
3D Sepak Takraw Game

by

Wan Muhammad Nasrullah bin Wan Mansor

Dissertation submitted in partial fulfilment of

the requirements for the

Bachelor of Technology (Hons)

(Information and Communication Technology)

JANUARY 20 II

Universiti Teknologi PETRONAS

Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

CERTIFICATION OF APPROVAL

3D Sepa.k Takraw Game

by

Wan Muhammad Nasrullah bin Wan Mansor

11018

A project dissertation submitted to the

Information Technology Programme

University Teknologi PETRONAS

in partial fulfilment of the requirement for the

BACHELOR OF TECHNOLOGY (Hons)

(INFORMATION AND COMMUNICATION TECHNOLOGY)

Approved by,

(Dr. Mohamed Nordin B Zakaria)

UNIVERSITI TEKNOLOGl PETRONAS

TRONOH, PERAK

January 2011

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the reference and acknowledgements,

and that the original work contained herein has not been oodertaken or done by

unspecified sources or persons.

WAN MUHAMMAD NASRULLAH BIN WAN MANSOR

ii

·ABSTRACT

Sepak Takraw is a sport which widely popular in South East Asia country, but they

are not very popular to the Western countries. Due to this, not much effort has been

done in creating a video game version of sepak takraw sport. This fact triggers the

idea of this project. "3D Sepak Takraw Game" project is about developing a 3D

computer game that simulates the playing of "Sepak Takraw". The main objective of

this project is to develop a computer game (prototype) that recreates the playing of

sepak takraw sport. The focus of this project is on the graphics and the game physics

parts of the game. In this project, a prototype has been developed using C++

language. Graphics part of the prototype was developed with the support of OpenGL

API. The prototype successfully implemented several fundamental graphics and

game physics techniques. It is also able to demonstrate the basic play of sepak takraw

sport. However, there are many other features that the prototype is lacking (e.g.

texture, sound, and multiplayer support). There are a lot of improvements needs to be

done to make the game more interesting. This dissertation describes the details of

this project.

iii

ACKNOWLEDGMENT

The author is indebted and grateful to everyone who has provided both direct and

indirect assistance to the completion of this project. Special thanks to Dr. Mohamed

Nordin B Zakaria who was the supervisor for this project for all the advices and

guidance. Also not to forget my friends who has been supporting me all the time in

accomplishing this project. Thanks for the time and effort that has been spent for

making this project become a reality. Without them, the project would not become

what it is today.

iv

Table of Contents

CERTIFICATION·~··~························-·~····-···-······ i
ABSTRACT nooonoouooooooooooouooououooooooo.nuoooouoooooooooooooooouooooooououooouooooouooono•oonoo•••••••n•••••• jjj

ACKNOWLEDGMENT .. iv

CHAPTER l ... - - - .. - I

I. INTRODUCTION ... I

1.1 Project Background .. I

I .2 Problem Statement ... I

1.3 Objectives .. 2

1.4 Scope of Study ... 2

CHAPTER 2 ... 4

2. LITERATURE REVIEW .. 4

2. I Sepak Takraw Overview .. 4

2.2 Gmphics ... 6

2.3 Sound ..•..... 10

2.4 Game Physics ... I 0

2.5 Gameplay ... II

2.6 Game Rules and Regulation ... 12

CHAPTER 3 ... 13

3. METHODOLOGY ... 13

3.1 Development Model... .. 13

3.2 Tools .. 14

3.3 Key Milestone .. 16

3.4 Project Activities .. 16

CHAPTER 4 ... 18

4. RESULT AND DISCUSSION .. 18

4.1 Graphics ... 19

4.2 Game Physics ... 23

4.3 Game Control ... 27

CHAPTER 5 .. 31

5. CONCLUSION AND RECOMMENDATION .. 31

5.1 Future Work and Recommendation ... 31

REFERENCES ... 34

APPENDICES .. 35

List of Figures

Figure 1: Sepak takraw match .. 5

Figure 2: An example of articulated figure .. 7

Figure 3: Official Sepak Takraw court layout ... 9

Figure 4: Basic formula ball bouncing physics .. 11

Figure 5: Example of a ball bouncing graph .. 11

Figure 6: Klonoa Beach Volleyball ... 12

Figure 7: A typical Iterative and Incremental Development Model cycle 14

Figure 8: Prototype Development Gantt chart ... 17

Figure 9: Comparison using bitmap font (above) against stroke font (below) 23

Figure 10: Bounding box example ... 24

Figure 11: Example of vector (5, 8, 3) ... 25

Figure 12: Vector reflection ... 26

Figure 13: Cursor (pink cone) pointing at the current selected player 29

Figure 14: Shot power gauge ... 30

List of Tables

Table 1: List of project activities ... 18

Table 2: Keyboard key assignments .. 27

Abbreviations

Abbreviation Full Meaning

OpenGL Open Graphics Librruy

API Application Programming Interface

OpenAL Open Audio Librruy

MSVC++ Microsoft Visual C++
------···----------------· --·· .. ···---·-·--·--·----·------·---·--·-------,-----

ISTAF Intemational Sepaktakraw Federation

GLUT OpenGL Utility Toolkit

IDE Integrated Development Environment

FPS Frames per second
-------" ~-L-- ---

CHAPTER!

1. INTRODUCTION

1.1 Background of Study

This project is about developing a 3D computer game that recreate the playing

of sepak takraw sport, thus, it is named as 30 Sepak Takraw Game. The area

of interest in this game development is about the implementation graphics and

animations methods in simulating the sport. This is quite challenging because

there is no sepak takraw computer game that currently available on the market.

The implementation of this project will be represented by the game prototype

which expected to be built on C++ language with the support ofOpenGL API.

The prototype will only demonstrate the very basic features of a typical sport

game.

1.2 Problem Statement

Currently, many sports have been recreated as computer games. For example,

FJFA series by EA Sports and Pro Evolution Soccer series by Konami Digital

Entertainment for soccer, NBA Live by EA Sports for basketball, and NHL

series by EA Sports for ice hockey. However, it is almost impossible to tind

sport game that simulates the sepak takraw sport. Based from my research, the

only Sepak Takraw simulation game that I was able to find is "Deca Sports

DS" by Hudson Soft. Yet, it is actually a collection of several mini games. It

consists of 10 games of different sports (Goergen, 2010)- sepak takraw is one

of them. Though, the game was not well designed and it is only for Nintendo

DS console -not for PC.

