# ECONOMIC EVALUATION OF $\text{CO}_2$ RECOVERY FROM FLUE GAS USING HYDRATES

by

Muhamad Yusuf bin Amat (Student ID: 8192)

Dissertation submitted in partial fulfilment of the requirements for the Bachelor of Engineering (Hons) (Chemical Engineering)

JAN 2010

Project supervisor: Dr Khalik M. Sabil

Universiti Teknologi PETRONAS Bandar Seri Iskandar 31750 Tronoh Perak Darul Ridzuan

,

# CERTIFICATION OF APPROVAL

# ECONOMIC EVALUATION OF CO<sub>2</sub> RECOVERY FROM FLUE GAS USING HYDRATES

by

Muhamad Yusuf bin Amat

A project dissertation submitted to the Chemical Engineering Programme Universiti Teknologi PETRONAS in partial fulfilment of the requirement for the BACHELOR OF ENGINEERING (Hons) (CHEMICAL ENGINEERING)

Approved by, (Dr Khalik M. Sabil)

#### UNIVERSITI TEKNOLOGI PETRONAS

#### TRONOH, PERAK

January 2010

# CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the original work is my own except as specified in the references and acknowledgements, and that the original work contained herein have not been undertaken or done by unspecified sources or persons.

MUHAMAD YUSUF BIN AMAT

# TABLE OF CONTENTS

| ABSTRACT               |                                                                     |    |  |  |  |
|------------------------|---------------------------------------------------------------------|----|--|--|--|
| LIST OF FIGURES        |                                                                     |    |  |  |  |
| LIST OI                | F TABLES                                                            | 7  |  |  |  |
| CHAPT                  | ER 1 – PROJECT BACKGROUND                                           | 8  |  |  |  |
| 1.1                    | Introduction                                                        | 8  |  |  |  |
| 1.2                    | Problem Statement                                                   | 13 |  |  |  |
| 1.3                    | Objectives and Scope of Study                                       | 13 |  |  |  |
| CHAPT                  | ER 2 – LITERATURE REVIEW                                            | 14 |  |  |  |
| 2.1                    | Hydrate Phase Behavior                                              | 14 |  |  |  |
| 2.2                    | Reviews of Several Conventional Processes                           | 18 |  |  |  |
| 2.3                    | Proposed Process Design of CO <sub>2</sub> Hydrate-based Separation | 20 |  |  |  |
| 2.4                    | Economic Evaluation                                                 | 25 |  |  |  |
| CHAPT                  | ER 3 – METHODOLOGY                                                  | 27 |  |  |  |
| 3.1                    | Research Methodology                                                | 27 |  |  |  |
| 3.1                    | 1 Basis of Design                                                   | 27 |  |  |  |
| 3.1                    | 2 Thermodynamic Analysis                                            | 27 |  |  |  |
| 3.1                    | 3 Simulation                                                        |    |  |  |  |
| 3.1                    | 4 Economic Evaluation                                               | 29 |  |  |  |
| CHAPT                  | ER 4 – RESULTS & DISCUSSION                                         |    |  |  |  |
| 4.1                    | Phase Diagrams                                                      |    |  |  |  |
| 4.2                    | Simulation                                                          |    |  |  |  |
| 4.3                    | Mass Balance                                                        |    |  |  |  |
| 4.3                    | 1 Mass Balance Equation for System Without THF                      |    |  |  |  |
| 4.3                    | 2 Mass Balance Equation for System With THF                         | 45 |  |  |  |
| 4.4                    | Economics                                                           | 50 |  |  |  |
| 4.5                    | Detailed Economics Result                                           | 54 |  |  |  |
| 4.5 Concluding Remarks |                                                                     |    |  |  |  |
| CONCLUSION             |                                                                     |    |  |  |  |
| REFERENCES             |                                                                     |    |  |  |  |
| APPENDICES             |                                                                     |    |  |  |  |

# ABSTRACT

The purpose of this report is to deliver the progress research work for author's Final Year Research Project 2. This study consists of conceptual design the  $CO_2$  gas separation via hydrate formation and economics evaluation of this process and comparison with other conventional processes. The basis for hydrate process design gathered from several literatures. Then the process is simulated using CHEMCAD process simulation software. There are several important design considerations during simulation. From the simulation results and conceptual design, the economics are evaluated. In general, this research project has potential advantages in terms of economics and environment as long as detailed conceptual design is done.

# LIST OF FIGURES

FIGURE 1.1 Hydrate structures formed from different type of cavities for small and large cage

FIGURE 1.2 P-T diagrams for CO<sub>2</sub>+N<sub>2</sub> hydrate system as reported by Miller

**FIGURE 1.3** The separation mechanism of the specified constituent from mixed gases by hydrates.

FIGURE 1.4 The intermolecular potentials of CO<sub>2</sub>, N<sub>2</sub>, and O<sub>2</sub>.

**FIGURE 2.1** Hydrate phase equilibria for the  $CO_2$ -N<sub>2</sub>-H<sub>2</sub>O mixture measured at several composition ratios of  $CO_2$  and N<sub>2</sub>.

**FIGURE 2.2** Pressure-composition diagram of the  $CO_2$ -N<sub>2</sub>-H<sub>2</sub>O mixture measured at three temperatures of 274, 277, and 280 K.

**FIGURE 2.3** P-T diagram (H-Lw-V) shows comparison between pure CO<sub>2</sub>, pure  $N_2$  and mixture CO<sub>2</sub> +  $N_2$  hydrate equilibrium lines

**FIGURE 2.4** Carbon dioxide mol composition at 10 and 11 MPa which shows that  $CO_2$  prefers hydrate phase.

FIGURE 2.5: Chemical Absorption Process

**FIGURE 2.6:** IGCC power plant with CO<sub>2</sub> removal by means of Selexol scrubbing (IEA, 1998)

**FIGURE 2.7:** Process flow diagram for the separation process of  $CO_2$  from the flue gas by using hydrate formation (proposed by H. Tajima et al.)

**FIGURE 2.8:** Schematic diagram of the hydrate-based  $CO_2$  recovery process (proposed by S.P Kang and Huen Lee)

**FIGURE 2.9:** A hybrid hydrate-membrane process for  $CO_2$  recovery from flue gas (proposed by P. Linga et al.)

**FIGURE 4.1** P-T diagram (H-Lw-V) for  $CO_2 + N_2$  hydrate system at different  $CO_2$  compositions

**FIGURE 4.2** Pressure-composition diagram for  $CO_2 + N_2$  hydrate system (H-Lw-V) for different temperatures

FIGURE 4.3 Preliminary process flow diagram generated from CHEMCAD for the hydrate process

**FIGURE 4.4** Complete process flow diagram generated from CHEMCAD for the hydrate process (with 1 mol% THF)

FIGURE 4.5 Complete process flow diagram generated from CHEMCAD for the hydrate process (without THF)

FIGURE 4.6 Process flow diagrams (without THF)

FIGURE 4.7 Process flow diagrams (with THF)

- FIGURE 4.8 Process flow diagrams (with THF + recycle streams)
- FIGURE 4.9 Trend of Chemical Engineering Plant Cost Index from 1950 to 2008.

# LIST OF TABLES

- **TABLE 2.2** Pressure, temperature and flow rate conditions for separating CO<sub>2</sub>.
- **TABLE 2.1**Composition of the feed gas for the separation of CO2.
- **TABLE 4.1**Mass balance of hydrate process (without THF)
- **TABLE 4.2**Mass balance of hydrate process (with THF)
- **TABLE 4.3** Chemical Engineering Plant Cost Index (CEPCI) as in March 2009
- **TABLE 4.4** Summary of hydrate process economics (without THF Case 1)
- **TABLE 4.5** Summary of equipment costs (without THF Case 1)
- **TABLE 4.6** Total project cost (without THF Case 1)
- **TABLE 4.7** Capital cost analysis (without THF Case 1)
- **TABLE 4.8** Cash flow (without THF Case 1)
- **TABLE 4.9** Summary of hydrate process economics (without THF Case 2)
- **TABLE 4.10** Summary of equipment costs (without THF Case 2)
- **TABLE 4.11** Total project cost (without THF Case 2)
- **TABLE 4.12** Capital cost analysis (without THF -- Case 2)
- **TABLE 4.13** Cash flow (without THF Case 2)
- **TABLE 4.14** Summary of hydrate process economics (with THF)
- **TABLE 4.15** Summary of equipment costs (with THF)
- **TABLE 4.16**Total project cost (with THF)
- **TABLE 4.17** Capital cost analysis (with THF)
- **TABLE 4.18** Cash flow (with THF)
- **TABLE 4.19**Summary of costs for both systems

# **CHAPTER 1 – PROJECT BACKGROUND**

#### 1.1 Introduction

In general, clathrate hydrate or gas hydrate is an inclusion compound of which the cage-like structure formed by hydrogen-bonded water molecules. There is no chemical reaction between water and gas molecules but they are held together by physical bonding. Clathrate hydrates are thermodynamically stable under low-temperature and high-pressure conditions. This cage-like structures, known as cavities can hold relatively small gas molecules (guest) in it. Among the suitable guest molecules for hydrate formation are  $CO_2$ ,  $N_2$ ,  $O_2$ ,  $H_2$ , and natural gas components. Three different hydrate structures namely structure I (sI), structure II (sII) and structure H (sH) can be formed depending on the types of cavities that are formed and the distribution of those cavities in a unit cell. **FIGURE 1.1** presents the structures formed from types of cavities and their coordination number.

A variety of applications of gas hydrates has been studied, especially in the field of gas storage and transportation, disposal of  $CO_2$  and gas separation [1]. They are very important in safety issue in oil and gas pipelines, they offer a large unexploited means of energy and they have a significant role in past and future climate change.



**FIGURE 1.1** Hydrate structures formed from different type of cavities for small and large cage [2].

As previously mentioned, carbon dioxide has been known to be among a number of molecules that can form clathrate hydrate. The existence of  $CO_2$  hydrates dates back to the year 1882, when Wróblewski [1882] reported the clathrate hydrate

formation in a system of carbonic acid and water. The hydrate dissociation curve in the range 267 K to 283 K is first published by Villard in 1897 [Villard, 1897].

Later on, Tamman and Krige [1925] measured the hydrate decomposition curve from 230 K to 250 K. Frost and Deaton [1946] determined the dissociation pressure between 273 K and 283 K. Takenouchi and Kennedy [1965] measured the decomposition curve from 4.5 to 200 MPa. Carbon dioxide hydrate was classified as a structure I clathrate for the first time by von Stackelberg & Muller [1954]. As a simple hydrate, carbon dioxide forms structure I hydrate under appropriate pressure and temperature conditions. If all the hydrate cavities are occupied, the chemical formula is  $8CO_2.46H_2O$  or  $CO_2.5.75H_2O$ . [3]

Compilations of hydrate equilibrium conditions of carbon dioxide in pure water can be found in Sloan and Koh [2008]. The phase behaviour of carbon dioxide and water in the hydrate forming region is presented in FIGURE 1.2. As shown in this figure, the hydrate stability region is bounded by the H-I-V, H-L<sub>w</sub>-V and H-L<sub>w</sub>-L<sub>CO2</sub>. As such, at any specified temperature, carbon dioxide hydrate will be stable as long as the pressure of the system is higher or equal to the equilibrium pressure of the system. As shown in this figure, carbon dioxide hydrate has two quadruple points, Q<sub>1</sub> and Q<sub>2</sub>. The quadruple point Q<sub>1</sub> is a four-phase equilibrium point of I-L<sub>w</sub>-H-V and it is located at 273.1 K (-0.05 °C) and 1.256 MPa (about 10 bar). The quadruple point Q<sub>2</sub> is a four phase equilibrium point of L<sub>w</sub>-H-L<sub>v</sub>-V and is located at 283.0 K (9.85 °C) and 4.499 MPa (44 bar). In literature, the lowest measured equilibrium pressure for carbon dioxide hydrate is at 0.535 kPa and 151.5 K for I-H-V equilibrium point and its value is reported by Miller and Smythe [1970].

9



**FIGURE 1.2** P-T diagrams for  $CO_2+N_2$  hydrate system as reported by Miller [4]

Concerns on  $CO_2$  as one of the major contributors to greenhouse effects has lead to many studies regarding carbon dioxide recovery and utilization for global sustainability. The main interest in this project is the  $CO_2$  recovery from flue gas (post-combustion) from coal-fired power plant via hydrate formation. Postcombustion capture involves separating  $CO_2$  from flue gas (15-20%  $CO_2$ , 5%  $O_2$ and balance  $N_2$ ). In a conventional power generation station a  $CO_2$  separation and capture unit can be retrofit and carbon dioxide can be separated before letting the flue gas to go out in the atmosphere.

Gas separation process by using hydrates is based on selective partition of the components in the mixture between the gaseous phase and the hydrate phase. Apart from low-temperature and high-pressure conditions requirement, the stability of the hydrates depends on the shape and size of guest molecules, interaction between guest and host molecules, thermodynamic conditions for the hydrate formation would differ in wide range of pressure and temperature depending on the gas molecules. Shiojiri et al. [2004] stated that the separation process is assumed to be conducted in the following three steps; hydrate formation, separation of the solid hydrate from the feed gas and water, and recovery of the enriched gas by dissociation of the hydrate. [1].

The basic phenomenon that explains the reason why hydrates can separate the specified constituent from mixed gases is demonstrated in **FIGURE 1.3**. The constituent is separated as the solid solutions.



**FIGURE 1.3.** The separation mechanism of the specified constituent from mixed gases by hydrates. [5]

If the mixed gases were compounded of the components that formed hydrates and the components that could not make hydrates, the former components would be captured in hydrates' cages and the latter components should be left in the mixed gases.

In addition intermolecular force between the gas molecule in the cage and water molecules that surrounding the gas molecule is different among gas components, so the specified constituent exists excessively in the hydrate phase. The mole fraction of each component in hydrate phase depends basically upon the fugacity of each component in the gas phase and the intermolecular potential between the gas molecule and water molecules when they take the hydrate structure. The flue gases from the thermal electric power station contained mainly  $CO_2$ ,  $N_2$ ,  $O_2$ , and  $H_2O$ . Although these components all can make hydrates, but the intermolecular potential is different each other, that enables us to separate  $CO_2$  from other components. The comparison of the intermolecular potential is indicated in **FIGURE 1.4**. The potential well depth of  $CO_2$  is deeper than that of other components and it means that  $CO_2$  makes hydrates in more moderate condition than others. [5]



FIGURE 1.4. The intermolecular potentials of  $CO_2$ ,  $N_2$ , and  $O_2$ . [5]

Currently, there are many processes developed for removing or isolating a particular gaseous component from a multi-component gaseous stream. These processes include absorption, adsorption, membrane separation etc. and this will be explained later on in Chapter 2 [6]. Praveen et al. [2007] mentioned that the liquid

absorption using amines was considered the most promising current method while some other methods are promising but too new for comparison. There is continued interest in the development of less energy intensive processes.

One of the new methods for separating  $CO_2$  from flue gas is through clathrate or gas hydrate formation. When gas hydrate crystals are formed from a mixture of gases the concentration of these gases in the hydrate crystals is different than that in the original gas mixture. This is the basis for the utilization of clathrate hydrate formation decomposition as a separation process [6].

#### **1.2 Problem Statement**

Currently, the thermodynamic data for  $CO_2$  hydrate,  $N_2$  hydrate, and  $CO_2 + N_2$  hydrate systems are available though many of them are only for  $CO_2$  hydrate system only. The thermodynamic experimental data for  $CO_2 + N_2$  hydrate system needs to be verified by modeling means. There are only a few proposed conceptual design of this hydrate separation process and there are only available on high level. The detailed process design with material and energy balances with complete streams information are not yet available. The process design simulation also not available and it needs to be optimized as well. The detailed cost estimation also not available and it is needed to produce more accurate costing for economic potential. Therefore, the problem is to produce complete process design with its economics.

#### 1.3 Objectives and Scope of Study

Upon completing the project, a few objectives need to be achieved. The objectives of this research project are as the following:

- To conduct high level thermodynamic analysis of gas hydrate system
- To simulate the proposed hydrate based CO<sub>2</sub> separations with and without additive
- To evaluate the economics for both system with and without additive and thus to study its effect to the economics

## CHAPTER 2 – LITERATURE REVIEW

#### 2.1 Hydrate Phase Behavior

Phase equilibria for hydrate formation is the temperature and pressure where microscopic amount of hydrate exist in equilibrium with gas and liquid phase. As reported by Kang and Lee, the three phases H-L-V equilibria of the ternary  $CO_2$ -N<sub>2</sub>-water system were determined at several different ratios of  $CO_2$  and N<sub>2</sub>. The mixed hydrates formed over the wide temperature and pressure ranges of 272-284 K and 15-300 bar largely depending upon the gas-phase compositions. The complete data were demonstrated in **FIGURE 2.1**. As simple hydrates,  $CO_2$  and N<sub>2</sub> form structure I (sI) and structure II (sII), respectively. The structure of mixed hydrates is considered to be either sI or sII depending on the relative ratio of these two different gas molecules occupied in the small and large cavities. As generally expected, all the hydrate formation lines were located between two pure  $CO_2$  and N<sub>2</sub> H-L-V. [7]

With the fundamental information in **FIGURE 2.1** an attempt for developing a new hydrate-based gas separation process was initiated, and its thermodynamic validity was closely examined. One important application of this process is the CO<sub>2</sub> recovery from power plant flue gases containing various concentrations of CO<sub>2</sub>. Flue gas from power plant usually consists of 15 to 20 mol % CO<sub>2</sub>, 5 to 9 mol % O<sub>2</sub>, trace gases, and balance N<sub>2</sub>. After suitable pretreatment steps, flue gas can be simplified as ternary CO<sub>2</sub>, O<sub>2</sub>, and N<sub>2</sub> mixture. [7]

Furthermore, it can be assumed that the treated flue gas is the binary mixture of  $CO_2$  and  $N_2$  because the hydrate formation characteristic of  $O_2$ , for example hydrate formation pressure, is nearly the same as that of  $N_2$ . In this work, a binary mixture of 17 mol %  $CO_2$  and balance  $N_2$  will be paid special interest for this reason. According to **FIGURE 2.1**, the gas mixtures having concentrations of 17 mol%  $CO_2$  and 83 mol%  $N_2$  can form hydrates with water slightly above 70 bar at temperature of at 273 K. [7]

However, such a high pressure requirement might be regarded as a fatal disadvantage when adopted to the actual process. Therefore, a more favorable condition is to lower the pressure and raise the temperature much higher than 273 K for hydrate formation. But, as shown in **FIGURE 2.1**, when the hydrate formation temperature increases, the corresponding equilibrium pressure also increases. To solve this inherent problem, THF was used as a potential hydrate promoter which enables the operating conditions to shift to milder ones. [7]



**FIGURE 2.1** Hydrate phase equilibria for the  $CO_2$ -N<sub>2</sub>-H<sub>2</sub>O mixture measured at several composition ratios of  $CO_2$  and N<sub>2</sub>.

The hydrate-phase compositions were determined at three isotherms of 274, 277, and 280 K, and the results are presented in **FIGURE 2.2**. The relative CO<sub>2</sub> amount in the hydrate phase increased when that in the vapor phase increased. At the vapor composition of 15 mol % CO<sub>2</sub> the corresponding CO<sub>2</sub> composition in the hydrate phase appeared to be about 59, 58, and 39 mol % at three temperatures of 274, 277, and 280 K, respectively. This result indicates that the CO<sub>2</sub> selectivity in the hydrate phase increases when the hydrate formation temperature is lowered. Another sample of 17 mol % CO<sub>2</sub> in the vapor phase shows a similar trend resulting to a little higher selectivity of 63 mol % CO<sub>2</sub> at 274 K. The gas components captured in the hydrate phase can be dissociated and easily recovered simply by

either elevating temperature or decreasing the pressure. Only two consecutive steps are required to achieve the recovery of more than 95%  $CO_2$ . A new and efficient gas separation/recovery process can be developed using the hydrate formation/dissociation phenomena and more clearly understood through the isothermal *P*-*x* diagram given in **FIGURE 2.2**. [7]



**FIGURE 2.2** Pressure-composition diagram of the  $CO_2$ -N<sub>2</sub>-H<sub>2</sub>O mixture measured at three temperatures of 274, 277, and 280 K. Arrow path conceptually illustrates the two-stage separation process for recovering  $CO_2$  from a binary gas mixture.

Another research which has been done by Praveen et al stated that carbon dioxide forms hydrate at much milder condition than nitrogen, and as expected a gas mixture containing  $CO_2/N_2$  takes a middle route. As we can see here, at 0.6 degree centigrade the minimum pressure at which flue gas mixture containing 17%  $CO_2$  and rest nitrogen can form hydrates is 7.7 MPa. [6]



**FIGURE 2.3** P-T diagram (H-L<sub>W</sub>-V) shows comparison between pure CO<sub>2</sub>, pure  $N_2$  and mixture CO<sub>2</sub> +  $N_2$  hydrate equilibrium lines [6]

For a substantial hydrate growth we need a driving force, that can be achieved by either performing the experiment at lower temperature or at higher pressure we chose to perform our experiment at higher pressure as we intend to study the kinetics of hydrate formation from liquid water. [6]



FIGURE 2.4 Carbon dioxide mol composition at 10 and 11 MPa which shows that  $CO_2$  prefers hydrate phase.

From their work, hydrate formation experiments were carried out at 0.6  $^{\circ}$ C and at two pressures 10 MPa and 11 MPa (Peq = 7.7 MPa). One of the results which show the composition of different phases at two different driving forces for a flue gas mixture is shown here in bar graph. With an initial composition of 16.9% CO<sub>2</sub> we end up with 57.3% CO<sub>2</sub> in hydrate phase and 9.7% CO<sub>2</sub> in gaseous phase, at 0.6 degree and 10 MPa, the result shown above is for a single stage. [6]

#### 2.2 Reviews of Several Conventional Processes

Absorption processes are currently the most developed  $CO_2$  removal technology. Absorption systems are continuous scrubbing systems used to remove  $CO_2$  from a gaseous stream. Three main absorption processes available are chemical, physical and hybrid.

 $CO_2$  capture from a power plant is a commercial process nowadays. So far, all commercial  $CO_2$  capture plants use processes based on chemical absorption with a monoethanolamine (MEA) solvent [Klemes and Bulatov, 2005]. Active research is being carried out on new processes and approaches. Technologies such as cryogenic fractionation, membrane separation, and adsorption using molecular sieves to capture the  $CO_2$  from the flue gas of a power plant have been considered but they are even less energy efficient and more expensive than chemical absorption [Herzog, 2001].



FIGURE 2.5: Chemical Absorption Process

Most conventional coal-burning power plants produce electricity using steam turbines, while most natural gas plants use gas turbines (the excess heat being applied to a second, steam-driven turbine).

Flue gas streams generated by those plants are characterised with low to moderate concentrations of  $CO_2$ . For such streams, the current most effective way to capture  $CO_2$  is absorption using a chemical solvent such as monoethanol amine (MEA) or diethanolamine (DEA), ammonia and hot potassium carbonate [Chinn et al., 2004]. Recent research shows that amino-acid salt solutions can be an alternative to amine based solutions [Feron et al., 2004].



FIGURE 2.6: IGCC power plant with CO<sub>2</sub> removal by means of Selexol scrubbing (IEA, 1998)

Besides chemical absorption of  $CO_2$ , the gas can be physically absorbed in a solvent in accordance with Henry's law. By applying heat or reducing pressure or combining both, the gas can be regenerated. Industrial solvents used for this purpose are Selexol (dimethylether of polyethylene glycol) and Rectisol (cold methanol) [Klemes and Bulatov, 2005]. However, they have to be applied at high pressures which can make the process economically prohibitive. At lower pressures, the chemical absorption processes can prove more economical.

For source streams with high concentrations of  $CO_2$ , as is the case for the IGCC plant, physical absorption using a solvent like Selexol (dimethylether of polyethylene glycol) or Rectisol (cold methanol) can be less costly than chemical absorption. Increasing external gas pressure and decreasing the temperature

improves the absorptive capacity of these solvents. Consequently, applying heat or diminishing the external pressure regenerates the solvents and releases the  $CO_2$  [8].

Physical and chemical absorption currently represent the most developed technical options for  $CO_2$  capture but significant research efforts are being made for more 'exotic' capture technologies. Most of these technologies have been developed for use in other applications and some are used in niche applications. However the answer to the question whether they would be competitive and economically viable for CCS compared to alternative capture techniques (i.e., MEA and physical absorption) in, say, the electric power sector, remains uncertain.

In this research project, hydrate based separation system will be compared with at least one current technology which is amine absorption.

# 2.3 Proposed Process Design of CO<sub>2</sub> Hydrate-based Separation

There are yet several researches done regarding the CO<sub>2</sub> gas separation via hydrate formation. For instance, the hydrate based gas separation (HBGS) was proposed by Kang and Lee [2000] for the separation of carbon dioxide from flue gas with tetrahydrofuran (THF) as a promoter. The authors claimed that the advantages of this process include high CO<sub>2</sub> recovery from the flue gas, moderate operational temperatures and possibility to treat a large amount of gaseous stream in continuous operations. Another attractive development research is high pressure process for CO<sub>2</sub> separation [Tam et al, 2001] which focuses on the low temperature process, namely SIMTECHE. It is attractive in the first place in terms of its economics finding which shows that SIMTECHE process requires less additional capital cost and the cost of carbon dioxide removal for the SIMTECHE process is also found to be the cheapest if compared to amine and Selexol absorption. These are for the integration of carbon capture system (CCS) in an integrated gasification combined cycle (IGCC) plant [Tam et al., 2001]. Therefore, the mentioned development could provide basis theory and understanding for this research project.

