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ABSTRACT

The problem of estimating state of dynamical system from only input and
output measurement remain always an important field in the system theory. In fact,
observers play a key roles during monitoring of process, a there are shown an
essential component in many control application such as output regulation. Although
the theories and applications for linear systems are well developed, development of
observers for nonlinear system still provides an open area for research. Quadruple
tank system and its mathematical model with typical parameters value will be
collected from the reflected real system of quadruple tank. Dynamics simulation will
be performed and through the MATLAB® enhancement. Various input changes take
part. The result of the simulation will be analyzed and reported.
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CHAPTER 1: INTRODUCTION

1.1 BACKGROUND OF STUDY

In the recent past, multi-variable control system design has been in great
demand and need much attention in the process industry and academia. In many
processes, when some or all of the manipulated variable affects more than its
corresponding controlled variable, mean there are some interaction between the
controlled variable, which may result in poor performance or even in instability of
control process. When the interactions are not negligible, the plant must be considered
as multiple inputs and multiple outputs. In this paper, a highly interactive multi-
variable process has been considered i.e., quadruple tank problem. This multi-variable
systems contains a transmission zeros, which can vary from left half plane (minimum
phase) to right half plane (non-minimum phase) depending on the ratio of the flow to
upper and lower tanks.

1.2 PROBLEM STATEMENT
1.2.1 PROBLEM IDENTIFICATION

Estimating the state of dynamical system of quadruple tank system from only

input and output measurement remain always an important field in the system theory.

In fact, observers play a key roles during monitoring of process, there are
shown an essential component in many control application such as output regulation.
Although the theories and applications for linear systems are well developed,
development of observers for nonlinear system still provides an open area for
research. The main idea of this technique is to find some state transformation that
make original system as a linear part, and nonlinear part depending only on measured
states and inputs. The main drawback of this strategy is the difficulty to give

necessary and sufficient conditions for existence of this transformation.



1.2.2

1.3

1.4

1.4.1

SIGNIFICANT OF THE PROJECT

. Improve performance limitations in practice.

Design of quadruple tank system depends on the process parameter.

OBJECTIVES

To perform dynamic simulation of multivariable process for quadruple tank
system.
To study the complexity of the mathematical model of multivariable.

To estimate state of dynamical system of quadruple tank system.

SCOPE OF STUDY

Dynamic mathematical model of quadruple tank system

The effect of time-varying dynamics should be considered when designing
control systems

The sign of the steady-state gain should always be considered when designing
control systems for multivariable processes

The cause of unexpected dynamic behaviour in control loops is often more
subtle than what is first assumed

Under some conditions, full decoupling can lead to significantly worse

performance than partial decoupling

5. Decoupling control can do more harm than good

Hysteresis effects should be considered when troubleshooting control

problems



1.4.2 Input and output regulations of the system

The following two examples discuss various phenomena that specifically
occur in MIMO feedback systems and not in SISO systems, such as interaction

between loops and multivariable non-minimum phase behaviour.

Figure 1.0: Two-tank liquid flow process with recycle
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Figure 2.0: Twe-loop feedback control of the two-tank liquid flow process

If the lower loop is closed with constant gain, then for high gain values
(ka=>0) the lower feedback loop is stable but has a zero in the right-half plane,
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Thus under high gain feedback of the lower loop, the upper part of the system
exhibits non-minimum phase behaviour. Conversely if the upper loop is closed under
high gain feedback, u= k; y; with k;=>0, then
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Apparently, the non-minimum phase behaviour of the system is not connected
to one particular input-output relation, but shows up in both relations. One loop can be
closed with high gains under stability of the loop, and the other loop is then restricted
to have limited gain due to the non-minimum phase behaviour. Analysis of the

transfer matrix
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shows that it loses rank at s =1. In the next section it will be shown that s = 1 is an
unstable transmission zero of the multivariable system and this limits the closed loop
behavior irrespective of the controller design method used. Consider the method of

decoupling precompensation. (Qamar Saeed, 2010)

In the example the input-output pairing has been the natural one: output i is
connected by a feedback loop to input i. This is however quite an arbitrary choice, as
it is the result of our model formulation that determines which inputs and which
outputs are ordered as one, two and so on. Thus the selection of the most useful input-
output pairs is a non-trivial issue in multi-loop control or decentralized control, ie. in
control configurations where one has individual loops as in the example. A classical
approach towards dealing with -multivariable systems is to bring a multivariable

system to a structure that is a collection of one input, one output control problems.

