
Dynamic Simulation of Quadruple Tank System 

by 

Asyraf bin Maskan 

Dissertation submitted in partial fulfillment of 

the requirements for the 

Bachelor of Engineering (Hons) 

(Chemical Engineering) 

SEPTEMBER 2011 

Universiti Teknologi PETRONAS 

Bandar Seri Iskandar 

31750 Tronoh 

Perak Darul Ridzuan 



Approved by, 

CERTIFICATION OF APPROVAL 

Dynamic Simulation of Quadruple Tank System 

by 

Asyraf bin Maskan 

A project dissertation submitted to the 

Chemical Engineering Programme 

Universiti Teknologi PETRONAS 

in partial fulfillment of the requirement for the 

BACHELOR OF ENGINEERING (Hons) 

(CHEMICAL ENGINEERING) 

~~ 
(riRM\RAMASAMY) 

UNIVERSITI TEKNOLOGI PETRONAS 

TRONOH, PERAK 

September 2011 

ii 



CERTIFICATION OF ORIGINALITY 

This is to certify that I am responsible for the work submitted in this project, that the 

original work is my own except as specified in the references and acknowledgements, 

and that the original work contained herein have not been undertaken or done by 

unspecified sources or persons. 

(ASYRAF BIN MASKAN) 

iii 



ABSTRACT 

The problem of estimating state of dynamical system from only input and 

output measurement remain always an important field in the system theory. In fact, 

observers play a key roles during monitoring of process, a there are shown an 

essential component in many control application such as output regulation. Ahhough 

the theories and applications for linear systems are well developed, development of 

observers for nonlinear system still provides an open area for research. Quadruple 

tank system and its mathematical model with typical parameters value will be 

collected from the reflected real system of quadruple tank. Dynamics simulation will 

be performed and through the MATLAB® enhancement. Various input changes take 

part. The result of the simulation will be analyzed and reported. 
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CHAPTER 1: INTRODUCTION 

1.1 BACKGROUND OF STUDY 

In the recent past, multi-variable control system design has been in great 

demand and need much attention in the process industry and academia. In many 

processes, when some or all of the manipulated variable affects more than its 

corresponding controlled variable, mean there are some interaction between the 

controlled variable, which may result in poor performance or even in instability of 

control process. When the interactions are not negligible, the plant must be considered 

as multiple inputs and multiple outputs. In this paper, a highly interactive multi­

variable process has been considered i.e., quadruple tank problem. This multi-variable 

systems contains a transmission zeros, which can vary from left half plane (minimum 

phase) to right half plane (non-minimum phase) depending on the ratio ofthe flow to 

upper and lower tanks. 

1.2 PROBLEM STATEMENT 

1.2.1 PROBLEM IDENTIFICATION 

Estimating the state of dynamical system of quadruple tank system from only 

input and output measurement remain always an important field in the system theory. 

In fact, observers play a key roles during monitoring of process, there are 

shown an essential component in many control application such as output regulation. 

Although the theories and applications for linear systems are well developed, 

development of observers for nonlinear system still provides an open area for 

research. The main idea of this technique is to find some state transformation that 

make original system as a linear part, and nonlinear part depending only on measured 

states and inputs. The main drawback of this strategy is the difficulty to give 

necessary and sufficient conditions for existence of this transformation. 
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1.2.2 SIGNIFICANT OF THE PROJECT 

1. Improve performance limitations in practice. 

2. Design of quadruple tank system depends on the process parameter. 

1.3 OBJECTIVES 

1. To perform dynamic simulation of multivariable process for quadruple tank 

system. 

2. To study the complexity of the mathematical model ofmultivariable. 

3. To estimate state of dynamical system of quadruple tank system. 

1.4 SCOPE OF STUDY 

1.4.1 Dynamic mathematical model of quadruple tank system 

1. The effect of time-varying dynamics should be considered when designing 

contro I systems 

2. The sign of the steady-state gain should always be considered when designing 

control systems for multivariable processes 

3. The cause of unexpected dynamic behaviour in control loops is often more 

subtle than what is first assumed 

4. Under some conditions, full decoupling can lead to significantly worse 

performance than partial decoupling 

5. Decoupling control can do more harm than good 

6. Hysteresis effects should be considered when troubleshooting control 

problems 

4 



1.4.2 Input and output regulations ofthe system 

The following two examples discuss various phenomena that specifically 

occur in MIMO feedback systems and not in SISO systems, such as interaction 

between loops and multivariable non-minimum phase behaviour. 
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Figure 1.0: Two-tank liquid flow process with recycle 
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Figure 2.0: Two-loop feedback control of the two-tank liquid flow process 

If the lower loop is closed with constant gain, then for high gain values 

(k2~oo) the lower feedback loop is stable but has a zero in the right-halfplane, 

(1) 

(2) 
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Thus under high gain feedback of the lower loop, the upper part of the system 

exhibits non-minimum phase behaviour. Conversely if the upper loop is closed under 

high gain feedback, Ut= kt Yt with kt-+oo, then 

5 ~ 1 
i""~{S) == ~=--~ ==-~~!!~:ft.J, 
'- \S"+ 1ll.s~J) -

(3) 

