Dissertation

TWO PHASE GAS-LIQUID PIPELINE DESIGN

By

NURUL EZWEEN BINTI HASBI

DISSERTATION

Submitted to the Petroleum Engineering Programme In Partial Fulfillment of the Requirements for the Degree Bachelor of Engineering (Hons) (Petroleum Engineering)

> Universiti Teknologi Petronas Bandar Seri Iskandar 31750 Tronoh Perak Darul Ridzuan

© Copyright by Nurul Ezween Binti Hasbi, 2011

Dissertation

TWO PHASE GAS-LIQUID PIPELINE DESIGN

By NURUL EZWEEN BINTI HASBI

PETROLEUM ENGINEERING UNIVERSITI TEKNOLOGI PETRONAS MAY 2011

Dissertation

TWO PHASE GAS-LIQUID PIPELINE DESIGN

by NURUL EZWEEN BINTI HASBI

A project dissertation is submitted to the Petroleum Engineering Programme UNIVERSITI TEKNOLOGI PETRONAS in partial fulfillment of the requirements for the degree Bachelor of Engineering (Hons) (Petroleum Engineering)

Approved:

A P. Aung Kyaw

Project Supervisor

Aung Kyaw Associate Professor Geoclanos & Petroisum Engineering Dapat Universiti Teknologi PETRONAS Universiti Teknologi PETRONAS Bender Seri Iskander, 31750 Transh Bender Berl Iskander, 31750 Transh Parak Darul Ridzuen, Meleyate.

UNIVERSITI TEKNOLOGI PETRONAS TRONOH, PERAK

May 2011

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the original work is my own except as specified in the references and acknowledgements, and the original work contained herein have not been undertaken or done by unspecified sources or persons.

NURUL EZWEEN BINTI HASBI

ACKNOWLEDGEMENT

First and foremost, I would like to give thanks to the Almighty who made all things possible. I also owe my deepest gratitude to my helpful supervisor namely Associate Professor Aung Kyaw who have greatly helped me in giving opinions, suggestions and advices as well as his continuous encouragement during the progression of this project. I am heartily thankful to him whose encouragement, guidance and support from the initial to the final level enabled me to develop an understanding of the subject. He inspired me greatly to work in this project as well as his determination to motivate me contributed tremendously to my project. The supervision and support that he gave truly help the progression and smoothness of the project. Associate Professor Aung Kyaw has not only been one of the best lecturers I have ever encountered, he has consistently proven himself to be committed to the academic success of his students and has raised the caliber of my research. I am grateful to Associate Professor Aung Kyaw for his ability to convey complex concepts and always be cheerful, helpful, encouraging, and supportive, both personally and professionally.

I am indebted to my many of my colleagues to support me upon the completion of this project. Foremost, I recognize the intellectual and moral support of my colleague. Oliver Marcus Lim, who is my coursemate have been a vey good company throughout my journey doing this project. His help of finding the PIPESIM software was really helpful, especially when I was facing the difficulties in learning and understanding the software. I am honored to call Oliver a mentor and friend. He provided a critical eye of scientific integrity and rigor to my research.

I would like to thank to the course coordinators for giving me such opportunity to explore creativity and innovativeness through this course in UTP. Lastly, I offer my regards and blessings to all of those who supported me in any respect during the completion of the project.

2

ABSTRACT

Pipelines are the most common way of transporting oil or gas in oil and gas industry. A pipeline is all parts of the physical facility through which liquids or gases such as crude oil and natural gas are moved, usually over long distances between a producing region and a local distribution system. A pipeline is like any other flowline. The main differences are that pipelines are long and continuously welded, they have a minimum number of curves, they have no sharp bends, and they are most often either buried or otherwise inaccessible due to their location over the majority of their length. These differences mean that small sections of pipeline are not easily removed for maintenance and consequently great care is taken to prevent problems arising in the first place. A pipeline is extremely expensive to lay, and in the case of offshore pipelines, costs in the order of several million pounds per subsea mile have been encountered. Maintenance on pipelines is also expensive but this expenditure is necessary since, regardless of the expense, pipelines frequently form the most efficient and cost-effective method of transporting the quantifies of oil or gas produced. Multi-phase transportation is currently receiving much attention troughout the oil and gas industry. The combined transport of hydrocarbon liquids and gases can offer significant economic savings over conventional, local, platform based separation facilities. Much of fluid data used to design two-phase pipeline have been determined experimentally and through test made in operationg two-phase pipelines. Two-phase pipeline design is a subject on which research and testing continue, and sophisticated computer programs can predict flow conditions and pressure drop more accurately. A number of different correlations have been developed for two-phase pipeline design. Pipe flow simulation is used to optimize and verify design and to throw light on various operational issues and also for training engineers and operators. This paper is an approach to minimize the operation and maintenance cost by selecting the optimum pipeline size and sizing a slug catcher between the outlet of the pipeline and the processing equipment. PIPESIM is used to run the simulation and compute the complex calculation involved in designing the pipeline size and sizing the slug catcher.

FYF	PII: Two Phase Gas-Liquid Pipeline Design	Dissertation
TA	BLE OF CONTENTS	
CER	TIFICATION OF ORIGINALITY	1
AC	NOWLEDGEMENT	2
ABS	STRACT	
TAE	BLE OF CONTENTS	
LIST	Г OF FIGURE	6
LIST	Γ OF TABLE	6
CHA	APTER 1: INTRODUCTION	
1.	PROJECT BACKGROUND	8
2.	PROBLEM STATEMENT	9
3.	SIGNIFICANT OF PROJECT	11
4.	OBJECTIVES	11
5.	SCOPE OF STUDY	12
6.	RELEVANCY OF THE PROJECT	13
7.	FEASIBILITY STUDY	13
CH/	APTER 2: LITERATURE REVIEW	14
1.	COMPUTER MODELS	18
2.	HYDROCARBON FLOW	19
3.	TWO-PHASE PIPELINE DESIGN	20
4.	MULTIPHASE FLOW	21
5.	BEGGS AND BRILL METHOD	22
6.	SLUG CATCHER SIZING	25
7.	SEVERE RISER SLUGGING	25
CHA	APTER 3: PROPOSED PROJECT METHODOLOGY	
1.	RESEARCH METHODOLOGY	26
2.	PROJECT ACTIVITIES FLOW	28
3.	KEY MILESTONE (GANTT CHART)	
4.	PIPESIM	
CHA	APTER 4: RESULTS AND DISCUSSION	
1.	CASE STUDY 1	
	SELECTION OF OPTIMUM PIPELINE ID	36
2.	CASE STUDY 2	40
	SELECTION OF OPTIMUM PIPELINE ID	43
	SCREENING THE PIPELINE FOR SEVERE RISER SLUGGING	47

FYP II: Two Phase Gas-Liquid Pipeline Design	Dissertation
SIZING OF SLUG CATCHER	49
CHAPTER 5: CONCLUSION AND RECOMMENDATIONS	
REFERENCES	

LIST OF FIGURE

Figure 1: Horizontal Flow Regimes ₃	<u>22</u>
Figure 2: Project activities flow	<u>28</u>
Figure 3: Project Methodology Case Study 1	<u>29</u>
Figure 4: Project Methodology Case Study 2	<u>30</u>
Figure 5: Constructed pipeline model CASE STUDY 1	<u>36</u>
Figure 6: Pipeline elevation profile	<u>37</u>
Figure 7: Pipeline diameter sensitivity analysis	<u>37</u>
Figure 8: Constructed pipeline model CASE STUDY 2	<u> 43</u>
Figure 9: Pipeline diameter sensitivity analysis	<u>14</u>
Figure 10: Case flow map for 5000 sbbl/day (Turndown flowrate)	<u>19</u>
Figure 11: Case flow map for 10000 sbbl/day	<u> 19</u>

LIST OF TABLE

Table 1: Project Gantt chart
Table 2: Pipeline length and elevation at inlet
Table 3: Composition and condition of pipeline 35
Table 4: Available pipeline sizes 35
Table 5: Pipeline diameter & outlet pressure case study 1 37
Table 6: Output table for 16" pipeline
Table 7: Output table for 18" pipeline
Table 8: Output table for 20" pipeline
Table 9: Output table for 24" pipeline
Table 10: Composition and condition of pipeline 40
Table 11: Pipeline Data 41
Table 12: Data for Risers 1 & 241
Table 13: Available pipeline sizes 42
Table 14: Pipeline diameter & outlet pressure case study 2
Table 15: Output table for 6" pipeline
Table 16: Output table for 8" pipeline
Table 17: Output table for 10" pipeline
Table 18: Output table for 12" pipeline
Table 19: Output table for 5000 sbbl/day (Turndown flowrate)

FYP II: Two Phase Gas-Liquid Pipeline Design	Dissertation
Table 20: Output table for 10000 sbbl/day	
Table 21: Output file for 5000 sbbl/day (Turndown flowrate)	50
Table 22: Output file for 10000 sbbl/day	
Table 23: Summary file for 5000 sbbl/day & 10000 sbbl/day	

Dissertation

FYP II: Two Phase Gas-Liquid Pipeline Design CHAPTER 1: INTRODUCTION

1. PROJECT BACKGROUND

Two-phase pipelines have been built and operated successfully, though the simpler approach is to use two single-phase pipelines with one transporting liquids and the other gas. However, in some applications, the construction of two pipelines along the same route is the least economic solution. The most common application of two-phase pipelines is offshore, where pipeline construction costs are high. In this application, the two-phase pipeline is the most economical approach eventhough it is more difficult to design and operate.

Much of data used to design two-phase pipeline have been determined experimentally and through test made in operationg two-phase pipelines. Two-phase pipeline design is a subject on which research and testing continue, and sophisticated computer programs can predict flow conditions and pressure drop more accurately.

Nowadays, many computer softwares were developed containing some of the methods for predicting pressure drop in two-phase flow. The softwares employ accurate methods for predicting phase behavior, physical properties and can be used to calculate pressure drops for horizontal, inclined and vertical phases. The softwares can be used to solve test cases for many types of flow, varying the diameter, roughness, composition, overall heat transfer coefficient, angle of inclination, and length. The softwares can be a steady-state or transient, multiphase flow or single phase flow simulator for the design and diagnostic analysis of oil and gas production systems. The software tools such as PIPESIM can be use to model multiphase flow from the reservoir to the wellhead as well as analyzing the flowline and surface facility performance to generate comprehensive production system analysis. This paper is an approach to the design two-phase pipelines using PIPESIM.

In this paper, for the case study 1, the pipeline transports natural gas from source to the destination about 104.44 miles away. After the liquid is separated from the natural gas, the gas flows through a solid desiccant dehydrator and then to the

Dissertation

pipeline. Due to the high content of H_2S and CO_2 (25.6 and 9.9 mole %, respectively) and to prevent corrosion and hydrate formation, the gas has been dehydrated before entering the pipeline. The design gas flow rate for the pipeline is 180 MMSCF/D. This paper is an approach to the design of optimum pipeline size for the designed pipeline flow rate. The pipeline was divided into 14 segments according to the number of up-hills and down-hills in the line. The pipeline was simulated by PIPESIM. For pressure drop calculation, the Beggs and Brill method with the original liquid hold up correlation was chosen when running the simulation.

For case study 2, the fluid flows down a riser from the satellite platform to the seabed, along a 5 miles pipeline, and up a riser to the processing platform. The fluid inlet pressure at satellite platform will be 1500 psia and the fluid inlet temperature at satellite platform is 176°F. Design liquid flowrate i5 10000 STB/d with minimum arrival pressure at processing platform of 1000 psia. In offshore oilfield development projects using subsea tieback/riser, severe riser slugging is of great concern, particularly for flowlines with downward slope at the riser base. Subsea tieback has been increasingly used in the development of deepwater oil and gas fields. In a typical subsea production system, produced fluids flow through a wellbore, a subsea flowline and a riser. Flow patterns in the production flowlines and risers may be in stratified flow, slug flow, or annular flow. A flow regime of particular concern and may cause the most damage to topsides equipment is the severe riser slugging. It is crucial to size a slug catcher to avoid the damage to topsides equipment.

2. PROBLEM STATEMENT

Multiphase flow of gas and low loads of liquids occurs frequently in natural gas gathering and transmission pipelines for both onshore and offshore operations. As gas moves through a pipeline its pressure and temperature change due to the frictional loss, elevation change, acceleration, Joule-Thompson effect, and heat transfer from the surroundings. Due to pressure and temperature change, liquid and solid (hydrate) may also form in the line which in turn affects the pressure profile. Modeling and simulation of multiphase system, even under steady-state condition, is complex. There are a few tools designed specifically for modeling and analysis of

Dissertation

complex multiphase systems such as PipePhase, PipeSim, OLGA, etc. Under this case study, the problem is to:

• TO SELECT THE OPTIMUM PIPELINE SIZE

The calculation of pressure losses and flow rates depends on pipeline size. Pipeline size required, in turn, depends on pressure loss and volume. So it is often necessary to make a preliminary choice of pipeline size before detailed calculations are made on flow rate and pressure drop. Knowing the flow rate required and assuming a reasonable pressure drop based on experience, the experienced designer can choose a likely pipe size as a starting point. Then, calculation of pressure drop and flow capacity can be made assuming that size and weight of pipe. After these calculations are made, a change in the pipe size may be needed to meet requirements dictated by operating pressure. Using PIPEsim, these choices can be evaluated rapidly and the correct design selected. Sensitivity analysis on pipeline diameter should be done by using PIPEsim to determine the optimum pipeline size that will allow the design flowrate to maintain design arrival pressure. To do the sensitivity analysis, the complex calculation of pressure drop and flow capacity will be compute by PIPEsim. Large pipeline diameter is not economical and required longer installation time therefore it is important to select the optimum pipeline diameter.