This approach of decoupling control may have some advantages in certain
practical situations, and was thought to lead to a simpler design approach. However,
as the above example showed, decoupling may introduce additional restrictions

regarding the feedback properties of the system.



CHAPTER 2: LITERATURE REVIEW
2.1 PROCESS MODEL

The quadruple-tank process is a simple connection of two double-tank
processes, which are standard processes in many control laboratories. The setup is
thus simple but still the process can illustrate interesting multivariable phenomena.
The process flow sheet is displayed in Figure 1. The target is to control the levels y1
and y2 in the lower two tanks with two pumps. The process inputs are vl and v2
(input voltages to the pumps). The model used in the present virtual lab includes also
the disturbance effect of flows in and out of the upper-level tanks.

| _Taakd  Tank a$|_ __
. h h,
V, A ) 1 2
I Tank 1 Tank 2 -

Figure 3.0: Schematic of the quadruple-tank process

Johansson (Johansson, 2000) described a laboratory quadruple-tank process
which consists of four interconnected water tanks and two pumps as shown in Figure
1.0. The first principle mathematical model for this process is using mass balances
and Bernoulli’s law. The differential equations representing the mass balances in this

quadruple-tank process are:
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where hi is the liquid level in tank i;

ai is the outlet cross sectional area of tank i;

si(hi) is the cross-sectional area of tank i;

vj is the speed setting of pump j, with the corresponding gain kj;

v j is the portion of the flow that goes into the upper tank from pump j;

and d1 and d2 are flow disturbances from tank 3 and tank 4 respectively, with
corresponding gains kd1 and kd2.

The process manipulated inputs are v; and v, (speed settings to the pumps)
and the measured outputs are y; and y» (voltages from level measurement devices).
The measured level signals are assumed to be proportional to the true level, ie., y; =
kmihi and y2 = kyohy. The level sensors are calibrated so that ky = ky = 1. (Astrom,
1992)

This process exhibits interacting multivariable dynamics because each of the
pumps affects both of the outputs. The linearized model of the quadruple-tank process
has a multivariable zero, which can be located in either the left or the right half-plane
by simply adjusting the throttle valves yland y2.

Johansson (Johansson, 2000) showed that the inverse response (non minimum
phase) will occur when 0 < y1+ y2 < 1 and minimum phase for 1 < yl+ y2 <2, The
valve settings will give then to the overall system entirely different behaviour from a
multivariable control viewpoint. Unmeasured disturbances can be applied by pumping
water out of the top tanks and into the lower reservoir. This exposes to disturbances

rejection as well as reference tracking.
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Table 1.0: Parameter value for quadruple tank system
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Table 2.0: Operating parameter for minimun (P-) and non-minimum (P+)

phases

The linearized state-space equation at operating points are x;= h; — h% and ui = v; — v%;
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where the time constants are [, = Fra Ut

Linearized transfer function matrix model for both minimum (P-) and non-minimum

(P+).



2.2  CURRENT PROCESS MODEL SIMULATION APPLICATION
2.2.1 Quadruple tank simulation

Most computer simulations of scientific phenomena can be described in terms
of the model-control-view paradigm. This paradigm states that a simulation is
composed of three parts:

1. The model, which describes the phenomenon under study in terms of
i.  Variables, that hold the different possible states of
ii.  The phenomenon
ili.  Relationships among these variables (corresponding to the laws that
govern the phenomenon)

iv.  Expressed by computer algorithms

2. The control, which defines certain actions that a user can perform on the

simulation

3. The view, which shows a graphical representation of the different states that
the phenomenon can have. This representation can be done in a realistic or

schematic form

The tooi provides extensive scaffolding for creating the model but still leaves full
flexibility for the analysis. This is pedagogically important, since the process of
analysing good control fundamentals consists, to a great extent, in to know the basic
principles to build models. In order to describe a model, the simulation needs to be

able to:

Identify the set of variables that properly describe the system
Initialize, in a correct way, these variables

Describe how the value of these variables change in time

el

Establish how they affect each other when the user interacts with the system
and modifies one or more of their values

10



5. Understanding control limitations due to interactions, model uncertainties,
non-minimum phase behavior, and unpredictable time variations