Apparently, the non-minimum phase behaviour of the system is not connected 

to one particular input-output relation, but shows up in both relations. One loop can be 

closed with high gains under stability of the loop, and the other loop is then restricted 

to have limited gain due to the non-minimum phase behaviour. Analysis of the 

transfer matrix 

Pis)=[=:: 
_; -- L 

(4) 

shows that it loses rank at s = 1. In the next section it will be shown that s = 1 is an 

unstable transmission zero of the multivariable system and this limits the closed loop 

behavior irrespective of the controller design method used. Consider the method of 

decoupling precompensation. (Qamar Saeed, 2010) 

In the example the input-output pairing has been the natural one: output i is 

connected by a feedback loop to input i. This is however quite an arbitrary choice, as 

it is the result of our model formulation that determines which inputs and which 

outputs are ordered as one, two and so on. Thus the selection of the most useful input­

output pairs is a non-trivial issue in multi-loop control or decentralized control, Le. in 

control configurations where one has individual loops as in the example. A classical 

approach towards dealing with ·multivariable systems is to bring a multivariable 

system to a structure that is a collection of one input, one output control problems. 

This approach of decoupling control may have some advantages in certain 

practical situations, and was thought to lead to a simpler design approach. However, 

as the above example showed, decoupling may introduce additional restrictions 

regarding the feedback properties of the system. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 PROCESS MODEL 

The quadruple-tank process is a simple connection of two double-tank 

processes, which are standard processes in many control laboratories. The setup is 

thus simple but still the process can illustrate interesting multivariable phenomena. 

The process flow sheet is displayed in Figure 1. The target is to control the levels y 1 

and y2 in the lower two tanks with two pumps. The process inputs are ul and u2 

(input voltages to the pumps). The model used in the present virtual lab includes also 

the disturbance effect of flows in and out of the upper-level tanks. 

v, v, 

Figure 3.0: Schematic of the quadruple-tank process 

Johansson (Johansson, 2000) described a laboratory quadruple-tank process 

which consists of four interconnected water tanks and two pumps as shown in Figure 

1.0. The first principle mathematical model for this process is using mass balances 

and Bernoulli's law. The differential equations representing the mass balances in this 

quadruple-tank process are: 
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where hi is the liquid level in tank i; 

ai is the outlet cross sectional area of tank i; 

si(hi) is the cross-sectional area of tank i; 

uj is the speed setting of pump j, with the corresponding gain kj; 

'Y j is the portion of the flow that goes into the upper tank from pump j; 

and di and d2 are flow disturbances from tank 3 and tank 4 respectively, with 

corresponding gains kdi and kd2. 

The process manipulated inputs are u1 and u2 (speed settings to the pumps) 

and the measured outputs are y1 and y2 (voltages from level measurement devices). 

The measured level signals are assumed to be proportional to the true level, i.e., y 1 = 

km1hJ and Y2 = km2h2. The level sensors are calibrated so that km1 = km2 = I. (Astrom, 

I992) 

This process exhibits interacting multivariable dynamics because each of the 

pumps affects both of the outputs. The linearized model of the quadruple-tank process 

has a multivariable zero, which can be located in either the left or the right half-plane 

by simply adjusting the throttle valves 'Y I and y2. 

Johansson (Johansson, 2000) showed that the inverse response (non minimum 

phase) will occur when 0 < yi+ y2 <I and minimum phase for I< yi+ y2 :S 2. The 

valve settings will give then to the overall system entirely different behaviour from a 

multivariable control viewpoint. Unmeasured disturbances can be applied by pumping 

water out of the top tanks and into the lower reservoir. This exposes to disturbances 

rejection as well as reference tracking. 

8 
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Table 1.0: Parameter value for quadruple tank system 
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Table 2.0: Operating parameter for minimun (P-) and non-minimum (P+) 

phases 

The linearized state-space equation at operating points are Xi= hi- h0i and ui = Vi- v0i 
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Linearized transfer function matrix model for both minimum (P-) and non-minimum 

(P+). 
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2.2 CURRENT PROCESS MODEL SIMULATION APPLICATION 

2.2.1 Quadruple tank simulation 

Most computer simulations of scientific phenomena can be described in terms 

of the model-control-view paradigm. This paradigm states that a simulation is 

composed of three parts: 

1. The model, which describes the phenomenon under study in terms of 

1. Variables, that hold the different possible states of 

n. The phenomenon 

m. Relationships among these variables (corresponding to the laws that 

govern the phenomenon) 

iv. Expressed by computer algorithms 

2. The control, which defines certain actions that a user can perform on the 

simulation 

3. The view, which shows a graphical representation of the different states that 

the phenomenon can have. This representation can be done in a realistic or 

schematic form 

The tool provides extensive scaffolding for creating the model but still leaves full 

flexibility for the analysis. This is pedagogically important, since the process of 

analysing good control fundamentals consists, to a great extent, in to know the basic 

principles to build models. In order to describe a model, the simulation needs to be 

able to: 