Before the economics of this project are evaluated, the conceptual design for the separation processes must be done beforehand. Three conceptual designs are relevant and available from the literatures. <u>Design 1</u>



**FIGURE 2.7:** Process flow diagram for the separation process of  $CO_2$  from the flue gas by using hydrate formation (proposed by H. Tajima et al.) [13]

The separation process of CO<sub>2</sub> from the flue gas of point emission sources such as thermal power plants is considered. The composition of the flue gas is given in **TABLE 2.1**, corresponding to a composition of the flue gas emitted from a typical natural gas-fired thermal power plant after desulfurization and denitration (pre-treatment). Pressure, temperature and flow rate conditions for separating CO<sub>2</sub> is given in **TABLE 2.2**. The total flow rate of the flue gases is  $1.0 \times 10^6$  N m<sup>3</sup>h<sup>-1</sup>, assuming the treatment of the total emission from a 1000 MW thermal power plant. The hydrate formation condition is set to 274 K, and 140 bar. Since the final pressure after compression is extremely high, a two-stage adiabatic compression of the feed gas is used in this case; 1–20 bar at the first stage, and 20–140 bar at the second stage. After the first compression, the feed gas is cooled to 298 K by the offgas stream from the hydrate formation unit and cooled down to 274 K after the second compression with a brine stream.

| Component       | Mole fraction in the feed (-) | Flow rate in the feed $(10^3 \text{ N m}^3/\text{h})$ | Flow rate in the feed (ton/h) | Flow rate in the product (ton/h) | Flow rate in the off-gas (ton/h) |
|-----------------|-------------------------------|-------------------------------------------------------|-------------------------------|----------------------------------|----------------------------------|
| CO <sub>2</sub> | 0.10                          | 100                                                   | 196                           | 186,2                            | 9.8                              |
| N <sub>2</sub>  | 0.79                          | 790                                                   | 988                           | 0                                | 988                              |
| 0 <sub>2</sub>  | 0.04                          | 40                                                    | 57                            | 0                                | 57                               |
| $H_2O(g)$       | 0.07                          | 70                                                    | 56                            | 0                                | 56                               |
| Total           | 1.00                          | 1000                                                  | 1298                          | 186.2                            | 1111.8                           |

TABLE 2.1 Composition of the feed gas for the separation of CO<sub>2</sub>.

|                     | · • /    |         |       |                |          |         |         |     |     |
|---------------------|----------|---------|-------|----------------|----------|---------|---------|-----|-----|
| Pressure and temp   | perature |         |       |                |          |         |         |     |     |
| i .                 | 1        | 2       | 3     | 4              | 5        | 6       | 7       | 8   | 9   |
| $P_i$ (bar)         | 20       | 20      | 140   | 140            | 140      | 1,0     | 140     | 140 | 1.0 |
| $T_{I}(\mathbf{K})$ | 776      | 298     | 536   | 298            | 274      | 274     | 274     | 768 | 280 |
| Flow rate (ton/h)   | 1        |         |       |                |          |         |         |     |     |
| Brine 1             | Brine 2  | Brine 3 | Water | Water<br>purge | Seawater | Product | Off-gas |     |     |
| 5310                | 813      | 7466    | 430   | 56             | 6343     | 186     | 1112    |     |     |

TABLE 2.2 Pressure, temperature and flow rate conditions for separating CO<sub>2</sub>.

<u>Design 2</u>



**FIGURE 2.8:** Schematic diagram of the hydrate-based  $CO_2$  recovery process (proposed by S.P Kang and Huen Lee)

With the fundamental information from experimental results done by Kang and Lee [2000], an attempt for developing a new hydrate-based gas separation process was initiated. One important application of this process is the  $CO_2$  recovery from power plant flue gases containing various concentrations of  $CO_2$ . Flue gas from power plant usually consists of 15 to 20 mol %  $CO_2$ , 5 to 9 mol %  $O_2$ , trace gases, and balance N<sub>2</sub>. After suitable pretreatment steps, flue gas can be simplified as ternary  $CO_2$ ,  $O_2$ , and N<sub>2</sub> mixture.

Furthermore, it can be assumed that the treated flue gas is the binary mixture of  $CO_2$  and  $N_2$  because the hydrate formation characteristic of  $O_2$ , for example hydrate formation pressure, is nearly the same as that of  $N_2$ . In this work, a binary mixture of 17 mol %  $CO_2$  and balance  $N_2$  will be paid special interest for this reason. The gas mixtures having concentrations of 17 mol%  $CO_2$  and 83 mol%  $N_2$  can form hydrates with water slightly above 70 bar at temperature of at 273 K.

However, such a high pressure requirement might be regarded as a fatal disadvantage when adopted to the actual process. Therefore, a more favorable condition is to lower the pressure and raise the temperature much higher than 273 K for hydrate formation. But, however, when the hydrate formation temperature increases, the corresponding equilibrium pressure also increases [Kang and Lee, 2000]. To solve this inherent problem, THF was used as a potential hydrate promoter which enables the operating conditions to shift to milder ones.

When flue gas containing about 17 mol % CO<sub>2</sub> is introduced to the first hydrator at 280 K and 16.5 bar, the hydrates formed are expected to have a composition of 34.71 mol % CO<sub>2</sub> and 65.39 mol % N<sub>2</sub> in THF-free base. The gas mixture produced by dissociating the hydrates formed in the first hydrator can be fed again into a second hydrator. The next two reactors had better use only water without THF because a larger amount of CO<sub>2</sub> can be recovered to 89.34 mol%at 274 K and 38.7 bar in the second hydrator and 99.67 mol% at 274 K and 28.7 bar in the third hydrator. The hydrate-based CO<sub>2</sub> separation and recovery process developed from the overall experimental results done in this study is schematically demonstrated in **FIGURE 2.8**. The flue gas from a power plant must be first passed to the commercial desulfurization facility for removing SO<sub>X</sub>. The pretreated flue gas goes to the first hydrator charged with an aqueous solution containing THF. However, the next two hydrators contain only water. This process makes it possible to recover more than 99 mol % of CO<sub>2</sub> from the flue gas. This hydrate-based gas recovery process provides several advantages over the conventional ones. First, the operational temperature is low in the range of 273-283 K, and a continuous operation permits this process to treat a large amount of gas stream and to compete with absorption processes. Second, only a small amount of THF is needed together with water and therefore severe corrosion problem can be avoided. Third, the used aqueous solution containing THF can be easily recycled to the hydrator. Several potential candidates of hydrate promoters have been tested and found that THF is the most effective on largely reducing the formation pressure of mixed gas hydrates.

Additional work for optimizing this process with key design data is in progress along with the effect of hydrate promoter on improving process conditions.



Design 3

**FIGURE 2.9:** A hybrid hydrate-membrane process for  $CO_2$  recovery from flue gas (proposed by P. Linga et al.)

The above digaram indicates that following a one-stage hydrate formationdecomposition process for the  $CO_2/N_2$  mixture, a  $CO_2$ -rich gas is obtained which contains 57.3%  $CO_2$  at 10MPa. Given that the equilibrium hydrate formation pressure of this gas is about 2.4MPa, a second stage is advocated to obtain a more concentrated  $CO_2$  mixture. The second hydrate formation vessel would operate at a lower pressure compared to the first one since the equilibrium pressure is lower by about 5.3MPa.

Preliminary results indicate that the new  $CO_2$ -rich mixture will contain about 83.2%  $CO_2$ . Moreover, we envision a hybrid process whereby hydrate formation in three stages is combined with a membrane process. This concept is illustrated in **FIGURE 2.9**. This work is ongoing and another objective is to identify additives to lower the hydrate formation pressures without compromising significantly the separation efficiency. Tetrahydrofuran is one such additive that has been suggested from various sources.

The major disadvantage of the above processes is the high pressure required specially in the first stage. As was mentioned above one way to alleviate this problem for the  $CO_2/N_2$  case is to use THF. The above-illustrated processes show the feasibility of the concept and not the economic viability. Clearly, from an economic viewpoint lower pressures are required which can be achieved by adding proper additives to reduce the hydrate formation pressure at any given temperature without compromising the  $CO_2$  recovery and separation efficiency. Compression costs were calculated for a 500MW conventional power plant, in order to pressurize the flue gas from 0.1 MPa and 70 °C to 10MPa and 1 °C. It was found that four compression stages with intercooling are required [9].

Clearly, this demonstrates the need for additives. The work on additives is ongoing and is the avenue to render the hydrate process economically attractive.

#### 2.4 Economic Evaluation

Allen D. H. (1991) mentioned that the techniques of economic evaluation are tools for us to help ensure that good decisions are made. The author has outlined a systematic guide which is applicable especially for investment of new development projects. These guidelines will be adapted for this research project and implemented as explained later in Chapter 3. Similar to process design, economic evaluation needs a basis, namely cost estimate basis meant for the plant and facilities. This initial information must be provided from the conceptual design stage before developing the cash flow data and eventually evaluating the economics. During economic evaluation stage, values of the appropriate measures such as capital expenditure (CAPEX), operating expenditure (OPEX), net present value (NPV), discounted cash flow rate (DCFR) etc. and sensitivity analysis for changes in important factors contribute to the make-up of the project cash flows must be further investigated [10]. However in this research project, the use of simulation software helps in evaluating the economics provided the right input data of economics such as Chemical Plant Index is inserted.

# **CHAPTER 3 – METHODOLOGY**

In this chapter, the methodology for this research project is presented. The methodology is divided into four main phases and the tools used specifically computer software are mentioned with brief explanation. The Gantt chart with key milestones and work schedule is provided in **APPENDIX A**. Three basis designs are taken. All key properties for key components are noted. Any important properties which are not mentioned in the literature will be assumed appropriately, accordingly.

#### 3.1 Research Methodology

The research works in this project mainly divided into four phases, as described below.

# 3.1.1 Basis of Design

The feed basis must be known firsthand for both thermodynamic modeling and process simulation. From the literature basis as proposed by Praveen and Kang and Lee, both conclude that the feed composition from the flue gas from power plant usually consists of 15 to 20 mol % CO<sub>2</sub>, 5 to 9 mol % O<sub>2</sub>, trace gases, and balance N<sub>2</sub>. After suitable pretreatment steps, flue gas can be simplified as ternary CO<sub>2</sub>, O<sub>2</sub>, and N<sub>2</sub> mixture. Furthermore, it can be assumed that the treated flue gas is the binary mixture of CO<sub>2</sub> and N<sub>2</sub> because the hydrate formation characteristic of O<sub>2</sub>, for example hydrate formation pressure, is nearly the same as that of N<sub>2</sub>. In this work, a binary mixture of 17 mol % CO<sub>2</sub> and balance N<sub>2</sub> will be paid special interest for this reason [66]. The feed basis is 5000 mol/hr. Meanwhile, the product target is hydrate consist of 98-99% CO<sub>2</sub> [6]

#### 3.1.2 Thermodynamic Analysis

Since temperature and pressure play great role for hydrate formation, thermodynamic analysis should be done at the first place to determine the temperature and pressure range of the hydrate process and later on to develop the P-T diagram, P-x or T-x diagram for  $CO_2$ -N<sub>2</sub>-H<sub>2</sub>O system. These values will become

inputs to the process simulator that is when simulating the reactor for hydrate formation. The thermodynamics data gathered from the experimental as compiled in Sloan [12] are also compared with the results from the thermodynamic modeling using CSMGem Hydrate Prediction program. This work will help in determining the equilibrium hydrate formation pressure and thus the operating pressure for the hydrate process.

#### 3.1.3 Simulation

After the conceptual design where the separation process flow has been visualized, the process is simulated using computer software namely CHEMCAD. The most crucial part for the simulation is selecting the thermodynamics package of the hydrate. CHEMCAD is used in this project since it has the built-in hydrate prediction tools and capable to detect any hydrate formation in the process streams. Once the simulation is complete, we are able to change the variables of the process to see the effects of some parameters.

There are some important notes to be taken. The first one is the proper selection of unit operations during CHEMCAD simulation such as precipitator, condenser, dissociator, and hydrator. Further investigation should be made to determine the suitable equipments. As usual, several assumptions should be made and the simulation will be in steady-state mode in the early stage of this research.

These are step-by-step procedures for process simulation using CHEMCAD which is basically divided into three main stages.

#### 3.1.3.1 Basis Environment

Within the basis environment, all components inside the hydrate system must be entered  $-CO_2$ , N<sub>2</sub>, H<sub>2</sub>O. Then the thermodynamics properties packages, called as fluid package must be selected properly as this is the crucial part in process simulation and determines how accurate the simulation will be. As studied by Sabil K.M [2009], for the fluid phase, the Peng-Robinson equation of state (EoS) as modified by Stryjek and Vera (PRSV EoS) [1986] combined with Huron-Vidal-Orbey-Sandler mixing rules are used. Meanwhile, the UNIQUAC (Universal Quasi-Chemical Activity Coefficient) model is used to calculate the excess Gibbs free energy. As for hydrate phase, the thermodynamic model is based on the van der Waals and Platteeuw model. In CHEMCAD, not all thermodynamic packages are available for use. Therefore, in this early stage, only the PRSV, UNIQUAC and van der Waals are considered to be used.

#### 3.1.3.2 Simulation Environment

In simulation environment all required unit operations (equipments) are added and for each, sufficient data for inputs must be gathered and entered into the software. The data includes operating conditions like temperature and pressure and also the flow rate (assumed) and compositions of each stream (from literature). Common practice is to simulate the process stage by stage rather than adding all equipments and solve them later on. This is to avoid much simulation problems which is called as troubleshooting. Troubleshooting must be done based on the basic concept of the process. References must be made to clarify that the simulation is a good to go.

#### 3.1.4 Economic Evaluation

Theoretically, the 'straight' economic evaluation is to be done which requires initial information of the projects and development of cash flow data. There are other ways where the cost minimization in equipment selection can be applied and the added values of the project can be analyzed. Furthermore, the complete economic evaluation should consist of uncertainty and risk whereas the sensitivity analysis is done. During economic risk analysis, the subjective probability distributions should be considered with the Monte Carlo simulation. Eventually, the interpretation of results of a project economic risk analysis is to be done.

The computer-aided software which is needed during economic evaluation includes spreadsheet like Microsoft Excel. This software mainly aids to calculate the economic measures like NPV and DCFR. There is also built-in spreadsheet economic template in CHEMCAD which will help calculating the cost of the equipments.

# **CHAPTER 4 – RESULTS & DISCUSSION**

#### 4.1 Phase Diagrams

Phase equalibira data for H-L<sub>w</sub>-V phases are gathered from Sloan and Koah, for  $CO_2 + N_2$  hyrate system. The experimental data from Kang and Lee are used for comparison with the modeling using CSMGem. At different  $CO_2$  composition and temperature, the pressure are recorded and presented in a table as in Appendix B. Based from the table, the P-T diagram are plotted as shown in FIGURE 4.1.

Based on the P-T diagram shown, it can be concluded that there are good agreement between experimental data and modeling data with pressure ranging from 1 - 10 MPa since there is no huge deviation. However, the modeling work does not agree with the experimental data for pressure higher than 10 MPa. It also can be concluded that the temperature range from 274 K – 280 K shows good agreement and it is also the preferable range for hydrate formation as the formation of ice must be avoided.

From P-T diagram, the P-x diagram is developed. It is found out that during modeling work, at 279 - 280 K and lower concentration of CO<sub>2</sub>, the result from CSMGem gives convergence error in terms of pressure. This represents that the loading composition of CO<sub>2</sub> should not be lower than 0.1 for operation temperature of 279-280 K since the operating pressure cannot be determined from this data. The operating pressure must be higher at about 25% from the equilibrium pressure.







#### P-T Diagram of CO2+N2+H2O for H-Lw-V



**FIGURE 4.2** Pressure-composition diagram for  $CO_2 + N_2$  hydrate system (H-L<sub>W</sub>-V) for different temperatures.

# 4.2 Simulation

Process simulation of hydrate process are then developed using CHEMCAD process simulation software. The thermodynamic packages chosen by the software by default after the input of temperature and pressure range are entered are Ideal Vapor Pressure for equilibrium constant, K value and SRK for enthalpy values. Then, the process flow shown is based on the conceptual design of block diagram as proposed by P. Linga (Design 3). The feed and streams composition are shown in Appendix C.

From Appendix C, it can be said that the hydrate are formed after using the built-in  $CO_2$  solid tools to check whether there is hydrate in the streams. The need for compression is a must since the hydrate formation pressure is high. It is also needed to maintain the equilibrium pressure inside the hydrate formation vessel, crystallizer as in the simulation, so that the hydrate will continuously form. Crystallizer is chosen as the major unit operation since the hydrate process needs to be continuous and the liquid water need to be stirred for the physical 'reaction' to occur inside the vessel.

It is no doubt that using the process simulator will lead the simulation to several convergence problems. As for this project, the convergence problem occurred around the crystallizers. The crystallizer module in CHEMCAD namely CRYS module can be used to simulate crystallization or melting processes by cooling or heating. It can also be used as a dissolver where a second solvent stream is added to maintain the outlet stream at a desired concentration level. During input specification, the operation type #1 of three shown below is selected.

0 = No vapor phase (liquid and solid only).

#### 1 = Vapor phase exists; solid formation by boiling off liquid.

2 = Dissolver; calculate solvent flow rate to maintain desired weight fraction of a component (liquid and solid only).

Then the calculation mode #0 of three shown below is selected.

## 0 = Specify temperature, calculate heat duty.

1 = Specify heat duty, calculate temperature.

2 =Specify vapor flow rate (type = 2, solid formation).

However, the problem is when the input of crystallization stoichiometry has to be entered in order to run the CRYS module. Crystallization stoichiometry is defined similarly to reactions, where negative coefficients refer to liquid precursors (reactants) and positive coefficients refer to crystals (products). As for example:

<u>Component:</u> MgSO<sub>4</sub> H<sub>2</sub>O MgSO<sub>4</sub>.6H<sub>2</sub>O (Hydrate crystal)

#### Crystallization equation:

 $1 * MgSO_4 + 6 * H_2O = 1 * MgSO_4 \times 6H_2O$ 

The solid crystal must be on the right hand side of the equation whether crystallizing or melting. Thus, data entry for this example:

| Coeff. | <u>Component</u>  |
|--------|-------------------|
| -1     | Magnesium sulfate |
| -6     | Water             |
| 1      | Hydrate crystal   |

It is known that during the hydrate process, there is no chemical reaction occurs as there is only the physical reaction between the water and guest molecules. Therefore, there is no crystallization equation for hydrate process. Moreover, the product in this project which is  $CO_2$ -N<sub>2</sub>-hydrate is not available in the CHEMCAD database. This convergence problem around the CRYS module is the main reason for the CHEMCAD Economics module to not be able to calculate the crystallizer cost automatically. The convergence problem of crystallizer can be seen by the red-coloured label of the crystallizer unit operation shown in FIGURE 4.4 and FIGURE 4.5.



FIGURE 4.3 Preliminary process flow diagram generated from CHEMCAD for the hydrate process



FIGURE 4.4 Complete process flow diagram generated from CHEMCAD for the hydrate process (with 1 mol% THF)


FIGURE 4.5 Complete process flow diagram generated from CHEMCAD for the hydrate process (without THF)

#### 4.3 Mass Balance

The process flow diagram is developed first before the mass balance is done around the major equipments that are crystallizer and dissociator. The mass balance is done by setting the boundary into three major parts at which each part consist of one crystallizer and one dissociator. TABLE 4.1 and TABLE 4.2 show the result of mass balance from process without THF and with 1 mol% THF. The compositions of hydrate streams are not yet calculated. They may be estimated if the hydration number of gas hydrate is known as such in  $xCO_2.yN_2.zH_2O$ . The composition of each component for each stream is based on the proposed design by P.Linga.



FIGURE 4.6 Process flow diagrams (without THF)

#### 4.3.1 Mass Balance Equation for System Without THF

In this section, the mass balance calculations are done step by step using substitution method. The feed basis are 5,000 mol/hr of flue gas and 10,000 mol/hr of fresh water. The water will be divided and pumped into three crystallizers as appeared in the simulation design. Therefore, it is noted that water supply for each crystallizer = 10000 / 3 = 3333.333 mol/hr.

Overall:

P-1 + P-2 = P-5 + P-6 + P-7(1)5000 + 3333.333 = P-5 + P-6 + 3333.333(2)P-6 + P-8 = P-9 + P-12 + P-14(2)P-6 + 3333.333 = 3333.333 + P-12 + P-14(2)P-12 + P-17 = P-15 + P-16 + P-19(3)P-12 + 3333.333 = 3333.333 + P-16 + P-19(3)

## 1<sup>st</sup> stage hydrate process:

CO<sub>2</sub>: 0.17(P-1) = 0.10(P-5) + 0.57(P-6) 0.17(5000) = 0.10(P-5) + 0.57(P-6)**850 = 0.10(P-5) + 0.57(P-6)** (4)

N<sub>2</sub>: 0.83(P-1) = 0.90(P-5) + 0.43(P-6) 0.83(5000) = 0.90(P-5) + 0.43(P-6)4150 = 0.90(P-5) + 0.43(P-6)

(5)

(6)

balance H<sub>2</sub>O can be ignored

 $H_2O$ :

1.00(P-2) = 1.00(P-7)

P-5 = [850 - 0.57(P-6)] / 0.10(7)

(7) substituted into (5):

4150 = 0.90 x [ {850 - 0.57(P-6)} / 0.10 ] + 0.43(P-6) 4150 = 9 x [ 850 - 0.57(P-6) ] + 0.43(P-6) 4150 = 7650 - 5.13(P-6) + 0.43(P-6) -3500 = -4.7(P-6) P-6 = 744.68 mol/hr

 $P-5 = [850 - 0.57(744.68)] / 0.10 = \underline{4255.324 \text{ mol/hr}}$ 

2<sup>nd</sup> stage hydrate process:

 $CO_{2}:$  0.57(P-6) = 0.83(P-12) + 0.50(P-14) 0.57(744.68) = 0.83(P-12) + 0.50(P-14) 424.468 = 0.83(P-12) + 0.50(P-14)(8)

 $N_2$ :

$$0.43(P-6) = 0.17(P-12) + 0.50(P-14)$$
  

$$0.43(744.68) = 0.17(P-12) + 0.50(P-14)$$
  

$$320.212 = 0.17(P-12) + 0.50(P-14)$$
(9)

H<sub>2</sub>O:

1.00(P-8) = 1.00(P-9)

(10) balance  $H_2O$  can be ignored

P-14 = [424.468 - 0.83(P-12)] / 0.50(11)

(11) substituted into (9):

 $320.212 = 0.17(P-12) + 0.50 x [ \{424.468 - 0.83(P-12)\} / 0.50 ]$  320.212 = 0.17(P-12) + 1 x [ 424.468 - 0.83(P-12) ] 320.212 = 0.17(P-12) + 424.468 - 0.83(P-12) -104.256 = -0.66(P-12)P-12 = 157.964 mol/hr

P-14 = [ 420.468 - 0.83(157.964) ] / 0.50 = 578.716 mol/hr

 $\frac{3^{rd} \text{ stage hydrate process:}}{CO_2:}$  0.83(P-12) = 0.70(P-16) + 0.99(P-19) 0.83(157.964) = 0.70(P-16) + 0.99(P-19) 131.11 = 0.70(P-16) + 0.99(P-19)(12)

 $N_2$ :

0.17(P-12) = 0.30(P-16) + 0.01(P-19) 0.17(157.964) = 0.30(P-16) + 0.01(P-19)26.854 = 0.30(P-16) + 0.01(P-19) (13)

H<sub>2</sub>O:

1.00(P-15) = 1.00(P-17)

(14) balance  $H_2O$  can be ignored

P-16 = [131.11 - 0.99(P-19)] / 0.70(15)

(15) substituted into (13):

26.854 = 0.30 x [ {131.11 - 0.99(P-19)} / 0.70 ] + 0.01(P-19) 26.854 = 0.43 x [ 131.11 - 0.99(P-19) ] + 0.01(P-19) 26.854 = 56.19 - 0.4257(P-19) + 0.01(P-19) -29.336 = -0.4157(P-19) **P-19 = <u>70.57 mol/hr</u>** 

P-16 = [131.11 - 0.99(70.57)] / 0.70 = 87.494 mol/hr

## Hydrates produced

 $1^{st}$  stage crystallization: P-4 = P-6 + P-7 = 744.68 + 3333.333 = <u>4078.01 mol/hr</u>

 $2^{nd}$  stage crystallization: P-11= P-9 + P-12 = 3333.333+157.964 = <u>3491.294 mol/hr</u>

 $3^{rd}$  stage crystallization: P-18 = P-15 + P-19 = 3333.333 + 70.57 = <u>3403.9 mol/hr</u>

|         | Components       | CO2        | N <sub>2</sub> | <b>H</b> <sub>2</sub> O | TOTAL    | REMARKS |
|---------|------------------|------------|----------------|-------------------------|----------|---------|
| Streams |                  |            |                |                         |          |         |
| P-1     | mol fraction     | 0.17       | 0.83           | 0                       | 1        |         |
|         | flowrate (mol/h) | 850        | 4150           | 0                       | 5000     |         |
| P-2     | mol fraction     | 0          | 0              | 1                       | 1        |         |
|         | flowrate (mol/h) | 0          | 0              | 3333                    | 3333     |         |
| P-4     | mol fraction     | <b>x</b> 1 | y1             | z1                      | 1        | HYDRATE |
|         | flowrate (mol/h) |            |                |                         | 4078.01  |         |
| P-5     | mol fraction     | 0.1        | 0.9            | 0_                      | 1        |         |
|         | flowrate (mol/h) | 407.801    | 3670.209       | 0                       | 4255.324 |         |
| P-6     | mol fraction     | 0.57       | 0.43           | 0                       | 1        |         |
|         | flowrate (mol/h) | 424.468    | 320.212        | 0                       | 744.68   |         |
| P-7     | mol fraction     | 0          | 0              | 1                       | 1        |         |
|         | flowrate (mol/h) | 0          | 0              | 3333                    | 3333     |         |
| P-8     | mol fraction     | 0          | 0              | 1                       | 1        |         |
|         | flowrate (mol/h) | 0          | 0              | 3333                    | 3333     |         |
| P-9     | mol fraction     | 0          | 0              | 1                       | 1        |         |
|         | flowrate (mol/h) | 0          | 0              | 3333                    | 3333     |         |
| P-11    | mol fraction     | x2         | y2             | z2                      | 1        | HYDRATE |
|         | flowrate (mol/h) |            |                |                         | 3491.294 |         |
| P-12    | mol fraction     | 0.83       | 0.17           | 0                       | 1        |         |
|         | flowrate (mol/h) | 131.110    | 26.854         | 0                       | 157.964  |         |
| P-14    | mol fraction     | 0.50       | 0.50           | 0                       | 1        |         |
|         | flowrate (mol/h) | 289.358    | 289.358        | 0                       | 578.716  |         |
| P-15    | mol fraction     | 0          | 0              | 1                       | 1        |         |
|         | flowrate (mol/h) | 0          | 0              | 3333                    | 3333     |         |
| P-16    | mol fraction     | 0.70       | 0.30           | 0                       | 1        |         |
|         | flowrate (mol/h) | 61.246     | 26.248         | 0                       | 87.494   |         |
| P-17    | mol fraction     | 0          | 0              | 1                       | 1        |         |
|         | flowrate (mol/h) | 0_         | 0              | 3333                    | 3333     |         |
| P-18    | mol fraction     | x3         | y3             | z3                      | 1        | HYDRATE |
|         | flowrate (mol/h) | B. C.      |                |                         | 3403.9   |         |
| P-19    | mol fraction     | 0.99       | 0.01           | 0_                      | 1        |         |
|         | flowrate (mol/h) | 69.864     | 0.706          | 0                       | 70.57    |         |

All balances calculation is tabulated as below:

 TABLE 4.1
 Mass balance of hydrate process (without THF)





FIGURE 4.8 Process flow diagrams (with THF + recycle streams)



### 4.3.2 Mass Balance Equation for System With THF

As for system with 1 mol% THF, the mass balances are done using the same substitution method as for system without THF with the same basis of flue gas and fresh water. The difference is only it is assumed in this system the 1-mol% THF is mixed with water before entering the crystallizer. Thus, if 3333.333 mol/hr mixture of water and THF is entering each crystallizer, 1 mol% THF will give 33.333 mol/hr of THF and 99% water will give 3299.999 mol/hr. THF cannot be released into the environment so the after the 3<sup>rd</sup> stage crystallization, the effluent consist of water and THF will be separated first so that THF can be recycled back to the feed. The recycle stream must be considered in the real design as for safety issue. For the mass balance, the recycle loop is ignored to ease the calculation.