6. Designing decentralized (often called “multiloop”) controllers, and
understanding their limitations

7. Implementing decouplers to reduce the effect of interactions, and
understanding their limitations

8. Implementing a fully multivariable control system

9. Selecting the best control structure, based on the characteristics of the

multivariable process

Past studies of (A. J. Krener, 1983) with 4-tank apparatuses implemented
decentralized PI control, multivariable control, multivariable internal model control,
and dynamic matrix control. The main educational focus was providing an apparatus
with highly idealized and reproducible dynamics for use in illustrating multivariable
interactions and multivariable transmission zeros as stated by Andersson (Andersson,
2002). In contrast, our main educational focus is to aid in understanding the
advantages and disadvantages of the different control structures (e.g., decentralized,
decoupling, multivariable) when applied to a multivariable process with interactions

and dynamics ranging from highly ideal to highly non-ideal.

The main idea of this technique is to find some state transformation that make
original system as a linear part, and nonlinear part depending only on measured states
and inputs. The main drawback of this strategy is the difficulty to give necessary and

sufficient conditions for existence of this transformation.

2.2.2 Developments in multivariable control simulation

Developing mathematical models of non-linear systems is a central topic in
many disciplines of engineering. Models can be used for simulations, analysis of the
system’s behaviour, better understanding of the underlying mechanisms in the system,
design of new processes and design of controllers. In a control system the plant
displaying nonlinearities has to be described accurately in order to design an effective
controlier. In obtaining the mathematical model, the designer follows two methods.

11



The first one is to formulate the model from first principles using the laws governing

the system. This is generally referred to as mathematical modelling.

The second approach requires the experimental data obtained by exciting the
plant and measuring its response. This is called system identification and is preferred
in the cases where the plant or process involves extremely complex physical

phenomena or exhibits strong nonlinearities.

Obtaining a mathematical model for a complex system is complex and time
consuming as it often requires some assumptions such as defining an operating point

and doing linearization about that point and ignoring some system parameters.

In the present work three different models have been developed using three
different soft computing techniques namely, ANN, Fuzzy and Neuro-fuzzy, for the
Quadruple tank process. The rest of the paper is structured as follows: Section 2
describes the Quadruple Tank Process as stated by Rosenbrock (Rosenbrock, 1973).

2.2.3 Easy-Java simulations fundamentals

As stated by (Esquembre, 2002), Easy Java Simulations, Ejs for short, is a
software tool that helps create dynamic, interactive scientific simulations in Java
language.The tool is targeted for basic programming skills and is therefore very much
suited to the pedagogical situation one finds in most university classrooms. Within
Ejs, simulations are created by specifying a model for the simulated system and by
building a view that continuously visualizes the state of this model and that readily

responds to user interaction.

12



CHAPTER 3: METHODOLOGY/PROJECT OF WORK

3.1 METHODOLOGY

3.1.1 RESEARCH METHODOLOGY

Process model derivation

3

Software set up

L J
Sumulation mifial test PE—

v

Sunulate & test of several kinds of deception

y
Generation of Input-COutput Data

¥
Validation

Data analvsis

Figure 5.0: Research method flowchart
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3.2 PROJECT ACTIVITIES

3.2.1 Process model derivation

The model theoretical design of quadruple tank model is referred as the main
reference throughout the whole process of developing the dynamic simulation. All

parameters are recognized, derived and all variables are defined.

Constant variables:

i. Al, A2, A3 and A4 are the cross-section area of each tank

ii. aiis the cross-section area of an outlet of the tank

ifi. g is the gravitational constant, 981 cr/s”

Manipulated parameters or input:
i. Voltage of the pumps
ii. Ratio of the flows

Output parameters:
i. Speed settings to the pumps

ii. Tank level

Process model:

dh = zeros(4,1);

dh (1) = -al/Al*sgrt(2*g*h(l)) + a3/Al*sqrt(2*g*h(3)} +
gl_rmp*kl _nmp/Al*ul;

dn{2) = ~a2/R2*sqgrt(2*g*h(2)) + ad/A2*sqgrt(2*g*h{4)) +
g2_nmp*k2 nmp/A2*u2;

dh(3) = -a3/A3*sqrt(2*g*h(3)) + (1-g2 nmp) *kZ_nmp/A3*u2;
dh(4) = -ad/Rd*sqrt(2*g*h(4)) + (1-gl nmp)*kl nmp/Ad*ul;

14




3.2.2 Software set up

Apply the tools of software which are MATLAB® and Simulink. Coding and
mathematical expression and functions are prepared using the tools. Whole system is
then developed in order to run the whole dynamic simulation of the quadruple tank

system.

