Natural Gas Dehydration Optimization

by

Mohd Fahdi Bin Mohd Ghazali

Dissertation submitted in partial fulfillment of the requirement for the Bachelor of Engineering (Hons) (Chemical Engineering)

JANUARY 2010

Universiti Teknologi PETRONAS Bandar Seri Iskandar 31750 Tronoh Perak Darul Ridzuan

CERTIFICATION OF APPROVAL

Natural Gas Dehydration Optimization

by

Mohd Fahdi Bin Mohd Ghazali

A project dissertation submitted to the Chemical Engineering Programme Universiti Teknologi PETRONAS in partial fulfilment of the requirement for the BACHELOR OF ENGINEERING (Hons) (CHEMICAL ENGINEERING)

Approved by,

(Dr Usama Mohamed Nour El Demerdash)

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

June 2010

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the original work is my own except as specified in the references and acknowledgements, and that the original work contained herein have not been undertaken or done by unspecified sources or persons.

MOHD FAHDI BIN MOHD GHAZALI

ABSTRACT

Natural Gas is a vital component of the world's supply of energy. It is one of the cleanest, safest, and most useful of all energy sources. Under normal production conditions, it saturated with water vapor. Water vapor increases natural gas corrosivity especially when acid gases are present. This report discusses the research done and basic understanding of the chosen topic, which is natural gas dehydration optimization. The objectives of this project are to do the comparison between different types of Natural Gas dehydration technology on the basis of efficiency and capacity and to do the simulation to optimize operating condition of gas dehydration technology. The current technologies used to dehydrating gas have some weaknesses in term of efficiency, capacity, cost effectiveness and are harmful to environment. As for this study, gas dehydration using solid desiccant is being considered. It is a common technology used widely in the world especially in oil and gas industries. In order to optimize this technology, a simulation model base on the actual dehydration unit in the liquefied natural gas (LNG) plant is used. The optimization is base on manipulating temperature and pressure to see the effect to the adsorption capacity and later, from the manipulated pressure, the hydrate formation temperature can be predicted. From this, the optimum temperature and pressure of operating the dehydration unit can be known. Furthermore, a study of increasing the moisture removal by adding pre-dehydration unit is also discussed in this study.

ACKNOWLEDGEMENT

First and foremost, pray to God the Al-Mighty for His bless and love, giving me all the strength to complete this final year project. After everything had been planned, efforts were made, the project manage to be finished within the time frame.

I would like to pay my highest gratitude to my supervisor, Dr Usama Mohamed Nour El Demerdash for teaching, advising, and assisting me throughout this project. Without his guidance, the project would not been able to accomplish accordingly.

Also high on the list acknowledgement is to Dr. Khalik Mohamad Sabil the coordinator for Chemical Engineering Final Year Project (FYP). Her endurance in advising me and everyone else on the right procedure of logbooks and reports are irreplaceable.

I also would like to dedicate this project as a token of gift to my beloved mother, Hasnah bt Hj Md Salleh for her never ending support and pray. Not to forget my brothers Haris Mohd Ghazali and Muhammad Hamman Mohd Ghazali and my sister Madhiah Mohd Ghazali who had been very encouraging and always remind me whenever I forget.

Thanks very much to my fellow colleagues, Zaki and Looi Lee for helping me a lot in finding and analysing of the research project. Those precious moments spending time together discussing and sharing information will always be remembered.

Finally, I would like to acknowledge all the others whose name was not mention on this page, but has one way or another contributed to the accomplishment of this project.

TABLE OF CONTENT

CERTIFIC	ATION OF APPROVAL	ii
CERTIFIC	ATION OF ORIGINALITY	iii
ABSTRAC'	Γ	iv
ACKNOW	LEDGEMENTS	v
TABLE OF	CONTENT	vi
LIST OF F	IGURES AND TABLE	.ix
CHAPTER	1: INTRODUCTION	
1.1	Background of Study	<u> </u>
1.2	Problem Statement	<u>3</u>
	1.2.1 Problem Identification	<u>3</u>
	1.2.2 Significant of the project	<u>3</u>
1.3	Objectives and Scope of Study	<u>4</u>
CHAPTER	2: LITERATURE REVIEW	
2.1	Introduction	5
2.2	Hydrate formation condition	6
	2.2.1 Water specification	7
	2.2.2 Hydrate formation prediction	7
2.3	Common gas dehydration technology	13

	2.3.1 Glycol dehydration	13
	2.3.2 Membrane technology	17
2.4	Solid desiccant dehydration	20
	2.4.1 Introduction of solid desiccant dehydration	20
	2.4.2 Water adsorption mechanism	21
	2.4.2 Properties of solid desiccant	22
CHAPTER 3	: METHODOLOGY	
3.1	Project methodology	27
	3.1.1 Data collection	28
	3.1.2 Development of debudration unit (DUID) flowsheet	20

	3.1.1 Data collection	28
	3.1.2 Development of dehydration unit (DHU) flowsheet	29
3.2	Optimization strategies	30
	3.2.1 Temperature and pressure relationship toward outlet moisture content.	30
	3.2.2 Hydrate formation prediction	31
	3.2.3 Installation of cooler and knock-up drum	
CHAPTER 4	: RESULT AND DISCUSSION	
4.1	HYSYS simulation	35
4.2	Effect of pressure and temperature variation toward water moisture	
	composition at the outlet of dehydration unit	37
4.3	Hydrate formation prediction	41

4.4

CHAPTER 5: CONCLUSION

Conclusion	 50
REFERENCES	 <u>52</u>

APPENDICES:

APPENDIX A: MOLECULAR SIEVE APPLICATION

APPENDIX B: KATZ K-FACTOR CHARTS

LIST OF FIGURES

Figure 2.1	Hydrate locus for sweet natural gas using gas gravity method	
	(SI Uniti) [1]	8
Figure 2.2	Hydrate locus for sweet natural gas using gas gravity method	
	(American Unit)[1]	9
Figure 2.3	Typical flow diagram for glycol dehydration unit	14
Figure 2.4	Schematic of a membrane-based separation of dehydration	17
Figure 2.5	The relative size (kinetic diameter) and condensability	
	(boiling point) of the principle component of natural gas	18
Figure 2.6	Gas Permeation Modules	19
Figure 2.7	Schematic of a solid desiccant gas dehydration system	21
Figure 2.8	Schematic diagram of PETRONAS Gas Berhad (GPPA)	
	gas dehydration column.	21
Figure 2.9	Granular activated carbon	24
Figure 2.10	Silica gel beads	25
Figure 2.11	Pallets adsorbents	25
Figure 2.12	Molecular sieves	26
Figure 3.1	Project methodology	27
Figure 4.1	Flow sheet of natural gas dehydration developed using HYSYS	35
Figure 4.2	Water moisture outlet compositions (mol) versus change	
	in temperature (°C)	38
Figure 4.3	Water moisture outlet composition (mol) versus pressure (bar)	
	Change	40
Figure 4.4	Hydrate formation temperature (OC) vs pressure (kPa)	44
Figure 4.5	Hysys simulation without pre-dehydration of the gas before entering	g
	the dehydration unit.	45
Figure 4.6	Hysys simulation with pre-dehydration of the gas before entering	
	the dehydration unit.	46
Figure 4.7	Moisture content versus temperature with and without cooler	
	and separator	46

LIST OF TABLES

Table 1.1	Typical natural gas composition	1
Table 2.1	Glycol types comparison	13
Table 2.2	Glycol dehydration problems	15
Table 2.3	Commercial adsorbent for adsorption technology [8]	23
Table 2.4	Summary of typical desiccant properties	24
Table 3.1	Sample of actual dehydration unit data collected	28
Table 3.2	Tuned coefficient used in equation 3.2 to 3.5 to predict hydrate	
	formation pressure in kPa (given temperature K) by equation 2 [14]	32
Table 3.3	Tuned coefficient used in equation 3.2 to 3.5 to predict hydrate	
	formation temperature in K (given pressure in kPa)	
	by equation 1 [14]	35
Table 4.1	Natural gas composition with changes of temperature	37
Table 4.2	Natural gas composition with changes of pressure	39
Table 4.3	Molecular weight of natural gas for each pressure and temperature	41
Table 4.4	Tuned coefficient used in equation 2 to 5 to predict hydrate formation	n
	temperature in K (given pressure in kPa) by equation 1 [14]	42
Table 4.5	Calculated value for a,b,c and d	43
Table 4.6	Calculated value of temperature from equation 3.1	43
Table 4.7	Natural gas composition without cooler and phase separator	47
Table 4.8	Natural gas composition with cooler and phase separator	48

х

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND OF STUDY

Natural Gas is a vital component of the world's supply of energy. It is one of the cleanest, safest, and most useful of all energy sources. Unlike other fossil fuels, natural gas is clean burning and emits lower levels of potentially harmful byproducts into the air.

and the local data in the local data and the		
Components	IUPAC	Percentage (mol %)
Methane	CH4	70-90%
Ethane	C ₂ H ₆	0-20%
Propane	C ₃ H ₈	0-20%
Butane	C4H10	0-20%
Carbon Dioxide	CO ₂	0-8%
Oxygen	O ₂	0-0.2%
Nitrogen	N ₂	0-5%
Hydrogen sulphide	H ₂ S	0-5%
Rare gases	A, He, Ne, Xe	trace

Table 1.1 : Typical natural gas cor	position	
-------------------------------------	----------	--

Natural gas under normal condition is saturated with water vapour. The gas usually contains water, in liquid and/or vapour form as source and/or as a result if sweetening with an aqueous solution. It is necessary to reduce and control the water content of gas to ensure safe processing and transmission. The major reasons for removing the water from the natural gas are as follow:

- 1. Natural gas in the right conditions can combine with liquid or free water to form solid hydrates that can plug valves fittings or even pipelines.
- 2. Water can condense in the pipelines, causing slug flow and possible erosion and corrosion.
- 3. Water vapour increases the volume and decreases the heating value of the gas
- 4. Sales gas contracts and/or pipeline specification often have to meet the maximum water content of 7 lb H₂O per MMscf.
- 5. It can cause erratic operation of gas burners.