Overall:

| P-1 + P-3 = P-5 + P-6 + P-7              | (1) |
|------------------------------------------|-----|
| 5000 + 3333.333 = P-5 + P-6 + 3333.333   |     |
| P-6 + P-10 = P-9 + P-12 + P-14           | (2) |
| P-6 + 3333.333 = 3333.333 + P-12 + P-14  |     |
| P-12 + P-20 = P-15 + P-16 + P-19         | (3) |
| P-12 + 3333.333 = 3333.333 + P-16 + P-19 |     |

1<sup>st</sup> stage hydrate process:

CO<sub>2</sub>: 0.17(P-1) = 0.10(P-5) + 0.37(P-6) 0.17(5000) = 0.10(P-5) + 0.37(P-6)**850 = 0.10(P-5) + 0.37(P-6)** (4)

N<sub>2</sub>:  

$$0.83(P-1) = 0.90(P-5) + 0.63(P-6)$$
  
 $0.83(5000) = 0.90(P-5) + 0.63(P-6)$   
**4150 = 0.90(P-5) + 0.63(P-6)** (5)

H<sub>2</sub>O:

0.99(P-3) = 0.99(P-7)(6)

THF:

0.01(P-3) = 0.01(P-7)(7)

$$P-5 = [850 - 0.37(P-6)] / 0.10$$
(8)

(7) substituted into (5):

 $4150 = 0.90 \text{ x} [ \{850 - 0.37(P-6)\} / 0.10] + 0.63(P-6)$ 4150 = 9 x [850 - 0.37(P-6)] + 0.63(P-6)4150 = 7650 - 3.33(P-6) + 0.63(P-6)-3500 = -2.7(P-6)P-6 = 1296.296 mol/hr

P-5 = [ 850 - 0.37(1296.296) ] / 0.10 = <u>3703.704 mol/hr</u>

# 2<sup>nd</sup> stage hydrate process:

CO<sub>2</sub>: 0.37(P-6) = 0.70(P-12) + 0.28(P-14)0.37(1296.296) = 0.70(P-12) + 0.28(P-14)479.63 = 0.70(P-12) + 0.28(P-14)(9)

 $N_2$ : 0.63(P-6) = 0.30(P-12) + 0.72(P-14)0.63(1296.296) = 0.30(P-12) + 0.72(P-14)816.67 = 0.30(P-12) + 0.72(P-14)(10)

 $H_2O$ :

0.99(P-10) = 0.99(P-9)balance H2O can be ignored (11)

- balance of H<sub>2</sub>O can be ignored
- balance of THF can be ignored

THF:

0.01(P-10) = 0.01(P-9)

P-12 = [479.63 - 0.28(P-14)] / 0.70(12)

(12) substituted into (10):

816.67 = 0.72(P-14) + 0.30 x [ {479.63 - 0.28(P-14)} / 0.70 ] 816.67 = 0.72(P-14) + 0.43 x [ 479.63 - 0.28(P-14)] 816.67 = 0.72(P-14) + 206.241 - 0.1204(P-14) 610.429 = 0.5996(P-14) **P-14 = 1018.06 mol/hr** 

P-12 = [479.63 - 0.28(1018.06)] / 0.70 = 278.236 mol/hr

$$\frac{3^{rd} \text{ stage hydrate process:}}{CO_2:}$$

$$0.70(P-12) = 0.62(P-16) + 0.94(P-19)$$

$$0.70(278.236) = 0.62(P-16) + 0.94(P-19)$$

$$194.765 = 0.62(P-16) + 0.94(P-19)$$
(13)

N<sub>2</sub>: 0.30(P-12) = 0.38(P-16) + 0.06(P-19) 0.30(278.236) = 0.38(P-16) + 0.06(P-19)83.471 = 0.38(P-16) + 0.06(P-19) (14)

 $H_2O:$ 0.99(P-20) = 0.99(P-15)

(15) balance H2O can be ignored

#### THF:

 $0.01(P-20) = 0.01(P-15) \tag{16}$ 

P-19 = [194.765 - 0.62(P-16)] / 0.94(17)

(17) substituted into (14):

83.471 = 0.06 x [ {194.765 - 0.62(P-16)} / 0.94 ] + 0.38(P-16) 83.471 = 0.064 x [194.765 - 0.62(P-16)] + 0.38(P-16) 83.471 = 12.465 - 0.04(P-16) + 0.38(P-16) 71.01 = 0.34(P-16) **P-16 = 208.85 mol/hr** 

P-19 = [ 194.765 - 0.62(208.85) ] / 0.94 ] = <u>69.38 mol/hr</u>

Hydrates produced

 $1^{\text{st}}$  stage crystallization: P-4 = P-6 + P-7 = 1296.296 + 3333.333 = <u>4629.629 mol/hr</u>

 $2^{nd}$  stage crystallization: P-11= P-9 + P-12 = 3333.333+278.236 = <u>3611.569 mol/hr</u>

 $3^{rd}$  stage crystallization: P-18 = P-15 + P-19 = 3333.333 + 69.38 = <u>3402.713 mol/hr</u>

|         | Components       | CO <sub>2</sub> | N <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | H <sub>2</sub> O | THE  | TOTAL    | REMARKS |
|---------|------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------|----------|---------|
| Streams |                  |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |      |          |         |
| P-1     | mol fraction     | 0.17            | 0.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                | 0    | 1        |         |
|         | flowrate (mol/h) | 850             | 4150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                | 0    | 5000     |         |
| P-3     | mol fraction     | 0               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.99             | 0.01 | 1        |         |
|         | flowrate (mol/h) | 0               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3299             | 33   | 3333     |         |
| P-4     | mol fraction     | xl              | y1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>z</b> 1       | 1    | 1        | HYDRATE |
|         | flowrate (mol/h) | 1 aged 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |      | 4629.629 |         |
| P-5     | mol fraction     | 0.1             | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                | 0    | 1        |         |
|         | flowrate (mol/h) | 370.3704        | 3333.334                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                | 0    | 3703.704 |         |
| P-6     | mol fraction     | 0.37            | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                | 0    | 1        |         |
|         | flowrate (mol/h) | 479.62952       | 816.6665                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                | 0    | 1296.296 |         |
| P-7     | mol fraction     | 0_              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.99             | 0.01 | 1        |         |
|         | flowrate (mol/h) | 0_              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3299             | 33   | 3333     |         |
| P-9     | mol fraction     | 0               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.99             | 0.01 | 1        |         |
|         | flowrate (mol/h) | 0               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3299             | 33   | 3333     |         |
| P-10    | mol fraction     | 0               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.99             | 0.01 | 1        |         |
|         | flowrate (mol/h) | 0               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3299             | 33   | 3333     |         |
| P-11    | mol fraction     | x2              | y2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | z2               | 1    | 1        | HYDRATE |
|         | flowrate (mol/h) |                 | C. C. Strand States                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |      | 3611.569 |         |
| P-12    | mol fraction     | 0.7             | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                | 0    | 1        |         |
|         | flowrate (mol/h) | 194.7652        | 83.4708                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                | 0    | 278.236  |         |
| P-14    | mol fraction     | 0.28            | 0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                | 0    | 1        |         |
|         | flowrate (mol/h) | 285.10608       | 733.1299                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                | 0    | 1018.236 |         |
| P-15    | mol fraction     | 0               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.99             | 0.01 | 1        |         |
|         | flowrate (mol/h) | 0               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3299             | 33   | 3333     |         |
| P-16    | mol fraction     | 0.62            | 0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                | 0    | 1        |         |
|         | flowrate (mol/h) | 129.487         | 79.363                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                | 0    | 208.85   |         |
| P-18    | mol fraction     | x3              | y3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | z3               | 1    | 1        | HYDRATE |
|         | flowrate (mol/h) |                 | ng on the state of |                  |      | 3402.713 |         |
| P-19    | mol fraction     | 0.94            | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                | 0    | 1        |         |
|         | flowrate (mol/h) | 65.2172         | 4.1628                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                | 0    | 69.38    |         |
| P-20    | mol fraction     | 0               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.99             | 0.01 | 1        |         |
|         | flowrate (mol/h) | 0               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3299             | 33   | 3333     |         |

All balances calculation is tabulated as below:

**TABLE 4.2**Mass balance of hydrate process (with THF)

### 4.4 Economics

Economics template from CHEMCAD maybe adopted in this project to evaluate the economics. As an example, the costing for crystallizer can be estimated as shown below. The costing for other equipments are included in the detailed economic section.

#### Costing Results

Without THF Preliminary Crystallizers Cost Estimation Crystallizerr Cost for Equip. 1 Material = Mild steel fm = 1External forced circulation Base cost index = 347.5Current cost index = 616.6 Purchase cost = \$187672 Installed cost = \$187672 Crystallizerr Cost for Equip. 6 Material = Mild steel fm = 1External forced circulation Base cost index = 347.5Current cost index = 616.6Purchase cost = \$154381 Installed cost = \$293325 Crystallizerr Cost for Equip. 7 Material = Mild steel fm = 1 External forced circulation Base cost index = 347.5Current cost index = 616.6 Purchase cost = \$154788 Installed cost = \$294097

## Total Crystallizers Cost = \$187672 + \$293325 + \$294097 = \$775094

With 1 mol% THF Preliminary Crystallizers Cost Estimation Crystallizerr Cost for Equip. 1 Material = Mild steel fm = 1External forced circulation Base cost index = 347.5Current cost index = 616.6Purchase cost = \$187673 Installed cost = \$187673 Crystallizerr Cost for Equip. 6 Material = Mild steel fm = 1External forced circulation Base cost index = 347.5Current cost index = 616.6 Purchase cost = \$154381 Installed cost = \$154381 Crystallizerr Cost for Equip. 7 Material = Mild steel

fm = 1
External forced circulation
Base cost index = 347.5
Current cost index = 616.6
Purchase cost = \$154788
Installed cost = \$154788

#### Total Crystallizers Cost = \$187673 + \$154381+ \$154788= \$496842

Since there is convergence problem around the crystallizer, the CHEMCAD is not able to calculate the cost of crystallizer, therefore using Costing Tool in

CHEMCAD, the costs show above are manually added to the cost of other equipments as calculated by CHEMCAD. Therefore, the total equipments cost for both system will be;

System without THF: \$775,094 + \$343,953 = \$1,119,037 System with THF: \$496,842 + \$292,750 = \$789,592

From this calculation of crystallizers which is the major part of this hydrate process, it can be preliminary concluded that the cost for system without THF is higher than the system with THF. However, to verify this, the results of detailed economic estimates are shown in the next section and be interpreted.

The cost index or called as Chemical Plant Index (CPI) of the latest must be entered as an input for the software. Then the preliminary costing can be estimated as for both purchase and installed cost. The CPI is varied and **FIGURE 4.9** shows the trend from the earlier years.



**FIGURE 4.9** Trend of Chemical Engineering Plant Cost Index from 1950 to 2008. From the trendline equation generated, the cost index for current or next few years may be estimated.

| 1/May/2009          | Final        | 509.1      | CEPCI  |
|---------------------|--------------|------------|--------|
| Detailed brea       | kdown for    | Mar/2009 ( | Final) |
| Equipment           |              |            | 616.6  |
| Heat Exchan         | gers and T   | anks       | 563.2  |
| Process Mac         | hinery       |            | 597.3  |
| Pipe, valves        | and fittings | }          | 761.0  |
| Process Instr       | uments       |            | 385.1  |
| Pumps and C         | Compresso    | rs         | 898.0  |
| Electrical Equ      | uipment      |            | 459.6  |
| Structural Su       | pports & N   | lisc.      | 636.1  |
| Construction Labour |              |            | 325.7  |
| Buildings           |              |            | 494.9  |
| Engineering         | & Superv     | ision      | 349.0  |

**TABLE 4.3** Chemical Engineering Plant Cost Index (CEPCI) as in March 2009

In gas capture by hydrate technology, there are only two chemical products: water and hydrate promoter which is tetrahydrofuran (THF). There is nearly no loss of water and THF because THF and water exist in liquid and solid states during the production phase. There might be a very little loss of chemical products that is carried by gas flow. After hydrate dissociation to capture  $CO_2$ , the THF and water (in liquid state) will come back to the hydrate crystallizer to begin a new production cycle.

### 4.5 Detailed Economics Result

This section provides result generated from CHEMCAD simulation based on cost data and process input. Some cost input need to be done manually since the CHEMCAD simulation does not effectively reliable in terms of crystallizer design and operation. For system without THF, there are two cases which the first case deals with negative present value while the second case deals with positive present value which is more preferable in terms of economic. The summary of equipment cost shown does not include the cost of crystallizer which has been manually added beforehand.

System Without THF (Case 1 – Negative Present Value with 10% projected cost increase and 15% projected revenue increase)

| Executive Summary                                                                          |                                     |
|--------------------------------------------------------------------------------------------|-------------------------------------|
| Total Plant Cost<br>Raw Materials Cost<br>By-product Credit<br>Raw Materials Cost (final?) | 3692822<br>100000<br>0<br>110000    |
| Cost to Manufacture<br>Product Revenues                                                    | 2104262                             |
| Income before tax<br>Income<br>tax<br>Income after tax<br>Return on Investment             | -149262<br>-74631<br>-74631<br>4.92 |
| Length of project<br>(yrs)<br>Payout time (yr)<br>Rate of Return (%)                       | 10.00<br>7.76<br>8.11               |

 TABLE 4.4
 Summary of hydrate process economics (without THF - Case 1)

| Summa | Summary of Equipment Costs        |                 |           |  |  |  |
|-------|-----------------------------------|-----------------|-----------|--|--|--|
|       |                                   |                 |           |  |  |  |
| Unit  |                                   |                 | Equipment |  |  |  |
| ID    | Unit Name                         | Unit Type       | Cost      |  |  |  |
| 2     |                                   | Compressors     | 86,758    |  |  |  |
| 3     |                                   | Compressors     | 43,007    |  |  |  |
| 4     |                                   | Heat Exchangers | 3,734     |  |  |  |
| 8     |                                   | Compressors     | 35,388    |  |  |  |
| 9     |                                   | Heat Exchangers | 4,433     |  |  |  |
| 10    |                                   | Heat Exchangers | 2,787     |  |  |  |
| 11    |                                   | Compressors     | 25,634    |  |  |  |
| 12    |                                   | Drums & Vessels | 35,620    |  |  |  |
| 13    |                                   | Drums & Vessels | 35,620    |  |  |  |
| 14    |                                   | Drums & Vessels | 35,620    |  |  |  |
| 17    |                                   | Heat Exchangers | 4,433     |  |  |  |
| 18    |                                   | Heat Exchangers | 4,433     |  |  |  |
| 19    |                                   | Heat Exchangers | 2,787     |  |  |  |
| 20    |                                   | Pumps           | 7,168     |  |  |  |
| 21    |                                   | Pumps           | 7,718     |  |  |  |
| 22    |                                   | Pumps           | 8,803     |  |  |  |
| 22    | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | Pumps           | 8,803     |  |  |  |

| T | ABLE | 4.5 | Summary | of equipment | costs i | (without | THF ( | Case 1 | L) |
|---|------|-----|---------|--------------|---------|----------|-------|--------|----|
|---|------|-----|---------|--------------|---------|----------|-------|--------|----|

| TOTAL BRO JECT COST - DETAILED ESTIM | ATE       |
|--------------------------------------|-----------|
|                                      | AIC       |
|                                      | \$/yr     |
| Total Major Equipment Cost           | 1,119,037 |
| Installation                         | 167,856   |
| Piping                               | 503,567   |
| Instrumentation                      | 111,904   |
| Building & Structure                 | 111,904   |
| Auxillaries                          | 279,759   |
| Outside Lines                        | 167,856   |
| Total Direct Cost                    | 2,461,882 |
| Engineering & Construction           | 738,564   |
| Contingencies                        | 492,376   |
| Total Plant Cost                     | 3.692.822 |
| MANUFACTURING COST                   | -, ,      |
| Pay Matoriala                        | 100.000   |
| Credit from By-products              | 100,000   |
|                                      | -         |
| Net Raw Materials                    | 110,000   |
| DIRECT EXPENSES                      |           |
| Utilities                            | 0         |
| Labor                                | 637,200   |
| Supplies                             | 73,856    |
| Maintenance                          | 369,282   |
| Office & Service Overhead            | 270,000   |

| Laboratory               | 90,000    |
|--------------------------|-----------|
| Royalties                | 0         |
| Other Direct Expenses    | 0         |
|                          |           |
| INDIRECT EXPENSES        |           |
| Property Taxes           | 184,641   |
| Depreciation             | 369,282   |
| Total Manufacturing Cost | 2,104,262 |

 TABLE 4.6
 Total project cost (without THF - Case 1)

| CAPITAL COST ANALYSIS              |           |
|------------------------------------|-----------|
|                                    | \$/yr     |
| Total New Property (Fixed Capital) | 3,692,822 |
| Total Allocated Property           | 1,292,488 |
|                                    |           |
| Gross Fixed Investment             | 4,985,310 |
| Working Capital                    | 690,000   |
| Corporate Capital Allocation       | 115,000   |
|                                    |           |
| Gross Investment                   | 5,790,310 |
|                                    |           |
| Total Revenues                     | 2,000,000 |
| Cost of Gooda Manufactured         | 2 104 262 |
| Cost of Goods Manufactured         | 2,104,262 |
| Cost of Selling Goods              | 115,000   |
| Total Cost of Goods Sold           | 2 219 262 |
|                                    | 2,210,202 |
| SARE (Sales, Admin, R&D Expense)   | 230.000   |
|                                    | ,         |
| Income Before Tax                  | -149,262  |
| Income Tax                         | -74,631   |
| Income After Tax                   | -74,631   |
|                                    |           |
| Return on Investment, %            | 4.92      |
|                                    |           |

 TABLE 4.7
 Capital cost analysis (without THF - Case 1)

.

|            | Income     |              | Working | Salvage | Total  |            |
|------------|------------|--------------|---------|---------|--------|------------|
| Year       | AFIT       | Depreciation | Capital | Value   | Inflow |            |
| 0          | 0.0        | 0.0          | 0.0     | 0.0     | 0.0    |            |
| 1          | -74.6      | 369.3        | 0.0     | 0.0     | 294.7  |            |
| 2          | 66.5       | 369.3        | 0.0     | 0.0     | 435.8  |            |
| 3          | 229.1      | 369.3        | 0.0     | 0.0     | 598.3  |            |
| 4          | 416.3      | 369.3        | 0.0     | 0.0     | 785.6  |            |
| 5          | 416.3      | 369.3        | 0.0     | 0.0     | 785.6  |            |
| 6          | 416.3      | 369.3        | 0.0     | 0.0     | 785.6  |            |
| 7          | 416.3      | 369.3        | 0.0     | 0.0     | 785.6  |            |
| 8          | 416.3      | 369.3        | 0.0     | 0.0     | 785.6  |            |
| 9          | 416.3      | 369.3        | 0.0     | 0.0     | 785.6  |            |
| 10         | 416.3      | 369.3        | 690.0   | 73.9    | 1475.6 |            |
|            |            |              | Startup |         |        |            |
|            | Fixed      | Working      | Expense | Total   |        | Cashflow   |
| Year       | Capital    | Capital      | AFIT    | Outflow |        | (IN - OUT) |
| 0          | 3692.8     | 690.0        | 277.0   | 4659.8  |        | -4659.8    |
| 1          | 0.0        | 0.0          | 0.0     | 0.0     |        | 294.7      |
| 2          | 0.0        | 0.0          | 0.0     | 0.0     |        | 435.8      |
| 3          | 0.0        | 0.0          | 0.0     | 0.0     |        | 598.3      |
| 4          | 0.0        | 0.0          | 0.0     | 0.0     |        | 785.6      |
| 5          | 0.0        | 0.0          | 0.0     | 0.0     |        | 785.6      |
| 6          | 0.0        | 0.0          | 0.0     | 0.0     |        | 785.6      |
| 7          | 0.0        | 0.0          | 0.0     | 0.0     |        | 785.6      |
| 8          | 0.0        | 0.0          | 0.0     | 0.0     |        | 785.6      |
| 9          | 0.0        | 0.0          | 0.0     | 0.0     |        | 785.6      |
| 10         | 0.0        | 0.0          | 0.0     | 0.0     |        | 1475.6     |
| Payout Tir | ne (years) | 7.8          |         |         |        |            |
| Rate of Re | eturn (%)  | 8.1          |         |         |        |            |
| Present Va | alue (\$M) | -849.3       |         |         |        |            |

**TABLE 4.8**Cash flow (without THF - Case 1)

System Without THF (Case 2 - Positive Present Value with 15% projected cost

increase and 20% projected revenue increase)

| 22 |
|----|
| 20 |
| 0  |
| 20 |
| 32 |
| 20 |
|    |
| 32 |
| 21 |
| 31 |
| 22 |
|    |
| 20 |
| 38 |
| 38 |
|    |

| TABLE 4.9 | Summary of hydrate process | economics (without THF – Case 2) |  |
|-----------|----------------------------|----------------------------------|--|
|-----------|----------------------------|----------------------------------|--|

| Summary of Equipment Costs |                                       |                 |                   |  |
|----------------------------|---------------------------------------|-----------------|-------------------|--|
| Unit<br>ID                 | Unit Name                             | Unit Type       | Equipment<br>Cost |  |
| 2                          | · · · · · · · · · · · · · · · · · · · | Compressors     | 86,758            |  |
| 3                          |                                       | Compressors     | 43,007            |  |
| 4                          |                                       | Heat Exchangers | 3,734             |  |
| 8                          |                                       | Compressors     | 35,388            |  |
| 9                          |                                       | Heat Exchangers | 4,433             |  |
| 10                         |                                       | Heat Exchangers | 2,787             |  |
| <b>1</b> 1                 |                                       | Compressors     | 25,634            |  |
| 12                         |                                       | Drums & Vessels | 35,620            |  |
| 13                         |                                       | Drums & Vessels | 35,620            |  |
| 14                         |                                       | Drums & Vessels | 35,620            |  |
| 17                         |                                       | Heat Exchangers | 4,433             |  |
| 18                         |                                       | Heat Exchangers | 4,433             |  |
| 19                         |                                       | Heat Exchangers | 2,787             |  |
| 20                         |                                       | Pumps           | 7,168             |  |
| 21                         |                                       | Pumps           | 7,718             |  |
| 22                         |                                       | Pumps           | 8,803             |  |