The algorithms used in the ODE solvers vary according to order of accuracy

and the type of systems (stiff or non-stiff) they are designed to solve. The solvers of

the ODE suite can solve problems of the form M. ¥1¥" = Fl. ¥} with time- and

state-dependent mass matrix 3.

Solver Problem Order of When to Use
Type Accuracy

ode45 | Nonstiff Medium Most of the time. This should be the first
solver you try,

ode23 | Nonstiff Low For problems with crude error tolerances or
for solving moderately stiff problems.

odel13 | Nonstiff Low to high | For problems with stringent error tolerances
or for solving computationally intensive
problems.

odelSs | Stiff Low to If ode45 is slow because the problem is

medium stiff.

ode23s | Stiff Low If using crude error tolerances to solve stiff
systems and the mass matrix is constant.

0de23t | Moderately | Low For moderately stiff problems if you need a

Stiff solution without numerical damping.

ode23tb | Stiff Low If using crude error tolerances to solve stiff

systems,

3.2.3 Simulation initial test

Table 3.0: ODE’s Function in Matlab

This method is to calibrate the system developed using MATLAB® and

Simulink. This is to prepare a good generation of data during the simulation.

15




Sample of Matlab coding for Run 1

function dh = height {t,h}

Flroas—zection of thae wank
Al=28;
A2=32;
A3=28;
R4=32;

al=0.071;
a2=0.057;
a3=0.071;
ad=0.057%;

poerstion can

g=981;

k1 nmp = 0.5; |
X2 nmp = 0.5;

gl nmp = 0.70; 7
g2_nmp= 0.30;

dh = zeros{d,l1);

dh{l) = -al/Al*sqrt(2*g*h(l)} + a3/Al*sqrt{2*g*h({3)) +
gl_nmp*kl nmp/Al*ul;

dh(2) = -aZ/A2*sqgrt(2*g*h(2)} + a4d/RZ2*sqrt{2*g*h(4)) +
g2 _nmp*k2 nmp/A2*u2;

dh (3} = -a3/A3*sqgrt(2*g*h(3)) + (1~-g2 nmp)*k2_nmp/A3¥*uZ;
dh(4) = -ad/Bd*sqrt(2*g*h(4}) + (1-g1_nmp)*kl nmp/Ad+ul;

The function is called and the graph is plotted for data display.

[(T,H] = ode45(@height, [0 1201,{0 0 0 0]);:
plot(T,H{:, 1), "~~", T, H{(:,2),"*',T,H{:, 3},
YT H(,4), ")

16



3.2.4 Generation of Input-Output Data

The data generated to train the network should contain all the relevant
information about the dynamics of the Quadruple tank process. The input was given
to the conventional model of the quadruple tank process, and from the conventional
model, the input and output were sampled for each sampling instant and the required

sampled data are obtained to train the network.

The quadruple tank system is divided with several conditions in order to define

dynamic behaviour in the process by simulation.

1. Steady states
The first simulation is to take measures in one or several steady states of the
process (with several the mean value of the results is taken), knowing that if a
dynamical System is in steady state, the rate of change of the state (h) is null,

2. Valve constants
v and y, is derived. For that, all the output holes of the tanks must be covered,

so that the first addends of all the expressions disappear, and consequently,
second addends of the first and second equations have to be also removed. The

simulation for valve constants is run.

If that input is constant, a derivative can be expressed in non-infinitesimal

time periods.

17



The parameters k;, uy, ks, up are constant, as A, Ay, A;. Ay, Moreover,
the simulation’s time doesn’t matter, because it can be added to the constant

member k., considering A; =A; = A; = Ay.
. Water tanks hole areas and pump constants
In this section, the values of the following not directly measurable

parameters ki, ky, aj, ay, a3, a4 are derived, knowing Aj;, Ay, A;. A4 those are

easily measurable.