1

The game developers seem not really bothered to make a game that recreates

the playing of sepak takraw. The most possible reason is because of the sport

game developers always focused on developing games for widely known

sports because of its marketability - especially those prominent sport game

developers like Electronic Arts Sports, Konami Digital Entertainment and 2K

Games.

Due to above issues, there is not much works are done in recreating the sepak

takraw sport as computer game. Following this matter, it triggers the idea of

this project- to develop a 3D Sepak Takraw game.

1.3 Objectives

Followings are the objectives of this project:

1.3.1 To study and apply fundamental computer 3D graphics in modeling

the sepak takraw game

1.3.2 To study and apply basic game physics in simulating the sepak takraw

game

1.3.3 To develop a computer game (prototype) that recreates the playing of

sepak takraw sport

1.4 Scope of Study

This project is mainly focused on the graphics and animations parts of the

game since they are likely the most complex part of the game. All graphics and

animations that appear in the game - like the movement of the player and the

ball- must be carefully studied to attain the best visual simulation.

Besides that, the next thing that needs to be considered is the game physics. It

is important to study the physics of the game to make the game appears to be

even more realistic to the user. For instance, the frictions, the gravity and the

2

ball trajectories, all of these factors must be precisely calculated by the game

physics engine to get the most sensible gameplay.

3

CHAPTER2

2. LITERATURE REVIEW

This chapter will describe several theories related to the game design and

information about sepak takraw.

2.1 Sepak Takraw Overview

Sepak T~.kraw is a sport that originated in Southeast Asia. The name of the

game comes from the words Sepak, a term used in Malaysia, Singapore and

Indonesia which translates into "kick", and Takraw, a term used in Thailand

which means "woven ball" (Hurst, 2005). In English, sepak takraw is known as

"kick volleyball".

In an article titled, "DECA SPORTS OS - History of Sepak Takraw", Justin

Vonderach describe sepak takraw as a hybrid sport mixing both. Soccer and

Volleyball. It is similar to volleyball in sense that the ball is volleyed over a net

until it touches the ground. It is also similar to soccer for the fuct that only feet,

knees, chest and head are allowed to touch the ball.

The origins of sepak takraw can be traced back to 15th century Sultanate of

Malacca. During that time Sepak takraw is known as "sepak raga". It is

considered as traditional game played by local people. Originally, the sport was

played in open area only by the royal family. Later, it was spread to all local

people.

Sepak raga was played in a team whereby they play the ball in a circle. The

game requires skills in volleying and controlling the ball. In earlier times, the

4

ball was made of rattan which was can easily obtained locally. Though, with

the technology advancement, the ball is now made of plastic.

In 1962, sepak raga started to be played on the court with net. The number of

player has fixed to three for each team. Nowadays, sepak takraw is played by

all people in South East Asia. It is officially recognized by several countries

and has become a part of SEA Games in the year of 1965. The sport name also

has been changed to "Sepak Takraw".

The play of Sepak Tak.raw international is controlled by the 1ST AF

(International Sepak Takraw Federation). Basically, the current way of playing

Sepak Takraw consists of two sides with three players in each team. The first

side serves the first ball to start the first set. The victor of the first set then has

the choice of choosing who servers next. After the serve. players are free to

move about their court within the boundaries. If a team commits a fault, the

point along with service is awarded to the opposing team. Whichever team

reaches 21 points first wins. Any use of the hands will result in change of

service.

Figure 1: Sepak takraw match

5

2.2 Graphics

As mentioned earlier, the focus of this project is on the implementation of the

graphics and animations in simulating the sport. Graphics plays the most

significant part on most of modern games. lt directly reflects the overall rating a

game. The game graphics referred here also include the game animations. There

are many methods of creating a game graphics. Each method has its own

advantages and djsadvantages.

For this project, only basic graphics techniques will be implemented to narrow

down the project scope. However, this project still working 30 graphics instead

of2D graphics.

2.2.1 Graphics API (DirectX vs. OpenGL)

"DirectX vs. OpenGL" has been a common topic of discussions

among developers when it comes to graphics programming arena.

Both API has its own advantages and disadvantages. UndoubtedJy,

most of computer games av.ailable on the market use Microsoft

DirectX API in developing the game (including the graphics part).

This is because of the fact that DirectX is easier to be used for games

graphics development. It is also packaged with other APls (e.g.:

DirectSound, Directlnput).

However, for this project, OpenGL API will be used in developing

the graphics. Unlike Microsoft DirectX, OpenGL is open source.

Moreover, there is a toolkit known as GLUT (OpenGL Utility

Toolkit) which is widely distributed on the internet that makes the

graphics development work using OpenGL simpler. In term of

complexity, OpenGL draw call cost is lower than Direct3D, hence,

resulting in better performance (Green, 2006). In addition, there are

many OpenGL tutorials available on the internet making it a better

choice for graphics programmer with low experience.

6

2.2.2 Player Representation

ln this project each player will be represented as an articulated figure.

Articulated figure only represent the major parts of the model. It is

easy to be animated and commonly used by video game artists and in

the movie industry.

"'

Flsure 2: An example of articulated fl&ure

Kiss (2002) explained the articulated figure as a figure which consists

of rigid links known as segments in H-Anim terminology - is a

standard for articulated human figures (Web30 Consortium, 1999).

Those segments are connected by joints with I, 2 or 3 Degrees Of

Freedom (DOFs). The control methods may use kinematics (time­

based joint rotation values) or dynamics (force-based simulation of

movement) to drive the articulated figures, methods for which the

concepts and basics are presented in many animation textbook.

7

Simulating the player animations is the hardest part in graphics

programming for this game. To get the most realistic animation. the

movements of the real sepak takraw player will be used. The

movement of the real player will be captured (motion capturing) and

stored as key frame data - i.e. array. Interpolation of data may be

needed between the key frames to get a more fluid animation.

Traditionally, computer animation data is stored as key-frame data.

This data structure has two components: the key which specifies

relative time moments (or frame) and the animation data values at that

particular time (e.g. the angle of rotation data). Getting these data

values can be done manually (by talented animators) or can be

captured automatically using different types of motion capture

hardware like body motion sensors. However, the motion capture

device is very rare and expensive.