There are several methods of dehydrating natural gas. Until today, the most popular dehydration technology remains absorption with liquid desiccant, solid desiccant and the latest technology is by using membrane. However, in a typical gas drying and solution regeneration system, some of the problems can arise such as pump failures, leaks, maintaining regeneration temperatures, flooding of the dehydrators, inefficient glycol compositions, plugged trays, and these existence technologies are also need high capital investment and perhaps need more experts to operate it. Due to these, a more environmentally acceptable gas drying medium and process is needed and the water absorption medium should be efficient and readily regenerable with a minimum of maintenance. Thus, for this present study, solid desiccant is chosen to be optimized.

1.2 PROBLEM STATEMENT

1.2.1 Problem Identification

Liquefied natural gas or LNG plant need to be operated at low water content. Due to this, dehydration unit is very essential in removing the water composition. Among the different gas drying processes, absorption is the most common technique where water vapour in the gas stream becomes absorbed in a liquid solvent stream. Glycols are the most widely used absorption liquid as they approximate the properties that meet commercial application criteria. In this process, glycols absorb water vapour from the gas stream. This means that, when in contact with a stream of natural gas that contains water, glycol will serve to 'steal' the water out of the gas stream. However, this technology has certain disadvantages:

- 1. Water dew points below -25°F require stripping gas
- 2. Glycol is susceptible to contamination
- 3. Glycol is corrosive when contaminated or decomposed.
- 4. Loss of methane
- 5. Foaming
- 6. Burping
- 7. Frequent pump failure

Meanwhile, solid desiccant dehydration system works on the principle of adsorption. Wet natural gas is passed through towers, from top to bottom. Water is retained on the surface of desiccant particles as the gas passes and almost all of the water is adsorbed onto the desiccant material, leaving the dry gas to exit the bottom of the tower. Somehow, the technology appears to have disadvantages such as;

- 1. Higher capital cost and higher pressure drop
- 2. Desiccant poisoning by heavy hydrocarbons, H₂S, CO₂
- 3. Mechanical breaking of desiccant particles
- 4. High generation heat requirement and high utility cost

1.2.2 Significant of the project

Using conventional drying process, it can contribute to too many problems such as problem to the environment. Due to this reason, study need to be carried out in order to identified the root cause of the problems and in the same time to optimize the performance of the current gas dehydration technique so that it can be more reliable and most important safe for the environment.

Literature shown by using solid desiccant is seems better compare to liquid desiccant in many ways especially in term of environmental acceptance and it can give lower dew point over a wide range of operating condition. Although involve larger cost to install the dehydration unit using this method, it is still the best way to remove hydrates in the natural gas. Thus for this research, it will study on how to optimize operating condition for gas dehydration technology using solid desiccant.

1.3 OBJECTIVE AND SCOPE OF STUDY

The objectives of this study are:

- 1. To do a comparison between different types of Natural Gas dehydration technology on the basis of efficiency and capacity
- 2. To do simulation to optimize operating condition for gas dehydration technology

CHAPTER 2

LITERATURE REVIEW

2.1 INTRODUCTION

Moisture is one of the impurities and contaminated present in natural gas. Even though the concentration of the moisture is natural gas is traceable and very low, it is able to provide a higher effect to the pipelines specification and it lowers the quality of natural gas. Thus, the natural gas must be upgraded by removing the moisture and other impurities content, by going through the purification process.

The present of moisture can detract from the heating value and properties of natural gas that directly will lower the quality of natural gas. The hydration of natural gas is concern as for preventing the hydrated formation. The hydrates formation is the crystallization of the reaction between free water vapour and any hydrocarbon that smaller than normal butane. Gas dehydration also important consideration especially in gas streams containing CO_2 or H_2S where the acid gas components will form an acid with the condensed water.

Different techniques can be applied for gas dehydration but the most common and current used in industry today are absorption by using liquid desiccants and adsorption by solid desiccant.

2.2 HYDRATE FORMATION CONDITION

The first step in evaluating and/or designing a gas dehydration system is to determine the water content of the gas and the conditions that promote hydrate formation. It is a pre requirement that need to be understood in order to design and optimize the natural gas dehydration.

There are three conditions that will contribute to the formation of hydrates from the natural gas and it can be divided into three main categories, present of free water and natural gas components, temperature and pressure.

- In order to form hydrates, free water and natural gas components need to be present. Gas molecules ranging from methane to butane are typical hydrates components including CO₂,N₂, and H₂S. The water in the hydrates can come from free water produces from the reservoir or water condensed by cooling the hydrocarbon fluid. [9]
- 2. Low temperature operates at the plant or inside the pipeline also will contribute to the formation of hydrates. Although hydrate is 85% mol water, the system does not need to be 0°C to form ice. Offshore however, below approximately 3000ft of water depth, the ocean bottom temperature is remarkably uniform at 3 °C -4°Cand pipelined gas has already cooled to this temperature within a few miles from the well head.
- 3. High pressure will lead to formation of hydrates. At 3 °C, natural gas form hydrates at pressure as low as 100psig and at 19 °C, hydrate form at 1500psig. [9]

2.2.1 Water specification

The hydrate composition contents of 6 volumes of methane molecules to 1 molecules of moisture. To be more specific, a typical water specification is 112mg of water per standard m³ of gas (7 lb/mmscf) in many jurisdiction in the United States and 64mg/Sm3 (4 lb/mmscf) in many jurisdiction in Canada. In other jurisdictions, other specifications are employed. [1] It is also common to refer to the water content of a gas in term of water dewpoint, the dewpoint being the temperature at which the water just begins to condense. Thus another common specification is a -10°C (14°F) water dewpoint. However this method must be used with some caution because dewpoints at temperatures below 0°C (32°F) represent a metastable condition. At temperature below 0°C, a true liquid dewpoint does not exist because the stable form of water at this temperature is a solid phase, either ice or hydrate. [1]

A study done by Durham, 1999 analyzed that the natural gas pipelines with moisture content 7 lbs/mmscf, when compressed to 3600psig, it has a dew point of 52 °F /11°C, and when compressed natural gas is subjected to temperatures below the 52 °F /11°C, the moisture begins to condense. If the temperature falls below 32 °F /0°C, the moisture will freeze and form crystal [2]

2.2.2 Hydrate formation prediction

The first problem when dealing with gas processing plant and dehydration unit is to predict the condition of temperature and pressure at which hydrates will form [1]. In general, there are computerized method and also hand calculation using an appropriate hydrate prediction correlation.

Two methods are commonly employed for rapidly estimating the ordinations at which the hydrate will form. Both are contributed to Katz and co-worker [1]. The methods are gas gravity method and K-Factor method.

2.2.2.1 Gas gravity method

This gas gravity method which had been developed by Professor Katz and co-workers in 1940s is a simple yet can give good prediction on the hydrate formation in the natural gas with respect to pressure and temperature condition. It involve only a single chart with pressure, temperature plot and specific gravity of the gas as a third parameters. The chart is developed in two type, one is in SI unit and another one is using American Engineering Unit.

Figure 2.2: Hydrate locus for sweet natural gas using the gas gravity method (American Unit)[1]

To use the chart, specific gravity or relative density of the gas needs to be known. If the molar mass of the gas, M, the gas gravity γ can be calculated using this formula:

$$\gamma = \frac{M}{28.966}$$
 (2.1)

Where;

28.966 is the standard molar mass of air.

M = molecular weight

It is a very simple-to-use chart in order to predict the hydrate formation. The first method is to predict whether the hydrate will form or not with availability of temperature, pressure and gas gravity. It is simple as if the point plot of the graph is left and above the appropriate gravity curve, then it is a hydrate forming region. If the plot is at right and below, the hydrate will not formed.

Another method is to find at which temperature or pressure will hydrate form base on the temperature/pressure condition. For example, if people want to know at what temperature a hydrate will form, just simply enter the chart on x-axis at the specific temperature. Go up until reaching appropriate gas gravity curve. At this point, interpolation is needed. Next, go left and read the temperature on y-axis.

2.2.2.2 K-Factor method

The second method is named with K-factor method. It is developed by Katz (gas gravity method) with Carson in 1942. The K-factor method is defined as the distribution of the component between hydrate and the gas:

$$\mathbf{K} = \frac{yi}{si} (2.2)$$

Where;

 y_i = mole fraction of component i in vapour

 s_i = mole fraction of component i in hydrate

Charts are available for each of components commonly encountered in natural gas that is a hydrate former: methane, ethane, propane, isobutene, n butane, hydrogen sulphide and carbon dioxide [1]. Version of these chart are available in the appendix. This K-Factor chart usually used in three methods [1]:

- 1. Given the temperature and pressure, calculate the composition of the coexisting phases
- 2. Given the temperature, calculate the pressure at which the hydrate will forms and the composition of the hydrate
- 3. Given the pressure, calculate the temperature at which the hydrate forms and the composition of the hydrate.