. Parameters values and final model

Values ai of holes areas and k of the pumps are obtained just
substituting values of bi in the first simulation to take ci and undoing the

variable changes of both kinds of variables. These last parameters are:

Ay =Ay=Ay= A= 1521 cm?
a; = 0.2143 cm®

a; = 0.173 cm®

a;=0.2102 cm’

as=0.1793 cm?

ki = 4.0356 cm’/Vs
ky=13.9375 cm’/Vs

Therefore, the final model with minimum phase configuration is the

following:

18
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This model of simulation is linearized to design the linear controllers chosen
in this thesis, and the derivation of the model is repeated for the non-minimum phase

process, with the same parameters.
3.2.5 Validation

The final step in developing the model is validation of the generated results of
the simulation. Validation is performed by evaluating the simulation performance
using trained or experimental data and test data. The input and target were presented.
If the data is not valid within the range of validation, the method is re-looping start
from the simulation initial test. If the data is valid, the data is analysed.

19



3.2.6 Data analysis

Data analysis is performed by comparing the expected results and data referred to
the previous valid data of previous experiment of quadruple tank system. Several

considerations are important;

1. The effect of time-varying dynamics should be considered when designing
control systems

2. The sign of the steady-state gain should always be considered when designing
control systems for multivariable processes

3. The cause of unexpected dynamic behaviour in control loops is often more
subtle than what is first assumed

4. Under some conditions, full decoupling can lead to significantly worse
performance than partial decoupling

5. Decoupling control can do more harm than good

6. Hysteresis effects should be considered when troubleshooting control

problems

20



CHAPTER 4: RESULTS AND DISCUSSION

4,1 RESULTS

4.1.1 Steady states
Take measures in one or several steady states of the process (with several the
mean value of the results is taken), knowing that if a dynamical system is in steady

state, the rate of change of the state (%) is null.

function dh = height {t,h)

200 nL e

RO B

C o — 3

Al1=15.21;
A2=15.21;
A3=15.21;
A4=15.21;

CAcoolsrarion dus o n
g=981;

LR fiow Constants
kl nmp = 4.0356;

k2 nmp = 3.9375;

of Che Flows

gl nmp = 0.69;

gZ_nmp= 0.74;

=Euinn voltage (V)

ul=0.5;

uw2=0.5;

dh = zeros(4,1); Rt

dh{l) = -al/Al*sqrt(2*g*h(1)) + a3/Al*sqrt(2*g*h(3)} +

gl _nmp*kl nmp/Al*ul;
dh{2) = ~a2/A2*sgrt{2*g*h(2)) + ad/A2*sqgrt{2*g*h{4)) +
g2_nmp*k2 nmp/R2*u2;

dh(3) = -a3/A3*sqgrt(2*g*n(3)) + (1-g2_nmp)*k2 nmp/A3*ul;
dh(4) = -ad4/Rd*sqrt(2*g*h(4)) + (l-gl rmp)*kl nmp/Ad*ul;
[T,H] = oded5{@height, [0 120],[0 0 C 01);

plOt(TrH(:ll)!'__1fTrH(:12)l '.krlTrH(:r3)rr
S TLH{4), )

21
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4.1.2 Valve constant

Qutputs of closed loop with Pl controllers and rnimum phase zero model
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Figure 5.0: Results of minimum phase zero configurations
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Figure 6.0: Results of non-minimum phase zero configurations

The responses have overshoot because of the influence of upper tanks, but it is
not really high, even knowing that the step applied is wide, and applied from a long
distance point from the equilibrium one. The response is better in non-minimum
phase zero model because of the decoupling applied to obtain a stable system. The
applied voltages are not much more than 1V over the linear 0V, no more than 5V
adding the linearization values. Knowing that the saturation level is 12.5V, it can be
said that there will be no problems with this saturation. All the states are observed
during the simulation, and upper tanks don’t have problems of overflow, as the lower
ones. With these conclusions, and taking into account possible differences between

process and model, the following step is to test the controllers in the real process.
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4.1.3 Water tanks hole areas and pump constants
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Figure 7.0: Simulation results. Process model with minimum phase zero

The response of states 1 and 2 is better than states 3 and 4, without overshoot

and relatively quicker (taking into account the difference of distance to the

equilibrium point). The variation of control actions is smooth too, not oscillating

around the control actions in equilibrium point. Therefore, the response in simulation

is what could be expected according to the design. In addition, almost the same result

is obtained with the model process with non-minimum zero.
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4,1.4 Deviation

To determinate the deviation, a simple simulation is done. Constant control
actions of 10V are introduced. Heights data have to be captured during a relatively
long time, to obtain correct mean values and therefore valid deviations. In this case,

235 samples are obtained:
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Figure 8.0: Deviation of level Tank 1 and Tank 2 for 470 seconds
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4.1.5 Parameters values and final model

Some steps are introduced around the equilibrium point to test the behavior,
changing dynamically the linearization point, and therefore changing the model too.