2.2.3 Environment Representation

The environment here refers to the background and all objects around

the court area - including the court itself. The environment must also

be properly designed so that the game prototype can deliver the most

realistic gameplay to the user. All environment objects that are fixed

to the game law will be designed according to the game law.

Followings are the extracted important environment objects

infonnation that can be useful to the project:

8

• The Court

Figure 3 below show the otlicial dimension of sepak takraw court.

Fi&ure 3: Official Sepak Takraw court layout

• The Net Posts

Post height: 1.55m

Post Radius: 0.04m in ntdius.

Post Position: 0.3m away from the sideline and in line with the

Center Line

• The Ball

Ball circumference: 0.42m - 0.44m

9

2.3 Sound

Compared to graphics, the sound is less significant to the user. It is also not

really interested in this project domain. Nonetheless, it is still good to

considered about it and implemented it. Normally, in a sport video game, there

are at least two types of sound. They are the game sound and the background

sound. I aking a soccer game for example, the game sound refers to all on the

pitch sounds which includes the ball sound and the referee whistle, while the

background sound may refers to the sound made by the crowds or the game

background music. For this project. only the game sound will be considered -

which is the ball sound effect.

The sound (audio) part of this project will be developed with the support of

OpenAL (Open Audio Library) API.

2.4 Game Physics

The game physics is another important point to be considered in this project.

For the best result, the game prototype must implement all necessary physics

elements so that the simulation will appear to be logic (realistic). For this

project, the object that heavily applies the physics is the ball. The ball requires

a lot of physics factors to be considered, for example, the ball speed,

acceleration, friction, and elasticity.

2.4.1 Bouncing Ball Physics (Gravity)

There is an article written by Helmut Knaust explaining about the basic of

bouncing ball physics. Knaust said that when a ball is subject to free fall, at

time (t) the ball will be at height (h) if g is the gravity, given the following

formula:

10

)'ttl

10

•
fi

•
2

g
h(t)= h- 2 ~

Figure 4: Basic formula ~II bouncina physics

!'Jill sec el:lpRcl

2 • 6 I 10
I

u

Figure 5: Example of a graph that shows the height of the ball, y(t), qalnst time, t

2.5 Gameplay

Since there is no sepak takraw game for PC available on the market, the

gameplay for this project prototype will emulate the gameplay of volleyball

game (which widely available on the market). The ·gameplay' here mostly

refers to the player's controls. Volleyball game is chosen because is about the

same as sepak takraw game. The only significant different is sepak takraw does

not allow the players to use their hands.

At the moment, l will be using "Klonoa Beach Volleyball" game as the

guideline in developing the gameplay for this project. Klonoa Beach Volleyball

is a 30 side-view beach volleyball game by ''Namco Limited". This game is

chosen because of its simple gameplay which make it easy to be emulated on

for this sepak takraw game prototype. Despite its gamcplay simplicity, the

arcade-like gameplay of Klonoa Beach Volleyball is still enjoyable to be

played.

11

Figure 6: Klonoa Beach Volleyball

2.6 Game Rules and Regulation

The official sepak takraw sport rules and regulation will be used for this sepak

takraw game. The official rules and regulations are maintained by International

Sepak Takraw Federation (IST AF). It can be freely obtained from the internet

(http://www.sepaktakraw.org/istaf.html). Any matters concerning about the

game law will be referred to this document.

CHAPTER3

3. METHODOLOGY

A prototype will be developed for this sepak takraw game. The prototype will

implement all suitable theories and methods discussed previously in Literature

Review chapter. In other words, the prototype will represent the result of this

project. The prototype will be focused on demonstrating the use of graphics and

game physics that in simulating the sepak takraw game. This chapter describes

the details of the methodology and the project works of the game prototype

development.

3.1 Development Model

The prototype development will progress based on Iterative and lncremental

Development Methodology. The advantage of using iterative & incremental

methodology is that each cycle ends with a usable system/prototype. The

development can be stopped without the entire project being abandoned (Potts,

1998). This makes this methodology is ~11itable for a research project like this

project - given the fact that this project might be continued by other people

later. Aside from allowing the developer to try to implement new features at

each cycle, this methodology also makes rolling-back work easy in the event of

error.

13

Planning

Initial
Deployment

Figure 7: A typical iterative and Incremental Development Model cycle

The basic principle of this methodology is to develop a prototype through

repeated cycles (iterative) and in smaller portions at a time (incremental). Each

cycle involves analysis, redesign, implementation and testing phase whereby

new features are added and some changes in the design are made. For this

project, each successful cycle represents one key milestone accomplishment.

The key milestones for this project will be discussed later in this chapter.

3.2 Tools

The game prototype will be developed on C++ language with the support of

OpenGL API. C++ is a statically typed, free-form, compiled, general-purpose

programming language. It is regarded as an intermo::diate-level language, as it

comprises a combination of both high-level and low-level language features

(Schildt, 1998). ft was chosen for this project because it allows the use of class

that suits object-oriented programming. It also has a good support for OpenGL.

There are many OpenGL examples written in C++ on the internet.

OpenGL (Open Graphics Library) is a standard specification defining a cross­

language, cross-platform API for writing applications that produce 2D and 3D

14

computer graphics. OpenGL was developed by Silicon Graphics Tnc. (SGI) in

1992 and is widely used in computer aided drawing (CAD), virtual reality,

scientific visualization, information visualization, and flight simulation. In this

project, OpenGL will be used in developing the graphics part of the game

prototype.

These are the tools that required for the prototype development:

• Microsoft Visual C++

Microsoft Visual C++ is an Integrated Development Environment (TDE)

by Microsoft for C/C++ languages. It is integrated with tools for

developing and debugging C/C++ code. Therefore, it is very good C/C++

programming tool especially in developing code written for the Microsoft

Windows API.

• GLUT (OpenGL Utility Toolkit) API

GLUT is a window system indept:ndent toolkit for writing OpenGL

programs that implements a simple windowing API for OpenGL. GLUT

is designed for constructing small to medium sized OpenGL programs,

hence, making it suitable for this project. GLUT also provides a portable

API that allows OpenGL program works across all PC and workstation

OS platforms.

• OpenALAPI

OpenAL (Open Audio Library) is a free software cross-platform audio

API. It is designed for efficient rendering of multichannel three

dimensional positional audio. Its API style and conventions deliberately

resemble those of OpenGL. OpenAL API is suitable for use with gaming

applications and many other types of audio applications.

