
DC - 200 ns instruction cycle
« 1024 words of program memory
* 68 bytes of Data RAM
* 64 bytes of Data EEPROM

» 14-bit wide instruction words

» 8-bit wide data bytes

» 15 Special Function Hardware registers

» Eight-level deep hardware stack

» Direct, indirect and relative addressing modes
* Four interrupt sources:

- External RBO/INT pin

- TMRO timer overflow

~ PORTB<7:4> interrupt-on-change

- Data EEPROM write complete

Peripheral Features:

» 13 1/Q pins with individual direction control

» High current sink/source for direct LED drive
- 25 mA sink max. per pin

- 25 mA source max. per pin

» TMRO: 8-bit timer/counter with 8-bit
programmable prescaler

Special Microcontroller Features:

« 10,000 erase/write cycles Enhanced FLASH
Program memory typical

+ 10,000,000 typical erase/write cycles EEPROM
Data memory typical

« EEPROM Data Retention > 40 years

« In-Circuit Serial Programming™ (ICSP™) - via
two pins

*» Power-on Reset (POR), Power-up Timer (PWRT),
Oscillator Start-up Timer (OST)

» Watchdog Timer (WDT) with its own On-Chip RC
Oscillator for reliable operation

» Code protection

» Power saving SLEEP mode

« Selectable oscillator options

Below is a pin diagram of PIC 16F84A.:

PDIP, SOIC
RAZ =[] o1 - 18[] =— RA1
RA3 =—=[] 2 17[]=—= RAD
RAMTOCKI =—=[13 1 16[]=—0SCUCLKIN
MCIR —14 O 15— OSC2CLKOUT
veg —= [5 @ 4 ey
RBOANT =—=[16 @ 13{]=— RE7
RBY =—=[]7 » 12{T~—=RB6
RB2 »—=[]8 11 [1 4=+ RES
rB3 =[] 9 19 [] =— RB4

Figure 1: Pin Diagram of PIC 16F84A

The software that the author used to program the PIC16F84A is the PIC C
Compiler and it will be simulated by PIC simulator IDE. The datasheet for PIC
16F84A is shown in appendix A.

2.1.1.2 Voltage Regulator

A voltage regulator is an electrical regulator designed to automatically
maintain a constant voltage level. Essentiaily, all a voltage regulator does is,
obviously, regulate voltage; That is, it limits the voltage that passes through it. Each
regulator has a voltage rating; For example, the 7805 IC (these regulators are often
considered to be ICs) is a 5-volt voltage regulator. No matter how many volts is put
into it, it will output only 5 volts. This means that by connecting 9-volt battery, a 12-
volt power supply, or virtually anything else that's over 5 voits, and have the 7805
will give a of 5 volts out. There are also 7812 (12-volt) and 7815 (15-volt) three-pin
regulators in common use. The pinout for a three-pin voltage regulator is as follows

[13]:

10

1. Voltage in
2. Ground
3. Voltage out

For example, with a 9-volt battery, connect the positive end to pin | and the
negative (or ground) end to pin 2. A 7805 would then give a +5 volts on pin 3.
Voltage regulators are simple and useful. There are only two important drawbacks to
them: First, the input voltage must be higher than the output voltage. For example,
we cannot give a 7805 only 2 or 3 volts and expect it to give a 5 volts in return.
Generally, the input voltage must be at least 2 volts higher than the desired output
voltage, so a 7805 would require about 7 volts to work properly. The other problem:
The excess voltage is dissipated as heat. At low voltages (such as using a 9-volt
battery with a 7805), this is not a problem. At higher voltages, however, it becomes a
very real problem and you must have some way of controlling the temperature so

you don't melt your regulator| 13].

This is why most voltage regulators have a metal plate with a hole in it; That
plate is intended for attaching a heat sink to [13]. Figure 2 shows the voltage

regulator pins.

(3) /’1 e (1) input

(2) GND

Figure 2: Voltage Regulator 7805

The circuit is supplied with a 9Volt Battery. The PIC only uses Svolts. A 5 volt
voltage regulator 7850 is used to step down the power supply from 9V to 5V. Figure

3 shows the connection diagram of the voltage regulator.

Voltag

7805

-9V + ’

T

+5V

Gnd

Figure 3: Voltage Regulator Connection
Diagram

2.1.1.3 Oscillator Clock

A crystal oscillator is an electronic circuit that uses the mechanical resonance
of a vibrating crystal of piezoelectric material to create an electrical signal with a
very precise frequency. This frequency is commonly used to keep track of time (as in
quartz wristwatches), to provide a stable clock signal for digital integrated circuits,

and to stabilize frequencies for radio transmitters/receivers.

The crystal oscillator circuit sustains oscillation by taking a voltage signal
from the quartz resonator, amplifying it, and feeding it back to the resonator. A
regular timing crystal contains two electrically conductive plates, with a slice or
tuning fork of quartz crystal sandwiched between them. During startup, the circuit
around the crystal applies a random noise AC signal to it, and purely by chance, a
tiny fraction of the noise will be at the resonant frequency of the crystal. The crystal
will therefore start oscillating in synchrony with that signal. As the oscillator
amplifies the signals coming out of the crystal, the signals in the crystal's frequency
band will become stronger, eventually dominating the output of the oscillator.

Natural resistance in the circuit and in the quartz crystal filter out all the unwanted

12

frequencies.One of the most important traits of quartz crystal oscillators is that they
can exhibit very low phase noise. In many oscillators, any spectral energy at the
resonant frequency will be amplified by the oscillator, resulting in a collection of
tones at different phases. In a crystal oscillator, the crystal mostly vibrates in one
axis. Therefore, only one phase is dominant. This property of low phase noise makes
them particularly useful in telecommunications where stable signals are needed, and

in scientific equipment where very precise time references are needed.[2]

Figure 4: Crystal Clock Oscillator

2.12 H-BRIDGE

An H-bridge is an electronic circuit which enables DC electric motors to be
run forwards or backwards. These circuits are often used in robotics. H-bridges are
available as integrated circuits, or can be built from discrete components. Figure 5

shows the H-bridge connection circuit.

S1 S3

Ot @

s2 / s4 /

Figure 5: H-Bridge Connection circuit

13

b Lol Lo

Figure é: Two States of H-Bridge

Using the nomenclature above, the switches S1 and S2 should never be
closed at the same time, as this would cause a short circuit on the input voltage
source. The same applies to the switches S3 and S4. This condition is known as

shoot-through.

The H-Bridge arrangement is generally used to reverse the polarity of the
motor, but can also be used to 'brake' the motor, where the motor comes to a sudden
stop, as the motors terminals are shorted, or to let the motor 'free run' to a stop, as the

motor is effectively disconnected from the circuit. Table 7 summarises the operation

[3].

Table 1: H-Bridge Summarize Function

S$1 82 S3 §4 Result

1 0 0 1 Motor moves right
1 N ¢

0 0 0 0O Motorfree runs
g1 10N

Motor moves left

Motor brakes

2.1.3 Infrared Radiation

Infrared (IR) radiation is electromagnetic radiation of a wavelength longer
than that of visible light, but shorter than that of microwaves. The name means
"below red" (from the Latin infra, "below"), red being the color of visible light with

the longest wavelength. Infrared radiation has wavelengths between about 750 nm

14

and 1 mm, spanning five orders of magnitude. Humans at normal body temperature
can radiate at a wavelength of 10 microns.

Infrared light lies between the visible and microwave portions of the
electromagnetic spectrum. Infrared light has a range of wavelengths, just like visible
light having wavelengths that range from red light to violet. "Near infrared" light is
closest in wavelength to visible light and "far infrared" is closer to the microwave
region of the electromagnetic spectrum. The longer, far infrared wavelengths are
about the size of a pin head and the shorter, near infrared ones are the size of cells, or
are microscopic.

Shorter and near infrared waves are not hot at all - in fact you cannot even

feel them. These shorter wavelengths are the ones in TV's remote control [7].

The Infrared emitter detector circuit is very useful to make a line following
robot, or a robot with basic object or obstacle detection. Infrared emitter detector pair
sensors are fairly easy to implement, although involved some level of testing and
calibration to get right. They can be used for obstacle detection, motion detection,

transmitters, encoders, and color detection (such as for line following) [8].

2.1.4 Light Sensor

One of the functions of the robot is when it detects that there is no lights, it
will stop every movement and blink a set of LEDs. Light Dependent Resistor (LDR)

is a light sensor that can be used for this function.

2.14.1 Light Dependent Resistor (LDR)

LDRs or Light Dependent Resistors are very useful especially in light/dark
sensor circuits. Normally the resistance of an LDR is very high, sometimes as high
as 1000 000 ohms, but when they are illuminated with light, resistance drops

dramatically.

mn()
— -
| e N
#(\ﬁ) E
€)8
ression - S

Figure 7: LDR Circuit

The figure above shows a simple LDR circuit with transistors and LEDs.
When the light level is low the resistance of the LDR is high. This prevents current
from flowing to the base of the transistors. Consequently the LED does not light.
However, when light shines onto the LDR its resistance falls and current flows into
the base of the first transistor and then the second transistor. The LED lights. The
preset resistor can be turned up or down to increase or decrease resistance, in this

way it can make the circuit more or less sensitive [4].

Figure 8: Light Dependent Resistor

16

2.2 Mechanical Movement

The most important mechanical aspects of this robot is it is constructed so it
can perform the basic functions of a robot which is moving forward, reverse and
turn. In the early stage of this project, two types of robot are considered which are
the legged type and the wheeled type. The author has done studies on the
mechanical attachment of these two types of robot and the advantages and
disadvantages are considered. For legged robot, it is more sophisticated compared to
a wheeled robot. It will required much more control and more motors. It will require
a more complex circuit to give it more control over the legs. Legged robot is useful
in unlevel terrains where as wheeled is robot require more control to establish
stability. The ultimate problem with legged robot is balancing. The robot’s body and
legs need to be designed to achieve proper balancing to ensure stability during its

different movements.

The wheeled robot requires a simpler circuit and minimum number of motors
can be used. It is much faster and easier to balance compared to a legged robot. It is

less complicated to build and requires less control.

Figure 9: Legged Robot (Left) and Wheeled Robot

(Right)
17

The figure 9 shows a six legged robot (right) and a four wheeled robot (left).
Most legged robot is built on six legs to achieve maximum stability and most
wheeled robot are built with four wheels. The figure shows the difference of

construction complexity between a legged robot and a wheeled robot.

2.2.1 Four Wheeled Robot

A four wheeled robot is suitable to build a pet robot. When deciding to build a
four wheeled robot, the author needs to decide the different mechanical wheel

connection of the pet robot.
1. Using one motor to connect all wheels.

In this method, all four wheels are dependent on one another. There will be
only one motor controlling all the wheels at one time. The functions therefore
will only be limited to move forward and backward. The robot will not be

able to make a turn.

o
)

Figure 10: Wheel robot with one motor

2. Using two motors for four wheels, each front and back.

In this method, one motor is connected to two wheels. Two wheels in the

front are connected to one motor and the other two at the back to another

18

motor. The wheels at the back are connected to the motor in a function that it
moves forward and backward. As for the front two wheels it is connected in
such a way that it can move forward and backward and the angular position
of the motor can be changed. This can cause the robot to be able to make a

turn.

Figure 11: Wheel robot with two motors (front, back)

3. Two motors, side by side

In this method, one motor is connected to two wheels. Two wheels at one
side will be connected to a motor and the other will be connected to a
different motor. These two sets of wheels will move independently. By
having this connection, the robot is able to move forward. reverse and turn. It
can turn to a large radius by having one side of the wheels to move and the

other is not.

19

It is also able to turn in a smaller radius by having one side of the

wheels to move forward and the other side to move in reverse.

Figure 12: Wheel robot with two motors (left right)

2.3 Printable Circuit Board (PCB)

A printed circuit board, or PCB, is used to mechanically support and electrically
connect electronic components using conductive pathways, or traces, etched from
copper sheets laminated onto a non-conductive substrate. Alternative names are
printed wiring board (PWB), and etched wiring board. A PCB populated with
electronic components is a printed circuit assembly (PCA), also known as a printed
circuit board assembly (PCBA).

PCBs are rugged, inexpensive, and can be highly reliable. They require much more
layout effort and higher initial cost than either wire-wrapped or point-to-point
constructed circuits, but are much cheaper, faster, and consistent in high volume
production. Much of the electronics industry's PCB design, assembly, and quality

control needs are set by standards that are published by the IPC organization [9].

2.3.1 Patterning (etching)

The vast majority of printed circuit boards are made by bonding a layer of copper
over the entire substrate, sometimes on both sides, (creating a "blank PCB") then
removing unwanted copper after applying a temporary mask (eg. by etching),

leaving only the desired copper traces. A few PCBs are made by adding traces to the

20

bare substrate (or a substrate with a very thin layer of copper) usually by a complex
process of multiple electroplating steps [9].
There are three common "subtractive" methods (methods that remove

copper) used for the production of printed circuit boards:

1. Silk screen printing uses etch-resistant inks to protect the copper foil.
Subsequent etching removes the unwanted copper. Alternatively, the ink may be
conductive, printed on a blank (non-conductive) board. The latter technique is also

used in the manufacture of hybrid circuits.

2. Photoengraving uses a photomask and chemical etching to remove the copper
foil from the substrate. The photomask is usually prepared with a photoplotter from
data produced by a technician using CAM, or comﬁuter-aided manufacturing
software. Laser-printed (ransparencies are typically employed for phototools;
however, direct laser imaging techniques are being employed to replace phototools

for high-resolution requirements.

3. PCB milling uses a two or three-axis mechanical milling system to mill away
the copper foil from the substrate. A PCB milling machine (referred to as a 'PCB
Prototyper') operates in a similar way to a plotter, receiving commands from the host
software that control the position of the milling head in the x, y, and (if relevant) z
axis. Data to drive the Prototyper is extracted from files generated in PCB design

software and stored in HPGL or Gerber file format. [9]
2.3.2 Lamination

Some PCBs have trace layers inside the PCB and are called multi-layer

PCBs. These are formed by bonding together separately etched thin boards.[9]
2.3.3 Drilling
Holes, or vias, through a PCB are typically drilled with tiny drill bits made of

solid tungsten carbide. The drilling is performed by automated drilling machines
21

with placement controlled by a drill tape or drill file. These computer-generated files
are also called numerically controlled drill (NCD) files or "Excellon files". The drill
file describes the location and size of each drilled hole.

When very small vias are required, drilling with mechanical bits is costly because of
high rates of wear and breakage. In this case, the vias may be evaporated by lasers.
Laser-drilled vias typically have an inferior surface finish inside the hole. These
holes are called micro vias.

It is also possible with controlled-depth drilling, laser drilling, or by pre-drilling the
individual sheets of the PCB before lamination, to produce holes that connect only
some of the copper layers, rather than passing through the entire board. These holes
are called blind vias when they connect an internal copper layer to an outer layer, or
buried vias when they connect two or more internal copper layers and no outer
layers.

The walls of the holes, for hoards with 2 or more layers, are plated with copper to
form plated-through holes that electrically connect the conducting layers of the PCB.
For multilayer boards, those with 4 layers or more, drilling typically produces a
smear comprised of the bonding agent in the laminate system. Before the holes can
be plated through, this smear must be removed by a chemical de-smear process, or

by plasma-etch.[9]

22

CHAPTER 3

METHODOLOGY/PROJECT WORK

The robot was built step- by-step through different sections. Figure 13 shows
the flow diagram of the building the robot.

identify the -
problgem .| Definethe Research
statement objective
h
Select | Evaluate | tdentify
Alternative consequences altern ative

l - | Setcriteria and
L Set Constrain [' specification
Ly
NO '

Meet
requirement

[res

Project
Accomplish

Figure 13: Project Flow Diagram

23

Process of designing the robot consists of three different sections, the body

(mechanical parts), circuit (electrical) and programming (PIC16F84A).

3.1 The Body

The bottom part of the body is very important to determine how the robot
will be able to move. The options of weather to build a legged robot or wheeled
robot was laid out in theory and after all advantages and disadvantages has been
considered, the author has decided to build a wheeled robot. In this project, the
auther will not be building the robots body but will use the base of the robot from

what is available on the market and reconstruct its circuitry to function as required.