2.2.2.1 Flash calculation

Flash calculation is basically the first calculation. The objective of this calculation is to calculate the amount of phases present in equilibrium mixture and to determine the composition of the coexisting phases. The temperature, pressure and composition are the input parameters. The objective function to be solve in the Rachford-Rice form is; [1]

$$f(V) = \sum \frac{Zi(1-Ki)}{1+V(Ki-1)} (2.3)$$

where Zi is the composition of the feed on a water free basis. An iterative procedure is used to solve for vapour phase fraction, V, such that the function equals zero.

Once the phase fraction is calculated, the vapour phase composition can be calculated as follows:

$$Y_{i} = \frac{Z_{i}K_{i}}{1 + V(K_{i} - 1)} (2.4)$$

The composition of solid is calculated from:

$$\mathbf{K} = \frac{\mathbf{y}i}{\mathbf{K}i} (2.5)$$

2.2.2.2.2 Incipient solid formation

The purpose of this calculation is to know the exact temperature and composition, at which pressure will hydrate formed.

The objective functions are:

$$f_1(T) = 1 - \sum yi/Ki (2.6)$$

 $f_2(P) = 1 - \sum yi/Ki (2.7)$

2.2.2.3 Liquid hydrocarbon

The K-Factor method is design for calculations involving a gas and a hydrate. In order to extend this method to liquid hydrocarbons, the vapour-liquid K-factor should be incorporated. For the purposes of this book, these K-factors will be denoted Kv to distinguish from the K-factor defined earlier. [1] Therefore;

$$\mathrm{Kvi} = \frac{\mathrm{yi}}{\mathrm{xi}} (2.8)$$

Where the Xi is the mole fraction of component i in the nonaqueous liquid.

If the there are present of gas, hydrate and nonaqueous liquid, the following equation should be solved to find the phase fraction, L and V:

$$f_{1}(V,L) = \sum \frac{Zi (1-Kvi)}{L(1-V)+(1-V)(1-L)\left(\frac{Kvi}{Ki}\right)+VKvi} (2.9)$$

$$f_{2}(V,L) = \sum \frac{Zi (1-\frac{Kvi}{Ki})}{L(1-V)+(1-V)(1-L)\left(\frac{Kvi}{Ki}\right)+VKvi} (2.10)$$

The equilibria involving a hydrate and a nonaqueous liquid, the K-factors are as follows:

$$K_{\rm Li} = \frac{Kvi}{Ki} = \frac{Si}{Xi} (2.11)$$

For solid incipient formation point determination, this function need to be satisfied:

$$\sum \frac{kvi\,xi}{\kappa i} = 1 \ (2.12)$$

2.3 COMMON GAS DEHYDRATION TECHNOLOGY

2.3.1 Glycol dehydration

Absorption dehydration involves the use of a liquid desiccant to remove water vapor from the gas and the most common organic used is known as Glycol. In this process, a liquid desiccant dehydrator serves to absorb water vapour from the gas stream. Glycol, the principal agent in this process, has a chemical affinity for water. This means that, when in contact with a stream of natural gas that contains water, glycol will absorb the water out of the gas stream. Essentially, glycol dehydration involves using a glycol solution, usually either diethylene glycol (DEG) or triethylene glycol (TEG). Triethylene glycol (TEG) is by far the most used in natural gas dehydration. It exhibit most of the desirable characteristic listed earlier and has other advantages compared to other glycols. Comparisons of glycols are as follows:

	MEG	DEG	TEG	TREG
Cost	1	2	3	4
Vapor pressure	4	3	2	1
Losses	4	3	2	1
Affinity to water	4	3	2	1
Viscosity	1	2	3	4

Table 2.1 : Glycol types comparison

(Note: 4 = highest, 3 = higher, 2 = high, 1 = low)

By referring to the chart above, by comparison, MEG is marginally lower cost than other glycol types. However, it has high vapour pressure and because of that, it has larger losses. For affinity to water, TEG has less affinity to water and thus has less dew point depression. TREG is seen the best option but the price is considered too high and the viscosity of this type of glycol is high. High viscosity translates into higher pumping costs.

2.3.1.1 Glycol dehydration process description

As for the process involve, the glycol solution will absorb water from the wet gas. Once absorbed, the glycol particles become heavier and sink to the bottom of the contactor where they are removed. The natural gas, having been stripped of most of its water content, is then transported out of the dehydrator. The glycol solution, bearing all of the water stripped from the natural gas, is put through a specialized boiler designed to vaporize only the water out of the solution. While water has a boiling point of 212 degrees Fahrenheit, glycol does not boil until 400 degrees Fahrenheit. This boiling point differential makes it relatively easy to remove water from the glycol solution, allowing it be reused in the dehydration process.

Figure 2.3 : Typical flow diagram for glycol dehydration unit

2.3.1.2 Problems encountered in a glycol plant

Glycol dehydration plant always encounter frequent problem and these problems are common when operating this type of dehydration. Among of the problems are:

Table 2.2: Glycol dehydration problems

Types of problem

Description

Foaming Glycol is fairly viscous liquid and will foam readily if a small quantity of liquid hydrocarbon or dirt is in the solution. Foaming usually occurs in the contractor. It is characterized by an abnormally high glycol lost, which result in a reduction in level in the glycol surge tank. In some dehydration plant foaming is a problem even though the glycol solution is appears clean, and there is no apparent entry of liquid hydrocarbon into the contractor with the inlet gas stream. In this situation, a foam inhibitor is often added to the glycol stream to prevent foaming.

Burping

Burping or puking is usually a problem in the stripper. It is usually caused from a sludge or liquid hydrocarbon entering the stripper. The hydrocarbon will flow down the stripper as a liquid and when they reach the reboiler, they will vaporized almost instantaneously. The vapors flow up the stripper with sufficient velocity to carry out most of the liquid in the tower. The level in the surge tank will drop. Liquid hydrocarbons should be removed from the rich glycol in the flash tank or a similar vessel.

Corrosion

When the inlet gas contained hydrogen sulphide, H2S or carbon dioxide, the glycol solution will absorb some of these gases and become corrosive. Scale or other corrosion product will form which will contaminate the system. Frequent filter element change out is required to keep the glycol clean. When the corrosive gases (H2S and CO2) are absorb in the glycol, the liquid become acidic. It is confirmed by measuring the pH of the solution. A PH of 7 is neutral and pH of 6to 8 is usually not corrosive. Corrosion will only occur if the pH falls below 6. The quantity of amine which is be added to prevent corrosion will depend upon the concentration of H2S and CO2 in the inlet gas and the operating temperature and pressure of the contractor. A typical plant require weekly additional of one litre of amine for each 1000liter of glycol contained in the system.

High moisture content is almost due to a low flow rate of a low **High moisture** content of outlet concentration. Failure of the glycol pump is a frequent cause of low flow. Low concentration results from low temperature in the stripper reboiler or low stripping fluid rate.

gas

Pump failure usually happen when pumps have a number of small Frequent pump failure passageways. This passageway can be restricted if the lean glycol or drive fluid contained solid particles. Also, the temperature of lean glycol entering the pump is usually about 95°C. If the temperature rise above 105 °C, it can cause pump problems due to thermal expansion at higher temperature.

High concentrated glycol solution tent to become viscous at low Concentrated temperature and therefore re hard to pump. Glycol lines may glycol solidify completely at low temperature when the plant is not operating.

There are substantial environmental problems due to fugitive Environmental emission, soil contamination and fluid disposal problems. problems

2.3.2 Membrane technology

Membrane technology promises lower methane and hydrocarbon losses, lower emissions, lower energy consumption, and reduced maintenance costs from the use of fewer components. In addition membrane dehydration does not produce spent wastes such as glycol. [5]

A membrane is a layer of material which serves as a selective barrier between two phases and remains impermeable to specific particles, molecules, or substances when exposed to the action of a driving force. Some components are allowed passage by the membrane into a permeate stream, whereas others are retained by it and accumulate in the retentate stream.

Figure 2.4 : Schematic of a membrane-based separation of dehydration

Base on figure 2, the feed mixture consist of mixture of natural gas and moisture is later being separate into residue (methane) and permeate (H_2O vapour). The method used in this process is by using single stage membrane where it is a concentration driven process. It is directly related to the partial pressure of the gas species and differential pressure between the feed and product stream.

At the incoming stream, the feed is compress at high pressure to create driving force for the separation so that, the Natural Gas (methane) can be separated from moisture. As for the membrane, it is more permeable to the water vapour thus the moisture permeate to the low pressure permeate side, due to the size of the water molecules is smaller than methane. The remaining stream is enriched in methane and exits as the high pressure residue stream.

Figure 2. 5: The relative size (kinetic diameter) and condensability (boiling point) of the principle component of natural gas.

Membrane separation processes require large membrane areas, which are generally expressed in thousands of square meters. The membrane surface is dependent on the amount of gas permeating through it. Compact permeation modules with a high membrane area are therefore needed (Rojey A. et. al., 1997). The most widely used idustrial modules belong to two types are (Figure 2.3):

- 1. Modules with plane membranes wound spirally around a collector tube
- 2. Modules with a bundle of hollow fibers

Figure 2.6: Gas Permeation Modules

2.3.2.1 Membrane separation problems

The dehydration of natural gas which is very common natural gas treatment process has proven disappointing for membrane technology. A handful of systems that are based on membranes and process designed developed for air dehydration have been installed. However, current membrane technology cannot compete with glycol and solid desiccant except in few offshore operations where size and weight considerations favour membrane solution. Therefore, the dehydration of natural gas using membranes is likely to remain niche application.

2.4 SOLID DESICCANT DEHYDRATION

As dehydration using solid desiccant will be the main focus of this study, the author will describe in detailed of this type of gas dehydration. The intention is to give more understanding and information regarding this solid desiccant dehydration before any work of optimization can be done.