• SLUG CATCHER SIZING

The computer software also can be used to screen the pipeline for severe riser slugging by identifying which flow regime is the flow in and designing for one in a thousand 5lug. Pipelines that transport both gas and liquids together, known as two-phase flow, can operate in a flow regime known as slug flow or intermittent flow. Under the influence of gravity liquids will tend to settle on the bottom of the pipeline, while the gases occupy the top section of the pipeline. Under certain operating conditions gas and liquid are not evenly distributed throughout the pipeline, but travel as large plugs with mostly liquids or mostly gases through the pipeline. These large plugs are called slugs. Slugs exiting the pipeline can overload the gas/liquid handling capacity

of the plant at the pipeline outlet, as they are often produced at a much larger rate than the equipment is designed for. Therefore, if slug flow is expected in the pipeline, it is necessary to size a slug catcher.

3. SIGNIFICANT OF PROJECT

Internal diameter (ID) of the pipeline has significant effect on the pressure drop in the pipeline so it will effect the pressure at the outlet end. The ID of pipeline can effect the performance of the pipeline system. The ID of the pipeline was varied in order to observe the performance of the pipeline with different ID.

⁴Other than that, in oil & gas field development, interfiled pipelines widely used to transfer well fluid from Satellite wellhead (SW) to Center Processing Platform (CPP) for pretreatment, conditioning and processing. Partial conditioned gas and partial stabilized condensate will then transfer to onshore plant via pipeline for further processing. Partial conditioned gas and partial stabilized condensate travel through long distance pipeline will experience frictional loss and heat loss to ambient. These results change in equilibrium state and lead to condensate formation for partial conditioned gas and flashing in partial stabilized condensate. Two phase gas-liquid flow along pipeline will leads to unavoidable non-stable operation, as example, the slugging flow₄.

4. OBJECTIVES

The objective of this project is to optimize the design of two phase pipeline which in this case, the design of gas pipeline with the presence of liquid when the gas pressure and temperature change due to the frictional loss, elevation change, acceleration, Joule-Thompson effect, and heat transfer from the surroundings as gas moves through a pipeline. This paper emphasizes the sensitivity analysis on pipeline diameter to select the optimum pipeline size. The important parameters that will be vary is the **diameter of the pipeline** in selecting the optimum pipeline size. Other than that, the computer software will model the two phase pipeline and if the fluid flow within certain flow regime and indicates the slug formation in the pipeline, the

Dissertation

sizing of slug catcher is necessary because as slug approaching receiving facilities, slug size will grow and large slug arrived at first receiving facilities will seriously overload the liquid handling capacity and may lead to tripping of receiving facilities. To size a slug catcher, there are 2 important parameters that will be required to size a slug catcher namely:

- One over thousand slug length
- Volume swept by pig (liquid by sphere)

For the case study 1, two phase pipeline will be modeled to do the sensitivity analysis on pipeline diameter to select the optimum pipeline size. For the second case study, two phase pipeline will be modeled to do the sensitivity analysis on pipeline diameter to select the optimum pipeline size and to size a slug catcher if the fluid flow within certain flow regime and there is indications of the slug formation in the pipeline.

5. SCOPE OF STUDY

The general scope of study for the two phase pipeline design is to understand the basic key design term such as pipe diameter, pipe length, the temperature, pressure and any other fluid properties and other variables considered in designing liquids or natural gas pipelines. The basic key design terms can be used to calculate pressure drop and flow capacity. Learning on the theories of gas pipeline transmission and understanding in the basic key design term is essential as the knowledge from the theories will be implemented in the PIPESIM software. Other that that, it is crucial to know the steps in building a multiphase pipeline model and learn the procedure of conducting the PIPESIM software. The understanding in phase flow behaviour in gas pipeline also essential as the need to determine the flow regime to perform mathematical correlation. There are few correlation developed for different fluid phase condition and the correlation for complex pipeline system can be perform by Pipesim in short time and greatly easing the design process.

6. RELEVANCY OF THE PROJECT

This paper is an approach to optimize the pipe diameter of natural gas pipeline to meet the customer's required arrival pressure and temperature where two phase flow is predicted to occur in the pipeline system. This paper is also an approach to design of slug catcher size in order to minimize the cost for operation and maintenance. Slugs exiting the pipeline can overload the gas/liquid handling capacity of the plant at the pipeline outlet, as they are often produced at a much larger rate than the equipment is designed for. Large slug arrived at first receiving facilitiy will seriously overload the liquid handling capacity. Large slug may leads to tripping of receiving facilities therefore the slug catcher can be used to temporary store the intermittent slug and treated it after the slugging period in order to avoid this situation.

7. FEASIBILITY STUDY

The Gantt chart prepared serves of how this study evolves and move through the end of project. Simulation of the natural gas pipeline, case study 1 started from end of end of May, while the case study 2 for the slug catcher size design started from middle of June, and both simulations were done in the first week of August.

FYP II: Two Phase Gas-Liquid Pipeline Design CHAPTER 2: LITERATURE REVIEW

⁴Even to discuss the basics of pipeline design, it is necessary to be familiar with how key physical properties of fluids affect pipeline design. It is important to remember that the term fluid includes both liquids and gases. The effect of these parameters varies with the fluid, compressibility does not significantly affect the flow of liquids, for instance, and differences in viscosity among different gases may not greatly affect the flow of natural gas. Most of the following fluid properties and other variables are considered in designing liquids or natural gas pipelines are:

- **PIPE DIAMETER.** The larger the inside diameter of the pipeline, the more fluid can be moved through it, assuming other variables are fixed.
- **PIPE LENGTH.** The greater the length of a segment of pipeline, the greater the total pressure drop. Pressure drop can be the same per unit of length for a given size and type of pipe, but total pressure drop increases with length.
- SPECIFIC GRAVITY AND DENSITY. The density of a liquid or gas is its weight per unit volume. Density can be given in different units: In English units, it is in pounds of mass per cubic foot (lb_{mass}/ft³); in the SI (International) metric system, units are kilograms per cubic meter (kg/m³). The specific gravity of a liquid is the density of the liquid divided by the density of water, and the specific gravity of a gas is its density divided by the density of air. The specific gravity of air, therefore, is 1, and the specific gravity of water is 1.
- COMPRESSIBILITY. Because most liquids are only slightly compressible, this term is usually not significant in calculating liquids pipeline capacity at normal operating conditions. In gas pipeline design, however, it is necessary to include a term in many design calculations to account for the fact that gases deviate from laws describing ideal gas behavior when under conditions other than standard, or base, conditions. This term supercompressibility factor is more significant at high pressures and temperatures. Near standard

conditions of temperature and pressure $(60^{\circ}F \text{ and } 1 \text{ atm})$, for example), the deviation from the ideal gas law is small, and the effect of the supercompressibility factor on design calculations is not significant.

- **TEMPERATURE.** Temperature affects pipeline capacity both directly and indirectly. In natural gas pipelines, the lower the operating temperature, the greater the capacity, assuming all other variables are fixed. Operating temperature also can affect other variables are fixed. Operating temperature also can affect other terms in equations used to calculate the capacity of both liquids and natural gas pipelines. Viscosity, for example, varies with temperature. Designing a pipeline for heavy crude is one case in which it is necessary to know flowing temperature accurately to calculate pipeline capacity.
- VISCOSITY. The property of a fluid that resists flow, or relative motion, between adjacent parts of the fluid is viscosity. It is an important term in calculating line size and pump horsepower requirements when designing liquids pipelines.
- **POUR POINT.** The lowest temperature at which an oil will pour, or flow, when cooled under specified test conditions is the pour point. Oils can be pumped below their pour point, but the design and operation of a pipeline under these conditions present special problems.
- VAPOR PRESSURE. The pressure that holds a volatile liquid in equilibrium with its vapor at a given temperature is the vapor pressure. When determine for petroleum products under specific test conditions and using a prescribed procedure, it is called the Reid vapor pressure (RVP). Vapor pressure is an especially important design criterion when handling volatile petroleum products, such as LP-gas. This minimum pressure in the pipeline must be high enough to maintain these fluids in a liquid state.

- **REYNOLDS NUMBER.** This dimensionless number is used to describe the type of flow exhibited by a flowing fluid. In stream-lined or laminar flow, the molecules move parallel to the axis of flow; in turbulent flow, molecules move back and foth across the flow axis. Other types of flow are possible, and the Reynolds number can be used to determine which type is likely to occur under specified conditions. In turn, the type of flow exhibited by fluid affects pressure drop in the pipeline. In general, a Reynolds number below 1000 describes streamlined flow; at Reynolds number between 1000 and 2000, flow is unstable. At Reynolds numbers greater than 2000, flow is turbulent. some references recommend, however, that flow be assumed laminar at Reynolds numbers of up to 2000 and turbulent at values above 4000. In this case, flow is considered unstable at Reynolds numbers between 2000 and 4000.
- FRICTION FACTOR. A variety of friction factors are used in pipeline design equations. They are determined empirically and are related to the roughness of the inside pipe wall.

Other properties of the fluid and pipe may be used in specific calculations, but these are the basic terms used to determine pressure drop and flow capacity. Many system variables are interdependent. For example, operating pressure depends, in part, on pressure drop in the line. Pressure drop, in turn, depends on flow rate, and maximum flow rate is dictated by allowable pressure drop.

Several pressure term are used in pipeline design and operation. Barometric pressure is the value of the atmospheric pressure above a perfect vacuum. A perfect vacuum cannot exist on the earth, but it makes a convenient reference point for pressure measurement.

Absolute pressure is the pressure of a pipeline or vessel above a perfect vacuum and is abbreviated psia. Gauge pressure is the pressure measured in a pipeline or vessel above atmospheric pressure and is abbreviated psig. standard atmospheric pressure is usually considered to be 14.696 lb/in², or 760 mm of

Dissertation

mercury, but atmospheric pressure varies with elevation above sea level. Many contracts for the purchase or sale of natural gas, for instance, specify that standard, or base, pressure will be other than 14.696 lb/in^2 .

Formulas describing the flow of fluids in a pipe are derived from Bernoulli's theorem and are modified to account for losses due to friction. Bernoulli's theorem expresser the application of the law of conservation of energy to the flow of fluids in a conduit. To describe the actual flow of gases and liquids properly, however, solutions of equations based on Bernoulli's theorem require the use of coefficients that must be determined experimentally.

The theoretical equation for fluid flow neglects friction and assumes no energy is added to the systems by pumps or compressors. Of course, in the design and operation of a pipeline, friction losses are very important, and pumps and compressors are required to overcome those losses. so practical design equations depend on empirical coefficients that have been determined during years of research and testing.

The basic theory of fluid glow does not change. But modifications continue to be made in coefficients as more information is available, and the application of various forms of basic formulas continues to be refined. The use of computers for solving pipeline design problems has also enhanced the accuracy and flexibility possible in pipeline design.4

1. COMPUTER MODELS

⁴Accurate prediction of physical and thermodynamic properties is prerequisite to successful pipeline design. Pressure loss, liquid holdup, heat loss, hydrate formation, and wax deposition all require knowledge of fluid states.

In flow assurance analyses, the following two approaches have been used to simulate hydrocarbon fluids:

- "black-oil" model: defines the oil as liquid phase that contains dissolved gas, such as hydrocarbons produced from the oil reservoir. The "black-oil" accounts for the gas that dissolves (condenses) from oil solution with a parameter of R, that can be measured from the laboratory. This model predicts fluid properties from the specific gravity of the gas, the oil gravity, and the volume of gas produced per volume of liquid. Empirical correlations evaluate the phase split and physical property correlations determine the properties of the separate phases.
- Composition model: for a given mole fraction of a fluid mixture of volatile oils and condensate fluids, a vapor/liquid equilibrium calculation determines the amount of the feed that exists in the vapor and liquid phases and the composition of each phase. It is possible to determine the quality or mass fraction of gas in the mixtures. Once the composition of each phase is known, it is also possible to calculate the interfacial tension, densities, enthalpies, and viscosities of each phase.

The accuracy of the compositional model is dependant upon the accuracy of the compositional data. If good compositional data are available, selection of an appropiate EOS is likely to yield more accurate phase behaviour data than the corresponding "black-oil" model. This is particularly so if the hydrocarbon liquid is a light condensate. In this situation complex phase effects such as retrograde condensation are unlikely to be adequately handled by the "black-oil" methods. Of prime importance to hydraulic studies is the viscosity of the fluid phases. Both "black-oil" and compositional techniques can be inaccurate. Depending on the

Dissertation

correlation used, very different calculated pressure losses could result. With the uncertainty associated with viscosity prediction it is prudent to utilise laboratory measured values.

GOR may be defined as the ratio of the measured volumetric flow rates of the gas and oil phases at meter conditions (ambient conditions) or the volume ratio of gas and oil at the standard condition (14.7 psia, 60°F) with unit of SCF/STB. When water is also present, the watercut is generally defined as the volume ratio of the water and total liquid at standard conditions. If the water contains salts, the salt concentrations may be contained in the water phase at the standard condition.₄

2. HYDROCARBON FLOW

 $_4$ The complex mixture of hydrocarbon compounds or components can exist as a single-phase liquid, a single-phase gas, or as a multi-phase mixture, depending on its pressure, temperature, and the composition of the mixture. The fluid flow in flowlines is divided into three categories based on the fluid phase condition,

- SINGLE-PHASE; black oil or dry gas transport flowline, export flowline, gas or water injection flowline, and chemical inhibitors service flowlines such as methanol, glycol lines and etc.
- **TWO-PHASE**; oil + released gas flowline, gas + produced oil (condensate) flow line.
- THREE-PHASE; water + oil + gas (typical production flowline).

The flowlines after oil/gas separation equipment generally flow single phase hydrocarbon fluid, such as transport flowlines and export flowlines, while in most cases, the production flowlines from reservoirs have two or three-phase, simultaneously, and the fluid flow is then called multi-phase flow.