3.1.1 Wheeled Robot

The robot is designed to be a wheeled robot. This is because robots with
wheels are able to move faster and has better balancing control compared with
legged robots. This is type of mechanical connection is suitable for this project as
common pets are usually fast and need to have better stability to be able to move in
different ways. The robot will have 4 wheels controlled by two motors. Each motor
will control two sets of wheels independently. Two wheels are placed in front and

the other two at the back. Figure 14 shows the motor connections to the wheels:

24

Figure 14: Motor
Connection

The mechanical connection of the back wheels to its motor will enable the
robot to move forward and reverse. The wheels will move forward when the motor is
connected to the positive voltage and reverse when the motor is connected to
negative voltage. The positive and negative voltage input to the motor can be
controlled by the PIC. The mechanical connection of the front motor to its wheels
will enable the wheels to change angle and thus allowing the robot to move right or
left. Whether the wheels are to turn left or right is once again controlled by the

positive or negative input voltage to the motor.

Figure 15: Front Wheels and Back
Wheels

25

3.2 Designing the Circuit

The first step is to design Circuit for
the circuit for the

PIC16F84A. This will be PIC16F84A
the main circuit.

The secound step is to naE

. S Circuit
build the circuit for the
Sensors for sensors
Finally a circuit for light Circuit for
sensor to enable the light
robot to detect light

sensor

Figure 16: Designing the Circuits flow Diagram

26

3.3

The first step is to do
research and self
learning on how to
program a PIC using C
Compiler

The Code is then
designed in the software
according to the
functions. It is compiled,
and errors are checked
and corrected.

The code is then
implemented to the
PIC16F877

Figure 17: Programming the chip flow diagram

Programming the PIC

Research on
coding PIC and
using C
Compiler

Designing the
code

according to its
fiintinne

Implementing
code to
PIC16F877

27

3.3.1 PIC C Compiler Software

There are many soft wares used to program a PIC. In this project, the PIC C
compiler Software is used to program the PIC 16F877. This software is chosen

because it is easy to work with and is user friendly.

Fie Poject Edi Opions Compie View Tooks Debug Help

N Hesd & DN € §
i Hetw - Ex 8 w
numchylc] —

SincludeC16F877.h> -
Buse delay(clock-4800000)

main()
{
while(true)

if (input(PIN_BE))
{
output_high{PIN D2);

output_high{PIN C7);
H

else
iF (input(PIN_B1))
{
output_high(PIN_C6);

else

{
if (input(PIN_B2))
{

1:1 E:inotestFyP i€ nathing

Figure 18: C Compiler Software

The figure 18 shows the interface of PIC C Compiler. The code is written and

designed in the workspace area.

After the code is completed, it is compiled. Codes with errors are then

analyzed and corrected.

The successfully compiled codes need to be tested whether it functions
properly before it is implemented onto the chip. This is done by using software
called PIC

28

Simulator IDE. The code is loaded into this software and the simulation. The inputs

and outputs of the microcontroller can be viewed from the virtual microcontroller

view window and any errors from the coding can be detected.

[Program Location | il B AA2
| Microcontraller | PICTEFB4A T/ R
Kl e Navtwbnlion 1. [RaToca
! f WCLA
Program Counter and W Register [inwtnactions Counter. | [= e
[P [oooo T [Clock Cyckes Counter | 0 Rl e
[W Regster [oo FTTTTTTT [TReal TmeDuation | DOps B D
Special Function Regsters (SFRs) General Pupose Regssters [GPRs) | 7|88 [Re2
H Binasy Value H H
Addess andName Vahe 76543210 Add Vo AdS Ve il B A8l
[og T [ooch (00 [oich [0 =| §r OnT
& rrrrrrTe || e (o for st
(16 T WErTT O0Eh | 00 [O1ER (00
L O0Fh |00 [01Fh (00
T L RURURL [0ibh [00 [D20n (00
oo T [011h (00 [02ih [00
oo rrrrrrrnr 012h [00 [022h [00
[0 CCCCCCTT [oak (00 [62 [0
fipg’ T OO [014h (00 [024n |00
igar CCTCCTTT [015h (00 [026h (D00
[FF EAESEEES 0i6h |00 [028h [00
[F rrrEEEES 0ih |00 [027h |00
[FF EEEEEEEE [O1en (00 [D28h (00
oo T rrrr {oi%h (00 [02%h (00
g rrrrrrrr (O1ah (00 (028K [00°
[~ FrrrrreT - foek oo fo8k oo

Figure 19: PIC Simulator IDE
Figure 19 shows the interface of PIC simulator IDE. By using the PIC
simulator IDE, errors can be detected easily and time can be saved. This is because

the codings are checked before implementing them onto the PIC.

After the code is checked with the PIC Simulator IDE, it now can be

implemented onto

29

-8 TF V.o A7 - @3
Address - Program Code Configuraion
0000: OOFF OOFF OOFF 0OFF OOFF OOFF OOFF OOFF yyyvyyyy ~

0008: OOFF OOFF OOFF OOFF 0GFF OOFF UOFF OOFF yyyvyyyyy

0010: OOFF OOFF ODFP OOFF DOFF UOFF DOFF OOFF yyyy¥vyy

0018: OOFF GOFF OOFF 0OFF OGFF OOFF OOFF OOFF yy¥yyyyy

0020 OOFF DOFF OOFF DOFF OOFF DOFF DOFF OOFF Yyyyyyyy

0028: OOFF OOFF OOFF OOFF OOFF OOFF OOFF OOFF $Y¥VWVVY

0030: OOFF DOFF OOFF 0OFF OOFF OOFF OOFF OOFF V¥Y¥V¥Y

0038: OCFF OOFF OOFF OOFF OOFF OOFF OGFF 0OFF yywyyyyy

0046: OGFF OOFF OOFF OOFF DOFF OOFF OOFF OOFF yYYYYYYY

D048: OOFF OOFF OOFP 0OFF OUFF OUFF OUFF OUFF yyyyyyyy

0030: OOFF OOFF OOFF DUFF OOFF DOFF DUFF DOFF §Y¥Yyyy¥y

0038: DOFF OOFF OOFF OOFF OOFF OOFF OOFF OOFF §yyy¥yyy

D060: OOFF OOFF OOFF OOFF OOFF OOFF OUFF OOFF §y¥yywyy

0066: DOFF OOFF OOFF OOFF DOFF O0FF OOFF OUFF yyvwyyyyy

0070: OOFF DOFF OOFF OOFF OGPF OUFF OGFF 0OFF Vyyyyyyy

0076: OGFF OOFF OOFF OOFF OOFF OOFF OOFF OOFF yYyyyyyyy

DOBD: ODOFF OOFF DOFF OOFF DOFF OOFF OOFF OOFF ¥¥y¥yyvy

6088: OOFF OOFF OOFF OOFF OOFF OOFF OOFF OOFF §¥¥yyyyy

0090: ODOFF OOFF OOFF OUFF OUFF OOFF OUFF DOFF yyyyyyyy i
0098: OOFF OOFF OOFF OOFF OOFF OUFF OOFF OUFF §9¥¥¥y¥y —
00AD: OOFF ODOFF OOFF OOFF OOFF OOFF DOFF OOFF ¥YYyywyy Feon
anan ANFE ANFY NAFF AAFF O0FF AnNPe aneve anes Rt
Buffer 1 | Bufer 2 | Buffer 3 | Butfer 4 | Butter 5 |

DM Programmes on Com3 Device: SDAZS4S (56)

Figure 20: PIC Programming Software

the microcontroller. This is done by using a PIC Programming Software (as shown
in figure 20) and a universal PIC programming device. The code that have been
compiled and checked is loaded to the PIC programming software. The chip is

inserted in the PIC programming device as shown below:

Figure 21: PIC Programming Device

The microcontroller chip is now programmed and is ready to be used in the

main circuit of the robot.

30

3.4 Implementing the Circuits

After collecting all the components for the circuits, it can be implemented to
the circuit board. For initial implementation for designing and testing, the
components are soldered onto a simple breadboard. Although this circuit board is
functioning correctly and successfully, it is not a very stable circuit. Short circuits
can occur because the cuprum line is connected all over the board. This problem can

be solved by implementing the circuits onto a printable circuit boards (PCB)

3.4.1 Printable Circuit Board Method

Creating a PCB involves 2 main process. The first process involves using a
software called Eagle 4.13 Light. The schematic drawing of the designed circuit is
first created using this software. The figure 22 is an example of a schematic drawing

using Eagle software:

B 08 Dee o [ock Ubrey (ptow ke (b

2@8F oy BX QAQAR ~ - TF 7
3 [T oy
L 1t Charge
11 20
£ Tt
e Doty
* Ged
% & [
T 1 o
bl + L N
ar 7 e 4 Ot
Fu < | g-‘ | oot
7T Fowe
an L | B ESh 5
=d J "‘H"‘N“ . b

e | { s

WL | - E Sorel
|]
a | ‘ r# Tei
v
Ve
e

TJ S -

EH!?

Figure 22: Schematics Drawings in Eagle 4.13 Light
Software

31

After all the components are in place, the next step is to convert the drawings to a
virtual circuit board as shown below. Here all the components will be arranged in a
way where no wires can cross each other and cause a short circuit. The software will
automatically create a route for the path of the cuprum line which will be etched

later.

BON ANoan X4
‘MO NN LIE

sfisffliEne

:

Figure 23: PCB Route Designing

The second process involves drilling holes and etching cuprum onto the

circuit board. This will be done at the lab assisted by the technician on duty.

S

CHAPTER 4

RESULTS & DISCUSSIONS

4.1 RESULTS

After considering the theories and methods of each section of the robot, the

author has implemented and design the to robot to meet the objective of this project.

4.1.1 Robot Function Flow Diagram

LI

Figure 24: Function Flow Diagram

33

Figure 24 shows a flow diagram designed to lay out the functions of the
robots. It consists of the main and basic functions of the robot. The codings designed

will be base on this flow diagram.

Firstly, the robot is started. This consists of turning on the power switch of
the robot. An LED indicator which is placed on the main circuit will light up to

indicate that it has been powered up.

Next, the robot will be in idle mode. This means that the robot will delay any
movements for a few seconds before performing any functions, This mode is

important to ease the flow of the next step.

The robot will now check for the first condition that is to check weather there
is any light. If there is light, then the robot will go to a mode where a number of
LEDs will blink. The LEDs will blink until there is light turned on and move on to

the next step function.

If there is no light detected, the robot will then check for the next condition
which is to check weather there is an object blocking its way in front of it. If there is

an object, the robot will reverse, turn and move forward avoiding the object.

If there is no object detected, the robot will then go to having random
movements mode. In this mode, the robot will constantly check weather there is light
detected and object detected and interrupt the random movement when one of the

condition is met.

4.1.2 Main Circuit
4.1.2.1 Microcontroller PIC16F84A Circuit

Figure below shows the pins of the PIC 16F84A. Pin 14 (VDD) and pin 4
(MCLR) is connected to 5V. Pin 5 (VSS) is connected to ground. Pin 15 and 16
(OSC1&2) is connected to a 4AMHz two legged clock which will run the circuit. The
outputs that will connect to the motor circuit are B4,B5, B6, and B7. Pin B4 and B3

34

is connected to the back motor. Pin B5 will allow negative voltage to flow to the
motor which will make the wheels turn in reserve mode. Pin B4 will allow positive
voltage to flow to the motor which will make the wheels turn in forward mode. Pin
B6 and B7 is connected to the front motor which will determine weather the robot is
to turn left or right. Pin B6 will allow positive voltage to flow through the motor and
enables the wheel to turn right while pin B7 enables flow of negative voltage
through the motor and enables the wheel to turn left. An LED is connected to pin B3

as an ‘ON’ indicator. This LED will light up when the circuit is connected to a

power supply.
+5V
A2 Al
A3 AO _
Ad OSC AMHZ
MCILR 1 ClK
Gnad—— vs$ OSC
RO] Ea— Left
B1 VDD Righ
B2 B7 —————— Forwar
LED B3 Bg———— revers
B5
B4

Figure 25: Pin Connection of PIC
16F84A

The circuit diagram is then implemented to a circuit board. All the
components are soldered accordingly. Figure below shows the completed main

circuit:

35

the PIC to test the movement of the robot. Below shows a simple coding used to test

When the circuit is successfully connected, a simple program is encoded to

the robot.

main()

!

while(true)

{

output_high(PIN_B3);
output_low(PIN_B4);
output_high(PIN_BS5);
output_low(PIN_B6);
output_low(PIN_B7);
delay_ms(5000);

output_high(PIN_B3):
output_high(PIN_B4);
output_low(PIN_BS5);
output_low(PIN_B6);
output_low(PIN_B7);
delay _ms(5000):

output_high(PIN_B3):
output_low(PIN_B4);
output_low(PIN_B5);
output_high(PIN_B6);
output_low(PIN_B7);
delay ms(5000);

output_high(PIN_B3);
output_low(PIN_B4);
output_low(PIN_B5):
output_low(PIN_B6):
output_high(PIN_B7);
delay _ms(5000);

==
'
L]
4
:
+
.
L
L]
L]

Figure 24: Main Circuit

//LED ON indicator lights up
[freverse mode off
/lforward mode on
/iright mode off
[Neft mode off
/I delay for 5 secs

//LED ON indicator lights up
/freverse mode on
/lforward mode off
/Iright mode off
/eft mode off
/ldelay for 5 secs

//LED ON indicator lights up
/lreverse mode off
//forward mode off’
/fright mode on
/Neft mode off
/fdelay for 5 secs

//LED ON indicator lights up
/Ireverse mode off
/lforward mode off
//right mode on
/Neft mode off
/ldelay for 5 secs

36

After the code is implemented to the pic, the robot seems to function
correctly according to the code. This shows the implementation of the main circuit is

successful.

4.1.3 PIC Programming

Below is the coding that has been redesigned. Sub functions has been
included inside the previous coding to simplify it. An initial start-up sequence was
also inserted to check the initial condition of the robot when it is turned on before
starting any other functions. The initial start-up sequence will check each forward,

reverse, left and right mode of the robot is fully functioning.

#include<16F84a.h>
#use delay(clock=4000000}
f#tfuses XT,NOPROTECTNOWDT

/fall subfunctions

void all pause(void);
void delay_gap(void);
void intervention{void);

//start main function
main()

{
//INITIATE START-UP SEQUENCE

output_high(PIN B3); //B3 is POWER indicator LED ON

- output_low{PIN B4); /B4 is LEFT
output high(PIN B5); //B5 is RIGHT
output_low{PIN_B6); //B6 is FORWARD
output_low(PIN B7); //B7 is REVERSE
delay_ms(200); //DELAY BEGIN AFTER STARTUP

output_low(PIN B3); //B3 is POWER indicator LED ON
output_high(PTN_B3); //B3 is POWER indicator LED ON
output_low(PIN B4); /iB4 is LEFT
output_low(PIN_BS5); /MBS is RIGHT

37

output_low(PIN_B6); //B6 is FORWARD
output_low(PIN_B7); //B7 is REVERSE
delay ms(200); //DELAY BEGIN AFTER STARTUP

output_high{PIN B3); //B3 is POWER indicator LED ON

output_low(PIN_B3); //B3 is POWER indicator LED ON
output_low(PIN B4); //B4 is LEFT
output_low(PIN_B5); //BS5 is RIGHT
output_high(PIN_B6); //B6 is FORWARD
output_low(PIN_B7); //B7 is REVERSE

delay _ms(100); //DELAY BEGIN AFTER STARTUP

output low(PIN B3); //B3 is POWER indicator LED ON
output_low(PIN_B3); //B3 is POWER indjcator LED ON

output low(PIN_B4); //B4 is LEFT

output_low(PIN B5); //B5 is REGHT

output_low(PIN B6), //B6 is FORWARD
output_high(PIN_B7); //B7 is REVERSE

delay_ms(100); //MDELAY BEGIN AFTER STARTUP

This coding will create an initiate start up sequence. In this sequence, the robot will
first check weather all of the wheels movements are working. It will command the back
wheels to go forward, then to go reverse. This is to check the functionality of the back
wheels, Then it will check the functionality of the front wheels and command the wheels to
go right first and then left.