2.4.1 Introduction of solid desiccant dehydration

The general term for sorption is selective transfer to insoluble rigid particles. One or more components of gas or liquid stream are adsorbed on the surface of a solid adsorbent and separation occurs. In adsorption technology, there are two different approaches on how the adsorbent (the material that need to be removed) is attached to the absorbent (small particles in fixed that will adsorb the adsorbate); Physical adsorption and chemisorptions. Physical adsorption is the adsorptions process accordingly to the van the waals bonding. The intermolecular forces between molecules of a solid (adsorbent) and the gas (adsorbante) are greater than those between molecules (adsorbate) itself. Chemisorption attached is base on the activated carbon where the separation occurred caused by the formation of chemical bonds between adsorbate and adsorbent.Adsorption is purely a surface phenomenon. The degree of adsorption is a function of operating temperature and pressure; adsorption increases with pressure increase and decreases with temperature increase. [7]

Natural gas dehydration using solid desiccants has several advantages over liquid desiccant dehydration system;

- Lower dew point can be obtained over a wide range of operating condition using solid desiccant dehydrator
- Dehydration of very small quantities of natural gas at low cost can be achieved and the unit is insensitive to moderate changes in the gas temperature, flow rate and pressure.
- 3. They are relatively free from problems such as corrosion and foaming [7]

2.4.2 Water adsorption mechanism

Figure 2.7: Schematic of a solid desiccant gas dehydration system

The schematic flow of solid desiccant is shown in figure 4. During adsorption process, the rich gas will be passed through absorbent bed which selectively retrains the water. When the bed is saturated, it will be regenerated by using hot gas. In this case, hot gas will be passed through the column of solid desiccant. After heating and before the adsorption step, the bed must be cooled. This is achieved by passing through cold gas. In real practise, two to four beds are needed and this cyclic operation to dry gas are on a continuous basis.

Figure 2.8: Schematic diagram of PETRONAS Gas Berhad (GPPA) gas dehydration column.

2.4.3 Properties of solid desiccant

The selection of adsorbent is depending on what type of separation takes place and mostly the criteria of adsorbent are based on;

- 1. High selectivity to enable sharp separations
- 2. Large surface area for high capacity and high mass transfer
- 3. High bulk density and activity for the components to be removed
- 4. Small resistance to gas flow through the desiccant bed
- 5. Favourable kinetic and transport properties for rapid sorption
- 6. Chemical and thermal stability to preserve the amount and its properties
- 7. Hardness and mechanical strength to resist crushing and dust formation
- 8. High fouling resistance
- 9. Capability of being regenerated easily at relatively low cost
- 10. The adsorbent must be fairly cheap, non-corrosive, non-toxic and chemically inert.

In addition to the previous criteria of adsorbent selection for natural gas dehydration, there are another three main consideration need to be considered;

- 1. Pressure drop: Particles size is inversely proportional with pressure drop per unit length of packed bed. Thus, the pressure drop can be reduced by selecting the larger particle size.
- Mass transfer rate: Adsorbent size can also behave inversely proportional to the mass transfer rate to a power less than unity. In this case, high size of the packed bed can be reduced by selecting the smaller particles size.
- 3. Shape: Shape can affect both pressure and mass transfer resistance.

2.4.3.1 Types of adsorbents solid desiccant

Solid particle offered by most of vendor usually in particle sizes that range from a 100x200 mesh screen analysis to ¼ in (0.64 cm) size. The smaller sizes of the particle are usually irregular while for larger size are regular in size such as spheres and cylinder.

Commercial adsorbents	Description
Activated carbon	Made by thermal decomposition of wood
Silica gel	Acid treatment of sodium silicate solution
Activated alumina	Hydrated aluminium activated by heating to dry off
	water
Molecular sieve zeolites	Porous crystalline aluminosilicates

Table 2.3: Commercial adsorbent for adsorption technology [8]

Table 3 describe the composition of the given adsorbent. Alumina in this case is the cheapest compared to the other three but for given water load, alumina needs larger tower and this will involve larger capital cost. Another disadvantages using this type of adsorbent is it co-adsorption of hydrocarbons which will lead to hydrocarbon loss and rehydration which destroy its activity. As for molecular sieve, it is the most expensive among those four types of adsorbent. However, it can give higher adsorption design loadings, greater resistance to fouling and coking and high removal of impurities from the process stream.

Silica gel which is produce by acid treatment of sodium silicate solution has high capacity for water, can be generated at low temperature and are not catalytic for sulphur conversion reaction. It also has high capacity for pentane and higher hydrocarbons and can be used for combined dehydration/hydrocarbon process. [7]. Instead of the advantages, silica gel has a few weaknesses such as tendency to shatter when contacted with liquid water. This can be avoided by installing water-resistance layer at the top of the bed as a preventive measure to avoid water from coming into the bed and damage the adsorbent.

	Bulk Density (kg/m3)	Surface area (m ² /g)	Specific Heat (kJ/kg ^O C)	Regeneration Temperature (^o C)
Activated Carbon	320	1500	11.09	130 - 250
Silica Gel	721	750-830	0.92	121-260
Alumina	801-881	210	0.24	121-260
Molecular sieve zeolites (4Å to 5Å)	689-721	650-800	1.0	230-290

Table 2.4 : Summary of typical desiccant properties

2.4.3.2 Adsorbent shape

Adsorbent commercially available in a variety of geometrics shapes such as beads (sphere), pellets (cylinder), granular, and extended surface. This shape can affects both pressure and mass transfer resistance.

Figure 2.9: Granular activated carbon

Granular materials are irregular in shape and may vary from platelet to spheroid to cubic. They derive their irregularity from the manufacturing process where the desiredsize particles result from crushing larger materials. Typical sizes for granules are 100x200 to 4x8 mesh screen analysis. This irregularity of shape can also be describe using shape factor ϕ , which define as the ratio of the surface area of a sphere with the volume equivalent to the particle divided by actual surface area of the particle. Published value of ϕ for granules ranged from 0.45 to 0.65.

Figure 2.10: Silica gel beads

Beads are also usually denoted by their screening analysis because the manufacturing techniques cannot make a single uniform size. This type of adsorbent usually has size ranged from 16x40 to 4x8 screen. Although they are not totally spherical, commercial beads can have shape to the factor of 1.

Figure 2.11: Pallets adsorbents

Pellets adsorbents are produced by extrusion trough dies and therefore have a uniform diameter but a range of length to diameter ratio. Typical commercial particles size range from 1/32 in to $\frac{1}{4}$ in (0.08 – 0.64 cm) in diameter and posses a shape factor of about 0.63.

Figure 2.12: molecular sieves

In addition, as being used in many gas dehydration plant, molecular sieves provide a unique combination of mass transfer and pressure drop performance in one particle.
CHAPTER 3

METHODOLOGY/PROJECT WORK

Figure 3.1: Project methodology

3.1 PROJECT METHODOLOGY

In order to optimize the gas dehydration using solid desiccant, the author needs to get a clear overview on how natural gas is being dehydrated by using solid desiccant dehydrator and also to learn how regeneration affect the adsorption process. Thus, a simulation using HYSYS will be constructed. It is a basic approach before optimization of the solid desiccant unit can be done.

3.1.1 Data collection

In this stage, actual data from process plant will be obtained. It will be extract from actual gas processing plant in Malaysia and by using this data, it will help a lot to develop flowsheet in later stage. For some reason, data taken might not be accurate all the time. Its due to the plant condition where there are always sudden problems occur or there might be shutdown process going on.

T/H	DEG C	KPAG	T/H	т/н
Flow inlet		Common bed	Hot regen	Cold regen
DHU	Temperature inlet bed	dp	flow	flow
285.6280212	19.65385437	33.01881409	7.028180122	4.531960487
249.0326843	19.57505035	26.22424316	4.093060493	4.678452015
259.7215881	19.44704437	28.92930984	6.441766739	3.453466892
274.4064636	19.3569603	30.86968422	7.290332317	4.486448288
249.1088867	19.10934639	26.10346031	7.335764408	4.142158031
282.1249695	19.79619408	32.7244606	6.899541855	4.377542973
278.1717834	19.99786186	33.72343445	3.627982616	3.572258234
260.3218384	19.96850777	27.58623123	7.175979614	4.210882664
280.3170776	19.87239456	31.90444374	7.222902298	4.156164169
283.3424988	19.88269997	33.15811157	6.334057331	4.598501682
239.5596161	19.82997704	23.96570778	6.190636635	4.762344837
277.5119934	20.11195183	31.21685219	6.45874548	4.814775467
249.1926117	19.61646461	25.01482582	7.30594635	4.044626713
243.5502014	19.67575073	24.70503807	7.100651741	4.133811951
276.6520386	19.95911217	31.49053764	6.549534321	4.819450378

Table 3.1: Sample of actual dehydration unit data collected

20.00130272	27.73995399	6.561894894	4.697604656
19.73636818	28.89634895	6.86478281	4.726782799
19.56664276	26.13385582	6.884967804	4.276237011
18.85371399	16.485672	7.377949715	4.094201088
18.91290092	15.21907234	6.264643669	4.645704269
19.08631706	18.39589119	6.797727585	4.651820183
18.87639427	18.28185272	6.841817856	4.76204443
17.65979767	10.85300064	5.354321957	3.247327566
19.08409882	25.01837158	7.522019863	4.189260483
19.88386726	28.70818901	6.684571266	4.668279171
19.66725922	27.81591415	6.883564472	4.808364868
	19.5666427618.8537139918.9129009219.0863170618.8763942717.6597976719.0840988219.88386726	19.5666427626.1338558218.8537139916.48567218.9129009215.2190723419.0863170618.3958911918.8763942718.2818527217.6597976710.8530006419.0840988225.0183715819.8838672628.70818901	19.5666427626.133855826.88496780418.8537139916.4856727.37794971518.9129009215.219072346.26464366919.0863170618.395891196.79772758518.8763942718.281852726.84181785617.6597976710.853000645.35432195719.0840988225.018371587.52201986319.8838672628.708189016.684571266

3.1.2 Development of dehydration unit (DHU) flowsheet

The flowsheet of the dehydration unit will give information for author on how the dehydration unit works. It covers the operating condition such as pressure, temperature and flow rate in and out of the unit. It will also show the equipment needed in the DHU plant. From this, simulation development of DHU unit can be done using HYSYS software.