Seeing some parts of the simulation, made with minimum zero process:
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Figure 9.0: Simulation behavior with a step from 10 to 8cm. Minimum zero

configuration
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As it can be observed, the dynamical response is adequate with design criteria.
Changes in the heights are quick (settling time of 20 seconds), with good exactitude
for the 2 first states, and a good noise filtering. In addition, first samples after the
change of reference have a remarkable peak. This happens because of the change of
model.

Regarding to the control actions, they have a bigger overshoot, but just to
bring the state of the system as fast as possible to the equilibrium point. This happens
because of bigger weightings of heights 1 and 2 than the ones of both voltages. The

same result can be seen in another experiment, this time with non-minimum phase

zero configuration:
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Figure 10.0: Simulation behavior with a step from 10 to 8cm. Non-minimum zero

configurations
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4.1.6 Validation

The dynamics are accurate, but what can be noted is that there’s a delay
provoked by the length of the tubes. There are 3 to 4 samples until the effect of an

input change is noted in an output.
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Figure 11.0: Validation

The gain model is correct around water levels of 10cm. With measures of
between 12 and 14cm, the gain of the real system is higher. This happens because of
the time variable behavior of the pumps and sensors. Some experiments with a
separation of days between them have different results. In general, it can be said that
the model is valid around 10cm, which will be the point used for most of the
simulation. The dynamics are accurate, but what can be noted is that there’s a delay
provoked by the length of the tubes. There are 3-4 samples until the effect of an input
change is noted in an output. The gain simulation is correct around water levels of
10cm. With measures of between 12 and 14cm, the gain of the real system is higher.
The different percentage is 14.02% based on the average for every heights.14.02% is
lesser then 15%, which is the targeted percentage difference. The data in the

simulation is validated.
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CHAPTER 5: CONCLUSION AND RECOMMENDATIONS
5.1 CONCLUSION

The Quadruple-Tank Process has been presented. It is a simulation process
that was designed in order to illustrate various concepts in multivariable control. It has
been observed that in each design technique, non-minimum phase is quite difficult to
control. Multivariable system with unstable transmission zeros usually come across
with internal instability problems. The sign of the steady-state gain should always be
considered when designing control systems for multivariable processes. This level of
understanding is needed to select the proper design of quadruple tank system and to
determine whether a particular control problem can be addressed by better controlier
tuning, by a different control structure, by changing the process design, or by

changing the operating conditions.

Dynamic simulation of multivariable process for quadruple tank system is
developed using MATLLAB® to study the dynamic simulation of quadruple tank
system. The complexity of the dynamics of the system can be represented by the
graph and data deviation of the height of each tanks controlled by the voltage of each

pumps.

The state of variables which are height and voltage of the pump are validated
by the real process of quadruple tank system. The feasibility design of quadruple tank

system can be determined by this simulation.
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52 RECOMMENDATIONS

The project is generally at the stage of process model derivation, input and
output generation and validation to get more understanding about the quadruple tank
system. The coding of the MATLAB® would be the time consuming but the project
should be managed to continue to the next steps till the end by the scheduled project
of work. Further research and reference is relevance in order to make sure the results

of the dynamic simulation is valid and the objective of this project can be achieved.
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APPENDIX 1-1

function dh =

Ai=28;
A2=32;
D3=28;
Ad=32;

svoan-g
al=0.071
a2=0.057
a3=0.071
ad=0.057

me e We wWa

g=981;

kl_nﬁp
k2 nmp

1l

g1_nmp

o =

s

70;

0.

Sy o

.5;
-5

g2_nmp= 0.30;

height (t,h)

BN -

dh = zeros(4,1):

dh(l) =

~al/Al*sgrt(2*g*h(1})

gl nmp*kl nmp/Al*ul;

dh{2} =

~a2/B2*sqrt (2*g*h(2})

g2 _nmp*k2 nmp/AZ*u2;

dh(3)
dh(4) =

-a3/A3*sgrt (2*g*h(3}))
-a4/Ad*sqrt (2%*g*h (4))

+

+

a3/Al*sart{2*g*h(3)) +
ad/A2*sqgrt(2*g*h(4)) +

(1-g2_nmp) *k2 nmp/A37uz;
{(1-g1l nmp)*k1l nmp/Bd*ul;