/ISTART LOOP
while(true)
{
output_high(PIN_B3); //B3 is POWER indicator LED ON
if INPUT(PIN_B2))
H

intervention();

}

else
{
//FORWARD LEFT FOR 5 MILLISECONDS
output high(PIN B4);
output_low(PIN_B3);
output_high(PIN B6);
output_low(PIN B7);

delay ms(700);

38

all pause();

//REVERSE RIGHT FOR 5 MILLISECONDS
output low(PIN_B4);

output high(PIN_BS5);

output low(PIN B6);

output_high(PIN B7);

delay ms(400);

all_pause();

/FORWARD LEFT FOR 5 MILLISECONDS
output_high(PIN_B4);

output_low(PIN B5);

output_high{(PIN_B6);

output_low(PIN B7),

delay ms(700);

This is the loop function that will make the robot go forward for 5 milisecounds and

stop for 5 milliseconds repeating constantly. This will make the robot move slower that just
making it go forward without stopping for a few seconds. The speed of the robot is
controlled by using this coding method.

void delaygap()

{

}

output_high(PIN B3);
output low(PIN B4);
output_low{PIN B5);
output_low(PIN_B6);
output_low(PIN_B7);
delay ms(200);

This is the sub function for stopping all movements for 200 milliseconds.

void all pause()

{

}

output_low(PIN B4);

output_low(PIN_B5),
outpuf low(PIN B6);
output low(PIN B7);
delay _ms(500);

This is the sub function for pausing all movements for 5 miliseconds.

3¢

void intervention()

{

output_high(PIN B4);
output low(PIN_B5);
output_low(PIN_B6);
output_low(PIN_B7);
delay ms(200);

output_low(PIN B4);
output_high(PIN_B5);
output_low(PIN B6);
output_low(PIN B7);
delay ms(200);}

This is the sub function that will put a high output to the forward mode of the robot.

4.1.4 Light Sensor Circuit

When the LDR detects light, it will give a signal to the PIC and the PIC will

command the robot to perform its normal function such as moving forward,

backward and turning under certain conditions. But if the photocell does not detect

any light, the PIC will command the robot to be in idle mode while blinking the

LED. Below is the diagram of the light sensor circuit:

POTENTIOM 4

+3V

LIGHT
DEPEND

1.2K

10k

0.1F

19 &+

Figure 27: Light Sensor Circuit

40

When LDR detects light, a signal will be sent to a relay. This signal will
trigger the relay. The output of the relay is then connected to the main circuit which
contains the pic. Pin B2 is assigned as én input to the pic and is then connected to the
output of the relay. By this connection, when ever the LDR detects light, a an input
signal will be sent to the pic. By using programming, the pic can be set to control the
function that the robot should perform when there light. Below is -a simple code
program that shows an output function when the LDR sends a signal to the input pic
indicating there is light. This function uses an °If Else’ function in the programming.
If there is an input signal in pin B2, the output signal B4 will be high. Else, B4 will
be low. This means if there is light, the back wheels will move forward. If there is

not light, the robot will not move at all.

main()
{while(true)
{
output_high(PIN_B3);
if (input(PIN_B2)) /1if there is light
{
output_high(PIN B4); /forward mode on
H
else /fif there is no light
{
output low(PIN_B4); f{forward mode off
H
}
}

After implementing the following program to the circuit, the robots seems to
function as instructed in the coding. this shows the circuit successfully detects the
-input from the LDR when there is light and gives command to the output to perform

certain functions.

41

4.1.5 Infraréd Transmitter and Receiver

In order for the robot to detect object obstacles, an infrared circuit will be
implemented to the robot. The infrared circuit consists of sender circuit which

contains the infrared emitter diode and receiver circuit which consists of infrared

receiver device. Below is a circuit of the infrared circuit sender and receiver.

LED £3

R1

ARAR

R
AAAA
Y

P i
Infrared Diode: g
) {f i

[

U57X32

D2

I P e

-
o

R3
A

VDD
S)
m
ol
witch
+-2Kohm #
A3%kehm

GND

Figure 28: Infrared Transmitier Circuit

<2

i

K1 1K1
JUNEZW-A 2V e

+

_,Retéy

(@3]
NTE1034
5¥4

AR Reciever

o

Figure 29: Infrared Receiver Circuit

42

Both of these circuits will be placed in front of the robot. It is powered up by
an on switch placed at the side of the robot. The transmitter circuit contains the
infrared diode and will emit the infrated wave. The infrared wave can not be seen by
the human eye. There for an LED in placed to this circuit to indicate that the infrared
diode is emitting the waves. When there is an object in front of it, the infrared wave
will hit the object, reflecting it and making it bounce back hiiting the receiver circuit
which contains the infrared receiver component. This will then trigger the relay in
the receiver circuit which acts as a switch allowing current to flow through and
signal to pass by to the PIC. The PIC will then send a signal to the appropriate output

to change the movement of the robot to avoid from bumping into the object.

4.1.6 Overall circuit connection

When all the circuits are finished, they are all connected and integrated together to

form a robot. Below is a diagram of the overall connection:

Inputs

QOuip

Infrared
Reciev
er

Infrared
fransmitter
circuit

Light
Sensor
Circuit

Main Circuit \

Figure 30: Overall Circuit Connection

43

All inputs and outputs will be connected to the main circuit. The input
circuits are the infrared receiver circuit and the light sensor circuit. The infrared
transmitter circuit is connected to the infrared receiver circuit. The output circuits are

the LED circuits and the motor circuit which will then be connected to the wheels.

44

4.1.6 Pictures of Pet Robot

Left View

Back View Front View

45

4.2 Discussion

4.2.1 Speed Control

When the first code was implemented to the robot, the author noticed that the robot
was moving very fast with a constant speed. The robot like pets, must be able to
move slowly or very fast every now and then. The speed needs to vary differently to
give some characteristics an essence of life, It is also important to slower down the
speed in situations where a condition need to be checked. For example, the robot
needs to move slowly before checking for object obstacles else it will end up
bumping into it. To control the speed, the author needs to implement a coding to the
PIC which will slow down the signal sent out to the motor which controls the
wheels. Each time a high signal is sent to an output of the wheels, it will be followed
by a low signal to the same output and delay it for a certain time. This is repeated for

a number of times. For example, the speed control for forward mode is as below:

output_high(PIN_B5); //high output to forward pin
delay ms(100); /fforward mode for 0.1 secs
output_low(PIN_B35); //low output to forward pin
delay_ms(100); //delay stop for 0.1 secs

Implementation of this code to the chip will cause the forward wheels to run for 0.1
second and stop running for 0.1 second. When this cycle is repeated constantly, it
will make the robot seem to be moving smoothly but at a slower rate then by just

making the signal high all the time.

4.2.2 Circuit’s Stability and Sensitivity

During troubleshooting, all the components were connected onto a regular
simple breadboard. After the circuits are finalized, it is then transferred onto a
veraboard which is a type of board that has cuprum connected all over the circuit.
This board requires soldering of the components onto the board. When this is done,

46

all the circuits are then put together and tested. The author later notices that the
circuit is not very stabile and is very sensitive as the connection of cuprum under the
board can easily cause a short circuit which can cause failure to the robot’s functions
and can also cause chips and components to bum. This is later avoided by
transferring these circuits on to a printable circuit board which has better connections
and the probability of a short circuit is less compared to a vera board. The main
circuit remains connected to a veraboard. This is because by using this board,
additional inputs and outputs can easily be implemented without changing the main
circuits. This makes the robot more flexible and provides a wider range of

possibilities to its functions.

42.3 Light sensor sensitivity

A light sensor is implemented onto the robot to enable it to detect light. A
variable resistor is placed in the circuit to adjust the sensitivity of the LDR. Although
the variable resistor helps adjust the robot to react to how much brightness and
darkness, there is still a problem when the robot is a situation where it’s not so bright
and not so dark. At this point the robot will confuse and start to do movements in
dark mode and bright mode alternately. The robot can only work in a condition

where it is purely bright or purely dark.

42.4 Reprogrammable chip

This robot uses a microcontroller PIC 16F84A. This PIC can be
reprogrammed over and over again. This feature allows can us to change the
movement of the robot from time to time. Changes can be made easily by just
altering the codes and implement them back onto the PIC. The robot is more flexible
on its functions and features. It can be enhanced by adding more inputs and outputs.
Additional circuits could be easily added without building a new main circuit or
changing other existing circuits. More intelligence could be added that enables it to
meet certain goals depending on its purposes.

47

CHAPTER 5

CONCLUSION & RECOMMENDATIONS

5.1 Conclusion

The robot is now able to perform all the basic functions such as moving
forward, reverse and turn. The main circuit which contains the microcontroller PIC
16F84A is built and implemented onto the robot that controls all functions, it is
connected to the motor circuit and is able to move the mechanical movement of the
robot. This circuit is also able to detect input signals by other external circuits and
trigger the appropriate output according to the codes designed. The codes are
designed to move the basic movements of the robot and conditions have been
implemented to enable the robot to make decisions according to certain inputs. The
circuit of the light sensor is designed, built and implemented onto the robot to enable
it to detect light. When light is detected, a signal will be sent to the PIC of the main
circuit and the PIC will instruct the robot to react to it. The robot is able to
differentiate between brightness and darkness. The infrared sensor has also been
designed, built and implemented onto the robot. it is placed in front of the robot to
detect object in front of it. The robot is able to detect object blocking its way about
one feet away. All the circuits to achieve the objective of this project is now
completed and running successfully. The robot is now able to move forward, reverse,

turn, detect and avoid object obstaclés, move randomly and sense

48

light. Enhancement of the coding will be done which will add more feature to the
robot and make it more similar to a pet robot. Once this coding is completed, the
overall coding can be finalize and thus implemented onto the robot to finalize the

final product of the Pet Robot.

5.2 Recommendations

The objective of this project is to built a basic robot which imitates the
behavior of a pet. The robot is built through designing basic circuits to perform basic
functions. This topic of a pet robot is very wide and general. The functions and
purposes of this pet robot is not limited to a specific standard. Improvements and
enhancements can be easily done by adding more circuits to implement more inputs
and outputs of the robot making it more sophisticated and interesting. The PIC used
is a PIC16f84A which is a reprogrammable chip. This enables us to alter the codings
of the robot to change its movements and add inputs and output easily. The
characteristics and behavior of this robot can be erased and a new personality can be
implemented to it. Other features such as sound detecting and sound making can be

implemented later to make the pet robot more real and give it more life.

This PIC 16f84A can be changed to a PIC16F877 which has the same
function but with more input and output pins. This enables us to add more circuits

and widen the robots functions and features by using the same coding designed in
PIC 16184A.

More sensors can be added to the robot to give it more intelligence to on
avoiding bumping into objects. The infrared sensor can be implemented not only at
the front of the robot but also at the back to ensure the robot does not crash into

anything while it is in reverse mode.

49

.
.

N e AT S

—_ e
_—

REFERENCES

. http://en.wikipedia.org/wiki/Voltage regulator

http://en.wikipedia.org/wiki/Crystal oscillator
http://en.wikipedia.org/wiki/H-bridge

http://www technologystudent.com/elec1/ldr] .htm
www.reuk.co.uk

en.wikipedia.org/wiki/Infrared
http://science.hg.nasa.gov/kids/imagers/ems/infrared.html
http://www societyofrobots.com/schematics_infraredemitdet.shtml

http://fen.wikipedia.org/wiki/Circuit_board

. Macmillan English Dictionary Fundamental Student Edition
. http://links999.net/robotics/robots/robots_introduction.html

12.
13.

http://inventors.about.com/library/inventors/blrobots.htm
http://www.geocities.com/siliconvalley/2072/3pinvolt.htm

50

APPENDIX

51

MicrocHIP

PIC16F84A

iS-pin-Enhanced FLASH/EEPROM 8-Bit Microcontroller

High Performance RISC CPU Features:

+ Only 35 single word Instructions to learn
+ Al instructions single-cycle except for program
branches which are two-cycle
+ ‘Operating speed: DC - 20 MHz dlock input
DC - 200 ns instruction cycle
« 1024 words of program memary
« 68 bytes of Data RAM
» 64 bytes of Data EEPROM
* 14-bit wide instruction words
+ 8-bit wide data bytes
« 15 Special Function Hardware registers
« Eight-level deep hardware stack
+ Direct, indirect and relative addressing modes
+ Four intefrupt sources:
- External RBO/INT pin
- TMRO timer overflow
- PORTB<T.4> interrupt-on-change
- Data EEPROM write complete

Peripheral Features:

+ 12 /O pins with individual direction control

« High current sink/source for direct LED drive
- 25 mA sink max. per pin
- 25 mA source max. per pin

» TMRO: 8-bit timer/counter with 8-bit
programmable prescaler

Special Microcontroller Features:

* 10,000 erasefwrite cycles Enhanced FLASH
Program memory typical

* 10,000,000 typical erasefwrite cycles EEPROM
Data memory typical

» EEPROM Data Retention > 40 years

+ In-Circuit Serial Programming™ (ICSP™) - via
two pins

- Power-on Reset (POR), Power-up Timer (PWRT),

Oscillator Start-up Timer (OST)

» Watchdog Timer {(WDT) with its own On-Chip RC

Oscillator for reliable operation
» Code protection
+ Power saving SLEEP mode
+ Selectable oscillator options

Pin Diagrams

PDIP, S0OIC

iz e—eDst 7 18w 57

RAZ =—[]2 17[J == RAD
RA4TOCK| =—=[13 @ 160=—0SCHCLKIN

MCIR—[4 Q 15[]~— OSC2/CLKOUT
Vsg =[] 5 2 4 e—vo
RBOMNT =06 ® 13[]=—wRRY

RBY =—=[]7 » 12{]=-—REBb

RBZ =—-[1} 8 11 £] == RB5

RB3 =—=[19 10[) = RB4
ssoP

RA2 w—»[Jot ~ 20[= RA1

RA3 =[] 2 19[] == RAD
RAYTOCKI =—-[]3 9 18[J=+— OSCUCLKIN

MCIR—=[4 O 17[1— OSCACLKOUT
Vss—=[16 @ 15{]e—voD
Vs —a[] 6 ® 15{fe—vop
RBOANT 4--)..[7 » 14{] =—= RB7

RE1 -8 13[] e RB6

RB2 =—e[]8 12{] = RB5

RB3 =[] 10 111 = RB4

CMOS Enhanced FLASH/EEPROM
Technology:

+ Low power, high speed technology
+ Fully static design
« Wide operating voltage range:
- Commerciak: 2.0V to 5.5V
- Industrial: 2.0V to 5.5V
« Low power consumption:
- <2 mAtypical @ 5V, 4 MHz
- 15 pA typical @ 2V, 32 kHz
- < 0.5 pA typical standby current @ 2V

@ 2001 Microchip Technology inc.

DS35007B-page 1

Daia types.,

Basa dala tvpas.
d uns

Tinadal

Enumit.

ficiiu
Yolatile.
‘Stalic.

Constarts.

Arrays.

s
Strivgs as fincifen
Qoarat

Adthmetic Oneralor i

Asgl Queralor

o

C o0 Oporalar,

Lpgical

Loodcal Qparator
Eindgs.

EBiwize Opsrator E;

Candtonals
i

o,
Progmam Fijw E

P
Inling blv examole 1

(ol biy exampis 2

axamele

Iniing
Lser Data,

Lafne kinclions

Spattal

Genar) functions And inferugls.

Dirramie

Eunction rlaadi)

i dalay 10us{ unsigned chart).

sunsigned chart).

i

delay, msf unsignad char ()
i).

Systom Lfbraies,

Generyl purposa)

cfear bilf ver.aum)

eERERRRERRERRR rrERERRRRRRRE RS RRRRORERAREREEE &t&\tmﬁnhm&hhl&%%lﬁ

BoostC™ Manual SourceBonst Technologiles

I
[
3
w

= SourceBoost
Technologies

for PICmicro

BoostC C Compiler.

_ Reference Manual.

2at_bif yr, sum }.
Ias]_bitl var, oum).

sirepyt char *dst, copst char s]

gyt char ~dst, rom char *sre).