**TABLE 4.10** Summary of equipment costs (without THF – Case 2)

| TOTAL PROJECT COST - DETAILED ES | TIMATE    |
|----------------------------------|-----------|
|                                  | \$/yr     |
| Total Major Equipment Cost       | 1,119,037 |
| Installation                     | 167,856   |
| Piping                           | 503,567   |
| Instrumentation                  | 111,904   |
| Building & Structure             | 111,904   |
| Auxillaries                      | 279,759   |
| Outside Lines                    | 167,856   |
| Total Direct Cost                | 2,461,882 |
| Engineering & Construction       | 738,564   |
| Contingencies                    | 492,376   |
| Total Plant Cost                 | 3,692,822 |
| MANUFACTURING COST               | - , /     |
| Raw Materials                    | 100,000   |
| Credit from By-products          | 0         |
| Net Raw Materials                | 115,000   |
| DIRECT EXPENSES                  |           |
|                                  | Û         |
|                                  | 637 200   |
| Supplies                         | 73 856    |
| Maintenance                      | 369 282   |
|                                  | 270,000   |
| l aboratory                      | 90,000    |
| Bovalties                        | 00,000    |
| Other Direct Expenses            | õ         |
|                                  |           |
| INDIRECT EXPENSES                |           |
| Property Taxes                   | 184,641   |
| Depreciation                     | 369,282   |
| Total Manufacturing Cost         | 2,109,262 |

**TABLE 4.11** Total project cost (without THF – Case 2)

| \$/yrTotal New Property (Fixed Capital)3,692,822Total Allocated Property1,292,488Gross Fixed Investment4,985,310Working Capital720,000Corporate Capital Allocation120,000Gross Investment5,825,310Total Revenues2,000,000Cost of Goods Manufactured2,109,262Cost of Selling Goods120,000Total Cost of Goods Sold2,229,262SARE (Sales, Admin, R&D Expense)240,000Income Before Tax-69,262Income After Tax-34,631Income After Tax-34,631 | CAPITAL COST ANALYSIS              |           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------|
| Total New Property (Fixed Capital)3,692,822Total Allocated Property1,292,488Gross Fixed Investment4,985,310Working Capital720,000Corporate Capital Allocation120,000Gross Investment5,825,310Total Revenues2,000,000Cost of Goods Manufactured<br>Cost of Selling Goods2,109,262<br>120,000Total Cost of Goods Sold2,229,262SARE (Sales, Admin, R&D Expense)240,000Income Before Tax<br>Income After Tax-69,262<br>-34,631             |                                    | \$/yr     |
| Total Allocated Property1,292,488Gross Fixed Investment4,985,310Working Capital720,000Corporate Capital Allocation120,000Gross Investment5,825,310Total Revenues2,000,000Cost of Goods Manufactured2,109,262Cost of Selling Goods120,000Total Cost of Goods Sold2,229,262SARE (Sales, Admin, R&D Expense)240,000Income Before Tax-69,262Income After Tax-34,631Income After Tax-34,631                                                 | Total New Property (Fixed Capital) | 3,692,822 |
| Gross Fixed Investment4,985,310Working Capital720,000Corporate Capital Allocation120,000Gross Investment5,825,310Total Revenues2,000,000Cost of Goods Manufactured<br>Cost of Selling Goods2,109,262<br>120,000Total Cost of Goods Sold2,229,262SARE (Sales, Admin, R&D Expense)240,000Income Before Tax<br>Income Tax<br>Income After Tax-69,262<br>-34,631                                                                           | Total Allocated Property           | 1,292,488 |
| Gross Fixed Investment4,985,310Working Capital720,000Corporate Capital Allocation120,000Gross Investment5,825,310Total Revenues2,000,000Cost of Goods Manufactured<br>Cost of Selling Goods2,109,262<br>120,000Total Cost of Goods Sold2,229,262SARE (Sales, Admin, R&D Expense)240,000Income Before Tax<br>Income Tax<br>Income After Tax-69,262<br>-34,631                                                                           |                                    |           |
| Working Capital720,000Corporate Capital Allocation120,000Gross Investment5,825,310Total Revenues2,000,000Cost of Goods Manufactured<br>Cost of Selling Goods2,109,262<br>120,000Total Cost of Goods Sold2,229,262SARE (Sales, Admin, R&D Expense)240,000Income Before Tax<br>Income Tax<br>Income After Tax-69,262<br>-34,631<br>-34,631                                                                                               | Gross Fixed Investment             | 4,985,310 |
| Corporate Capital Allocation120,000Gross Investment5,825,310Total Revenues2,000,000Cost of Goods Manufactured<br>Cost of Selling Goods2,109,262<br>120,000Total Cost of Goods Sold2,229,262SARE (Sales, Admin, R&D Expense)240,000Income Before Tax<br>Income Tax<br>Income After Tax-69,262<br>-34,631<br>-34,631                                                                                                                     | Working Capital                    | 720,000   |
| Gross Investment5,825,310Total Revenues2,000,000Cost of Goods Manufactured<br>Cost of Selling Goods2,109,262<br>120,000Total Cost of Goods Sold2,229,262SARE (Sales, Admin, R&D Expense)240,000Income Before Tax<br>Income Tax<br>Income After Tax-69,262<br>-34,631<br>-34,631                                                                                                                                                        | Corporate Capital Allocation       | 120,000   |
| Gross Investment5,825,310Total Revenues2,000,000Cost of Goods Manufactured<br>Cost of Selling Goods2,109,262<br>120,000Total Cost of Goods Sold2,229,262SARE (Sales, Admin, R&D Expense)240,000Income Before Tax<br>Income Tax<br>Income After Tax-69,262<br>-34,631                                                                                                                                                                   |                                    |           |
| Total Revenues2,000,000Cost of Goods Manufactured<br>Cost of Selling Goods2,109,262<br>120,000Total Cost of Goods Sold2,229,262SARE (Sales, Admin, R&D Expense)240,000Income Before Tax<br>Income Tax<br>Income After Tax-69,262<br>-34,631<br>-34,631                                                                                                                                                                                 | Gross Investment                   | 5,825,310 |
| Total Revenues2,000,000Cost of Goods Manufactured<br>Cost of Selling Goods2,109,262<br>120,000Total Cost of Goods Sold2,229,262SARE (Sales, Admin, R&D Expense)240,000Income Before Tax<br>Income Tax<br>Income After Tax-69,262<br>-34,631                                                                                                                                                                                            |                                    |           |
| Cost of Goods Manufactured<br>Cost of Selling Goods2,109,262<br>120,000Total Cost of Goods Sold2,229,262SARE (Sales, Admin, R&D Expense)240,000Income Before Tax<br>Income Tax<br>Income After Tax-69,262<br>-34,631                                                                                                                                                                                                                   | Total Revenues                     | 2,000,000 |
| Cost of Goods Manufactured2,109,262Cost of Selling Goods120,000Total Cost of Goods Sold2,229,262SARE (Sales, Admin, R&D Expense)240,000Income Before Tax-69,262Income Tax-34,631Income After Tax-34,631                                                                                                                                                                                                                                |                                    |           |
| Cost of Selling Goods120,000Total Cost of Goods Sold2,229,262SARE (Sales, Admin, R&D Expense)240,000Income Before Tax-69,262Income Tax-34,631Income After Tax-34,631                                                                                                                                                                                                                                                                   | Cost of Goods Manufactured         | 2,109,262 |
| Total Cost of Goods Sold2,229,262SARE (Sales, Admin, R&D Expense)240,000Income Before Tax-69,262Income Tax-34,631Income After Tax-34,631                                                                                                                                                                                                                                                                                               | Cost of Selling Goods              | 120,000   |
| Total Cost of Goods Sold2,229,262SARE (Sales, Admin, R&D Expense)240,000Income Before Tax-69,262Income Tax-34,631Income After Tax-34,631                                                                                                                                                                                                                                                                                               |                                    |           |
| SARE (Sales, Admin, R&D Expense)240,000Income Before Tax-69,262Income Tax-34,631Income After Tax-34,631                                                                                                                                                                                                                                                                                                                                | Total Cost of Goods Sold           | 2,229,262 |
| SARE (Sales, Admin, R&D Expense)240,000Income Before Tax-69,262Income Tax-34,631Income After Tax-34,631                                                                                                                                                                                                                                                                                                                                |                                    |           |
| Income Before Tax-69,262Income Tax-34,631Income After Tax-34,631                                                                                                                                                                                                                                                                                                                                                                       | SARE (Sales, Admin, R&D Expense)   | 240,000   |
| Income Before Tax-69,262Income Tax-34,631Income After Tax-34,631                                                                                                                                                                                                                                                                                                                                                                       |                                    |           |
| Income Tax -34,631<br>Income After Tax -34,631                                                                                                                                                                                                                                                                                                                                                                                         | Income Before Tax                  | -69,262   |
| Income After Tax -34,631                                                                                                                                                                                                                                                                                                                                                                                                               | Income Tax                         | -34,631   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                        | Income After Tax                   | -34,631   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    | 0.00      |
| Return on Investment, % 8.22                                                                                                                                                                                                                                                                                                                                                                                                           | Return on Investment, %            | 8.22      |

 TABLE 4.12
 Capital cost analysis (without THF - Case 2)

|            | Income     |              | Working | Salvage | Total  |            |
|------------|------------|--------------|---------|---------|--------|------------|
| Year       | AFIT       | Depreciation | Capital | Value   | Inflow |            |
| 0          | 0.0        | 0.0          | 0.0     | 0.0     | 0.0    |            |
| 1          | -34.6      | 369.3        | 0.0     | 0.0     | 334.7  |            |
| 2          | 160.7      | 369.3        | 0.0     | 0.0     | 530.0  |            |
| 3          | 395.6      | 369.3        | 0.0     | 0.0     | 764.9  |            |
| 4          | 678.0      | 369.3        | 0.0     | 0.0     | 1047.3 |            |
| 5          | 678.0      | 369.3        | 0.0     | 0.0     | 1047.3 |            |
| 6          | 678.0      | 369.3        | 0.0     | 0.0     | 1047.3 |            |
| 7          | 678.0      | 369.3        | 0.0     | 0.0     | 1047.3 |            |
| 8          | 678.0      | 369.3        | 0.0     | 0.0     | 1047.3 |            |
| 9          | 678.0      | 369.3        | 0.0     | 0.0     | 1047.3 |            |
| 10         | 678.0      | 369.3        | 720.0   | 73.9    | 1767.3 |            |
|            |            |              | Startup |         |        |            |
|            | Fixed      | Working      | Expense | Total   |        | Cashflow   |
| _Year      | Capital    | Capital      | ÁFIT    | Outflow |        | (IN - OUT) |
| 0          | 3692.8     | 720.0        | 277.0   | 4689.8  |        | -4689.8    |
| 1          | 0.0        | 0.0          | 0.0     | 0.0     |        | 334.7      |
| 2          | 0.0        | 0.0          | 0.0     | 0.0     |        | 530.0      |
| 3          | 0.0        | 0.0          | 0.0     | 0.0     |        | 764.9      |
| 4          | 0.0        | 0.0          | 0.0     | 0.0     |        | 1047.3     |
| 5          | 0.0        | 0.0          | 0.0     | 0.0     |        | 1047.3     |
| 6          | 0.0        | 0.0          | 0.0     | 0.0     |        | 1047.3     |
| 7          | 0.0        | 0.0          | 0.0     | 0.0     |        | 1047.3     |
| 8          | 0.0        | 0.0          | 0.0     | 0.0     |        | 1047.3     |
| 9          | 0.0        | 0.0          | 0.0     | 0.0     |        | 1047.3     |
| 10         | 0.0        | 0.0          | 0.0     | 0.0     |        | 1767.3     |
| Payout Tim | ne (years) | 5.1          |         |         |        |            |
| Rate of Re | turn (%)   | 12.9         |         |         |        |            |
| Present Va | alue (\$M) | 209.7        |         |         |        |            |

 TABLE 4.13
 Cash flow (without THF – Case 2)

| Executive Summary           |         |  |  |
|-----------------------------|---------|--|--|
|                             |         |  |  |
|                             |         |  |  |
| Total Plant Cost            | 2605654 |  |  |
| Raw Materials Cost          | 150000  |  |  |
| By-product Credit           | 0       |  |  |
| Raw Materials Cost (final?) | 165000  |  |  |
|                             | 4005707 |  |  |
| Cost to Manufacture         | 1865727 |  |  |
| Product Revenues            | 200000  |  |  |
|                             |         |  |  |
| Income before tax           | 89274   |  |  |
| Income                      |         |  |  |
| tax                         | 44637   |  |  |
| Income after tax            | 44637   |  |  |
| Return on Investment        | 8.95    |  |  |
| l enath of project          |         |  |  |
| (vrs)                       | 10.00   |  |  |
| Payout time                 | 5.28    |  |  |
| Rate of Return (%)          | 13.94   |  |  |
| · ·                         |         |  |  |

 TABLE 4.14
 Summary of hydrate process economics (with THF)

| Summary of Equipment Costs |           |                                   |           |
|----------------------------|-----------|-----------------------------------|-----------|
|                            |           |                                   | ····      |
| Unit                       |           | 1 1 1 <i>1 1</i> <del>1 1</del> 1 | Equipment |
| ַט                         | Unit Name | Unit Type                         | Cost      |
| 2                          |           | Compressors                       | 86,758    |
| 3                          |           | Compressors                       | 49,644    |
| 4                          |           | Pumps                             | 6,111     |
| 8                          |           | Heat Exchangers                   | 3,913     |
| 9                          |           | Heat Exchangers                   | 3,913     |
| 10                         |           | Heat Exchangers                   | 3,913     |
| 11                         |           | Heat Exchangers                   | 3,913     |
| 12                         |           | Drums & Vessels                   | 35,620    |
| 13                         |           | Drums & Vessels                   | 35,620    |
| 14                         |           | Drums & Vessels                   | 35,620    |
| 17                         |           | Pumps                             | 23,812    |
| 18                         |           | Heat Exchangers                   | 3,913     |

| TA | <b>BLE 4.15</b> | Summary of | equipment costs ( | (with THF) | j |
|----|-----------------|------------|-------------------|------------|---|
|----|-----------------|------------|-------------------|------------|---|

|                            | DTAL PROJECT COST - DETAILED ESTIMATE |
|----------------------------|---------------------------------------|
|                            | \$/yr                                 |
| Total Major Equipment Cost | 789,59                                |
| Installation               | 118,43                                |
| Piping                     | 355,31                                |
| Instrumentation            | 78,95                                 |
| Building & Structure       | 78,95                                 |
| Auxillaries                | 197,39                                |
| Outside Lines              | 118,43                                |
| Total Direct Cost          | 1,737,10                              |
| Engineering & Const        | uction 521,13                         |
| Contingencies              | 347,42                                |
| Total Plant Cost           | 2,605,65                              |
| Ν                          | ANUFACTURING COST                     |
| Raw Materials              | 150,00                                |
| Credit from By-produ       | ts                                    |
| Net Raw Materials          | 165,00                                |
| DIRECT EXPENSES            |                                       |
| Utilities                  |                                       |
| Labor                      | 637,20                                |
| Supplies                   | 52,11                                 |
| Maintenance                | 260.56                                |
| Office & Service Ove       | head 270.00                           |
| l aboratory                | 90.00                                 |
| Boyalties                  |                                       |
| Other Direct Expense       | S                                     |
|                            |                                       |
| INDIRECT EXPENSES          |                                       |
| Property Taxes             | 130,28                                |
| Depreciation               | 260,56                                |
| Total Manufacturing        | Cost 1.865.72                         |

**TABLE 4.16** Total project cost (with THF)

| CAPITAL COST ANALYSIS              |           |
|------------------------------------|-----------|
|                                    | \$/yr     |
| Total New Property (Fixed Capital) | 2,605,654 |
| Total Allocated Property           | 911,979   |
|                                    |           |
| Gross Fixed Investment             | 3,517,632 |
| Working Capital                    | 690,000   |
| Corporate Capital Allocation       | 115,000   |
|                                    |           |
| Gross Investment                   | 4,322,632 |
|                                    |           |
| Total Revenues                     | 2,000,000 |
| On shief On a da Marsu da shura d  | 4 905 707 |
| Cost of Goods Manufactured         | 1,865,727 |
| Cost of Selling Goods              | 115,000   |
| Total Cost of Goods Sold           | 1 080 727 |
|                                    | 1,300,727 |
| SARE (Sales Admin R&D Expense)     | 230.000   |
|                                    | 200,000   |
| Income Before Tax                  | 89,274    |
| Income Tax                         | 44,637    |
| Income After Tax                   | 44,637    |
|                                    |           |
| Return on Investment, %            | 8.95      |
|                                    |           |

 TABLE 4.17 Capital cost analysis (with THF)

| N N                 | Income                |              | Working | Salvage | Total  |            |
|---------------------|-----------------------|--------------|---------|---------|--------|------------|
| Year                | AFIT                  | Depreciation | Capital | Value   | Inflow |            |
| 0                   | 0.0                   | 0.0          | 0.0     | 0.0     | 0.0    |            |
| 1                   | 44.6                  | 260.6        | 0.0     | 0.0     | 305.2  |            |
| 2                   | 183.0                 | 260.6        | 0.0     | 0.0     | 443.6  |            |
| 3                   | 342.6                 | 260.6        | 0.0     | 0.0     | 603.1  |            |
| 4                   | 526.5                 | 260.6        | 0.0     | 0.0     | 787.0  |            |
| 5                   | 526.5                 | 260.6        | 0.0     | 0.0     | 787.0  |            |
| 6                   | 526.5                 | 260.6        | 0.0     | 0.0     | 787.0  |            |
| 7                   | 526.5                 | 260.6        | 0.0     | 0.0     | 787.0  |            |
| 8                   | 526.5                 | 260.6        | 0.0     | 0.0     | 787.0  |            |
| 9                   | 526.5                 | 260.6        | 0.0     | 0.0     | 787.0  |            |
| 10                  | 526.5                 | 260.6        | 690.0   | 52.1    | 1477.0 |            |
|                     |                       |              | Startup |         |        |            |
|                     | Fixed                 | Working      | Expense | Total   |        | Cashflow   |
| Year                | Capital               | Capital      | AFIT    | Outflow |        | (IN - OUT) |
| 0                   | 2605.7                | 690.0        | 195.4   | 3491.1  |        | -3491.1    |
| 1                   | 0.0                   | 0.0          | 0.0     | 0.0     |        | 305.2      |
| 2                   | 0.0                   | 0.0          | 0.0     | 0.0     |        | 443.6      |
| 3                   | 0.0                   | 0.0          | 0.0     | 0.0     |        | 603.1      |
| 4                   | 0.0                   | 0.0          | 0.0     | 0.0     |        | 787.0      |
| 5                   | 0.0                   | 0.0          | 0.0     | 0.0     |        | 787.0      |
| 6                   | 0.0                   | 0.0          | 0.0     | 0.0     |        | 787.0      |
| 7                   | 0.0                   | 0.0          | 0.0     | 0.0     |        | 787.0      |
| 8                   | 0.0                   | 0.0          | 0.0     | 0.0     |        | 787.0      |
| 9                   | 0.0                   | 0.0          | 0.0     | 0.0     |        | 787.0      |
| 10                  | 0.0                   | 0.0          | 0.0     | 0.0     |        | 1477.0     |
| Davout Tin          |                       | ΕÓ           |         |         |        |            |
| Rate of Pe          | turn (%)              | 12.0         |         |         |        |            |
| Dropont V           | uiii (70)<br>Juo (CM) | 10.8         |         |         |        |            |
| Present Value (\$M) |                       | 343.1        |         |         | ······ |            |

**TABLE 4.18** Cash flow (with THF)

|                             | System without THF | System with THF |
|-----------------------------|--------------------|-----------------|
| Total major equipments cost | 1,119,037          | 789,592         |
| (\$/yr)                     |                    |                 |
| Total plant cost (\$/yr)    | 3,692,822          | 2,605,654       |
| Total manufacturing cost    | 2,104,262          | 1,865,727       |
| (\$/yr)                     |                    |                 |
| Total capital cost (\$/yr)  | 5,790,310          | 4,322,632       |
| Payout time (yr)            | 7.8                | 5.3             |
| Return on investment (%)    | 4.92               | 8.95            |
| Rate of return (%)          | 8.1                | 13.9            |
| Present value (\$million)   | -849.3             | 343.1           |

 TABLE 4.19
 Summary of costs for both systems

From TABLE 4.19, it is shown that the cost for system without THF is higher than the system without THF. The reduction in cost is significantly due to the lower compression requirement at which the hydrate formation pressure is lowered by the addition of THF into the process. The system without THF needs at least four compression stages while for system with THF needs only two compression stages. However, the cost of raw material is increased for system with THF but this does not affect the overall cost of the process since the cost of crystallizers for system without THF is much higher. Significantly, higher pressure affects the design and sizing of the crystallizer vessels. In addition from this result, it can be said that the process with THF is economically feasible if compared to system without THF.

### 4.5 Concluding Remarks

Based from the literatures, it can be said that the development of this hydrate based  $CO_2$  recovery from the flue gas is still in the early stage. This is probably because the key issue of this hydrate process is to find the lowest possible pressure requirement.

A common problem during simulation is underspecified operating conditions. CHEMCAD is not reliable for process design calculation for hydrate process, but applicable in cost estimation. CHEMCAD is used only to help generate detailed cost estimate. Special process simulation software for hydrate process should be developed so that the detailed and more accurate process design can be developed. This project should also be optimized later on before estimating the cost and then be compared with current conventional process - absorption in MEA

Another challenge is regarding the accuracy of the process simulation. In order to tackle this issue, thorough literature reviews and references should be done properly and thoroughly.

## CONCLUSION

As a conclusion, the CO<sub>2</sub> recovery from flue gas via hydrate formation has potential advantages in terms of economics and environmental aspects if it is studied thoroughly. The thermodynamics of  $CO_2 + N_2$  hydrate system are verified by modeling means using CSMGem. The process design is done by CHEMCAD and proven not reliable for mass balance of hydrate process, but can help to generate the cost estimates. The costs are estimated and the system with THF is cheaper than the system without THF due to its lower pressure requirement and compression stages.

## REFERENCES

[1] Shiojiri K. et al., A New Type Separation Process of Condensable Greenhouse Gases by the Formation of Clathrate Hydrates, 2004, Studies in Surface Science and Catalysis, 507-509

[2] Jean-Michel HERRI, Separation of CO<sub>2</sub> by Hydrate Absorption, 2007

[3] Sabil. K.M, Phase Behaviour, Thermodynamics and Kinetics of Clathrate Hydrate Systems of Carbon Dioxide in Presence of Tetrahydrofuran and Electorlytes, 2009, 2-21, 37-46, 132-138

[4] T. Uchida, T Hondoh, S Mae, J Kawabata, Physical Data of  $CO_2$  Hydrate, Direct Ocean Disposal of Carbon Dioxide, pp. 45-61

[5] Fumio Kiyono, Akihiro Yamazaki, and Keiichi Ogasawara, Cost Estimation of CO<sub>2</sub> Recovery using Hydrate Technology, Fuel Chemistry Division Preprints 2002, 47(1), 77-78

[6] Linga P., Kumar R., Englezos P., The clathrate hydrate process for post and pre-combustion capture of carbon dioxide, 2007, Journal of Hazardous Materials 149 (2007) 625–629

 [7] Kang S.P, Huen L., Recovery of CO<sub>2</sub> from Flue Gas Using Gas Hydrate: Thermodynamic Verification through Phase Equilibrium Measurements, Environ.
 Sci. Technol. 2000, 34, 4397-4400

[8] Tam S.S et al., A High Pressure Carbon Dioxide Separation Process for IGCC Plants, 2005, Tyndall Centre for Climate Change Research, Technical Report 47: An Integrated Assessment of Carbon Dioxide Capture and Storage in the UK, 25-32 [9] Linga P., Adeyemo A., Englezos P., Medium-Pressure Clathrate Hydrate/Membrane Hybrid Process for Postcombustion Capture of Carbon Dioxide, Environ. Sci. Technol. 2007, 42, 315–320

[10] Allen D. H., Economic Evaluation of Projects: A Guide, 1991, Institution of Chemical Engineers, England, 1-3, 151-153

[11] P. Englezos, Clathrate hydrates, Ind. Eng. Chem. Res. 32 (1993) 1251-1274.

[12] E.D. Sloan Jr., Clathrate Hydrates of Natural Gases, second ed., revised and expanded, Marcel Dekker, 1998.