1. Identizy the set of variables that properly describe the system 

2. Initialize, in a correct way, these variables 

3. Describe how the value of these variables change in time 

4. Establish how they affect each other when the user interacts with the system 

and modifies one or more of their values 

10 



5. Understanding control limitations due to interactions, model uncertainties, 

non-minimum phase behavior, and unpredictable time variations 

6. Designing decentralized (often called "multiloop") controllers, and 

understanding their limitations 

7. Implementing decouplers to reduce the effect of interactions, and 

understanding their limitations 

8. Implementing a fully multivariable control system 

9. Selecting the best control structure, based on the characteristics of the 

multivariable process 

Past studies of (A. J. Krener, 1983) with 4-tank apparatuses implemented 

decentralized PI control, multivariable control, multivariable internal model control, 

and dynamic matrix control. The main educational focus was providing an apparatus 

with highly idealized and reproducible dynamics for use in illustrating multivariable 

interactions and multivariable transmission zeros as stated by Andersson (Andersson, 

2002). In contrast, our main educational focus is to aid in understanding the 

advantages and disadvantages of the different control structures (e.g., decentralized, 

decoupling, multivariable) when applied to a multivariable process with interactions 

and dynamics ranging from highly ideal to highly non-ideal. 

The main idea of this technique is to find some state transformation that make 

original system as a linear part, and nonlinear part depending only on measured states 

and inputs. The main drawback of this strategy is the difficulty to give necessary and 

sufficient conditions for existence of this transformation. 

2.2.2 Developments in multivariable control simulation 

Developing mathematical models of non-linear systems is a central topic in 

many disciplines of engineering. Models can be used for simulations, analysis of the 

system's behaviour, better understanding of the underlying mechanisms in the system, 

design of new processes and design of controllers. In a control system the plant 

displaying nonlinearities has to be described accurately in order to design an effective 

controller. In obtaining the mathematical model, the designer follows two methods. 
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The first one is to formulate the model from frrst principles using the laws governing 

the system. This is generally referred to as mathematical modelling. 

The second approach requires the experimental data obtained by exciting the 

plant and measuring its response. This is called system identification and is preferred 

in the cases where the plant or process involves extremely complex physical 

phenomena or exhibits strong nonlinearities. 

Obtaining a mathematical model for a complex system is complex and time 

consuming as it often requires some assumptions such as defining an operating point 

and doing linearization about that point and ignoring some system parameters. 

In the present work three different models have been developed using three 

different soft computing techniques namely, ANN, Fuzzy and Neuro-fuzzy, for the 

Quadruple tank process. The rest of the paper is structured as follows: Section 2 

describes the Quadruple Tank Process as stated by Rosenbrock (Rosenbrock, 1973). 

2.2.3 Easy-Java simulations fundamentals 

As stated by (Esquembre, 2002), Easy Java Simulations, Ejs for short, is a 

software tool that helps create dynamic, interactive scientific simulations in Java 

language. The tool is targeted for basic programming skills and is therefore very much 

suited to the pedagogical situation one finds in most university classrooms. Within 

Ejs, simulations are created by specifying a model for the simulated system and by 

building a view that continuously visualizes the state of this model and that readily 

responds to user interaction. 

12 



CHAPTER 3: METHODOLOGY/PROJECT OF WORK 

3.1 METHODOLOGY 

3.1.1 RESEARCH METHODOLOGY 

Proce-;;, model deriYation 

Simulation illltial kst 
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Generation of Input-Output Data 
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Figure 5.0: Research method flowchart 
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3.2 PROJECT ACTIVITIES 

3.2.1 Process model derivation 

The model theoretical design of quadruple tank model is referred as the main 

reference throughout the whole process of developing the dynamic simulation. All 

parameters are recognized, derived and all variables are defined. 

Constant variables: 

i. Al, A2, A3 and A4 are the cross-section area of each tank 

11. ai is the cross-section area of an outlet of the tank 

iii. g is the gravitational constant, 981 cm/s2 

Manipulated parameters or input: 

i. Voltage of the pumps 

11. Ratio of the flows 

Output parameters: 

i. Speed settings to the pumps 

ii. Tank level 

Process model: 

dh ~ zeros(4,1); 

dh(l) ~ -al/Al*sqrt(2*g*h(l)) 
gl_nrnp*kl_nrnp/Al*ul; 
dh(2) ~ -a2/A2*sqrt(2*g*h(2)) 
g2_nrnp*k2_nrnp/A2*u2; 
dh(3) -a3/A3*sqrt(2*g*h(3)) 
dh(4) ~ -a4/A4*sqrt(2*g*h(4)) 

14 

+ a3/Al*sqrt(2*g*h(3)) + 

+ a4/A2*sqrt(2*g*h(4)) + 

+ (l-g2 nmp)*k2 nmp/A3*u2; 
+ (1-gl-nrnp)*kl-nrnp/A4*ul; - -



3.2.2 Software set up 

Apply the tools of software which are MATLAB® and Simulink. Coding and 

mathematical expression and functions are prepared using the tools. Whole system is 

then developed in order to run the whole dynamic simulation of the quadruple tank 

system. 

The algorithms used in the ODE solvers vary according to order of accuracy 

and the type of systems (stiff or non-stiff) they are designed to solve. The solvers of 

the ODE suite can solve problems of the form lv[(t, y\y' = f(t. Yl, with time- and 

state-dependent mass matrix M. 