In a hydrocarbon flow, the water should be considered as a sole liquid phase or combination with oil condensates, since these liquids basically are insoluble in each other. If the water amount is small enough that it has little effect on flow

Dissertation

performance, it may be acceptable to assume a single liquid phase. At low velocity range, there is considerable slip between the oil and water phase. As a result, the water tends to accumulate in low spots in the system. This leads to high local accumulations of water, and thereby a potential for water slugs in the flowline. It may also cause serious corrosion problems.

Two phase (gas/liquid) models are used for black oil system even when water is present. The water and hydrocarbon liquid are treated as a combined liquid with average properties. For gas condensate systems with water, three-phase (gas/liquid/aqueous) models are used.₄

3. TWO-PHASE PIPELINE DESIGN

⁴The design of two-phase pipeline to handle both gas and liquids involves calculations similar to those used for a single-phase pipeline. The goal in both cases is to determine pipe size, flow capacity, pressure drop, and other flow parameters.

The key difference is that pressure drop is much more difficult to determine when both gas and liquids are flowing in the same pipeline. And some pipelines carry a two-phase, multicomponent stream (gas, oil, and water). Flow of the two phase can take several forms, and presure drop can vary widely, depending on flow conditions. Changes in elevation over the route of two-phase line are much more significant than single-phase pipeline.

Besides pressure drop, liquid holdup is an important consideration in the design of a two-phase pipeline. Holdup refers to the fraction of the pipeline occupied by liquid at any point in the line and is a function of liquid and gas flow within the pipeline. In bubble flow, free gas is present as bubbles in a continuous liquid phase. At the other extreme is mist flow, in which the gas phase is continuous and liquid droplets are entrained in the gas. Between these two extremes are other types of flow, including stratified, wavy, and slug flow. In slug flow, at low flow rates, liquid can occupy the entire cross section of the pipeline at poits in the line. This is likely to occur on uphill portions of the pipeline. This type of flow can produce liquid slugs that exit the pipeline intermittently. Because of ths, it is often necessary to include

Dissertation

equipment to catch thes slugs of liquid at the end of the pipeline to prevent damage to processing or other facilities.₄

4. MULTIPHASE FLOW

₃As in the multiphase flow in vertical pipe, in horizontal pipe there are distinct flow regimes. In horizontal flow there are divided up into 3 main types, Segregated Flow, Intermittent Flow and Distributive Flow. Segregated Flow is divided up into Stratified, Wavy and Annular Flow. Intermittent Flow is divided up in to Plug and Slug Flow. Distributive Flow is divided up in to Bubble and Mist Flow.

- Segregated flow is further classified as being stratified smooth, stratified wavy (ripple flow), or annular. At higher gas rates, the interface becomes wavy, and stratified wavy flow results. Annular flow occurs at high gas rates and relatively high liquid rates and consists of an annulus of liquid coating the wall of the pipe and a central core of gas flow, with liquid droplets entrained in the gas.
- The intermittent flow regimes are slug flow and plug (also called elongated bubble) flow. Slug flow consists of large liquid slugs alternating with high-velocity bubbles of gas that fill almost the entire pipe. In plug flow, large gas bubbles flow along the top of the pipe.
- Distributive flow regimes include bubble, mist ,and froth flow.3

Dissertation

Figure 1: Horizontal Flow Regimes₃

5. BEGGS AND BRILL METHOD

³The Beggs and Brill method works for horizontal or vertical flow and everything in between. It also takes into account the different horizontal flow regimes. This method uses the general mechanical energy balance and the average in-situ density to calculate the pressure gradient. The following parameters are used in the calculations.

$$N_{FR} = \frac{u^2}{gD}$$

$$\lambda_l = \frac{u_l}{u_m}$$

$$L_1 = 316\lambda_l^{0.302}$$

$$L_2 = 0.0009252\lambda_l^{-2.4684}$$

$$L_3 = 10\lambda_l^{-1.4516}$$

$$L_4 = 0.5\lambda_l^{-6.738}$$

Determining flow regimes

• Segregated if $\lambda_l < 0.01$ and $N_{FR} < L_1$ or $\lambda_l > 0.01$ and $N_{FR} < L_2$

- Transition if $\lambda_l \ge 0.01$ and $L_2 < N_{FR} < L_3$
- Intermittent if $0.01 \le \lambda_l < 0.4$ and $L_3 < N_{FR} \le L_1$ or $\lambda_l \ge 0.4$ and $L_3 < NFR \le L4$
- Distributed if $\lambda_l < 0.4$ and $N_{FR} > L_1$ or $\lambda_l \ge 0.4$ and $N_{FR} > L_4$

For segregated, intermittent and distributed flow regimes use the following:

<i>y</i> _l =	$= y_{10}\psi$
	$a\lambda_l^b$
y 10	$= \frac{1}{N_{FR}^c}$

With the constraint of that $y_{10} \ge \lambda_1$

$$\psi = 1 + C[(\sin 1.8\theta) - 0.333 (\sin^3 1.8\theta)]$$

$$C = (1 - \lambda_1) \ln(d\lambda_l^e N_{pl}^f N_{FR}^g)$$

Where a, b, c, d, e, f and g depend on flow regimes and are given in the following table

BEGGS AND BRILL HOLDUP CONSTANTS									
FLOW		b							
REGIME	a		c						
Segregated	0.98	0.4846	0.	0868					
Intermittent	0.845	0.5351	0.0	0173					
Distributed	1.065	0.5824	0.	0609					
	d	e	f	g					
Segregated	0.011	-3.768	3.539	-1.614					
uphill	0.011	-5.700	5.55	-1.014					
Intermittent	2.06	2,96 0.305		0.0978					
uphill	2.90	0.303	-0.4473	0.0770					
Distributed		Jo correctio	n C - 0 14	- 1					
uphill	No correction, $C = 0, \psi = 1$								
All regimes	4.70	-0.3692	0.1244	-0.5056					
downhill	4.70	-0.3092	0.1277	-0.0000					

For transition flow, the liquid holdup is calculated using both the segregated and intermittent equations and interpolating using the following:

$$y_{l} = Ay_{l}(Segregated) + By_{l}(Intermittent)$$

$$A = \frac{L_{3} - N_{FR}}{L_{3} - L_{2}}$$

$$\overline{B = 1 - A}$$

$$\overline{\overline{\rho}} = y_{l}\rho_{l} + y_{g}\rho_{g}$$

$$\left(\frac{dP}{dl}\right)_{PE} = \frac{g\overline{\rho}sin\theta}{g_{c}144}$$

The frictional pressure gradient is calculated using:

$$\frac{(\frac{dP}{dl})_F = \frac{2f_{tp}\rho_m u_m^2}{g_c D}}{\left[f_{tp} = f_n \frac{f_{tp}}{f_n}\right]}$$
$$\frac{\rho_m = \rho_l \lambda_l + \rho_g \lambda_g}{\rho_m = \rho_l \lambda_l + \rho_g \lambda_g}$$

The no slip friction factor f_n is based on smooth pipe $(\frac{\varepsilon}{D} = 0)$ and the Reynolds number, $N_{Rem} = \frac{\rho_m u_m D1488}{\mu_m}$ where $\mu_m = \mu_m \lambda_l + \mu_g \lambda_g$ f_{tp} the two phase friction factor is

$$f_{tp} = f_n e^s$$

where
$$S = \frac{\ln x}{-0.0523 + 3.182 \ln x - 0.8725 (\ln x)^2 + 0.01853 (\ln x)^4}$$
 and $x = \frac{\lambda_l}{y_l^2}$.

Since S is unbounded in the interval 1 < x < 1.2, for this interval

$$S = \ln(2.2x - 1.2)$$

6. SLUG CATCHER SIZING

Slug catchers should be sized to dampen to a level that can be handled by downstream processing equipment. Before dynamic models of the topsides facilities are available, the level of acceptable surging is unknown and designers are often forced to make assumptions vis-a-vis surge volumes, such as designing for the 'one in a thousand' slug.

Surge volume for gas condensate requirements are determined from the outlet liquids rates predicted in the ramp-up, startup, and pigging cases. The required slug catcher size is dependant on liquid handling rate, pigging frequency, and ramp-up rates. An iterative process may be required to identify optimum slug catcher size, pigging frequency, liquid handling rate, and acceptable ramp-up rates. For this optimization, the results of the simulations should be presented as surge volume requirements as a function of liquid handling rate for representative ramp-up rates and pigging frequencies.

7. SEVERE RISER SLUGGING

Severe riser slugging is likely in a pipeline system followed by a riser under certain conditions. The elements leading to severe riser slugging are:

- The presence a long slightly downward inclined pipeline prior to the riser.
- Fluid flowing in the stratified or segregated flow regime (as opposed to the usual slug or intermittent flow regime).
- A slug number (PI-SS) of lower than 1.0.

The PI-SS number can also be used to estimate the severe riser slug length from the equation:

SLUG LENGTH = RISER HEIGHT / PI-SS NUMBER

Dissertation

2. PROJECT ACTIVITIES FLOW

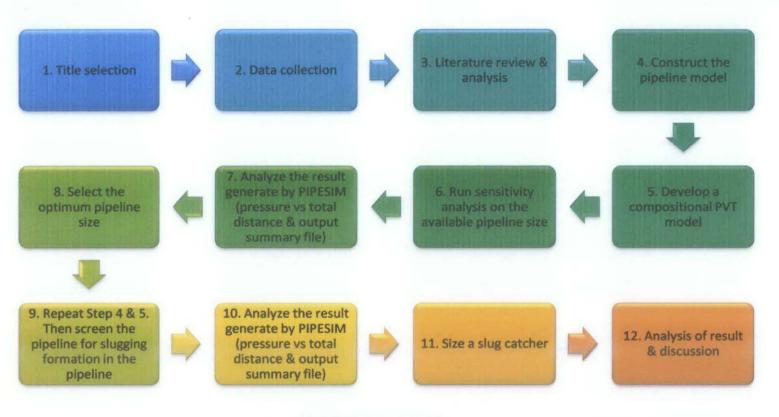
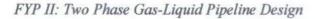



Figure 2: Project activities flow

Dissertation

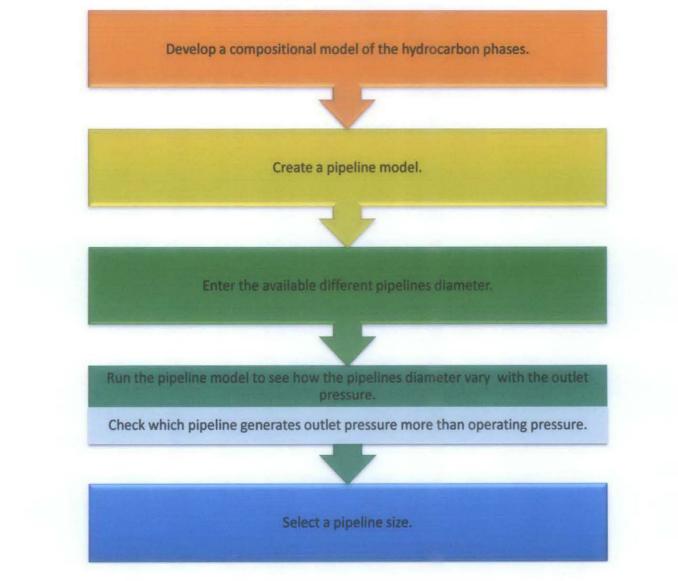
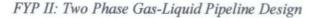



Figure 3: Project Methodology Case Study 1

Dissertation

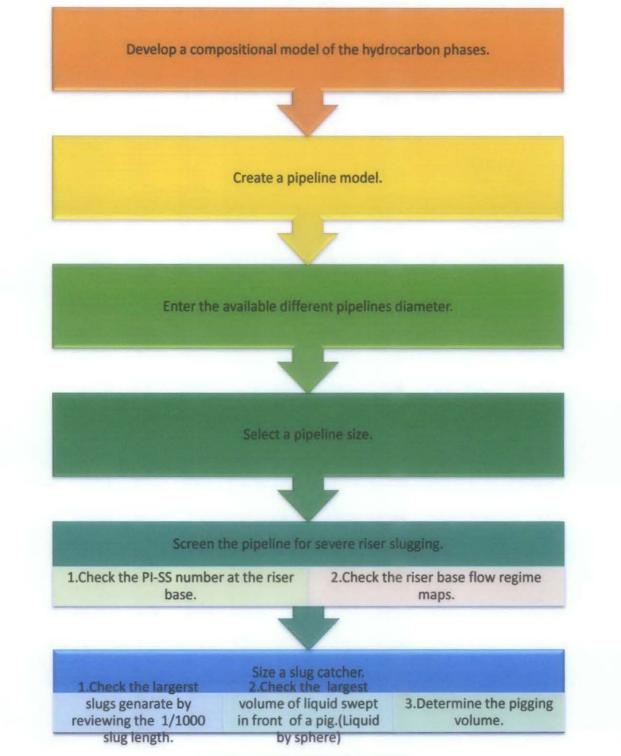


Figure 4: Project Methodology Case Study 2

Dissertation

3. KEY MILESTONE (GANTT CHART)

		MAY		J	UN	E			JU	LY			AUG	UST		SEF	TEN	IBER
No	Activities /Week	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17 - 19
1	Pipesim Exercise	199																
2	Pipesim Case Study					1												×
3	Progress Report Submission							AK									K	WEEK
4	Pre-EDX							BRE.									WEEK	
5	EDX							-SEM									STUDY	EXAMINATION
6	Final Oral Presentation							MID									ST	XAMI
7	Delivery of Final Report to External Examiner																	E)
8	Submission of Hardbound Copies																	

Incoming Activities

Table 1: Project Gantt chart

Dissertation

4. PIPESIM

I. Steady-State Multiphase Flow Simulation (PIPESIM)

⁵PIPESIM software is a steady-state, multiphase flow simulation software that can be used to design and analyze of oil and gas production systems. The multiphase flow of hydrocarbon from the reservoir to the wellhead can be modeled by using PIPESIM software tools and also analyzes flowline and surface facility performance to generate comprehensive production system analysis as well. With advanced modeling algorithms for nodal analysis, PVT analysis, gas lift, and erosion and corrosion modeling, PIPESIM software helps engineers to optimize the production and injection operations.⁵

II. PIPESIM Flow Assurance

⁵PIPESIM production system analysis software offers the industry's most comprehensive steady-state flow assurance workflows, both for front-end system design and production operations. Specific flow assurance modeling capabilities include:

- erosion prediction for sand-laden fluids
- CO2-induced corrosion prediction
- emulsion handling
- hydrate prediction including mitigation with inhibitors
- slug characteristics and pigging operations
- wax and asphaltenes prediction
- time-dependent wax deposition

- liquid loading prediction
- detailed heat transfer modeling.