15

3.3 Key Milestone

Followings are the main activities of the project in sequence:

• Create player model

• Animate player model

• Create the environment model

• Implement the ball physics

• Implement the game flow and controls

• Implement AI (Artificial Intelligence)

• Implement the sound

3.4 Project Activities

Basically, this project is about applying the techniques, theories and

information discussed earlier in the literature review to develop the game

prototype. To be more specific, the projects activities are indentified to break

down the project. The time and effort for each activity has been estimated and

allocated carefully based from my previous experience. This is important to

ensure the project able to be fmished on time. Please refer to the Gantt chart

below for more detail about the project activities.

16

January 20ll Semester

Activities I Week# 1 2 3 4 s 6 7 8 9 10 ll 12 13 14

Create player model X X

Animate player model X X

Create the environment
X

model

Implement the ball
X I X I physics

Implement the game
X X

flow and controls

Implement AI
X X

(Artificiallntelligence)

Implement the sound X

Refmement I Bug
X X X

Fixing

Figure 8: Prototype Development Gantt chart

17

CHAPTER4

4. RESULT & DISCUSSION

This chapter will discuss about the result of this project which is the prototype of

the game. Please refer to Appendix I for the screenshot of the game prototype.

Below is the sUJUmary of the project status.

Activities Status

Create player model Done

Animate player model Done
- --

Create the enviromnent model Done

Implement the ball physics Done

Implement the game flow and controls Done

Implement AI (Artificial Intelligence) Done

Implement the sound Dropped

Table 1: list of project activities

Apparently, during the project development, the sound part was taking more

time than expected. Therefore, I decided to drop the game sound feature the

project due to this time constrain issue. Nevertheless, the other parts of the

project were successfully completed.

18

4.1 Graphics

The graphics part of the game prototype has been fully completed. The game

window aspect ratio is set to I 6:9 - a standard wide screen ratio - and running

at the resolution of 1152 x 648. A II modern computers should not have any

trouble to run at this resolution. All the game objects are also properly scaled

down to the ratio of l em per pixel to ensure uniform object scales.

The graphics part of the game prototype has been fully completed. The game

window aspect ratio is set to 16:9 - a standard wide screen ratio - and running

at the resolution of 1152 x 648. All modern computers should not have any

trouble to run at this resolution. All the game objects are also properly scaled

down to the ratio of I centimeter to I pixel to ensure uniform object scales.

4.1.1 Player Model

The player model is the most complex model of the game. The player

model of the game prototype is actually a model human articulated

figure. In this prototype, the Human Articulated Figure consists of

two types of parts which are the Joints and the Segments. In this

prototype, a Segment is drawn as a box while the Joint is drawn as a

sphere. A Set,'ITient can be attached to a Joint, and Joints can be

attached to a segment. The result is a chain of several Segments and

Joints- This is done in C++ by making use of linked list technique.

The most significant different between the Segment and the Joint is

that the Joint is rotatable. The joint rotation data can be stored and

applied to the joint whenever necessary. If a set of joint rotations data

is applied to a model human articulated figure - which have several

joints - it will make the human figure to perform a certain pose.

Therefore, a set of joint rotations data is stored in a vector as Pose

data.

19

Applying Pose-to-Pose Animation technique, if several Poses data is

applied to an articulated human figure rapidly, it will make the human

figure appears as if it is performing an action. Thus, a collection of

Poses data - stored in a vector - is called as an Action. Therefore, an

action is actually a huge collection of Joint rotation data. Please refer

to Appendix II for example of the player Poses data.

Motion capture refers to the work of deriving the Joint rotation data

from a real world player performance. Motion capture is not an easy

task since it involves a huge amount of Joint rotation data. To simplifY

the motion capture work, only key frame data (i.e. key Pose data) are

captured. Then, the intermediate frames between the two key frames

are generated by interpolating the key frames data. In this prototype,

only the key Pose data are derived and stored as the game data. The

intermediate Poses data are generated once the game is started.

For this prototype, there are four types of motions that have been

captured from the real sepak takraw player:

• Move up/down

• Move left/right

• Instep kick

• Bicycle kick

4.1.2 Environment Model

There are three environment objects for this game. They are:

• The Ball

• The Court

• The Net

The ball is represented by a sphere. The real/official dimension of a

sepak takraw ball is used to draw the sphere. The rule of speak takraw

20

said that the ball circumference must be 44cm, which means 7cm in

radius. Following the pixel per centimeter, the 7cm means 7 unit of

pixel. Thus the sphere representing the ball radius is set to 7. The ball

also has spinning effect to create an illusion that make bali flight

appears to be more realistic. This is done by applying rotation

transformation to the ball according to ball vector.

The court and net dimensions also follow the official rule of sepak

takraw. According to the official rule of sepak takraw, the court

dimension must be 610cm wide and 1340cm long while the net post

must be 155cm height. Scaling these values into the game prototype

coordinate system makes the court to have a dimension of 610 by

1340 while the net to have a height of 155. Both the court and net are

represented as boxes. The net is made to be appeared transparent to

allow the user to see the opposition part of the court.

4.1.3 Viewing mode

To make the prototype development work easy, there are two mode of

viewing implemented in this prototype. They are orthographic mode

and perspective viewing mode. The perspective view will be the

default mode for playing the game . .Perspective view allows a better

perception of three dimensions objects thus offering a better gaming

experience. The orthographic mode is just an added feature and was

used mainly to assist me during the game development.

4.1.4 Animation Speed Control

There was an issue regarding the animation speed. Tite speed of

animation is not consistent. The animation is heavily depending on the

situation - depending on the complexity of the calculation performed

at that moment and the machine performance. The frame rate

21

fluctuates from 140 FPS (frames per second) to over 300 FPS. To

overcome this problem the frame rate must be controlled (throttled) to

ensure a consistent frame rate. Usually, anything higher than 60 FPS

is considered good. Thus, for this game, the frame rate is locked at

120 FPS to ensure consistent frame rate. This eliminates all jitter or

game speed related issues encountered before.

4.1.5 OpenGL 2D Text

There are some parts of the game that use 20 text, for example, the

game score. There are many ways to implement 20 text in OpenGL.

The easiest way is by using GLUT font rendering functions. GLUT

supports two types of font rendering:-

• Stroke fonts

• Bitmap fonts

In Stroke fonts, each character of the text is rendered as a set of line.

