
THE EFFECT OF CLAY MINERALS ON RESERVOIR 

CHARACTERIZATION AND PERFORMANCE 

 
 
 
 

By 

 
 
 

NUR ASYRAF BT MD AKHIR 

 

 

 

 

Submitted in partial fulfilment of the requirements for the  

Master of Science  

(Petroleum Engineering) 

 
 
 
 
 
 

JULY 2013 
 
 

 
 

 
 

 
Universiti Teknologi PETRONAS 
Bandar Seri Iskandar 
31750 Tronoh 
Perak Darul Ridzuan 

 



CERTIFICATION OF APPROVAL 

The Effect Of Clay Minerals On Reservoir Characterization and Performance  
 

By 

 

Nur Asyraf Bt Md Akhir 

 

A Project Dissertation submitted to the 

Petroleum Engineering Programme 

Universiti Teknologi PETRONAS 

In partial fulfillment of the requirement for the 

MSc of PETROLEUM ENGINEERING 

 

 

 

Approved By, 

 

____________________________ 

(Dr. Gamal Ragab Gaafar) 

 

 

 

____________________________ 

(AP Dr. Ismail Mohd Saaid) 

 

 

 

UNIVERSITI TEKNOLOGI PETRONAS 

TRONOH, PERAK 

July 2013 

 



CERTIFICATION OF ORIGINALITY 

 

This is to certify that I am responsible for the work submitted in this project, that the 

original work is my own except as specified in the references and 

acknowledgements, and that the original work contained herein have not been 

undertaken or done by unspecified sources or persons. 

 
 
 
 

_______________________ 
NUR ASYRAF BT MD AKHIR 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 



i 
 

ABSTRACT 

 
Clay minerals are fine-grained which compose of aluminium silicate structure.  

There are four main groups of clay minerals which are kaolinite, illite, smectite and 

chlorite. The effect of clay minerals on formation evaluation and reservoir 

performance depend on its morphology, cation exchange capacity and swelling 

properties. The occurrence of clay minerals leads to inaccurate values of porosity, 

water saturation and permeability. In addition, the impacts of clay minerals during 

drilling, water injection and acid stimulation are investigated as it can lead formation 

damage near wellbore. The current project aims investigate the effect of clay 

minerals on logs response and reservoir characteristics in term of porosity, 

permeability and water saturation, and to compare its impact on reservoir 

performance against reported works. Methodology used in the present research 

involves log interpretation (gamma ray, neutron, density and resistivity) and clay 

mineral characterization (using thin section, polarized microscope, SEM and 

FESEM/EDX) to analyse the effect of clay on water relative permeability, water 

saturation and capillary pressure curve. Results were discussed and benchmarked 

against selected literatures. Based on the effect of clay minerals, there are reduction 

in water relative permeability due to fine migration and swelling of clays. In 

addition, it is found that accurate value of water saturation can be obtained by using 

Waxman-Smit-Thomas model. Moreover, it is shown that capillary pressure curve is 

reflected by the heterogeneity and bimodality of the reservoir. In this project, it is 

shown that effect of clay minerals on reservoir can lead to the inaccuracy of 

determining reservoir characterization and its effect on reservoir productivity.  
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CHAPTER 1 

INTRODUCTION 

 
 

1.1 Background Study 

Clay minerals are essential components in petroleum system as sources of sealing rocks. 

The effects of clay minerals in reservoir characterization can be examined by the 

evaluation and measurement of porosity, formation water saturation and permeability of 

reservoir from logging tools. The presence of clay-bound-water affects porosity and 

electrical properties of the formation by overestimating the porosity value due to 

significant amount of hydrogen and underestimating the resistivity value due to presence 

of excess of conductivity in the formation. Inaccuracy in reservoir properties leads to 

wrong interpretation of reservoir volume and hydrocarbon-in-place.  

 

In addition, the presence of clay minerals in shaly reservoir during drilling, water 

injection and acid stimulation can affect reservoir performance in terms of permeability 

impairment near wellbore area due to fines migration and swelling properties of clay 

minerals. Hence, the effect of clay minerals towards reservoir characterization and 

performance need to be investigated in order to obtain accurate data on reservoir 

properties and to avoid declining of reservoir productivity.  

1.2 Problem Statement 
 
The presence of clay minerals in shaly reservoir should be taken into account as it can 

affect reservoir characterization and performance. In formation evaluation and log 

interpretation, the existence of clay minerals in the reservoir might lead to inaccurate 

values of porosity, water saturation and permeability. Since these parameters are 

important in determining the volume of reservoir and hydrocarbon-in-place, the accurate 

values of these properties need to be obtained. In addition, clay minerals can also lead to 



 

2 
 

formation damage due to its cation exchange capacity and swelling properties. Hence, 

this will affect permeability of reservoir hence its performance.   

 

According to Kurniawan (2005), there are several effects of clay minerals in shaly 

reservoir in terms of reduction in effective porosity and permeability which are: 

• Further reduction in permeability due to migration of loose and fines clay 

minerals that plug the pore throat.  

• Water sensitivity; in terms of hydration and swelling of clay minerals when in 

contact with water (mud filtrate). 

• Acid sensitivity; when acid reacts with iron-bearing clays form a gelatinous 

precipitation that clogs pore throat and reduce permeability. 

• Influence logging tools responses.  

 
Therefore, it is important to identify the effect of clay minerals on log response as 

logging tools are used to determine porosity, water saturation and permeability of 

reservoir.  

1.3 Objectives  
 
The main objectives of this project are: 
 
1. To examine effects of clay minerals on logs response. 

2. To investigate effects of clay minerals on reservoir rock characteristics.  

3. To compare the impact of clay minerals on reservoir performance against reported 

works.  

1.4 Scopes of Study 
 
The scopes of study in this project are to examine types and characteristics of clay 

minerals in order to have better understanding on its properties. Next, the effects of clay 

minerals on logs response, reservoir characterization and performance are investigated. 

The effect of clay minerals on logs response will be based on the impact of clay 

minerals especially in gamma ray, resistivity, neutron and density logs. Then, the effect 
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of clay minerals on reservoir performance will be analysed from all aspects; drilling, 

water injection and acid stimulation. In addition, the impact of clay minerals on 

permeability of reservoir due to formation damage will be discussed.  

 

In this project, some of clay minerals samples are analysed in order to investigate the 

occurrences and identification of clay minerals. Various integrated methods have been 

used for this purpose such as thin section, SEM and FESEM/EDX. In addition, the 

effects of clay minerals on water relative permeability, saturation and capillary pressure 

curve are discussed into details. Moreover, the critical reviews on logs response and 

formation damage will also be conducted.  

 



 

4 
 

CHAPTER 2 

LITERATURE REVIEW 

 
 

2.1 Clay Minerals 
 
Clay minerals are complex alumina-silicates with definite crystalline structure. It has 

very fine-grained with particle diameter size less than 0.00625 mm (Kurniawan, 2005). 

Hence, it has high surface area property. In addition, clay minerals have a potential to 

shrink or swell in wet and dry conditions; depending on its properties. Guggenheim and 

Martin (1995), define that clays are organic material that have an ability to be moulded 

to any shape. In addition, it is also known as phyllosilicates as it produces the plasticity 

property. Figure 2.1 shows molecular, structural and building block of clay minerals.   

 

 

Figure 2.1: Basic Molecular and Structural Components of Clay Minerals (a) 
Silica-Tetrahedron and Alumina/Magnesium-Octahedron, (b) Clay Crystal 

Building Blocks (Trainor, 2013) 
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Clay minerals are structured in sheets of alumina-octahedral (Al(OH)6
-3) and silica-

tetrahedron (Si2O5
-2) lattices. In tetrahedral unit, a silicon atom is located in the centre of 

tetrahedron equidistant from four oxygen atoms or hydroxyls. Meanwhile for octahedral 

units, two sheets of closely packed oxygen or hydroxyl atoms into aluminium, iron or 

magnesium atoms are embedded into its structure.  

2.1.1 Types and Distribution of Clay Minerals 
 
Clay minerals are produced by degradation processes such as weathering and 

hydrothermal of other silicates, or by direct precipitation from a solution (Petroleum 

Geoscience Manual, 2011). Clay minerals can be divided into four major important 

groups which are Kaolinite, Illite, Montmorillonite (Smectite) and Chlorite. The origin 

and characteristics of these types of clay minerals are shown in Table 2.1, meanwhile its 

chemical composition and morphology is shown in Table 2.2.  

 

Table 2.1: The Origin and Characteristics of Clay Minerals (Petroleum Geoscience 
Manual, 2011) 

Types of Clay 
Minerals Origin  Characteristics 

Kaolinite 
- Dickite 
- Nacrite 

Produced by destruction of 
alkali feldspars under acidic 
conditions 

− main constituent of china clay 
− important pore-blocking 

mineral in sandstone 

Illite (Mica) 
(Vermiculite); 
- Hydroumicas, 

(Glauconite) 

Alteration of micas, alkali 
and feldspars, under alkaline 
conditions 

− important pore-blocking clay 

Montmorillonite 
- Smectite/ 

Fullers’ Earth 
- Bentonite 
- Nintronite 
- Beidellite 

Alteration of mafic igneous 
rocks and other silicates (low 
in K) under alkaline 
conditions (Ca/Mg present) 

− important base exchange 
properties (takes up and loses 
water); swelling clays 

Chlorite Alteration products of 
ferromagnesian minerals in 
metamorphic/igneous rock 

− important component in 
mudstones 

− pore blocking in sandstone 
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Table 2.2: Chemical Composition and Morphology of Clay Minerals (Ezzat, 1990) 

Mineral Chemical Composition Morphology 

Kaolinite Al4[Si4O10](OH)8 Stacked plate or sheets. 
Chlorite (Mg, Al, Fe)12[(Si, Al)8O20](OH)16 Plates, honeycomb, 

cabbagehead rosette or 
fan. 

Illite (K 1-1.5,Al4[Si7-6.5Al1-1.5)20](OH)4) Irregular with elongated 
spines or granules. 

Smectite 
(Montmorillonite) 

(1/2Ca, Na)0.7(Al, Mg, Fe)4[(Si, 
Al)8O20].nH2O 

Irregular, wavy, wrinkled 
sheets, webby or 
honeycomb. 

Mixed Layer • Illite-Smectite 
• Chlorite-Smectite 

Ribbons substantiated by 
filamentous morphology. 

 

In addition, clay minerals can also be classified into allogenic (detrital) and authigenic 

clays based on its occurrences during deposition (Ali et al., 2010). For allogenic clays, it 

is formed prior to a deposition and become mixed with sand-sized mineral grains during 

or immediate following deposition. Meanwhile, authigenic clays develop within the 

sand subsequent to burial. The characteristics and geological classification of allogenic 

and authigenic clays are shown in Table 2.3.   

 

The occurrence and distribution of allogenic and authigenic clays in sandstone 

reservoirs is shown in Figure 2.2. Pittman and Thomas (1979) indicate that clays with 

associated micropores may occur as detrital laminae, pellets (grains) of silt-sized or 

coarser material, or as authigenic (newly formed or regenerated) material.  

 

 

 

 

 

 

 

 

     Figure 2.2: Occurrence of Clay Minerals in Sandstones (Pittman and 
Thomas, 1979) 
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Table 2.3: Classification and Distribution of Clay Minerals  
(Modified Serra, 2007) 

Classification 
of Clays 

Characteristics and Geological Classification Clay 
Distribution 

Allogenic 

Granular Shales Grains of mudstone or 
floccules 

Structural 
shales 

Biogenic pellets 
(sometimes 
glauconotized) 

Detrital Clay Minerals Quartz grains randomly 
distributed 
Laminated layer Laminated 

shales 
Shale Matrix Detrital clay minerals 

filling the pore space 
Dispersed 

shales 

Authigenic 

Clay mineral from 
alteration in situ of 
feldspars and micas 

- discrete particles 
- pore lining 
- pore bridging 

Dispersed 
clays 

Pseudomorphoses 
replacement (i.e 
feldspars) 

 

Formation of clay 
mineral under 
hydrothermal influences 

Pore filling 

Fracture filling 

Laminate 
clays 

Concentration of 
insoluble constituents 
(clay organic matters) 
under pressure and 
solution  

Stylolites 

 

Furthermore, clay minerals can be distinguished into three modes of distribution which 

are laminar, structural and dispersed. The schematic diagram of clays distribution is 

shown in Figure 2.3. These types of clays distribution can appear instantaneously in the 

same formation. It is significant to identify the way of clays distribution in the formation 

as it will effect characterisation and performance of the reservoir.  
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Figure 2.3: Schematic Diagram of Clays Distribution  

(Formation Evaluation Manual, 2012) 
 
Table 2.4 shows characteristics and effect of clay distributions on reservoir 

characterization. From the table, laminar and structural clay distributions are only 

affecting overall average effective porosity of the formation. Meanwhile, dispersed clay 

distribution is more severe as it can reduce permeability of the formation.  

 

Table 2.4: Characteristic of Types of Clay Distribution  
(Formation Evaluation Manual, 2012) 

Clay 
Distribution 

Physical Properties Characteristics 

Laminar  − Thin beds or streaks of shale 
deposited between layers of reservoir 
rock. 

− Do not alter effective 
porosity and 
permeability of sand 
streaks.  

− Amount of porous 
medium decrease as its 
amount increase.  

Structural − Exist as grains or nodules in 
formation matrix with quartz or other 
grains. 

− Similar properties to 
laminar shale and 
nearby massive shales.  

Dispersed  − Dispersed throughout the sand and 
partially filling intergranular 
interstices. 

− Adhere to or coating the sand grains, 
or partially fill the smaller pore 
channels.  

− Reduces permeability 
of the formation.  
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In addition, Thomas and Stieber (1975) introduce a cross-plot of density and gamma ray 

log in order to determine shale configuration, sand fraction and sand porosity. This 

approach is an approximate solution that can be used on heterogeneous shaly sand into 

its constituent fractions of different types of clay distribution.  

 

 

 
 

 

 

 

Tyaga et al. (2009) has developed modified version of Thomas Stieber shale distribution 

model as shown in Figure 2.4. From this cross-plot, shale distribution and total porosity 

can be computed based on equations below: 

 

• Laminated shale only (shV = LV ) 

                            )( maxmax TshLT V φφφφ −−=                                                                  (2.1) 

 

• Dispersed shale only (shV = DV ) 

                            )1(max TshDT V φφφ −−=                                                                       (2.2) 

 

 

Figure 2.4: Thomas Stieber Shale Distribution Model  
(Tyaga et al., 2009) 
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• Structural shale only (shV = SV ) 

                            TshST V φφφ += max                                                                               (2.3) 

 

• Material balance for shale 

                            SDLsh VVVV ++=                                                                              (2.4) 

 

According to Naesham (1977), dispersed clays can be distinguished into two criteria 

which are crystal structure and location on pore walls (mineral surfaces) and/or within 

intergranular pore and pore throats. In addition, it can also exist as discrete, lining and 

bridging as shown in Figure 2.5 and its characteristics and effect on pore system are 

discussed as in Table 2.5.  

 

 

 

 

 

 

 

 

 

 

 

a) b) c) 

Figure 2.5: Schematic Diagram for Dispersed Clay Distribution a) 
discrete, b) lining c) bridging (Modified Neasham, 1977) 
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Table 2.5: General Types of Dispersed Clay in Sandstone Reservoir  
(Naesham, 1977) 

 
Types of 

Dispersed 
Clay 

Characteristics Effect on Pore System 

Discrete 
 

- Develop as pseudohexagonal, platy 
crystals attached as discrete particle 
to pore walls or occupying 
intergranular pores. 