⁵PIPESIM can be used to identify and predict flow assurance issues and develop mitigation strategies. Fluid flow can be modeled accurately using industrystandard multiphase flow correlations and advanced heat transfer models in this simulator software. PIPESIM also offers the accurate characterization of fluid behavior and predict hydrate, wax, and asphaltene formation using a wide variety of black-oil and compositional fluid models. Prediction on rates of erosion and corrosion assess the pipeline integrity. Furthermore, PIPESIM assess the operational risk from wax deposition along flowlines over time and determine liquid-handling capacities at the processing facility by modeling slug flow and pigging operations. The benefits of PIPESIM:

- Models multiphase flow from the reservoir through the production facilities to your delivery point
- Addresses complex production networks and captures the interactions between wells, pipelines, and process equipment
- Performs a comprehensive sensitivity analysis at any point in your hydraulic system using multiple parameters
- Simulates your field production system to improve production, make better decisions, and maximize your asset value
- Links with HYSYS process simulator for an integrated sand face to process facility analysis

1. CASE STUDY 1

The design gas flow rate for the pipeline is 180 MMSCF/D. The pipeline length and elevation at inlet are shown in **Table 2**. The ambient temperature is assumed to be 60 °F (15.6 °C). The fluid inlet pressure is 1165 psia (8032 kPa) with 95 °F (35 °C) inlet temperature. The required outlet pressure is 750 psia. The pipeline is buried under ground; with an approximate overall heat transfer coefficient of 1 Btu/hr-ft2-°F (5.68 W/m2-°C) was assumed. Due to the high content of H₂S and CO₂ (25.6 and 9.9 mole %, respectively) and to prevent corrosion and hydrate formation, the gas has been dehydrated before entering the pipeline.

Segment length for pipeline										
Segment No	Segment NoLength (miles)Elevation at inlet (f									
1	7.09	1740.00								
2	4.84	672.57								
3	6.40	1197.51								
4	3.10	688.98								
5	0.62	1410.76								
6	7.77	862.86								
7	9.94	295.28								
8	14.93	426.51								
9	7.34	196.85								
10	9.46	98.43								
11	9.94	55.77								
12	9.94	49.21								
13	9.94	19.69								
14	3.11	36.09								

Table 2: Pipeline length and elevation at inlet

Composition and	condition of pipeline
Component	Mole %
H ₂ S	25.6

Dissertation

N ₂	0.2
CO2	9.9
C ₁	62.9
C ₂	0.7
C ₃	0.2
iC ₄	0.06
nC ₄	0.09
iC ₅	0.04
nC ₅	0.05
C ₆ +	0.26
Total	100

Table 3: Composition and condition of pipeline

PROPERTIES OF C6+

SpGr = 0.7

Molecular Weight = MW = 107.8Normal Boiling Point = $NBP= 233.8^{\circ}F$ Critical Temperature = $TC = 536.7^{\circ}F$ Critical Pressure = PC = 374.4 psi Acentric Factor = 0.3622

Wall thickness (")	Roughness (")
0.5	0.001
0.5	0.001
0.5	0.001
0.5	0.001
	0.5 0.5 0.5

Table 4: Available pipeline sizes

Dissertation

FYP II: Two Phase Gas-Liquid Pipeline Design SELECTION OF OPTIMUM PIPELINE ID

By using the wizard feature in the Pipesim, this pipeline model is constructed. The source pressure is 1165 psia with 95°F fluid temperature. The pipeline was divided into 14 segments according to the number of up-hills and down-hills in the line. The pipeline ID, wall thickness, roughness, overall heat transfer coefficient and elevation data and was entered for detailed pipeline description.

PIPESIM - [b]				an and		
File Edit Setup	View Tools Da	ta Operations	Artificial Li	ft Reports	Expert Wi	ndow Help
						3 8
		5000	112 2			
	Source	1	Flow	line 1		
			TION	10.0C_4		
	~					
-			ID	= 20.000 ;	inches	
			HT	= 0.500 in		
<u> </u>			and the second se	= 0.0010 : = 551428.1		
-			Detailed	Profile: 1	15 nodes	
i conserva						

Figure 5: Constructed pipeline model CASE STUDY 1

Dissertation

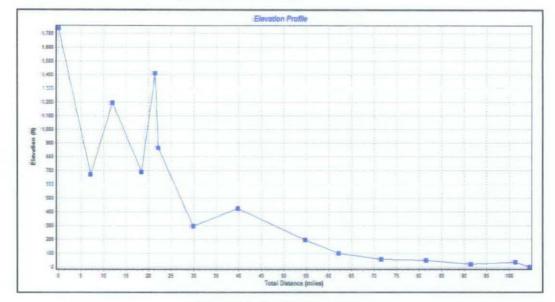


Figure 6: Pipeline elevation profile

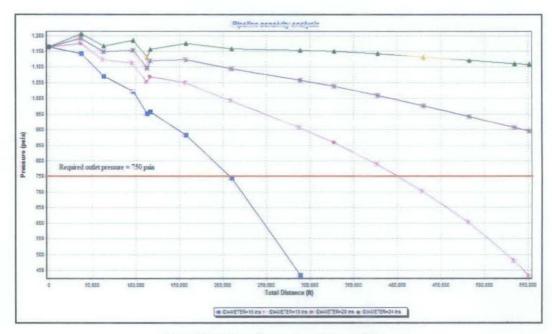


Figure 7: Pipeline diameter sensitivity analysis

Required outlet pressure = 750 psia

PIPELINE ID	16"	18"	20"	24"
OUTLET PRESSURE	< 750 psia	< 750 psia	>750 psia	> 750 psia

Table 5: Pipeline diameter & outlet pressure case study 1

Figure 6 is the graph plot for sensitivity analysis on 4 available pipeline size which are 16", 18", 20" or 24" ID. Note that the calculated outlet pressure for 16" and 18"

Dissertation

pipeline will become less than required outlet pressure for the operation before fluid reach the destination. 20" and 24" ID pipeline will be the suitable pipeline. It can be seen that a 20" is the smallest pipeline size that will satisfy the arrival pressure condition of at least 750 psia. The optimum pipeline size selected is 20".

	Dist	Elev.		Vert. Devn	Pres.	Теар.	Kean Vel.		ra Drop si)	Liquid Flow	Free Gas	Densi (1b/		Slug Number	Flov Pattern
			(deg)	(d e g)	(psia)	(F)	(ft/s)	Elev.	Frictn.	(PP1/q)	(ansold)	Liquid	Gas	(PI-5S)	
FLOWL	INE Flow														
1					1165.0		15.330		0.0000			.00018	6.1858		GAS
2	37435.	672.57	~1.63	88.37	1142.3	00.714	14.676	-46.91	69.659	395.25	179.607	37.658	6.4223	125.26	B/B SEGREGATE:
3	62990.	1197.5	1.177	88.82	1070,5	68.979	15.052	28.800	42,976	795.89	178.794	37,922	6.2222	31.72	B/B SECRECATE
4	96782	688.90	862	89.14	1022.5	63.286	15.584	-21.60	69.528	940.30	178.540	38.146	5.9945	16.26	B/B SEGREGATE
5	113150	1410.0	2.525	87.47	950.87		16.654	42.258				39.609	5.5499		B/B SEGREGATE
6	116424	862,86	-9.50	80.50	958.24	58,379	16.604	-21.19	13 824			39.244	5.5886		B/B SEGREGATE
2	157450	295.28			882.61		18.355	-20.95	96.552			40.616	5.0257		B/B SEGREGATE
à	209933	426 51			744.63	50.554	22.486	5.8857	132.03		176.502	42.851	4.0857		B/B SEGREGATE
9	280763	196.05			433.92		42.004				179.133	43.023	2.2232		B/B DISTRIBUT
***	Case po	. 1:	Calcul	ated m	DASSUTA	is too b	ow (0 a	sia) in	section	9 ***	***				

Table 6: Output table for 16" pipeline

Case	2 : ID.	IAMETER=1	8 ins			-									· · · · · · · · · · · · · · · · · · ·
	Dist. (feet)	Elev. H A (feet) (ngle	Devo.		Teap. (F)	Kean Vel. (ft∕s)	(P	re Drop si) Frictn.	Flow	Free Gas (mascfd)	Densi (1b⁄ Liguid	£t3)	Slug Number (PI-SS)	Flow Pattern
FICULI	NE Flow	line_1	•••	,		• •					• •	•		• • • •	
1 2 3 4 5 6 7 8 9 10 11 12 13 14	0.0000 37435. 62990. 96702. 113150 116424 157450 209933 280763 327518 377467 429950 402434 534917	$\begin{array}{rrrr} 1740.0 - \\ 672.57 - \\ 1197.5 1 \\ 688.98 - \\ 1410.8 2 \\ 062.86 - \\ 295.28 - \\ 295.28 - \\ 196.85 - \\ 98.430 - \\ 98.430 - \\ 98.430 - \\ 19.690 - \\ 19.690 - \\ 19.690 - \\ 0.0080 - \end{array}$	1.63 .177 .862 .525 9.50 .793 1433 .167 .146 .049 .007 .032 0179	88.37 88.82 89.14 87.47 80.50 89.21 89.83 89.83 89.83 89.95 89.95 89.95 89.95 89.95 89.95 89.95	1165.0 1175.6 1123.0 1111.7 1051.2 1068.4 1049.7 996.70 996.70 859.26 788.16 701.99 600.73 480.29 431.12	95.000 81.166 70.054 65.977 59.268 61.441 60.487 57.660 55.922 55.196 55.926 55.196 55.926 55.249 55.249 49.856 49.101	11.743 12.447 13.960 15.036 16.891 19.325 23.346 30.490	$\begin{array}{c} 0.0000 \\ -47.67 \\ 30.245 \\ -23.33 \\ 42.215 \\ -24.20 \\ -24.99 \\ 7.2644 \\ -8.856 \\ -3.441 \\ -1.356 \\1846 \\1846 \\4811 \\5742 \end{array}$	$\begin{array}{c} 0.6000\\ 37.028\\ 22.373\\ 34.620\\ 14.269\\ 7.0893\\ 43.653\\ 50.621\\ 93.655\\ 50.952\\ 72.434\\ 86.318\\ 101.92\\ 119.91\\ 49.691 \end{array}$	0.0000 386.12 793.38 920.92 1248.8 1042.7 1054.6 1516.7 1619.4 1544.9 1378.2 1294.0 1025.5 652.08 600.73	178.316 178.306 176.979 176.649 176.848 177.301 177.462 178.233 179.359	$\begin{array}{c} .00010\\ 37,557\\ 37,721\\ 37,761\\ 38,373\\ 37,931\\ 38,014\\ 39,213\\ 40,285\\ 41,068\\ 42,428\\ 42,580\\ 42,668\\ 42,668\\ 42,6641\\ 42,762 \end{array}$	6.1856 6.6415 6.587 6.6161 6.3146 6.3900 5.2756 5.8700 5.2756 5.8700 5.2175 4.8460 4.3214 3.7816 2.4250 2.4255 2.1506	127.90 31.68 16.33 10.15 11.84 8.46 4.34 2.96 2.76 2.75 2.95 4.32	GAS BYB SECREGATED BYB SEGREGATED BYB SEGREGATED

Table 7: Output table for 18" pipeline

	Dist.	Elev.	Horiz Angle		Pres.	Тевр.	Mean Vel.		re Drop si)	Flow	Free Ges		ft3)	Slug Flow Number Pattern
		(feet)	(deg)	(deg)	(psia)	(F)	(ft/s)	Elev.	Frictn.	(bbl/d)	(nascid)	Liquid	Gas	(PI~SS)§
FLOWL	INE Flow.													2
1	0,0000	1740.0	-1.63	08.37	1165.0	95.000	9.0111	0.0000	0.0000	0,0000	180.000	.00010	6.1858	
2	37435.	672.57			1191.9	80.763	8.9125	-48.12	21.180	407.32	179.575	37.512		120.00 B/B SEGREGATED
Э	62990.	1197.5	1.177	08.02	1148.0	69.824	0.0387	31,304	12.671	816.6B	178.726	37.640	6.7814	
4	96782.	688.98	862	89.14	1153.0	66.403	8.6487	-24.20	19.216	939.97	179.478	37.624	6.9178	
5	113150	1410.8	2.525	87.47	1096.2	59.674	8.9378	48.857	7.8780	1198.5	177.926	37.997	6.6651	
6	116424	862.86	-9,50	80.50	1119.1	62.522	8.8222	-25.57	2.7221	1051.5	178.273	37.735	6.7693	11.70 B/B SEGREGATED
2	157450	295.28	793	89.21	1122.4	62.233	8.7767	-26.75	23.459	1063.8	178.248	37.724	6.8032	8.33% B/B SEGREGATED
8	209933	426.51	,1433	89.86	1093.9	59,446	8.9460	7.8696	20.638	1254.5	177.767	39.116	6,6511	. 5.20 ^N B/B SEGREGATED
9	288763	196.85	167	89.83	1058.2	58.732	9.3020	-10.40	46.018	1387.5	177.376	38.547	6.3814	3.38 B/B SEGREGATED
10	327518	98.430			1039.2	58.477	9.5145	-4.312	23.355	1419.9	177.276	38.721	6.2342	2.91 B/B SEGREGATED
īi	377467	55.770	049	89.95	1010.1	58.008	9.8564	-1.814	30.939	1476.B	177.101	39.013	6.0101	2.428 B/B SEGREGATED
12	429950	49.210			976.49	57.582	10.296	2679	33,826	1499.7	177.021	39.333	5.7490	
13	482434	19,690			942.15	57.349	10,807	-1.151	35.490	1464.8	177.106	39.653	5.4778	
14	534917	36.090			906.85	57.150	11 395	83318	34.461	1404.3	177.266	40.041	5,1982	
15	551338	0.0000			895.98	57.159	11.595	-1.292	12.161	1370.1	177.360	40.163	5.1110	