Solver Problem Order of When to Use 
Type Accuracy 

ode45 Nonstiff Medium Most of the time. This should be the first 
solver you try. 

ode23 Nonstiff Low For problems with crude error tolerances or 
for solving moderately stiff problems. 

odell3 Nonstiff Low to high For problems with stringent error tolerances 
or for solving computationally intensive 
problems. 

ode15s Stiff Low to If ode45 is slow because the problem is 
medium stiff. 

ode23s Stiff Low If using crude error tolerances to solve stiff 
systems and the mass matrix is constant. 

ode23t Moderately Low For moderately stiff problems if you need a 
Stiff solution without numerical damping. 

ode23tb Stiff Low If using crude error tolerances to solve stiff 
systems. 

Table 3.0: ODE's Function in Matlab 

3.2.3 Simulation initial test 

This method is to calibrate the system developed using MA TLAB® and 

Simulink. This is to prepare a good generation of data during the simulation. 
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Sample ofMatlab coding for Run 1 

function dh 
-, ~-· - ,-c ~~, c: ~: 3 ·~·, 

A1~28; 

A2=32; 
A3=28; 
A4~32; 

al~0.071; 

a2~0.057; 

a3~0. 071; 
a4=0.057; 

height(t,h) 

:_, l_ ,f; J ,_-:· 

kl_nmp 0.5; 
k2_nmp 0.5; 

gl_nmp 0. 70; 
g2_nmp~ 0.30; 

ul~0.5; 

u2=0.5; 

dh ~ zeros(4,1); 

dh(l) = -al/Al*sqrt(2*g*h(l)) + a3/Al*sqrt(2•g*h(3)) ~ 
gl_nmp*kl_nmp/Al*ul; 
dh(2) = -a2/A2*sqrt(2*g*h(2)) + a4/A2*sqrt(2*g*h(4)) + 
g2_nmp*k2_nmp/A2*u2; 
dh(3) -a3/A3*sqrt(2*g*h(3)) + (l-g2 nmp)*k2_nmp/A3*u2; 
dh(4) = -a4/A4*sqrt(2*g*h(4)) + (l-gl=nmp)*kl_nmp/A4*ul; 

The function is called and the graph is plotted for data display. 

[T, H] = ode45 (@height, [0 120]. [0 0 0 OJ); 
plot(T,H(:,l), '--',T,H(:,2), '*',T,H(:,3),' 
',T,H(:,4),'.'); 

16 



3.2.4 Generation oflnput-Output Data 

The data generated to train the network should contain all the relevant 

information about the dynamics of the Quadruple tank process. The input was given 

to the conventional model of the quadruple tank process, and from the conventional 

model, the input and output were sampled for each sampling instant and the required 

sampled data are obtained to train the network. 

The quadruple tank system is divided with several conditions in order to define 

dynamic behaviour in the process by simulation. 

1. Steady states 

The first simulation is to take measures in one or several steady states of the 

process (with several the mean value of the results is taken), knowing that if a 

dynamical system is in steady state, the rate of change of the state (h) is null. 

2. Valve constants 

dh ~o 
dt 

Y1 and y2 is derived. For that, all the output holes of the tanks must be covered, 

so that the first addends of all the expressions disappear, and consequently, 

second addends of the first and second equations have to be also removed. The 

simulation for valve constants is run. 

If that input is constant, a derivative can be expressed in non-inf"mitesirnal 

time periods. 

{1\ .::.:r 
---'-- !::i -··· dt ,;j. 
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The parameters k~, u~, k2, u2 are constant, as A~, A2, A3. AJ, Moreover, 

the simulation's time doesn't matter, because it can be added to the constant 

member kc, considering A1 =A2 = A3 = ~-

3. Water tanks hole areas and pump constants 

In this section, the values of the following not directly measurable 

parameters k~, k2, ab a2, a3, 14 are derived, knowing A~, A2, A3. ~ those are 

easily measurable. 

4. Parameters values and final model 

Values ai of holes areas and k of the pumps are obtained just 

substituting values of bi in the first simulation to take ci and undoing the 

variable changes of both kinds of variables. These last parameters are: 

A1 =A2 = A3 = ~ = 15.21 cm2 

a1 = 0.2143 cm2 

a2 = 0.173 cm2 

a3=0.2102cm2 

14= 0.1793 cm2 

k1 = 4.0356 cm3Ns 

k2= 3.9375 cm3Ns 

Therefore, the final model with minimum phase configuration is the 

following: 
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This model of simulation is linearized to design the linear controllers chosen 

in this thesis, and the derivation of the model is repeated for the non-minimum phase 

process, with the same parameters. 

3.2.5 Validation 

The final step in developing the model is validation of the generated results of 

the simulation. Validation is performed by evaluating the simulation performance 

using trained or experimental data and test data. The input and target were presented. 