- Reducing intergranular 
pore volume. 

- Behave as migrating 
“fines” in pore system. 

Linings 
 

- Attach to pore walls to form 
continuous and thin coating.  

- Clay crystal oriented parallel or 
perpendicular to the pore wall 
surface.  

- Perpendicular – 
intergrown to form 
continuous clay layer 
containing abundant 
micropore space. 

Bridging 
 

- Attach to pore wall surfaces extend 
into or completely across a pore/pore 
throat to create a bridging effect.  

- Extensive development 
of intergrown and/or 
intertwined clay crystal 
within pore system. 

 

Furthermore, Ali et al. (2010) identifies that authigenic clays in sandstone can be found 

in four forms: 

 

• Clay coatings – deposited on surfaces of framework grains. It acts as pore-lining 

clays in the interstices between grains in which it will grow outward from the 

grain surfaces and often merge with linings on opposing grains also known as 

pore bridging.  

• Individual clay pore-filling flakes or aggregates flakes – it can plug interstitial 

pores and exhibit no apparent alignment relative to framework grain surfaces.  

• Partially or completely replace detrital grains or fill voids left by dissolution of 

framework grains. 

• Fill vugular pores and fractures.  

 

In reference to work of Naesham (1977) on porosity and permeability relationship on 

dispersed clay morphology, discrete particle give highest porosity and permeability of 

the sands since discrete particle is only effect on intergranular pore system. Meanwhile, 

pore-lining has intermediate permeability as its pore walls extensively coated with clay 
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crystals. The lowest permeability sand is on pore-bridging due to its fibrous, intergrown 

crystals extending far into intergranular pores. This relationship is shown in Figure 2.6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6: Porosity and Permeability Relationship for Dispersed Clay Morphology 
(Naesham, 1977) 

 
Recent study done by Ajdukiewicz and Larese (2012) indicate that diagenetic clay coats 

affect reservoir quality by inhibition of quartz cement. The clay coats contain significant 

interparticle microporosity with high surface area, high irreducible-water saturation and 

lower permeability. These irreducible-water saturation can contributes to the overall 

conductivity of the formation, hence will influence electrical properties measured by 

logging tools.  
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2.1.2 Cation Exchange Capacity (CEC) 
 
Clean sand consists of pure silica and oxygen atoms which are known as quartz. 

However, with presence of clay minerals in the formation, there will be a substitution of 

silica (Si4+) by aluminium (Al3+) in mineral structure of clay; hence leave clay surface 

with negatively charge. Ketterrings et al (2007) indicates that negatively charge of clay 

minerals tends to balance the charge with positively charge cations in soil such as 

calcium (Ca2+), magnesium (Mg2+), and potassium (K+). The ability of clay minerals to 

exchange with other cations is called Cation Exchange Capacity (CEC).  The physical 

properties of clay minerals are shown in Table 2.6. CEC can be related to the surface 

area of clays depending on its types, for example, Kaolinite has the lowest and 

Montmorillonite has highest value of CEC and surface area.   

 
Table 2.6: Typical Properties of Clays (Ezzat, 1990; Darling, 2005) 

Types of Clay CEC 
(meq/100g) 

Surface Area 
(m2/gm) 

Grain Density 
(g/cc) 

Hydrogen 
Index 

Kaolinite 3-15 20 2.64 0.37 
Illite 10-40 100 2.77 0.09 

Montmorillonite 80-150 700 2.62 0.12 
Chloride 1-30 100 3.00 0.32 

 

Based on Drilling Engineering Manual (2005), charges on clay surfaces are based on 

two mechanisms which are isomorphous substitution and broken edge charges. In 

isomorphous substitution, the charge of clay minerals have been neutralised by 

adsorption of cation. The feasibility of cation exchange is depends on concentration of 

cations, population of exchange sites and nature of ions and clay itself. Meanwhile, 

broken edge charges is happen due to the broken of clay sheet which leads to the 

unbalanced charges on clay surfaces. High value of CEC means formation has higher 

amount of clay minerals, and it also indicates that clays can have more water holding 

capacity. In addition, CEC of clay minerals can also be related with swelling properties 

especially when it is in contact with fresh water and incompatible fluid.  
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Swelling Properties 

Swelling of clays happen when the exchangeable cations are hydrated and water 

molecules enter the space between clay structural layers and leads to the increases of 

distance between layers and the volume of clay expands (Zhou and Davis, 1998). Hence, 

swelling properties of clay minerals are depending on type of exchangeable cations, 

formation fluid and clay compositions. Generally, some clay minerals swell when wet 

and are plastic, while others are hard and dense (Woodhouse and Warner, 2004). As 

mentioned earlier, smectite group of clay minerals have an ability to swell with presence 

of water; hence it can give significant effects on porosity and permeability of the 

formation.  

 

According to Stewart and Mahmoud (2012), clay-water sensitivity can be take place by 

two mechanisms, which are through interlayer and interparticle interactions. In 

interlayer interactions, swelling of lattice volume happens due to hydration. This 

mechanism will cause static permeability reduction with no actual movement on clay. 

Moreover, for interparticle interactions, clay-water sensitivity is based on the behaviour 

of negatively clay surfaces charge which is due to cations substitution. 

 

Clay Bound Water 
 
Clay bound water is associated with water held to net-negatively charged on clays 

surface and water of hydration related with mineral charge balancing cations (Pallatt and 

Thornley, 1990). Figure 2.7 shows schematic model of clay bound water on clay 

surface. Since there is water that has already absorbed by clay minerals surface, hence, 

the existence of sodium counterions (Na+); to balancing negative charge of clay minerals 

are located further away from clay surface. In addition, there will be a shell of hydration 

water molecules surrounding sodium ion (Clavier et al., 1984).  
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Clay bound water is least mobile compare to free and capillary water. Thus, it is 

important to understand types of water in the pore spaces, its quality and distribution in 

evaluating porosity of reservoir. The types of water in pore space and its characteristics 

are shown in Table 2.7.  

 
Table 2.7: Types of Water in Pore Space (Pallatt and Thornley, 1990) 

Types of Water Characteristics 

Free Water - Able to flow under applied pressure gradient.  

Capillary Water - Immobile water held by capillary forces in 
regions of microporosity, for example dead-
end pores and pendular rings.  

Bound Water - Consists of both water strongly held to 
negatively charged clay mineral surfaces and 
water of hydration associated with mineral 
charge-balancing cations.  

 
 
2.2 Shaly Sand Interpretation Model 

 
Shaly sand interpretation can be divided into shale and clay model (Shahzad, 2005). 

Each model used different approaches in interpreting lithology, porosity, resistivity and 

water saturation in shaly sand. Some approaches will be discussed in this section, while 

others will be discussed in the effect of clay minerals on logs response section.  

 

Figure 2.7: Model of Water Bound to a Clay Surface (Clavier et al., 1984) 
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2.2.1 Shale Model 

 
In shale model, rock matrix is described as shale and quartz, in which shale consists of 

clay, mica, feldspar, iron oxide and organics. The volume of shale will be calculated 

based on gamma ray reading. Adeoti (2009) has suggested two methods in calculating 

volume of shale from Natural Gamma Ray:  

 

• Linear Method 

                                       

minmax

minlog

GRGR

GRGR
Vsh −

−
=                                                                               (2.5) 

 

            Where, 

            Vsh         = volume of shale 

GRlog   = gamma ray log reading in zone of interest 

GRmin  = minimum value of the gamma ray log  

GRmax = maximum value of the gamma ray log  

 

• Steiber Methods (Non-Linear) 
 

                          

)(5.1

)(5.0
)(

linearV

linearV
SteiberV

sh

sh
sh ×

×=                                                              (2.6) 

 
The non-linear method is used in unconsolidated rocks because they are more 

chemically immature and may contain radioactive minerals such as feldspars that could 

contribute to gamma ray; however these minerals are unrelated to shale volume 

(Adeyemo et al., 2005). 

Moreover, amount of shale can be determined by spontaneous potential (SP) and 

porosity logs. Kurniawan (2005) indicates that shale model is developing based on 

distribution of clays in the formation; whether it is laminated or distributed in the pore 

space.  
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2.2.2 Clay Model  

 
The lithology of clay model can be described as clay (kaolinite, illite, montmorillonite 

and chlorite,) and sand (quartz, mica, and feldspar). According to Shahzad (2005), clay 

abundance obtained from experimental measurement on representative formation rock 

can be used to calibrate clay abundance estimated from clay indicator logging data. By 

using this technique, clay abundance can be measure based on weight-percent of 

formation rock matrix as shown in Equation 2.7 below:  

 

                      
claydry

totalmaclaydry
claydry

W
Vol

−

−
−

−
=

ρ
φρ )1(

                                                          (2.7) 

 

Where 

claydryVol −  = volume percentage of clay abundance 

claydryW −    = Weight percentage of formation rock matrix 

maρ       = shaly sand matrix porosity (core analysis) 

claydry−ρ     = dry clay density (XRD analysis) 

totalφ         = formation total porosity 

 

In addition, Al-Ruwaili (2005) and Shahzad (2005) have indicated that clay volume can 

be calculated by using the volume of its clay bound water. It is shown in Equation 2.8a 

and 2.8b below, that the volume of clay bound can be calculated based on cation 

exchange capacity of clays in which it can be determined from experimental 

measurement of core samples and brine solution.  

 
                      totalVQwaterboundclay QVolVol φ**=−−                                                          (2.8a) 

 

           claydryclaydryQwaterboundclay VolCECVolVol −−−− = *** ρ                                         (2.8b) 
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Where,  

waterboundclayVol −−  = volume of clay bound water 

claydry−ρ   = density of dry clay 

QV          = clay cation exchange capacity (miliequivalent per unit volume of pore fluids) 

CEC      = clay cation exchange capacity (miliequivalent per unit mass of dry clay) 

 

They also proposed that saturation of clay bound water can be obtained from Equation 

2.9 based on the volume of the clay bound water obtained from Equation 2.8:  

                                
total

waterboundclay
cbw

Vol
S

φ
−−=                                                                  (2.9) 

 

2.3 Effect of Clays on Log Response 
 
Practically, evaluation of log analysis of clean sand formation can be done by using 

Archie’s equation and neutron density cross-plot. However, the existence of clay 

minerals in shaly sands can complicate the evaluation of log analysis as it can affect the 

reading of log response; porosity logs (density, neutron and sonic) and saturation logs 

(resistivity log). The existence of clay mineral in the formation will overestimate the 

value of porosity and underestimate resistivity reading. In addition, clays minerals could 

also affect electrical properties, capillary pressure and transmissibility in shaly sand (Al 

Ruwaili and Al Waheed, 2005). Hence, the investigation in logs response is important in 

obtaining accurate value of reservoir characteristics. Table 2.8 shows types of logging 

tool, its response, and effect towards presence of clay minerals.  
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Table 2.8: Logging Tools and Logs Response (Formation Evaluation Manual, 2012) 

Logging Tools Log Response Reasons 
Gamma ray − High value of gamma ray 

for shale formation. 
− Give reading on the 

radioactive contain in shaly 
sand.  

Spontaneous 
Potential 

− Reduce SP deflection.  − As clay in permeable 
formation produces an 
electrochemical membrane of 
opposite polarity of adjacent 
shale bed.  

Density − Lower shale density at 
shallow depth.  

− Compacting forces are not as 
great.  

Neutron − Greater apparent porosity 
than actual effective 
porosity of reservoir 
rock.  

− Since shales have appreciable 
hydrogen index.  

Sonic/acoustic log 
 

− Increase apparent 
porosity.   

− Interval transit time of clay 
increase.  

Resistivity − Underestimated the 
resistivity reading.  

− Existence of clay bound water 
gives the high conductivity 
value.  

 
 
Gamma Ray Log 
 

The main application of gamma ray log is to differentiate between shales and other 

formation and it also use for depth reference tools. Figure 2.8 shows the effect of 

different lithology on gamma ray logs. It is important to differentiate the value gamma 

ray reading for difference types of lithology as gamma ray reading can also being 

effected by borehole diameter and types of drilling mud.   

 
In principal gamma ray log measures natural radioactivity of the formation which 

consist of uranium, thorium and potassium. It normally reflects shale content of 

formations due to tendency of radioactive elements to concentrate in shale and clay. 

Based on study by Shahzad (2005), shale volume estimated by using gamma ray 

technique can be calibrated by shale volume obtained from experimental measurements.  
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The measurements based on naturally occurring gamma ray radiation frequently 

overestimate clay and shale volume because formation gamma activity not solely related 

to clay minerals (Adeyemo et al., 2005). Hence, a spectral gamma ray (SGR) is more 

preferable in differentiate between radioactive minerals in the formation and the 

radioactive due to clay minerals abundance. It is due to its ability to distinguish between 

thorium, uranium and potassium values in the formation. Thus, it can be used in 

determining types of clay mineral. 

 
Spontaneous Potential Log 
 
Spontaneous Potential (SP) log is also used as identification of permeable and non-

permeable formation. Its principal is based on spontaneous current flow and potential 

difference of different formation that provide charge carrier in borehole and formation 

fluids.  

Figure 2.8: Effect of Different Lithology on Gamma Ray Log 
(Glover, 2012) 
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Figure 2.9(a) shows the behaviour of SP curve towards interval of clean sand and shale 

for various formation water and mud filtrate salinities. Based on the figure, high 

conductivity formation water will give low reading of resistivity. Salinities difference of 

mud filtrate and formation water will give a reading on SP log. Meanwhile, Figure 

2.9(b) shows that fresh formation water gives positive value of SP reading compare to 

salt water.   

Resistivity Log 
 
Resistivity log can be used to determine permeability and tightness of formation. It can 

be based on comparison of resistivity reading for shallow, medium and deep depth of 

invasion. In addition, it also can be used to determine types of fluid in formation either 

hydrocarbon or water. In the case water, resistivity log gives high low reading of 

a) b) 

Figure 2.9: SP Curve Behaviour, (a) Behaviour of Clean sand and Shale 
Interval for Various Formation Salinities (Formation Evaluation Manual, 

2012); (b) Typical Response of SP Log (Glover, 2012). 
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resistivity log as it has a high conductivity hence electrical property. The effect of clay 

on conductivity and water saturation will be discussed in details in later section.  

2.3.1 Effect of Clays on Porosity 
 
The effect of clay on porosity can be investigated based on porosity logging; neutron, 

density, and acoustic/sonic logs. Porosity reading is very important on reservoir 

characterization as it determine the volume of oil in place in the reservoir. Neutron and 

density logs give the reading of total porosity, compare to acoustic/sonic log, in which it 

only give a respond on evenly distributed primary porosity. Log reading gives higher 

porosity value due to presence of clays. This phenomenon is not feasible as total 

porosity is including the value of clay minerals in the formation in which it is not an 

effective porosity and it does not content hydrocarbon fluids. Figure 2.10 shows 

schematic diagram of shaly sand components and its relation to various parameters used 

in well formation analysis.  