Smsayt char*dst vonst char "am:, igned char fe }
Mrropyf char “dst (o char "sic. unsigned charien }

3
B
R
:
BB B FuRSRERRER

naignad, strani orp ohar "z)

char sirome(canf gher "1, const cher “se2 |
pad cher dmmef tom char tsrot. const ehar “sm2 |

g ch mmpd congt char "sref. rom chaz ‘a2 }
[ged char sfrcorol rom char “ymY. M char “SEZ, w
A Long rivac Soct. oot ehar TEid)
ed. stricrp! o char *arct, const char *sm? §

. 0

b ke

sigrad char striopsol Cons? char sl rom.char "sm |
*] stmemp! char *srcl, char *Sc2,
e apzol pvn char “s7ed. char s, unsignad char len)

ohar*sic],. rom char "3e?, ansignad char g |
f o char *sred, rom char s unsignad char lan). 2
iemel chpr st char *sre?, unsigned char fen |
char simicapl mm chay Tscl, char *smd, whsiqred charlon §

char st char *srof. rom char *sm2, igned char fan }
sonad shar Smismed rog chat * . mom cher Yt el cha OOy)
NT— i |
RN |
char* rkf const char 3T, o i "SI). il
unsianed char sreson{ copst char2smd, copsl chsr s)

s aircspal mm eher *sroy, consd shar "smpd)

i har shzsond # char “sret, som char "2 |
siresond o char “srt, rom char “se2 3. 1

char strsonf consl chae 3ref, copst cher "sred)

chat. mm cher et of 2 |

s onf conat char“sret, pom char "Se |
strxpnd mm char st om char "sm2 Fil

ar* sirtok(const char *pird, consl char "ptr2 1

o 2 5 - SRR |
char? s const char *sw, chacch) 2}
e e T T T T LT B —— S 1)
char strsiy canst char *sm. rom che "sre | Fal
2
. I2
o]
fe]
fong git n B W 7 |
(et Al Sohar clier* Sovfar) n
fong Al Ji
char i : char moix) 4
hay o] fong vl chae buffer, unsloned char mdix). 2
I
.14

age 4 SeurceBeost Technologies

§

Hon F

sweg 51 92 53

By d

hexsia

BREELsRA e R R RN ERRERRREREER R EE R B v www ks o ko

Page 2 SourceBoost Technologies

BoustC™ Manual

fauy_bin copst char® tidler |
upsihed il alow_dec! const char~ buler)

et U)o
chac isgiaitf char ok).

nERoE

BER R R B N R ERRH RN AR DR RN R b o Rt b ot b ottt ot R R

Genersl Suppart.

BoostC™ Manual SourceBoest Technelogles Page 7 BoostC™ Manual SourceBoast Technologles Page 5

al rmal 84

age 8 SourceBpost Technologies BoostC™ Manual Page 6 SourceBoest Technologles BoastC™ Manual

staliation

e BoostC compiler cannot be downloaded or installed on its own, BoostC i3 part
the SeurceBoost software package that includes the SourceBoost IDE and other

‘guage Suites. Tt 5 available for download from our site
H W, St.CO

1en you buy a license, you will activation cade(s) and detalled instructions on
w to activate the compiler and other tools you have licensed,

install SourceBoost IDE and BoostC on your system, please follow these simple
1ps:

Execute the instalter sourceboost.exe and follow on-screen directions.

Pleasa pay attention to the integration dialog:

Inkexation into MPLAR
Shauld Bootl compies integuate inlo MPLAD?

Ta legrate HoasC compier o MPLAS locats MPLAR natokeion directoy nthe
sorhol below a0 than Biess the Tisgrle button. To 1K MPLAB integroion peass
hﬂﬂhﬂ!m!hmdhm

A e

[C<Back I Hews | [camed |

To Integrate BoostC with MPLAB, choose the correct Microchip installation
directory, then dlick an “Integrate” before stepping to the hext Installaticn
wizard dialeg.

- +The rest of the Instaflation process ks straightforward, At the end,
SeurceBoost IDE is ready. to be'used on-your-system. Should.any.difficulty
arise,. please dauble check your system configuration and mail all detalls
to support@sourceboost.com

igostC™ Manual SourceBoast Technelogles Page 11

BoostC compiler

Introduction

Thank you for choosing BoostC. BoostC 1s our Next generation € compiler that
warks with PIC16, PIC18 and seme PIC12 processors,

This ANSl C compatible compiler supports features llke source level symbolic
debugging, signed data types, structures/unions and polnters.

The BoostC compller tan be used within our SourceBoost IDE (Integrated
Development Environment), or It can be Integrated into Microchip MPLAB,

BoosiC Compiler specification
Base Data types

Size Typa name Specification

1bit bit, boot bookean

8 bit char signed, unsigned

16 bit short, int signed, unsigned
.32 bit Jong signed, unsigned

Special Data types

- Single bit - single bit data type for efficlent Rag storage.

- Fixed address - fixed address data types allow essy access o target device
registers.

- Read only - tode memeory hased canstants.

Special Language Features

+ References as function arguments.
» Function overloading.
- Functlon ternplates.

Code Production and Optimization Features

- ANS1'C' compatible - Makes code highly portable.

+ Prodiices optimized code for both PIC16 {14bit core) and PICL8 (16bit core)
targets,

Suppaort for Data Structures and Unlons - Data structures and arrays ¢an
be comprised of base data types or other data structures. Arrays of base
data types or data structures can be created,

Support for pointers - polnters can be ysed in *all the usual ways".

Inline Assambly - Inline assembly allows hand crafted assembly code o be.
-used:when-necessary,

Inline Functions - Infine functlons allows a section of code to be written as
a functlon, but when a reference is made to It the Infine function code is
inserted Instead of a function call. This speeds up code executlon.

BoostC™ Manual SourceBoost Technologies Page &

+ Please note: if the Installation step “MPLAB Integration” is skipped, the
necessary MPLAB integration files will be instzlled to the \mplab
subdirectory of the chosen SourceBeost Installation directory, These files
can always be manually copled ta the cerrect location — please see the
"MPLAB Integration” section later in this manual,

ge 12 SourceBoost Technologies BoostC™ Manual

Ellrninates unreachable (or deaﬂ) code - reduces code memaory usage.

. 1 of functl ~ reduces code memory usage.
Minimal Code Page switching - code where necessary for targets with
mulﬁple code pages,

. ic Banks itching for Variables - allows carafree use of
varlables.

Efficient RAM usage - local variables in different code Sections can share
memory. The finker analyzes the program to prevent any clashes.

Dynamic memory management.

Dehugging features

Sourca Level and Instruction Level Debugger - linker Generates COF file
output for source level debugging under SourceBoost Debvueser

- Step into, Step over, Step out and Step Back - these functions operate

both at source level and instruction level,

Multiple Execution Views - sea where the execution of the code is at

sgurce level and assembly tevel at the same time,

Maonitoring variables - variables can be added to the watch windows ta

allow their values to be examined and modifled. There is no need to know

where a varizble Is stored.

Fult MPLAB integration

» Use of the MPLAB Project Manager within MPLAB IDE,
- Creation and Editing of source code fram within MPLAB IDE,
+ Build 2 profect without leaving MPLAS IDE envirenment.
« Source level debugging and variable monitaring using:
- MPLAB simulator;
-~ MPLAS ICD2;
« MPLAB ICE2000.

Librarian

+ Allows generation of library files - this simplifies management and control
of regularly used, shared code.
- Reduce compilation time - using lbrary fAles reduces compitation tme.

Code Analysis

- Call tree view - SourceBoost IDE can display the functlon cali tree.

« Target Code Usage - From the completa progeam, down te Functon level
the code space usage can be viewed In SourceBoost IDE.

+ Targek RAM Usage - Fram the complete pregram, down to Function leve!
the RAM usage can be examined and reviewed in SourceBoast IDE.

Page 10 SourceBoost Fechnologles BoostC™ Manual

'LAB integration

»tC C compiler can be integrated into Microchips MPLAB Integrated
‘elopment environment (IDE), The MPLAB Integration optich should be selected
ing the SourceBoost software package installation,

ase nota: To use BoostC under MPLAB the MPLAB integration button must be
ssed during the SourceBoost package Ins:aﬁaﬂon. This QDPIE sume files and
s the required registnf keys required for inte ;
case the installation. step "'MPLAB ml:egratlnn falled !,he ﬁles ln" the
otirceBoost>\mplab dlrectory can be manuailv copled Inta T

|PLAB IDE:\This‘ﬂ Party’\MTC Swtes far H

7.x, or_
\PLAB iDE>\LegacyLanguageSuita for HPLAB 6.:(. -

the ‘above exampies, - <MPI.AB IDE> refers to r.he MPLAB Installation ‘directory
d <SourceBoost> refers to the Soumeaoust IDE and cnmpllers Instaltation
ectary,

atures

1en BoostC Is integrated into MPLAB IDE it allows the following:

- Use of the MPLAB Project Manager within MPLAB IDE.

- Creation and Editing of source code from within MPLAB 1GE.

+ Bulld a project without leaving MPLAB IDE.

- Source level debugging and varlable monitoring uslng: MPLAB simulator,
MPLAB ICDZ, MPLAB ICE2000,

stting the MPLAB Language Tool Locations

ite: thls process only needs ta be performed ance.

¢ procedure below specifies paths assuming the default installation folder has
en used for the SourceBoost software package.

1, 5tart MPLAB IDE.

2.Menu Project = Set Language Tool Locations.
Note: If BoostC C compiler does not #ppear in the Reglstered Tools list, then
the Integration process durdng the SourceBoost imstalation was not
performed or was unsuccesshul,

loostC™ Manual SourceBoost Technologies Page 15

Compifation model and toolchain

preprocesy

Preproteated
Lile

conplle (boomes.exe}

Ohject Lile

Lincary ‘]

x
1ink (bossclink, exe)
Other helper
izm file
Cad file

Liating file
Hex Zile

Preprocessor
The preprocessor pp.exe is automatically invoked by the complier,

Complier
There are actually two separate compllers: one for picl6 and one for plcl3 targets,

Whan you work under SourceBoost IDE, there is no need to specify which one to
use: the IDE picks the correct compiler based on the sclected target,

The cutput of the.compller Is gne or more ,obj files, that are further processed by
librarian-or-linker;-In-order.to get a Jfib-orhex file,

BogsiC™ Manual SeurceBoost Technologles Page 13

. Set BoastC € compller for PIC16 location;

Set Lanjuage Tool Lacati

.irnw.m ——

8 Rruchen Data CCEE
BoeeC CComple (w PICS

© & Excoable

L itagiles 1 FIC1E

% Boau € Compler bt LIS
. Bye Croft Axsarbler & € Compler
% (L% C Complert
+ CES CCompit tor PICIZA4NEN0
¥ RTECH PICE Tockuin)

i
i
. ¥ Delak SamchPahs § Diacioies =

|c\nmru\smmmau - Browei.,

B Ha.,;

4. Now set BoostLink Unker location:

3 B OIS T P
F BouiC T Compes for PICIS .
w Erctusties
Bwi&cl:mvhlu!ﬁ[.‘ls

7 Defink Search Pati & Deestuics
i BoostC € Compler Jor PC1E
Byin Coft Asarirbies 4 . Compler
S C Compler
€IS C Conples la FEIZAANENS _
£ HTECH PICE Toghute =1

l [k ru\swmuu;-

ge 16 SourceBaost Technologles BoostC™ Manual

Linker

BoostLink Optimizing Linker links .obj files generated by comgpiler into a Jhex file
that Is ready to send to target. It also generates some auxlllary files used for
debugging and code analysis.

Librarian

Ubrarian is buiit Into Boostlink linker executable and gets activated by -1in
command line argument. There is a dedicabed box in the Opton dlalag inside
SourceBanst IDE that changes project target to library Instead of hex file.

To create a farget independent lbrary, Include booste.h instead of system.h Into
the library seurces, This way no target specific inforration (iike target dependent
constants or variables mapped to target specific registers) is Induded into the
library- Nete that this Is the only case In which systen.h does not be Induded into
the code,

Differences with €2C compilation model

The maln difference between BoostC and aur previous generatlon C2€ complier s
that the latter had a puilt-in Hnker and created an' .asm file needing to be
assembled wsing an external assembler {llke MPASM), while the BoastC toolsulte
doesn't need any externai tools and directly generites the target Jhex fite.

Anather difference Is In how compilers handle read-only variables tocated In code

memary. BoostC uses the special data type specifier 'rom’, while C2C placed any
variable defined as ‘const’ into code memory.

Page 14 SourceBoost Technolegles BoostC™ Manual

4, Menu File s Save As, Locate the project folder using the Save As dialog

box,
i
el

Faname [iete See |
S 02990 [o it PR T tee |

. o
Ereode B - <

I AddFie To Project

5. Add the test.c source file to the project by right clicking en Source Files in
the project tree - as shown below,

oostC™ Manual SourceBoost Technologies Page 19

5. Set BoostC C compller for PIC18 location:

St Lynquaue Tool Loratiore B |

& Boodl C Covpie o PIC1E

= Eneculaties
" % Dolouk Sowth Pathr & Directoier
= Bytn Crai Avsartier § € Coupder

E 2]
BacalC C Comper fs PICLE J

% HETECH PCG T cciubn =
Locaion—— - e
! CProgan FesSaunizliontboosto el Lo Brovie.. ||

% Dolak SeathPaha & Direchrios
1% Dyte Ciakt Asearnbles § C Campler
i | i CCS Crumgle
|| % £CS € Comglerfer PCIZN4AAENS
% HITECH PILT: Tookule

}il:mugmnu\sﬂuamupau Browsi.” |

Creating a project under MPLAB IDE

“Before—attempting “to-do—thls, -please—-ensure- that the -"Setting the- MPLAB
I teol locations™ process lustrated in the above sectlon has been

suu‘:’essﬁ.ﬂlv performed,

BoostC™ Manual SourceBoast Technalogies Page 17

.Add the libe,pici6lib fle {found In the C:\Program Fles\SourceBoostiLlb
folder) to the project by right cficking an Library Files in the project tree.

2] Ubrary Fles

¢ T eprogrm FlesiSauolosriLbibe pcig
" L ket serns

- LI ot s

£y s |7 syt

8. Menu Project =k Build (or press the build button on the taet bar), The code
should then be built.

| ¢an now use the MPLAB simalator, 1CD2 or ICE o run the code, or 2
grammer ko program a device. Please refer to the “Using ICD2" section of this
ument before using {CD2 to avold potential problems.

ease of project browsing, you can also add the project header files to the
Ject tree in the same way as the source files where added.

e 20 SourceBoost Technolagies BoostC™ Manual

The following steps will help you create a project under MPLAB IDE, that will be
built using the BoostC C campifer, compliing for a PIC16 Target, The project name
is test and the project and source code will be kcated I folder
C:\PlcPrograms\test

1, Menu Project = New, Enter a project name and directory,
Note: this can be an existing directory contalning a SourceBoost IDE project.

=it

2.Meny Project ™ Seject Language Toolsuite, Select the BoastC C
Compgiter for PIC16,

OCS C Compden
R mer rotaie.
- H-]
i‘“ﬂ*ﬂ IHLFECH PICC-3¢ Tocksue
s {48 Systerea e

- Todzate

"Hd';-{. e C1) Toddwia
ocwith

3. Menu File = Naw. Type code Into the Untitled window,
Note: If you atready have Source Files, this step and steps 4 can be skipped.

Page 18 SourceBoost Technolggies BoostC™ Manual

pstLink command line

stLink optimizing Linker version x,xx
p; //wew. Sourceboost. con

yr1ghtEc% 2004-2007 Pavel Baranov
yright(€) 2004~2007 David Hobday

ensed to <licease infox
ge: hoostlink.pic.exe {options] Files
ons:

t name target processor

on optimtzation level 0-1 (default n=1)

- na optimization

n=1 - pattern matching and bank switching optimize on
verbose mode

v
d path directory for project cutpyt_ | R
? name project {oytput) name for multiple .ob] file Tinking
d path directory for library search

rb address ROM base (start) addrass to uwse
rt address ROM top (end) address to use

wes 51 52 53 Use saftware call stack. Hardware stack is allocated by
spacifying stack depths 11,52,53 (optiomal)
51 = main and gask routines hardware stack allocation
52 = ISR hardware stack allocacion
s3 = PIC1E Tow priority ISR hardware stack allocation

srnoshadew ISR No wse of Shadow registers
Srnocontext ISR No context Save/restore 1s added to ISR{PIC1B only)

‘ed2 Add WOP at first ROM address for correct ICDZ? operatien

sexala Always add extended lipear address record to .hex file
itches for making likraries:

-iih make 1ibrary file from sy ?I"led .obj and .1ib files

-p name project (Tibrary outpur file) name

is command fine option causes the code generated by the linker to start at the
drass spedified, Boot loaders often reside in the low area of ROM.

ample
» Bx0B00

oostC™ Manual SaurceBoost Technologies Page 23

Using ICD2
The are a few things to be aware of when using ar planning using ICD2:
1.RAM usage: ICD2 uses some of the target devices RAM, leaving less room
for the actual application,
In order to reserve the RAM required by 1ICD2, and prevent Boost Linker
from uslng It, the icd2.h header file must be Included in the source code, eg:
Finclude <Syiten hy

#include <tcdi.h>. 1 al'i_océ-i:es =AM’ used by ICDZ

2, SFR usage: ICD?2 uses some Special Function Registers. This prevents the
use of some peripheral devices when using ICD2 to debug code.