If the data is not valid within the range of validation, the method is re-looping start 

from the simulation initial test. If the data is valid, the data is analysed. 
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3.2.6 Data analysis 

Data analysis is performed by comparing the expected results and data referred to 

the previous valid data of previous experiment of quadruple tank system. Several 

considerations are important; 

1. The effect of time-varying dynamics should be considered when designing 

contro I systems 

2. The sign of the steady-state gain should always be considered when designing 

control systems for multivariable processes 

3. The cause of unexpected dynamic behaviour in control loops is often more 

subtle than what is first assumed 

4. Under some conditions, full decoupling can lead to significantly worse 

performance than partial decoupling 

5. Decoupling control can do more harm than good 

6. Hysteresis effects should be considered when troubleshooting control 

problems 

20 



CHAPTER 4: RESULTS AND DISCUSSION 

4.1 RESULTS 

4.1.1 Steady states 

Take measures in one or several steady states of the process (with several the 

mean value of the results is taken), knowing that if a dynamical system is in steady 

state, the rate of change of the state (h) is null. 

function dh = height(t,h) 

A1=15.21; 
A2=15.21; 
A3=15.21; 
A4=15.21; 

a1=0.2143; 
a2=0.1773; 
a3=0.2102; 
a4=0.1793; 

g=981; 

kl_rnnp 4.0356; 
k2_rnnp 3.9375; 

gl rnnp = 0.69; 
g2_rnnp= 0.74; 

u1=0.5; 
u2=0.5; 

dh = zeros(4,1); 

dh(l) = -al/Al*sqrt(2*g*h(l)) + a3/Al*sqrt(2*g*h(3)) * 
gl rnnp*kl rnnp/Al*ul; 
cth(2) = -a2/A2*sqrt(2*g*h(2)) + a4/A2*sqrt(2*g*h(4}) + 
g2 nmp*k2 nmp/A2*u2; 
cth(3) -a3/A3*sqrt(2*g*h(3)) + (1-g2_nmp)*k2_rnnp/A3*~fi 
dh(4) = -a4/A4*sqrt(2*g*h(4)) + (1-gl_nmp)*kl_nmp/A4*ul; 

[T,H] = ode45(@height, [0 120], [0 0 0 0]); 
plot(T,H(:,l), '--',T,H(:,2), '*',T,H(:,3), 1 

',T,H(:,4), I.'); 
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Figure 4.0: Simulation results for steady state condition 
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4.1.2 Valve constant 
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Figure 5.0: Results of minimum phase zero configurations 
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Figure 6.0: Results of non-minimum phase zero configurations 

The responses have overshoot because of the influence of upper tanks, but it is 

not really high, even knowing that the step applied is wide, and applied from a long 

distance point from the equilibrium one. The response is better in non-minimum 

phase zero model because of the decoupling applied to obtain a stable system. The 

applied voltages are not much more than IV over the linear OV, no more than 5V 

adding the linearization values. Knowing that the saturation level is 12.5V, it can be 

said that there will be no problems with this saturation. All the states are observed 

during the simulation, and upper tanks don't have problems of overflow, as the lower 

ones. With these conclusions, and taking into account possible differences between 

process and model, the following step is to test the controllers in the real process. 
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4.1.3 Water tanks bole areas and pump constants 
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Figure 7.0: Simulation results. Process model with minimum phase zero 

The response of states 1 and 2 is better than states 3 and 4, without overshoot 

and relatively quicker (taking into account the difference of distance to the 

equilibrium point). The variation of control actions is smooth too, not osciliating 

around the control actions in equilibrium point. Therefore, the response in simulation 

is what could be expected according to the design. In addition, ahnost the same result 

is obtained with the model process with non-minimum zero. 
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4.1.4 Deviation 

To determinate the deviation, a simple simulation is done. Constant control 

actions of 1 OV are introduced. Heights data have to be captured during a relatively 

long time, to obtain correct mean values and therefore valid deviations. In this case, 

235 samples are obtained: 
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Figure 8.0: Deviation of level Tank 1 and Tank 2 for 470 seconds 
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4.1.5 Parameters values and final model 

Some steps are introduced around the equilibrium point to test the behavior, 

changing dynamically the linearization point, and therefore changing the model too. 

Seeing some parts of the simulation, made with minimum zero process: 
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Figure 9.0: Simulation behavior with a step from 10 to Scm. Minimum zero 

configuration 
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As it can be observed, the dynamical response is adequate with design criteria. 

Changes in the heights are quick (settling time of 20 seconds), with good exactitude 

for the 2 first states, and a good noise filtering. In addition, first samples after the 

change of reference have a remarkable peak. This happens because of the change of 

model. 

Regarding to the control actions, they have a bigger overshoot, but just to 

bring the state of the system as fast as possible to the equilibrium point. This happens 

because of bigger weightings of heights I and 2 than the ones of both voltages. The 

same result can be seen in another experiment, this time with non-minimum phase 

zero configuration: 
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Figure 10.0: Simulation behavior with a step from 10 to Scm. Non-minimum zero 

configurations 
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4.1.6 Validation 

The dynamics are accurate, but what can be noted is that there's a delay 

provoked by the length of the tubes. There are 3 to 4 samples until the effect of an 

input change is noted in an output. 
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Figure 11.0: Validation 

The gain model is correct around water levels of !Ocm. With measures of 

between 12 and 14cm, the gain of the real system is higher. This happens because of 

the time variable behavior of the pumps and sensors. Some experiments with a 

separation of days between them have different results. In general, it can be said that 

the model is valid around lOcm, which will be the point used for most of the 

simulation. The dynamics are accurate, but what can be noted is that there's a delay 

provoked by the length of the tubes. There are 3-4 samples until the effect of an input 

change is noted in an output. The gain simulation is correct around water levels of 

!Ocm. With measures of between 12 and l4cm, the gain of the real system is higher. 