 
Referring to Hook (2003), effective porosity can be obtained as in Equation 2.10: 

                                  shshTotaleffective Vφφφ +=                                                               (2.10) 

 

 

Figure 2.10: Total, Effective and Core Porosity and Their Associated Water 
Saturations in Shaly Sands (Woodhouse, 2004). 
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From the equation, porosity of shales can be estimated from the value of core porosity or 

from the value of total porosity calculated from shales as effective porosity is assumed 

zero in shales. It is more preferable to use total porosity in approximating porosity of 

shales as estimation of shale porosity in from logs is difficult and mostly erroneous  

(Al-Ruwaili and Al-Waheed, 2005). In addition, it has been discussed by many authors 

that estimation of shale porosity from 100% shale section is not accurate due to: 

• The selection of a 100% shale section can be wrong 

• Measurement of porosity tools can be wrong due to presence of hydrocarbon in 

that section 

• 100% may not exist in the whole shaly sand interval to be evaluated. 

• Selection of 100% shaly sand interval may vary from one log analyst to another 

 

Hence, Equation 2.10 is reduced to: 

                                 shaletotaleffectiveTotal Vφφφ +=                                                             (2.11) 

 

Meanwhile, for the clay model, the effective porosity can be obtained by subtracting the 

total porosity with the volume of clay bound water (Shahzad, 2005): 

                                 waterboundclayeffectiveTotal Vol −−+= φφ                                                  (2.12) 

 
 
Acoustic/Sonic Log 
 
Since acoustic/sonic log give the reading on primary porosity, hence it responses 

independent of exact contents of pores spaces such as hydrocarbon, water and dispersed 

shale. As mentioned in Table 2.5, the existing of shale laminae in the sandstone will 

give high value of apparent sonic porosity. It is because the interval transit time for clay 

is higher than sandstone. 
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Neutron and Density Log 
 
The principal of neutron log response is based on the reading of hydrogen atom content 

in the formation. Hence, with the existence of clay minerals in the formation, neutron 

density log will give higher value of porosity reading. It is because neutron log response 

cannot differentiate between hydrogen atoms reading from formation water or clay 

bound water. The overestimate value of hydrogen atom will give high value of water 

saturation. Since the hydrocarbon saturation will be calculated based on water saturation 

value by (1-Sw), higher value of water saturation will lead to the oversight value of 

hydrocarbon placement in the formation.  

 
Meanwhile for the density log, its principal is based on the density reading of rock 

matrix. Generally, the properties of shale vary with formation and locality, with the 

range of density around 2.2-2.65 g/cm3 with the dispersed clay has lower density than 

interbedded shales in the pore space (Formation Evaluation Manual, 2012).   

 

Even though, each types of logging tools can give a value for porosity, but due to the 

complexity of the formation and effect of clays mineral, thus, it is feasible to use the 

combine log reading with the density and sonic logs in order to have better result 

(recognised/corrected by additional info) on effect of clay and types of hydrocarbon in 

lithology.  

According to Adeoti et al. (2009), volume of shale calculated from neutron-density data 

is more accurate compare to other method. However, it is affected by the presence of 

gas and light hydrocarbon in the reservoir, in which this can lead to the inaccuracy in 

this approach.  

2.3.2 Effect of Clays on Conductivity 
 

Effect of clay on conductivity can be linked to the electrical properties of the formation. 

Since clay minerals have the ability to absorb water to its surface, hence, it can give 

higher value of formation conductivity. In addition, additional electrical properties of 

shaly formation can all be due to cation exchange capacity between clays bound water 
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and free water due to charge imbalance along clay surfaces (Kurniawan, 2005). Hence, 

CEC can increase conductivity hence reduce the resistivity of formation. Based on the 

equation proposed by Archie (1942), formation factor (F) for clean water sand can be 

related with the resistivity and conductivity of the reservoir matrix and fluid as:  

                                 
0C

C

R

R
F w

w

o ==                                                                             (2.13) 

Where  

F    = formation factor 

  oR  = resistivity of a reservoir rock when fully saturated with aqueous electrolyte of   

resistivity Rw  

wC  = water conductivity  

0C  = conductivity of water saturated sandstone 

 
In addition, formation factor is also being a function of pore structure and pore 

distribution. It is based on experimental work done by Archie (1942), when at given 

brine water saturation, the greater the porosity of formation, the lower the resistivity of 

the formation. This relationship is shown as in Equation 2.14: 

                                  
m

a
F

φ
=                                                                                      (2.14) 

m is a cementation exponent and a is a constant value, which depends upon porosity.   

 

Furthermore, Archie equation in Equation 2.13 can be expressed based on the formation 

conductivity with a relation to porosity and water saturation.  

                                 }{ w
n
w

m
totalt CSC φ=                                                                        (2.15) 

Where  

tC  = formation conductivity (from deep resistivity log) 

wC = formation water conductivity 
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m   = cementation factor  

n    = saturation exponent 

 

Value of m and n can be determined experimentally based on the formation rock and 

fluid. This Archie equation is used in for the clean sand formation. Hence, for the shaly 

sand, Archie equation will be modified in order to compensate with the extra 

conductivity due to effect of clays: 

                                  }{ XCSC w
n
wt

m
totalt

vv

+= φ                                                               (2.15) 

 

X is a function of excess conductivity in the formation due to present of clay minerals. It 

can be expressed in terms of shale attributes such as conductivity and volume of shale 

(Shahzad, 2005). Meanwhile, the electrical properties of formation rock and fluid are 

indicated as mv and nv.  

 
The relationship of formation resistivity factor, F (Cw/Co) and Cw is shown in Figure 

2.11. Clean sand formation gives a straight line relationship, with constant value of 

formation factor, F. However, the value of formation factor starts to decrease as the 

formation becomes shalier. The effect of shale component of reservoir rock is on 

conductivity of water saturated sandstone, Co, as usually water conductivity, Cw, is 

presumed to be known (Worthington, 1985).  

 

 

 

 

 

 

 

 

 

 

Figure 2.11: Relationship Between Formation Factor and Cw for 

Shaly Reservoir (Worthington, 1985) 
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Furthermore, the relationship between Co and Cw can also be described based on Figure 

2.12.  Here, the clean sand line is given by the straight line of gradient 1/F. However, 

the data is deviated from straight line with the existence of shale effect. The effect of 

clay minerals in low salinity formation is not uniform compared to high salinity 

formation, hence it give non-linear relationship zone.   

 

 

 

 

 

 

 

 

 

 

 
 

 
Cexcess in Figure 2.12 is an indication of excess conductivity that is due to the presence of 

clay minerals in the formation. The value of excess conductivity increases with the value 

of Cw in the non-linear zone before it remains constant with increase value of Cw in 

linear zone. According to the study done by Kurniawan (2005), the linear zone is based 

on volume of shale model; Simandoux Model. In this model the porosity from density-

neutron data and shale fraction determined from GR, SP and other shale indicators have 

been used in order to calculate the volume of shale.    

2.3.3 Effect of Clays on Saturation 
 
The effect of clays on log response can lead to inaccuracy reading on water saturation in 

the formation. In clean sand formation, water saturation is calculated based on Archie’s 

equation: 

Figure 2.12: Schematic Variation of Co with Cw for Water-
Saturated Shaly Sands (Kurniawan, 2005) 
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Where, 

Sw = water saturation 

a   = constant value (often taken as 1) 

m  = cementation factor (varies around 2) 

n   = saturation exponent (generally 2) 

Rw = formation water resistivity  

Rt  = observed bulk resistivity  

 

However, this calculation is not valid when there is presence of clay in shaly formation. 

It is because Archie’s equation assumes that the formation water is the only electrically 

conductive material in the formation. Hence, calculation is not valid in the shaly 

reservoir as the extra conductivity due to the existence of clays in the formation cannot 

be encounter by this equation. Hence, the reading of water saturation will give an 

overestimate value. In addition, the resistivity value in this equation can be determined 

from the resistivity log with hydrocarbon will give high resistivity value compare to 

formation water as hydrocarbon is non-conductive fluid.  

 

According to Shahzad (2005), water saturation can be calculated based on shale and clay 

model. Water saturation from shale model can be calculated based on distribution of 

shale in the formation and also based on total volume of shale. Meanwhile, in clay 

model, water saturation can be calculated based on Waxman-Smits and Dual Water 

Model.  

 

Water Saturation Using Shale Model  

In shale model, laminated and dispersed shale simplified model are developed in order 

to calculate water saturation of the formation based on distribution of shale. In addition, 

total shale relationship can also be calculated regardless of its distribution in the 

formation.  
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A. Laminated Sand Shale Simplified Models 

In this model, the resistivity of interest zone (in direction of bedding plane) is parallel to 

the resistivity of shale and cleans sand laminae in the formation, as shown in Equation 

2.17 (Shahzad, 2005):  
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Where, 

Rt   = resistivity in the direction of bedding plane 

Rsd = resistivity of shale laminae 

Rsh = resistivity of clean sand laminae 

VL  = bulk volume fraction of laminated shale 

 

Water saturation can be calculated by implementing the relation between porosity and 

formation resistivity factor into Equation 2.18: 
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B. Dispersed Shale Simplified Models 

According to Shahzad (2005), dispersed shale model is developed to account the extra 

electrical properties causes pore water and dispersed shale. The relationship is shown in 

Equation 2.19: 
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Where, 

imφ   = inter matric porosity (includes all spaces occupied by fluids and dispersed shale) 



 

30 
 

imS   = fraction of inter matrix porosity occupied by the formation water, dispersed shale 

mixture 

shdR  = resistivity of dispersed shale 

q      = fraction of inter matrix porosity occupied by dispersed shale 
 
 
C. Total Shale Relationship 

Water saturation based on total shale relationship can be obtained by using Equation 

2.20: 
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Water Saturation Using Clay Model 

 
In clay model, Waxman-Smith and Dual Water Models of electrical conductivity are 

used for dual conductive pathways formed by pore brine and clay mineral exchange 

cations (Devarajan et al., 2006).   

 

A. Waxman-Smits Model 

 
In Waxman-Smits water saturation determination the extra conductivity is expressed as 

vBQ / wtS . This parameter is assumed to be independently in pore spaces of reservoir 

rock (Waxman and Smits, 1968). Therefore, it indicates that the conductivity of 

formation remains constant and true conductivity increases with formation shaliness 

(Shahzad, 2005). Hence, Equation 2.15 becomes: 
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Where, 

B   = specific conductivity of exchangeable cations (mohm/m per meq/cc) 
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vQ  = clay cation exchange capacity (meq/cc) 

0m = Waxman-Smits cementation factor 

0n  = Waxman-Smits saturation exponent  

 

Clay cation exchange capacity, Qv can be obtained by using CEC value of the clay 

minerals from the experimental measurement: 

                                              (2.22) 

 

However, since there is inconsistent experimental results from this model due to the 

presence of salt-free water at clay-water interface, the Dual Water model have been 

introduced in order to compensate the lack of previous model (Clavier et al., 1984).    

 

B. Dual Water Model 

Dual Water Model is introduced by supplementing water conductivity with conductivity 

from the clay counterions (Clavier et al., 1984). This model is based on three principles 

(Shahzad, 2005):  

 

• The conductivity of clay is due to its CEC 

• The CEC of pure clay is proportional to the specific surface area of clay 

• In saline solutions, the anions are excluded from a layer of water around surface 

of grain. 

 

In addition to that, Shahzad (2005) indicates that clay is model as consisting of two 

components; bound water and clay minerals. The amount of bound water varies 

depending on types of clays; higher for finer clays (with higher specific surface area). 

This model can be expressed based on formation conductivity:  
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Where, 

wfS  = formation water saturation (free from and not bound to clay) 

cbwS = clay-bound-water saturation   

wtS = total water saturation ( cbwwfwt SSS += ) 

wfC and cbwC = conductivity of formation and clay bound water respectively.  

*m and *n    = Dual Water’s cementation factor and saturation exponent respectively.  

 

The amount of non-clay water saturation, Swf, in the effective pore-volume can be 

calculated based on the effective water saturation, Sw,effective (Al-Ruwaili and Al-Waheed, 

2005): 
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2.4 Cross-Plotting 
 

Cross-plots are used especially in complex reservoir by combining different types of 

logging tools in order to get more accurate reading and do some correction in effect of 

clay minerals in the formation. In shaly reservoir, clay minerals will shift the cross-plot 

direction towards the shaly point (Heslop, 2003). Typically, combination of Litho-

Density and natural gamma ray spectrometry (NGS) logs, and combination of neutron-

density logs are used for clay minerals identification.  

2.4.1 Litho-Density Log and Natural Gamma Ray Spectrometry Log (NGS) 
 

Combination of litho-density and Natural Gamma Ray Spectrometry (NGS) log can be 

used to determine types of clay minerals. In this cross-plot, the petroelectric factor (Pe) 

is used with potassium (K) and the ratio of Thorium/Potassium (Th/K). The relationship 

is shown in Figure 2.13 and Figure 2.14 below.  



 

33 
 

 

 

Figure 2.14: Clay Identification Based on Photoelectric Factor (Pe) and 
Thorium/Potassium (Th/K) Relationship (Formation Evaluation Manual, 2012) 

 

 

 

 

Figure 2.13: Clay Identification Based on Photoelectric Factor (Pe) and 
Potassium (K) Relationship (Formation Evaluation Manual, 2012) 
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2.4.2 Combination of Neutron-Density Log  
 
Neutron-density cross-plot can also be used in determining shale volume. Heslop (2003) 

indicates that the combination of neutron-density logs clearly distinguish between sand 

and shales. From this cross-plot (as shown in Figure 2.15), three points can be defined; 

quartz point (0% porosity on a neutron sandstone scale and quartz grain density – 2.65 

gm/cc), water point (formation water – 100% porosity and 1.0 gm/cc) and shale point.   

 

 

Figure 2.15: Density-Neutron Crossplot (Heslop, 2003) 

 

2.5 Effect of Clay Minerals on Reservoir Performance 
 

The presence of clay minerals in reservoir is not only effecting the evaluation of 

formation petrophysical properties such as porosity, water saturation and conductivity, 

but it also effects drilling operations, water injection and acid stimulation work.  

 

This effect is due to swelling properties of clay minerals when they are in contact with 

water and also the fine migration of the clay particles into formation, which could 

damage the formation. These phenomena can lead to the permeability reduction of 

reservoir, either near wellbore or deep into formation, in which it depends on the 
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invasion of the fine migration into reservoir. In conjunction to that the productivity of 

the reservoir will be decreased as the reduction of porosity and permeability of the 

reservoir.  

  

Formation damage due to clays can be classified as that caused by swelling clays and 

non-swelling clays (Mohan et al., 1993). Swelling of smectite and mixed layer clays are 

due to changing in clays’ ionic conditions and lining the pores in which it will lead to 

the reduction of effective area of pore system for flow hence reduces formation 

permeability. In addition, the effect of clay swelling can also be indirect; swelling-

induced migration. In this mechanism, the swelling of clay particles lead to the breakage 

of fines that are in contact with them. Meanwhile, non-swelling clay such as kaolinite 

and illites tend to disengage from rock surface and migrate due to its ease dispersion and 

suspension stability. This mechanism is known as migration. The migrating particles can 

get trapped in pore throats thus causing a reduction in permeability. Figure 2.16 shows 

schematic diagram for these three mechanisms of permeability reduction in sandstone 

containing swelling and non-swelling. 