Important: It is down the user to ensure that the ICD2 speclal function
reglsters are not accessed. On some targets these registers reslde at the
same address as other peripheral device special function reglsters, Please
check the documentation provided in the MPLAB IDE help for 1CD2 resource
usage in prder to prevent problems.

3. Break polnt overrun; Due to timing skew in the target device (caused by
instruction prefetch), execution will pass the instruction address where a
breakpgint is set before it stops.

4.NOP at ROM address 0: See the Beosttink command ling option «lcd2 to
add a NOP at ROM address 0,

BoostC™ Manual SourceBoost Technologles Page 21

¥s5152%3

cornmand line option to the finker kells It t9 use a software call stack in
fon to the hardware call stack. This allows subroutine calls deeper than the
iardware call stack of the PIC. A functlon call that Is made on the software call
. uses an extra byte of RAM to hold the return point number. This option must
sed when using Nove RTOS. Where possible the hardware stack is used for
ency. By specifying the depth of hardware stack to use for main {and Novo
i) s1, ISR (interrupt service routine) s2 and low priority ISR (PIC18 only) =3,
‘des cantrol over when the seftware call stack is used instead of the hardware
tack. The software call stack Is applied to functions higher up In the call tree,
Mis lower down the call tree still use the hardware call stack. If ne hardware
t depths are specified, then the software stack 1s only used In functions that
ain or call functions that contaln 2 Nove RTOS Sys_Yield() function.

nple:
s62

roytne will use hardware call stack yp to a depth of 6 and then start using
vare call stack. Interrupt roytine will use hardware call stack up to a depth of 2
start using software call stack. An ISR uses hardware call stack depth of 1 to

1 the address of the point where the cade was Interrupted, 50 in this example it
leaves a hardware call stack depth 1 for subsequent calls within the ISR.

noshadow

command line switch tedls the finker not to use the PIC1E shadow registers far
rrupt service routine (ISR} context saving. This option Is required as a work
ind for sllicon bugs in some PIC18's.

necontext
i option only works with PIC18's, When use this prevents the linker adding
@ code for contaxt saving, This allow the programmer to generate thelr own
imal ISR context saving code, or have none at all.

imple:

Context saving example o o :
assumes That. the I3k code #il1 cnly madify

create’ context siving Hur
r cootext] 2 hmo_oos X

2nd gndl bsr.

@24 SourceBoost Technologles BoostC™ Manual

Command line options

To get full list of BoostC comgpiler and BgostLink finker command line aptions run
compiler ar linker from command line.

BoostC command line

Hoostt Optimizing € compiler versiop x.ux
http:/fwwn. sourceboast. com

CDpyright(Cg 2004-2007 Pavel Baranov
copyright{C} 2004-2G07 David Hobday

Licensed to <license info>
Usage: baostc.piclé.exe [oprions] files (

Options:
-t pame target processor %defﬂu'lt name=PLCIGFGIEA)
~0n optimization level (default n=1)
n=f - gptimjzation turned off
n=l « optimization turned on
n=a = aggressive optimizacion turned on
n=p - 32 biz_long promotion turned on
-wn warning-level (default n-1)
n=4 - no warnings
n=l - some warfings
n=2 - all warnings

-werr treat warnings as errors {default off)
-i debug_inline code (default off)) .
~54 disable initialization of uninitialized static variables
-d name define 'name’
-m generate dependencies file (default off)
erbose aode turned on (default off)

v i
-I pathl;path? additional include directories

Optimization
Cede optimizatian is cantrolied by -0 command line aption and #pragma.

Dptimlze flags:

=00 no or very minimal optimization

-01 regular optimization {this option is recommended for most applications}

-0a aggressive optimization {produces shorter code and optimizes out same
variables - this can make debugging more difficult!)

=Op promotes resuits of some 16 bit operations to 32 bits {can result in
more efficient code is some cases).

Page 22 SeurceBpost Technelogies BoostC™ Manual

tludle
ntax:

rments:

Irpose:

#aclude <filename h>

or
#include “Filename h"

filename s any valid PC filename. It may include standacd drive

and path Information,
In the event no path [s given, the following applies:

a) If filename appears between ™", the directory of the projects |s
searched first.

b} If the delimiters <> are used, only the IDE /nclude path list is
searched for filename,

If the flle is not found, an error will be issued and compllation shall
Stop.

Text from the include file fitenama.h is inserted at the point of the

source where this directive appears, at complle time.

tamples: #laclude <system.h>

-icd2

Use this command line switch to add a NOP #nstruction at the first ROM address
used {usually address 0). This is required on some devices for corvect operation of
Microchlp ICD2 (In Circuit Debugger).

-hexela

Always add extended linear address record to .hex file. Without this switch an
extended linear address record Is only added to the hex file if required by
addresses included In the .hex file,

tibc Library

Wher a project Is being linked, SourceBoost IDE adds fbcpicl6libh or
tibe.pici8.4ib to the linker command line, if It can find this llbrary In its default
locatlon.

The iibc lbrary contains necessary code for multiplication, division and dynamic
memary allocation, It also includes code for string operations.

Code entry points

Entry points depend on the code address range using by the Boostlink linker, By
default, the Bnker uses alt available code space, hut it's also passible to specify
cede start and end addresses that linker should use through linker cammand line

loostC™ Manual

SeurceBoost Technologies Page 27

options,

For PIC16:

Reset {main} entry peint
Interrupt entry paint

<tbde start> + 0x00
<code start> + Dx04

For PIC18:
Reset {main) entry point <code start> + 0xD0
Interrupt entry point <code start> + 0x08

Low priority ISR entry polnt <code start> + Ox18

SourceBoost IDE
The SourceBoost IDE is thareughily covered in a separate manual,

BoostC™ Manual SourceBoost Technologies Page 25

Fine -

Lax:

nents:

pose:

#define id statement
or
#define 1d(a, b...) sravement

id Is any valid preprocessor |dentfier,
statement Is any valld text.

a, b and so on are local preprocessor [dentifiers, that in the glven
form medel a function's fermal parameters, separated by commas,

Both forms preduce a basic string replacement of id with the given
text. Replacement wili take place from the point where the #define
statement appears in the program, and below.

The second form represents a preprocessor pseude-function. The
local Identifiers are positonally matched up with the original text,
and ara replaced with the text passed to the macro wherever It is
used.

#define LEN 16 . i
#dafine §OWNIBBLE(K)

ason
Te = 4+ LEN;
b = LoWNTBBLE 2}

je 28

SourceBoost Technelogies BoostC™ Manual

Preprocessor

The pp.exe preprocessor is automaticaily inveked by the compiler. It executes a
series of parametrize¢ text substitutions and replacement (macro processing),
besides evaluating special directives,

All preprocessor directives start with a '#. Non standard cirectives are always
contalned in statements with a [eading ANSI keyword #pragma, so to avaid
potential conflicts when porting code to other compilers and/er with advanced
smiurce analysis tooks {lint, statlc checkers, code formatters, flow analyzers and so
aon}.

Directives

The following directives are supported by pp:

#include

#define

#undef

#if

#else

#endid

#ifdet

#tindef

#error

Awarning

These directives are Individuaily explained in the following pages.

Page 26 SaurceBoost Technologles BogstC™ Manual

dof

itax:

meants:

rpose;

amples:

#ifdef 14
code
AendiF

id is any valid preprocessor identifier,
code is one or more lines of valld C source code.

When the preprocessor encounters this directive, it evaluates
whether the identifier id Is In its symbol table {eg previcusly
specified within a #define statement).

In case if is dafined, the lines of code between #ifdef and #endif
{or an optional #else, If present) will be processed.

In the opposite case, code statements between #ifdef and #endif
wifl be Ignered by the compiler.

NOTE: Id can not be'a C varlahle ! Only prEpmcessor Identifiers
created via #define can be ysed.

#define DERUG

Fitde
fend g

rintfc‘neadmd tast point L2\ T

loostC™ Manual

SourceBaost Technologies Page 31

Bundef

Syntax:

#undef 1d

Elements: id is any valid preprocessor identifier previously defined via #define.

Purpose:

Starting with the line where this directive appears, id will no more
have mearing for the prepracessor, 1.€. 8 subsequent #ifdef id shall
evaluate {o loglcal FALSE,

Please note that id can then be reused and assigned a different
value.

Examples: ‘gﬂﬁ e LEN

efine’ wuu::nsa.a(x) ((x‘) & oxm:)]
il e
e = a + I.EH.

+15.:‘.

-u—N he:ame; L .
: ,.'f LEN 1s not - recogmzed anymore by pp ’

#uidaf - me :

#define I.EH 24 J* This 13 now va'Hd and r.fues not cause
“double defipition attempt” srrors. =/

BoustC™ Manual

SourceBoost Technologies Page 29

def:.

tax:
nents:

pose:

wmples;

#ifnder id
code
dendif

1d 1s any valld preprecessor identifier.
code is one or maore lines of valid € source code,

When the preprocessor enceunters this directive, It evaluates
whether the identifier Id Is In Its symbo! table (eg previously
specified within a #define statement).

In case M |5 not defined, the lines of code between #ifrdef and
#endif {or an optional #else, if present) will be processed.

In the opposite case, code statements between #ifmdef and
#endif will be ignared by the compiler.

NOTE: id &3n not bé a C: varlable'F 01
created via gdefiné can be used. -

Py, preprocéssor dertiners

#ifudef DEBUG-
. intf ("

ige 32

SourceBoost Technotogles BoostC™ Manual

#H, Bolse, Rondif
2 #f axpr
Syntax: '8
#alse
3
fendif
Elements: expr s any valld expressien using constants, standard operaters
and preprocessar identifiers,
code Is one or mere yalld C source code fine.
Purpose: The preprocessor evaluates the constant expression expr and, if it
Is non-zero, wil precess the lines up to the opticnal #efse or the
#endif. Otherwlse the optlonal #efse branch code will be pracessed,
If present.
The latter twa preprocessor directives are also.used with spedlaiized
forms of the #if directive (see #ifdef, #ifndef),
Examples:
Page 30 SourceBoest Technelogies BoosiC™ Manual

wragina DATA

ntax: #pragma DATA addr, d1, d2, ...

or

#pragma DATA addr, “abodefgl™, “abcdefg2™, ...
ments: addr is any valid coda mernory address.

d1, d2... are B-bit integer constants,
“abedefgX” 1s a character string, the ASCIT values of the
charcters will be stored as B bit value.

Irpose; User data can be placed at a speclfic location uging this construct.
In particular, this can be used to specify target configusation word
or to set some calibration/configuration data into on-chip eeprom.

amples: #pragma’ DATA O tast”

Syntax: #error text
Elements: text Is any valld text,
Purpose: When the preprocessor encounters this directiva, it stops

compllation and Issues and eror. The user supplied tesct is

printed as an informational message.,

This directive Is useful when coupied with the expression checking
features of the preprocessor, Lo validate the coherence of
configuration choices and defines made elsewhere in the sources

and Include files {or on the command line).

s #Fifndef PuM_DEFA
Examples: ferror “MUST dnf‘lne a dc.faul: valua Ter speed 1"

J/58% PICLG conﬁoguratwn '«nrd B ! #endiz

#pragma DATA Ox & _mf_nFF & _LVP_OFF

JPut- some data_into eeprom:. -

#pragma DATA OxZ100, “Ox12, On34, Dx56. 0x78, TABCD™
IpostC™ Manual SgurceBaost Technologles Page 35 BoostC™ Manual SourceBoosk Technologies Page 33
wgma CLOCK_FREQ ~ - ¢ G #warning
tax: #pragma CLOCK_FREQ Frequency.in_nz Syntax: fwarning text

nents: Fraquency_ln_Hz Is the pracessor's clock speed,

posa: The CLOCK_FREQ directive telis the compller under what clack
frequency the code is expected to run.

Note: delay code generated by the linker is based on this figure.

. /58t 20 MHZ c.}nck -Freguenc o
mples #pragma CLOCK_FREQ 2 y e

ge 36 SourceBoost Technologles BoostC™ Manual

Elements: text Is any valld text.

Purpose: When the preprocessor encounters this directive, It forces the
compiler o Issue a warning. The user supplied text is printed as
an informational message,

This directive Is useful when coupled with the expression checking
features of the preprocessor, to validate the coherence of
cenfiguration choices and defines made elsewhere in the sources
and include files (or on the command line).

: #ifidaf. NODEADDR -
Examples: Ciwarhing “Rok,
fendi¥ 0o

Pragma directives

Specific BoostC preprocessor directives all follow the ANSI keywerd #pragma, so
to avoid petential confliccs when porting code to other compllers andfor with
advanced source analysis tools (lint, static checkers, code formatters, Aow
analyzers and so on).

The following directives are supported by pp:

#pragma DATA

#pragma CLOCK_FREQ

#pragma OPTIMIZE

These directives are individually explained in the following pages.

Page 34 SourteBoost Technolagles BoostC™ Manual

itialization of EEPROM Data

5 often desirabie to program the PIC an board EEPROM with iaitial data as part
he programming process. This initial data can be included in the source code.
'ROM initialization data is set using the pragma diractive: #pragma DATA,

ample:

- Initializes EEPROM with data: OC 22 38 48 45 &L AC 4F OG r2 99
ragma DATA _EEPROM, 12, 34, 56, "HELLO", OxFE, 0bA10011601

#pragmn OPTIMEZE .

Syntax: #pragma OPTIMIZE “Flags”
Elements: Flags are the optimization flags also used on the command line,
Purpese: This directive sets new optimization, at function level,

1t must be used In the global scope and applles to the function
that follows this pragma.

The pragma argument should be enclosed Inte guotes and Is
same as argument of the -O complier command line optlons.

Empty guotes reset the optimization level previously set by this
pragma.

This Is the current list of valid optimization flags;

0 no or very minimal optimlzaton

1 regular optimization (recommended)

a aggressive optimization

P promotes results of some 16 bit operations to 32 bits

o use rassive ttmizaﬁ fi fu ccf e
Examples; lf;ragm:ggrrm:z B on for funceon. oot
}'01(] foa()
R
postC™ Manuail SourceBoost Technologles Page 39 BoostC™ Manual SourceBoost Technelogles Page 37
nguage Setting Device Configuration Options

iectlon of the manual contains a condensed list of BoostC C compiler features.
In no way Intended to replace a complete C language manual or ANSI/ISO
fication. It is targeted, instead, at the already expert C programmer that
§ @ quick reference of BoostC and its pecullarities due to the specific PIC
t platferm.

yram structure

¢+ source fRle should include the general system header file, that In tum
des target specific header (contalning reglster mapped variables specific for
‘arget), some Iptemal functions protetypes needed for Code gemeratton and
3 manipulation function pratotypes:

a types
r data types
Size Type
1bit bit, boo!
B8 bits char, unsigned char, slgned char
L& bits short, unsigned short, signed short
L6 bits int, unsigned int, signed int
32bits long, unsigned long, signed lang
difference between bit and bool data types Is in the way how an expression
jer than 1 bit) is assigned to a bit or boot operands,
¥t operands receive the least signlficant bit of the right slde expresslon;
0] operands recelve the value of the right side expression casted to bool,
exarnale'

X & 2* M 2t Wil be 'true if tl'u: irlt #1 1n x' 15 set
s/ and tfalse’ otherwise .

74.38) will, a:lxaxs_hyualé becaiee Bit d0 i
£ {the 1east significant b{t} -fn thé: ex;]zressm :
L ff rasilt 5 zerd -“regardless of the value of “i'.

ictures and unions
1 struct and union keywords are supported.

e 40 SeurceBeost Technoiogles BoostC™ Manual

Tn order for a program o be able to rup on 3 target device the device
canflguratien eptions need to be correctly set. For example having the wrong
ascillator configuration setting may mean that the device has na clack, making it
tmpossible for any code % be executed, Configuration daka Is set using the pragma
directive; #pragma DATA,

Configuration options typically control;
« Osdilizbor configuration
« Brown out reset
+ Power up reset timer
» Watchdog eonfiguradon
Peripheral configurations
» PIn configurations
« Low voltage programming
» Memaory protection
+ Table read protection
« Stack averflow handling

The exact configuration optiens avallable depend on exactly which device Is being
used, The PIC18 devices have many mare configuration epticns that the
PIC16/PIC12 devices.