The different percentage is 14.02% based on the average for every heights.l4.02% is 

lesser then 15%, which is the targeted percentage difference. The data in the 

simulation is validated. 
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CHAPTER 5: CONCLUSION AND RECOMMENDATIONS 

5.1 CONCLUSION 

The Quadruple-Tank Process has been presented. It is a simulation process 

that was designed in order to illustrate various concepts in multivariable control. It has 

been observed that in each design technique, non-minimum phase is quite difficult to 

control. Multivariable system with unstable transmission zeros usually come across 

with internal instability problems. The sign of the steady-state gain should always be 

considered when designing control systems for multivariable processes. This level of 

understanding is needed to select the proper design of quadruple tank system and to 

determine whether a particular control problem can be addressed by better controller 

tuning, by a different control structure, by changing the process design, or by 

changing the operating conditions. 

Dynamic simulation of multivariable process for quadruple tank system is 

developed using MATLAB® to study the dynamic simulation of quadruple tank 

system. The complexity of the dynamics of the system can be represented by the 

graph and data deviation of the height of each tanks controlled by the vohage of each 

pumps. 

The state of variables which are height and voltage of the pump are validated 

by the real process of quadruple tank system. The feasibility design of quadruple tank 

system can be determined by this simulation. 
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5.2 RECOMMENDATIONS 

The project is generally at the stage of process model derivation, input and 

output generation and validation to get more understanding about the quadruple tank 

system. The coding of the MATLAB® would be the time consuming but the project 

should be managed to continue to the next steps till the end by the scheduled project 

of work. Further research and reference is relevance in order to make sure the results 

of the dynamic simulation is valid and the objective of this project can be achieved. 
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function dh height(t,h) 
- ':;: ~~- ::' ;:_,-, '- ' ,-:. t 

A1~28; 

A2~32; 

A3~28; 

A4~32; 

al~O. 071; 
a2~0.057; 

a3~0.071; 

a4~0.057; 

g~981; 

kl_nmp 0. 5; 
k2_nmp 0.5; 

gl nmp ~ 0.70; 
g2_nmp~ 0.30; 

,"' - -ir-;r• -,/'! 
-'':_.,-

ul~0.5; 

u2~0.5; 

dh ~ zeros(4,1); 

APPENDIX 1-1 

dh(l) ~ -al/Al*sqrt(2*g*h(l)) + a3/Al*sqrt(2*g*h(3)) * 
gl_nmp*kl_nmp/Al*ul; 
dh(2) ~ -a2/A2*sqrt(2*g*h(2)) + a4/A2*sqrt(2*g*h(4)) + 
g2_nmp*k2_nmp/A2*u2; 
dh(3) -a3/A3*sqrt(2*g*h(3)) + (1-g2 nmp)*k2 nmp/A3~uz; 
dh(4) ~ -a4/A4*sqrt(2*g*h(4)) + (l-gl=nmp)*kl=nmp/A4*ul; 

[T,H] ~ ode45 (@height, [0 120], [0 0 0 0]); 
plot(T,H(:,l}, '--',T,H(:,2), '*',T,H{:,3},' 
',T,H(:,4),'. '); 
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package QuadTankPack 

model PRBS1 

Modelica.Blocks.Interfaces.Real00tpu·~ y; 

parameter Integer N ~ 10; 

parameter Real ts[N] ~ 

24.3, 36.3, 39.3, 42.3, 

0. f ~~.;J, 

54.3, 57.3); 

APPENDIX 1-2 

9.3, 15.3, 

parameter Real ys[N] { 5., 6., 5., 6., 5., 

6 , 1 5 • r 6 • 1 5 , f 6 ,· } ; 

equation 

y ~ noEvent (if time <~ ts [2] th~ri j!J l I l (~lse 

if time <~ ts I 3] thicJJ.'! y~~ [ 2] oo:-;L3§ 

if time <~ ts [ 4] then ys [3] el.se 

if time <~ ts [5] thsn ys [ 4] ~~1§§ 

if time <~ ts [ 6] th~!ll ys [5j t~.l-f>i@ 

if time <~ ts [II th(fi1 ys [61 

if time <~ ts [ 81 ttl8:ft ys [ 7 J 

if time <~ ts [9! tiv~Jl vs lsI 

if time <~ ts [10] then V"' •0 [ ~} j ~.t.f.<'.': ys [ 10] ) ; 

end PRBS1; 

model PRBS2 

Modelica. Blocks. Interfaces. RealOutpt~ ( y J 

parameter Integer N = 11; 

parameter Real ts[N] ~ I 0. 
24.3, 27.3, 39.3, 42.3, 48.3, 

51.3, 57.3); 

0. 3, 9.3, 21.3, 

parameter Real ys[N] 
5., 6., 5., 6., 5.}; 

{5., 6., B"~' 6., s., 6., 
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equation 

y ~ noEvent(if time <~ ts [2] then ys[l] 

if time 

if time 

if time 

if time 

if time 

if time 

if time 

if time 

if time 

end PRBS2; 

model TestPRBS 

PRBSl prbsl; 