Segments, while in Bitmap fonts each character is a bitmap generated.

Both methods can be easily used - by calling glutStrokeCharacter

function or glutBitmapCharacter function.

Bitmap fonts method will result in better looking text but it require a

lot of processing power, thus, affecting the overall game performance.

On the other hand, the Stroke fonts method is faster but the text does

not look as fine as Bitmap fonts. I ran a test to measure the

performance of both methods. From the test results, it appears that

using Bitmap fonts caused the game frame rate dropped from 120 FPS

to around 70 FPS, while using Stroke fonts almost does not affects the

game performance at all. For these reasons, I decided to use Stroke

fonts method from the game prototype.

22

testing 123

test ng 123

Figure 9: Comparison using bitmap font (above) against stroke font (below)

4.2 Game Physics

The game physics is another element focus of this project. The game physics

generally require a lot of mathematical calculations to achieve accurate physics

effects. During the development, several game physics were studied and

implemented into the game prototype. In this game, the game physics were

mainly applied to the ball. As the result of the game physics implementation,

the game prototype looks more realistic. However, since the speed of

simulation (game speed) is more important than accuracy of simulation, this

leads me to designs for physics engines that favor speed over the physics

accuracy- by using several approximation techniques.

4.2.1 Collision Detection

Collision detection typically refers to the computational problem of

detecting the intersection of two or more objects. In this game, it is

used to detect the situation when the ball touches other objects - i.e.

the player or the court - in the game. Solving collision detection

problems requires extensive use of concepts from linear algebra and

computational geometry.

There are many methods available that can be used to detect the

collision. Tn this project, Bounding Volume methods were used. Tn

this method, the solid objects in the game are bounded with imaginary

23

boxes or spheres. By using several mathematical calculations, the

intersection between two or more bounding can be detected.

Flsure 10: Boundins box eumple

In the game prototype, every single objects (ball, players, net and

court) of the game are bounded with a bounding. Then, all those

boundings are added into a Jist. In each frame, all the boundings in the

list are checked for intersection. If there is an intersection, it means

that there is a collision between those objects that are bounded to

those boundings.

4.2.2 Ball Physics

Most of the game physics are implemented on ball object. The first

one is about vector. Vector is a geometric entity that comes with both

length and direction. In physics, vectors are typically used to represent

physical quantities which have both magnitude and direction. In this

project, the vector is one of the fields for the object ball. The vector

represents the direction and speed of the ball. The vector in this case

consists of three more fields (stored as floats) that represent the values

of the x, y and z components of the vector. The ball will move

according to the vector. ln each frame, the current ball position is

added with the ball vector.

24

y axis

3

I ~

I / 5 I .I _____ l/

Figure 11: Example of vector (5, 8, 3)

The ball vector is also used to create a spinning baU effects. This is

simply done by performing rotation transformation to the ball

according to the vector components.

The next physics principle applied to the ball is tbe gravity. The

gravity is the force that ·pulls' the ball down they axis. To be exact,

the gravity force is also can be understood as an acceleration that pulls

objects to the y axis. Therefore, gravity is actually acceleration along

the -y axis. In this game, gravity force was applied to the ball by

subtracting the y component of the ball vector with the gravity

constant every frame. This will cause the ball to have a constant

negative acceleration along the y axis that 'drags' the ball down,

hence, simulating the effects of gravity force.

Another important point of the ball physics is about making the ball

bounce realistically. This can be done by using the vector reflection

technique. The concept of vector for two dimensions plane can be

seen in the figure below.

r =v - 2(v. n)n

r <5, 5'>

n=<O, 1>

Figure U: Vector reflection

The original baH vector before the collision (v) and the normal vector

of the colliding object surface (n) are used to calculate the reflected

vector (r). The formula to find r is r = v - 2 • (v dot n) • n. The 'dof

denotes the dot product operator that calculated the dot product of the

two vectors. From this formula, the resulting vector (r) is the new

vector for the ball after the collision. Notice that this fonnula is for 20

plane. For 30 plane, some modification must be done, but it is

basically using the same concept.

This technique however will create a perfect bouncing effect. This is

not realistic, because perfect bounce (reflection) will never happens in

the real world. In real world, a sum of the ball potential energy will

lost during the collision/bounce according to the object bounciness

(coefficient of restitution). Additionally. the direction of reflection

does not exactly follow the formula - because of uneven surface of

the objects. For these reasons, all objects in the game has bounciness

factor. For instance, if an object with bounciness factor of 0.5 will

reduce the ball vector (speed) by half. if the ball collides that object.

In addition, some randomness factors are also added to perturb the

ball vector after reflection to ensure the ball vector (direction) does

not perfectly follow the result of the formula.

4.3 Game Control

4.3.1 Keyboard

The keyboard is the main user input device for this game. With the

help of GLUT API, the keyboard can be easily progranuned as a

controller for this game - by using the glutKeyboardFunc and

glutSpeciaiFunc functions. Therefore, the game can be controlled by

using the keyboard.

Below is the table of keyboard key assignments that has been defined

for this game:

. ----
Key Adion

Up direction Move player up

Down direction Move player down

Left direction Move player left

Right direction Move player right

A Change player selection

s Player perform Instep Kick

D Player perform Bicycle kick

c Change camera view

[Decrease gravity

] increase gravity

9 Decrease game speed

0 Increase game speed

R Reset game

Table 2: Keyboard key assignments

The player can be move around the court by using the direction keys

(Up arrow, down arrow, left arrow, right arrow keys) on the keyboard.

This is a standard way of controlling a player movement in most

27

games. However, the player movements are limited to their court area

only- the player is not allowed to move outside their court.

There are two types of kick that the player can perform. The instep

kick and the bicycle kick. Those kicks can be performed by using 'S'

key and 'D' key respectively. Instep kick is used to receive and

control the ball, while bicycle kick is used to send the ball to the

opponent side. The 'S' and 'D' keys are chosen because it has been a

tradition for most of sports games to use 'S' for passing and 'D' for

shooting.

The user can also change the camera view by using the 'C' key. Tt will

toggle the viewing modes either using Orthographic view or

Perspective view. 'C' key was chose because it is an initial for camera

which makes it easily remembered.

4.3.2 Player Selection

There are three players for each team. The user can only control one

of the team. At a time, only one player can be selected and controlled.

The player selection can be cycled by using 'A' key. This is a

standard way of controlling player in sport games that consist of

multiple players per team. The selected player is indicated with a

marker on the player.