Table 8: Output table for 20" pipeline

FYP II: Two Phase Gas-Liquid Pipeline Design

Case 4 : IDIAMETER=24 ins

Dist. (feet) FLOWLINE Flowl	Elev. Horiz. Angle (fæt) (deg) ine_1	Devn.	Pres. (psia)	Teap. (F)	Mean Vel. (ft∕s)	(p	si) –	Liquid Flow (bbl/d)	Free Gas (mascfd)	Densi (1b⁄. Liquid	£t3)	Slug Number (PI-SS)	Flow Pattern
	1740.0 -1.63			95.000	6.8133	0,0000	0.0000	0.0000	188.000	.00010	6.1858		GÁS DAD CECDECATED
3 62990 4 96782 5 113150 6 116424 7 157450 8 209933 9 288763 10 327518 11 377467 12 429950 13 482434 14 534917	672.57 -1.63 1.97.5 1.177 680.90862 1410.8 2.525 862.86 -9.50 295.20793 426.51 .1433 196.85167 98.430146 55.770049 49.210007 19.690032 36.090 .0179 36.090 .126	88.82 1 89.14 1 87.47 1 80.50 1 89.21 1 89.86 1 89.85 1 89.85 1 89.99 1 89.99 1 89.99 1 89.99 1 89.99 1 89.99 1 89.99 1 89.99 1 89.99 1 89.99 1 89.99 1	1130.5 1156.6 1176.1 1158.0 1153.1 1141.6 1130.9 1121.1 1210.2	79.123 68.254 65.791 59.377 62.323 62.824 59.916 60.030 59.993 59.724 59.478 59.419 59.302 59.398	6.0510 5.9599 5.7761 5.9473 5.8641 5.7520 5.7877 5.8244 5.8443 5.8875 5.9491 6.0142 6.0069 6.1049	-48.69 32.975 -25.03 52.192 -26.60 -28.13 8.4694 -11.37 -4.851 -2.090 3183 -1.416 1.0241 1.698	8.1272 4.8220 7.1861 2.9553 .52202 8.6253 9.6561 16.296 8.0468 10.405 11.024 11.153 9.9266 3.5651	479,50 005.64 905.62 1310.7 1007.3 1004.1 1190.0 1161.9 1162.3 1228.4 1284.3 1290.2 1309.3 1282.4	179.419 179.502 178.370 177.621 178.100 178.100 178.047 178.047 178.046 177.857 177.656 177.676 177.610	37,477 37,580 37,530 38,017 37,613 37,658 37,658 37,658 37,658 37,638 37,813 37,969 38,029 38,029 38,04	6.9150 6.9775 7.1694 6.9449 7.0699 7.2078 7.1522 7.1101 7.0857 7.0256 6.9458 6.06945 6.7675	28.10 15.26 9.58 11.26 8.15 5.46 4.02 3.53 2.80 2.41 2.14 1.90	B/B SEGRECATED B/B SEGRECATED

Table 9: Output table for 24" pipeline

From the output summary in **Table 8**, it can be seen that the flow regime for the fluid flow in 20" pipeline is segregated flow. Segregated flow is further classified as being stratified smooth, stratified wavy (ripple flow), or annular. There is no indication of any slugging would occur in this pipeline.

2. CASE STUDY 2

For case study 2, the fluid flows down a riser from the satellite platform to the seabed, along a 5 miles pipeline, and up a riser to the processing platform. The fluid inlet pressure at satellite platform will be 1500 psia and the fluid inlet temperature at satellite platform is 176°F. Design liquid flowrate is 10000 STB/D with minimum arrival pressure at processing platform of 1000 psia. And the maximum turndown is 5000 STB/D.

lition of pipeline
Moles (%)
75
6
3
1
1
1
0.5
0.5
12

Table 10: Composition and condition of pipeline

Dissertation

10/1000
5 miles
0
0.5"
0.001"
50°F
0.2 Btu/hr/ft2/°F

Table 11: Pipeline Data

Data for Risers 1	& 2
Horizontal distance	0
Elevation difference (Riser_1)	-400 ft
Elevation difference (Riser_2)	+400 ft
Inner diameter	10"
Wall thickness	0.5"
Roughness	0.001"
Ambient temperature	50 °F
Overall heat transfer coefficient	0.2 Btu/hr/ft2/°F
T-14-12-D-4-6-D-	

Table 12: Data for Risers 1 & 2

Pipe thermal conductivity = 50 Btu/hr/ft/°F

Insulation thermal conductivity = 0.15 Btu/hr/ft/°F

Insulation thickness = 1"

Ambient fluid = water

Ambient fluid velocity = 1.64 ft/sec

Burial depth = 0 (half buried)

Ground conductivity = 1.5 Btu/hr/ft/°F

Dissertation

I.D.(")	Wall thickness (")	Roughness (")
6	0.5	0.001
8	0.5	0.001
10	0.5	0.001
12	0.5	0.001
L	<u>Table 13</u> : Available pipeline size	<u>s</u>

42

Dissertation

FYP II: Two Phase Gas-Liquid Pipeline Design SELECTION OF OPTIMUM PIPELINE ID

By using the wizard feature in the Pipesim, this pipeline model is constructed. The fluid inlet pressure at satellite platform will be 1500 psia and the fluid inlet temperature at satellite platform is 176°F. Design liquid flowrate is 10000 STB/D with minimum arrival pressure at processing platform of 1000 psia. The pipeline ID, wall thickness, roughness, overall heat transfer coefficient and elevation data and was entered for detailed pipeline description.

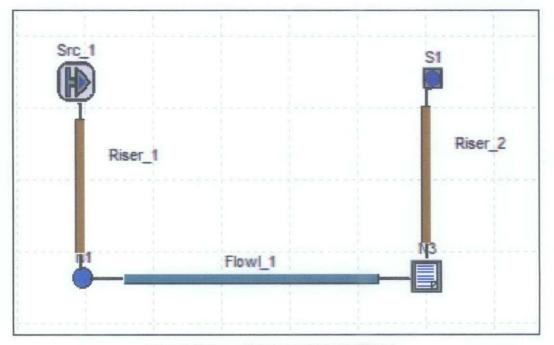


Figure 8: Constructed pipeline model CASE STUDY 2

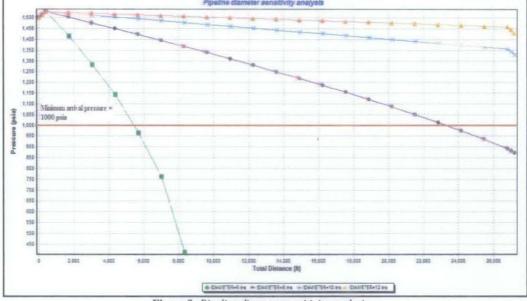


Figure 9: Pipeline diameter sensitivity analysis

Minimum arrival pressure = 1000 psia

PIPELINE ID	6"	8"	10"	12"
OUTLET PRESSURE	< 1000 psia	< 1000 psia	> 1000 psia	> 1000 psia

Table 14: Pipeline diameter & outlet pressure case study 2

Figure 8 is the graph plot for sensitivity analysis on 4 available pipeline size which are 6", 8", 10" or 12" ID. Note that the calculated outlet pressure for 6" and 8" pipeline will become less than minimum arrival pressure for the operation before fluid reach the destination. 10" and 12" ID pipeline will be the suitable pipeline. It can be seen that a 10" is the smallest pipeline size that will satisfy the arrival pressure condition of at least 1000 psia. The optimum pipeline size selected is 10".

	Dist.	Elev.	Horiz.	Vert. Devn.	Pres.	Temp.	Mean Vel.		ure Drop psi)	Liquid Flow	Free Gas	Densi (1b	ft3)	Slug Number	Flow	arn	
TCED	(feet) Riser 1		(deg)	(deg)	(psia)	(F)	(ft/s)	Elev.	Frictn.	(bbl/d)	(aasofd)	Liquid	Gas	(PI-95)			
opsic																	
1	0.0000	0.0000	-90.0	0.000	1500.0	176.00	16.491	0.0000	0.0000	18609.	64.3446	32,083	5.367		D/R S	SLUG	
2	0.0000	-200.0		0.000	1514.0	176.52	16.353	-14.30	.26595	18638.	64.2940	32,006	5.425		D/R S		
3	0.0000	-400.0	-98.0	8.000	1528.2	177.04	16.216	-14.40		18667	64.2446	31.929	5.4843	1	D/R S	BLUG	
LOWLI	INE Flow	1.1															
liser	Base																
.4	0.0000	0.0000	,5729	89.43	1527.5	177.04	45.065	0.0000	0.0000	18664.	64.2493	31.932	5.481			INTERMITTENT	
5	1320.0	13.200			1416.2	172.71	48.260	1.0814	110.02	18412.	64.6707	32.586	5.0240			INTERMITTENT	1.1.
6	2640.0	0.0000			1285.1	168.13	52.895	4363	131.42	17959.	65.3956	33.510	4.4993	21.37		DISTRIBUTED	1.5
7	3960.0	13.200			1147.8	163.13	58.921	.91351	136.05	17519.	66.0756	34.403	3.9708			DISTRIBUTED	1.6
8	5280.0	0.0000			972.20	156.90	69.304	3338	175.50	17102	66.8004	35.210	3.317			DISTRIBUTED	1.7
9	6600.0	13.200		89.43	778.75	150.14	86.705	.71827	191.99	16363.	68.1169	36.429	2.621		N. W. 1	DISTRIBUTED	1.5
10	7920.0	0.0000	573	89.43	459.06	137.01	147.58	1901	317.28	15142.	69.7822	38.145	1.5379	8.19	B/B 1	DISTRIBUTED	215

Table 15: Output table for 6" pipeline

Case 2 : IDIAMETER=8 ins

Dissertation

	Dist.	Elev.	Horiz. Angle	Vert. Devn	Pres.	Teap.	fean Vel		re Drop si)	Liquid Flow	Free Gas	Densi (1b/		Slug Number	Flow Pattern
	(feet) Riser_1	(fest)			(psia)	(F)	(ft∕s)				(mascfd)	Liquid		(PI-SS)	
Topsi 1 2 3 FLOVL Riser	0.0000 0.0000 0.0000 INE Flow Base	-	-90.0 -90.0	0.000 0.000	1500.0 1514.0 1520.2	176.00 176.52 177.04	16.353 16.216	~14.30 -14.40	0.0000 .26595 .26399	18609. 19638. 18667.	64.2940 64.2446	32,083 32,006 31,929	5.3674 5.4254 5.4843		D/R SLUG D/R SLUG D/R SLUG
	C.0000 1320.0 2540.0 5260.0 5280.0 1580.0 10560.1 11800.1 13200. 14520.1 15840. 17160. 17160. 18480.1 17160. 21120. 21420. 21420. 21420. 22440. 23760. 25080. 25080. 26400.	$\begin{array}{c} 0.0006\\ 13.200\\ 0.0008\\ 13.290\\ 0.0080\\ 13.200\\ 0.0000\\ 13.200\\ 0.0000\\ 13.200\\ 0.0000\\ 13.200\\ 0.0000\\ 13.200\\ 0.0000\\ 13.200\\ 0.0000\\ 13.200\\ 0.0000\\ 13.200\\ 0.0000\\ 13.200\\ 0.0000\\ 13.200\\ 0.0000\\ 13.200\\ 0.0000\\ 0.0000\\ 13.200\\ 0.000\\ 0.000$.5729 573 .5729 573 .5729 573 .5729 573 .5729 573 .5729 573 .5729 573 .5729 573 .5729 573 .5729 573 .5729	89, 43 89,	1528.1 1503.0 1476.8 1451.2 1424.5 1398.4 1370.9 1344.1 1315.8 1298.2 1259.0 1230.5 1200.2 1170.8 1139.1 1130.5 1075.4 1043.3 1045.3 974.29 936.89	177.04 173.66 170.38 167.14 163.89 157.86 154.88 151.98 149.08 146.18 146.18 146.18 146.19 143.33 140.50 134.71 137.50 134.71 131.90 129.12 126.39 122.69 121.03 118.36	$\begin{array}{c} 25 & 339 \\ 25 & 555 \\ 25 & 809 \\ 26 & 670 \\ 26 & 375 \\ 27 & 452 \\ 27 & 452 \\ 27 & 452 \\ 27 & 452 \\ 29 & 745 \\ 29 & 224 \\ 29 & 745 \\ 29 & 224 \\ 29 & 745 \\ 30 & 336 \\ 30 & 392 \\ 31 & 669 \\ 32 & 478 \\ 33 & 318 \\ 34 & 331 \\ 35 & 394 \\ 36 & 660 \\ \end{array}$	$\begin{array}{c} 0.\ 6000\\ 1.\ 1172\\\ 4889\\ 1.\ 1076\\\ 4809\\ 1.\ 0957\\\ 4509\\ 1.\ 0815\\\ 4314\\ 1.\ 0640\\\ 4314\\ 1.\ 0476\\\ 4314\\ 1.\ 0273\\\ 3730\\\ 3520\\\ 3734\\\ 3295\\\ 3295\\\ 3063\\ \end{array}$	0.0000 23.964 26.652 24.438 27.229 25.007 27.915 25.684 28.733 26.487 29.666 30.729 28.399 31.963 31.9615 33.460 31.121 33.321 33.004 37.676	18667. 18725. 18736. 18796. 18998. 18907. 18007. 18749. 18749. 18749. 18524. 18524. 18440. 18428. 18440. 18428. 184373. 18329. 18373. 18329. 18350.	64, 2452 64, 1127 63, 93404 63, 9010 63, 8807 63, 9351 64, 0126 64, 0849 64, 1535 64, 0849 64, 1535 64, 0849 64, 1545 64, 3081 64, 3460 64, 3381 64, 3545 64, 3081 64, 3545 64, 3081 64, 3545 64, 3081 64, 3545 64, 3081 64, 3545 64, 3081 64, 5545 64, 3081 64, 5545 64, 5645 64, 5702 64, 5702	$\begin{array}{c} 31, 929\\ 32, 135\\ 32, 553\\ 32, 553\\ 32, 769\\ 33, 214\\ 33, 689\\ 33, 444\\ 33, 689\\ 33, 444\\ 33, 689\\ 33, 444\\ 33, 689\\ 34, 216\\ 34, 499\\ 34, 216\\ 34, 910\\ 35, 105\\ 35, 558\\ 35, 558\\ 35, 558\\ 35, 558\\ 35, 952\\ 36, 184\\ \end{array}$	5.4839 5.3849 5.2814 4.9727 4.9727 4.9650 4.5467 4.4419 4.3406 4.2321 4.1264 4.0117 3.9006 3.7923 3.6624 3.5340 3.2758	$\begin{array}{c} 20,51\\ 13,71\\ 10.02\\ 6,58\\ 5,63\\ 4,87\\ 4,33\\ 3,86\\ 3,51\\ 3,20\\ 2,93\\ 2,69\\ 2,33\\ 2,19\\ 2,36\\ 1,96\\ 1,96\end{array}$	8/8 INTERNITERNI 9/3 INTERNITERNI 8/3 INTERNITERNI 8/3 INTERNITERNI 8/4 INTERNITERNI 8/5 INTERNITERNI 8/6 INTERNITERNI 8/7 INTERNITERNI 8/8 INTERNITERNI 8/9 INTERNITERNI 8/1 INTERNITERNI 8/1 INTERNITERNI 8/2 INTERNITERNI 8/3 INTERNITERNI 8/4 INTERNITERNI 8/3 INTERNITERNI 8/4 INTERNITERNI
Riser 25 26 27 Topsi	0.0000 0.0000 0.0000	0.0000 200.00 400.00	90.00	0.000	936.77 925.84 915.01	118.36 117.70 117.04	23.467 23.722 23.983	0.0000 10.525 10.425	0.0000 .40077 .40388	18079. 18042. 18094.	64.8715 64.9296 64.9913	36.185 36.254 36.325	3.2751 3.2362 3.1975		D/R SLUG D/R SLUG D/R SLUG