PRBS2 prbs2; 

Real x; 

equation 

der(x) ~ 1; 

end TestPRBS; 

<~ ts [3] then 

<~ ts [ 4] then 

<~ ts [ c•J l~hG1fl 

<~ ts [ 6] then 

<~ ts['ij ti"-Jen 

<~ tsf8] th~;;n 

<~ ts [ 9] t.lv~n 

<~ ts [llJl eh~:~H, 

<~ ts [11] then 

model Sim_QuadTank 

QuadTank qt; 

input Real ul 

input Real u2 

initial equation 

der (qt.xl) 0; 

der (qt.x2) 0; 

qt.x3 ~ 0.024; 

qt.ul; 

qt.u2; 

36 

ys [2] else 

ysfJ"] §@ 

j'f1[ 4] else 

ys[ 6188 

ys [ 6] 

ys [7j ol&© 

ys[8i ~~ J-.~3 

ys l ';J 

ys [ 10] else 

APPENDIX 1-3 

else 

ys [11] I ; 



qt.x4 ~ 0.023; 

end Sirn QuadTank; 

model QuadTank 

II Process parameters 

parameter Modelica.Siunits.Area A1~4.9e-4, 
A2~4.9e-4, A3~4.9e-4, A4~4.9e-4; 

parameter Modelica.Siunits.Area a1~0.03e-4, 
a2~0. 03e-4, a3~0. 03e-4, a4~0. 03e-4; 

APPENDIX 1-4 

parameter Modelica.Siunits.Acceleration g~9.81; 

parameter Real kl_ nrnp (uni t="m3{\ I s/ll") 

k2 nmp(unit="m"3/s/V") = 0.56e-6; 

parameter Real gl_nmp~0.30, g2_nmp~0.30; 

II Initial tank levels 

parameter Modelica. S Iuni t~:. 1oJf~nqGh )~l, 0 
0.04102638; 

parameter Modelica. Siuni t.':"l. IJ§f1(f'Gh ~'~~ 0 
0.06607553; 

parameter Modelica.Siunits.L~figth x3 0 
0.00393984; 

par·arneter Modelica. Siuni ts. 1j~Hi.gth :J{4 0 

0.00556818; 

II Tank levels 

Modelica.Siunits.Length 
x1 (start~x1 O,min~0.0001/''·,max~0.20'•/j 1 

Modelica. S Iuni ts .l&mgth 
x2 (start~x2 O,min~0.0001I'•,mcL~ •0.20*/); 

Modelica.Siunits.Length 
x3(start~x3 O,min~0.0001/'·,max~0.20""111 

Modelica.Siunits.Length 
x4 (start~x4 O,min~0.0001/',mc1x~0.2(1'11 f 
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APPENDIX 1-5 

II Inputs 

input Modelica.Siunit~;.Voltagc U}J 

input Modelica.SIU11i-ts.Voltay~ J2i 

equation 

der(xl) -aliAl*sqrt(2*g*xl) + al/Al*sqrt(2*g*x3) 

+ 

gl_ nmp* kl nmpiAl *ul; 

der(x2) -a2IA2"'sqrt (2*g*x2) + a4IA2*sqrt (2*g''x4) 

+ 

g2_nmp"'k2 nmp/A2''u2; 

der(x3) - -a3/A3*sqrt(2*g*x3) + (l­

g2 nmp)*k2_nrnpiA3*u2; 

der(x4)- -a4IA4*sqrl;(2*g'ou1) (I~ 

gl nmp)*kl_nrnpiA4*ul; 

end QuadTank; 

model QuadTankinit 

extends QuadTank; 

initial equation 

der(xl) 0; 

der (x2) 0; 

der(x3) 0; 

der(x4) 0; 

end QuadTankinit; 

optimization QuadTank_Opt (objective "- CoB[ (final Time), 

startTime 0, 

final Time 50 I 
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APPENDIX 1-6 

extends 
QuadTank(ul(initialGuess=ul r),u2(initia1Guess=u2 r), 

xl(initialGuess=xl O,fixed=true), 

x2(initialGuess=x2 O,fixed=true), 

x3(initia1Guess=x3 O,fixed=true), 

x4(initialGuess=x4 O,fixed=true) ); 

II Reference values 

parameter Modelica.Siunits.Length x1 r 0. 06410371; 

parameter Modelica.Siunits.Length x2 r 0.10324302; 

parameter Modelica.Siunits.Length x3 r 0.006156; 

parameter Modelica.Siunits.Length x4 r 0.00870028; 

parameter Modelica.Siunits.Voltage ul r 2. 5; 

parameter Modelica.Siunits.Voltage u2 r 2.5; 

Real cost(start=O,fixRd3 trlle); 

equation 

derlcost) 40000* I (xlr - xJ) j ii~ !~ 

40000* I I ,~::j I '·2 + 

40000* I lx3 r - !: ·q) A2 + 

40000*1(x4 r- ~n))·~ + 

((ul r- u:i_j}'':? 1 

end QuadTank Opt; 
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APPENDIX 1-7 

optimization QuadTank Static(objective~( ~1 rneas-x1)~2 + 
(x2_meas-x2)A2 + 

(x3_meas-x3)"2 + 
(x4_meas-x4)'2, static~true) 

extends QuadTank(al(free~true),a2(free~true) ); 

parameter Real xl me as 010.01; 

parameter Real x2 me as :<2 0··0.01; 

parameter Real x3 me as s3 0-0.0J.; .. 