28

Figure 13: Cursor (pink cone) polntii\J at the current selected player

4.3.3 Shot Power & Direction

For bicycle kick the power and direction of the shot can be controlled

by the user. The power of the shot depends on the duration of the 'D'

is pressed. The longer the button is pressed, the more powerful the

shot. A bar gauge will appear above the player cursor that represents

the show power. If the bar gauge is full , it means the player will hit

shot baH with the maximum power. However, the more power is put

on the shot, the Jess accurate the shot will be. The shot djrection also

can be adjusted by holding the ' Up arrow' or 'Down arrow' button

depending on where the user wants to place that shot.

29

• - -

Figure 14: Shot power puce

30

CHAPTERS

5. CONCLUSION AND RECOMMENDATION

This project has accomplished all of its main objectives and a game prototype

that simulates the playing of sepak takraw sport in 3D has been developed. The

details of the projects results can be seen on the previous Results and Discussion

chapter. During this project development, several computer graphics has been

explored and used to develop the 3D sepak takraw game prototype. In addition,

there are also a number of game physics techniques that were studied and

applied in the prototype to enhance the gameplay realism. Although there are

some of the game features were dropped during the project development because

of time constrains, the game is still playable and able to demonstrate the

simulation of sepak takraw play in 3D computer graphics.

5.1 Future Work and Recommendation

For the future work, there is a lot of room of improvements for this project.

Since the project only focused on the graphics and physics aspects, there are

many other aspects of the game that can be further improved or implemented to

enhance the game. Below are some of the aspects that are recommended to be

improved or implemented in the future project:

5.1.1 Graphics

The overall game graphics can be significantly improved by

implementing the texture. As we can see there is no texture applied in

this game. The graphics of the game can also be improved by adding

environment objects, i.e. the background, the sky, the audiences, the

31

referee or linesmen. The player animation can also be improved by using

a motion capture device to capture motion data from real sepak takraw

player. Apart from tbat, a more sophisticated interpolation technique -

such as cosine interpolation or cubic interpolation - can be used for

interpolating the player motion instead of using linear interpolation. This

will result in more realistic and smoother player animation.

5.1.2 Game Physics

There are many more game physics techniques tbat can be implemented

to make tbe game more realistic. For instance, the ragdoll physics

technique can be implemented to create effects for the player or the net.

The current prototype physics engine also does not take friction into

account. Calculating friction can be useful in creating spinning effects for

tbe ball and improve tbe ball physics.

5.1.3 Sound

In the beginning, the sound is part of the features of the game prototype.

Unfortunately, due to time constrains, it has been dropped from tbis

project. Implementing the game sounds will definitely improve the

overall gaming experience tor the user. The examples of sounds that can

be implemented are the ball sound effects, the players sound, and the

referee voices, and the background music for the menu.

5.1.4 Gameplay

Under the gameplay part, there are also a lot of features that can be

added. For instance, more player actions can be added, such as outside

kick, front foot kick, knee bump, and header. The artificial intelligence

(AI) engine that controls tbe opponent team also must be improved to

make tbe game more exciting and challenging. The currently

implemented AI is not very smart and somewhat predictable. Moreover,

32

there is also no game difficulty setting that allows the user to control the

difficulty level. This feature also can be implemented in the future work.

Several game modes also can be added to add more variation to the game

like tournament mode, friendly mode, training mode, or even multiplayer

mode. Multiplayer mode is also another important feature for most of

modern computer games. The game will be more interesting if can be

play by multiple players whereby the two or more users can play together

as a team or compete against each others. It can be accomplished by

allowing multiple users playing on the same computer with different

input devices i.e. keyboard and joysticks, or allowing the game to be

played by multiple users over the network.

33

REFERENCES

1. Andy Goergen 2010, Nintendo World Report, Review on Oeca Sports OS,

http://www.nintendoworldreport.com/review/22955

2. Justin Vonderach, "OECA SPORTS OS - History of Sepak Takraw - Sepak

Takraw: One of the World's Biggest Extreme Competitive Sports!",

http://hudsonentertainment.com/user/feature.php?f=DECA SPORTS DS -

History of Sepak Takraw&feature id=%AO%AI%A4%A2%9B%A7

3. Szilard Kiss 2002, Computer Animation for Articulated 30 Characters

4. Humanoid Animation Working Group, Web3D Consortium 1999, H-Anim:

Specification for a Standard VRML Humanoid, version 1.1.

http:/ /www.hanim.org/Specications!H-Anim 1.1/

5. International Sepak Takraw Federation (ISTAF), 2004, Sepak Takraw: Laws of

the Game

6. Helmut Knaus!, S.O.S. MATHematics, Application: A Bouncing Ball

http://www.sosmath.com/calculus/geoser/bounce/bounce.html

7. Collin Potts 1998, "Software Process Models" in Introduction to Software

Engineering slides

8. Herbert Schildt, 1998, "C++ The Complete Reference Third Edition" Osborne

McGraw-Hill

9. Computer graphics, http://en.wikipedia.org/wiki/Computer graphics

10. Alessandro Re, "OpenGL: Tutorials", Basic Bones System,

http://gpwiki.org/index.php/OpenGL:Tutorials:Basic Bones System

11. Iterative and incremental development,

http://en.wikipedia.org/wiki/lterative and incremental development

12. Michael Hurst, 2005, homepage of English Sepak Takraw Association website,

http://sepak-takraw.eo.uk/

13. Simon Green, 21st June 2006, "NVIDIA OpenGL Update" Presentation Slide,

NVX _instanced_ arrays OpenGL extension,

http://developer.nvidia.com/object/opengl-nvidia-extensions-gdc-2006.html

34

APPENDICES

APPENDIX I - Game Screenshots

APPENDIX II -Human Figure Pose Data

35

APPENDIX I - Game Screenshots

. ·-
1

..