The following assumptions are made to dry natural gas from the AGRU (Acid gas removal unit):

- 1. The average DHU (dehydration unit) load is 250 tonne per hour
- 2. The pressure drop of each packed bed is 33 kPag
- 3. The outlet moisture content leaving the dehydration is 1ppm (0.0000625 mol)
- The operating condition of the dehydration unit is 60- 70 bar and the temperature operating temperature is 20-30 °C
- The adsorbent used in this simulation is molsieve 3A (according to PETRONAS Gas Bhd) molsieve specification.

3.2 OPTIMIZATION STRATEGIES

There are two key strategies that can be implemented in order to optimize this natural gas dehydration unit. The first one is to manipulate pressure and temperature and compare it with the outlet moisture content. From this, the relationship between the temperature and pressure towards the moisture removed can be found. It also to ensure that moisture content that is leaving the DHU unit is below than 1 ppm (0.0000625mol) in order to ensure the hydrate will not formed. As from the literature, adsorption favours high pressure, low temperature.

The second part of the optimization strategies is to get a good prediction whether the hydrates will form after leaving the gas dehydration unit or not with the respective to temperature, pressure and also the molecular weight of the natural gas. By using a relationship developed from the literature, the hydrate formation is so much dependent toward temperature and pressure condition. Thus, it plays an important role towards hydrates formation prediction.

3.2.1 Temperature and pressure relationship toward outlet moisture content

This part is basically to see the effect of operating pressure and temperature to the outlet moisture content of the dehydration unit. From this, the trend or the relationship between temperature with moisture removal and pressure with moisture removal can be understood.

For this case, the temperature is varied between 20 to 30 °C and pressure between 60 to 70 bar. This value is exactly according to the operational data obtained from actual plant.

3.2.2 Hydrate formation prediction

From the journal publish by Alireza and Hari [14], Katz (1946) gravity chart can be used for predicting approximate temperature and pressure for hydrate formation in natural gas system. But somehow, the author had find a new simple – to – used correlation base on Katz and this correlation in order to predict the temperature and pressure relationship for the hydrates to form. This correlation is developed based on newly proposed numerical model from Alireza and Hari [14], This method is promising and easy to use as it has been simplified from the previous gravity chart and will be use to determine the hydrate formation pressure and temperature for this study.

Correlation developed by Alireza and Hari [14];

In (T) = a + b
$$\left(\frac{1}{p}\right)$$
 + c $\left(\frac{1}{p}\right)^2$ + d $\left(\frac{1}{p}\right)^3$ ------ (3.1)
In (P) = a + b $\left(\frac{1}{T}\right)$ + c $\left(\frac{1}{T}\right)^2$ + d $\left(\frac{1}{T}\right)^3$ ------ (3.2)

Where;

 $a = A_1 + B_1 M + C_1 M^2 + D_1 M^3 - (3.3)$

$$b = A_2 + B_2M + C_2M^2 + D_2M^3 - (3.4)$$

$$c = A_3 + B_3M + C_3M^2 + D_3M^3 - (3.5)$$

$$d = A_4 + B_4 M + C_4 M^2 + D_4 M^3 - \dots$$
(3.6)

The coefficient (3.1) and (3.2) shown above are correlated as a function of molecular weight (M) in equation (3.3) to (3.6). The optimum derived coefficients used in the equation (3.3) to (3.6) are given in table 3.2 and 3.3. These optimum tuned coefficient help to cover data from Katz (1945) gravity chart in temperature variation of 260K to 298L as well as the gas molecular weight within the range of 16 to 29. [14]

	Natural gas with	Natural gas with
Coefficient	molecular weight less than 23	molecular weight more than 23
	265 K <temperature <298="" k<="" th=""><th>265 K <temperature <298="" k<="" th=""></temperature></th></temperature>	265 K <temperature <298="" k<="" th=""></temperature>
A_1	$-2.8375555003183 \times 10^{5}$	$9.6485148281011 \times 10^4$
B_1	4.188723721533×10 ⁴	$-1.2987255223562 \times 10^4$
C_1	$-2.0426785680161 \times 10^{3}$	$5.6943123183493 imes 10^2$
D_1	$3.2999427860007 imes 10^1$	-8.0291736544591
A_2	2.3518577113598×10 ⁸	$-8.3851942305767 \times 10^{7}$
B_2	$-3.470311070979 \times 10^{7}$	1.1292443545403×10 ⁷
C_2	1.6921307674758×10 ⁶	-4.9481203210497×10 ⁵
D_2	$-2.7331526571044 \! imes \! 10^4$	$6.9743729419639 imes 10^3$
A_3	$-6.4899035506028 \times 10^{10}$	2.4283950487232×10 ¹⁰
B_3	9.5728921505256×10 ⁹	$-3.2713325876178 \times 10^{9}$
C_3	$-4.667233443707{ imes}10^8$	1.4325969896394×10 ⁸
D_3	7.5373257072387×10 ⁶	-2.018536147544×10 ⁶
A_4	$5.9653477415552 imes 10^{12}$	$-2.3430538061379 imes 10^{12}$
B_4	$-8.796372864875{ imes}10^{11}$	$3.1570181175788 imes 10^{11}$
C_4	$4.2881972248701\!\times\!10^{10}$	$-1.38180509474908 imes 10^{10}$
D_4	$-6.9241414046235 imes 10^8$	1.9463506733398×10 ⁸

Table 3.2: Tuned coefficient used in equation 3.2 to 3.5 to predict hydrate formation pressure in kPa (given temperature K) by equation 2 [14]

Table 3.3: Tuned coefficient used in equation 3.2 to 3.5 to predict hydrate formationtemperature in K (given pressure in kPa) by equation 1 [14]

Coefficient	Natural gas with molecular weight more than 23 and pressure 1200 kPa <p< 40000="" kpa<="" th=""><th>Natural gas with molecular weight less than 23 and pressure 1200 kPa<p< 5000="" kpa<="" th=""><th>Natural gas with molecular weight less than 23 and pressure range 5000 kPa < P < 40000 kPa</th></p<></th></p<>	Natural gas with molecular weight less than 23 and pressure 1200 kPa <p< 5000="" kpa<="" th=""><th>Natural gas with molecular weight less than 23 and pressure range 5000 kPa < P < 40000 kPa</th></p<>	Natural gas with molecular weight less than 23 and pressure range 5000 kPa < P < 40000 kPa
A1	6.4185071105353	-4.1812132784232	7.0959703947586
B_1	-8.8017107875666×10 ⁻²	1.472639349108	$-2.1806030070795 \times 10^{-1}$
$\frac{B_1}{C_1}$	3.5573429357137×10 ⁻³	-7.2745386271251×10 ⁻²	$1.1305933439794 \times 10^{-2}$
D_1	₩4,7499843881244×10 ⁻⁵	$1.1897795879884 imes 10^{-3}$	$\pm 1.927203195626 \times 10^{-4}$
A_{2}	$-8.6426289139868 \times 10^{3}$	$4.5284975000181 \times 10^4$	-1.2584649421592×10 ⁵
$\overline{B_2}$	$1.0243307852297 \times 10^3$	$-6.8628124449813 \times 10^{3}$	1.8993111766336×10 ⁴
$\overline{C_2}$	-4.09663925465509×10 ¹	$3.4240721860406 \times 10^{2}$	-9.5260058127234×10 ²
$\tilde{D_2}$	5.4450050757729×10 ⁻¹	-5.642533019	$1.5806820089029 \times 10^{1}$
:43	$1.159643030462 \times 10^{7}$	-8.317075073225×107	9:2190382283151×10 ⁸
B_3	1.3859027774109×10 ⁶	$1.2604810249225 \times 10^7$	$-1.4030410567488 \times 10^8$
C_3	$5.5353148270822 \times 10^{4}$	$-6.3018579466138 \times 10^5$	$7.0820417989994 \times 10^{6}$
D_3	$-7.339994547645 \times 10^{2}$	$1.0408848430973 \times 10^4$	-1.1818763471949×10 ⁵
Ai	=4.0200951475377×10 ⁹	5.8589773993386×109	=2.1053548626211×10 ¹²
B_4	4.791331833062×10 ⁸	$-9.6634962535354 \times 10^{8}$	3.213992597219×10 ¹¹
c_4	$-1.9036325296009 \times 10^{7}$	$5.13473142241307 \times 10^{7}$	$-1.6274767262739 \times 10^{10}$
D_4	2.5113297404156×10 ⁵	8.87818586492×10 ⁵	2.724884324573×10 ⁸

The relationship requires molecular weight of the natural gas in order to select suitable coefficient. Due to many outlet composition of the outlet gas, and in order to get the overall molecular weight, apparent molecular weight is calculated. The AMW (apparent molecular weight) is defined as;

$$M_a = \sum_I y_i M_i$$

Where;

Ma = Apparent molecular weight

y_i = mol fraction of each species

 M_i = Molecular weight for each species

3.2.3 Installation of cooler and knock-up drum

This cooler and knock-up drum can act like pre dehydration before entering the gas dehydration unit. As the gas is coming from the Acid gas removal unit (AGRU), the temperature is slightly higher and this will make the gas is in vapour condition. Thus, the installation of the cooler will make sure the temperature of the gas become less, and it will eventually condense the moisture into liquid so that is can be easily separated from the sales gas.