parameter Real x4 me as ;<4j 01-0.01; 

initial equation 

der (xl) 0; 

der(x2) O· ' 

der (x3) o· ' 

der (x4) 0; 

end QuadTank_Static; 

optimization QuadTank ParEst (objective~sum((yl_meas[i] 

- qt.xl(t_meas[i]))A2 + 

(y2_meas[i] 
- qt.x2(t_meas[i]))A2 fori in l:N_meas), 

startTime~O,finalTime~60) 

II Initial tank levels 

parameter Modelica.Siunits.Length ~:1 0 0.06255; 

parameter Modelica.Siunits.Length x2 0 0.06045; 
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parameter Modelica.Siunits.Length x3 0 

parameter Modelica.Siunits.Length x4 0 

QuadTank qt(xl(fixed~true),xl O~xl 0, 

x2(fixed~true),x2 o~x2 0, 

x3(fixed~true),x3 o~x3 0, 

x4(fixed~true),x1 0 1 

al(free=true,initialGuess 
4,nominal=0.03e-4,min=O,max=O.le-4), 

a2{free=true,initialGuess 
4,nominal~0.03e-4,min~O,rnax~O.le-4)); 

parameter Integer N_meas = 61; 

APPENDIX 1-8 

0.02395; 

0.02325; 

0.03e-

0.03e-

parameter Real t_meas[N_meas] 0:60.0/(N meas-
1) ; 60; 

parameter Real yl_rneas[N_rneas] ones(N_meas); 

parameter Real y2_meas[N_meas] ones(N_meas); 

PRBSl prbsl; 

PRBS2 prbs2; 

equation 

connect(prbsl.y,qt.ul); 

connect(prbs2.y,qt.u2); 

end QuadTank_ParEst; 

optimization QuadTank_ParEst2 (objective~sum((yl_meas[i] 

- qt.xl(t_rneas[i]))A2 + 

(y2_meas[i] 
- qt.x2(t_meas[i]) )A2 + 

(y3_meas[i] 
- qt.x3(t_meas[i]) )A2 + 

(y4_meas[i] 
- qt.x4(t_meas[i]))'2 fori in l:N_rneas), 
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startTime~O,finalTime~60) 

II Initial tank levels 

pararneter·Modelica.Siunits.Letlgth ~J D 

parameter Modelica.Siunits.Length x2 0 

parameter Modelica.Slunits.Length x3 0 

parameter Modelica.Siunits.Length x4 0 

QuadTank qt(xl(flxed~true),xl O~xl 0, 

x2 ( fixed=true) 'x2._ [)c:.-;x:: a i 

x3(fixed~true), 

x4(fixed~true),x4 o~x4 0, 

al (free~true, inL·JJ,l(]iJ•7"fl 
4,nominal=0.03e-4,min=O,max=O.le-4), 

a2(free=true,initialGuess 
4,nominal=0.03e-4,min=O,max=O.le-4), 

a3(free=true,initia1Guess 
4,nominal=0.03e-4,min=O,max=O.le-4), 

a4(free=true,initialGuess 
4,nomina1~0.03e-4,min~O,max~O.le-4) ); 

parameter Integer N_rneas = 61; 

APPENDIX 1-9 

0.06255; 

0.06045; 

0.02395; 

0.02325; 

0.03e-

0.03e-

0.03e-

0.03e-

parameter Real t_rneas[N_rneas] 
1) : 60; 

0: 60. 0 I (N_Ineas-

parameter Real yl_ me as [N _me as] ones (N me as) ; 

parameter Real y2 _meas[N_meas] ones(N meas); 

parameter Real y3_meas [N_meas] ones(N meas); 

parameter Real y4 _me as [N _me as] ones(N_rneas); 

PRBSl prbsl; 

PRBS2 prbs2; 

equation 
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connect(prbsl.y,qt.ul); 

connect(prbs2.y,qt.u2); 

end QuadTank ParEst2; 

optimization QuadTank Sens 

II Initial tank levels 

parameter Modelica.Slunits.Length }; I) 

parameter Modelica.Siunits.Length x2 0 

parameter Modelica.Slunits.Length x3 0 

parameter Modelica.Slunits.Length x4 0 

QuadTank qt(xl(flxed~true),xl O~xl 0, 

x2(fixed=true), 

x4 (fixed~truu), 0, 

al(free=true,Jnit1JlGUQ~8 

4,nominal=0.03e-4,min=O,max=O.le-4), 

a2(free=true,initialGuess 
4,nominal~0.03e-4,min~O,max~O.le-4) ); 

PRBSl prbsl; 

PRBS2 prbs2; 

equation 

connect(prbsl.y,qt.ul); 

connect(prbs2.y,qt.u2); 

end QuadTank Sens; 
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APPENDIX 1-10 

0.06255; 

0.06045; 

0.02395; 

0.02325; 

0.03e-

0.03e-