[13] Tajima H., Yamasaki A., Kiyono F., Energy consumption estimation for greenhouse gas separation processes by clathrate hydrate formation, Energy 29 (2004) 1713–1729

[14] Nguyen Hong Duc, Fabien Chauvy, Jean-Michel Herri,  $CO_2$  capture by hydrate crystallization – A potential solution for gas emission of steelmaking industry, Energy Conversion and Management 48 (2007) 1313–1322

[15] Allam R. J., Bredesen R., Drioli E., Carbon Dioxide Separation Technologies,2003, Carbon Dioxide Recovery and Utilization, 53-120

## APPENDICES

### **APPENDIX A: FYP 2 Gantt Chart**

TITLE: Economic Evaluation of CO<sub>2</sub> Recovery from Flue Gas Using Gas Hydrate

| ACIMITES                  | 1     | 2         | 3        | 4        | 5   | 6 | 1          | 8 | 9   | 10   | 11       | 12   | 13 | 14 | 15 | 16  | 1/             | 18       | 19 | 20 |
|---------------------------|-------|-----------|----------|----------|-----|---|------------|---|-----|------|----------|------|----|----|----|-----|----------------|----------|----|----|
|                           |       |           | 1        |          |     |   |            |   |     |      |          |      |    |    |    |     |                |          |    |    |
| Phase Diagrams Modeling   | : ":/ | k ku si a |          |          |     |   |            |   |     |      |          |      |    |    |    |     |                |          |    |    |
| Uata Gathering            |       |           |          |          | [   |   |            |   |     |      |          |      |    |    |    |     |                |          |    |    |
| Modeling using CSMGem     |       | 8-1 (F.). |          |          |     |   | ]          |   |     |      |          |      |    |    |    |     |                |          |    |    |
| Results Interpretation    |       |           | Ser S    | 1        |     |   |            |   |     |      |          |      |    |    |    |     |                |          |    |    |
| Deviation Error Analysis  |       |           | 1        |          | Į   |   |            |   | [   |      |          |      |    |    |    |     |                |          |    |    |
| 1                         |       |           | 1        | 1        | ľ   | 1 |            | 1 |     |      |          | 1    |    |    |    |     |                |          |    |    |
| Process Design            |       |           | 1        | Γ        | 100 |   |            |   |     |      |          |      |    |    |    |     |                |          |    |    |
| Manual MEB                |       |           | 1        |          |     |   |            |   |     |      |          |      |    |    |    |     |                |          |    |    |
| CHEMCAD Simulation        |       |           |          |          |     |   |            |   |     |      |          |      |    |    |    |     |                |          |    |    |
| Problems Identification   |       |           | 1        |          | 1   |   | 5. M 3. AV |   |     |      |          | [    |    |    |    |     |                |          |    |    |
| Results Interpretation    |       |           | 1        |          | 1   |   |            |   |     |      |          |      |    |    |    | 1   |                |          |    |    |
|                           |       |           | 1        | 1        |     |   |            |   |     |      |          |      |    |    |    |     |                |          |    |    |
| Economics Evaluation      |       |           | [        | L        |     | l |            |   | ·   |      |          |      |    |    |    |     |                |          |    |    |
| CHEMCAD Economic Template |       |           |          | 1        |     |   |            |   |     |      |          |      |    |    |    |     |                |          |    |    |
| Major Equipment Costing   |       |           |          | L        | 1   |   |            |   |     | 新常 鱼 |          |      |    |    |    |     |                |          |    |    |
|                           |       |           | Τ        | L        |     |   |            |   |     |      |          |      |    |    |    |     |                |          |    |    |
| Report Writing            |       | 1 ) - B   |          |          |     |   | an tar     |   |     |      | · ·      | ·. · |    |    |    |     |                |          |    |    |
| Progrees report 1         |       |           |          | h. 3     | V   |   |            |   |     |      |          |      |    |    |    |     |                |          |    |    |
| Progress report 2         |       |           | [        | L        | [   |   |            |   | 金 巻 |      | T.       |      |    |    |    |     |                |          |    |    |
| Dissertation (Soft bound) |       |           |          |          |     |   |            |   |     |      |          |      |    | 10 |    |     |                |          |    |    |
| Dissertation (Hard bound) |       |           |          |          | [   |   |            |   |     |      |          |      |    |    | V. |     |                |          |    |    |
|                           |       |           |          | <u> </u> | ļ   |   |            |   |     |      |          |      |    |    |    |     |                |          |    | L  |
| Seminar                   |       |           |          | Į        |     |   |            |   |     |      | <b>W</b> |      |    |    |    |     |                |          |    |    |
| EDX                       |       |           |          |          |     |   |            |   |     |      |          | 1    |    |    |    |     |                |          |    |    |
| Poster Exhibition         |       |           |          | 1        |     |   |            |   |     |      | N.       |      |    |    |    |     |                |          |    |    |
| Poster preparation        |       |           | <u> </u> |          |     |   |            |   |     |      |          |      |    |    |    |     |                |          |    |    |
|                           |       |           |          |          | L   |   |            |   |     |      |          |      |    |    |    |     |                |          |    |    |
| Oral Presentation         |       |           | 1        | ļ        |     |   |            |   |     |      |          | L    |    |    |    |     | ·              | <b>V</b> | V  |    |
| Proparation               |       |           |          | L        | ļ   |   |            |   |     |      |          |      |    |    |    | 医复数 | <u>1 1 5 5</u> |          |    |    |
|                           |       |           |          | 1        | L   |   | ]          |   |     |      |          |      |    |    |    |     |                |          |    |    |
| Meetings with SV          |       |           |          |          |     |   |            |   |     |      |          |      |    |    |    |     |                |          |    |    |
|                           |       |           | <u> </u> | <u> </u> | -   | 1 | <u> </u>   |   |     |      | ļ        | L    | L  |    |    | L   |                |          |    |    |

## APPENDIX B1: CO2 + N2 Hydrate Lw-H-V Phase Equilibrium Experimental

## Data and CSMGem Modeling Result

| Hydrate: Nitrogen + carbon |        |                 |        |
|----------------------------|--------|-----------------|--------|
| Reference: Kang et al.     |        |                 |        |
| (2001)                     | ·      |                 |        |
| Phases: LWH-V              |        |                 |        |
|                            |        |                 |        |
| xCO2                       |        |                 | P CSM  |
| (loading)                  | T (K)  | P <u>(M</u> Pa) | (MPa)  |
| 0.9659                     | 274.95 | 1.565           | 1.5878 |
|                            | 280.25 | 2.9             | 3.1158 |
|                            | 282.55 | 4               | 4.4028 |
|                            | 283.55 | 5.115           | 6.6328 |
| 0.778                      | 274    | 2               | 1.7375 |
|                            | 276.15 | 2.6             | 2.2597 |
|                            | 280.65 | 4.225           | 4.1297 |
|                            | 283.45 | 6.45            | 6.7807 |
|                            | 284.25 | 7.445           | 9.3946 |
| 0.4815                     | 273.75 | 3.195           | 2.6234 |
|                            | 279    | 5.867           | 5.2523 |
|                            | 281    | 7.449           | 7.1846 |
|                            | 282    | 8.975           | 8.5966 |
| 0.1761                     | 272.85 | 7.24            | 5.4428 |
|                            | 274.05 | 8.12            | 6.3479 |
|                            | 277.45 | 10.65           | 10.088 |
|                            | 278.65 | 11.748          | 12.023 |
|                            | 280.55 | 14.22           | 16.09  |
| 0.1159                     | 274.25 | 11.02           | 8.6806 |
|                            | 275.65 | 13.87           | 10.426 |
|                            | 277.6  | 18.1            | 13.573 |
|                            | 278.95 | 22.23           | 16.375 |
| 0.0063                     | 273.95 | 14.085          | 17.216 |
|                            | 274.55 | 15.4            | 18.297 |
|                            | 277    | 20.68           | 23.477 |
|                            | 278.25 | 24.12           | 26.664 |

## APPENDIX B2: CO2 + N2 Hydrate Lw-H-V Pressure-Composition Data for

## different temperatures

| T (K) | x      | Р    |
|-------|--------|------|
| 275   | 0.0063 | 19.2 |
|       | 0.1159 | 9.5  |
|       | 0.1761 | 7.4  |
|       | 0.4815 | 3.1  |
|       | 0.778  | 2    |
|       | 0.9659 | 1.7  |
| 276   | 0.0063 | 21.2 |
|       | 0.1159 | 11   |
|       | 0.1761 | 8.4  |
|       | 0.4815 | 3.7  |
|       | 0.778  | 2.2  |
|       | 0.9659 | 1.9  |
| 277   | 0.0063 | 23.4 |
|       | 0.1159 | 12.5 |
|       | 0.1761 | 9.5  |
|       | 0.4815 | 4.1  |
|       | 0.778  | 2.5  |
|       | 0.9659 | 2.1  |
| 278   | 0.0063 | 26   |
|       | 0.1159 | 14.3 |
|       | 0.1761 | 10.8 |
|       | 0.4815 | 4.7  |
|       | 0.778  | 3    |
|       | 0.9659 | 2.4  |
| 279   | 0.0063 |      |
|       | 0.1159 | 16.2 |
|       | 0.1761 | 12.7 |
|       | 0.4815 | 5.2  |
|       | 0.778  | 3.3  |
|       | 0.9659 | 2.7  |
| 280   | 0.0063 |      |
|       | 0.1159 |      |
|       | 0.1761 | 15   |
|       | 0.4815 | 6    |
|       | 0.778  | 3.8  |
|       | 0.9659 | 3    |
# APPENDIX C1: Streams Composition for CHEMCAD Process Simulation

CHEMCAD 6.0.1

Page 1

Job Name: hydrate\_process\_noTHF Date: 05/04/2010 Time: 17:12:32

| Stream No.                                                                                                                                                                                                           | 1                                                                                                                             | 2                                                                                                                     | 3                                                                                                                      | 4                                                                                                                     |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--|--|--|
| Stream Name                                                                                                                                                                                                          |                                                                                                                               |                                                                                                                       |                                                                                                                        |                                                                                                                       |  |  |  |
| Temp C                                                                                                                                                                                                               | 25.0000*                                                                                                                      | 335.3851                                                                                                              | 0.6000                                                                                                                 | 129.2060                                                                                                              |  |  |  |
| Pres MPa                                                                                                                                                                                                             | 0.1000*                                                                                                                       | 1.0000                                                                                                                | 7.5000                                                                                                                 | 2.5000                                                                                                                |  |  |  |
| Enth MMBtu/h                                                                                                                                                                                                         | -0.31708                                                                                                                      | -0.27028                                                                                                              | -3.1723                                                                                                                | -0.30229                                                                                                              |  |  |  |
| Vapor mole fraction                                                                                                                                                                                                  | 1.0000                                                                                                                        | 1.0000                                                                                                                | 0.00000                                                                                                                | 1.0000                                                                                                                |  |  |  |
| Total gmol/h                                                                                                                                                                                                         | 5000.0001                                                                                                                     | 5000.0001                                                                                                             | 11618.7191                                                                                                             | 5000.0001                                                                                                             |  |  |  |
| Total g/h                                                                                                                                                                                                            | 153666.6106                                                                                                                   | 153666.6106                                                                                                           | 209825.3825                                                                                                            | 153666.6106                                                                                                           |  |  |  |
| Total std L ft3/hr                                                                                                                                                                                                   | 6.6780                                                                                                                        | 6.6780                                                                                                                | 7.4164                                                                                                                 | 6.6780                                                                                                                |  |  |  |
| Total std V scfh                                                                                                                                                                                                     | 3957.65                                                                                                                       | 3957.65                                                                                                               | 9196.57                                                                                                                | 3957.65                                                                                                               |  |  |  |
| Component mole fracti                                                                                                                                                                                                | lons                                                                                                                          |                                                                                                                       |                                                                                                                        |                                                                                                                       |  |  |  |
| Carbon Dioxide                                                                                                                                                                                                       | 0.170000                                                                                                                      | 0.170000                                                                                                              | 0.001701                                                                                                               | 0.170000                                                                                                              |  |  |  |
| Nitrogen                                                                                                                                                                                                             | 0.830000                                                                                                                      | 0.830000                                                                                                              | 0.00003                                                                                                                | 0.830000                                                                                                              |  |  |  |
| Water                                                                                                                                                                                                                | 0.00000                                                                                                                       | 0.00000                                                                                                               | 0.998296                                                                                                               | 0.00000                                                                                                               |  |  |  |
|                                                                                                                                                                                                                      |                                                                                                                               |                                                                                                                       |                                                                                                                        |                                                                                                                       |  |  |  |
|                                                                                                                                                                                                                      |                                                                                                                               |                                                                                                                       |                                                                                                                        |                                                                                                                       |  |  |  |
| Stream No.                                                                                                                                                                                                           | 5                                                                                                                             | 6                                                                                                                     | 7                                                                                                                      | 8                                                                                                                     |  |  |  |
| Stream No.<br>Stream Name                                                                                                                                                                                            | 5                                                                                                                             | 6                                                                                                                     | 7                                                                                                                      | 8                                                                                                                     |  |  |  |
| Stream No.<br>Stream Name<br>Temp C                                                                                                                                                                                  | 5                                                                                                                             | 6<br>25.0000                                                                                                          | 7<br>101.7977                                                                                                          | 8<br>25.0000                                                                                                          |  |  |  |
| Stream No.<br>Stream Name<br>Temp C<br>Pres MPa                                                                                                                                                                      | 5<br>25.0000<br>1.0000                                                                                                        | 6<br>25.0000<br>2.5000                                                                                                | 7<br>101.7977<br>5.0000                                                                                                | 8<br>25.0000<br>5.0000                                                                                                |  |  |  |
| Stream No.<br>Stream Name<br>Temp C<br>Pres MPa<br>Enth MMBtu/h                                                                                                                                                      | 5<br>25.0000<br>1.0000<br>-0.31752                                                                                            | 6<br>25.0000<br>2.5000<br>-0.31823                                                                                    | 7<br>101.7977<br>5.0000<br>-0.30711                                                                                    | 8<br>25.0000<br>5.0000<br>-0.31937                                                                                    |  |  |  |
| Stream No.<br>Stream Name<br>Temp C<br>Pres MPa<br>Enth MMBtu/h<br>Vapor mole fraction                                                                                                                               | 5<br>25.0000<br>1.0000<br>-0.31752<br>1.0000                                                                                  | 6<br>25.0000<br>2.5000<br>-0.31823<br>1.0000                                                                          | 7<br>101.7977<br>5.0000<br>-0.30711<br>1.0000                                                                          | 8<br>25.0000<br>5.0000<br>-0.31937<br>1.0000                                                                          |  |  |  |
| Stream No.<br>Stream Name<br>Temp C<br>Pres MPa<br>Enth MMBtu/h<br>Vapor mole fraction<br>Total gmol/h                                                                                                               | 5<br>25.0000<br>1.0000<br>-0.31752<br>1.0000<br>5000.0001                                                                     | 6<br>25.0000<br>2.5000<br>-0.31823<br>1.0000<br>5000.0001                                                             | 7<br>101.7977<br>5.0000<br>-0.30711<br>1.0000<br>5000.0001                                                             | 8<br>25.0000<br>5.0000<br>-0.31937<br>1.0000<br>5000.0001                                                             |  |  |  |
| Stream No.<br>Stream Name<br>Temp C<br>Pres MPa<br>Enth MMBtu/h<br>Vapor mole fraction<br>Total gmol/h<br>Total g/h                                                                                                  | 5<br>25.0000<br>1.0000<br>-0.31752<br>1.0000<br>5000.0001<br>153666.6106                                                      | 6<br>25.0000<br>2.5000<br>-0.31823<br>1.0000<br>5000.0001<br>153666.6106                                              | 7<br>101.7977<br>5.0000<br>-0.30711<br>1.0000<br>5000.0001<br>153666.6106                                              | 8<br>25.0000<br>5.0000<br>-0.31937<br>1.0000<br>5000.0001<br>153666.6106                                              |  |  |  |
| Stream No.<br>Stream Name<br>Temp C<br>Pres MPa<br>Enth MMBtu/h<br>Vapor mole fraction<br>Total gmol/h<br>Total g/h<br>Total std L ft3/hr                                                                            | 5<br>25.0000<br>1.0000<br>-0.31752<br>1.0000<br>5000.0001<br>153666.6106<br>6.6780                                            | 6<br>25.0000<br>2.5000<br>-0.31823<br>1.0000<br>5000.0001<br>153666.6106<br>6.6780                                    | 7<br>101.7977<br>5.0000<br>-0.30711<br>1.0000<br>5000.0001<br>153666.6106<br>6.6780                                    | 8<br>25.0000<br>5.0000<br>-0.31937<br>1.0000<br>5000.0001<br>153666.6106<br>6.6780                                    |  |  |  |
| Stream No.<br>Stream Name<br>Temp C<br>Pres MPa<br>Enth MMBtu/h<br>Vapor mole fraction<br>Total gmol/h<br>Total g/h<br>Total std L ft3/hr<br>Total std V scfh                                                        | 5<br>25.0000<br>1.0000<br>-0.31752<br>1.0000<br>5000.0001<br>153666.6106<br>6.6780<br>3957.65                                 | 6<br>25.0000<br>2.5000<br>-0.31823<br>1.0000<br>5000.0001<br>153666.6106<br>6.6780<br>3957.65                         | 7<br>101.7977<br>5.0000<br>-0.30711<br>1.0000<br>5000.0001<br>153666.6106<br>6.6780<br>3957.65                         | 8<br>25.0000<br>5.0000<br>-0.31937<br>1.0000<br>5000.0001<br>153666.6106<br>6.6780<br>3957.65                         |  |  |  |
| Stream No.<br>Stream Name<br>Temp C<br>Pres MPa<br>Enth MMBtu/h<br>Vapor mole fraction<br>Total gmol/h<br>Total g/h<br>Total std L ft3/hr<br>Total std V scfh<br>Component mole fracts                               | 5<br>25.0000<br>1.0000<br>-0.31752<br>1.0000<br>5000.0001<br>153666.6106<br>6.6780<br>3957.65<br>ions                         | 6<br>25.0000<br>2.5000<br>-0.31823<br>1.0000<br>5000.0001<br>153666.6106<br>6.6780<br>3957.65                         | 7<br>101.7977<br>5.0000<br>-0.30711<br>1.0000<br>5000.0001<br>153666.6106<br>6.6780<br>3957.65                         | 8<br>25.0000<br>5.0000<br>-0.31937<br>1.0000<br>5000.0001<br>153666.6106<br>6.6780<br>3957.65                         |  |  |  |
| Stream No.<br>Stream Name<br>Temp C<br>Pres MPa<br>Enth MMBtu/h<br>Vapor mole fraction<br>Total gmol/h<br>Total g/h<br>Total std L ft3/hr<br>Total std V scfh<br>Component mole fracts<br>Carbon Dioxide             | 5<br>25.0000<br>1.0000<br>-0.31752<br>1.0000<br>5000.0001<br>153666.6106<br>6.6780<br>3957.65<br>ions<br>0.170000             | 6<br>25.0000<br>2.5000<br>-0.31823<br>1.0000<br>5000.0001<br>153666.6106<br>6.6780<br>3957.65<br>0.170000             | 7<br>101.7977<br>5.0000<br>-0.30711<br>1.0000<br>5000.0001<br>153666.6106<br>6.6780<br>3957.65<br>0.170000             | 8<br>25.0000<br>5.0000<br>-0.31937<br>1.0000<br>5000.0001<br>153666.6106<br>6.6780<br>3957.65<br>0.170000             |  |  |  |
| Stream No.<br>Stream Name<br>Temp C<br>Pres MPa<br>Enth MMBtu/h<br>Vapor mole fraction<br>Total gmol/h<br>Total g/h<br>Total std L ft3/hr<br>Total std V scfh<br>Component mole fracts<br>Carbon Dioxide<br>Nitrogen | 5<br>25.0000<br>1.0000<br>-0.31752<br>1.0000<br>5000.0001<br>153666.6106<br>6.6780<br>3957.65<br>ions<br>0.170000<br>0.830000 | 6<br>25.0000<br>2.5000<br>-0.31823<br>1.0000<br>5000.0001<br>153666.6106<br>6.6780<br>3957.65<br>0.170000<br>0.830000 | 7<br>101.7977<br>5.0000<br>-0.30711<br>1.0000<br>5000.0001<br>153666.6106<br>6.6780<br>3957.65<br>0.170000<br>0.830000 | 8<br>25.0000<br>5.0000<br>-0.31937<br>1.0000<br>5000.0001<br>153666.6106<br>6.6780<br>3957.65<br>0.170000<br>0.830000 |  |  |  |

| Stream No.               | 9        | 10         | 11          | 12          |
|--------------------------|----------|------------|-------------|-------------|
| Stream Name              |          |            |             |             |
| Temp C                   | 0.6000   | 0.6000     | 70.7171     | 0.6000      |
| Pres MPa                 | 7.5000   | 5.0000     | 7.5000      | 7.5000      |
| Enth MMBtu/h             | 0.00000  | -0.90037   | -0.31277    | -3.1723     |
| Vapor mole fraction      | 1.0000   | 0.0000     | 1.0000      | 0.00000     |
| Total gmol/h             | 0.0000   | 3300.0002  | 5000.0001   | 11618.7191  |
| Total g/h                | 0.0000   | 59449.5037 | 153666.6106 | 209825.3825 |
| Total std L ft3/hr       | 0.0000   | 2.0994     | 6.6780      | 7.4164      |
| Total std V scfh         | 0.00     | 2612.05    | 3957.65     | 9196.57     |
| Component mole fractions |          |            |             |             |
| Carbon Dioxide           | 0.000000 | 0.00000    | 0.170000    | 0.001701    |
| Nitrogen                 | 0.000000 | 0.00000    | 0.830000    | 0.00003     |
| Water                    | 0.00000  | 1.000000   | 0.00000     | 0.998296    |

.

### CHEMCAD 6.0.1

Job Name: hydrate\_process\_noTHF Date: 05/04/2010 Time: 17:12:32

| Stream No.                                                                                                 | 13                                                               | 14                                            | 15                                                                     | 16                                                                   |  |  |  |
|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------|--|--|--|
| Stream Name                                                                                                |                                                                  |                                               |                                                                        |                                                                      |  |  |  |
| Temp C                                                                                                     | 0.6000                                                           | 0.6000                                        | 25.0000*                                                               | 0.6000                                                               |  |  |  |
| Pres MPa                                                                                                   | 5.0000                                                           | 2.5000                                        | 0.1000*                                                                | 2.5000                                                               |  |  |  |
| Enth MMBtu/h                                                                                               | 0.00000                                                          | -0.92766                                      | -2.7110                                                                | 0.00000                                                              |  |  |  |
| Vapor mole fraction                                                                                        | 1.0000                                                           | 0.00000                                       | 0.00000                                                                | 1.0000                                                               |  |  |  |
| Total gmol/h                                                                                               | 0.0000                                                           | 3400.0001                                     | 10000.0001                                                             | 0.0000                                                               |  |  |  |
| Total g/h                                                                                                  | 0.0000                                                           | 61251.0000                                    | 180150.0000                                                            | 0.0000                                                               |  |  |  |
| Total std L ft3/hr                                                                                         | 0.0000                                                           | 2.1631                                        | 6.3619                                                                 | 0.0000                                                               |  |  |  |
| Total std V scfh                                                                                           | 0.00                                                             | 2691.20                                       | 7915.30                                                                | 0.00                                                                 |  |  |  |
| Component mole fracti                                                                                      | ons                                                              |                                               |                                                                        |                                                                      |  |  |  |
| Carbon Dioxide                                                                                             | 0.000000                                                         | 0.000000                                      | 0.000000                                                               | 0.00000                                                              |  |  |  |
| Nitrogen                                                                                                   | 0.000000                                                         | 0.00000                                       | 0.00000                                                                | 0.000000                                                             |  |  |  |
| Water                                                                                                      | 0.00000                                                          | 1.000000                                      | 1.000000                                                               | 0.00000                                                              |  |  |  |
|                                                                                                            |                                                                  |                                               |                                                                        |                                                                      |  |  |  |
| Stream No.                                                                                                 | 17                                                               | 18                                            | 19                                                                     | 20                                                                   |  |  |  |
| Stream Name                                                                                                |                                                                  |                                               |                                                                        |                                                                      |  |  |  |
| Temp C                                                                                                     | 25.0000                                                          | 0.6000                                        | 0.6000                                                                 | 0.6000                                                               |  |  |  |
| Pres MPa                                                                                                   | 7.5000                                                           | 7.5000                                        | 0.1000                                                                 | 5.0000                                                               |  |  |  |
| Enth MMBtu/h                                                                                               | -0.32045                                                         | -0.32473                                      | -2.7284                                                                | -0.90037                                                             |  |  |  |
| Vapor mole fraction                                                                                        | 1.0000                                                           | 1.0000                                        | 0.00000                                                                | 0.0000                                                               |  |  |  |
| Total gmol/h                                                                                               | F000 0001                                                        | E000 0001                                     |                                                                        | 2200 0000                                                            |  |  |  |
| /1                                                                                                         | 2000.000T                                                        | 5000.0001                                     | 10000.0001                                                             | 3300.0002                                                            |  |  |  |
| Total g/h                                                                                                  | 153666.6106                                                      | 153666.6106                                   | 10000.0001<br>180150.0000                                              | 59449.5037                                                           |  |  |  |
| Total g/h<br>Total std L ft3/hr                                                                            | 153666.6106<br>6.6780                                            | 153666.6106<br>6.6780                         | 10000.0001<br>180150.0000<br>6.3619                                    | 3300.0002<br>59449.5037<br>2.0994                                    |  |  |  |
| Total g/h<br>Total std L ft3/hr<br>Total std V scfh                                                        | 153666.6106<br>6.6780<br>3957.65                                 | 5000.0001<br>153666.6106<br>6.6780<br>3957.65 | 10000.0001<br>180150.0000<br>6.3619<br>7915.30                         | 3300.0002<br>59449.5037<br>2.0994<br>2612.05                         |  |  |  |
| Total g/h<br>Total std L ft3/hr<br>Total std V scfh<br>Component mole fracti                               | 153666.6106<br>6.6780<br>3957.65                                 | 5000.0001<br>153666.6106<br>6.6780<br>3957.65 | 10000.0001<br>180150.0000<br>6.3619<br>7915.30                         | 3300.0002<br>59449.5037<br>2.0994<br>2612.05                         |  |  |  |
| Total g/h<br>Total std L ft3/hr<br>Total std V scfh<br>Component mole fracti<br>Carbon Dioxide             | 153666.6106<br>6.6780<br>3957.65<br>.ons<br>0.170000             | 0.170000                                      | 10000.0001<br>180150.0000<br>6.3619<br>7915.30<br>0.000000             | 3300.0002<br>59449.5037<br>2.0994<br>2612.05<br>0.000000             |  |  |  |
| Total g/h<br>Total std L ft3/hr<br>Total std V scfh<br>Component mole fracti<br>Carbon Dioxide<br>Nitrogen | 153666.6106<br>6.6780<br>3957.65<br>.ons<br>0.170000<br>0.830000 | 0.170000<br>0.830000                          | 10000.0001<br>180150.0000<br>6.3619<br>7915.30<br>0.000000<br>0.000000 | 3300.0002<br>59449.5037<br>2.0994<br>2612.05<br>0.000000<br>0.000000 |  |  |  |

| Stream No.               | 21         | 22          | 23          | 24      |  |  |  |
|--------------------------|------------|-------------|-------------|---------|--|--|--|
| Stream Name              |            |             |             |         |  |  |  |
| Temp C                   | 0.6000     | 0.5932      | 0.6000      | 0.6000  |  |  |  |
| Pres MPa                 | 2.5000     | 2.5000      | 7.5000      | 5.0000  |  |  |  |
| Enth MMBtu/h             | -0.92766   | -5.0003     | -0.86283    | 0.00000 |  |  |  |
| Vapor mole fraction      | 0.0000     | 5.6888E-006 | 1.0000      | 1.0000  |  |  |  |
| Total gmol/h             | 3400.0001  | 18318.7182  | 7687.8036   | 0.0000  |  |  |  |
| Total g/h                | 61251.0000 | 330526.0000 | 251725.6316 | 0.0000  |  |  |  |
| Total std L ft3/hr       | 2.1631     | 11.6789     | 10.9005     | 0.0000  |  |  |  |
| Total std V scfh         | 2691.20    | 14499.82    | 6085.13     | 0.00    |  |  |  |
| Component mole fractions |            |             |             |         |  |  |  |
| Carbon Dioxide           | 0.00000    | 0.001079    | 0.295756    | 0.00000 |  |  |  |
| Nitrogen                 | 0.00000    | 0.000002    | 0.704104    | 0.00000 |  |  |  |
| Water                    | 1.000000   | 0.998919    | 0.000141    | 0.00000 |  |  |  |