 

 

Figure 2.16: Mechanisms of Permeability Reduction Caused By Clays in Porous 
Media (A) Migration, (B) Swelling, (C) Swelling-Induced Migration  

(Mohan et al., 1993) 
 

According to Production Technology Manual (2011), magnitude of permeability 

reduction due to interaction between formation and fluid interaction depend on clay 

chemistry and morphology, amount of clay and chemistry of mud filtrate (pH and 

salinity).  
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2.5.1 Fine Migration 
 
Fine migration is generated by deformation of rock during compression and dilatation. It 

involves production of mobile, very small, solids into the formation due to release of 

clay from the pore system or due to invasion of fine particle (clays) in drilling fluids into 

formation. Civan (2007) proposes three primary sources of fine particles in petroleum 

bearing formation:  

• Invasion of foreign particles carried with the fluids injected for completion, 

workover, and improved recovery purposes.  

• Mobilization of in situ formation particles due to the incompatibility of the fluids 

injected into porous media and by various rock-fluid interactions.  

• Production of particulates by chemical reactions, and inorganic and organic 

precipitation.  

 

Well productivity impairment is more severe in the area of young unconsolidated 

sediments especially when production rate is increased too quickly (Production 

Technology Manual, 2011). It is because high production rate can lead to the high 

colloidal forces between hydrocarbon production and formation.   

2.5.2 Drilling Operations 
 
In drilling operations, the impairment between drilling fluids and formation should be 

taken into account. Damage of formation permeability can be due to the mud filtrate and 

penetration of the drilling mud solids into the formation (Krueger, 1986). In addition, 

mixing of incompatible drilling fluid with clay minerals leads to swell of clays hence 

leads to the stuck pipe problem. 

Clay minerals are used as an additive in drilling fluid as for viscosity, density and 

filtration control (Drilling Engineering Manual, 2005), hence the exact amount for 

mixing the additive into drilling fluid are crucial as to prevent the excessive or 

underweight of the added additive. In addition, Khodja et al. (2010) indicates that mud 

viscosity can affect the dispersion and swelling of shales and decreases the diffusion 

velocity in porous media. 
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In addition, Oort (2003) states that there are three mechanisms that can lead to the 

borehole instability due to the drilling fluid:  

• Elevation of the pore pressure due to mud pressure invasion, reducing the 

effective stresses. 

• Elevation of the swelling pressure (such as due to unfavourable cation exchange 

at clay sites), reducing the effective stresses.  

• Chemical alteration and weakening of cementation bonds. This mechanism 

adjusting shale strength and failure parameters (such as cohesion and friction 

angle). 

Moreover, the effect of clays on mud filtrate will give severe impact to the near wellbore 

permeability as in water-based mud, the salinity of mud filtrate is usually less than the 

formation water. Hence, the invasion of different fluid causes alteration of dispersed 

clay in formation (Stewart and Mahmoud, 2012). Thus, it is important to choose the 

types of mud to be used in drilling operations in order to reduce the effect of clay 

minerals in the formation. The depth of invasion of mud filtrate and formation damage 

can be determined by resistivity log.  

2.5.3 Water Injection  
 
Water injection is implemented in order to maintain reservoir pressure and increase 

sweep efficiency of hydrocarbon production. The effect of clay swelling during water 

injection is more severe when there is incompatible mixing fluid between injection fluid 

and formation water. The swelling of clay can lead to the reduction in permeability near 

the wellbore. In addition, the effect of clay minerals during water injection is also based 

on the difference in pH between injection and formation water (Kantorowicz et al., 

1986). This phenomenon can cause the release of clay particles and clay swelling due to 

the alteration of activity of cations in solution. In addition, difference in salinity and 

shear by moving pore water can also leads to the formation damage, as it can cause the 

release of weakly bonded clays,  feldspar and other minerals in pore system (Krueger, 

1986).   
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Moreover, the used of formation water as an injection fluid can also lead to the 

migration of clay minerals into the formation during water injection. It is because the 

formation water usual contains fine-grained particles such as clays and other minerals. 

The injection of clays into the formation can leads to the clogging of pore throat and 

also permeability impairment.  

2.5.4 Stimulation 

 
The effect of clay during stimulation job is also important as different types of clay will 

have different effect on types and concentration of acid used during stimulation job. 

Simon and Anderson (1990) indicates acid stability of the clay minerals is vital during 

acid stimulation job as it is to prevent the effect of clay mineral structure towards the 

exposure of the types of acid used in stimulation job.  

Many common minerals in sedimentary rocks such as clay minerals, siderite and 

ankerite are readily soluble in hydrochloric or hydrofluoric acids. Pittman and Thomas 

(1979) specifies that these minerals are also known as iron-bearing minerals, in which 

when dissolved into acid it can release iron which will precipitate in the form of a ferric 

hydroxide gel. Ferric hydroxide gel might block the pore throats and lower the 

permeability. In addition, in reference to their experimental work, Pittman and Thomas 

have summarized the relative response of common clay minerals to hydrochloric and 

hydrofluoric acids as shown in Table 2.9.  

Table 2.9: Relative Solubility of Clay Minerals in Common Treatment Acids 
(Pittman & Thomas, 1979) 

Clay Minerals 
Type of Acids 

Hydrochloric Acid Hydrofluoric Acid 
Kaolinite Slightly soluble Slightly soluble 

Illite Slightly soluble Slightly/moderately soluble 
Smectite Slightly soluble Moderately soluble 
Chloride* Highly soluble Highly soluble 

Mixed Layer Variably soluble Variably soluble 
*releases iron to system with dissolution 
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Moreover, according to Production Technology Manual (2011), majority acid 

stimulations of clastic reservoirs are carried out with mud acid (mixture of hydrochloric 

(HCl) and hydrofluoric (HF) acids). This acid is capable to dissolve minerals such as 

clays and mica, in which these minerals will undergo a series of reactions that result in 

precipitation of silica gel (Si(OH)4); hydrated form of silica.  

2.6 Summary on Literature Review  

 
The presence of clay minerals in reservoir leads to inaccurate estimation of water 

saturation, resistivity and porosity of the reservoir, hence leads to vague values of total 

gross volume of the reservoir and the estimation value of hydrocarbon-in-place.   

 

From the literature, there are lots of effects of clay minerals in reservoir properties and 

characterization. Hence, it is feasible to study the occurrence and characterization of 

clay minerals in details. Even though there are plenty of models have been introduced 

but no one models that can fixed all types of clay minerals problem in the reservoir. In 

addition, some of the calculations that need to be used for correction of clay minerals 

appearance can be inaccurate as the distribution and types of clay minerals are not look 

into details. Hence, the cross-plotting has been used in order to have better indication of 

volume of shale and identification of types and distribution of clay minerals.  

 
Moreover, the effect of clay minerals in terms of reservoir performance is also crucial. 

As the presence of clay minerals can leads to permeability impairment, hence reducing 

productivity of reservoir. Permeability reduction is due to fines migration and formation 

damage near wellbore region. Besides, drilling operation, water injection and acid 

stimulation activities can also leads to reduction in reservoir performance due to the 

effect of clay minerals.  
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CHAPTER 3 

METHODOLOGY/PROJECT WORK 

 
 
Research methodology is divided into log interpretation, clay minerals characterization, 

and analysis and critical reviews on effect of clay minerals on reservoir characteristics 

and performance. In log interpretation, the methods used for volume of shale calculation 

based on gamma ray, density-porosity and resistivity logging tools have been examined. 

In addition, types of clay minerals can also be identified by using spectral gamma ray 

(SGR) logging tool. Next, the types and properties of clay minerals are identified by 

using thin section, polarize microscope, SEM and FESEM/EDX. In addition, the 

investigation of the effects of clay minerals on water relative permeability, saturation, 

capillary pressure, logs response and formation damage are also being introduced.  

3.1 Log Interpretation  
 
In log interpretation, the log readings of gamma ray (natural and spectral), density, 

neutron and resistivity are taken from the case study done by Hussein and Ahmed 

(2012) on the shaly reservoir in Palouge-Fal Oilfield, Sudan.  

 

 

 
 

Log  
Interpretation 

Volume of Shale 

Gamma Ray 
 

Density-Neutron 
 

Resistivity 
 

Natural 
 

Spectral 
 

Figure 3.1: Log Interpretation (Volume of Shale) Flowchart 
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3.1.1 Gamma Ray Log 
 

Gamma ray reading can be based on natural gamma ray or spectral gamma ray reading, 

in which natural gamma ray is the technique used in determining volume of shale, 

meanwhile spectral gamma ray is used in identify types of clay minerals.  

 

Natural Gamma Ray 

 
Procedures for value of volume of shale calculation based on Natural Gamma Ray log 

are: 

1. The maximum and minimum values of gamma ray are identified.    

2. Then the gamma ray values at the interest zone are determined.  

3. Next, the values of gamma ray index are calculated based on the Equation 2.5: 

minmax

minlog

GRGR

GRGR
Vsh −

−
=  

4. The cut-off value of gamma ray is applied in order to differentiate between 

permeable and non-permeable zone.  

Note: The differentiation between these zones is important as it will be used for 

the next calculation (volume of shale calculation based using neutron-density 

log).  

               
Spectral Gamma Ray 
 
Procedures for types of clay mineral identification based on Spectral Gamma Ray log 

are: 

1. The values of Potassium, K (%) and Thorium, TH (ppm) on spectral gamma ray 

are determined.  

2. The graph of Thorium versus Potassium is plotted. 

3. Next, the plotted graph is compared with the graph of Thorium and Potassium 

cross-plot (as shown in Figure 18) in order to determining the types of clay 

minerals.  
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Figure 3.2: Clay Identification Based on Thorium and Potassium Relationship 
(Formation Evaluation Manual, 2012) 

 

3.1.2 Neutron-Density Log 
 
Volume of shale can be determined based in neutron and density logs base on Equation 

3.1 (Adeoti, 2009):  

                                  
DSHNSH

DN
shV

φφ
φφ

−
−=                                                                        (3.1) 

 
Where,     
 

Nφ   = neutron porosity in the sand 

Dφ   = density porosity in the sand 

NSHφ  = neutron porosity in adjacent shale 

DSHφ  = density porosity in adjacent shale 
 
Procedure of volume shale calculation based on neutron-density log: 

1. First, the values of neutron porosity at the sand formation from neutron log are 

determined.  
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2. Next, the values of density porosity at the sand formation from the density log are 

determined by using Equation 3.2: 

                       
fma

bma
D ρρ

ρρφ
−
−

=                                                                             (3.2) 

Where, 

Dφ   = porosity from the density log 

maρ  = density of rock matrix 

bρ    = bulk density read from the log 

fρ    = fluid density 

3. Finally, step 1 to 3 is repeated by using the values of neutron and density logs at 

shaly formation.  

3.1.3 Resistivity Log 
 
Resistivity log can also be used to calculate the volume of shale. Equation 3.3 (Adeoti, 

2009) is used for this purpose:  

                      
)_log()_log(

)_log()log(
)(

CLNRESDSHLRESD

CLNRESDRESD
yresistivitVsh −

−=                       (3.3) 

 
Where, 

RESD = resistivity log reading from zone of interest 

RESD_CLN = resistivity log reading from clean sand 

RESD_SHL = resistivity log reading from shale 

 

Procedures for volume of shale calculation based on resistivity log reading are: 

1. The resistivity log reading from the interest zone is determined.   

Note: the reading of resistivity log for this zone is taken at the permeable zone as 

has been indicated from the previous method (cut-off from gamma ray log).  

2. Then the readings of resistivity log from the clean and shaly sand are determined.  
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3.2 Clay Minerals Characterization 
 
Clay mineral characterization can be analysed based on thin section, polarized 

microscope, SEM and FESEM/EDX as shown in Figure 3.3. The purposes and 

application of each tool is summarized in Table 3.1. In this research, clay minerals 

characterization is based on the samples taken from Balingian Sub-Basin, Mukah, 

Sarawak.  

 

 

 

Table 3.1: Tools Used in the Clay Minerals Characterization and Its Purpose 

Analysis Purposes 

Thin Section To determine the texture, sorting, fabric 

and porosity of clay minerals.  

Polarized Microscope  To detect amorphous substances in 

porous media.  

Scanning Electron Microscope (SEM) To examine morphology/structure/crystal 

size of clay minerals.  

Field-Emission Scanning Electron 

Microscope/Energy Dispersive X-Ray 

(FESEM/EDX) 

To examine high-resolution of imaging/x-

ray microanalysis of clay minerals.  

- Surface structural analysis 

- Elemental materials analysis 

 

 

 

 

Clay Minerals  
Identification 

Thin 
Section 

Polarized 
Microscope 

 
SEM 

 

 
FESEM/EDX 

 
Figure 3.3: Flowchart of Clay Mineral Identification 
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3.2.1 Thin Section Analysis 
 

Thin section is the study of texture, sorting, and porosity of reservoir rock. In 

conjunction of investigating clay minerals micro and macro structures, the thin section is 

analyzed under polarized microscope in order to have better understanding of clay 

mineral characterization. Thin section is prepared in 0.03mm thick slice of rock attached 

to a glass slide with epoxy.  

3.2.2 Polarized Microscope Analysis 
 

Polarized microscope is used to analyse the thin section; to detect the amorphous 

substance and distinguish crystalline structure. There are two types of beams can be 

used; Plain Polarize Light (PPL) and Cross Polarize Light (CPL). In this study the 

magnification of 100 µm and 200µm are used in order to see the image of thin section.  

3.2.3 SEM and FESEM/EDX Analysis 
 
Scanning Electron Microscope (SEM) Analysis is used to analysis the abundance, size, 

topology and morphology of the clay minerals. From the SEM analysis the typical 

structure of clay minerals can be obtained. In this study Field-Emission Scanning 

Electron Microscope/Energy Dispersive X-Ray (FESEM/EDX) is also used in order 

determine more high-resolution of clay structures and also its chemical elementary.   

3.3 Effect of Clay Minerals 
 
The study on the effect of clay minerals will be discussed in details based on water 

relative permeability, saturation, capillary pressure curve, logs response and finally the 

formation damage. The purposes of this study are to see the effects of clay minerals on 

these parameters, and how to identify its impact and to eliminate the problem associated 

with clay minerals.  At the end, this investigation is related to reservoir performance in 

terms of permeability and productivity of the reservoir.  
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Figure 3.4: Flowchart of Identification of Effect of Clay Minerals 
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CHAPTER 4 

 RESULTS AND DISCUSSION 

 

In this section, the results and discussion are based on the data taken from the internal 

reports and training materials of PCSB and samples of clay minerals taken from 

Balingian Sub-Basin, Mukah, Sarawak. This section is divided into log interpretation, 

clay minerals characterization and the effects of clays on water relative permeability, 

saturation, capillary pressure curve, logs response and formation damage.  

4.1 Log Interpretation 

In this report, the feasibility of volume of shale calculation based on log interpretation is 

investigated. Appendix A shows the logs response of gamma ray (natural and SGR), 

resistivity, neutron and density logging tools. The volume of shale calculation from 

three difference logs is based on calculation at the interest zone in Zone A (1292.24m).  

4.1.1 Gamma Ray Log 

 

The reading of gamma ray is shown in Track 2 (Appendix A) for both types of logging 

tools, natural gamma ray and spectral gamma ray. From the gamma ray reading it shows 

that the natural gamma ray gives the overestimate value of gamma ray, hence the 

volume of shale. It is due to the fact that natural gamma ray can only measure the total 

radioactive in the formation regardless the sources of radioactive from other minerals in 

the reservoir. Based on the sample calculation shows in Appendix G, the volume of 

shale calculated is 0.75. In this study, the spectral gamma ray reading is used to identify 

the types of clay minerals based on thorium (ppm) and potassium (%) relationship. 