Later, after the gas is cooled, the knock – up drum or a separator is installed in between the cooler and the inlet of the dehydration unit. The purpose of this is to provide a separation environment for the gas after it being condense previously after passing through the cooler. Due to this, dehydration unit will have higher efficiency to remove the unwanted moisture inside gas and to achieve the objective of removing the hydrate formation major contributor that is water.

CHAPTER 4 RESULT AND DICUSSION

This section is the result after running and testing the HYSYS simulation. The simulation is used as a tool to evaluate and simulate the dehydration unit in the actual gas dehydration plant and to do a study and improvement toward the efficiency of the dehydration unit. For the record, the data used to construct the simulation are the actual plant data taken from one of the gas processing plant in Malaysia. Thus the real dehydration unit behaviour can be known. It also used to observe the behaviour of natural gas dehydration unit towards manipulation of temperature and pressure.

4.1 HYSYS SIMULATION

Figure 4.1: Flow sheet of natural gas dehydration developed using HYSYS

This dehydration process takes place when the wet gas enters the DHU (dehydration unit) from the Acid gas removal unit. In this unit, gas will further treated to remove water vapour that contained inside the gas. It is to avoid any hydrates formation along the pipelines that will cause serious damage as being discuss in the earlier chapter of this research report.

The dehydration unit is designed to reduce the feed gas water content below 1ppm v/v and the mercury content to 0.1 ppb w/w. Thus, upon reaching DHU, gas will be passing through the heat exchanger to remove heat from the gas. Due to this, some water droplets will form out of the gas. A separator is place after the heat exchanger in order to separate the gas and the water droplets.

Later, the gas is further treated by the inlet filter separator. This is important to remove all the liquid mist, down to 1 micron particles size that can be found in the gas stream. If these mists are not being removed before they enter into the packed bed, it will damage the adsorbent inside it. The cost to replace the adsorbent it self is expensive. Due to this, this step is one the proven way to prolong the adsorbent lifetime.

The gas goes forward to the dryers bed which operate with two in parallel service while one under regeneration. The dryers are packed with adsorbent. It can be silica gel, activated carbon or molecular sieve. Most of gas dehydration plant nowadays use molecular sieve as the adsorbent to serve this purpose (to dehydrate gas) and to achieve outlet moisture content in the gas to below 1ppm. Later the gas is pass through mercury removal filter to remove deposited mercury that left in the gas.

36

4.2 EFFECT OF PRESSURE AND TEMPERATURE VARIATION TOWARD WATER MOISTURE COMPOSITION AT THE OUTLET OF DEHYDRATION UNIT

Natural						Tempe	rature					
Gas Composit ion	30	29	28	27	26	25	24	23	22	21	20	19
Cl	0.973449	0.973758	0.974062	0.974362	0.974659	0.974952	0.975241	0.975527	0.975810	0.976090	0.976366	0.976640
<u> </u>	980	254	468	765	289	178	567	591	379	059	754	587
C2	0.017414	0.017325	0.017235	0.017143	0.017051	0.016957	0.016862	0.016766	0.016669	0.016570	0.016470	0.016369
L 2	775	482	124	676	113	410	542	483	209	694	<u>912</u>	837
C3	0.001245	0.001226	0.001208	0.001190	0.001171	0.001153	0.001135	0.001117	0.001099	0.001081	0.001063	0.001045
6	064	740	447	186	962	776	632	532	481	480	534	646
1.01	0.003619	0.003523	0.003428	0.003336	0.003245	0.003157	0.003070	0.002985	0.002902	0.002821	0.002742	0.002664
i+C4	744	278	829	369	869	301	636	847	905	785	458	898
- 64	0.003128	0.003025	0.002926	0.002830	0.002737	0.002646	0.002559	0.002474	0.002391	0.002312	0.002234	0.002159
п-С4	192	878	682	510	270	876	243	288	934	102	718	712
CO2	0.000758	0.000756	0.000755	0.000754	0.000753	0.000751	0.000750	0.000749	0.000747	0.000746	0.000744	0.000743
002	202	989	747	474	169	831	459	053	611	132	616	060
03	0.000008	0.000008	0.000008	0.000008	0.000008	0.000008	0.000008	0.000008	0.000008	0.000008	0.000008	0.000008
O2	088	096	104	113	121	130	139	147	156	165	174	183
N 12	0.000205	0.000206	0.000206	0.000206	0.000207	0.000207	0.000207	0.000208	0.000208	0.000208	0.000209	0.000209
Ni	666	025	386	750	116	485	858	234	613	997	385	777
H2S	0.000170	0.000169	0.000168	0.000167	0.000166	0.000164	0.000163	0.000162	0.000161	0.000160	0.000159	0.000158
H25	205	176	137	086	024	951	866	768	659	538	<u>404</u>	257
Н2О	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0,000000	0.000000	0.000000	0.000000
<u> 1120</u>	085	080	075	071	067	063	059	056	052	049	046	043

Table 4.1 : Natural gas composition with changes of temperature

Figure 4.2: Water moisture outlet composition (mol) versus change in temperature (°C)

From the graph above, it is showing that as the operating temperature increase, the water moisture content in the natural gas leaving the dehydration increase. The lowest temperature that being record in the simulation is 19 °C with the moisture composition of 0.000000043 mol and the highest is 30 °C with composition of outlet moisture of 0.000000085 mol. This condition satisfy the relationship of temperature and moisture content leaving the dehydration unit, where for gas dehydration, it favour lower temperature in order to get high adsorption in the packed bed column. This is because, in low temperature, the moisture will easily be condensed and from this, it can be easily adsorb by the adsorbent inside the packed bed. Plus, an increase in temperature reduces the adsorption capacity of adsorbent as the adsorption of water is exothermic. Thus, in order to increase the efficiency of the dehydration unit, it need to be run and operated at low temperature to ensure the moisture can be separated from the gas much more easier.

Natu		Pressure (bar)									
ral											
Gas	<u> </u>	61	62	63	64	<u>65</u>	66	.67	68	69	70
	0.973449	0.973490	0.973526	0.973558	0.973585	0.973608	0.973627	0.973642	0.973652	0.973658	0.973659
C1_	980	478	559	270	650	727	521	042	291	259	929
	0.017414	0.017398	0.017383	0.017368	0.017355	0.017344	0.017333	0.017323	0.017315	0.017308	0.017302
C2	775	422	144	966	914	016	300	796	535	549	872
	0.001245	0.001242	0.001240	0.001238	0.001236	0.001234	0.001233	0.001232	0.001231	0.001230	0.001230
C3	064	464	121	036	208	636	321	263	463	923	642
	0.003619	0.003608	0.003599	0.003591	0.003585	0.003580	0.003576	0.003574	0.003572	0.003573	0.003574
i-C4	744	934	596	698	213	118	392	018	983	275	889
	0.003128	0.003117	0.003109	0.003101	0.003096	0.003091	0.003089	0.003087	0.003087	0.003089	0.003092
n-C4	192	825	052	829	118	887	107	755	809	256	081
	0.000758	0.000757	0.000757	0.000757	0.000757	0.000756	0.000756	0.000756	0.000756	0.000756	0.000756
CO2	202	936	682	441	212	997	796	610	440	286	149
	0.000008	0.000008	0.000008	0.000008	0.000008	0.000008	0.000008	0.000008	0.000008	0.000008	0.000008
O2	088	089	091	092	094	095	096	098	0 <u>9</u> 9	100	100
	0.000205	0.000205	0.000205	0.000205	0.000205	0.000206	0.000206	0.000206	0.000206	0.000206	0.000206
Ni	666	748	827	902	974	042	106	165	221	272	318
	0.000170	0.000170	0.000169	0.000169	0.000169	0.000169	0.000169	0.000169	0.000169	0.000169	0.000168
H2S	205	019	845	684	536	402	281	175	083	005	942
	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
H2O	085	084	083	082	081	080	079	078	078	077	076

Table 4.2 : Natural gas composition with changes of pressure

Figure 4.3: Water moisture outlet composition (mol) versus pressure (bar) change

Figure 4.3 shows the trend of water moisture outlet composition (mol) against pressure changes (bar) raging from 60 to 70 bar. From the trend, it is clearly showing that as the pressure increase, the water moisture composition at the outlet of dehydration unit is decrease (high moisture removing capacity). Generally, when a gas is compressed, the partial pressure of the water present increases. At a constant temperature the adsorptive capacity for water increases with increasing water partial pressure. Due to this, high pressure can give high moisture removal capacity form the gas.

4.3 HYDRATE FORMATION PREDICTION

To predict the hydrate formation of natural gases with respect to the temperature and pressure, a few steps of calculation need to be done. For the initial work to use the method developed by Alireza and Hari [14],, the molecular weight of the gas is taken from the HYSYS simulation. This, molecular weight of the gas is needed in order to calculate the temperature and pressure relation toward the hydrate formation.

Pressure (bar)	MW
60	23.4791795
61	22.28248487
62	21.93968171
63	21.78581992
64	21.7756557
65	21.90065546
66	22.17772933
67	22.69110874
68	22.56982315
69	22.95874132
70	22.32741566

Table 4.3 : Molecular weight of natural gas for each pressure and temperature

By using the molecular weight in table 4.3, it is assume that average molecular weight for all pressure is around 22.5 lb mol/mol.