.. __ -- -- - -
1

4 1

APPENDIX II- Human Figure Pose Data

#ifndef GAME_DATA_H
#define GAME_DATA_H

typedef HFigurePoses ACtion;

namespace GD{
Action IDLE;
Action BKICK;
Action MOVEl;
Action MOVE2;
Action IKICK;

boo! isLoadcd ~ false;

void loadPosesData(){
if(isLoaded)

return;

aFigurePose reset;
reset.rShoulder.set(4,-5,-5);
reset.1Shoulder.set(4,5,5);

reset.rElbow.set(-10,0,0);
reset.lelbow.set(-10,0,0);

reset.rHip.set(-2,-3,-7);
reset.lHip.set(-2,3,7);

reset.rKnee.set(3,0,0);
resct.1Knce.sct(3,0,0);

reset.rAnkle.set(-2,0,5);
reset.lAnkle.set(-2,0,-5);

reset.rootS.set(0,2,0);

lll!l!llllll//l/l/11!!!1/l!!llll!llll//l///lllllllllll!llllll!!ll///l/1/ll/1

IDLE.keyPoseAt(O) .set,{reset);

////ll/ll//l/ll//111!!/ll!l!l/llll/l/l/ll/l/1/11111/llll/!/ll!!l///l/l//l//l

BKICK.keyPoseAt{O) .set(reset);

BKICK.keyPoseAt(35) .1Knee.set(B5,0,0};
BKICK.keyPoseAt(35) .rKnee.set(85,0,0);

BKICK.keyPoseAt(35J .lAnkle.set(-10,0,0);
BKICK.keyPoseAt(35) .rAnkle.set(-10,0,0);

BKICK.keyPoseAt{35) .lHip.set(-30,-10, 10);
BKICK.keyPoseAtl35).rHip.set(-30,10~-10);

BKICK.keyPoseAt(35) .neck.set(-25,0,0);
BKICK.keyPoseAt(35) .spine.set(5,0,0);

BKICK.keyPoseAt(35).lShoulder.set(-30,0,10};
BKICK.keyPoseAt(35) .rshoulder.set(S,0,-10);

BK!CK.keyPoseAt(35) .!Elbow.set(-60,30,0);
BKICK.keyPoseAt(35).rElbow.set(-30,-10,0);

BKlCK.keyPoseAt(35) .rootS.set(O,lS,O);
BKICK.kcyPoscAt(35) .rootJ.set(0,180,0};

BKICK.keyPoseAt(50) .1Knee.set{20,0,0);
BKICK.keyPoseAt(50) .rKnee.set(lO,O,O);

BK!CK.keyPoseAt(SO) .1Ankle.set(30,0,0);
BKICK.keyPoseAt(50).rAnkle.set(60,0,0);

BKICK.keyPoseAt(50) .lHip.set(-110,-10, 10);
BKICK.keyPoseAt(50) .rHip.set(-5,10,-10);

BKICK. keyPoseAt (50} .neck. set (-20, 0, 0_1;
BKICK.keyPoseAt(50).spine.set(0,0,0);

BKICK. keyPoseAt (50) .lShoulder.set (-120, 0,10);
BKICK.keyPoseAt(50) .rShoulder.set{40,0,-10);

BKICK.keyPoseAt(50) .1Elbow.set(0,30,0);
BKICK.keyPoseAt(SO).rElbow.set(0,-10,0);

BK!CK .. k.eyPoseA.t (50) . rootS. set (0, -5, 0);
BKICK.keyPoseAt(50}.rootJ.set(20,1S0,0);

BKICK.keyPoseAt{65).1Knce.sct(40,0,0);
BKICK.keyPoseAt(65) .rKnee.set(20,0,0);

BKICK.keyPoseAt(65).1Ank1e.set(0,0,0);
BKICK.keyPoseAt(65).rAnkle.set(20,0,0);

BKICK.keyPoseAt(65).1Hip.set(-90,0,0);
BKICK.keyPoseAt(65) .rHip.set(20,0,0);

BI<ICK. keyPoseAt (65) .neck. set (-20, 0, 0);
BKICK.keyPoseAt(65) .spine.set(-5,0,0);

BKICK.keyPoseAt(65) .lShoulder.set(-130,0,10);
BKICKTkeyPoseAt(65) .rShou1der.set(-40,0,-10);

BKICK.keyPoseAt(65) .lElbow.set(-10,0,0);
BKICK.keyPoseAt(65) .rElbow.set(-10,0,0);

BKICK.keyPoseAt(65).rootS.set(0,-20,0);
BKICK.keyPoseAt(65) .rootJ.set(40,180,0);

BKICK.keyPoseAt(85).1Knee.set(55,0,0);
BKICK.keyPoseAt(85) .rKnee.set(lO,O,O);

BKICK.keyPoseAt(85) .lAnkle.set(O,O,O);
BK!CK.keyPoseAt{85) .rAnkle.set(40,0,0);

BKICK.keyPoseAt(85) .1Hip.set(0,0,0);
BKICK.keyPoseAt(85) .rHip.set(-100,0,0);

BKICK.keyPoseAt (85) .neck. set{-10, 0, 0);
BKICK.keyPoseAt (85) .spine. set (10, 0, 0};

BKICK.keyPoseAt(S5) .lShoulder.set(-70,0,10);
BKICK.keyPoseAt(85).rShoulder.set{-30,0,-10);

BKICK.keyPoseAt(85).1Elbow.set(-10,0,0);
BKICK,keyPoseAt{85).rElbow.set(-10,0,0);

BKICK.keyPoseAt(85) .rootS.get(0,-15,0);
BKICK.keyPoseAt(85) .rootJ.set(80,180,0);

BKICK.keyPoseAt{95).1Knee.set(55,0,0);
BIGCI'\. keyPoseAt (95) . ri'\nee. set (10, 0, 0) ;

BKICK.keyPoseAt(95) .lAnkle.set{O,O,O);
BKICK.keyPoseAt(95) .rAnkle.set(40,0,0);

BKICK.keyPoseAt(95) .1Hip.set{0,0,0);
BKICK.keyPoseAt(95) .rHip.set(-100,0,0);

BKICK.keyPoseAt{95}.neck.set(O,O,O);
BKlCK.key?oseAt(95).spine.set(10,0,0);

BKICK.keyPoseAt{95} .lShoulder.set(-70,0,10);
BKICl'\.keyFoseAt (95) .rshoulder. set (-30, 0,-10);

BKICK.keyPoseAt(95).1Elbow.set(-l0,0,0);
BKICK.keyPoseAt(95) .rElbow.set(-10,0,0);

BKICK.keyPoseAt(95).rootS.set(0,-10,0);
BKICK.keyPoseAt(95) .rootJ.set(120,180,0);

BKICK.keyPoseAt(l25).1Knee.set(65,0,0);
BKICK.keyPoseAt(l25).rKnee.set(65,0,0);