Table 16: Output table for 8" pipeline

	Dist.	Elev.	Horiz. Angle		Pres.	Tenp	Nean Vel.		re Drop si)	Liquid Flow	Free Gas	Densi (1b/		Slug Number		
TOPD	(feet) Riser 1	(feet)	(deg)	(deg)	(psia)	(F)	(ft/s)	Elev.	Frictn.	(bbl/d)	(aasofd)	Liquid	Gas	(PI-55)		
opsid														,		
	0.0090	0.0000	_90 N	0.000	1500.0	176.00	16.491	0 0000	0,0000	18609.	64.3446	32.083	5.3674		h/P	SLUG
	0.0000	-200.0			1514.0	176.52	16.353	-14.30	.26595	18638	64.2940	32.085	5.4254			SLUG
	0.0000	-400.0			1528.2	177.04	16.216	-14.40	. 26399	18667.	64.2446	31.929	5.4843			SLUG
	NE Flow		- 10.0	0.000	1920.2	177.04	10.210	-14.40	. 20333	19001.	04.2440	31.323	5.4043		Do R	3106
liser		·												į		
	0.0000	0.0000	6729	69 42	1528.2	177.04	16.215	0.0000	0.0000	18667.	64.2444	31,929	5.4844	Č	R/R	INTERNITTE
	1320.0	13.200			1519.5	173.46	16,159	1.1337	7.5095	18796.	63.9770	32.067	5.4557	43 51		INTERNITTE
	2640.0	0.0000			1511.8	170.02	16.098	-, 4989	8.2401	18919.	63.7301	32.193	5.4304			INTERNITIE
2	3960 0	13,200			1503.2	166.63	16.053	1.1431	7.4602	19032	63.5059	32,320	5.4013			INTERMITTE
é	5280.0		573		1495 5	163.38	16.005	- 4939	8.1985	19139	63.2990	32.437	5.3757			INTERNITTE
	6600.0	13,200			1486.9	160.16	15.970	1.1512	7.4214	19238	63.1131	32.556	5.3462			INTERMITTE
	7920.0	0.0000			1479 2	157.08	15.933	- 4889	0.1602	19332	62.9416	32.664	5.3202			INTERMITTE
11	9240.0	13.200			1470.7	154.04	15.908	1.1579	7.3922	19410	62.7097	32.775	5.2904			INTERNITTE
	18560	0.0000			1463.0	151.12	15.000	- 4837	8,1323	19499	62.6495	32.078	5,2641			INTERMITTE
	11890.	13,200			1454.5	148.17	15.848	1 1637	7.3701	19574	62.4749	32.984	5.2400			INTERMITTE
	13200	0.0000			1446.9	145.32	15.803	- 4795	8.0989	19646.	62.2817	33,092	5.2228			INTERMITTE
	14520.	13.200			1438 4	142.49	15.772	1.1708	7.3348	19709.	62.1051	33,183	5,2016			INTERMITTE
	15840.	0.0080		89.43	1430.8	139.79	15.737	4760	8.0644	19779.	61.9489	33.276	5.1835			INTERMITTE
17	17160.	13.200			1422.3	137.12	15.717	1.1766	7,3090	19822.	61.80B2	33.373	5.1614	2.69	ĺ₿∕₿	INTERMITTE
īè	16480.	0.0000			1414.7	134.57	15.692	- 4723	8.0406	19872.	61.6774	33.462	5.1424			INTERMITTE
ĩŝ	19800.	13,200			1406.3	132.03	15.681	1.1814	7.2923	19915.	61.5650	33.555	5.1193	2.28	B/B	INTERMITTE
ZÓ	21120	0.0000			1398.7	129.62	15.665	- 4684	8.0265	19956.	61.4606	33,641	5.0995		B∕B	
21	22440.		.5729		1390.2	127.22	15.663	1.1850	7.2841	19989.	61.3738	33.792	5.0756		₿∕B	INTERMITTE
22	23760		573		1382.7	124.94	15.656	- 4643	0.0217	20021.	61.2929	33,815	5.0549	1.84	B/B	INTERNITTE
23	25000	13.200			1374.2	122.67	15.663	1.1877	7.2840	20346.	61.2291	33,904	5.0302		B∕B	INTERMITTE
24	26400.		573		1366.6	120.51	15.664	4601	0.0256	20070.	61.1696	33.985	5.0007	1.63	₽∕B	INTERMITTE
	Riser 2															
iser															2	
	0.0000	0.0000	90,00	8.060	1366.6	120.51	15.665	0.0000	0.0000	29070.	61.1699	33,985	5,0085	É	D/R	SLVG
	D.0000		90.00		1351.3	119.82	15.826	15.051	32323	20004.	61.2877	34.089	4.9470			SLUG
	0.0000		90.00		1336.0	119.17	15,987	14.923	. 32546	19936.	61.3951	34.194	4.8872			SLUG

Table 17: Output table for 10" pipeline

Case 4 : IDIAMETER=12 ins

			+	-												
	Dist.	Elev.	Horiz.	Vert.	Fres.	Теар.	Nean	Pressu	re Drop	Liquid	Free	Densi	ties	Sluq	Flow	,
				Devn		tonp.	Vel.		si)	Flow	Gas	(16/		Number	Patt	
	(feet)	(feet)	(deg)	(deg)	(psia)	(F)	(ft/s)			(bb1/d)	(aasofd)	Liquid		(PI-SS)		
	Riser_1															
Topsi																
1	0.0000 0.0000	0,0000			1500.0	176.00		0.0000	0.0000	18689.	64.3446	32.093	5.3674			SLUG SLUG
3		-200.0			1514.0	176.52	16.353 16.216	-14 30 -14 40	26595	18638 18667.	64.2940 64.2446	32.006 31.929	5.4254			SLUG
	INE Flow		-90.0	0.000	1270.5	177.04	10.210	-14.40	. 20337	1000/.	09.2440	31.929	5.4943		D/ K	STOG
Riser		±														
1	6.0000	0.0000	.5729	89.43	1528.1	177.04	11.261	0.0000	0.0000	18667.	64.2445	31.929	5.4B43		B∕B	INTERNITTENT
Ś	1320.0	13.200			1524.1	173.09	11.174	1.1453	2.9294	18831	63,9108	32.057	5.4759	43.61		INTERMITTENT
6	2640.0	0.0000	573	09.43	1521.4	169.29	11.084	5018	3,2049	18987.	63,5979	32.170	5.4730	20.32	B∕B	INTERMITTENT
7	3960.0	13.200	.5729	89.43	1517.3	165.57	11.007	1.1618	2.8859	19133.	63.3133	32.284	5.4641	13.49	B∕9	INTERMITTENT
0	5260.0	0.0080			1514.7	162.02	10.927	5007	3.1591	19273.	63.0454	32.385	5.4608			INTERMITTENT
9	6600.0	13.200			1510.6	158.51	10.859	1.1766	2.8474	19403.	62.8034	32.487	5.4515			INTERMITTENT
10	7920.0	0.0000			1500.0	155.17	10.707	4995	3.1185	19528.	62.5743	32.577	5.4478			INTERMITTENT
11	9240.0	13.200			1504.0	151.87	10.728	1.1908	2.8134	19644.	62.3692	32.669	5.4391			INTERMITTENT
12	10560	0.0000			1501.4	148.70	10.656	4983	3.0825	19758	62.1350	32.751	5.4386			INTERNITTENT
13	11800	13,200			1497.5	145.50	10.565	1.2035	2.7787	19863	61.9687	32.836	5.4395			INTERMITTENT
14	13200. 14520.	0.0000			1494.9	142.46	10.509	4989	3.0406	19966. 20059.	61.6154 61.3866	32.910	5.4457			INTERMITTENT
15 16	15849	0,0000			1491.0	139.46 136.61	10.447 10.380	1.2173	2.7429	20055.	61.3600	32.988 33.055	5.4456			INTERNITTENT INTERNITTENT
17	17160.	13,200			1484.5	133.79	10.325	1.2297	2.7112	20233	60.9709	33.127	5.4497			INTERMITTENT
18	18480	0.0000			1482.0	131 12	10.325	4998	2 9698	20315	60.7809	33,100	5.4541			INTERMITTENT
19	19800.	13,200		89.43	1478.1	128.47	10.217	1,2409	2 6834	20387.	60.6127	33.254	5.4519			INTERMITTENT
20	21120	8,0000			1475.7	125.96	10.164	- 4999	2.9405	20460	60.4484	33.310	5.4554			INTERNITTENT
21	22440	13.200			1471.8	123.47	10.123	1.2510	2.6588	20524	60.3049	33.371	5.4523			INTERMITTENT
22	23760.	0.0000			1469.4	121.13	10.075	4999	2.9148	20589.	60.1628	33.422	5.4550			INTERMITTENT
23	25080.	13.200	5729	09.43	1465.5	118.79	10.031	1.2601	2.6372	20653	59.9957	33.476	5.4550	1.65	B∕₿	INTERMITTENT
24	26400.	0.0000	573	89.43	1463.1	116.60	9.9741	5005	2.8879	20723.	59.7921	33.517	5.4643	1.55	B∕B	INTERMITTENT
	Riser_2															
Riser																
25	0.0000	0.0000			1463.0	116.60	14.363	0.0000	0.0000	20723.	59.7926	33.517	5.4640			SLUG
26	0.0000	200.00			1446.5	115.09	14.506	16.246	.31423	20666.	59.8874	33.609	5.3965			SLUG
27	0.0000	400.00	A0.00	0.080	1430.0	115.19	14.652	16.109	. 31644	20606.	59.9868	33.703	5.3294	1,53	n/x	SLUG
Topsi	185															

Table 18: Output table for 12" pipeline

From the output summary in **Table 17**, it can be seen that the flow regime for the fluid flow in 10" pipeline is intermittent flow. The intermittent flow regimes are slug flow and plug (also called elongated bubble) flow. Slug flow consists of large liquid slugs alternating with high-velocity bubbles of gas that fill almost the entire pipe. In plug flow, large gas bubbles flow along the top of the pipe. Because the pipeline system consist of vertical riser, severe slugging could occur in the pipeline riser.

FYP II: Two Phase Gas-Liquid Pipeline Design SCREENING THE PIPELINE FOR SEVERE RISER SLUGGING

The screening of the pipeline for severe riser slugging. As claimed in the literature review, the elements leading to severe riser slugging are:

- The presence a long slightly downward inclined pipeline prior to the riser.
- Fluid flowing in the "stratified" or "segregated" flow regime (as opposed to the usual "slug" or "intermittent" flow regime).
- A slug number (PI-SS) of lower than 1.0.

To screen the pipeline for severe riser slugging, the PI-SS number at the riser base for both flowrate cases are checked. It can be seen that the PI-SS number is higher than 1.0 at the riser base in both cases as shown in **Table 19** and **Table 20**. The PI-SS number at the riser base for 5000 sbbl/day is 1.33 and for 10000 sbbl/day is 1.63. In the turndown flowrate case the PI-SS number is 1.33 at the riser base as shown in **Table 19**.