Configuration Example 1

fein cmf‘igural:inr\l:for nc:l.s:a?m s .
foragma DATA _CONFIG, *_CP_OFF & ...PHI\TLﬂFF & ..vn'r_nFF & _ns_nsc 3 w_oFF

Conﬂgnration Example 2-

You can find the deﬁned configuratien opt]nns for a glven device by looking In the
target davices BoostC header file (PIC18XXXX.h and PIC16XxX¥.h) which can be
found in the instaltation directory (typlcally ™

Flie\SourceBoost\include), [ts also worth leaking at relevant Micrachip data sheet
to find the exact function of each option.

Page 38 SourceBoast Technologies BoostC™ Manual

l]atﬂe btt pinBJ.loxs 1' //dec1are b'n: Vaﬂab'te mapped to pm 1 ‘pa t B~

Jrrentiv cnmpller generatu dlﬁ’erent code Dnly for expressfons that assign values
valatile bit varlables, Also volatile variables are not ¢hecked for belng Intiakized.
atic

ith global and local variables can be declared as static. This limits their scope to
@ current radwe.

wnstants

instants can be expressed in binary, octal, decimat and hexadecimal forms:

ObXXXX binary number, where X is either 1 or 0
or
XXXXb

OXXXX octal nhumber, where X Is a2 number between 0 and 7
X0 decimal numbar, where X Is a number between 0 and 9
0xXXxXX hexadecimal numper, where X is a number between D and %

orAandF
wings
sides regular characters, strings can include escape sequences:

\nn ASCII character, value nn is decimal

\xnr ASCII character, value nn Is hexadecimat
Ya ASCIY character OxG7 {ALERT)

\b ASCII character 0x08 (Backspace)

\e ASCII character 0x09 (Horlzontal Tab)

\r ASCI] character 0x0D (LF, Ling Feed)

W ASCII character Ox0B {Vertical Tab)

AF ASCII character 0x9C {Form Feed}

\n ASCII character Ox0A (CR, Carrtage Return)
W ASCII character OxSC (the «\s character}
\ ASCII character 0x27 (the «"» character}
y ASCII character 0x22 (the «"» character)
A7 ASCII character 0x3F (the «?» character)

astC™ Manual SourceBioost Technalogies Page 43

Typederl
New names for data typu c2n be deﬂned uslng typedef operatlnn

typedef uns'lgned char udlar- [.

Enum

Enumerated date types are an handy type of automatically defined canstant serfes,
The declaration assigns & value gf zero to the first symbollc constant of the list,
and the assigns subsequent vajues (automatically Incremented) to the following
constants,

The user can, as well, arbitrarly asslgn numerical {signed} values at the beginning
as well as In the middle of the serles. Values foll 9 an explicit assl it use
that value as a base and keep on incrementing from that paint.

The date type for an enum type or typedef varlable is, as per ANSI definition, the
srnaﬁ'er type that can r:ancal'n tﬁe absolutu maximum value of the canstant series.

enum’ srypes { EJIDNE v E_IED. E..GREEI, E_sl.uz }.

// same A% :

Ff Fdefing E__NONE]
/7 #define £ gED '3

#defme uREEH % .

Code size vs Data Types

Be sure to always use the smallest data types possible. The rule is simple: the
higger data bypes are used, the bigger cade will ba generated.
Thus, always fallow these rues of thumb:

« Use char (8-bit or byte) as the default, everywhere;

- Use short or int {16-bit or word) for common arlthmetic, counters and to hold
ADC conversion results on advanced cores (With 10-blt or more internal ADC).

-+ Only as a as last resort, and only where absolutely necessary, use long {32-bit,
dward) variables.

Another rule that also affects the slze of produced code, though In a much smalfer
degree, Is about sign.

Use unsigned data types wherever you can, and signed only when necessary,
Unsigned math always generates smaller (and typicalty faster) code than signed.

BooastC™ Manual SourceBoost Techrclogles Page 41

bies

es can be declared and used In the standard ANSI C way,

ker will piace variables at specific addresses, BoostLink analyzes the caill and
trees, so that it can re-use the same pool of RAM memary Jecations for
es that don't colllde with each other, belng used disjoindy by unrelated
$ active at different times.

a very effective way to minimize data memory usage,

er mapped variables

es can be forced to be placed at certain addresses, Syntax is the same as in
acy C2C compller:

<addr> Is an hex or dedmal address.

thnlquae Is used to access target spedific registers from code,

note that system header files already contain all target specific registers, so
i no need to define them agaln in the user's code,

ables can also have fixed addresses. Thelr address includes bit position and
made in 2 forms:

can have any number of dimensions. The only constraint is that an array
tinto a single RAM bank.

Brs

5 can be used In the standard general way, the only exception belng
5 declared with the rom storage specifiers, that can only be accessed
1 the [] operators,

L] SourceBoost Technologies HoostC™ Manual

Rom

Strings or arrays of data can be placed into program memary.

Such variables are declared using regufar data types and rom storage specifier.
5ud1 rom variables mysk be initlalized within Jeclaration;

‘st strl £ TaRn: thh tra'l'h% Zerot o N
'\om\n\ﬂ"- S huces: - Owed g
N TIrd 3 74 3 data bycess’ xod, - ouoa, OWOC
Please kesp in mind that the rum storage specifler has several timitations:

« rom can be used with char data types only;

- there 1s no Impliclt cast between rom and regular daka types. Though BoostC
will not generate an expiicit error for such a cast, it |s expected that the
operand should be casted back to its erfginal type.

1 this is not done, the resuiting code will behave unpredictably.

« a rom pointer Is intermally limited to B-bits: the constant amay size Is thus

itmited to 256 elements. This Is coherent with smaller cores constraints;

. access to rom elements has ko be done excusively through the [1 operators
and they cannot be referenced with substring pointer initialized at
runtime. Plesse keep In mind that rom variables must ahways and excluslyely

e initialized within deciaration;

Example of wrong referencing with a runtime initialized pointer:

ccbs-tsuhs::ﬁﬁ .EafFSEn
cc « mystriOFFSET]

<} carreet

Volatile
The volatile type specifier should be used with varlables that:
a) Can be changed outside the narmal program flow, and
b) Should aot raceive intermediate values within expressiens,
For example, if a bit variable is mapped to a port pin, it is @ gead programming
practice to dedare such varlable as vofatile.

Code generated far axpressions with vofatife varlables Is a fitde longer when
compared to ‘regular’ code:

Page 42 SourceBoost Technologi StIc™ !

tam 45 a unary operatur- ps '}s used For pre decranenting :
g or- post- decrement‘]n -an operand. B

! E\am;ﬂes‘
3N H I
€ = X~} // Post-decrement.
) #/ aftar the gperation x = S c=10
X = 104 ’)
€= --Xx; /f Pre- decrement.
// after the gperation x = 9, ¢ = 9

ssignment
= 4= = T= [z %z B= |z A= c<= 3u=

ssignment Operator Examples

! = is the ASSIGN opérator. The value of the variable or -
! exprassion on the right_side of the aqual:.is asslgned -
7 to the vaname ‘on.the left side of the equa] AR

/ Exanp] g5t

3 M Wwhataver Was - in the variab‘!e X L
// has heen rep]aced with 3,

/!I‘Fxhasay veof 12 a ity ava?uecrfls
y whatdver was-in the vanab'le c. mﬂ
/ be replaced with 28. :

. 13 the cu:ub'lned ADD and ASSIGN uperatur"-.‘!’he va.ru,b'le o
;" on the Teft side of f£he-opérator will. bé added:te:the .

variable or express'lon an: the' r’]ght s-lde. Fhe. resuit s
‘then assigried.to the bz on the’ Taft side of the
operator‘-. P

JTF c has_an initiat f 1
- ff-the value 12 and i has tha vaTue 15
< - afrer-the pperation;c will:b i

At Th "\;aria‘b'ie.-.‘ E

eastC™ Manual SaurceBoost Technologles Page 47

Strings as fon arg

If a function has one or more char* arguments, it can be called with a constant
string passed as an argument.

The compller will reuse the same RAM memary allocated for such arguments when
several similar calls are made within same code block.

For example, the tode below will use the same memory block to tempararily store
the strmgs “Date" and *Time":

fuos pare” 35
“Tiwe" };

Operators

If an operation result is rot explicitly casted, it is premoted by default to 16 bit
precislon. For example, given the fol[owmg expressian:

Mng 15 - ‘a <. 10(1/ b' /f‘a an" re ‘16 h1t 'iang variaptes

the result of the multlpli:attun wi!l he stured n a 16-bit lung (wnrd) tempararv
variable, that will be then divided by b. This 16-bit long result will eventually be
stared in 1. This is the ANSI 'C’ standard behavior.

This behavior can be changed using the -Op compiler command kine option or a
local #pragma OPTIMIZE directive,)

When this optimization is applied to the given expression, the multiptication result
will be promoted to 32-bit long (dword) temporary variable, that will then be
divided by b: the resuit, that is now 32 bit long, will eventually be stered in t.

Arithmetic
+ o F % o3+ -

Arithmetic Operator Examiples

BoostC™ Manual SourceBoost Technefogles Page 45

of expression.on the right side. of:the operdzor will.be::
subtracted: frop the variable -on the 1eft side. The. resut
+5 -than -assigned to the varsah'le on the 1ef-t side of the

3
) thev]uelZandy > The value
/,nﬁ:er the opefazioh: ¢ wlll ba™ 10

AT
/-the -value 12 and y has: the valuye'l
J2:After the gperation © will be: 280,

“ef fthe tor-witl. be
variab‘te ar expression un the -right side
ch is oty ;Jss .then.. :ssign

: 48 SourceBoost Technologles BoostC™ Manual

13 2°Hinacy dpérator. £t is used 0, Subtract - or produ
. the. differem:; of twud gperands JIn other wgds,
5 o

'ls Y unar-y operatur. 1;1: $s- usad
r‘ pﬁst—mcrementing an oper‘and

i Pre-‘irlcrement. .
P after thé operaticn XS 11 “gw LEC

Page 46 SourceBoost Technalogies BoastC™ Manual

; I ot A The vdlue 4-and.y has the valie 3.7
S i £ b 5.

After.the :oparation. ¢ wiil

CI= s al bmary operator It is: used W see ‘f e operand
- 15 -Nof ‘equal o™ another operan&‘ : e

miSE-AND and ASSIGN operator The var1ah]e

'B(amp'lel‘ - SR rrb
. L o i . an the Teft, side of the operator will be anped br'a bit-by-bit -
AfCxd=y) A TF.¢ has an Anitial valia of, 0, and ; ; 77 Basis with the wariable og ‘constant on the right siga,. Th{ ot
oL [/ % has_the value B-and ¥ has the va‘lue 5. . : : /7. 7 resulz i3 then assigned to: the' varub'le on- the 'ineﬁ: s'lde af’ .
Comox by _I/ The f'ma} va‘lue for c m'il ba 4 0. o 4 -tha qperatm- .
gxampie?; .
C h:s the

Fximy) e has. an initial va'iue of 0 ; ” If x h?s 2&;?*3213,‘,’:;3":1:: - “"f
{ : 7/ % has the value 8 and y'has the vaiue S. s
c=x*y; [/ The f1na‘| valua fnr G m'!'i 0. . -

. Aty
< is 4 binary operator. It is used to see §F one o erand : AR I After the gperation y w111
' in a : wam P [/heﬂblmoge

is LESS than another npz-and.

Exanipled: : .)
L . S| a.nd ASSIGN operator X varfab'le
B X<y / If ¢ has an. 1mt1a1 va’lue af 0 and on the Jaft:side’ of the.oparatar will bé ored on-a bit bit
- © . /f % has_the value 40 and y has the va'lue 65 - basis:with the varjable 'or_ constint-en the righr side,
) cay ~xn; - ff The f1nal value fnr < will -be 25; r;su 5 then assigned to the var1ah1e -an the ‘Ieft side of
: . . the operator :

ey vaTue of 0, “aind.
ST M x has Ihe va1ue us and ¥ has the " va'lue 0,
Cwy . ,l T1|e tinal va‘lue for c w11 ba:9, - -

TR I IEE b
(s:t_bi¥()PDR4A.‘I Len_e 5

¥ ha
;/! Turn LED ON:,

oostC™ Manual SourceBoost Technologles Page 51 BoostC™ Manual SourceBuost Technologles Page 49

‘elge e
N 1ear,.h_ (PonTA.

L
be 0bOGCORI1L..

g :
- char.Jrh:(mm LEant Turn. LED ‘OF
1 th'ls examp'fe the LED will Ba “tisrmed o,

f c nifial
LR has me va1ue ‘g and”
e final ua.]ue “for o un\'l be L RN

1 52 SeurceBoost Technalogles BoostC™ Manual Page 50 SourceBoost Technologies BoostC™ Manual

/ I is.a binary operatar.. 1t7is used T produce the ‘tngu:a'l siin of ’ Logical
I ¢ operands, The ihdividual bfts cn‘p aperands aré ORed - Lt
. Jtogether ta’ pmdUce the fma‘l resu"lts 3 u& q 1
/ Exampies: s
¥ | ¥ ;’/ IF x has 4 valie of 14" Fnd" y has a va‘éu
/7 of 5. After the npera on ¢ wﬂ1 Logical Operator .Examples

xa “0x07; - #/-1F ¥ has & value of Dxmz. Aﬂ:er the ;
vl b ape,’fat,m x will by Ox0 : i & isa binary operstor. It is used to deterning-if both oparands
' . /- are trua. The operands. are: expresswns that eva‘luate te True -
x =y | Obllllpnoo; // If y has a va‘lue of ohmmum [fals .
oo £ Afver the o 1geratwn X m}'i = '

© /7 -Be 0hITHT # Eg(a'n}p?e?.l
A s 3 binary ogeratar IT 15 vwsed to produce the To 1ca] L
difference of two operands.’ The individual bits o I:wo uperands
are XCRed together ta prudu:e the f-ma'! Tresults.
Examples:

X=yA 0:07‘ f.l If y kas & va‘lﬁe of. Dxez. Aft!l‘ the ’
: '// operation x Wil be Bx03,

X=ya 0b11111000. /1 x$ ¥ has 2. va]ue of nhnua.u_ua

After the oper'at'mn x: w1
ﬁ be 9h111001%

nq)ieﬁtént'-éf an- :
opepand. The individueal ‘bits of the oparand.are camp‘lemented.
e ones became zaros and the 2eros’ becume .ones. ;.-

~ Js-a vhary operatur'. Ic 15 used fg produ:e the cu

Exarnp'l es?

C Xy I4 IF ¥ has 3 va'lue nf DxDE._aFr_e th.
BN v /f eperation x wilT.be fxrl.”

A= —0501010111. I/ After the operatinn A Will:
e lv T : //. ba GbIOLG1000."

is a bmary aperatnr :
: operam:[is ‘gr?e

‘<-< is a h'mary ﬂperamr. Tha operand on’ the 'lefl: 1de oF th
- 'parator will be.shifted Jafr by the nuzhe aces
1nd1cated by tl upes-and !1

Examp'l &s1

// If ¥y
After the oparau
‘e 0bPI11100G.

537" 45 g bifary speratd

1StC™ Manual SourceBoost Technologles Page 55 BaostC™ Manual SourceBoost Technologies Page 53

operator will be- s?ﬁﬁ:ed nght by thé-
frldmated by t the gp he”rt h

va
after the opera
/7 e 0bap0o01 1L,

nals

else statement
tch statement
ternary operator

nal .Examples

Bitwise

'x > /f IF.x hag a_value of 2§ and y has a valie of 10,
:e:__b{t(PORTA, L Len bt 3y / FuriLED ON s

1ogieal pradice
‘aDed

3 71 If ¥ has
e PORTA, LEn bit

va]ue of 14 and_y has
rt T rril'i

h i a multi-way décigton ma.king Statepent. e variabf
h?are with the different cases. Tha case that matd
have its statemen!:s exe e

J[Iy has
/1 afrer the uneration
_Jf be 0b1OCO0R0Z. .

SourceBoost Techftalogles BoostC™ Manuai Page 54 SourceBoost Technolagles BoostC™ Manual

continue. the execotion:

;xamp‘l_e:].';
do

' factorial *= number; // 'fantama'l 15 m‘ntia'ﬁzed to 1
-=number; .. i before entering tha loep, .