BKICK.keyPoseAt(125).1Ankle.set(-10,0,0);
BKICK.keyPoseAt(125).rAnkle.set{-10,0,0);

BKICK.keyPaseAt(l25).1Hip.set(-90,0,0);
BKICK.keyPoseAt(l25) .rHip.set{-110,0,0);

BKICK.keyPoseAt(125).neck.set(l5,0,0);
BKICK.keyPoseAt(125).spine.set(10,0,0);

BKICK.keyPoseAt(l25) .lShoulder.set(-90,0,10);
BKICK.keyPoseAt(l25}.rShoulder.set(-80,0,-10);

BK1CK.keyPoseAt(l25).1Elbow.set(-20,0,0);
BKICK.keyPoseAt(l25).rElbow.set(-20,0,0);

BKICK.keyPoeeAt(l25).roots.set(0,20,0);

BKICK.keyPoseAt(l49).rootJ.set(358,160,0);
BKICK.keyPoseAt(150).rShoulder.set(22,-10,-10);
BKICK. keyPoseAt (150) .1Sf10ulder. set (-22, 10, 10) ;

BKICK.keyPoseAt(lSO).rElbow.set(-22,0,0);
BKICK.keyPaseAt(l50) .lElbow.set(-22,0,0);

BKICK.keyPoseAt(lSO) .rHip.set(-25,-10,-10);
BKICK.keyPoseAt(l50}.1Hip.set(20,10,10);

BKICK.keyPoseAt(lSO) .rKnee.set(25,0,0);
BKICK.keyPoseAt(l50) .1Knee.set(35,0,0);

BKICK.keyPoseAt(150).rAnkle.set(10,0,0);
BKICK.keyPoseAt(150).1Ankle.set(lS,O,OJ;

BKICK.keyPoseAt(150) .rootS.set(O,S,O);
BKICK.keyPoseAt(150).rootJ.set(0,150,0);

BKICK. keyPoseAt (180) . set (reset);

BKICK.interpolatePoses{);

/IIII//I//II//I!IIIIJ/11/111111/IIII/IIIIIII/I//I/II//IIIII/1/IIIIIIIIIIIIII

canst int movelposeCount = 40;

MOVEl.keyPoseAt(OJ .set(reset);

MOVEl.keyPoseAt(movelposeCount/2) .rShoulder:.set(8,-10,-10);
MOVEl.keyPoseAt(movelposeCount/2) .1Shoulder.set(8,10,10);

MOVEl.keyPqseAt(roovelposeCount/2) .rElbow.set(-22,0,0);
MOVEl.keyPoseAt(movelposeCount/2) .lElbow.set(-22,0,0);

MOVEl.keyPoseAt{movelposeCount/2) .rHip.set(-5,-7,-15);
MOVEl.keyPoseAt(movelposeConnt/2).1Hip.set(-5,7,15);

MOVEl.keyPoseAt(movelposeCount/2).rKnee.set{l5,0,0/;
MOVEl.keyPoseAt(movelposeCount/2) .lKnee.set(lS,OrO);

MOVE!. keyPoseAt (movelposeCount/2) .rAnkle. set (-5, 0, 10);
MOVEl. keyPoseAt (move1poseCount/2) .lAnkle. set (--5r 0,-10);

MOVEl.keyPoseAt(movelposeCount/2) .rootS.set(OrS,O);

MOVEl.keyPoseAt{movelpo~eCount) .set(reset);

MOVEl.interpolatePoses();

!II/IIIII/IIIIII/IJI!I/IIIII/III/II/II//III/I/1///I/IIIIIIIIIII/I/II/II//I/I

canst int move2poseCount = 40;

MOVE2.keyPaseAt{O) .set(reset);

MOVE2.keyPoseAt(move2poseCount/2) .rShoulder.set(22,-10,-10);
MOVE2.keyPoseAt(move2poseCount/2).1Shoulder.set{-22,10,10);

MOVE2. keyPoseli.t (move2poseCount/2) . rElbO\V. set (-22, 0, 0);
MOVE2.keyPoseAt(move2poseCount/2).1Elbow.set(-22,0,0);

MOVE2.keyPoseAt(move2poseCount/2).rHip.set(-25,-2,-2};
MOVE2.keyPoseAt{move2posecount/2) .1Hip.set{20,2,2);

MOVE2.keyPoseAt(move2poseCount/2).rKnee.set(25,0,0);
MOVE2.keyPoseAt(move2poseCount/2}.1Knee.set(35,0,0};

MOVE2. keyPoseAt (move2poseCount/2) . rAnk.1e.set (10, 0, 0);
MOVE2.keyPoseAt(roove2poseCount/2).1Ankle.set(15,0,0);

MOVEZ.keyPoseAtimove2poseCount/2).rootS.set(0,5,0);

MOVE2.keyPoseAt(move2poseCount) .set(reset);

MOVE2.interpolatePoses{);

l!/1111!!11!/11/1111!!!11/llll/l!l!!llllll//!ll!llll/1!!11111!!/!!/1111!11!1

IKICK.keyPoseAt(O) .set{reset);

IKICK.keyPoseAt(30) .rShoulder.set(-10,-10,-10);
IKICK.keyPoseAt(30J .lShoulder.set(-10,10,10);

IKICK.keyPoseAt{30).rElbow.set(-22,0,0);
IKICK.keyPoseAt(30) .!Elbow.set(-22,0,0);

IKICK.keyPoseAt(30) .rHip.set(-110,-90,-40);
IKICK.keyPoseAt(30j.lHip.set(-20,5,5);

IKICK.keyPoseAt(30) .rKnee.set(75,0,0);
IKICK.keyPoseAt(30) .1Knee.set(35,0,0);

IKICK.keyPoseAt(30) .lAnkle.set(-10,0,0);

IKICK.keyPoseAt(30).spine.set(10,0,0);

IKICK.keyPoseAt(30) .neck.set(8,0,0);

IKICK.keyPoseAt(30l .rootS.set(O,S,O);
IKICK.keyPoseAt{30).rootJ.set{-8,0,0);

IKICK.keyPoseAt(60) .set(reset};

IKICK.interpolatePoses();

l/1111!!!111111111!1!!/ll//l!llll!!/1!111111!11!!/l//l//llil!l/lllllll//11!!

isLoaded ~ true;

#endif