### CHEMCAD 6.0.1

Job Name: hydrate\_process\_noTHF Date: 05/04/2010 Time: 17:12:32

| Stream No.              | 25         | 26          | 27         | 28         |
|-------------------------|------------|-------------|------------|------------|
| Stream Name             |            |             |            |            |
| Temp C                  | 0.6000     | -23.0756    | 0.6000     | 2.8115     |
| Pres MPa                | 2.5000     | 2.5000      | 0.1000     | 7.5000     |
| Enth MMBtu/h            | 0.00000    | -0.86283    | -0.90037   | -0.89985   |
| Vapor mole fraction     | 1.0000     | 0.99991     | 0.00000    | 0.00000    |
| Total gmol/h            | 0.0000     | 7687.8036   | 3300.0002  | 3300.0000  |
| Total g/h               | 0.0000     | 251725.6039 | 59449.5037 | 59449.4968 |
| Total std L ft3/hr      | 0.0000     | 10.9005     | 2.0994     | 2.0994     |
| Total std V scfh        | 0.00       | 6085.13     | 2612.05    | 2612.05    |
| Component mole fraction | ons        |             |            |            |
| Carbon Dioxide          | 0.000000   | 0.295756    | 0.00000    | 0.00000    |
| Nitrogen                | 0.00000    | 0.704104    | 0.00000    | 0.00000    |
| Water                   | 0.00000    | 0.000141    | 1.000000   | 1.000000   |
|                         |            |             |            |            |
| Stream No.              | 29         | 30          | 31         | 32         |
| Stream Name             |            |             |            |            |
| Temp C                  | 0.6000     | 0.6000      | 2.0643     | 1.3169     |
| Pres MPa                | 0.1000     | 0.1000      | 5.0000     | 2.5000     |
| Enth MMBtu/h            | -0.90037   | -0.92766    | -0.90003   | -0.92748   |
| Vapor mole fraction     | 0.00000    | 0.00000     | 0.0000     | 0.00000    |
| Total gmol/h            | 3300.0002  | 3400.0001   | 3300.0000  | 3400.0001  |
| Total g/h               | 59449.5037 | 61251.0000  | 59449.4968 | 61251.0000 |
| Total std L ft3/hr      | 2.0994     | 2.1631      | 2.0994     | 2.1631     |
| Total std V scfh        | 2612.05    | 2691.20     | 2612.05    | 2691.20    |
| Component mole fraction | ons        |             |            |            |
| Carbon Dioxide          | 0.00000    | 0.00000     | 0.00000    | 0.00000    |
| Nitrogen                | 0.00000    | 0.00000     | 0.00000    | 0.00000    |
| Water                   | 1 000000   | 1.00000     | 1,000000   | 1.000000   |

CHEMCAD 6.0.1 Job Name: hydrate process noTHF Date: 05/04/2010 Time: 17:21:15 Calculation mode : Sequential Flash algorithm : Normal Equipment Calculation Sequence 2 10 19 3 4 5 8 9 11 17 18 20 21 22 1 12 6 13 7 14 15 16 No recycle loops in the flowsheet. Run Time Error and Warning Messages: \*\*\* Equip. 1 \*\*\* Error: CRYS did not converge. \*\*\* Equip. 6 \*\*\* \* Error: TPFLASH did not converge. 1, Check mass balance. \* Uop 3 has two liquid phases. Stream Stream 12 has two liquid phases. Stream 22 has two liquid phases. Stream 26 has two liquid phases.

#### CHEMCAD 6.0.1

Job Name: hydrate\_process\_noTHF Date: 05/04/2010 Time: 17:21:15

| Overall Mass Balance | e gmol    | /h        | g/h        |            |
|----------------------|-----------|-----------|------------|------------|
|                      | Input     | Output    | Input      | Output     |
| Carbon Dioxide       | 850.000   | 2293.478  | 37408.499  | 100936.000 |
| Nitrogen             | 4150.000  | 5413.043  | 116258.104 | 151641.000 |
| Water                | 10000.000 | 18300.001 | 180150.000 | 329674.512 |
| Total                | 15000.000 | 26006.523 | 333816.604 | 582252.000 |

# APPENDIX C2: CO2 Solid Tools from CHEMCAD Simulation (Preliminary)

CHEMCAD 6.0.1

```
Page 1
```

Job Name: hydrate\_startup5 Date: 01/26/2010 Time: 23:39:20 CO2 Hydrate Solid Prediction (Valid Range: -210 F to -70 F):

| Strm | Temp<br>C | Press<br>MPa | Fugacity<br>MPa | Solid Poi | nt      |       |       |
|------|-----------|--------------|-----------------|-----------|---------|-------|-------|
| C    |           |              |                 |           |         |       |       |
| 1    | 25.0000   | 0.1000       | 0.0169          | -94.8632  |         |       |       |
| 3    | 0.6000    | 10.0000      | 0.3247          | -61.1339  |         |       |       |
| 6    | 838.9504  | 10.0000      | 1.7556          | -29.3949  |         |       |       |
| 7    | 0.6000    | 10.0000      | 1.0672          | -40.2572  |         |       |       |
| 9    | 0.6000    | 10.0000      | 36.0290         | 78.8474   | * Check | : CO2 | Solid |
| 10   | 0.6000    | 5.0000       | 0.2753          | -63.5658  |         |       |       |
| 12   | 0.6000    | 2.5000       | 0.2727          | -63.7036  |         |       |       |
| 13   | 0.6000    | 2.5000       | 42.0726         | 87.0087   | * Check | : CO2 | Solid |
| 14   | 0.6000    | 5.0000       | 41.7745         | 86.6276   | * Check | : CO2 | Solid |

# APPENDIX D : CSMGem Hydrate Prediction Program Procedural

# Screenshots

|                      | Select Calculations Tools Help                                                            |                                             |                                                               |   |
|----------------------|-------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------|---|
| tinits               | Incipient Hydrate Formation<br>Hydrate Formation P given T<br>Hydrate Formation T given P | CSMGem Hydra<br>(c) Colorad<br>4/29/2010 12 | te Prediction Program<br>lo School of Mines 2001<br>:17:48 PM | * |
|                      | T = K<br>P = bar                                                                          | 🔶 Units                                     |                                                               |   |
| ₹<br>Fged            | Advanced                                                                                  | Temperature<br>Pressure                     | Cetsius 💌<br>MPa 💌                                            |   |
| Incipient<br>Hydrate |                                                                                           | Density                                     | Ib/it3                                                        |   |
| Elash                | Calculate                                                                                 | Enthalpy                                    | kJ/mol 💌                                                      |   |
| Expansions           | Incipient Hydrate Structure                                                               | Entropy                                     |                                                               |   |
| Plot                 | Phases Present                                                                            |                                             | Apply                                                         | ž |

FIGURE D.1 Units for temperature and pressure can be easily changed.

| <b>File Edit View</b> | Select Calculations Tools Help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Component Sele                                                                                                                      | ction                                                                                                        |                                                                                                            |                                                                                                                                                                                                            |      |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Links                 | K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K     K | Hydrocarbons<br>Methane<br>Ethylene<br>Propylene<br>Propylene<br>Propane<br>n-Butane<br>Butane<br>n-Pentane<br>i-Pentane<br>Benzene | C 2.3-Dim<br>3.3-Dim<br>Methylo<br>n-Hexar<br>Neohex<br>2.3-Dim<br>Toluene<br>Cyclohe<br>Ethyloyd<br>Methylo | ethyl-1-Butene<br>ethyl-1-Butene<br>yolopentane<br>ane<br>ethylbutane<br>plane<br>clopentane<br>yolohexane | n-Heptane<br>2,2,3-T imethylbutane<br>2,2-Dimethylpentane<br>3,3-Dimethylpentane<br>cis-1,2-Dimethylcyclohexare<br>1,1-Dimethylcyclohexane<br>1,1-Dimethylcyclohexane<br>n-Doctane<br>n-Nonane<br>n-Decane | *    |
| Incipient<br>Hydrate  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Petroleum Fractions                                                                                                                 | on                                                                                                           | Non-Combustibles                                                                                           | e                                                                                                                                                                                                          | xide |
| Elash                 | Calculate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Water                                                                                                                               | Thermodynamic<br>MeOH<br>NaCl                                                                                | Inhibitors                                                                                                 | ☐ MEG<br>☐ CaCl2                                                                                                                                                                                           |      |
| Expansions<br>Plot    | Phases Present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                     |                                                                                                              | ОК                                                                                                         | Clear All Canc                                                                                                                                                                                             | e    |

FIGURE D.2  $CO_2$ ,  $N_2$  and water are selected components

| 🗐 CSMGem       | State of the second second | Sales and the second                  |                                                                                                                 | _ 🗆 × |
|----------------|----------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------|
| File Edit View | Select Calculations        | Tools Help                            |                                                                                                                 |       |
|                | 6 3 6 6                    | 50                                    |                                                                                                                 |       |
| 요. 같은          | Feed                       |                                       | CSMGem Hydrate Prediction Program                                                                               | ×     |
| 6 m            | Name                       | Amount                                | (c) Colorado School of Mines 2001                                                                               |       |
| Linite         | Nitrogen                   | 0.83                                  |                                                                                                                 |       |
| L'ins          | Carbon Dioxide             | 0.17                                  | 4/29/2010 12:17:48 PM                                                                                           |       |
| •              | Walei                      | Construction of the local division of |                                                                                                                 |       |
| Lomponents     |                            |                                       |                                                                                                                 |       |
| <b>)</b> -     |                            | 四、四、百姓省                               |                                                                                                                 |       |
| Fged           |                            |                                       |                                                                                                                 |       |
|                |                            |                                       |                                                                                                                 |       |
|                |                            |                                       |                                                                                                                 |       |
| 1.00           |                            |                                       |                                                                                                                 |       |
| Incipient      |                            |                                       |                                                                                                                 |       |
| Hydrate        |                            |                                       |                                                                                                                 |       |
| Deck           |                            |                                       |                                                                                                                 |       |
| Elash          |                            | 國際問題                                  |                                                                                                                 |       |
|                | ADDRESS INCOMENDATIONS     | Design in particular                  |                                                                                                                 |       |
| Expansions     | Aqueous Tot                | al: 2                                 |                                                                                                                 |       |
|                | Calculator                 |                                       |                                                                                                                 |       |
| Plot           | 1                          | Feed Units                            |                                                                                                                 |       |
|                | Normalize Mole             | Fraction T                            | at a second s | Ľ.    |
|                |                            | 2                                     |                                                                                                                 |       |

FIGURE D.3 The mol fraction of the feed basis is entered.

| CSMGem              |                                                                                                             | Service Providence                                                                                                   |                               | Continue and State | _ [] ×     |
|---------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------|------------|
| File Edit View      | Select Calculations Tools Help                                                                              |                                                                                                                      |                               |                    |            |
| <b>↔→</b><br>Units  | Incipient Hydrate Formation     G Hydrate Formation P given T     Hydrate Formation T given P     T = 0.6 C | CSMGem Hydrate Predict<br>(c) Colorado School o:<br>4/29/2010 12:17:48 PM                                            | ion Program<br>f Mines 2001   |                    | X          |
| Components<br>Fged  | P = 6.2678 MPa                                                                                              | Hydrate Formation P at<br>Temperature = 0.600 C<br>Pressure = 6.2678<br>Number of Phases Press<br>Stable Convergence | T<br>elsius<br>MPa<br>ent : 3 |                    |            |
| Incident            |                                                                                                             | Holar                                                                                                                | Composition of Ph             | ases Present       |            |
| Hydrate             | M I III Pel MPa                                                                                             |                                                                                                                      | Aqueous                       | Vapor              | sI Hydrate |
|                     |                                                                                                             | Nitrogen                                                                                                             | 0.000883                      | 0.837060           | 0.048843   |
| Elash               | Calculate                                                                                                   | Vater                                                                                                                | 0.990446                      | 0.000147           | 0.864154   |
| E <u>x</u> pansions | Incipient Hydrate Structure<br>sl Hydrate                                                                   | Phase Fraction                                                                                                       | 0.504750                      | 0.495250           | 0.000000   |
| Plot                | Phases Present<br>Aq-V-sl                                                                                   | ×                                                                                                                    |                               |                    | *<br>*     |

**FIGURE D.4** Using Incipient Hydrate function, the hydrate formation P given T can be easily calculated by the program and produce the result as shown.

# **APPENDIX E : CSMGem Results (Raw Data)**

CSMGem Hydrate Prediction Program (c) Colorado School of Mines 2001

3/14/2010 3:07:09 PM

\_\_\_\_\_\_

Hydrate Formation P at T Temperature = 0.600 Celsius Pressure = 6.4659 MPa Number of Phases Present : 3 Stable Convergence

# Molar Composition of Phases Present

|                | Aqueous  | Vapor    | sI Hydrate |
|----------------|----------|----------|------------|
| Nitrogen       | 0.000916 | 0.844037 | 0.050499   |
| Carbon Dioxide | 0.008477 | 0.155820 | 0.085473   |
| Water          | 0.990607 | 0.000143 | 0.864028   |
| Phase Fraction | 0.672941 | 0.327059 | 0.000000   |

\_\_\_\_\_^

Hydrate Formation P at T Temperature = 0.600 Celsius Pressure = 6.4659 MPa Number of Phases Present : 3 Stable Convergence

# Molar Composition of Phases Present

|                   | Feed     | Aqueous  | Vapor    | sI Hydrate |
|-------------------|----------|----------|----------|------------|
| Nitrogen          | 0.276667 | 0.000916 | 0.844037 | 0.050499   |
| Carbon Dioxide    | 0.056667 | 0.008477 | 0.155820 | 0.085473   |
| Water             | 0.666667 | 0.990607 | 0.000143 | 0.864028   |
| Phase Fraction    |          | 0.672941 | 0.327059 | 0.000000   |
| Enthalpy (kJ/mol) |          | -284.851 | -62.885  | -252.884   |

#### Fractional Cage Occupancy of Hydrate Guests

|                | sI Hydrate | •      |
|----------------|------------|--------|
|                | small      | large  |
| Nitrogen       | 0.5737     | 0.2569 |
| Carbon Dioxide | 0.1803     | 0.6983 |

\*\*\*\*\*

Hydrate Formation T at P Temperature = 3.813 Celsius Pressure = 10.000 MPa Number of Phases Present : 3 Stable Convergence

# Molar Composition of Phases Present

|                   | Feed     | Aqueous  | Vapor    | sI Hydrate |
|-------------------|----------|----------|----------|------------|
| Nitrogen          | 0.276667 | 0.001258 | 0.845784 | 4 0.057502 |
| Carbon Dioxide    | 0.056667 | 0.009525 | 0.154082 | 2 0.080899 |
| Water             | 0.666667 | 0.989217 | 0.000135 | 5 0.861599 |
| Phase Fraction    |          | 0.673890 | 0.326110 | 0.000000   |
| Enthalpy (kJ/mol) |          | -284.152 | -62.433  | -252.008   |

# Fractional Cage Occupancy of Hydrate Guests

|                | sI Hydrate |        |
|----------------|------------|--------|
|                | small      | large  |
| Nitrogen       | 0.6371     | 0.2993 |
| Carbon Dioxide | 0.1687     | 0.6636 |

CO<sub>2</sub> = 17%

Hydrate Formation P at T Temperature = 0.600 Celsius Pressure = 6.2678 MPa Number of Phases Present : 3 Stable Convergence

# Molar Composition of Phases Present

|                   | Feed     | Aqueous  | Vapor s  | sI Hydrate |
|-------------------|----------|----------|----------|------------|
| Nitrogen          | 0.415000 | 0.000883 | 0.837060 | 0.048843   |
| Carbon Dioxide    | 0.085000 | 0.008671 | 0.162793 | 0.087003   |
| Water             | 0.500000 | 0.990446 | 0.000147 | 0.864154   |
| Phase Fraction    |          | 0.504750 | 0.495250 | 0.000000   |
| Enthalpy (kJ/mol) |          | -284.809 | -65.626  | -252.925   |

# Fractional Cage Occupancy of Hydrate Guests

|                | sI Hydrate |        |
|----------------|------------|--------|
|                | small      | large  |
| Nitrogen       | 0.5619     | 0.2460 |
| Carbon Dioxide | 0.1877     | 0.7093 |

CO2 = 57%Hydrate Formation P at T Temperature = 0.600 Celsius Pressure = 5.0109 MPaNumber of Phases Present: 3 Stable Convergence

| Molar                               | Compositi | on of Phases         | Present            |                          |
|-------------------------------------|-----------|----------------------|--------------------|--------------------------|
|                                     | Feed      | Aqueous              | Vapor              | sII Hydrate              |
| Nitrogen                            | 0.215000  | 0.000392             | 0.44051            | 5 0.020127               |
| Carbon Dioxide                      | 0.285000  | 0.023985             | 0.55928            | 0 0.117125               |
| Water                               | 0.500000  | 0.975623             | 0.00020            | 5 0.862748               |
| Phase Fraction<br>Enthalpy (kJ/mol) |           | 0.512390<br>-280.568 | 0.48761<br>-222.57 | 0 0.000000<br>5 -252.734 |

Fractional Cage Occupancy of Hydrate Guests sII Hydrate small large 0.1647 0.0671 Carbon Dioxide 0.6977 0.9125

------

#### CO2 = 83%

Nitrogen

Hydrate Formation P at T Temperature = 0.600 Celsius Pressure = 1.5870 MPa Number of Phases Present: 3 Stable Convergence

## Molar Composition of Phases Present

|                   | Feed     | Aqueous  | Vapor   | sI Hydrate |
|-------------------|----------|----------|---------|------------|
| Nitrogen          | 0.085000 | 0.000050 | 0.17242 | 4 0.003324 |
| Carbon Dioxide    | 0.415000 | 0.014583 | 0.82708 | 3 0.126483 |
| Water             | 0.500000 | 0.985367 | 0.00049 | 3 0.870193 |
|                   |          |          |         |            |
| Phase Fraction    |          | 0.507179 | 0.49282 | 1 0.000000 |
| Enthalpy (kJ/mol) |          | -283.431 | -327.32 | 3 -254.736 |

#### Fractional Cage Occupancy of Hydrate Guests sI Hydrate

| 04 11          | . y car ca co |        |
|----------------|---------------|--------|
|                | small         | large  |
| Nitrogen       | 0.0540        | 0.0113 |
| Carbon Dioxide | 0.4902        | 0.9510 |

P-T Flash Temperature = 0.600 Celsius Pressure = 10.000 MPa Number of Phases Present : 2 Stable Convergence

# Molar Composition of Phases Present

|                   | Feed     | Vapor    | sI Hydrate |
|-------------------|----------|----------|------------|
| Nitrogen          | 0.415000 | 0.893856 | 0.068622   |
| Carbon Dioxide    | 0.085000 | 0.106042 | 0.069780   |
| Water             | 0.500000 | 0.000102 | 0.861599   |
| Phase Fraction    |          | 0.419733 | 0.580267   |
| Enthalpy (kJ/mol) |          | -43.472  | -252.109   |

Fractional Cage Occupancy of Hydrate Guests

|                | si Hydrate |        |
|----------------|------------|--------|
|                | small      | large  |
| Nitrogen       | 0.6958     | 0.3787 |
| Carbon Dioxide | 0.1198     | 0.5810 |

# P-T Flash

\*\* Flash Calculation Error \*\*

\*\* T and P Flash

\*\* Maximum number of iterations reached.

\_\_\_\_\_

P-T Flash Temperature = 0.600 Celsius Pressure = 5.0000 MPa Number of Phases Present : 2 Stable Convergence

# Molar Composition of Phases Present

|                                     | Feed     | Aqueous              | Vapor               |
|-------------------------------------|----------|----------------------|---------------------|
| Nitrogen                            | 0.415000 | 0.000717             | 0.836067            |
| Carbon Dioxide                      | 0.085000 | 0.007509             | 0.163760            |
| Water                               | 0.500000 | 0.991774             | 0.000173            |
| Phase Fraction<br>Enthalpy (kJ/mol) |          | 0.504061<br>-285.213 | 0.495939<br>-65.870 |

\_\_\_\_\_\_

P-T Flash Temperature = 0.600 Celsius Pressure = 2.5000 MPa

# Number of Phases Present : 2 Stable Convergence

| Molar Composition of Phases Present |          |          |          |  |
|-------------------------------------|----------|----------|----------|--|
|                                     | Feed     | Aqueous  | Vapor    |  |
| Nitrogen                            | 0.415000 | 0.000372 | 0.833402 |  |
| Carbon Dioxide                      | 0.085000 | 0.004441 | 0.166293 |  |
| Water                               | 0.500000 | 0.995187 | 0.000306 |  |
| Phase Fraction                      |          | 0.502265 | 0.497735 |  |
| Enthalpy (kJ/mol)                   |          | -286.239 | -66.606  |  |

\_\_\_\_\_\_

#### P-T Flash

Temperature = 0.600 Celsius Pressure = 6.0000 MPa Number of Phases Present : 2 Stable Convergence

# Molar Composition of Phases Present

|                   | Feed     | Aqueous  | Vapor    |
|-------------------|----------|----------|----------|
| Nitrogen          | 0.415000 | 0.000849 | 0.836867 |
| Carbon Dioxide    | 0.085000 | 0.008444 | 0.162982 |
| Water             | 0.500000 | 0.990707 | 0.000151 |
|                   |          |          |          |
| Phase Fraction    |          | 0.504614 | 0.495386 |
| Enthalpy (kJ/mol) |          | -284.888 | -65.672  |

P-T Flash

Temperature = 0.600 Celsius Pressure = 7.0000 MPa Number of Phases Present : 3 Stable Convergence

# Molar Composition of Phases Present

|                   | Feed     | Aqueous  | Vapor    | sI Hydrate |
|-------------------|----------|----------|----------|------------|
| Nitrogen          | 0.415000 | 0.001004 | 0.860963 | 0.054915   |
| Carbon Dioxide    | 0.085000 | 0.007966 | 0.138903 | 0.081373   |
| Water             | 0.500000 | 0.991030 | 0.000134 | 0.863712   |
| Phase Fraction    |          | 0.317330 | 0.467953 | 0.214717   |
| Enthalpy (kJ/mol) |          | -284.964 | -56.238  | -252.782   |

# Fractional Cage Occupancy of Hydrate Guests

| sl Hydrate |                                         |
|------------|-----------------------------------------|
| small      | large                                   |
| 0.6032     | 0.2864                                  |
| 0.1619     | 0.6683                                  |
|            | si Hydrate<br>small<br>0.6032<br>0.1619 |

P-T Flash Temperature = 0.600 Celsius Pressure = 6.5000 MPa Number of Phases Present : 3 Stable Convergence

# Molar Composition of Phases Present

|                   | Feed     | Aqueous  | Vapor    | sI Hydrate |
|-------------------|----------|----------|----------|------------|
| Nitrogen          | 0.415000 | 0.000922 | 0.845196 | 0.050783   |
| Carbon Dioxide    | 0.085000 | 0.008444 | 0.154662 | 0.085210   |
| Water             | 0.500000 | 0.990635 | 0.000142 | 0.864007   |
|                   |          |          |          |            |
| Phase Fraction    |          | 0.442658 | 0.486256 | 0.071085   |
| Enthalpy (kJ/mol) |          | -284.859 | -62.430  | -252.878   |

Fractional Cage Occupancy of Hydrate Guests sI Hydrate small large 0.5757 0.2587 Carbon Dioxide 0.1791 0.6964

P-T Flash Temperature = 0.600 Celsius Pressure = 6.4000 MPa Number of Phases Present : 3 Stable Convergence