} hhﬂe(nuaber P H

¢ “numbir? has @ value of 4 ‘fal:taﬂﬂ' vnﬂ ‘become 24.
factorial =4 x3Ix 2 x1;

gxampla2:
do

factorial *a nunber' ‘44 'factorial® s initialized to 1
--nudnr. . ! befure entar*iag the hmp

3 whﬂe(ntlber »0);

i he has a value of 0. facmrin'l m'll betome 0 imause' ’
the Toop was entered, before the evpression was evaluated,

for ds:a 'iaup contral :anstruct. Ir. cnntrn'ls the numher uF umes
a block of statements is executed. The. construct. has an

71 irial value, a fimal va ue. and_a-loop-count value that 15
mcrgmented each t'nne after the: b'h:ck 1s executa it :

/f sum. is mtia'hzed oG
,U before en:er-m ‘the 'ianp

ng fhg',1odp sum’ '-n'l_]-

e afz

;- 15 2n op:wn that. can-be used r.o enc out qf 2 forﬂoop :
.‘hased upan thn eva1uat1on nf an. exoress'lon. :

" :_'15 an upl:wn used to red'srecv. fur-Tuup based upan th .
valuztion, of .2n expression . If the_gxpression fvdluates
tu “true; the iﬂock of srat n‘:s m“ not’ be-execyt:

Examp'l eli

oostC™ Manual SourceBoost Technologies Page 59

7% g

//Turh gre:
// Turn

3 g T
/7 Turn red

f." Iflthe
V4 be zu

LF TUER ped L o
7 Tutn gresr LED o

/[Turn grean EDDN

//'If-}ti'ie'f: weight
I/ he T:urlnE:] oN

BoostC™ Manual SourceBoost Technologles Page 57

oy ‘e Ting th 0p. i onTy
ium! m'l‘] nniy have the values ' D 2, 3. 4. & E added tugether.

ie vast majority of programming books, the usage of 'goto’ [s heavily
wcated. This Is true for BoostC and PIC C coding as well: It shautd normally be
ed.

' are, anyway, some very specific clrcumstances where It may stll be useful:
timize early exit cases within complex nested contrel structures or to slmpllfy
error handling [it can somehow mimic try/catch except!on handling syntax}.

ne assembly

he asm or _asm operaters to embed assembly Into C code,

. switching and code page switching code should NOT be added to inling
mbly code. The linker will add the appropriate Bank switching and ¢ode page
hing code.

+ will be affected as follows:
Bank switching added automatically.
Code page switching added automatically.

m
: wilt be affected as follows:
Bank switching added automaticatiy.
Code page switching added automatically.
Qther optimizations applied (including dead code remaval).

' 60 SourceBoost Technolegles BoostC™ Manual

Program Flow

while

da f while
for

break
cantinue

Program Flow Exampiles

HI'F "number.’ has a of -0, Fa al™will
Vs equan %0 L. hecause the loop:was: never: entered

iga 'Inap contru'u :nnstruct. It contru‘l he :
of‘ a ‘block: of . statements for:as long.ds an’ express-lon
evaluates te true.:The block 1s ‘executed at-1gasy. g
before the expression:-is svaliated. 1f i1 evaluates'
.. filse,- stop the elecution.. IF it.evaluares .to true; -

Page 58 SourceBoost Technologh cm

G

Variable Refsrencing in asm
To refer to a C varable from inline assembly, simply prefix its name with an

n heavy usage of inline functi bviously aug ts code size. underscove *_'. If a C varlable name is used with the 'moviw' Instruction, the
i fy :tm | address of this variable Is capied Into W,
»rrcidl funcirons : Labels are identified with a tralling semicolon ':' after the label name.
i
iid -a-ln(vmd) . Inline assembiy exampte 1
ngram entry polnt. Thls function Is mandatory for every C program, ¥ {.{"cﬁﬁg‘;i';:‘;“g "‘“ °f Ahitf?esfs.f"d, 1_?1:1131; i_" 1‘:111'}1535_5@;515'

vig mterrupt(vow)

terrupt handler functlon Is linked to high priority interrupts far PICIB parts
nd 1n1:errupt_'lml(vo‘ld)

"W prlnrll:v Inten‘upt handler, can be used onty on the PIC18 famlly

eneral functions and imterrupts

andard user functions are not thread-safe: their local variables are not seved i
hen function execution gets interrupted by an interrupt. This can lead to very
wrd to trace errors.

) prevent this pitfall, the linker does not aliow to calt a given function from bath
ain() and Interrupt threads.

you really need to use same function in both threads, you need to duplicate its
1de and assign a different name to the second copy.

‘return x;

00stC™ Manual SourceBaost Technolegles Page 63 BoostC™ Manual SourceBoost Technalegies fage 61

;glﬁl;ﬁpn gets cailed From main thread. = . - LT Inline assembly example 3

47 tores This ol dipetr
£/ s mdxfiad calsing, memher' ciunt? o have. o diffs

;_errupr'threa_d-
interrupt(vor

amic memory management

i memaory management 15 used to dynamically create and destroy objects User Data

n time, user data con be placed at the current lecation using the ‘data’ assembly
example, this functionallty may be needed when a program needs to keep nstruction fallowed by comma sep d numbers or strings,

ral data packets. Memory for this packets can also be allocsted at commplle Example:

, but this way the memory may nat be avallable for other varlables even if it's
ised. - /I Code’ e, -
solution is to use dynamic memory allocation. Objects to store data are " '&gr{.‘,ﬂf 5:“ 't:sé

asm Ox8,

ted as soon as they are needed and destroyed after data gets processed.
way all available target data memary is used most efficiently.

amount of possible objects that can be allocated depends on the specific PIC Functions
at hand, and on the application, Infine functions

n the application Is bullt, the linker uses RAM merory left after allocation of Functions declared as inline are repeatedly embedded Into the cade for each

3l and local variables as a heap. When some memory gets allocated at run
occurrence. When a function Is defined as Inline, its body must be defined before It
by the “alloc’ call, it gets allocated from this heap. The bigger the heap, the gets called far the first time,

:run tirne objed's can exlst at any ghfen time.
Though any function can be declared as inline, procedures {functions with no
retum value and a possibly empty argument list) are best suited to be used as
: Inline. An exception to this rule are inline functions with reference arguments. Such
|ml|:allv allocate memary 'size’ bvtes |°ﬂ9- Mi“ ‘size & 127 "W&‘- Returns functions wiil not overioad varlables passed as arguments but will operate directly
lf memory can't be aitocated. on them:

inlina void foo{ char iport)

* a1'lo:(uns1gned :har size)

free(vcrld "pt:r) SRR

pon:roxFF- Hsetat! pinsotaport

r B4 SourceBocst Technologles BoostC™ Manual Page 62 SeurceBoost Technolegies BoostC™ Manuat

d fm{ vaid) /A foo' umber 1

4 foof ‘char *ptr) 14"Fo0! romaer 2

d foe{ char a, char b) - ff'Tae' pumber 3
d uiri(l vold)

oo R
voé b S H
10. 0}

//'fou number 1 gats called
£/ foo’ nucher 2 gats ‘called
f'.f fon' nwnher 3 gets called

H cnmp:ler will generate 1ntema| references to the functions sa that no
blgulty Is possible {name manging), and will select which function will be
oked for each call analyzing how many parameters are passed, as wel as their
a

nction tempilates

wctions can be declared and defined using data type placeholders.

s feature ailows writing very general code {for example, linked lists handling}
¢ Is not tied to a particular data type and, what may be more important, allows
: user to :reate tenplate libraries contalned in header files:

ptate - <c\ass T> .
d:-foa(-T %t Yy

d sntng ”\ruid] g

hurt S5 O ; :
be<chars(r.est"), // Foo(char*) gets caheci
W!horb(&s), o //'ﬁ:ln(shurt ets ca']?ed

ostC™ Manual SourceBoost Technologles Page 67

Free memory previously alfocated by 'alloc’. Passing any other palnter wilt lead to
unpredictable results,

BogstC™ Manual SourceBoost Technologles Page 65

netric timing functions

f software based timing functiens are strictly dependent on clock speed.

5 parameter is usually well krown at linking’ ime, depending only en
wre design and Implementation, such functons can be dynamically
ted, once the dock frequency s correctly asslgned with the CLOCK_FREQ
a.

functions ¢an be used In the standard way when writing any pregram far

‘elay _us(unsigned chart)

ated function) Delays execution for 't' micro seconds, Declared In boostc.h
netion gets generated every time a project [s Hnked and is controlled by the
_FREQ. pragma. In some cases when clock frequency is too low It's not
ally possible te generate this function. If that's the case linker will issue a
g.

‘elay_Lous({ unsigned char t)

ated function) Qelays exacution for 't*10' micro secands, Declared in
.h This functlon gets generated every btime a project is linked and is
lled by the CLOCK_FREQ pragma. In some cases, when clock frequency is
¥, I's not-physicatly possible to generate this function.

's the case, the inker will issue a waming.

lelay_100us{ unsigned chart)

ated function) Delays executlon for 't*100° micro seconds. Declared In
Wb This function gets generated every titne a project I3 linked and is
lled by the CLOCK FREQ pragma. In some cases, when clock. frequency .is
¢, It's not physically possible to generate this function.

's the case, the linker will Issue a warning.

felay_ms{ unsigned char t)

ated function) Delays executlon for 't milll seconds, Declared in boostc,h
Inction gets generated every time a project is linked and is controlled by the
L_FREQ pragma.

felay_s{ unsigned chart }

ated function) Defays executlon for 't seconds, Declared in boostc.h This
n gets generated every time a project #s lnked and is controlled by the
L_FREQ pragma.

i about delays: The delays provided are at Jeast the value specified, the

will be longer rather than shorter. The delays produced may be larger than
ed If the defay routine is Interrupted by an [nterrupt.

the dock freqguency Is such that the delay becomes highly inaccurate then
lay overhead, unit delay and delay resolution of the defay are displayed
the linking process,

s SourceBoost Techrologies BoostC™ Manual

C language superset

The BoostC compiler has some advanced features "borrowed" from C++ language,
‘These features allow development of more flexible and powerful code, but thelr
use is merely optional.

References as function arguments

Function arguments can be references to other variables.

When such argument changes Inside a function the original variable used In
function call changes toa,

This Is a very powerful way to alter the data flow without blowing up the generated
cade:

11 have vallue [}

Motes on using references as function arguments

For general efficiency, the mechanism used to pass a variable by reference is that
of taking 2 copy of the variable data when the Function Is called, and by copying
the data back te the original varable after the function has been exited.

Passing a.large structure by reference will generate a farge amount of code to copy
the data back and fourth. Passing volatie variables (those declared using the
volatlle type specifiery may result In not the behavior you would expect, despite
being a volatile variable its value will only get updated on exit of the function.

General guildelines:
« Don't pass large data structures by reference.
s Don't pass volatile data by reference,

Function overloading

There can be more than one function in the same application having a given name.
Such functions must ahyway differ by the number and type of their arguments:

Page 66 SourceBoost Technelogles BoostC™ Manual

sid streat(char *dst, const char 3src)
»d sircat{ char *dst, rom char *src)

id stracal(char ¥dst, const char *ste, unsigned char fen)}
Yid stracat(char *dst, rom char *src, unsigned char len)

unction) Appends zera tarminated string ‘ste’ to destination string 'dst'.
sstination buffer must be big encugh for string to fit. Bedared In string.h

yar* strpbrk(const char *ptrl, const char *pitr2)
rar* sirpbri{ const char *src, rom char *src)

nsigned char strcspn(const char *srcl, const char *src?)

nsigned char strespn(rom char *srcl, const char *src2)

nsigned char strcspn(const char *srcl, rom char *src2 }

usigned char strcspn(rom char *srcl, rom char *sre2)

unction) Locates the first accurrence af a character In the string that doesn't
atch any character in the search string. Dedared In string.h

wsigned char strspn{ const char *srcl, const char *sre2)
rsigned char strspa{ rom char *srci, const char *src2)
1signed char strspn{ const char *srcl, rom char *src2)
1signed char strspn{ rom char *srci, rom char *src2)

unction} Locates the first oceurrence of a character In the string. Declared in
ring.h

1ar* stitok(const char *pirl, const char *ptr2)

rar* strtok(const char *sre, rom char *src)

unction) Breaks string pointed into a sequence of tokens, each of which is
timited by 2 character from delimiter string. Decfared in string.h

war? strehr(const char *src, char ch)

anction) Locates the first eccurrence of a character in the string. Declared in
ring.h

1ar* strechr(const char *srq, charch)

unction) Locates the last accurrence of a character in the string. Declared in
ring.h

1ar* strstr const char ¥ptvl, const char *ptr2)

1ar* strstr(const char *src, rom char *src }

Inctien) Locates the first pecurrence of a sub-string In the siring. Declared in
Hng.h

postC™ Manual SaurceBoost Fechnalogies Page 71

Delay Overhead - The delay treated in calling, setting up and retuming from the
delay function,

Unit Delay ~ The ameunt of additionat delay generated for a delay value increase
of 1.

Delay Resslution ~ The amount the delay value has to be Increased before an
actual increase In the detay ocours. A delay resolution of 4 would mean that the
delay value may need to be increasad by a vaiue of up to 4 In order to see an
increase in the delay.

System Libraries

A number of standard functions are included into BoostC Installations, The number
of such functions isn't static, It mcreases from release to release as new features
are added, Most of these functions ara declared in booste,h (It's not recommended
to Include boostc.h directly into your code. Instead Inciude system.h which in turn
included booste.h)

General purpose functions

cloar_bit(var, num)

{macro} Clears bit 'num’ in variable *var'. Dedlared in buostc.h

set_ bit({ var, num)

{macro} Sets bit 'num' fn varlable ‘var’, Declared In boostc,h
test_bit{ var, num }

(macro} Tests If bit “num’ in variable "var' Is set. Declared In boosic.h
MAKESHORTY(dst, lobyte, hibyte }

(macro) Makas a 16 bit Jong value (stored i 'dst’) from two 8-bit loag values (low
tryte ‘lobyte’ and high byte ‘hibyte"). ‘dst’ must be a 16-bit long variable. Declared
in boastc.h

~uhsigned short pes;: - s s e
. res, adres),. adrash): ak
registers and: _m*he.:‘ ;f; ‘j;-mn"var_fag‘f fieake

e lres i
LOBYTE{ dst, src)
{macro) Gets low byte from "src’ and writes it into ‘dst’, Declared in boostc.h
HIBYTE({ dst, src)

{macro} Gets high byte fram "srt’ and writes it Inte 'dst’. *src' must be a 16-bit lang
variable. Declared In boostc.h

-void nop{-void-}
(inline functien) Generates one ‘nop’ Instruction- Declared in hoaste.h

BoostC™ Manual SourceBoost Technologies Page 69

rersion Functions

When using conversion functions that store the ASCII result in a buffer, be
o provide 2 bulfer of sufficient size or ather memary may get overwritten,
uffer needs to be enough to store the resulting characters and a null
1ator,

wved char sprintf(char* buffer, consi char *format, unsigned int val)

Its a nurnerical value to a string in the specified format, The buffer must be
nough to hold the result, Only one numetical value can be output at a time.
red in stdio.h.