Generally, spectral gamma ray can distinguish the source of radioactivity in the 

formation hence giving better gamma ray reading. It is shown in Track 2 (Appendix A) 

that the reading of spectral gamma ray gives lower gamma ray value compare to natural 

gamma ray. Appendix D, Figure D-1 shows the plot of SGR reading (thorium versus 
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potassium) based on SGR reading in Appendix C. For the clay minerals identification, 

this plot is compared with the plot of thorium-potassium cross-plot in Figure D-2. From 

the plot it shows that the types of clay minerals presence in the reservoir are mainly 

mixed layer clay. Some of the minerals are glauconite and potassium feldspar in which 

this gives the indication of high value in natural gamma ray reading.  

 

4.1.2 Neutron-Density Log 

 

The log reading for neutron and density logs are shown in Track 4 (Appendix A). 

Appendix E shows the calculation of porosity reading based on density and neutron 

logs. The volume of shale calculated at Zone A is 0.45, in which this value is lower than 

calculated value from natural gamma ray logs. Hence, the use of combination of logging 

tools in this case neutron-density can give better indication of volume of shale. 

However, the use these logging tools can lead to the inaccuracy value of porosity 

calculation in presence of clay minerals. It is because neutron log will give higher value 

of porosity as it is due to the hydrogen index from the clay bound water.  

 

4.1.3 Resistivity Log 

 

The log response for resistivity log is shown in Track 3 in Appendix A. Appendix F 

shows deep, medium and shallow resistivity readings.  The value of shale calculation 

from resistivity log is 0.50, in which the value is almost the same with the calculation 

using neutron-density methods. This method also gives a lower shale volume compare 

to natural gamma ray. Even though this method is also feasible to be used in volume of 

shale calculation, the effect of clay minerals in term of formation’s electrical properties 

can lead to the inaccuracy of resistivity reading. It is because clay minerals add more 

conductivity to the reservoir hence gives underestimated value of resistivity reading. 

This phenomenon will affect water saturation calculation in later stage.  
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4.2 Clay Minerals Characterization  

Clay mineral characterisations are based on thin section, polarized microscope, SEM 

and FESEM/EDX analysis. The used of difference methods are important in order to 

have better understanding on clay minerals identification.  

4.2.1 Combination of Thin Section and FESEM/EDX Analysis  
 
Thin section is a petrography technique is used to examine the texture, sorting, fabric 

and porosity of samples of formation. The combination of thin section and Field-

Emission Scanning Electron Microscope/Energy Dispersive X-Ray (FESEM/EDX) will 

give better understanding towards pore and surface structure, and elementary of the 

minerals. Figure 4.1 to 4.3 show the results of thin section and FESEM/EDX analysis 

base on five difference samples. 

 

Figure 4.1(a) shows clay mineral sample of SH 13. From the thin section study, the 

sample shows microporosity of the clay minerals structure. Meanwhile, for FESEM 

analysis, it shows dissolution of potassium feldspar and flocculation of kaolinite clays; 

some of its plates are arrangement in edge-to-face towards each other. This can be an 

indication of the separation of the charges at surface and edge of clay particles.   

 

Meanwhile, Figure 4.1(b), SH 7 sample shows laminated shale and sand formation. 

From this figure the investigation on the difference between the pore structure of clay 

mineral and sandstone can be investigated. The clay minerals thin beds show the 

microporosity comparing to porosity of the sandstone lamination. The sandstone 

lamination has bigger porosity with the interconnected pore space, in which it indicates 

good permeability of that particular formation. The FESEM image for this sample also 

shows the flocculation of kaolinite.  
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Next is the thin section image taken at the sandstone lamination which located nearer to 

the clay minerals (as shown in Figure 4.2 (a): SH 3 sample). The thin section shows that 

the grain size are located close to each other, however it has a very low porosity and the 

pore is not interconnected (middle area). Meanwhile, FESEM image shows the platelets 

structure of kaolinite in this structure. This can be the reason of the poor porosity and 

permeability in between grain size as the presence of kaolinite clay mineral can lead to 

the fine migration hence blocking the pore space.  

 

Sample (SH 11) is the fourth sample used for this investigation (as shown in Figure 4.2 

(b)). This thin section shows the area of sandstone and invaded of clay minerals next to 

the sandstone lamination. The area near to the clay minerals formation has poorer 

porosity compare to the middle area of the thin section. In addition, both images from 

thin section and FESEM show the dissolution of chlorite clays.  

Finally, Figure 4.3 shows the result of sandstone sample (SS1). The result from this 

figure can be used as the comparison between the laminated formation (sandstone/clay) 

and also the difference between clay formation and sandstone formation. The figure 

shows the formation has great grain size with good porosity and permeability. 

Meanwhile, FESEM image show the quartz overgrowth and the precipitation of pyrite 

(cementation).  

 

Table 4.1: Summary of Atomic Percentage of Chemical Elements  

Chemical 
Element 

Atomic Percentage (%) 
SH11 SH13 SH3 SH7 SS1 

C 30.77 19.88 24.87 25.68 - 
O 51.71 58.05 56.65 53.09 69.77 

Mg 0.54 0.55 - - - 
Al 4.07 6.33 4.82 6.55 6.45 
Si 11.56 12.97 12.38 12.86 22.77 
K 0.60 1.16 0.88 1.29 1.01 
Fe 0.74 0.68 0.17 0.53 - 
S - 0.20 - - - 
Ti - 0.18 0.22 - - 
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Table 4.1 shows the summary of atomic percentage of chemical elements in the 

samples. Based on the table, sandstone sample (SS1) has high percentage of silicon (Si) 

and oxygen (O), this result is as expected as the sandstone contains quartz (SiO4) 

mineral. On the other hand, all the samples (SH samples) have high percentage of 

aluminium (Al), silicon (Si) and oxygen (O). This confirms that there is the presence of 

clay minerals in these samples. In addition, the traces of magnesium (Mg) and iron (Fe) 

can give an indication of the presence of chlorite groups of clay minerals especially in 

sample SH 11 and SH 13. Meanwhile, the traces of potassium (K) can be due to the 

presence of illite group or potassium feldspar mineral in the formation. Moreover, the 

carbon (C) is from the traces of hydrocarbon in the formation as also can be seen from 

the thin section (black spot). There are also the small percentages of sulphur (S) and 

titanium (Ti), the traces of titanium indicated the heavy metal component.  

4.2.2 Scanning Electron Microscope (SEM) Analysis  
 
Scanning Electron Microscope (SEM) is used to examine the morphology and structure 

of clay minerals. Figure 4.4 to 4.6 show difference types of clay minerals occurrence in 

the reservoir; a) kaolinite, b) illite, c) chlorite, d) smectite and e) mixed layer of illite-

smectite.  

Figure 4.4(a) shows structure of kaolinite clay minerals which is pseudo-hexagonal 

plates or booklet and stack above each other. Due to the structure of kaolinite, it is easier 

for its structure to break, hence leads to the potential of fines migration and can cause 

pore throat blocking therefore permeability impairment. The effect of fine migration due 

to clay minerals will be discussed later. From the literature, the kaolinite group has low 

cation exchange capacity and not expanding when in contact with water, hence it does 

not have swelling properties.  

Next is illite group of clay minerals. Figure 4.4(b) shows the structure of illite where it 

has fibrous structure growing coating the grain. Illite also has the same characteristics as 

kaolinite group, as it has a potential of fines migration and it is not expanding with 

presence of water even though it has low to moderate cation exchange capacity. 
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Furthermore, the structure of chlorite group of clay minerals is shown in Figure 4.5(a). 

This type of clay mineral also has a potential of fines migration and low cation 

exchanger capacity. Even though chlorite is not expanding, but its microporosity can be 

filled by water by having high capillary pressure. Chlorite group has platelets and 

honeycomb structure, in which it is identified as a coating on sandstone grains. 

Referring to the literature review, chlorite group is highly soluble with the hydrochloric 

and hydrofluoric acid used in the stimulation work. Hence, more precaution should be 

taken in conducting the stimulation job in the area of chlorite clay minerals as it is acid 

sensitive and it can release the iron into the formation by dissolution.  

 

 

 

 

 

 

 

 

 

 

 

a) b

ba) 

Figure 4.4: Images of a) Kaolinite and b) Illite under SEM Analysis (PCSB, 
n.d)  

Figure 4.5: Images of a) Chlorite and b) Smectite under SEM Analysis 
(PCSB, n.d.) 
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Moreover, the group of clay minerals that has been investigated is smectite group. This 

is the most important types of clay minerals as it has swelling properties by having high 

cation exchange capacity and it can expand with the presence of water. Figure 4.5(b) 

shows the structure of honeycomb and cornflake of smectite group. Besides of swells, 

smectite group can also lead to the fine migration. It is due to the fact that the expansion 

of smectite group during swells will detach the bonding between smectite clay and grain 

surface. In addition, clay minerals can also occur by mixed layer, for example mixed 

layer of illite-smectite in Figure 4.6. The figure shows the coating of smectite group on 

the rock grain and the bridging of illite group between the rock grains. The mixed layer 

types of clay minerals is more severe, as for this example, the exposure of smectite 

group to fresh water will cause the smectite to swell and choke off the pore throats.  

 

 

 

 

 

 

 

 

 

 

 
4.3 Effect of Clay Minerals 
 
In this section the effect of clay minerals in reservoir characterization and performance 

in terms of water relative permeability, saturation, capillary pressure curve, logs 

response and formation damage will be discussed.   

4.3.1 Effect of Clay Minerals on Water Relative Permeability 
 
In this part, the effect of clay on minerals on water relative permeability will be 

discussed based on two phenomena which are due to fine migration and clay swelling. 

Figure 4.6: Images of Illite-Smectite (Mixed Layer) under SEM 
Analysis (PCSB, n.d.) 
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The data from this study are taken from internal reports and training materials of PCSB. 

The relation between water relative permeability and water saturation will be examined.  

Effect due to Fine Migration 
 
The graph of relative permeability versus water saturation is shown in Figure 4.7. In this 

figure, water relative permeability decreases toward the increases of water saturation. At 

the point right before water relative permeability reduction can be indicated as the point 

of interstitial velocity that fine migration begins to occur. When the interstitial velocity 

is reached, the fines minerals such as clays and feldspar will start to lose its bonding 

from the grains surface. Hence, the fine minerals start to migrate through the formation. 

These mobilized fine minerals will block the pore throats leading to permeability 

reduction in the formation. 

Initially, reservoir is at the initial water saturation of (Swi) in which theoretically this 

value should be the same as the end point value of oil relative permeability. The end 

point value indicates the limit saturation of respective phases (water or oil) and the 

irreducible water saturation or residual oil saturation of the reservoir. During drilling 

operation, there will be an invaded of aqueous based drilling fluid into near wellbore 

formation. Due to fine migration during drilling operations, the irreducible water 

saturation of this region will increase as the capillary trapping phenomena near the 

wellbore region. This is shown in the figure that the water saturation of (Swi) is more that 

the end point of oil relative permeability. In addition, the relative permeability is 

reduced substantially due to increase tapping of invaded aqueous phase from drilling 

fluid.  

During the production, the oil production decreases with increases of production of 

water throughout of well lifetime. At earlier stage of production, water relative 

permeability is increasing as there is more flow of water in the formation, as it is 

displacing oil in the reservoir. The increases in well production rate will lead to the high 

colloidal force between the hydrocarbon production and minerals in the formation. 

Hence, it can release fine particles from the pore surface. The mobilised particles will be 

flow with the water in the formation until the point that the particles brought by the 
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water will supersaturated and the flow of water starts to decrease. Then, the fine 

particles will strand at the pore space and can also block the pore throat. The blocking of 

pore throat will leads to the assembling of water at the pore space. This phenomenon can 

lead to reduction of water relative permeability.  

Moreover, the effect of fine migration can also be discussed based the water injection 

operation. In this case the effect of fine migration usually induces by the injection of low 

salinity water. The same phenomenon as per discussion above will occur for the effect 

of fine migration during water injection. The reduction of water relative permeability 

will happen in water sweep zones hence diverts water flow to non-swept zones. 

In addition, it also leads to the diversion of water flow from initially more permeable to 

less permeability layers. Increase in oil and water mobility ratio facilitates the fluid 

diversion caused by fine migration. The released fines captured by neighbouring pore 

throats hence reduce relative permeability of water.  

 

Effect due to Clay Swelling   

 
Comparing to the effect of fine migration to the water relative permeability, the effect of 

swelling clay on water relative permeability is more severe. It is because the swelling 

clays will expand upon the hydration or when in contact with fresh water, thus this will 

reduce the pore volume and decrease the permeability. The graph for the relationship 

between relative permeability and water saturation and effect of clay swelling is shown 

in Figure 4.8.  

During clay swelling, high absorption of water can be associated with smaller mobility 

ratio of water adjacent to mineral surface. Hence, the relative permeability of water in 

that area will be reduced. In addition, pseudo immobile water content separates zones of 

greater water relative permeability value from others presenting a restricted flow. This 

phenomenon leads to consistent with intra/intercluster water content with aggregation of 

clay particles. In addition, the reduction in water relative permeability drops 

substantially even though maximum water saturation is high due to reduction in residual 

oil saturation by in viscosity reduction effects. 
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Figure 4.7: Effect of Fine Migration on Relative Permeability (PCSB, n.d.) 
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Figure 4.8: Effect of Clay Swelling on Relative Permeability (PCSB, n.d.) 
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4.3.2 Effect of Clay Minerals on Water Saturation 
 

In this section, water saturations are calculated based on three different approaches 

which are using Waxman-Smits-Thomas, laboratory data and Archie equation. In 

Waxman-Smits-Thomas, water saturation calculation is based on the corrected 

laboratory data adjusted with CEC of clay minerals. Meanwhile the values for Archie 

equation are based on the practical value that usually used for the clean sand. Based on 

the data taken from the laboratory work, the value of constant value (a), cementation 

factor (m) and saturation exponent (n) are shown in Table 4.2.  

 

Table 4.2: Value of Variable used for Saturation Calculation (PCSB, n.d.) 

Variables 
Waxman-Smits-

Thomas 
(corrected) 

Laboratory Data 
Archie 

Equation 
(Clean Sand) 

Constant Value (a) 1.0 1.0 1.0 

Cementation factor (m) m* 1.92 1.63 2.0 

Saturation exponent (n) n*  2.87 2.38 2.0 

 

Table 4.3 shows the result of water saturation calculation based on same formation 

porosity with the manipulation of the value of a, m and n shown in Table 12. Based on 

the result in Table 13, water saturation calculation based on Archie equation are 

excess/higher compare to other two methods. This can give the indication that the used 

of Archie equation that is used for clean sand will give extra value for water saturation 

as it cannot differentiate between water saturation from the pore system and water 

saturation due to the existence of clay minerals in the formation. It is because the 

presence of clay minerals in the formation will give extra water conductivity as it is due 

to the clay bound water at the surface of formation.   