It is understandable that, the MW of the gas is less than 23. Thus, referring to the table 4.4 , (tuned coefficient used in equation 3.2 to 3.5 to predict hydrate formation temperature in K (given pressure in kPa) by equation 1), the values of coefficient a, b, c and d from equation 3,4,5,6 can be found.

The region of the table is divided into to part for natural gas with molecular weight less than 23. The first part is pressure between 1200 kPa to 5000kpa and second one is pressure range 5000 kPa to 40,000 kPa.

Table 4.4: Tuned coefficient used in equation 2 to 5 to predict hydrate formationtemperature in K (given pressure in kPa) by equation 1 [14]

Coefficient	Natural gas with molecular weight more than 23 and pressure 1200 kPa <p< 40000="" kpa<="" th=""><th>Natural gas with polecular weight less than 23 and pressure 1200 kPa<p< 5000="" kpa<="" th=""><th>Natural gas with morecular weight less dian 23 and pressure range 5000 kPa<p<40000 kpa<="" th=""></p<40000></th></p<></th></p<>	Natural gas with polecular weight less than 23 and pressure 1200 kPa <p< 5000="" kpa<="" th=""><th>Natural gas with morecular weight less dian 23 and pressure range 5000 kPa<p<40000 kpa<="" th=""></p<40000></th></p<>	Natural gas with morecular weight less dian 23 and pressure range 5000 kPa <p<40000 kpa<="" th=""></p<40000>
Ai	6.4185071105353	-4.1812132784232	7.0959703947586
B ₁	-8.8017107875666×10 ⁻²	1.472639349108	-2.1806030070795×10 ⁻¹
c_1	3.5573429357137×10 ⁻³	-7.2745386271251×10 ⁻²	■ 1.1305933439794×10 ⁻²
D_1	-4.7499843881244×10 ⁻⁵	1.1897795879884×10 ⁻³	-1.927203195626×10 ⁻⁴
A_2	-8.6426289139868×10 ³	$4.5284975000181 \times 10^4$	-1.2584649421592×10 ³
B_2	1.0243307852297×103	-6.8628124449813×10 ³	1.8993111766336×10 ⁴
C_2	-4.09663925465509×10 ¹	$3.4240721860406 \times 10^2$	-9.5260058127234×10 ²
D_2	5.4450050757729×10 ⁻¹	-5.642533019	1.5806820089029×10 ³
A3	1.159643030462×10 ⁷		9.2190382283151×10 ^S
B_1	$-1.3859027774109 \times 10^{6}$	1.2664810249225×107	-1.4030410567488×10 ⁸
C_3	5.5353148270822×10 ⁴	$-6.3018579466138 \times 10^{3}$	7.0820417989994×10 ⁶
D_3	-7.339994547645×10 ²	$1.0408848430973 \times 10^4$	$-1.1818763471949 \times 10^{5}$
Å,	-4.0200951475377×10 ⁹	5.8589773993386×10°	-2.1053548626211×10 ¹²
B_{+}	4.791331833062×10 ⁸	9.6634962535354 × 10 ⁸	3.213992597219×10 ¹¹
c_{4}	$-1.9036325296009 \times 10^{7}$	5.13473142241307×10 ⁷	-1.6274767262739×10 ¹⁰
D_4	2.5113297404156×10 ⁵		2.724884324573×10 ⁸

Correlation developed by Alireza and Hari [14];

$$d = A_4 + B_4 M + C_4 M^2 + D_4 M^3 - (3.6)$$

In order to find the a, b, c and d values, the M is the molecular weight of the gas in inserted into equation (3.3) to (3.6) while A,B,C,D values can be identified at table 4.4 based on the pressure range that is 5000 kPa < P < 40000 kPa

The a, b, c, and d values obtained;

5000 kPa < P < 40000 kPa							
a	a b c d						
5.72	5.72 -705.97 4114081.00 -9158929570.00						

To find the temperature at which the hydrates formed, equation 3.1 [14] is used.

In (T) = a + b
$$\left(\frac{1}{p}\right)$$
 + c $\left(\frac{1}{p}\right)^2$ + d $\left(\frac{1}{p}\right)^3$ ------(3.1)

Thus;

Pressure	ln (T)	T (K)	T (^o C)
60000	5.6742	291.2552	18.10524
61000	5.6745	291.3426	18,19263
62000	5.6747	291.4009	18.25091
63000	5.6749	291.4592	18.30919
64000	5.6752	291.5466	18.39664
65000	5.6754	291.605	18.45496
66000	5.6756	291.6633	18.51328
67000	5.6758	291.7216	18.57162
68000	5.676	291.78	18.62997
69000	5.6762	291.8383	18.68833
70000	5.6764	291.8967	18.74671

Figure 4.4: Hydrate formation temperature (^OC) vs pressure (kPa)

From figure 4.4, it is clearly observed that the higher the pressure, the higher the hydrate formation temperature. From the calculation and base on the dehydration unit and gas processing plant average pressure that is 60 bar, the hydrate will formed when the temperature is about 18° C.

As the plant it self is operated at normal temperature range of 19-30 $^{\rm o}$ C (discussed in 4.2), which is slightly higher then the hydrate formation temperature of 18 $^{\rm o}$ C, it can be conclude that the potential of hydrate to form in the process stream is very high. Thus, the dehydration unit need to be operated at temperature slightly lower in order to prevent the hydrates formation after the gas leaving the dehydration unit. So, base on the hydrate prediction, the optimum temperature of dehydration unit can be assume 18-21 $^{\rm o}$ C.

4.4 INSTALLATION OF COOLER AND KNOCK-UP DRUM

Installation of the cooler and knock- up drum (separator) before the gas enters into the dehydration unit can increase the efficiency to remove moisture from the gas. As the gas is coming from the acid gas removal unit (AGRU) that operates at high temperature, it need be cooled first and separate possible water moisture that available inside the gas. Thus, cooler and knock-up drum suit this purpose.

Figure 4.5: Hysys simulation without pre-dehydration of the gas before entering the dehydration unit.

Figure 4.6: Hysys simulation with pre-dehydration of the gas before entering the dehydration unit.

From hysys simulation, the changes of efficiency of the dehydration unit before and after the installation of cooler and knock –up drum can be observed. The data taken is plotted into graph for further discussion.

Figure 4.7: Moisture content versus temperature with and without cooler and separator

Natural		Temperature										
Gas												
Compo											÷	
sition	40	39	38	37	_36	35	34	33	32	31	30	29
	0.97141	0.97141	0.97141	0.97141	0.97150	0.97184	0.97217	0.97249	0.97282	0.97313	0.97344	0.97375
C1	2989	3001	3012	3022	6448	2346	3234	9280	0646	7494	<u>9980</u>	8254
	0.01795	0.01795	0.01795	0.01795	0.01792	0.01784	0.01776	0.01767	0.01759	0.01750	0.01741	0.01732
C2	2320	2320	2320	2320	9508	6104	1777	6504	0262	3027	<u>47</u> 75	5482
	0.00136	0.00136	0.00136	0.00136	0.00135	0.00133	0.00131	0.00130	0.00128	0.00126	0.00124	0.00122
C3	0604	0604	0604	0604	5517	7059	8617	0195	1794	3416	5064	6740
	0.00427	0.00427	0.00427	0.00427	0.00424	0.00413	0.00402	0.00392	0.00381	0.00371	0.00361	0.00352
i-C4	3012	3012	3012	3012	2549	3359	6365	1537	8844	8256	9744	3278
	0.00384	0.00384	0.00384	0.00384	0.00381	0.00369	0.00357	0.00345	0.00334	0.00323	0.00312	0.00302
n-C4	7829	7829	7830	7830	3227	0044	0616	4827	2564	3721	8192	5878
	0.00076	0.00076	0.00076	0.00076	0.00076	0.00076	0.00076	0.00076	0.00076	0.00075	0.00075	0.00075
CO2	5180	5177	5174	5172	4886	3838	2765	1665	0539	<u>9</u> 385	8202	698 9
	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
02	8035	8035	8035	8035	8037	8046	8054	8062	8071	8079	8088	8096
	0.00020	0.00020	0.00020	0.00020	0.00020	0.00020	0.00020	0.00020	0.00020	0.00020	0.00020	0.00020
Ni	3455	3455	3455	3455	3551	3900	4250	4602	4955	5310	5666	6025
	0.00017	0.00017	0.00017	0.00017	0.00017	0.00017	0.00017	0.00017	0.00017	0.00017	0.00017	0.00016
H2S	6429	6427	6426	6424	6158	5191	4214	3227	2230	1223	0205	9176
	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
H2O	0148	0140	0133	0126	0120	0113	0107	0101	0095	0090	0085	0080