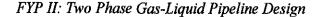

	Dist.	Elev.	Boriz. Angle	Vert. Devn.	Fres.	Temp.	Nean Vel.		re Drop si)	Liquid Flow	Free Gas	Densi (1b/		Slug luaber	Flow Patt	
	(feet)	(feet)	(deg)	(deg)	(psia)	(F)	(ft/s)	Elev.	Frictn.	(bb1/d)	(aasofd)	Liquid	Gas (PI-SS)		
	Riser_1															
opsid 1	es 0.0000	0.0000	_90 D	8 JON	1500.0	176.00	8.2455	0.0000	0.0000	9304.4	32,1723	32,083	5.3674		n.∕12	SLUG
	0.0000	-200.0			1517.6	176.51	8,1560	-17.60	.06998	9326.0	32 1342	31,990	5.4405			SLUG
		-400.0			1535.4	177.02	8.0675	-17.83	06936	9346.9	32 0970	31,899	5.5149			SLUG
	NE Flow				1000.4	1,1,00	0.0070									
iser																
	0.0000	0.0000			1535.4	177.02	8.0672	D.0000	0.0080		32 0968	31.898	5.5151			INTERMITTE
	1320.0	13.200			1532.3	170.24	7.9397	1.1583	1.8892	9493.5	31.8008	32 098	5.5177			INTERMITTE
	2640.0	0.0000			1530.8	163.88	7.8170	- 5062	2.0513	9628.4	31.5377	32.269	5.5258			INTERMITTE
	3960.0	13,200			1527.0	157.79	7.7116	1.1894	1.8351	9750.2	31.3089 31.1043	32.429	5.5269 5.5338			INTERMITTE
	5280.0 6600.0	0.0000			1526.3 1523.3	152.00 146.51	7.6009 7.5061	5069 1.2164	1.9961 1.7893	9863.2 9966.4	30.0760	32.567 32.701	5.5460			INTERMITTE
	7920.0	0.0000			1523.3	141.24	7.3974	5095	1.9434	10063	30.6407	32.015	5.5707			INTERMITTE
	9240.0	13.200			1518.8	136.20	7 3048	1.2444	1.7418	10149	30.4346	32,926	5.5873			INTERMITTE
	10560.	0.0000			1517.5	131.49	7,2137	5132	1.8949	10230	30.2471	33,020	5.6092			INTERMITTE
	11980	13,200			1514.5	126.97	7.1369	1.2686	1.7022	10302.	30.0839	33,113	5.6239	3.61	₿∕₿	INTERMITTE
	13200	0.0000	- 573	89.43	1513.1	122.77	7.0601	5163	1.9544	10370.	29.9337	33.192	5.6422			INTERMITTE
	14520.	13,200			1510.2	118.73	6.9984	1.2895	1.6690		29.7799	33,268	5.6577			INTERMITTE
	15840.	0.000			1508.9	114.99	6.9083	5200	1.8169	10503.	29.5085	33.322	5.6879			INTERMITTE
	17160	13.200			1505.9	111.39	6.8395	1.3113	1.6342	10563.	29 4198	33.300	5.7092			INTERMITTE
	18480	8.0000			1504.7	108.05	6.7700	5246	1.7805	10621. 10672.	29.2623 29.1246	33 426	5.7360			INTERMITTE
	19800. 21120.	13.200			1501.8 1500.5	104.82	6.7127	1.3305	1.6043	10721.	28.9944	33,477 33,516	5.7776			INTERMITTE
	22440	13.200			1497.6	98.942	6.6059	1.3471	1.5792	10763.	28.0810	33,516	5.7923			INTERMITTE
	23760.	0.0000			1496.4	96.275	6.5556	~. 5319	1.7242	10804.	28.7738	33,596	5,0132			INTERMITTE
	25080	13,200			1493.5	93.681	6.5159	1.3615	1.5580	10840.	28,6817	33.637	5.8250			INTERBITTE
	26400	0.2000			1492.3	91,298	6.4728	5348	1.7025	10875	28.5917	33.667	5.8432			INTERMITTE
	Riser 2															
ser																
	0.0000	0.0000			1492.3	91.298	6.4730	0.0000	0.0000	10875.	28 5919	33.667	5.8429	5		
	0.0000	280.00			1470.6	90.406	6.5589	21.608	.08501	10031.	28 6788	33,781	5.7474			
27	0.0000	400.00	90.00	H. 800	1449.1	89.529	6.6448	21.409	.08571	10786.	29,7575	33.896	5.6547	1.33	11/R	3106

Table 19: Output table for 5000 sbbl/day (Turndown flowrate)

Case	2 :LI	Q=10000	shb1/d	lay								T#			
	Dist.	Elev.	Horiz Angle	Vert. Devn.	Pres.	.Teap	Hean Vel.		re Drop si)	Liquid Flow	Free Gas	Densi ()h/			Flow Pattern
RISER	(fest) Riser_1	(feet)			(psia)	(F)	(ft/s)				(mascfd)	Liquid		(PI-SS)	
Topsid	ies														
1	0.0000	0.0000	90.0	0.000	1500.0	176.00	16.491	0.0000	0.0000	18609.	64.3446	32,883	5.3674		D/R SLUG
2	0.0008	-200.0	-90.0	0.000	1514.0	176.52	16.353	-14.30	26595	18638.	64.2940	32.006	5.4254		D/R SLUG
3	0,0008	-400.0	-90.0	0,000	1528.2	177.04	16.216	-14.40	26399	18667.	64.2446	31.929	5.4843		D/R SIUG
FLOVLI	NE Flow	1 1													-
Riser		-													
	0.0000	0,0000	.5729	89.43	1520.2	177.84	16.215	0.0000	0.0000	19667.	64.2444	31.929	5.4844		9/8 INTERMITTEN
5	1320.0	13.200	.5729	89.43	1519.5	173.46	16.158	1 1337	7.5095	18796.	63.9770	32.067	5.4557	43.51	B/B INTERMITTEN
6	2649.0	0.0000	573	89.43	1511.8	170.02	16.098	4989	8.2491	18919.	63,7301	32,193	5.4304	20.37	B/B INTERMITTEN
7	3960.0	13,200	.5729	89.43	1503.2	166.63	16.053	1.1431	7,4602	19032	63.5059	32.320	5.4013	13.56	B/B INTERMITTEN
8	5280.0	0.0000	573	89.43	1495 5	163.38	16.005	- 4939	0.1985	19139.	63,2990	32.437	5.3757	9.85	B/B INTERMITTEN
9	6690.0	13,200	.5729	89.43	1406.9	160.16	15.970	1 1512	7.4214	19238.	63.1131	32,556	5.3462	7.83	B/B INTERMITTEN
10	7920.0	8,0000	573	89.43	1479.2	157.08	15,933	- 4889	8.1602	19332.	62.9416	32.664	5.3202		B/B INTERMITTEN
11	9240.0	13.200			1470.7	154.04	15.908	1.1579	7.3922	19418	62.7897	32.775	5.2904		B/B INTERMITTEN
12	10560.	0.0000	- 573	89.43	1463.0	151,12	15.880	- 4837	8.1323	19499.	62 6495	32.878	5.2641	4.65	B/B INTERMITTEN
13	11888.	13.200	.5729	89.43	1454.5	148.17	15,940	1.1637	7.3701	19574.	62.4749	32.984	5.2400	4.10	B/B INTERMITTEN
- 14 -	13200.	0.0000	-, 573	89.43	1446.9	145.32	15.003	4795	B.0989	19646.	62.2817	33,082	5.2228	3.62	B/B INTERBITTEN
15	14520.	13,200	.5729	89.43	1438.4	142.49	15.772	1.1700	7.3348	19709.	62.1091	33,183	5.2016	3.26	B/B INTERMITTEN
16	15840.	9.0000	573	89.43	1430.B	139.79	15.737	- 4760	8.0644	19770.	61.9489	33.276	5.1835	2.94	B/B INTERMITTEN
17	17160.	13,200	. 5729	69,43	1122.3	137.12	15.717	1.1766	7,3090	19822.	61.8082	33.373	5.1614	2.69	B/B INTERMITTEN
19	18480.	0.0000			1414.7	134.57	15.692	4723	8.0406	19872.	61.6774	33.462	5.1424	2.46	B/B INTERMITTEN
19	19800.	13.200	.5729	89.43	1406.3	132.03	15.681	1.1814	7.2923	19915.	61.5650	33,555	5.1193	2,28	B/B INTERMITTEN
20	21120.	8.0000	~.573	89,43	1398.7	129.62	15.665	- 4684	8.0265	19956.	61,4606	33.641	5.0995	2.11	B/B INTERMITTEN
21	22440.	13.200	.5729	89.43	1390.2	127.22	15.663	1 1850	7.2841	19989.	61.3738	33,732	5.0756	1.97	B/B INTERMITTEN
22	23760.	0.0000	573	89,43	1382.7	124.94	15.656	4643	B.0217	20021.	61,2929	33,815	5.0549	1.84	B/B INTERMITTEN
23	25080.	13.200	.5729	89.43	1374.2	122.67	15.663	1 1077	7.2840	20046.	61,2291	33.904	5,0302	1.73	B/B INTERMITTEN
24	26400.	0.0000			1366.6	120.51		- 4601	8.0256	20070.	61.1696	33,985	5.0087		B/B INTERMITTEN
RISER	Riser_2														
Riser	Base														
25	0.0000	0.0000	90.00	0.000	1366.6	120,51	15.665	0.0000	0.0000	20070.	61.1699	33.985	5.0085	ě k	D/R SLUG
26	0.0000	200.00	90.00	0.000	1351.3	119.02	15.826	15.051	. 32323	20004	61.2877	34,089	4.9470	£ 1.63	D/R SLUG
27	0.0000	400.00	90.00	0.000	1336.0	119.17	15.987	14.923	32546	19936.	61.3951	34.194	4.8872	#1.62	D/R SING
Topsid	les													R	

Table 20: Output table for 10000 sbbl/day

Check the riser base flow regime maps in the output file to see if the flow is in the "stratified" or segregated region. It can be seen that flow is in the intermittent (normal slugging) flow regime. The turndown case flow map is shown in **Figure 9**. It can be seen that the segregated region has been avoided and the likelihood of severe riser slugging is reduced.

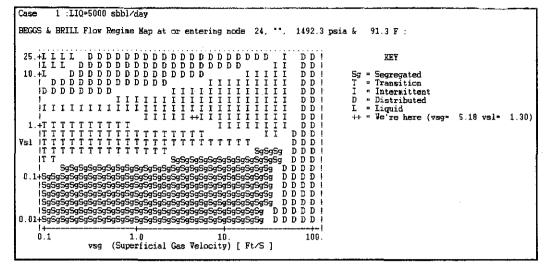


Figure 10: Case flow map for 5000 sbbl/day (Turndown flowrate)

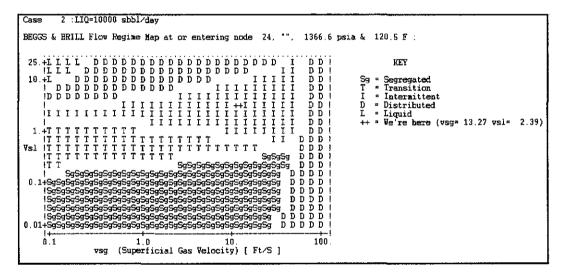


Figure 11: Case flow map for 10000 sbbl/day

SIZING OF SLUG CATCHER

In this case study, normal slug flow is expected to be occured. it is necessary to size a slug catcher. The size will be determined by the largest of three design criteria:

- The requirement to handle the largest slugs envisaged (chosen to be statistically the 1/1000 population slug size).
- The requirement to handle liquid swept in front of a pig.
- Transient effects, i.e. the requirement to handle the liquid slug generated when the production flow is ramped up from 5,000 to 10,000 STB/D.

Review the output file as shown in Table 21 and Table 22. As shown in Table 21, the 1/1000 slug length for turndown case is 1749.5 ft. As shown in Table 22, the

Dissertation

1/1000 slug length for turndown case is 1583.9 ft. It can be seen that the turndown case generates larger slugs.