 

Hence, the laboratory data have been conducted in order to investigate the values for a, 

n and m based on the core samples. However, this method is still inaccurate as it is not 

taking account the presence of clay in the formation. The used of laboratory data 

without the correction to the clay content will give overestimate value of water 
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saturation. Therefore, the Waxman-Smits-Thomas has been introduced as it can 

compensate with the excess water due to clay bound water. It is because in this method, 

the value has been corrected to the value based on CEC of the clay minerals. The 

calculation of water saturation based on respective CEC of the clay minerals is more 

accurate and feasible to be used for water saturation calculation.   

 

Table 4.3: The Result of Water Saturation Calculation (PCSB, n.d.) 

No Porosity 

Waxman-
Smits-

Thomas 

Laboratory 
Data 

Archie 
Equation 

(Clean Sand) 

Sw:%PV 
1 20.4 47 55 66 

2 17.8 56 68 87 

3 16.3 57 72 95 

4 20.1 54 64 79 

5 14.3 61 80 111 

6 25.2 59 59 69 

7 25.4 55 51 58 

8 27.3 57 52 57 

9 17.5 74 73 95 

10 20.0 60 70 88 

11 17.4 68 75 99 

12 14.4 74 86 119 

 

The exact value of a, n and m to be used in water saturation calculation is very important 

as it will give the accurate value of water saturation especially in the shaly formation 

with present of clay minerals. The accuracy on water saturation calculation is important 

as it will give the indication of saturation of oil, hence the stock tank oil-in-place 

STOOIP of reservoir. 
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4.3.3 Effect of Clay Minerals Distribution on Capillary Pressure  
 

The effect of clay minerals distribution on capillary pressure is shown in Figure 25. 

From the thin section analysis based on Figure 4.9(a), the grain size distribution is based 

on bimodal distribution behaviour. It shows by the main types of grain size (pore throat) 

in the formation; one with larger flow capacity than other. This can give an indication 

that the formation has the difference permeability based on the grain sorting, size and 

clay matrix.   

 

Based on the result, the upper part of the thin section has the higher permeability which 

is 218 mD compared to lower part of the thin section, which is at only 19 mD. This is 

due to the greater or coarser grain size at the upper side of the thin section compare to 

lower part of the thin section. Greater or coarser grain size will leave the bigger pores 

between the grains. Comparing to the lower or small grain size, the smaller grain size 

will fill the void between the particles. In addition, the changes of pore geometry under 

the thin section can also indicate the high heterogeneity reservoir rock.  

 

 

 

 

 

Figure 4.9: Clay Minerals Distribution a) Thin Section and b) Capillary Pressure 

Curve Relationship (PCSB, n.d.) 

 

a) b) 
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In addition, Figure 4.9(b) shows capillary pressure versus water saturation relationship. 

The figure shows two types of capillary curves which indicate two types of permeability 

in the formation. The graph of capillary pressure is shift upward to the right indicates 

that the red graph is the poorer permeability compared to green line. It also shows that 

the increase in irreducible water saturation. In addition, the discontinuity of lower 

capillary curve is caused by bimodal distribution. It can be related to the right area of the 

thin section that towards lower part of thin section it is the decrease in reservoir quality 

due to smaller grain size. Moreover, the higher capillary pressure is shown in lower 

permeability zone. It is due to the higher capillary pressure is needed in order to invade 

the fluid into the smaller pores and pore throats.  

4.3.4 Effects of Clay Mineralogy on Log Response 
 
In this section, the effects of lithology and mineralogy on log response are based on 

mineral composition of clays and silts as a constituent in the shaly formation are 

investigated. The effect on gamma ray, resistivity and density logs will be discussed in 

details. Table 4.4 show the types of lithology and minerals that can affect the log 

responses.  

Table 4.4: Effect of Lithology/Mineralogy on Logs Response (PCSB, n.d.) 

Lithology/Mineralogy Logging Tools Effect 

Common, variable 
potassium feldspar 

Gamma Ray 
 

• Increase response for clean sandstone 
• Inaccurate Vshale 
• Problem in comparing two cored 

sands  
Pore-filling kaolinite Gamma Ray 

 
• Kaolinite not detected 
• Slight under-estimation Vshale 

Laminar and structural 
clay 

• Resistivity 
• Gamma Ray 

• Undistinguishable from dispersed 
clay on logs 

• Under-estimation of porosity and 
permeability 

Siderite 
 

Density • Higher grain density 
• Under-estimation of total porosity 

Glaucony, other 
structural clays 

• Resistivity 
• Gamma Ray 

• Increase in gamma response 
• Decrease in net matrix resistivity 
• Neutron porosity could be over-

optimistic 
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The presence of common and variable potassium feldspar (k-feldspar) in the formation 

will give the huge effect on gamma ray log response. In principle gamma ray will give 

reading on naturally occur gamma ray radiation in the formation. However, this 

measurement can be inaccurate with presence of other radioactive minerals such as k-

feldspar in the clean sandstone, as it will give an overestimated value of gamma ray. 

Hence, this will affect the volume of shale calculation. Thus, in the presence of k-

feldspar in formation, the used of spectral log is more feasible as it can breaks natural 

radioactive reading of a formation into different types of radioactive material; thorium, 

potassium and uranium. In addition, the problem will also occurs when comparing two 

cored sands based on gamma ray response. It is because the core data will give 

difference values from the log readings. 

 

Moreover, pore-filling by kaolinite clay can also affect the gamma ray log response. 

Kaolinite is more likely to be migrated as fine particle in the formation hence; 

cementing the pore spaces or acts as pore filling. In general, kaolinite has a low gamma 

ray response compare to other clay minerals. Therefore, the sands with the pore-filling 

of kaolinite will give a lower value of gamma rays, thus will give slightly under-

estimated volume of shale as the cemented kaolinite is not detected by the gamma ray 

response as a clay minerals.  

 

Next are the effects of laminar and structural clays on resistivity and gamma ray logs, in 

which these distributions of clay minerals cannot be distinguished from dispersed clay 

on logs. As previously investigated, the types of clay minerals distribution plays 

important roles in calculating total porosity hence total volume of shale in formation. 

Dispersed clay minerals are more severe to the porosity and permeability of formation 

as its coating and filling intergranular space of grains. Hence, undistinguishable 

dispersed clay in formation can leads to underestimation of porosity and permeability of 

reservoir rock.  

In addition, the presence of siderite can also affect the log response. Siderite mineral 

commonly occurs in thin beds with shales; hence its effect on log response is important. 



 

66 
 

Generally, siderite has higher than normal grain density; hence it can give under 

estimation of total porosity.  

Furthermore, glaucony (granular mineral of mica group) and other structural clay 

minerals can give the effect on resistivity and gamma ray log. The presence of clay 

minerals gives increase in gamma ray response. However, with presence of clay bound 

water at the surface of clay minerals the net matrix of resistivity is decrease and give 

over-optimistic value on neutron porosity due to high value of hydrogen atom in clay 

bound water.  

4.4 Potential Formation Damage from Diagenetic Components 
 

The effect of fine migration and swelling of clay minerals in formation can lead to the 

formation damage especially near wellbore area. This phenomenon leads to permeability 

impairment hence the productivity of hydrocarbon in reservoir. Since there are wide 

ranges of the potential problems due to formation damage, hence this section is mainly 

discussed on the problem of formation damage associated with type of clay minerals and 

also its treatment as shown in Table 4.5. The formation damage will be discussed based 

on magnitude of potential problem with maximum magnitude of 3 and minimum 

magnitude of 1. 

 

The most sensitive mineral is smectite as it has high cation exchange capacity and it 

tends to swell with the presence of fresh water. Hence, the formation contains high 

smectite group minerals should be avoided from using the fresh water. According to 

Hensen and Smit (2002), it is more feasible to use potassium chloride (KCl) solutions as 

shale swelling inhibitors in drilling fluids. It is due to the fact that potassium ion (K+)-

containing clays show lower tendency to swell compare to sodium ion (Na+), as it has 

very weak interaction with water. However, if the formation damage has occurs, the 

used of acid stimulation (hydrochloric (HCL) and hydrofluoric (HF) acids) is needed 

with the correct pre- and post-flushes as to prevent the water blockage and improve 

flowback performance after the stimulation job.   
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Table 4.5: Potential of Formation Damage and Its Treatment (PCSB, n.d.) 

Magnitude 
of Potential 

Problem 

Sensitive 
Mineral 

 

Potential 
Problem 

 

Avoid 
Using 

 

Use Treatment 

3 Smectite Swelling 
 

Fresh 
water 
systems 

KCl of 
hydrocarbon 

systems 

Acidise 
with 
HCl/HF and 
use correct 
pre and 
post-flushes 
 

2 Siderite 
 

Iron 
Hydroxide 
precipitate 

 

Oxygen-
rich 
systems, 

Acid 
systems, 
oxygen 

scavengers 
 

2 Chlorite 
 

Oxygen-
rich 
systems, 
high pH 

2 Pyrite 
 

Iron 
Hydroxide 
precipitate, 
sulphate 
production 
 

Oxygen-
rich 
systems, 
fluids 
containing 
Ca+2, Sr+2, 
Ba+2 

1 Kaolinite Fines 
migration, 

High flow 
rates, high 
transient 
pressures 
 

Low flow 
rates, low 
transient 
pressures 

 

Use a clay 
stabiliser 
 

1 Illite Fines 
migration, 
microporosity 
“mushing” 
 

High flow 
rates, fresh 
water 
systems 
 

Low flow 
rates, KCl or 
hydrocarbon 

systems 
 

Acidise 
with 
HCl/HF and 
use correct 
pre and 
post-flushes 
 

 

Next, the second highest magnitudes of sensitive minerals are siderite, chlorite and 

pyrite. These minerals lead to iron hydroxide precipitation with the presence of oxygen-

rich system. Hence, the used of oxygen scavengers in order to lower the dissolved 

oxygen content in solution is needed. In addition, as these minerals can lead to iron 

precipitation, the use of acid system can prevent formation damage. Otherwise, the 

stimulation work as per discussion above and the chelating agents need to be used in 

order to eliminate the formation damage issue. The use of chelating agent is to control 
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the reaction between metal ions or to prevent precipitation of solids during acid 

stimulation.  Comparing between siderite, chlorite and pyrite; chlorite can also lead to 

iron hydroxide precipitation when there is high pH conditions, meanwhile, pyrite (iron 

sulphate-FeS2) can react with Ca+2, Sr+2 and Ba+2  metal ions to form iron hydroxide 

precipitation.  

 

Moreover, kaolinite and illite groups can also lead to formation damage even though the 

magnitude of formation damage is low. As per discussion in clay minerals identification, 

kaolinite and illite can lead to fine migration problem due to their structure and the 

bonding between clay and grain surface. The problem with fine migration is happened 

when there is high flow rates used during hydrocarbon production; hence the use of low 

production flowrate is more feasible with the presence of these types of clay minerals. 

For the case of kaolinite, the high transient pressure can lead to additional reason for 

fine migration as its platelets and stacks structure are easily broke. Hence, low transient 

pressure and use of clay stabiliser is needed for the kaolinite group in order to retain the 

clay platelets location by controlling the charge of treatment fluid. Meanwhile, illite 

group has an ability to “mush” the microporosity of the formation when there is a 

presence of fresh water. Since, illite is sensitive to fresh water, the use of potassium 

chloride (KCl) solutions is more feasible as per discussion above adds with the acid 

stimulation using hydrochloric (HCL) and hydrofluoric (HF) acids with the correct pre- 

and post-flushes.  
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CHAPTER 5 

CONCLUSION AND RECOMMENDATION 

 

5.1 Conclusion 

The presence of clay minerals in reservoir has a great impact on reservoir 

characterization and performance. The inaccuracy in formation evaluation in terms of 

porosity and water saturation can affect the determination of reservoir volume and 

hydrocarbon-in-place. In addition, the effect of clay minerals on logs response needs to 

be corrected by using various types of models and methods in order to obtain accurate 

value of porosity, water saturation and permeability. Moreover, the effects of clay 

minerals on reservoir performance are due to fine migration and swelling of clay during 

drilling, water injection and acid stimulation. This phenomenon leads to permeability 

impairment due to formation damage near wellbore area. The reduction in permeability 

will affect the productivity of the reservoir.  

Volume of shale is one of the important criteria in reservoir characterization as it needs 

to be corrected at the later stage. Hence, the effects of clay minerals in log interpretation 

based on gamma ray, neutron-density and resistivity logs are investigated. Based on 

calculated volume of shale in the log interpretation, natural gamma ray log gives 

overestimated volume of shale compared to calculation using neutron-density and 

resistivity logs.  

Furthermore, various integrated analysis on clay minerals characteristics used in this 

project show better understanding on clay minerals morphology, structure and 

occurrence. Based on the analysis of the effect of clay minerals on the reservoir, it is 

shown that there are reduction in water relative permeability due to fine migration and 

swelling of clays. In addition, more accurate value of water saturation can be obtained 

by using Waxman-Smit-Thomas model. In the analysis of capillary pressure curve, there 

is a reflection of capillary pressure curve due to heterogeneity and bimodality of the 
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reservoir. Next by examine the potential problem of formation damage, its mitigation 

plan and treatment has been introduced.  

5.2 Recommendations 
 
Based on the study in this project, there are some recommendations have been suggested 

in order to improve and obtain the better results in future research: 

 

i. Using Nuclear Magnetic Resonance (NMR) to calculate clay bound water and 

capillary water due to presence of clays and fine grains. 

 

Since in this report the calculation of volume of clay is based on conventional 

logging tools such as gamma ray, neutron-density and resistivity, the used of 

NMR can give better indication of clays volume. It is because NMR can compute 

clay-bound-water and capillary water directly from the log. The used of NMR can 

give accurate data as it can differentiate between free water, clay-bound-water and 

capillary water. Free water is the main interest in formation evaluation as it has 

flow capability comparing to clay-bound-water that is due to the clay minerals and 

capillary water which are immobile. Hence, the underestimate value of resistivity 

can be prevented. In addition, the identification of clay-bound-water from NMR 

can be used to correct the calculation of porosity and water saturation due to clay 

minerals. According to Mohammadlou and Mork (2012), the types of clay 

minerals can be identified based on different relaxation time (T2) cut off values of 

NMR at shorter times decay. In addition this method is more accurate compare to 

other method of calculating clay volume as other methods such as gamma ray is 

depending on the chosen values from clean and shaly rock samples; hence this will 

give different result for different method of calculation.  
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ii. Recommend to know in front the clay mineral composition before stimulation 

and water injection in order to avoid any damage due to sensitivity of clay 

minerals to acids and water. 

 

Acid stimulation treatment is used to improve permeability of formation by 

removing formation damage near wellbore area. However, the used of 

incompatible acids into the formation can leads to severe impact on reservoir 

permeability. Hence, it is recommended to do the critical study on types of clay 

minerals composition before conducting any acid stimulation job. In practice, 

hydrochloric (HCl) and hydrofluoric (HF) are the common acids used in 

stimulation job. However, the reaction between HCl acid and iron minerals can 

leads to the gelatinous ferric hydroxide. Meanwhile, the reaction of HF acid with 

calcium bearing and silicate minerals can leads to the inorganic scaling. Both of 

these phenomena can block the pore throat and reduce the permeability of the 

formation. Moreover, incorrect volume and concentration of acids can also 

damage the area near wellbore.  In addition, incompatible between clay minerals 

and water injection can also reduce the permeability due to fines migration and 

swelling properties of clay minerals. Hence, it is important to know in advance 

types of clay minerals because implementing acid stimulation and water injection.  