Nitrogen

### Molar Composition of Phases Present

|                   | Feed     | Aqueous  | Vapor    | sI Hydrate |
|-------------------|----------|----------|----------|------------|
| Nitrogen          | 0.415000 | 0.000905 | 0.841762 | 0.049949   |
| Carbon Dioxide    | 0.085000 | 0.008541 | 0.158094 | 0.085981   |
| Water             | 0.500000 | 0.990554 | 0.000144 | 0.864069   |
| Phase Fraction    |          | 0.469040 | 0.490084 | 0.040876   |
| Enthalpy (kJ/mol) |          | -284.837 | -63.779  | -252.898   |

# Fractional Cage Occupancy of Hydrate Guests

| sI Hydrate |                                         |
|------------|-----------------------------------------|
| small      | large                                   |
| 0.5698     | 0.2532                                  |
| 0.1827     | 0.7020                                  |
|            | sI Hydrate<br>small<br>0.5698<br>0.1827 |

\_\_\_\_\_

P-T Flash Temperature = 0.600 Celsius Pressure = 6.3000 MPa Number of Phases Present : 3 Stable Convergence

# Molar Composition of Phases Present

|                   | Feed     | Aqueous  | Vapor    | sI Hydrate |
|-------------------|----------|----------|----------|------------|
| Nitrogen          | 0.415000 | 0.000889 | 0.838223 | 0.049113   |
| Carbon Dioxide    | 0.085000 | 0.008639 | 0.161631 | 0.086754   |
| Water             | 0.500000 | 0.990472 | 0.000146 | 0.864133   |
| Phase Fraction    |          | 0.495957 | 0.493979 | 0.010063   |
| Enthalpy (kJ/mol) |          | -284.816 | -65.169  | -252.918   |

Fractional Cage Occupancy of Hydrate Guests

|                | sI Hydrate |        |
|----------------|------------|--------|
|                | small      | large  |
| Nitrogen       | 0.5639     | 0.2478 |
| Carbon Dioxide | 0.1865     | 0.7075 |

-----

P-T Flash Temperature = 0.600 Celsius Pressure = 6.2000 MPa Number of Phases Present : 2 Stable Convergence

### Molar Composition of Phases Present

|                                     | Feed     | Aqueous              | Vapor               |
|-------------------------------------|----------|----------------------|---------------------|
| Nitrogen                            | 0.415000 | 0.000875             | 0.837012            |
| Carbon Dioxide                      | 0.085000 | 0.008614             | 0.162840            |
| Water                               | 0.500000 | 0.990511             | 0.000148            |
| Phase Fraction<br>Enthalpy (kJ/mol) |          | 0.504716<br>-284.829 | 0.495284<br>-65.637 |

P-T Flash

Temperature = 0.600 Celsius Pressure = 6.2500 MPa Number of Phases Present : 2 Stable Convergence

|                | Feed     | Aqueous  | Vapor    |
|----------------|----------|----------|----------|
| Nitrogen       | 0.415000 | 0.000881 | 0.837048 |
| Carbon Dioxide | 0.085000 | 0.008656 | 0.162806 |
| Water          | 0.500000 | 0.990463 | 0.000147 |

| Phase Fraction    | 0.504741 | 0.495259 |
|-------------------|----------|----------|
| Enthalpy (kJ/mol) | -284.814 | -65.629  |

# P-T Flash

Temperature = 0.600 Celsius Pressure = 6.2800 MPa Number of Phases Present : 3 Stable Convergence

# Molar Composition of Phases Present

|                                     | Feed     | Aqueous              | Vapor               | sI Hydrate           |
|-------------------------------------|----------|----------------------|---------------------|----------------------|
| Nitrogen                            | 0.415000 | 0.000885             | 0.837502            | 0.048945             |
| Carbon Dioxide                      | 0.085000 | 0.008659             | 0.162351            | 0.086909             |
| Water                               | 0.500000 | 0.990456             | 0.000146            | 0.864146             |
| Phase Fraction<br>Enthalpy (kJ/mol) |          | 0.501409<br>-284.811 | 0.494767<br>-65.452 | 0.003824<br>-252.922 |

### Fractional Cage Occupancy of Hydrate Guests

|                | sI Hydrate |        |
|----------------|------------|--------|
|                | small      | large  |
| Nitrogen       | 0.5627     | 0.2467 |
| Carbon Dioxide | 0.1872     | 0.7086 |

P-T Flash

Temperature = 0.600 Celsius Pressure = 6.2700 MPa Number of Phases Present : 3 Stable Convergence

# Molar Composition of Phases Present

|                                     | Feed     | Aqueous              | Vapor               | sI Hydrate           |
|-------------------------------------|----------|----------------------|---------------------|----------------------|
| Nitrogen                            | 0.415000 | 0.000884             | 0.837140            | 0.048861             |
| Carbon Dioxide                      | 0.085000 | 0.008669             | 0.162713            | 0.086986             |
| Water                               | 0.500000 | 0.990448             | 0.000147            | 0.864152             |
| Phase Fraction<br>Enthalpy (kJ/mol) |          | 0.504147<br>-284.809 | 0.495163<br>-65.595 | 0.000690<br>-252.924 |

# Fractional Cage Occupancy of Hydrate Guests

|                | si Hydrate |        |
|----------------|------------|--------|
|                | small      | large  |
| Nitrogen       | 0.5621     | 0.2461 |
| Carbon Dioxide | 0.1876     | 0.7092 |

P-T Flash Temperature = 0.600 Celsius Pressure = 6.2600 MPa Number of Phases Present : 2 Stable Convergence

# Molar Composition of Phases Present

|                                     | Feed     | Aqueous              | Vapor               |
|-------------------------------------|----------|----------------------|---------------------|
| Nitrogen                            | 0.415000 | 0.000882             | 0.837055            |
| Carbon Dioxide                      | 0.085000 | 0.008664             | 0.162799            |
| Water                               | 0.500000 | 0.990453             | 0.000147            |
| Phase Fraction<br>Enthalpy (kJ/mol) |          | 0.504746<br>-284.811 | 0.495254<br>-65.627 |

P-T Flash Temperature = 0.600 Celsius Pressure = 6.2650 MPa Number of Phases Present : 2 Stable Convergence

| Molaı                               | r Compositio | on of Phases         | Present             |
|-------------------------------------|--------------|----------------------|---------------------|
|                                     | Feed         | Aqueous              | Vapor               |
| Nitrogen                            | 0.415000     | 0.000883             | 0.837058            |
| Carbon Dioxide                      | 0.085000     | 0.008669             | 0.162795            |
| Water                               | 0.500000     | 0.990448             | 0.000147            |
| Phase Fraction<br>Enthalpy (kJ/mol) |              | 0.504749<br>-284.809 | 0.495251<br>-65.627 |

P-T Flash

Temperature = 0.600 Celsius Pressure = 6.2670 MPa Number of Phases Present : 2 Stable Convergence

# Molar Composition of Phases Present

|                   | Feed     | Aqueous  | Vapor    |
|-------------------|----------|----------|----------|
| Nitrogen          | 0.415000 | 0.000883 | 0.837060 |
| Carbon Dioxide    | 0.085000 | 0.008670 | 0.162794 |
| Water             | 0.500000 | 0.990447 | 0.000147 |
| Phase Fraction    |          | 0.504749 | 0.495251 |
| Enthalpy (kJ/mol) |          | -284.809 | -65.626  |

P-T Flash Temperature = 0.600 Celsius Pressure = 6.2680 MPa Number of Phases Present: 3 Stable Convergence

# Molar Composition of Phases Present

|                                     | Feed     | Aqueous              | Vapor               | sI Hydrate           |
|-------------------------------------|----------|----------------------|---------------------|----------------------|
| Nitrogen                            | 0.415000 | 0.000883             | 0.837067            | 0.048845             |
| Carbon Dioxide                      | 0.085000 | 0.008671             | 0.162786            | 0.087002             |
| Water                               | 0.500000 | 0.990446             | 0.000147            | 0.864154             |
| Phase Fraction<br>Enthalpy (kJ/mol) |          | 0.504694<br>-284.809 | 0.495242<br>-65.623 | 0.000064<br>-252.925 |

Fractional Cage Occupancy of Hydrate Guests

|                | sI Hydrate |        |
|----------------|------------|--------|
|                | small      | large  |
| Nitrogen       | 0.5620     | 0.2460 |
| Carbon Dioxide | 0.1877     | 0.7093 |

P-T Flash

Temperature = 0.600 Celsius Pressure = 5.0000 MPa Number of Phases Present : 2 Stable Convergence

# Molar Composition of Phases Present

|                   | Feed     | Vapor    | sI Hydrate |
|-------------------|----------|----------|------------|
| Nitrogen          | 0.215000 | 0.487819 | 0.017303   |
| Carbon Dioxide    | 0.285000 | 0.511995 | 0.120510   |
| Water             | 0.500000 | 0.000186 | 0.862187   |
| Phase Fraction    |          | 0.420170 | 0.579830   |
| Enthalpy (kJ/mol) |          | -203.804 | -252.368   |

Fractional Cage Occupancy of Hydrate Guests sI Hydrate small large 0.0620 0.2756 0.9148 Carbon Dioxide 0.4705

### P-T Flash

Nitrogen

Temperature = 0.600 Celsius Pressure = 2.5000 MPa Number of Phases Present: 2 Stable Convergence

| Molar                               | Compositi | on of Phases         | Present              |
|-------------------------------------|-----------|----------------------|----------------------|
|                                     | Feed      | Vapor                | sI Hydrate           |
| Nitrogen                            | 0.085000  | 0.194881             | 0.004532             |
| Carbon Dioxide                      | 0.415000  | 0.804793             | 0.129549             |
| Water                               | 0.500000  | 0.000326             | 0.865919             |
| Phase Fraction<br>Enthalpy (kJ/mol) |           | 0.422738<br>-318.882 | 0.577262<br>-253.475 |

# Fractional Cage Occupancy of Hydrate Guests

|                | sI Hydrate |        |
|----------------|------------|--------|
|                | small      | large  |
| Nitrogen       | 0.0773     | 0.0144 |
| Carbon Dioxide | 0.5637     | 0.9591 |

P-T Flash Temperature = 0.600 Celsius Pressure = 10.000 MPa Number of Phases Present : 2 Stable Convergence

| Molar Composition of Phases Present |          |          |            |
|-------------------------------------|----------|----------|------------|
|                                     | Feed     | Vapor    | sI Hydrate |
| Nitrogen                            | 0.415000 | 0.893856 | 0.068622   |
| Carbon Dioxide                      | 0.085000 | 0.106042 | 0.069780   |
| Water                               | 0.500000 | 0.000102 | 0.861599   |
|                                     |          |          |            |
| Phase Fraction                      |          | 0.419733 | 0.580267   |
| Enthalpy (kJ/mol)                   |          | -43.472  | -252.109   |

Fractional Cage Occupancy of Hydrate Guests

|                | sI Hydrate |        |
|----------------|------------|--------|
|                | small      | large  |
| Nitrogen       | 0.6958     | 0.3787 |
| Carbon Dioxide | 0.1198     | 0.5810 |

P-T Flash

\*\* Flash Calculation Error \*\*

\*\* T and P Flash

\*\* Maximum number of iterations reached.

P-T Flash Temperature = 0.600 Celsius Pressure = 5.0000 MPa Number of Phases Present : 2 Stable Convergence

#### Molar Composition of Phases Present Feed Aqueous Vapor 0.415000 0.000717 0.836067

|                   |          |          | · · · •  |
|-------------------|----------|----------|----------|
| Nitrogen          | 0.415000 | 0.000717 | 0.836067 |
| Carbon Dioxide    | 0.085000 | 0.007509 | 0.163760 |
| Water             | 0.500000 | 0.991774 | 0.000173 |
| Phase Fraction    |          | 0 504061 | 0.495939 |
|                   |          | 0.504001 | 0.4/0/00 |
| Enthalpy (kJ/mol) |          | -285.213 | -65.870  |
|                   |          |          |          |

\_\_\_\_\_

P-T Flash

Temperature = 0.600 Celsius Pressure = 2.5000 MPa Number of Phases Present : 2 Stable Convergence

# Molar Composition of Phases Present

|                   | Feed     | Aqueous  | Vapor    |
|-------------------|----------|----------|----------|
| Nitrogen          | 0.415000 | 0.000372 | 0.833402 |
| Carbon Dioxide    | 0.085000 | 0.004441 | 0.166293 |
| Water             | 0.500000 | 0.995187 | 0.000306 |
| Phase Fraction    |          | 0.502265 | 0.497735 |
| Enthalpy (kJ/mol) |          | -286.239 | -66.606  |

P-T Flash Temperature = 0.600 Celsius Pressure = 6.0000 MPa Number of Phases Present : 2 Stable Convergence

# Molar Composition of Phases Present

| Feed     | Aqueous                                  | Vapor                                                                                                                                                                |
|----------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.415000 | 0.000849                                 | 0.836867                                                                                                                                                             |
| 0.085000 | 0.008444                                 | 0.162982                                                                                                                                                             |
| 0.500000 | 0.990707                                 | 0.000151                                                                                                                                                             |
|          | 0.504614<br>-284.888                     | 0.495386<br>-65.672                                                                                                                                                  |
|          | Feed<br>0.415000<br>0.085000<br>0.500000 | Feed         Aqueous           0.415000         0.000849           0.085000         0.008444           0.500000         0.990707           0.504614         -284.888 |

\_\_\_\_\_

P-T Flash Temperature = 0.600 Celsius Pressure = 7.0000 MPa Number of Phases Present : 3 Stable Convergence

# Molar Composition of Phases Present

|                   | Feed     | Aqueous  | Vapor    | sI Hydrate |
|-------------------|----------|----------|----------|------------|
| Nitrogen          | 0.415000 | 0.001004 | 0.860963 | 0.054915   |
| Carbon Dioxide    | 0.085000 | 0.007966 | 0.138903 | 0.081373   |
| Water             | 0.500000 | 0.991030 | 0.000134 | 0.863712   |
| Phase Fraction    |          | 0.317330 | 0.467953 | 0.214717   |
| Enthalpy (kJ/mol) |          | -284.964 | -56.238  | -252.782   |

Fractional Cage Occupancy of Hydrate Guests

|                | sI Hydrate |        |
|----------------|------------|--------|
|                | small      | large  |
| Nitrogen       | 0.6032     | 0.2864 |
| Carbon Dioxide | 0.1619     | 0.6683 |

P-T Flash Temperature = 0.600 Celsius Pressure = 6.5000 MPa Number of Phases Present : 3 Stable Convergence

### Molar Composition of Phases Present

|                   | Feed     | Aqueous  | Vapor    | sI Hydrate |
|-------------------|----------|----------|----------|------------|
| Nitrogen          | 0.415000 | 0.000922 | 0.845196 | 0.050783   |
| Carbon Dioxide    | 0.085000 | 0.008444 | 0.154662 | 0.085210   |
| Water             | 0.500000 | 0.990635 | 0.000142 | 0.864007   |
|                   |          |          |          |            |
| Phase Fraction    |          | 0.442658 | 0.486256 | 0.071085   |
| Enthalpy (kJ/mol) |          | -284.859 | -62.430  | -252.878   |

Fractional Cage Occupancy of Hydrate Guests sI Hydrate small large 0.5757 0.2587 Carbon Dioxide 0.1791 0.6964

#### P-T Flash

Nitrogen

Temperature = 0.600 Celsius Pressure = 6.4000 MPa Number of Phases Present : 3 Stable Convergence

| Molar Composition of Phases Present |          |          |          |            |
|-------------------------------------|----------|----------|----------|------------|
|                                     | Feed     | Aqueous  | Vapor    | sI Hydrate |
| Nitrogen                            | 0.415000 | 0.000905 | 0.841762 | 0.049949   |
| Carbon Dioxide                      | 0.085000 | 0.008541 | 0.158094 | 0.085981   |
| Water                               | 0.500000 | 0.990554 | 0.000144 | 0.864069   |
| Phase Fraction                      |          | 0.460040 | 0.400084 | 0.040876   |
| Enthalpy (kJ/mol)                   |          | -284 837 | -63 779  | -2.52,898  |
|                                     |          |          | 0011115  |            |

Fractional Cage Occupancy of Hydrate Guests sI Hydrate small large 0 5608 0 2532

| Nitrogen       | 0.5698 | 0.2532 |
|----------------|--------|--------|
| Carbon Dioxide | 0.1827 | 0.7020 |

P-T Flash Temperature = 0.600 Celsius Pressure = 6.3000 MPa Number of Phases Present : 3 Stable Convergence

#### Molar Composition of Phases Present Feed Aqueous Vapor sI Hydrate Nitrogen 0.415000 0.000889 0.838223 0.049113 Carbon Dioxide 0.085000 0.008639 0.161631 0.086754 Water 0.500000 0.990472 0.000146 0.864133 Phase Fraction 0.495957 0.493979 0.010063 Enthalpy (kJ/mol) -284.816 -65.169 -252.918

Fractional Cage Occupancy of Hydrate Guests

|                | sI Hydrate |        |
|----------------|------------|--------|
|                | small      | large  |
| Nitrogen       | 0.5639     | 0.2478 |
| Carbon Dioxide | 0.1865     | 0.7075 |

P-T Flash Temperature = 0.600 Celsius Pressure = 6.2000 MPa Number of Phases Present : 2 Stable Convergence

Molar Composition of Phases PresentFeedAqueousVaporNitrogen0.4150000.0008750.837012

| Carbon Dioxide    | 0.085000 | 0.008614 | 0.162840 |
|-------------------|----------|----------|----------|
| Water             | 0.500000 | 0.990511 | 0.000148 |
| Phase Fraction    |          | 0.504716 | 0.495284 |
| Enthalpy (kJ/mol) |          | -284.829 | -65.637  |

P-T Flash

Temperature = 0.600 Celsius Pressure = 6.2500 MPaNumber of Phases Present : 2 Stable Convergence

# Molar Composition of Phases Present

|                   | Feed     | Aqueous  | Vapor    |
|-------------------|----------|----------|----------|
| Nitrogen          | 0.415000 | 0.000881 | 0.837048 |
| Carbon Dioxide    | 0.085000 | 0.008656 | 0.162806 |
| Water             | 0.500000 | 0.990463 | 0.000147 |
| Phase Fraction    |          | 0 504741 | 0.495259 |
| Enthalpy (kJ/mol) |          | -284.814 | -65.629  |

\*\*\*\*\*\*

P-T Flash

Temperature = 0.600 Celsius Pressure = 6.2800 MPa Number of Phases Present : 3 Stable Convergence

# Molar Composition of Phases Present

|                   | Feed     | Aqueous  | Vapor    | sI Hydrate |
|-------------------|----------|----------|----------|------------|
| Nitrogen          | 0.415000 | 0.000885 | 0.837502 | 0.048945   |
| Carbon Dioxide    | 0.085000 | 0.008659 | 0.162351 | 0.086909   |
| Water             | 0.500000 | 0.990456 | 0.000146 | 0.864146   |
| Phase Fraction    |          | 0.501409 | 0.494767 | 0.003824   |
| Enthalpy (kJ/mol) |          | -284.811 | -65.452  | -252.922   |

Fractional Cage Occupancy of Hydrate Guests sI Hydrate small large 0.2467 0.5627 Carbon Dioxide 0.1872 0.7086

P-T Flash

Nitrogen

Temperature = 0.600 Celsius Pressure = 6.2700 MPa Number of Phases Present : 3

# Stable Convergence

| Molar Composition of Phases Present |          |                      |                     |                      |
|-------------------------------------|----------|----------------------|---------------------|----------------------|
|                                     | Feed     | Aqueous              | Vapor               | sI Hydrate           |
| Nitrogen                            | 0.415000 | 0.000884             | 0.837140            | 0.048861             |
| Carbon Dioxide                      | 0.085000 | 0.008669             | 0.162713            | 0.086986             |
| Water                               | 0.500000 | 0.990448             | 0.000147            | 0.864152             |
| Phase Fraction<br>Enthalpy (kJ/mol) |          | 0.504147<br>-284.809 | 0.495163<br>-65.595 | 0.000690<br>-252.924 |

# Fractional Cage Occupancy of Hydrate Guests sI Hydrate

|                | small  | large  |
|----------------|--------|--------|
| Nitrogen       | 0.5621 | 0.2461 |
| Carbon Dioxide | 0.1876 | 0.7092 |

P-T Flash

Temperature = 0.600 Celsius Pressure = 6.2600 MPa Number of Phases Present : 2 Stable Convergence

| Molar Composition of Phases Present |          |                      |                     |
|-------------------------------------|----------|----------------------|---------------------|
|                                     | Feed     | Aqueous              | Vapor               |
| Nitrogen                            | 0.415000 | 0.000882             | 0.837055            |
| Carbon Dioxide                      | 0.085000 | 0.008664             | 0.162799            |
| Water                               | 0.500000 | 0.990453             | 0.000147            |
| Phase Fraction<br>Enthalpy (kJ/mol) |          | 0.504746<br>-284.811 | 0.495254<br>-65.627 |

\_\_\_\_\_

P-T Flash Temperature = 0.600 Celsius Pressure = 6.2650 MPa Number of Phases Present : 2 Stable Convergence

# Molar Composition of Phases Present

| Nitro con         | Feed     | Aqueous  | Vapor    |
|-------------------|----------|----------|----------|
| Carbon Dioxide    | 0.085000 | 0.000885 | 0.837038 |
| Water             | 0.500000 | 0.990448 | 0.000147 |
| Phase Fraction    |          | 0.504749 | 0.495251 |
| Enthalpy (kJ/mol) |          | -284.809 | -65.627  |

P-T Flash Temperature = 0.600 Celsius Pressure = 6.2670 MPa Number of Phases Present : 2 Stable Convergence

# Molar Composition of Phases Present

| Feed     | Aqueous                                  | Vapor                                                                                                                                                                |
|----------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.415000 | 0.000883                                 | 0.837060                                                                                                                                                             |
| 0.085000 | 0.008670                                 | 0.162794                                                                                                                                                             |
| 0.500000 | 0.990447                                 | 0.000147                                                                                                                                                             |
|          |                                          |                                                                                                                                                                      |
|          | 0.504749                                 | 0.495251                                                                                                                                                             |
|          | -284.809                                 | -65.626                                                                                                                                                              |
|          | Feed<br>0.415000<br>0.085000<br>0.500000 | Feed         Aqueous           0.415000         0.000883           0.085000         0.008670           0.500000         0.990447           0.504749         -284.809 |

P-T Flash

Temperature = 0.600 Celsius Pressure = 6.2680 MPa Number of Phases Present : 3 Stable Convergence

# Molar Composition of Phases Present

|                                     | Feed     | Aqueous              | Vapor               | sI Hydrate           |
|-------------------------------------|----------|----------------------|---------------------|----------------------|
| Nitrogen                            | 0.415000 | 0.000883             | 0.837067            | 0.048845             |
| Carbon Dioxide                      | 0.085000 | 0.008671             | 0.162786            | 0.087002             |
| Water                               | 0.500000 | 0.990446             | 0.000147            | 0.864154             |
| Phase Fraction<br>Enthalpy (kJ/mol) |          | 0.504694<br>-284.809 | 0.495242<br>-65.623 | 0.000064<br>-252.925 |

### Fractional Cage Occupancy of Hydrate Guests

|                | sI Hydrate | 1 0    |
|----------------|------------|--------|
|                | small      | large  |
| Nitrogen       | 0.5620     | 0.2460 |
| Carbon Dioxide | 0.1877     | 0.7093 |
|                |            |        |

P-T Flash Temperature = 0.600 Celsius Pressure = 5.0000 MPa Number of Phases Present : 2 Stable Convergence

# Molar Composition of Phases Present Feed Vapor sI Hydrat

|                | Feed     | vapor    | sl Hydrate |
|----------------|----------|----------|------------|
| Nitrogen       | 0.215000 | 0.487819 | 0.017303   |
| Carbon Dioxide | 0.285000 | 0.511995 | 0.120510   |

| Phase Fraction    | 0.420170 | 0.579830 |
|-------------------|----------|----------|
| Enthalpy (kJ/mol) | -203.804 | -252.368 |

Fractional Cage Occupancy of Hydrate Guests sI Hydrate small large 0.2756 0.0620 Carbon Dioxide 0.4705 0.9148

P-T Flash Temperature = 0.600 Celsius Pressure = 2.5000 MPa Number of Phases Present : 2 Stable Convergence

Water

Nitrogen

### Molar Composition of Phases Present

|                   | Feed     | Vapor    | sI Hydrate |
|-------------------|----------|----------|------------|
| Nitrogen          | 0.085000 | 0.194881 | 0.004532   |
| Carbon Dioxide    | 0.415000 | 0.804793 | 0.129549   |
| Water             | 0.500000 | 0.000326 | 0.865919   |
| Phase Fraction    |          | 0.422738 | 0.577262   |
| Enthalpy (kJ/mol) |          | -318.882 | -253.475   |

#### Fractional Cage Occupancy of Hydrate Guests sI Hydrate

|                | SITTYUTALE |        |
|----------------|------------|--------|
|                | small      | large  |
| Nitrogen       | 0.0773     | 0.0144 |
| Carbon Dioxide | 0.5637     | 0.9591 |

# 

Hydrate Formation P at T Temperature = 280.000 Kelvin Pressure = 151.28 bar Number of Phases Present: 3 Stable Convergence

|                   | Feed     | Aqueous  | Vapor    | sI Hydrate |
|-------------------|----------|----------|----------|------------|
| Nitrogen          | 0.415000 | 0.001666 | 0.838613 | 0.063911   |
| Carbon Dioxide    | 0.085000 | 0.010599 | 0.161252 | 0.076489   |
| Water             | 0.500000 | 0.987735 | 0.000135 | 0.859599   |
| Phase Fraction    |          | 0.506141 | 0.493859 | 0.000000   |
| Enthalpy (kJ/mol) |          | -283.414 | -65.593  | -251.236   |