Case 1 : LIC	2=5000 s	bbl/day	*** - ,								
RISER Riser_1	Elev. (feet)	Pipe I.D. (ins.)	Mean Length (feet)	Slug Freq (min-1)	1 in thousand Length Freq (feet) (min-1)	1 in hu Length (feet)	Freq	l in Length (feet)	ten Freq (min-1)	Slug Nuaber (PI-SS)	Flov Pattern
3 0. FLOWLINE Flow1	0.0 -200.0 -400.0	10.000 10.000 10.000	0.0 0.0	0.000 0.000	0.0 0.00000 0.0 0.000000	0,0 0,0	. 00000 0 , 00000 0 , 00000		0,0000 0,0000		D/R SLUG D/R SLUG
Riser Base 0. 4 0. 5 1320. 6 2640. 7 3950. 8 5200. 9 6600. 10 7920. 11 9240. 12 10560. 13 11880. 14 13200. 15 14520. 16 15840. 17 17160. 18 18480. 19 19800. 20 21120. 21 22440. 23 25080. 24 26400. RISER Riser_2 2 25 0. 26 0. 27 0. Topsides	0.0 13.2 0.0 13.2 0.0 13.2 0.0 13.2 0.0 13.2 0.0 13.2 0.0 13.2 0.0 13.2 0.0 13.2 0.0 13.2 0.0 13.2 0.0 13.2 0.0 0.0 13.2 0.0 0.0 13.2 0.0 0.0 13.2 0.0 0.0 13.2 0.0 0.0 13.2 0.0 0.0 13.2 0.0 0.0 13.2 0.0 0.0 13.2 0.0 0.0 13.2 0.0 0.0 13.2 0.0 0 13.2 0.0 0 13.2 0.0 0 13.2 0.0 0 13.2 0.0 0 13.2 0.0 0 13.2 0.0 0 13.2 0.0 0 13.2 0.0 0 13.2 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0	10.000 10.000	73.5 157.0 195.9 223.3 275.9 284.4 261.6 275.9 286.4 299.3 309.1 317.9 325.8 333.2 357.9 3372.6 373.8 375.8	0 292 0 275 0 263 0 254 0 246 0 246 0 246 0 246 0 246 0 245 0 246 0 245 0 246 0 245 0 245 0 227 0 207 0 207 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	235 7 503 3 775 9 783 6 898 6 924 5 959 6 990 9 1019 2 1044 6 1009 9 1110 1 1128 9 1146 8 1128 9 1146 8 1129 5 1194 5	0.00923 0.00438 0.00356 0.00292 0.00275 0.00256 0.00246 0.00246 0.00240 0.002235 0.00220 0.002235 0.00220 0.002235 0.00220 0.00223 0.00223 0.00223 0.00223 0.00223 0.00220 0.00223 0.00220 0.00213 0.00209 0.00209	139.4 297.7 371.5 423.5 423.5 423.5 546.9 523.3 546.9 567.7 586.2 602.9 618.0 631.9 644.7 656.7 667.8 678.4 667.7 706.6	0.023 0.0430 0.0356 0.0316 0.0252 0.0275 0.0225 0.0225 0.0225 0.0225 0.0225 0.0225 0.0225 0.0220 0.0223 0.0220 0.0223 0.0225 0.0221 0.0225 0.0225 0.0220 0.0225 0.0225 0.0225 0.0225 0.0225 0.0225 0.0225 0.0225 0.0225 0.0225 0.0225 0.0225 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0225 0.0255 0.0	43.00 19.71 12.94 9.25 5.81 4.98 4.13 3.61 3.61 3.61 3.61 3.61 3.61 3.62 2.92 2.98 2.99 1.91 1.75 1.63 1.75 1.42 1.33 1.33	9/9 INTERNITTENT 9/9 INTERNITTENT

Table 21: Output file for 5000 sbbl/day (Turndown flowrate)

Case	2 :LIG	2=10000 Elev.	sbbl/day Pipe	Nean	Siug	1 in thousand	1 in hi	indred	1 in		Slug	Flov
			I.D.			Length Freq		Freq	Langth	Freq	Number	Pattern
	(feet) Riser_1	(feet)	(ins.)	(test)	(min-1)	(feet) (min-1)	(1661)	(min-1)	(IBEL)	(min-1)	(PI-SS)	
Topsid												
1	0.	8.0	10.000	-	-		-	-		-		-
2	Ð.	-200.0	10.000	0.0	0.000	0.0 0.000000	0.0	0.00000		0.0000		D/R SLUG
3	0.	-400.0	10.000	0.0	0.000	0.0 0.00000	0.0	0.00000	0.0	0.0000		D/R SLUG
	NE Flow	1,1										
Riser	Base 0.	0.0	10.000		_ 1	-8 -		_	_			_
5	1320.	13.2	10.000	N/A	0.000	0.01.0.000000	0.0	0.00000	0.Ū	0.0000	43.51	B/B INTERMITTENT
6	2640.	0.0	10.000	109.3	1.237	509.9 0.001237	350.5	0.01237	207.3	8.1237	20,37	B'B INTERMITTENT
ž	3960.	13.2	10.000	162.5	0.837		521.0	0.00837	308.2	9.0837	13.56	B/B INTERMITTENT
8	52BO	0.0	10.000	189.0	0.724 🖗	681.5 D.000724	605.8	0.00724	358.4	0.0724	9,85	B/B INTERMITTENT
9	6600.	13.2	10.000	209.5	0.657 🛔	977.1 0.000657	671.6	0.00657	397.3	0.0657	7.83	B/B INTERMITTENT
10	7920.	0.0	10.000	226.2	0.611	1054.9 0.000611	725.1	0.09611	428.9	0.0611	6.37	B/B INTERMITTENT B/B INTERMITTENT
11 12	9240. 10560.	13.2	10.000 10.000	240.3 252.5	0.578	1120.94 0 000578	770,4 809,4	0.00578 0.00552	455.7 470.8	0.0578	5.42 4.65	B/B INTERMITTENT B/B INTERMITTENT
	11880.	13.2	10.000	263.2	0.554	1177.7 0.000552 1227.6 0.000532	843.7	0.00532	499.1	0.0532	4 10	B'B INTERMITTENT
	13200.	0.0	10,060	272.6	6 515 8	1271.7% 0.000515	874.0	0,00515	517.0	0.0515	3,62	B/B INTERMITTENT
	14520	13.2	10.000	281.2		1311,8 0.000501	901.6	0.00501	533.4	0.0501	3.26	B/B INTERMITTENT
16	15040.	0.0	10,000	289.0	0.409	1340.3/0.000489	926.7	0.00409	548.2	0.0489	2.94	B/B INTERMITTENT
	17160.	13.2	10.000	296.3	0.478	1382.1 0.000478	949.9	0.00478		0.0478	2.69	B'B INTERMITTENT
	18480.	0.0	10.000	303.0		1413.3 0.000469	971.3	0.00469	574.6	0.0469	2.46	B'B INTERMITTENT
	19800. 21120.	13.2 0.0	10.000 10.009	309.3 315.1	0.460	1442.71 0.000460	991.5 1010.3	0.00460 0.00453	586.5 597.7	0.0460	2.20	B/B INTERMITTENT B/B INTERMITTENT
	22440.	13.2	10.000	315.1	0.455	1470.06 0.000453 1496.16 0.000446	1028.2	0.00446	608.3	0.0446	1.97	B'B INTERMITTENT
	23760.	0.0	10.000	326.0	0.439	1520.5 0.000439	1045.0	0.08439	619.2	0 0439	1,94	B'B INTERMITTENT
23	25080.	13.2	10.000	331.0	0.433	1544.0 0.000433	1061.2	0.00433	627.0	0.0433	1.73	B/B INTERMITTENT
	26400	0.0	10.000	335.B	0.427	1566.2 0.000427	1076.4	0.00427	636.8	0.0427	1.63	B'B INTERMITTENT
	Riser_2				1	e de la companya de la						
Riser 25	Hase Ú.	0.0	10.000		1	_¥	_	_	_	_		-
25	U. 0.	200.0	10.000	337.7	6 424	1575.1 0.000423	1082.5	0.00424	640.4	0.0424	1.63	D/R SLUG
27	ů.	400.0	10.000	339.6		1583.9 0.000420	1088.6	0.00420		0.0420	1.62	D/R SLUG
Topsid												

Table 22: Output file for 10000 sbbl/day

Dissertation

The liquid swept in front of a pig ("liquid by sphere") was checked as shown in **Table 23**. It can be seen that the turndown case (5000 STB/d) gives the larger volume of 288.772 bbl or 1621.3345 ft³. The calculated liquid generated when the flow is ramped up from 5000 STB/d to 10000 STB/d is 78 bbl or 437.9375 ft³. This is the difference in total holdup between the two cases. Therefore the pigging volume of 1621.3345 ft³ is the determining design case.

	Vater Cut (%)	Flov	Free Gas (mascfd)	Pres.	Temp.		(psi)		Nixt. Vel. (ft/s)	Liquid Holdup frn	Holdup	Siug Number (PI-SS)	Flo Pat	tern
CASE NO. 1 Topsides Riser Base	LIQ=50 0.0 0.0	00 sbbl 5000.	day 32.17230 32.09700	1500. 1535.	176 177	Q. -36.	0. D.		9.2 .9.1	0.2736 0.2795	0. 11.		D⁄R D⁄R	
Riser Base	0.0 0.0 0.0	5000. 5000.	32.09690 32.09690 28.59170 28.59170	1535. 1535. 1492. 1492.	177. 91. 91.	-30. 0. 8. 0.	D. 36. 0.	0. 43.	8.1 6.5 6.5	0.2795 0.2354 0.2354	0, 665, 0,	1.33	D/R B/B	
Topsides	0,0		28.75750	1449.	9ō.	43. 15.	0. 36.	43.	6.6	0.3432	13. 689.	1.33 Liquic	D∕R i by	SLUG sphere: 298.772 (bbl
CASE NO. 2		0000 sbb.				_	_	_				Service		and an easing any an easing a
Topsides Riser Base Riser Base	0.0 0.0 0.0	10000. 10000.	64:34460 64:24468 64:24450	1500. 1528. 1528.	176. 177. 177.	-29. D.	0. 1. 0.	28. 0.	16.5 16.2 16.2	0.1862	0. 7. 0.		D/R D/R D/R	SLUG SLUG
Riser Base Topsides	0.0 0.0 0.D		61.16960 61.16960 61.39510	1367. 1367. 1336.	121. 121. 119.	7. 0. 30.	155. 0. 1.	162. G. 31.	15.7 15.7 16.0	0.1993 0.1993 0.1983	596 0 0,		B∕B	INTERMITTENT INTERMITTENT SLUG
						8.	156	164.		-	611.	Liquid	l hy	sphere: 262.120 (hbl

Table 23: Summary file for 5000 sbbl/day & 10000 sbbl/day

CHAPTER 5: CONCLUSION AND RECOMMENDATIONS

In the case study 1, the task is to find the optimum pipeline size that will allow the design flowrate of gas to be transported from the source to destination whilst maintaining an arrival pressure of not lower than required arrival pressure at the destination. The pipeline sizes available are 16", 18", 20" or 24" ID. PIPEsim allow engineer to select the optimum pipeline ID while minimize the cost and installation time of pipeline. The computation of the pressure drop for each of pipeline size done by PIPEsim to generate important graphs and output results. The pressure temperature profile plot generated by PIPEsim was analyzed to select the most suitable pipeline size that can deliver the fluid at required arrival pressure. From the operation, the 20" or 24" ID can be used to deliver the gas but the 20" pipeline would be the most appropriate size because of the lower cost and installation time. PIPEsim software also can be used to predict the flow pattern in the pipeline. For case study 1, fluid flow pattern falls within segregated flow regime so it is unnecessary to size a slug catcher and cost for installing the slug catcher can be avoid.

In case study two, the pipeline sizes available are 6", 8", 10" or 12" ID. From the operation, the 10" or 12" ID can be used to deliver the gas but the 10" pipeline would be the most appropiate size. The pipeline system in case study two followed by a riser. Prior to the riser, the presence of a long slightly downward inclined pipeline can lead to severe riser slugging. Pipesim predicts the two phase gas-liquid flow along pipeline is in intermittent flow regime. Therefore, the sizing of slug catcher is necessary. Large slug arrived at first receiving facility can overload the liquid handling capacity and may leads to tripping of receiving facilities. Increase liquid handling capacity to handing intermittent large liquid flow may not be cost effective. Thus the slug catcher was designed to temporary store the intermittent slug and it will be treated after the slugging period. The model output in this case study contains the slug information and flow regime maps which is essential for the slug catcher sizing. The pigging volume of 1621.3345 ft³ is the determining design case for case study 2. The calculated liquid generated when the flow is ramped up is 78 bbl or 437.9375 ft³.

To improve performance of pipeline and reduce the total cost of the pipeline, other than selecting the optimum pipeline diameter and sizing a slug catcher, the design criteria that can be taken into consideration are:

- Pipe roughness: The flow efficiency vary with the pipe roughness
- Pipeline grade: High grade/low grade, strength & corrosion resistance
- Pipeline length
- Wall thickness of pipeline

- 1. Accounting For The Presence Of Liquids In Gas Pipeline Simulation [Journal] / auth. Asante Ben. - Houston, Texas, USA : http://www.psig.org.
- An Analysis and Prediction of Hydrocarbon Dew Points and Liquids in Gas Transmission Lines [Journal] / auth. Dustman T, Drenker, J., Bergman, D. F. and Bullin J. A., ". - San Antonio, Texas : [s.n.], 2006.
- 3. Infohost [Online] / auth. Brill Beggs and // Infohost. http://infohost.nmt.edu/~petro/faculty/Kelly/Hor%20Flow.pdf.
- Oil and gas pipeline fundamentals [Book] / auth. Kennedy John L.. 1993 : PennWell Books.
- Schlumberger [Online] // Schlumberger. Schlumberger. http://www.slb.com/services/software/production_software/prod_analysis_di agnostics/pipesim.aspx.
- Slugging & Slugcatcher [Online] // Chemical & Process Technology. October 7, 2007. May 2011, 20. http://webwormcpt.blogspot.com/2007/10/slugging-slugcatcher.html.
- Source terms from two-phase flow in long pipelines [Report] / auth. D M Webber T K Fannelop, H W M Witlox. - [s.l.] : http://www.dnv.com.
- Study Compares C6+ Characterization Methods for Natural Gas Phase Envelopes [Journal] / auth. Moshfeghian M., Lilly, L., Maddox, R. N. and Nasrifar, Kh., - [s.1]: Oil & Gas Journal, 2005.
- Subsea pipelines and risers [Book] / auth. Yong Bai Qiang Bai. [s.l.]: Elsevier. 2005.
- <u>The effect of major parameters on simulation results of gas pipelines</u> [Journal] / auth. Farzad Abdolahi Ali Mesbah, Ramin B. Boozarjomehry, William Y. Svreek. - [s.l.] : International Journal of Mechanical Sciences 49 (2007) 989-1000, 2006.

- 11. <u>The Modeling of Multiphase Systems under Steady-State and Transient</u> <u>Conditions [Journal] / auth. Ellul I. R., Saether, G. and Shippen, M. E. //</u> <u>Paper PSIG 0403. - 2004.</u>
- <u>Two Phase Gas-Liquid Pipeline Simulation [Online] / auth. Moshfeghian</u> Dr. Mahmood // Campbell Petroleum Series. - June 1, 2008.