 

iii. Integrated studies on shaly or thin bed reservoir. 

 

It is recommended to use the integrated studies on shaly sand or thin bed reservoir 

in order to obtained accurate formation evaluation. The presence of clays in shaly 

reservoir leads to various inaccuracy in formation evaluation in terms of porosity, 

water saturation and permeability of reservoir. Various integrated studies based on 

combination of conventional logging tools, cross-plotting and some modelling 

need to be used and investigated into details. The used of conventional logging 

tools in evaluating reservoir leads to the underestimated value of hydrocarbon 

volume. In addition, direct log interpretations will oversight the evaluation of thin 

bed sand as the log has low vertical resolutions and it can only characterize on 
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average of multiple beds. Eshimokhai et al. (2012) have introduced the methods 

for better thin beds characterisation by using resistivity borehole imaging and 

NMR technique. In this technique, the core data are correlated with borehole 

images in order to confirm the presence of thin bed. In addition, the introduction 

of Thomas- Stieber equations using laminated sand-shale sequence also has been 

used in evaluation reservoir porosity, hydrocarbon saturation and shale volume.   

 

 
 



 

73 
 

REFERENCES 

 
 

1. Adeoti, L., Ayolabi, E. A., and James, P. L., 2009, “An Integrated Approach to 

Volume of Shale Analysis: Niger Delta Example, Orire Field”, World Applied 

Sciences Journal 7 (4): 448-452, 2009, International Digital Organization for 

Scientific Information (IDOSI) Publications.  

 

2. Adeyemo, D., James, P. L., and Saha, S., 2005, “Enhanced Clay Characterization 

and Formation Evaluation with Wireline Spectroscopy Tool: Examples from 

Nigeria”, Society of Petrophysicists and Well Log Analysts (SPWLA), 46th 

Annual Logging Symposium, June 26-29, 2005, Louisiana, US.  

 

3. Ajdukiewicz, J. M., and Larese, R. E., 2012, “How Clay grain Coats Inhibit 

Quartz Cement and Preserve Porosity in Deeply Buried Sandstone: Observations 

and Experiments”, The American Association of Petroleum Geologists (AAPG) 

Bulletin Volume 96, No 11.  

 

4. Ali, S. A., Clark W. J., Moore, W. R., and Dribus, J. R., 2010, “Diagenesis and 

Reservoir Quality”, Oilfield Review Summer 2010: 22, no. 2, Schlumberger 

Article.  

 

5. Al-Ruwaili, S., and Al-Waheed, H., 2005, “Improved Petrophysical Methods and 

Techniques for Shaly Sands Evaluation”, Saudi Aramco Journal of Technology.  

 

6. Archie, G. E., 1942, “The Electrical Resistivity Log as an Aid in Determining 

Some Reservoir Characteristics”, Journal of Petroleum Technology. 

 

7. Civan, F., 2007, “Reservoir Formation Damage: Fundamentals, Modeling, 

Assessment and Mitigation”, Second Edition, Elsevier, Gulf Professional 

Publishing, US.  



 

74 
 

 

8. Clavier, C., Coates, G., and Dumanoir, J., 1984, “Theoretical and Experimental 

Bases for the Dual-Water Model for Interpretation of Shaly Sands”, Society of 

Petroleum Engineers of American Institute of Mining Engineers (AIME).  

 

9. Darling, T., 2005, “Well Logging and Formation Evaluation”, Elsevier, Gulf 

Professional Publishing, UK.  

 

10. Devarajan, S., Toumelin, E., Torres-Verdin, C., and Thomas, E. C., 2006, “Pore-

Scale Analysis of the Waxman-Smits Shaly Sand Conductivity Model”, Society 

of Petrophysicistsand Well Log Analysts (SPWLA), 47th Annual Logging 

Symposium, Mexico, June 4-7, 2006.  

 

11. Drilling Engineering Manual, 2005, Manual of MSc Petroleum Engineering, 

Institute of Petroleum Engineering, Heriot Watt University, Edinburgh, UK.  

 

12. Ezzat, A., M., 1990, “Completion F;uids Design Criteria and Current 

Technology Weaknesses”, SPE Formation Damage Control Symposium, 

Lousiana, February 22-23, 1990.  

 

13. Eshimokhai, S., Akhirevbulu, O. E., and Oseni, L., 2011, “Evaluation of Thin 

Bed Using Resistivity Borehole and NMR Imaging Techniques”, Ethiopian 

Journal of Environmental Studies and Management, Vol. 4 No. 4.  

 

14. Formation Evaluation Manual, 2012, Manual of MSc Petroleum Engineering, 

Institute of Petroleum Engineering, Heriot Watt University, Edinburgh, UK.  

 

15. Glover, P., 2012, “Petrophysics” Manual of MSc Petroleum Geology, 

Department of Geology and Petroleum Geology, University of Aberdeen, UK.    

 



 

75 
 

16. Guggenheim S., and Martin, R. T., 1995, “Definition of Clay and Clay Mineral”, 

Joint Report of the AIPEA and CMS Nomenclature Committees, Clay and Clay 

Minerals, Volume 43, No 2, 255-256.  

 

17. Hensen, J. M., and Smit, B., 2002, “Why Clays Swell”, Journal of Physics, 

Chemical, 106,12664-12667, American Chemical Society.  

 

18. Heslop, K., and Heslop, A., 2003, “Interpretation of Shaly Sands”, London 

Petrophysical Society. 

 

19. Hook, J. R., 2003, “An Introduction to Porosity”, Petrophysics, Volume 44, No. 

3, May-June 2003, P. 205-212. 

 

20. Hussein, R. A. M., and Ahmed, M. E. B., 2012, “Petrophysical Evaluation of 

Shaly Sand Reservoirs in Palouge-Fal Oilfield, Melut Basin, South East of 

Sudan”, Engineering and Computer Sciences (ECS), Journal of Science and 

Technology, Volume 13, No. 2. 

 

21. Kantorowicz, J. D., Lievaart, L., Eylander, J. G. R., and Eigner, M. R. P., 1986, 

“The Role Of Diagenetic Studies In Production Operations”, Clay Minerals 

(1986), 21, 769-780, The Minerological Society.  

 

22. Ketterings, Q., Reid, S., and Rao, E., 2007, “Cation Exchange Capacity (CEC)”, 

Agronomy Fact Sheet Series, Department of Crop and Soil Sciences, Cornell 

University Cooperative Extension.  

 

23. Khodja, M., Kodja-Saber, M., and Canselier, J. P., 2010, “Drilling Fluid 

Technology: Performances and Environmental Considerations”, Products and 

Services; from R&D to Final Solutions, Intech.  

 



 

76 
 

24. Krueger, R. F., 1986, “An Overview of Formation Damage and Well 

Productivity in Oilfield Operations”, Journal of Petroleum Technology, Society 

of Petroleum Engineers.  

 

25. Kurniawan, 2005, “Shaly Sand Interpretation Using CEC-Dependent 

Petrophysical Parameters”, Dissertation of Doctor of Philosophy, Petroleum 

Engineering, Graduate Faculty of Louisiana State University and Agricultural 

and Mechanical College.  

 

26. Mohammadlou, M., and Mork, M., 2012, “How Log Interpreter Uses SEM Data 

for Clay Volume Calculation”, Scanning Electron Microscopy, InTech Open 

Science Journal.  

 

27. Mohan, K. K., Vaidya, R. N., Reed, M. G., and Fogler, H. S., 1993, “Water 

Sensitivity of Sandstones Containing Swelling and Non-Swelling Clays”, 

Collaids and Surfaces A Physicochemical and Engineering Aspects, 73(1993) 

237-254 Elsevier Science Publishers, Amsterdam.  

 

28. Naesham, J., W., 1977, “The Morphology of Dispersed Clay in Sandstone 

Reservoirs and Its Effect on Sandstone Shaliness, Pore Space and Fluid Flow 

Properties”, Society of Petroleum Engineers of American Institute of Mining.  

 

29. Oort, E. V., 2003, “On the Physical and Chemical Stability of Shales”, Shell 

E&P Company, USA, Journal of Petroleum Science and Engineering 38 (2003) 

213-235, Elsevier.  

 

30. Pallatt, N., and Thornley, D., 1990, “The Role of Bound Water and Capillary 

Water in the Evaluation of Porosity in Reservoir Rocks”, BP Research Centre, 

Sunbury-on-Thames, TW16 7LN.  

 



 

77 
 

31. Petronas Carigali Sdn Bhd (PCSB), n.d., Internal Reports and Training 

Materials. 

 

32. Pittman E. D., and Thomas, J. B., 1979, “Some Applications of Scanning 

Electron Microscopy to the Study of Reservoir Rock”, Journal of Petroleum 

Technology, Society of Petroleum Engineers of AIME.  

 

33. Petroleum Geoscience Manual, 2011, Manual of MSc Petroleum Engineering, 

Institute of Petroleum Engineering, Heriot Watt University, Edinburgh, UK.  

 

34. Production Technology Manual, 2011, Manual of MSc Petroleum Engineering, 

Institute of Petroleum Engineering, Heriot Watt University, Edinburgh, UK.  

 

35. Serra, O., 2007, “Well Logging and Reservoir Evaluation”, Editions Technip, 

France.  

 

36. Shahzad, A., 2005, “Clay Conductivity and Water Saturation Models”, Master’s 

Thesis, Applied Environmental Measurement Techniques, Civil and 

Environmental Engineering Water Environment Technology, Chalmers 

University of Technology, Sweden.  

 

37. Simon, D. E., and Anderson, M. S., 1990, “Stability of Clay Minerals in Acid”, 

SPE Formation Damage Control Symposium, SPE Journal.   

 

38. Stewart, G., and Mahmoud, J., 2012, “Well Test Analysis”, Manual of Heriot 

Watt Institute of Petroleum Engineering, Edinburgh, UK. 

 

39. Thomas, E. C., and Stieber, S. J., 1975, “The Distribution of Shale in Sandstones 

and Its Effect upon Porosity”, SPWLA, 16th Annual Logging Symposium, June 

4-7, 1975.  

 



 

78 
 

40. Trainor, K., 2013, “Soil Colloids and the Surface Chemistry of Soils”, AGS 105 

Soils, Soil Lesson and Supply Materials, Biogeochemical, Faculty of Yavapai 

College, USA.   

 

41. Tyagi, A. K., Guha, R., Voleti, D., and Saxena, K., 2009, “Challenges in the 

Reservoir Characterization of a Laminated Sand Shale Sequence”, Second 

SPWLA-India Symposium, November 19-20, 2009. 

 

42. Waxman, M. H., and Smits, J. M., 1968, “Electrical Conductivities in Oil-

Bearing Shaly Sands”, Journal of SPE, American Institute of Mining, 

Metallurgical, and Petroleum Engineers, Inc.  

 

43. Woodhouse, R., and Warner, H. R., 2004, “Improved Log Analysis in Shaly-

Sandstones – Based on Sw and Hydrocarbon Pore Volume Routine 

Measurements of Preserved Core Cut in Oil-Based Mud”, Society of 

Petrophysicists and Well Log Analysis. 

 

44. Worthington, P., F., 1985, “The Evolution of Shaly-Sand Concepts in Reservoir 

Evaluation” The Log Analyst, The British Company, Sunbury-on-Thames, 

England.  

 

45. Zhou, Z., and Davis, H. S., 1998, “Swelling Clays in Hydrocarbon Reservoirs: 

The Bad, The Less Bad, and The Useful”, Alberta Research Council, Canada.  

 
 
 



 

79 
 

APPENDIX A:  Logs Response (Gamma Ray, SGR, Resistivity, Neutron and 
Density Logging Tools) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

A 

Figure A- 1: Logs Response for Shaly Reservoir (Hussein and Ahmed, 
2012) 
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APPENDIX B: Calculation of Volume of Shale from Gamma Ray Log  
 

No. TVD 
(m) 

GR 
(API) 

GR - GRmin 
 

GRmax - GRmin 
 

Vshale 
 

1 1286.08 80.50 34.50 69 0.50 
2 1286.64 89.70 43.70 69 0.63 
3 1287.20 92.00 46.00 69 0.67 
4 1287.76 97.75 51.75 69 0.75 
5 1288.32 115.00 69.00 69 1.00 
6 1288.88 150.00 104.00 69 1.51 
7 1289.44 115.00 69.00 69 1.00 
8 1290.00 97.75 51.75 69 0.75 
9 1290.56 59.80 13.80 69 0.20 
10 1291.12 57.50 11.50 69 0.17 
11 1291.68 59.80 13.80 69 0.20 
12 1292.24 59.80 13.80 69 0.20 
13 1292.80 46.00 0.00 69 0.00 
14 1293.36 46.00 0.00 69 0.00 
15 1293.92 66.70 20.70 69 0.30 
16 1294.48 48.30 2.30 69 0.03 
17 1295.04 46.00 0.00 69 0.00 
18 1295.60 46.00 0.00 69 0.00 
19 1296.16 56.35 10.35 69 0.15 
20 1296.72 48.30 2.30 69 0.03 
21 1297.28 57.50 11.50 69 0.17 
22 1297.84 48.30 2.30 69 0.03 
23 1298.40 47.15 1.15 69 0.02 
24 1298.96 48.30 2.30 69 0.03 
25 1299.52 57.50 11.50 69 0.17 
26 1300.08 49.45 3.45 69 0.05 
27 1300.64 80.50 34.50 69 0.50 
28 1301.20 46.00 0.00 69 0.00 
29 1301.76 47.15 1.15 69 0.02 
30 1302.32 57.50 11.50 69 0.17 
31 1302.88 103.50 57.50 69 0.83 
32 1303.44 115.00 69.00 69 1.00 
33 1304.00 103.50 57.50 69 0.83 
34 1304.56 103.50 57.50 69 0.83 
35 1305.12 103.50 57.50 69 0.83 
36 1305.68 101.20 55.20 69 0.80 
37 1306.24 80.50 34.50 69 0.50 
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No. 
TVD 
(m) 

GR 
(API) 

GR - GRmin 
 

GRmax - GRmin 
 

Vshale 
 

38 1306.80 46.00 0.00 69 0.00 
39 1307.36 46.00 0.00 69 0.00 
40 1307.92 47.15 1.15 69 0.02 
42 1309.04 92.00 46.00 69 0.67 
43 1309.60 80.50 34.50 69 0.50 
44 1310.16 82.80 36.80 69 0.53 
45 1310.72 85.10 39.10 69 0.57 
46 1311.28 82.80 36.80 69 0.53 
47 1311.84 57.50 11.50 69 0.17 
48 1312.40 46.00 0.00 69 0.00 
49 1312.96 57.50 11.50 69 0.17 
50 1313.52 56.35 10.35 69 0.15 
51 1314.08 46.00 0.00 69 0.00 
52 1314.64 55.20 9.20 69 0.13 
53 1315.20 88.55 42.55 69 0.62 
54 1315.76 69.00 23.00 69 0.33 
55 1316.32 69.00 23.00 69 0.33 
56 1316.88 71.30 25.30 69 0.37 
57 1317.44 90.84 44.84 69 0.65 
58 1318.00 74.75 28.75 69 0.42 
59 1318.56 74.75 28.75 69 0.42 
60 1319.12 69.00 23.00 69 0.33 
61 1319.68 69.00 23.00 69 0.33 
62 1320.24 80.50 34.50 69 0.50 
63 1320.80 90.85 44.85 69 0.65 
64 1321.36 80.50 34.50 69 0.50 
65 1321.92 69.00 23.00 69 0.33 
66 1322.48 150.00 104.00 69 1.51 
67 1323.04 150.00 104.00 69 1.51 
68 1323.60 103.50 57.50 69 0.83 
69 1324.16 113.85 67.85 69 0.98 
70 1324.72 103.50 57.50 69 0.83 
71 1325.28 92.00 46.00 69 0.67 
72 1325.84 103.50 57.50 69 0.83 
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APPENDIX C: SGR Log Reading  
 

No. 
 