Table 4.7 : Natural gas composition without cooler and phase separator

Natural	Temperature											
Gas Compo sition	40	39	38	37	36	35	34	33	32	31	30	29
SRION	0.97344	0.97375	0.97406	0.97436	0.97465	0.97495	0.97524	0.97552	0.97581	0.97609	0.97636	0.97664
C 1	9980	8254	2468	2765	9289	2178	1567	7591	0379	0059	6754	0.57004
··· ··· ··· ···	0.01741	0.01732	0.01723	0.01714	0.01705	0.01695	0.01686	0.01676	0.01666	0.01657	0.01647	0.01636
C2	4775	5482	5124	3676	1113	7410	2542	6483	9209	6 0694	0912	9837
·····	0.00124	0.00122	0.00120	0.00119	0.00117	0.00115	0.00113	0.00111	0.00109	0.00108	0.00106	0.00104
C3	5064	6740	8447	0186	1962	3776	5632	7532	9481	1480	3534	5646
	0.00361	0.00352	0.00342	0.00333	0.00324	0.00315	0.00307	0.00298	0.00290	0.00282	0.00274	0.00266
i-C4	9744	3278	8829	6369	5869	7301	0636	5847	2905	1785	2458	4898
<u> </u>	0.00312	0.00302	0.00292	0.00283	0.00273	0.00264	0.00255	0.00247	0.00239	0.00231	0.00223	0.00215
n-C4	8192	5878	6682	0510	7270	6876	9243	4288	1934	2102	4718	9712
	0.00075	0.00075	0.00075	0.00075	0.00075	0.00075	0.00075	0.00074	0.00074	0.00074	0.00074	0.00074
CO2	8202	6989	5747	4474	3169	1831	0459	9053	7611	6132	4616	3060
	0.000000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
O2	8088	8096	8104	8113	8121	8130 °	8139	8147	8156	8165	8174	8183
	0.00020	0.00020	0.00020	0.00020	0.00020	0.00020	0.00020	0.00020	0.00020	0.00020	0.00020	0.00020
Ni	5666	6025	6386	6750	7116	7485	7858	8234	8613	8997	9385	9777
	0.00017	0.00016	0.00016	0.00016	0.00016	0.00016	0.00016	0.00016	0.00016	0.00016	0.00015	0.00015
H2S	0205	9176	8137	7086	6024	4951	3866	2768	1659	0538	9404	8257
	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
H2O	0085	0080	0075	0071	0067	0063	0059	0056	0052	0049	0046	0043

Table 4.8 : Natural gas composition with cooler and phase separator

Figure 4.6 show the moisture content versus temperature at different condition, with and without cooler and separator. Generally, the gas from the process stream before it enters into dehydration unit is in high temperature. To be exacts, the gas is having high temperature because of the temperature at the acid gas removal unit (AGRU). Due to this, the moisture that contained inside the gas which is in gas form can only be removed when it is condensed properly. Because of this, pre-dehydration treatment which is by using cooler and separator is needed before the gas enters dehydration.

As the hot gas enters into the cooler, it will cool down and the water vapour will condense to form liquid with higher density compare to the density of the gas. For this HYSYS simulation, the temperature drop is set to 10 °C after the gas enters cooler. The water liquid is later transferred into the separator to be separated form the gas stream. From the graph, it can be observe that, by placing cooler and separator, it will increase the moisture removal up to 44%.

CHAPTER 5

CONCLUSION

Liquefied natural gas or LNG need to be operated at low water moisture content to avoid any hydrate formation problem during the cryogenic production processes. Due to this, dehydration method is very essential. The research and analysis are conducted based on actual industrial application of natural gas dehydration. Dehydrating moisture in natural gas by conventional method such as dehydration by using glycol (liquid desiccants) is proven to give problems such as pump failures, leaks, and these existence technologies also need high capital investment and perhaps need more experts to operate it. As for this project, it covers on optimization of natural gas dehydration using solid desiccant. Literatures have shown, by using solid desiccant is seems better compare to liquid desiccant in many ways especially in term of environmental acceptance and it can give lower dew point over a wide range of operating condition. Although involve larger cost to install the dehydration unit using this method, it is still the best way to remove hydrates in the natural gas. That is why, optimization of dehydration using solid desiccant is choosed.

One of the ways to evaluate and optimize natural dehydration unit using solid desiccant is by using simulation and in this case HYSYS software is used. The process data is taken from the actual plant data as the basis of the development of the plant flowsheet in order to simulate the real process in the gas dehydration unit.

Optimization is done base on the flow sheet developed. From observation, the water moisture adsorption increase when there is increase in pressure and decrease in temperature. As for the study that had been conducted, the optimum temperature that the dehydration unit should be operated at the pressure of 60 - 70 bar is 21 ^{O}C .

This optimum operating temperature of 21 O C has been identified is proven by using a correlation developed by Alireza and Hari. This correlation can be use to determine the relationship between pressure and temperature at which hydrate will formed and in this case, the temperature of hydrates formation is at 18 O C. Thus, it is proved that the optimum temperature is about 21 O C

Another method to optimize the natural gas dehydration unit is by using cooler and separator to be as a pre-dehydration unit. This is because, the gas from the process before DHU is in high temperature. Thus, cooler can condense the water moisture that contained in the gas and the separator will separate between liquid and gas phase. From the calculation and observation of HYSYS data, 44% of moisture removal can be increase by installing cooler and separator.

REFERENCES

- John Carroll, 2003, "Natural Gas Hydrates a Guide for Engineers", Elsevier Scinece (USA)
- Alia Najjah Binti Alias, 2004, "Separation of moisture from natural gas using membrane separation" Thesis of Membrane Separation, Bandar Seri Iskandar : UTP, 2004
- 3. Yuri F.Makogon, 1997, "Hydrates of Hydrocarbons", Pennwell Boks, Oklahoma
- V. V. Nikolaev and S. A. Sirotin, VoL 32, No. 6, 1996 "Prospects of using membrane separation in processing natural gas " Journal of Chemical and Petroleum Engineering, 540-542
- US Department of energy, May 2009, "Advanced Membrane Technology for Hydrocarbon Separations - New Membrane Technology for Natural Gas Dehydration Promises Improved Separation Efficiency", energy efficiency and renewable energy journal.
- 6. Handbook of Natural Gas Transmission and Processing, 323-324
- P. Gandhidasan, Abdulghani A. Al-Farayedhi, Ali A. Al-Mubarak, 28 April 2000, "Dehydration of natural gas using solid desiccants", Mechanical Engineering Department, King Fahd University of Petroleum and Minerals, Saudi Arabia
- Christie John Geankoplis, Fourth Edition, 2003, "Transport Processes and Separation Process Principle (Includes Unit Operations)", Prentice Hall Professional Technical Reference, New Jersey
- E. Dendy Sloan Jr, Director Center for Research on Hydrates, 2000 "Hydrate Engineering", Henry L.Doherty Memorial Fund of AIME, Society of Petroleum Engineers Inc, Taxes
- 10. SOLTEQ, Gas Adsorption Column Unit Experiment Manual Model: BP 203.

- By Roop Chand Bansal, Meenakshi Goyal "Activated carbon adsorption" CRC Press 2005
- 12. Sud- Cheme group http://www.sud-chemie.com/scmcms/web/page_en_2991.htm
- 13. Axens group technologies http://www.axens.net/
- 14. Alireza Bahadori, Hari.B. Vulthaluru, November 19,2009, "A novel correlation for estimation of hydrate forming condition of natural gases", Department of Chemical Engineering, Curtin University of Technology, Australia.
- 15. Ahmed A. Elgibaly, Ali Elkamel, 27 December 1997, "A new correlation for predicting hydrate formation condition for various gas mixtures and inhibitors", College of Engineering and Petroleum, University of Kuwait, Kuwait.
- 16. Jeffery B.Klauda, Stanley I. Sandler, 30 May 2002, "Phase behavior of clathrate hydrates: a model for single and multiple gas component hydrates", Department of Chemical Engineering, Center for Molecular and Engineering Thermodynamics, University of Delaware, Newark, USA.
- 17. John M. Campell, "Gas conditioning and processing" Volume 1
- 18. Riki Kobayashi, Donald L.Katz, "Vapour-liquid equilibria for binary hydrocarbon water system", University of Mechigan
- 19. Carlo Giavarini, Filippo Maccioni, Maria Laura Santarelli, "Formation kinetics of propane hydrates", Chemical Engineering Department, University of Rome "La Sapienza", Rome Italy.
- 20. William D. McCain Jr, " The properties of petroleum fluids" Second edition, Pennwell Books, Okalahoma.

APPENDICES

APPENDIX A: MOLECULAR SIEVE APPLICATION

	Μ	lolecular Sieve			
Application	Туре	Grade	Comments		
Natural Gas Dehydration	4A	MS 513 / 514	Dehydration to less than 0.1 ppm(v) prior to liquefaction or Natural Gas liquids extraction		
Natural Gas Dehydration	3A	MS 562 / 564	Dehydration to less than 0.1 ppm(v) while minimizing methanol and / or propane co adsorption; reduces regeneration heating requirements and improves yields with less hydrocarbon hold up		
Natural Gas Dehydration with min. COS formation	3A	MS 562 / 564 MS 562 CS / 564 CS	Dehydration to less than 0.1 ppm(v); H_2S conversion COS is less than 0.25%		
Desulfurization of Natural Gas / NGL / LPG	5A	MS 521 / 522	Removal of H ₂ S, COS, and light Mercaptans to pipeline specifications		
Desulfurization & COS Min. Natural Gas / NGL / LPG	5A	SZ - 5	Special COS minimizing 5A sieve for H ₂ S removal; H ₂ S conversion to COS is less tha 4%		
CO ₂ Removal & Dehydration before Liquefaction	4A	MS 514 - LNG	High capacity Type 4A molecular sieve for removal of CO_2 and water to less than ppm(v) prior to liquefaction.		
Condensate Drying	4A	MS 513 / 514	Dehydration to less than 1.0 ppm(w)		
NGL / LPG Sweetening	13X	MS 542HP / 544HP SZ - 9	Removal of H ₂ S, COS, Mercaptans and high MW Sulfur compounds to maintai 1A copper strip LPG / NGL specifications		

.

APPENDIX B: KATZ K-FACTOR CHARTS