1t specified In the fermat string with the foflowing format;

gs][width][radix specifier]

1 E i tput Description
»-1207 decimal signed integer
"1507 decimal unsigned Integer
WIEM octal unsigned Integer
"ABFL” hex unslgned Integer
1011017 binary unsigned integer

fication | Example output Description |
" *231 " teft justified, padded to 8 characters length

6u” ~0000000000045102" |left justified, padded with zerces to 16
characters length

right Justified, padded 8 characters length

b - 10"

ay of |Example output Description

L “+972 - left justified, padded 8 characters length,
signed always displayed

left justified, padded 8 characters length,
positive signed displayed as‘*

ay of sign only applies to signed decimal radlx. Radix and field width added
o show complete format specification

a” = 765 "

72 SourceBoost Technotogles BoostC™ Manual

void clear_wdt{ void)

{inline function) Generates one "drwdt’ Instruction, Declared in boostc.h
void sleep(void)

{Inline functlon) Generates one ‘sleep’ Instruction. Declared 1 booste.h

String and Character Functions

vold strcpy{ char *dst, const char *src)
void stropy(char *dst, rom char *src)

vold stracpy(char *dst, const char *sre, unsigned char len)
vold strocpy(char *dst, rom char *srx, unsigned char len }

{Function) Coples zero terminated string 'src’ Into destination buffer 'dst’.
Destination buffer must be big enough for string to fit. Declared In string.h

unsignad char strien{ const char *src }
unsignad char strien{ rem char *src)

(function} Returms length of a string. Declared in string.h

signad char stremp(const char *srcd, const char *src2)
sigried char stremp(rom char *srcl, const char *sre)
signed char stremp(const ehar *srcl, rom char *src2)
signed char stremp(rom char *srcl, rom char *sre2)

L
Ll
=i

sigmed char stricmp(const char *srcl, const char *src?)

gmed char stricmp(rom char *srcl, const char *sre2 }
igned char stricmp(const char *srci, rom char *src2)
jgned char stricmp(rom char *src1, rom chat *src2 }

(function} Compares twa strings. Returns -1 If string #1 I5 less than string #2, 1 if
string #1 is greater than string #2 or 0 is string #1 Is same as string #2, Declared
in string.h

e

d char p(char *srcl, char Ysrc2, vnsigned char ler)

giied char stnemp(rom char *srcl, char *srcl, unsigned char len)
igned char strncmp(char *srcl, rom char *srcl, onsigned char len)
gred char stracmp(rom char *srct, ram char *src2, unsigned char len)

signed char strnlcmp(char *srcl, char *src2, unsigned char len)}

signed char strnicmp{ rom char *srci, char *src2, unsigned char fen)
signed char strnicmp{ char *src1, rom char *src2, unsigned char fon)
signed char strnicmp(rom char *srcl, rom char *src2, unsigned char len)

{function) Compares first ‘len’ characters of two strings. Retumns -1 if string #1 is
less than string #2, 1 If string #1 Is greater than string #2 or 0 (s string #1 Is
same as string #2. Dedlared In string.h

Page 70

SourteBoost Technologies BoosiC™ Manual

1signed int atoui_bin{ const char* bulfer)

unction) ASCIL to unsigned integer, binary representation. This function converts
blnary string value into 16 bit unsigned integer,

1signed int atoui_dec{ const char* buffer)

unction) ASCII to unsigned integer, decimal representation. This function
inverts a decirnal string value into 16 bit unsigned integer.

haracter

1ar touppei{ char ch }

unctlon) Converts lowercase character to uppercase. Declared in ctype.h
war tolower{ char ch)

uncion) Converts upparcasa character to lowercase. Declared in ctype.h

1ar isdigit{ char ch)

unction) Checks if character *sh’ is a digit. Returns ron zero iF this is a digit.
aclared in ctype.h

1ar isalpha(char ch)

unction} Checks if character ‘ch' is a lettar. Retuns non zero if this is a letter.
eclared In ctype.h

Yar isainum(char ch)

urction} Checks if character ‘ch' is a letter or a digit. Returns non zera ifthis is a
tter or a diglt, Declared in ctype.h

1ar isblank{ charch)

unction) Retums a 1 if the argument is a standard blank character. All other
puts will return a 0. The followlng are the standard blank characters:
{space} or "\t' (horizontal tab). Declared In ctype.h

yar Iscntrl{ charch)

unctlon} Returns a 1 if the argument Is a valld control character. All other inputs
It return a 0. Declared In ctype.h

1ar isgraph{ charch }

unction) Retumns a 1 if the argument Is a valld displayable ASCI1 character. All
her inputs will return a 9. Declared in ctype.h

1ar isfowei(charch }

unction) Returns a 1 If-the argurnent Is-a-valld-lower-case-ASCII-letter,-All other -
puts will return a 0. Declared in ctype.h

postC™ Manual SourceBoost Technologies Page 75

Implementation of field width is non standard - If a justification width Is specified
the width will be padded or truncated to makch the width provided, The most
significant digits and sign maybe truncated. Standard implementations do not
truncate the output, which can cause unexpected buffer overrun.

unsigned char sprintf3Z(char* buffer, const char *format, unsigned long
val)

Outputs a numerical value to a string in the specified format. The buffer must be
long enough to hald the result. Only pne numerical value can be output at a time.
Declared in stdio.h. :

This function operates as sprintf, but ik handles a 32bit value, It also supparts the
"%I" radix specifier, which Is handled the same as "%d”",
int strioi{ const char® buffer, char** endPtr, unsigied char radix }

{Function) String to integer. A function that, converts the numerical character
string supplied Inte 2 signed integer {16 bit) value using the radix specified, Radix
valld range 2 to 26.

buffer: Polnter to a numerical string.

endPtr: Address of a pointer, This is filled by the Function with the address where
string scan has ended. Allows determination of where there Is the first non-
nurnerical character in the string. Passing a NULL is valid and causes the end scan
address not to be saved.

radix: The radix {number base) to use for the conversian, typlcal values: 2
{bimary), 8 {octal), 10 (decimal), 16 (hexadecimal).

Return: The converted value,

fong strtoi{ const char* buffer, char** andPtr, unsigned char radix);

{Functlon) String te leng Integer. A function that converts the numerical character
string supplied into 2 signed long integer (32 bit) vajue using the radix specified,
Radix valld range 2 to 28.

buffer: Pointer to a numerical string

endPtr: Address of a pointer. This is filled by the function with the address where
string scan has ended, Aflows determination of where there is the first non-
numerical character in the string. Passing 3 NULL Is valld and causes the end scan
address not to be saved.

radkx: The radix {number base) to use for the conversion, typical values: 2
{binary}, 8 (octal), 10 (decimal}, 16 {hexadecimal}.

Return: The converted value.

Int.atolf_const char* buffer-)

{Macro} ASCIT to integer, A macro that converts the rumerical character string
supplied Into a signed integer {16 bit) value using a radix of 10,

BoastC™ Manial SourceBoost Technaologies Page 73

isprint{ charch)

tion) Returns a 1 if the argument is a valid printable ASCIT character. All
Inputs wilt return a ¢. Declared In ctype.h

fspunct(char ch)

tian) Returns a 1 if the argument is a valid punctyation character, All other
s will retum a 0. The following are the Implemented punctuation characters:
BB+, - =2 @ NN {3~

isspace(char ch)

tion) Returns a 1 if the argument is a standard white-space character. All
inputs will return a 0. Declared in ctype.h. The following are the standard
=space characters:

acter Description Character [Character Escape
ASCII code |sequence
H 0x20 't
ontal tab 0x09 h's
cal tab Dx0B W
ine OxDA v
age returm Ox0D W
feed ox0c P
Isupper(char ch)

tion) Returns a 1 If the argument Is a valid upper-case ASCII letter. Ali other
5 Wil return: a 0, Declared In ctype.h

‘isxdigit{ char cir)

‘ton) Returns a L If the argument s a vailld hexadecimal character. All other
s will return 2 0. Declared in ctype.h

* memchr(const vold *ptr, char ch, unsigned char len)
tlon) Locates the Arst character in memory. Declared in memory.h

od char memomp(const vold *ptrl, const void *ptr2, unsigned char
t

tlon) Compares memory, Dectared in memory.h

* memcpy{ vold *dst, const void *src, unsigned char [en)
tion) Copies memory. Declared in memory.h

* memmove{ void *dst, const void *src, unsigned char len)
Hen) Moves memery. Dectared in memory.h

76 SaurceBoost Technologies RoostC™ Manual

buffer; Polnter to a numerical string,
Return: The converted value.
Note: Macro Implemented as: #define atol(buffer) striol{ buffer, NULL, 10}

fang atol{ const char* buffer)

(Macro) ASCIT te long integer. A macro that converts the numerical character
string suppiied Into a signed leng Integer (32 bit) value using a radix of 10.

buffer: fointer to a numerical string.
Raturn: The converted value,
Note: Macro implemented as: #define atoi{ buffer) strtoi{ buffer, NULL, 10)

char* ltoa{ Int val, char* buffer, unsigned char radix }

(Function) Integer to ASCIIL. function that converts an integer {16 bit} value into a
character string.

char* foa(long val, char* buffer, unsigned char radix)

{Function) Long Integer to ASCIL. functlan that converts an fong integer (32 bit)
value Inko a character string,

Lightweight Conversion Functions

The standard converslon functions offer a lot of Aexibllity at the cast of ROM, RAM
and execution time. For application that are short of RAM and RCM, or require
sharter executlon time, it maybe desirable to use the following lightweight
functions.

vold uitoa_hex{ char* buffer, d int val, igned chor digits)

(Function) Unsigned integer to ASCEI, hexadecimal representation, This function
tonverts a 16 bit unsigned integer into a hex value with leading zeros. The number
of diglts is specifled using by the digits parameter.

vold uitoa_bin{ char* buffer, unsigned int val, unsigned char digits }

{Functlon) Unsigned Integer to ASCi, binary representation. This function converts
2 16 bit unsigned Integer Into a binary value with leading zeros, The numbar of
digits Is speclfled using by the digits pararmeter.

vold uitoa_dec(char® buffer, igned int val, igned char digits)

{Function) Unsigned integer to ASCII, decimal representation. This function
converts and 16 bit unsigned integer into a decimal value with leading zeros. The
number of digits is specified using by the digits parameter.

unsigned int atoul_kex{ const char® bufler)

{Functlan) ASCIL tg unsigned integer, hexadecimal representation. This function
canverts a hexadeclmal string value into 16 bit unsigned Integer.

Page 74 SourceBoost Technelogles BoostC™ Manual

vaid* memset{ void *plr, char ch, unsigned char len)
{function} sets memery. Dedared in memory.h

R ple- -
it the che uire 1nterface is r.onnecr.ed to pin 5 oF part: 8 the
=c'!arat';on witl 'loak Tike t!ns

Miscellaneous Functions
define- OG..PQIT

define OO_TRIS ms_g . C o : : ' unsigned short rand({ void)
lefine cn_P . . - {functon) Generates psetsdo random number, Declared in rand.h Defined in
Matile Bit oo_bus [} . . rand.kb

latile-bit oo bus_trf ‘l B0_TRE
bl at‘l e- s tris S . oo.,vm. . void srand{ unsigned short seed)

{function) Sets seed for pseudo randomn number generator, Declared in rand.h

/ mesat the ane wire bus ° ' - = befined in rand.lib

2 basresat(; - :

/ start the converswn (nanvb'luckmg funct’lon) . . max(b}

an,cnnversiono - (Macrs) Returns the vatue of the argument with the largest value,

! wait for- Aation Lould do other stuff here . .

¢ Eu?: wake m tha% ihgufunctmn retus'ns zaro hefure . min{ab)

;(readm? ﬁfgrﬁ:ﬂgign() 3 i R {Macra) Returns the value of the argument with the smallest value.

//‘hand'le cunverswn time ettt v : S I2C functions

[pead the: scrarchpad B SO N ‘ i2c_init, 12¢c_start, 12c_restart, Rq_stop, 12¢_read, I2c_write

oo_read_scratchpad()) S . e S {far more Infarmatien look into 12¢_driver.h and [2¢_test.c file<)

//‘hand'le conversion error R Lo : C RS232 functions

f And extract the temperature: mfurmatwn s LD uart_Init, kbhil, getc, getch, pute, putch

w0t data -~ oo get.data(y; . - .) (for muore information look into serial_driver.h and serlal_test.c files)

hort co_get_data() LCD functions

uni Reads data from one wire bus. ared in oo.h Defined in 0o._picl6.

:Id cutéo;i): Road m 0 i us. Decl il efin picls.lib Jod_ , lprintl, clear, fcd_write, icd_f , icd_dat: "

- {for more information fook i'ntn fcd_ drlver.h and icd.c ms)
har oa_read scratchpad()
- Flash functions

‘unction} Reads scratchpad. Declared In oo.h Defined In oo.pic16.1lb and

o.plelg.iib short ash_read{short addr)

oid oo_start_conversion()} {function) Reads flash content from address ‘addr'. Works with PIC16F87X devices.

N Declared in flash.h Defined in Aash.picl6.hib

unctlon} Starts converslon. Declared in oo.h Defined in oo.picié.lib and arec In Tias ® n Mash.picle.t

3.plc1g.jit vold flash_loadbuffer(short data)

Yar oo_conversion_busy() . {function) Stores 'data’ in an Internal buffer of 4 shorts long. Must be called four

- y times to fill the Internal buffer, Daka in this buffer-Is used by fiash_write to store

unction) Checks If. conversion Is In progress. Returns 0 If no conversion is active. data In Rash, Works with PIC16F87X: devicesrDeclared in flash:h Gefined-in

eclared In co.h Defined in 00.pic16.4ib and 0o.picl8 jib flash.pic16.lib

oostC™ Manual SourceBaost Technologies Page 79 BoostC™ Manual SourceBoast Technologies Page 77

oo_wall_for_completion() void flash_write{short addr}

tion) Waits for a conversion to completg, Retums 0 If convarsion completed {function) Writes data fram an Internal buffer into flash at address 'addr’. The

11 sec, Declared In oo.h Defined In oo.plel6.lib and oo.piclB.ilb Internal buffer that Is 4 shorts long must be filted using 4 calls to flash loadbuffer.
Works with PICLEFS7X devices, Dedared In fiash.h Defined In fAash,pic16,lib
EEPROM functions
char esprom_read{char addr)

{function) Reads eeprom content from address 'addr'. Works with PIC16F87X
devices. Declared In eeprom.h Defined In eeprom.piclé.lib

vold eeprom_write(char addr, char data)

{function) Writes ‘data’ Inte eepram at address ‘addr'. Works with PICI6FB7X
davices, Declared In eeprom.h Defired In eeprom.plelé.liy

ADC functions

short ade_measure{char ch)

({function) Reads ADC channel ‘ch', ADC must be initlalized befare using this
function. Works with PIC16F devices that have ADC units, Declared in adc.h
Defined In ade.picl6.liv

A sample ADC initfalization can look lika:

wﬂarﬂe bxt ‘wlt_on.& mcnuo J\WN. //AC ac:wa:e Ftag

ﬂ AD resu'lt. needs tu ‘be' tht Hu
240 aTl anale
7 et b P

g %: J’/ Se'le:t ‘ad
haald work up to’ 20 MHz.
/4 Ch .

2.4 Tose (this depends on the k- -
: arine} O s '
i

cang, CiS2%; /7
fcon = 13- /7~ Acciva_te AD mndu'le
One wire bus functions

char oo_busreset{)

{function) Resets the one wire bus, Dectared In co.h Defined in oc.pic16.4lk and
00.picis.lib

Here Is a typlcal scenario how to use the one wire fibrary:

a0 SourceBoost Technologles BoostC™ Manual Page 78 SourceBoost Technotagles BoostC™ Manual

oostC™ Manual SourceBoost Technologies Page 83

PC System Requirements

In order to install and run the Compiler/SourceBoost Integrated Development
Environment, a PC with the following specification is required:

Minii ¥ Specification

Microsoft Windows 95/98/ME/NT/2000/XP,

Adobe Reader and a web browser (to allow access to help files and manuals).
Pentlum Processor or equivalent,

128MB of RAM,

CD ROM Drive,

80MB of disk space,

16Bit Color display Adapter at 800x600 Resolution.

Recommended System Specification

As the Minimum System Specification, plus:

2.0GHz (or faster) Processor,

512MByte (or more) RAM,

16Bit Color display Adapter at 1024x768 Resolution (or higher).

BoostC™ Manual SourceBoost Technologles Page 81

al Information

i 1S NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
TWHEI OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER

FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
JRMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU
YE THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IE’ENTUNLESSIEQIIIEDMAMJCA&EUWOKMTOINWN"NGMLLW
GHT

CONSEQUENTIAL DAMAGES
HE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED
JURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
’ERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
{ED OF THE POSSIBILITY OF SUCH DAMAGES.

mmﬁsmmmwmmms(mﬂm;mmm

C++, BoostBasic, C2C-plus, C2C++ and P2C-plus COMPILERS AND REMOVE THE WHOLE
eBoost IDE INSTALLATION FROM YOUR COMPUTER.

wchip, PIC, PICmicro and MPLAB are registered trademarks of Microchip

itC, BoostC++ and Boostlnk are trademarks of SourceBoost Technologies.
r trademarks and registered trademarks used In this document are the
erty of their respective owners.

hitn: /hwwev.sourceboost.com
Copyright@ 2004-2007 Pavel Baranov
Copyright® 2004-2007 David Hobday

Technical support
For example projects and updates please refer to our website:
htto://www.sourceboost.com

We operate a forum where technical and license Issue problems can be pested.
This should be the first place to visit:
hito://forum.sourceboost.com

BoostC Support Subscription

By buying a support subscription you will receive priority technical support via
emall. This ensures that your query or problem will be at the front of the queue
and receive the highest priority attention.

Licensing Issues
1f you have licensing issues, then please send a mail to:
support@sourcehoost.com

General Support
For general support issues, please use our support forum:
http://forum.sourceboost.com

We are always pleased to hear your comments, this helps us to satisfy your needs.
Post your comments on the SourceBoost Forum or send an emall to:
support@sourceboost.com

Page 82 Sour Technologi C™ M. 1