TVD 
(m) 

K 
(%) 

TH 
(ppm) 

TH/K 
 

1 1286.08 2.31 9.24 4.00 
2 1286.64 2.77 9.24 3.34 
3 1287.20 2.31 9.24 4.00 
4 1287.76 2.31 11.55 5.00 
5 1288.32 2.31 16.17 7.00 
6 1288.88 2.77 13.86 5.00 
7 1289.44 4.16 4.16 1.00 
8 1290.00 4.16 4.16 1.00 
9 1290.56 4.16 1.16 0.28 
10 1291.12 4.16 1.16 0.28 
11 1291.68 2.08 2.31 1.11 
12 1292.24 2.77 4.85 1.75 
13 1292.80 2.13 4.62 2.17 
14 1293.36 2.77 1.16 0.42 
15 1293.92 2.77 2.31 0.83 
16 1294.48 2.13 4.16 1.95 
17 1295.04 2.13 4.39 2.06 
18 1295.60 2.13 2.54 1.19 
19 1296.16 4.62 1.16 0.25 
20 1296.72 4.85 1.16 0.24 
21 1297.28 4.85 4.62 0.95 
22 1297.84 5.08 4.85 0.95 
23 1298.40 2.13 2.13 1.00 
24 1298.96 4.85 1.85 0.38 
25 1299.52 4.85 5.31 1.09 
26 1300.08 4.62 6.93 1.50 
27 1300.64 2.54 9.24 3.64 
28 1301.20 2.54 5.31 2.09 
29 1301.76 2.54 2.64 1.04 
30 1302.32 2.54 5.08 2.00 
31 1302.88 2.54 12.01 4.73 
32 1303.44 2.54 12.01 4.73 
33 1304.00 3.00 13.86 4.62 
34 1304.56 2.54 15.71 6.19 
35 1305.12 3.00 13.40 4.47 
36 1305.68 3.47 9.24 2.66 
37 1306.24 2.54 7.39 2.91 
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No. 
 

TVD 
(m) 

K 
(%) 

TH 
(ppm) 

TH/K 
 

38 1306.80 2.13 2.13 1.00 
39 1307.36 2.13 2.13 1.00 
40 1307.92 2.13 2.13 1.00 
41 1308.48 3.47 9.24 2.66 
42 1309.04 2.77 11.55 4.17 
43 1309.60 2.77 8.09 2.92 
44 1310.16 2.77 8.09 2.92 
45 1310.72 2.13 11.32 5.31 
46 1311.28 3.23 11.09 3.43 
47 1311.84 3.00 4.39 1.46 
48 1312.40 3.00 4.62 1.54 
49 1312.96 3.00 3.00 1.00 
50 1313.52 3.00 3.00 1.00 
51 1314.08 3.00 3.00 1.00 
52 1314.64 3.00 3.47 1.16 
53 1315.20 3.00 11.55 3.85 
54 1315.76 3.00 11.32 3.77 
55 1316.32 3.00 11.32 3.77 
56 1316.88 3.00 9.24 4.24 
57 1317.44 3.00 12.71 3.05 
58 1318.00 3.23 9.14 2.50 
59 1318.56 3.23 8.09 2.50 
60 1319.12 3.23 8.09 2.15 
61 1319.68 2.13 6.93 4.34 
62 1320.24 2.13 9.24 4.43 
63 1320.80 2.13 9.44 4.29 
64 1321.36 2.13 9.14 4.38 
65 1321.92 2.13 9.34 4.34 
66 1322.48 1.16 9.24 15.93 
67 1323.04 2.08 18.48 8.79 
68 1323.60 2.13 18.28 8.58 
69 1324.16 2.13 18.28 8.58 
70 1324.72 2.13 18.28 6.51 
71 1325.28 2.13 13.86 5.42 
72 1325.84 2.13 11.55 0.00 
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APPENDIX D: Determination of Types of Clay Minerals from SGR 
 

 
 
 

Figure D-1: Thorium and Potassium Relationship from SGR Reading 

Figure D-2: Types of Clay Identification Based on Thorium Potassium 
Relationship (Formation Evaluation Manual) 
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APPENDIX E: Neutron-Density Log Reading 
 
 
a) Density Log Reading 

 
No 

TVD 
(m) 

Density 
(g/c3) 

ρma-ρb ρma-ρf Porosity, 
Φ 

1 1286.08 2.45 0.2000 1.75 0.1143 
2 1286.64 2.44 0.2100 1.75 0.1200 
3 1287.20 2.55 0.1000 1.75 0.0571 
4 1287.76 2.55 0.1000 1.75 0.0571 
5 1288.32 2.45 0.2000 1.75 0.1143 
6 1288.88 2.25 0.4000 1.75 0.2286 
7 1289.44 2.17 0.4800 1.75 0.2743 
8 1290.00 2.14 0.5100 1.75 0.2914 
9 1290.56 2.14 0.5100 1.75 0.2914 
10 1291.12 2.13 0.5200 1.75 0.2971 
11 1291.68 2.15 0.5000 1.75 0.2857 
12 1292.24 2.13 0.5200 1.75 0.2971 
13 1292.80 2.1 0.5500 1.75 0.3143 
14 1293.36 2.1 0.5500 1.75 0.3143 
15 1293.92 2.15 0.5000 1.75 0.2857 
16 1294.48 2.1 0.5500 1.75 0.3143 
17 1295.04 2.1 0.5500 1.75 0.3143 
18 1295.60 2.15 0.5000 1.75 0.2857 
19 1296.16 2.1 0.5500 1.75 0.3143 
20 1296.72 2.07 0.5800 1.75 0.3314 
21 1297.28 2.07 0.5800 1.75 0.3314 
22 1297.84 2.04 0.6100 1.75 0.3486 
23 1298.40 2.07 0.5800 1.75 0.3314 
24 1298.96 2.05 0.6000 1.75 0.3429 
25 1299.52 2.1 0.5500 1.75 0.3143 
26 1300.08 2.11 0.5400 1.75 0.3086 
27 1300.64 2.27 0.3800 1.75 0.2171 
28 1301.20 2.05 0.6000 1.75 0.3429 
29 1301.76 2.15 0.5000 1.75 0.2857 
30 1302.32 2.35 0.3000 1.75 0.1714 
31 1302.88 2.53 0.1200 1.75 0.0686 
32 1303.44 2.45 0.2000 1.75 0.1143 
33 1304.00 2.54 0.1100 1.75 0.0629 
34 1304.56 2.5 0.1500 1.75 0.0857 
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No 
TVD 
(m) 

Density 
(g/c3) 

ρma-ρb ρma-ρf Porosity, 
Φ 

35 1305.12 2.5 0.1500 1.75 0.0857 
36 1305.68 2.43 0.2200 1.75 0.1257 
37 1306.24 2.35 0.3000 1.75 0.1714 
38 1306.80 2.07 0.5800 1.75 0.3314 
39 1307.36 2.07 0.5800 1.75 0.3314 
40 1307.92 2.27 0.3800 1.75 0.2171 
41 1308.48 2.45 0.2000 1.75 0.1143 
42 1309.04 2.45 0.2000 1.75 0.1143 
43 1309.60 2.35 0.3000 1.75 0.1714 
44 1310.16 2.25 0.4000 1.75 0.2286 
45 1310.72 2.45 0.2000 1.75 0.1143 
46 1311.28 2.45 0.2000 1.75 0.1143 
47 1311.84 2.15 0.5000 1.75 0.2857 
48 1312.40 2.1 0.5500 1.75 0.3143 
49 1312.96 2.25 0.4000 1.75 0.2286 
50 1313.52 2.1 0.5500 1.75 0.3143 
51 1314.08 2.08 0.5700 1.75 0.3257 
52 1314.64 2.08 0.5700 1.75 0.3257 
53 1315.20 2.45 0.2000 1.75 0.1143 
54 1315.76 2.35 0.3000 1.75 0.1714 
55 1316.32 2.3 0.3500 1.75 0.2000 
56 1316.88 2.35 0.3000 1.75 0.1714 
57 1317.44 2.4 0.2500 1.75 0.1429 
58 1318.00 2.3 0.3500 1.75 0.2000 
59 1318.56 2.35 0.3000 1.75 0.1714 
60 1319.12 2.17 0.4800 1.75 0.2743 
61 1319.68 2.33 0.3200 1.75 0.1829 
62 1320.24 2.31 0.3400 1.75 0.1943 
63 1320.80 2.35 0.3000 1.75 0.1714 
64 1321.36 2.25 0.4000 1.75 0.2286 
65 1321.92 2.18 0.4700 1.75 0.2686 
66 1322.48 2.55 0.1000 1.75 0.0571 
67 1323.04 2.53 0.1200 1.75 0.0686 
68 1323.60 2.63 0.0200 1.75 0.0114 
69 1324.16 2.48 0.1700 1.75 0.0971 
70 1324.72 2.46 0.1900 1.75 0.1086 
71 1325.28 2.6 0.0500 1.75 0.0286 
72 1325.84 2.5 0.1500 1.75 0.0857 
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b) Neutron Log Reading 
 

 

 

No. TVD 
(m) 

NPHI 
(dec)   

1 1286.08 0.438 
2 1286.64 0.438 
3 1287.20 0.420 
4 1287.76 0.408 
5 1288.32 0.450 
6 1288.88 0.330 
7 1289.44 0.282 
8 1290.00 0.300 
9 1290.56 0.276 
10 1291.12 0.276 
11 1291.68 0.300 
12 1292.24 0.300 
13 1292.80 0.282 
14 1293.36 0.276 
15 1293.92 0.270 
16 1294.48 0.258 
17 1295.04 0.270 
18 1295.60 0.270 
19 1296.16 0.282 
20 1296.72 0.288 
21 1297.28 0.288 
22 1297.84 0.312 
23 1298.40 0.312 
24 1298.96 0.330 
25 1299.52 0.312 
26 1300.08 0.276 
27 1300.64 0.282 
28 1301.20 0.282 
29 1301.76 0.318 
30 1302.32 0.270 
31 1302.88 0.330 
32 1303.44 0.330 
33 1304.00 0.306 
34 1304.56 0.330 
35 1305.12 0.330 
36 1305.68 0.300 

No. 
TVD 
(m) 

NPHI 
(dec) 

37 1306.24 0.282 
38 1306.80 0.270 
39 1307.36 0.276 
40 1307.92 0.270 
41 1308.48 0.312 
42 1309.04 0.312 
43 1309.60 0.318 
44 1310.16 0.324 
45 1310.72 0.324 
46 1311.28 0.318 
47 1311.84 0.330 
48 1312.40 0.270 
49 1312.96 0.282 
50 1313.52 0.288 
51 1314.08 0.276 
52 1314.64 0.282 
53 1315.20 0.270 
54 1315.76 0.330 
55 1316.32 0.324 
56 1316.88 0.318 
57 1317.44 0.330 
58 1318.00 0.342 
59 1318.56 0.288 
60 1319.12 0.312 
61 1319.68 0.282 
62 1320.24 0.330 
63 1320.80 0.336 
64 1321.36 0.330 
65 1321.92 0.306 
66 1322.48 0.330 
67 1323.04 0.360 
68 1323.60 0.378 
69 1324.16 0.396 
70 1324.72 0.420 
71 1325.28 0.342 
72 1325.84 0.360 



 

88 
 

APPENDIX F: Resistivity Log Reading 
 

No.  TVD Res Deep Res MSL Res Shallow 
  (m) (ohm) (ohm) (ohm) 
1 1286.08 16 8 8 
2 1286.64 12 8 8 
3 1287.20 16 6 10 
4 1287.76 20 10 12 
5 1288.32 22 10 14 
6 1288.88 24 14 16 
7 1289.44 40 6 34 
8 1290.00 60 6 40 
9 1290.56 200 4 60 
10 1291.12 400 3 100 
11 1291.68 380 4 100 
12 1292.24 400 6 80 
13 1292.80 1000 4 180 
14 1293.36 600 3.8 200 
15 1293.92 400 4 120 
16 1294.48 1400 3.8 200 
17 1295.04 800 3 200 
18 1295.60 300 2.2 160 
19 1296.16 400 4 100 
20 1296.72 800 3 200 
21 1297.28 1200 4 200 
22 1297.84 1200 4 190 
23 1298.40 1000 4 140 
24 1298.96 700 4 80 
25 1299.52 300 4 100 
26 1300.08 100 3.8 60 
27 1300.64 80 5 60 
28 1301.20 600 3 220 
29 1301.76 200 2.2 80 
30 1302.32 40 3 26 
31 1302.88 38 18 25 
32 1303.44 30 10 20 
33 1304.00 38 8 30 
34 1304.56 34 8 28 
35 1305.12 34 8 30 
36 1305.68 30 6 20 
37 1306.24 60 6 40 
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No.  TVD Res Deep Res MSL Res Shallow 
  (m) (ohm) (ohm) (ohm) 

38 1306.80 300 3 100 
39 1307.36 400 3.6 180 
40 1307.92 100 2.2 40 
41 1308.48 50 7 36 
42 1309.04 36 6 36 
43 1309.60 38 4 22 
44 1310.16 42 5 30 
45 1310.72 40 5 28 
46 1311.28 40 12 38 
47 1311.84 60 6 38 
48 1312.40 90 3.9 60 
49 1312.96 80 4 60 
50 1313.52 380 6 100 
51 1314.08 400 6 120 
52 1314.64 100 4 40 
53 1315.20 60 8 40 
54 1315.76 50 6 40 
55 1316.32 40 5 36 
56 1316.88 50 4.4 36 
57 1317.44 60 6 38 
58 1318.00 60 4.2 38 
59 1318.56 80 4.2 40 
60 1319.12 120 5 60 
61 1319.68 120 4 60 
62 1320.24 80 4 38 
63 1320.80 60 6 40 
64 1321.36 60 8 40 
65 1321.92 70 5 50 
66 1322.48 40 3.8 40 
67 1323.04 26 20 20 
68 1323.60 20 16 18 
69 1324.16 20 16 18 
70 1324.72 20 18 19 
71 1325.28 26 19 20 
72 1325.84 30 20 20 
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APPENDIX G: Volume of Shale Calculation (Sample Calculation) 
 
a) Gamma Ray Log 
 

minmax

minlog

GRGR

GRGR
Vsh −

−
=  

       

75.0
0.46115

0.4675.97

=
−
−=

 

 
 
b) Neutron-Density Log 
 

DSHNSH

DN
shV

φφ
φφ

−
−

=  

       

45.0
2857.0330.0

28.0300.0

=
−

−=
 

 
 
c) Resistivity Log 
 

)_log()_log(

)_log()log(

CLNRESDSHLRESD

CLNRESDRESD
Vsh −

−=  

      

50.0
48

46

=
−
−=

  

 