# Fractional Cage Occupancy of Hydrate Guests sI Hydrate small large Nitrogen 0.6912 0.3396 Carbon Dioxide 0.1563 0.6301

# [This section - to compare with S.P. Kang proposed design]

CO2 = 34.71% P = 38.7 bar

Hydrate Formation P at T Temperature = 274.000 Kelvin Pressure = 36.216 bar Number of Phases Present : 3 Stable Convergence

### Molar Composition of Phases Present

| Nitrogen<br>Carbon Dioxide<br>Water | Feed<br>0.326450<br>0.173550<br>0.500000 | Aqueous<br>0.000418<br>0.011893<br>0.987689 | Vapor<br>0.660553<br>0.339209<br>0.000239 | sI Hydrate<br>0.024444<br>0.109157<br>0.866398 |
|-------------------------------------|------------------------------------------|---------------------------------------------|-------------------------------------------|------------------------------------------------|
| Phase Fraction                      |                                          | 0.506113                                    | 0.493887                                  | 0.000000                                       |
| Enthalpy (kJ/mol)                   |                                          | -284.044                                    | -135.065                                  | -253.615                                       |

# Fractional Cage Occupancy of Hydrate Guests

| si Hydrate |                                         |
|------------|-----------------------------------------|
| small      | large                                   |
| 0.3398     | 0.1030                                  |
| 0.3296     | 0.8561                                  |
|            | si Hydrate<br>small<br>0.3398<br>0.3296 |

CO2 = 89.34% P = 28.7 bar

Hydrate Formation P at T Temperature = 274.000 Kelvin Pressure = 15.257 bar Number of Phases Present : 3 Stable Convergence

|          | Feed     | Aqueous  | Vapor    | sI Hydrate |
|----------|----------|----------|----------|------------|
| Nitrogen | 0.053300 | 0.000030 | 0.108167 | 0.001993   |

| Carbon Dioxide    | 0.446700 | 0.015036 | 0.891311 | 0.127697 |
|-------------------|----------|----------|----------|----------|
| Water             | 0.500000 | 0.984933 | 0.000522 | 0.870310 |
| Phase Fraction    |          | 0.507388 | 0.492612 | 0.000000 |
| Enthalpy (kJ/mol) |          | -283.289 | -352.654 | -254.759 |

Fractional Cage Occupancy of Hydrate Guests sI Hydrate small large 0.0066 0.0328 0.5053 Carbon Dioxide 0.9565

P-T Flash

Nitrogen

Temperature = 274.000 Kelvin Pressure = 28.700 bar Number of Phases Present : 2 Stable Convergence

| Molar             | Compositio | on of Phases | Present    |
|-------------------|------------|--------------|------------|
|                   | Feed       | Vapor        | sI Hydrate |
| Nitrogen          | 0.053300   | 0.122307     | 0.002951   |
| Carbon Dioxide    | 0.446700   | 0.877394     | 0.132457   |
| Water             | 0.500000   | 0.000300     | 0.864592   |
| Phase Fraction    |            | 0.421839     | 0.578161   |
| Enthalpy (kJ/mol) |            | -347.788     | -253.069   |

Fractional Cage Occupancy of Hydrate Guests sI Hydrate small large

|                |        | 0-     |
|----------------|--------|--------|
| Nitrogen       | 0.0520 | 0.0088 |
| Carbon Dioxide | 0.6170 | 0.9689 |
|                |        |        |

P-T Flash

Temperature = 274.000 Kelvin Pressure = 38.700 bar Number of Phases Present : 3 Stable Convergence

|                   | Feed     | Aqueous  | Vapor    | sI Hydrate |
|-------------------|----------|----------|----------|------------|
| Nitrogen          | 0.326450 | 0.000462 | 0.686185 | 0.026778   |
| Carbon Dioxide    | 0.173550 | 0.011586 | 0.313590 | 0.107111   |
| Water             | 0.500000 | 0.987952 | 0.000225 | 0.866111   |
| Phase Fraction    |          | 0.313877 | 0.466983 | 0.219140   |
| Enthalpy (kJ/mol) |          | -284.115 | -124.976 | -253.528   |

# Fractional Cage Occupancy of Hydrate Guests sI Hydrate small large Nitrogen 0.3658 0.1151 Carbon Dioxide 0.3135 0.8436

# [NO HYDRATE FORMED]

P-T Flash Temperature = 280.000 Kelvin Pressure = 16.500 bar Number of Phases Present : 2 Stable Convergence

# Molar Composition of Phases Present Feed Aqueous Vapor

| Nitrogen          | 0.415000 | 0.000216 | 0.831455 |
|-------------------|----------|----------|----------|
| Carbon Dioxide    | 0.085000 | 0.002474 | 0.167858 |
| Water             | 0.500000 | 0.997310 | 0.000687 |
| Phase Fraction    |          | 0.501005 | 0.498995 |
| Enthalpy (kJ/mol) |          | -286.397 | -67.014  |

# <u>CO2 + N2 + H2O + Propane/Methane/Ethane</u>

CSMGem Hydrate Prediction Program (c) Colorado School of Mines 2001

4/28/2010 7:15:42 PM

Hydrate Formation P at T Temperature = 0.600 Celsius Pressure = 3.2269 MPa Number of Phases Present : 3 Stable Convergence

|                | Aqueous  | Vapor    | sII Hydrate |
|----------------|----------|----------|-------------|
| Propane        | 0.000021 | 0.009936 | 0.045577    |
| Nitrogen       | 0.000471 | 0.825905 | 0.042300    |
| Carbon Dioxide | 0.005391 | 0.163913 | 0.036424    |
| Water          | 0.994118 | 0.000246 | 0.875699    |
| Phase Fraction | 0.497805 | 0.502195 | 0.000000    |

Hydrate Formation P at T Temperature = 0.600 Celsius Pressure = 3.2054 MPa Number of Phases Present : 3 Stable Convergence

# Molar Composition of Phases Present

|                | Aqueous  | Vapor    | sII Hydrate |
|----------------|----------|----------|-------------|
| Propane        | 0.000021 | 0.010036 | 0.045601    |
| Nitrogen       | 0.000467 | 0.824219 | 0.042022    |
| Carbon Dioxide | 0.005413 | 0.165497 | 0.036622    |
| Water          | 0.994099 | 0.000247 | 0.875755    |
| Phase Fraction | 0.502844 | 0.497156 | 0.000000    |

\_\_\_\_\_\_

Hydrate Formation P at T Temperature = 0.600 Celsius Pressure = 6.1162 MPa Number of Phases Present : 3 Stable Convergence

### Molar Composition of Phases Present

|                | Aqueous  | Vapor    | sI Hydrate |
|----------------|----------|----------|------------|
| Methane        | 0.000022 | 0.010072 | 0.002788   |
| Nitrogen       | 0.000854 | 0.826872 | 0.047131   |
| Carbon Dioxide | 0.008538 | 0.162906 | 0.085971   |
| Water          | 0.990587 | 0.000149 | 0.864110   |
| Phase Fraction | 0.504676 | 0.495324 | 0.000000   |

Hydrate Formation P at T Temperature = 0.600 Celsius Pressure = 5.5266 MPa Number of Phases Present : 3 Stable Convergence

## Molar Composition of Phases Present

|                | Aqueous  | Vapor    | sI Hydrate |
|----------------|----------|----------|------------|
| Ethane         | 0.000024 | 0.010063 | 0.011576   |
| Nitrogen       | 0.000778 | 0.826421 | 0.044013   |
| Carbon Dioxide | 0.008000 | 0.163355 | 0.079654   |
| Water          | 0.991198 | 0.000161 | 0.864756   |
|                |          |          |            |
| Phase Fraction | 0.504360 | 0.495640 | 0.000000   |
|                |          |          |            |

| adab   | le Components:                   |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |            | Selected Compone      | ntsc         |             |
|--------|----------------------------------|---------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|-----------------------|--------------|-------------|
| D      | Name                             | CAS     | Formula    | LastModified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Source + | Top        | Name                  | CAS          | Last Modifi |
| 274    | Vinylacetonitrile                | 109-7   | C4H5N      | 08/06/07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | System   |            | Carbon Dioxide        | 124-38-9     | 08/06/07    |
| 274    | Beta-Butenonitrile               | 109-7   | C4H5N      | 08/06/07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | System   | lie        | Nitrogen              | 7727-3       | 08/06/07    |
| 274    | 3-Butenenitrile                  | 109-7   | C4H5N      | 08/06/07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | System   | op         | Water                 | 7732-1       | 08/06/07    |
| 274    | Allyl Cyanida                    | 109-7   | C4H5N      | 08/06/07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | System   |            |                       |              |             |
| 275    | Azole                            | 109-9   | C4H5N      | 08/06/07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | System   |            |                       |              |             |
| 275    | Pyrrole                          | 109-9   | C4H5N      | 08/06/07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | System   |            |                       |              |             |
| 276    | Dimethyl Oxalate                 | 553-9   | C4H6O4     | 08/06/07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | System   |            |                       |              |             |
| 277    | Butanedioic Acid                 | 110-1   | C4H6O4     | 08/06/07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | System.  |            |                       |              |             |
| 277    | Succinic Acid                    | 110-1   | C4H604     | 08/06/07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | System   |            |                       |              |             |
| 278    | Butanenitrile                    | 109-7   | C4H7N      | 08/06/07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | System   |            |                       |              |             |
| 278    | Butyronitrile                    | 109-7   | C4H7N      | 08/06/07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | System   |            |                       |              |             |
| 278    | Propyl Cyanide                   | 109-7   | C4H7N      | 08/06/07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | System.  |            |                       |              |             |
| 279    | Methyl Acrylate                  | 96-33-3 | C4H602     | 08/06/07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | System   |            |                       |              |             |
| 280    | Ethoxyacetylene                  | 109-9   | C4H80      | 08/06/07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | System   |            |                       |              |             |
| 280    | Vinyl Ethyl Ether                | 109-9   | C4H80      | 08/06/07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | System   |            |                       |              |             |
| 280    | VinylEthyl Ether                 | 109-9   | C4HBO      | 08/06/07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | System   |            |                       |              |             |
| 280    | Ethyl Ethenyl Ether              | 109-9   | C4H80      | 08/06/07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | System   |            |                       |              |             |
| 280    | Ethyl Vinyl Ether                | 109-9   | C4H80      | 08/06/07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | System   |            |                       |              |             |
| 281    | 1,4-Epoxybutane                  | 109-9   | C4H80      | 08/06/07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | System.  |            |                       |              |             |
| 281    | Tetrahydrofuran                  | 109.9   | C4H80      | 08/06/07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | System   |            |                       |              |             |
| 281    | Tetramethylene Oxide             | 109-9   | C4H80      | 08/06/07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | System   |            |                       |              |             |
| 282    | 1.4-Dioxane                      | 123-9   | C4H802     | 08/06/07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | System   |            |                       |              |             |
| 283    | 2-Methylpropanoic                | 79-31-2 | C4H802     | 08/06/07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | System   |            |                       |              |             |
| 283    | Isobutyric Acid                  | 79-31-2 | C4H802     | 08/06/07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | System   |            |                       |              |             |
| 284    | 1-Chlorobutane                   | 109-6   | C4H9CI     | 08/06/07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | System   |            |                       |              |             |
| 284    | Butyl Chloride                   | 109-6   | C4H9CI     | 08/06/07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | System   |            |                       |              |             |
| 285    | 2-Butyl Chloride                 | 78-86-4 | C4H9CI     | 08/06/07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | System   |            |                       |              |             |
| 285    | 2-Chlorobutane                   | 78-86-4 | C4H9CI     | 08/06/07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | System   |            |                       |              |             |
| 285    | Sec-Butyl Chloride               | 78-86-4 | C4H9CI     | 08/06/07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | System   |            |                       |              |             |
| 286    | 2-Chloro-2-Methyl P              | 507-2   | C4H9CI     | 08/06/07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | System   |            |                       |              |             |
| 286    | T-Butyl Chloride                 | 507-2   | C4H9CI     | 08/06/07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | System   |            |                       |              |             |
| 286    | Tert-Butyl Chloride              | 507-2   | C4H9CI     | 08/06/07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | System   | Dour       |                       |              |             |
| 287    | 1 Azacyclopentane                | 123.7   | C4H9N      | 08/06/07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | System   | Down       |                       |              |             |
| 287    | Pytrolidine                      | 123-7   | C4H9N      | 08/06/07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | System * | Contract I |                       |              |             |
| 4      | A STATISTICS AND A STATISTICS    |         | And States | and the second sec | A A      | Boltom     |                       |              |             |
|        | and a subscription of the second | 1000    | - 10 "Bus  | STREET, STREET                                                                                                                                                                                                                                                                                                             | C Blogs  |            | and the second second |              | 105-11      |
| earch  | r                                |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |            | Delete                |              | Clear       |
| tetrah | yd                               |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Next     |            | Copy Fr               | om Another S | imulation   |
| 0      | - 1                              |         |            | 22.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N.S. C.  |            | The setting           |              | 1 04        |

# **APPENDIX F1 : CHEMCAD Simulation Major Procedural Screenshots**

**FIGURE F1.1** 

Components tab to add component(s) to the simulation.

| Global K Value Option                                                           | Global Phase Option                                                     |
|---------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Ethane/Ethylene, Propane/Propylene                                              | G V spar/Liguadi/Solid     O V spor/Liguad/Liguid/Solid                 |
| C Special SRK/PR Bps<br>Vapor Phase Association:                                | Miscble     Immscible                                                   |
| <ul> <li>No Vapor Phase Association</li> <li>Vapor Phase Association</li> </ul> | Witser model set None>                                                  |
| Vapor Fugacity/Poynting Exception                                               | Default BIP set                                                         |
| No Correction     SRK/PR Alphe function:     Standard SRK/PR                    | Clear all tray BIPs<br>Clear all tray BIPs<br>(Set local K models/BIPs) |
| C Boston-Mathias extrapolation                                                  | Set tray BIPs     Set Henry components                                  |
|                                                                                 |                                                                         |

FIGURE F1.2 Thermodynamic package (K Value) setting of the simulation

| Thermodynamic settings -                                                                                  |                                                          |  |
|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--|
| Kvalue Models Enthalpy Models                                                                             | Transport Properties                                     |  |
| Global Enthalpy Option:                                                                                   | Ideal gas heat capacity:                                 |  |
| SRK 🗾                                                                                                     | DIPPR                                                    |  |
| Use heat of solution file<br>Use electrolyte enthalpy                                                     | Steam table<br>Quick fit                                 |  |
| Heat of Mixing by Gamma                                                                                   | Compressed water pressure correction for steam table     |  |
| lote: The Bips from VLE data may not be suitable fo<br>eat of mixing by gamma. Use this option carefully. | x ☐ Clear all local H models<br>☐ Specify local H models |  |
|                                                                                                           |                                                          |  |
|                                                                                                           |                                                          |  |
|                                                                                                           |                                                          |  |
|                                                                                                           |                                                          |  |
| Help                                                                                                      | Cancel OK                                                |  |

FIGURE F1.3 Thermodynamic package (Enthalpy) setting of the simulation

| Speci                                                                                                                 | lications                                                                            | _] Cost Estir                                                       | nation                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Select opera                                                                                                          | tion type:                                                                           |                                                                     | ID: 1                                                                                                           |
| 1 Vapor/liquid/                                                                                                       | solid crystallizer                                                                   |                                                                     | -                                                                                                               |
| Select calcul                                                                                                         | ation mode:                                                                          |                                                                     |                                                                                                                 |
| 0 Specify tempe                                                                                                       | erature 💌                                                                            | ]                                                                   |                                                                                                                 |
| Temperature                                                                                                           | 0.6                                                                                  | c                                                                   |                                                                                                                 |
| Heat duty                                                                                                             | -0.00064962                                                                          | 25 MMBtu/h                                                          | A THE TANK BUT THE                                                                                              |
|                                                                                                                       |                                                                                      |                                                                     | the second se |
| Vaporization<br>Pressure                                                                                              | 7.5                                                                                  | gmol/h<br>MPa                                                       |                                                                                                                 |
| Vaporization<br>Pressure<br>Heat of crystallizatio<br>Reference temperat                                              | 7.5<br>n                                                                             | gmol/h<br>MPa<br>Btu/Ibmol<br>C                                     |                                                                                                                 |
| Vaporization<br>Pressure<br>Heat of crystallizatio<br>Reference temperat<br>Stoichiometric                            | 7.5<br>n Ture                                                                        | gmol/h<br>MPa<br>Btu/Ibmol<br>C                                     | Weight                                                                                                          |
| Vaporization<br>Pressure<br>Heat of crystallizatio<br>Reference temperat<br>Stoichiometric.<br>Coefficient            | 7.5<br>n<br>ure<br>Component<br>Position                                             | gmol/h<br>MPa<br>Btu/Ibmol<br>C<br>Temperature<br>C                 | Weight<br>Fraction                                                                                              |
| Vaporization<br>Pressure<br>Heat of crystallizatio<br>Reference temperat<br>Stoichiometric<br>Coefficient<br>-8       | 7.5<br>n 7.5<br>ure Component<br>Position<br>1 Carbon Dioxidi                        | gmol/h<br>MPa<br>Btu/Ibmol<br>C<br>Temperature<br>C                 | Weight<br>Fraction                                                                                              |
| Vaporization<br>Pressure<br>Heat of crystallizatio<br>Reference temperat<br>Stoichiometric<br>Coefficient<br>-8<br>-7 | 7.5<br>n<br>Component<br>Position<br>1 Carbon Dioxid<br>2 Nitrogen                   | gmol/h<br>MPa<br>Btu/lbmol<br>C<br>Temperature<br>C<br>V<br>0.6     | Weight<br>Fraction                                                                                              |
| Vaporization<br>Pressure<br>Heat of crystallizatio<br>Reference temperat<br>Stoichiometric<br>Coefficient<br>-8<br>-7 | 7.5<br>n<br>ure<br>Component<br>Position<br>1 Carbon Dioxid<br>2 Nitrogen<br>3 Water | gmol/h<br>MPa<br>Btu/Ibmol<br>C<br>Temperature<br>C<br>T 0.6<br>0.6 | Weight<br>Fraction                                                                                              |

FIGURE F1.4 CRYS Module Input Specification tab

**APPENDIX F2 : CHEMCAD Economics Input Procedural Screenshots** 

|                 | and the second second |          |        | - Lond March 198 Party | The second second |
|-----------------|-----------------------|----------|--------|------------------------|-------------------|
|                 |                       |          |        |                        |                   |
|                 |                       |          |        |                        |                   |
|                 |                       |          |        |                        |                   |
|                 |                       |          |        |                        |                   |
|                 |                       |          |        |                        |                   |
|                 |                       |          |        |                        |                   |
|                 |                       |          |        |                        |                   |
| Depreciation p  | eriod (yrs)           | 10       |        |                        |                   |
| Depreciation n  | nethod                | Straight | t Line | ¥                      |                   |
| Salvage Value   | (%)                   |          | 2      |                        |                   |
| Start-up Expe   | nse                   |          | 15     |                        |                   |
| Interest rate f | or Borrowed funds     |          | 12     |                        |                   |
| Operation Time  | e (hours per year)    | 8        | 400    |                        |                   |
| LIDIOCC FOLIDO  | (years)               | 141212   | 10     |                        |                   |

FIGURE F2.1 Salvage value is set to 2% while the rest is by default.

| otal Equipment Cost       |          |          |             |
|---------------------------|----------|----------|-------------|
| Specify Total cost        |          | 1119037  |             |
| C Costs from subtotals    |          | 343943   |             |
| Additional Unit Operation | ns Costs | 0        | Enter Costs |
| Cost Subtotal by Unit Ope | ration   |          |             |
| Drums & Vessels           | 106860   | 4        |             |
| Heat Exchangers           | 22607    |          |             |
| Distillation Columns      | 0        |          |             |
| Pumps                     | 23689    |          |             |
| Compressors               | 190787   |          |             |
| Fired Heaters             | 0        |          |             |
| Expanders                 | 0        |          |             |
| Solids handling           | n        | <u> </u> |             |

FIGURE F2.2 Cost of crystallizer is manually added with cost from subtotals generated by CHEMCAD

| Total Utility Cost         |                |          |      | 1442        |
|----------------------------|----------------|----------|------|-------------|
| Specify Total Utili        | ty cost        |          | 0    |             |
| C Utility Costs from       | subtotals      | 72       | 5.19 |             |
| Additional Unit Utility    | Costs          | The mark | 0    | Statistics. |
| - Utility Cost Subtotal by | Unit Operation |          |      |             |
| Drums & Vessels            | 0              | 4        |      |             |
| Heat Exchangers            | 0              |          |      |             |
| Distillation Columns       | 0              |          |      |             |
| Pumps                      | 0              |          |      | 74. F. 1    |
| Compressors                | 725.188415527  |          |      |             |
| Fired Heaters              | 0              |          |      |             |
| Expanders                  | 0              |          |      | 2. Edity    |
| Solids handling            | 0              | *        |      | Start and   |

**FIGURE F2.3** Total utility cost is set to zero and not been considered since it will greatly affect the cash flow resulting negative return (one of the simulation accuracy reduction factor)

| Project   Equipment   Utilities | Raw Materials      | Revenue   Const | ruction ( | iosts   Operati ( ) |
|---------------------------------|--------------------|-----------------|-----------|---------------------|
| aw Material Cost / year         |                    |                 |           |                     |
| Specify total costs             |                    | 10              | 0000      |                     |
| C Costs from Flowshee           | st.                |                 | 3903      | Enter Prices        |
| By-Product Credit               |                    |                 | 0         |                     |
| Cost Projection                 |                    | Escalating      | *         |                     |
| Year cost increase start        | \$                 | 1               |           |                     |
| Year cost increase Ends         |                    | 5               |           |                     |
| Cost Increase rate (% p         | ber year)          | 10              |           |                     |
|                                 |                    |                 |           |                     |
|                                 |                    |                 |           |                     |
|                                 |                    |                 |           |                     |
|                                 |                    | S. Berline      |           |                     |
|                                 | Contraction of the | the second      | Parents . | e st                |

**FIGURE F2.4** Total costs of raw material are entered with escalating cost projection. Selecting the fixed cost projection will result the negative return in cash flow. The cost increase is set to 10% per year.
| Project   Equipment   Utilities   Ra | w Materials   | Revenue Cons | struction ( | Costs   Operati   +   + |
|--------------------------------------|---------------|--------------|-------------|-------------------------|
| Revenues per year                    |               |              |             |                         |
| Specify total revenue                |               | 200          | 00000       |                         |
| C Product based revenue              |               | F            | 0           | Enter Prices            |
|                                      |               |              |             |                         |
| Year cost increase starts            |               | 1            |             |                         |
| Year cost Increase Ends              |               | 5            |             |                         |
| Cost Increase rate                   |               | 15           |             |                         |
|                                      |               |              |             |                         |
|                                      |               |              |             |                         |
|                                      |               |              |             |                         |
|                                      |               |              | and and     |                         |
|                                      | i and a state |              | - William   |                         |

FIGURE F2.5 The estimated revenue is entered. The cost increase rate is set

to 15%.

| Lister Lestablique Locucios 1             | Raw Materials   Revent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | le Construction Cos | Operati 1 + |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------|
| irect Costs: Specify as % of Equ          | pment Cost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |             |
| Installation                              | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |             |
| Piping                                    | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |             |
| Instrumentation                           | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |             |
| Building & Structure                      | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |             |
| Auxillaries                               | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | And And             |             |
| Outside Lines                             | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | in men to the       |             |
|                                           | procession and the second seco |                     |             |
| Engineering & Construction                | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |             |
| Engineering & Construction<br>Contingency | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |             |
| Engineering & Construction<br>Contingency | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |             |
| Engineering & Construction<br>Contingency | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |             |
| Engineering & Construction<br>Contingency | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |             |
| Engineering & Construction<br>Contingency | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |             |
| Engineering & Construction<br>Contingency | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |             |

FIGURE F2.6 All values within this tab are kept as in default.

| Utilities   Raw Materials   Reven                 | ue Construction Costs  | Operations Costs | Cash Flow |
|---------------------------------------------------|------------------------|------------------|-----------|
| Specify as % of (Labor + Supe<br>Payroll Benefits | rvision)               | 18               |           |
| Office Overhead                                   |                        | 50               |           |
| Specify as % of Total Project C                   | Iost                   | den an la        |           |
| Supplies                                          |                        | 2                |           |
| Property Tax                                      |                        | 5                |           |
| Maintenance                                       |                        | 10               |           |
| Allocated Property                                |                        | 35               |           |
| Specify as % of Revenue from<br>Working Capital   | Sales                  | 30               |           |
| Corporate Capital Allocati                        | on                     | 5                |           |
| Cost of Selling Goods                             |                        | 5                |           |
| SARE (Sales, Administrati                         | on, Research Expenses) | 10               |           |
| Federal Income Tax Rate                           |                        | 50               |           |
|                                                   |                        |                  |           |
| (Part )                                           | Nauto                  | Heb              | Einich    |

**FIGURE F2.7** 

All values within this tab are kept as in default.

| Labor Expense       | 450000 |  |
|---------------------|--------|--|
| Supervision Expense | 90000  |  |
| Laboratory Expense  | 90000  |  |
| Royalty Fees        | 0      |  |
| Other Expenses      | 0      |  |
|                     |        |  |
|                     |        |  |
|                     |        |  |
|                     |        |  |
|                     |        |  |
|                     |        |  |

**FIGURE F2.8** Labor expense is set to \$450,000 and the supervision and laboratory expense are 20% each of the labor expense.