[T,H] = oded5(Rheight, [0 120],[0 0 0 01):;
plOt(TrH(:rl)!|__|foH(112)r]*‘rTrH(:f3}l‘

"YT,H(:,4) ")




APPENDIX 1-2

package QuadTankPack

model PRBS1
Modelica.Blocks.Interfaces.RealOubput v;
parameter Integer N = 10;

parameter Real ts[N] = { 0. , 3.5, 9.3, 15.3,
24.3, 36.3, 38%.3, 42.3, 54.3, 57.3};

1l
-
a
-
lm
oy
Ut
-

parameter Real ys[N]
6., 5., 6., 5., 6.};

eqguation

y = noBvent{if time <= ts{2]
if time <= ts[3] thean vel{2] elss

if time <= ts[4] then ys[3] else

if time <= ts[5] then ys[4]

1f time <= ts[6] than vs[5] &l

if time <= ts[7] than y

if time <= ts[8] than

if time <= ts[9] then ys[d]
if time <= ts[1l0] then vul®] &les vs{l0]1);

end PRBS1;

model PRBS2
Modelica.Blocks.Interfaces.RealOutpgat ¥;
parameter Integer N = 11;

parameter Real ts(N] = { 0. , 0.3, 8.3, 21.3,
24.3, 27.3, 39.3, 42.3, 48.3,

51.3, 57.3};

parameter Real vs[N] = {5., 6., 5., &., 5., 6.,
5., 6., 5., 6., 5.}:
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APPENDIX 1-3

equation
y = noEvent {if time <= ts[2] then ys[l] else

1f time <= ts[3] then ys[2] else
if time <= ts[4] then ys[i] &ligse
if time <= ts{4] then val
if time <= ts[6] then
if time <= ts{7] then
i1f time <= ts{8] then
if time <= £s[9%] then ys[8]
if time <= ts[10] than vs[%] 8lse
if time <= ts[11] then ys{l0] else ys[11l]);

end PRBSZ;

model TestPRBS
PRBS1 prbsl;
PRBSZ2 prbs2;
Real x;

equation

der (%) 1;

end TestPRBS;

model Sim QuadTank
QuadTank gt
input Real ul
input Real u2

initial eguation

der (gt.xl) = 0;
der{gt.x2) = 0;
gt.x3 = 0.024;

at.
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APPENDIX 1-4

gt.x4 = 0.023;

end Sim QuadTank;

model QuadTank
// Process paramsters

parameter Modelica.STunits.Area Al=4 9e-4,
AZ=4 . 9e-4, A3=4.9e-4, Ad=4.9%e-4;

parameter Modelica.SIunits.hArea al=0.03e~4,
az=0.03e-4, a3=0.03e-4, ad4=0.03e-4;

parameter Modelica.SIunits.Acceleration g=9.81;

parameter Real kl nmp{unlt="m3"/s/V"} = 0.56e-6,
k2 nmp{unit="m"3/s/V") = 0.56e-6;

parameter Real gl nmp=0.30, g2 nmp=0.30;

// Initial tank levels

parameter Modelica.SIunits,Length =21 0 =
0.04102638;

parameter Modelica.SIunits.length zZ 0
0.06607553;

parameter Modelica.STunits.Length x3 0
0.00393984;

M
et
[
o
A
-
I

parameter Modelica.STunits.Len
0.00556818;

// Tank levels

Modelica.S3Tunits.Length
Xl(start=xl_0,min=0.000l!*,max=O.2@*/3;

Modelica.SIunits.Length
¥2 {(start=x2 0,min=0.000L/%,max=0.20%/};

Modelica.SIunits.Length
x3({start=x3 0,min=0.0001/%,max=0.20%/);

Modelica.SIunits. Length
x4 (start=x4 0,min=0.0001/%,max=0.20%/};
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APPENDIX 1-5

// Inputs

input Modelica.SIunlts.Veltages ul}

input Modelica.SIunita.Voltags 4aZ;
equation
der(xl) = -al/Rl*sgri(2%g¥*xl} + a3/Bltgart (2 g*x3)
o+
gl nmp*kl nmp/Al*ul;
der(x2) = -a2/R2*sqrt(2*g*x2) + ai/AZ*sqrt(2*g*xzd)
n

g2_nmp*kZ nmp/R2*ul;

der{x3) = -a3/A3*sqrt(2*g*=3) +
g2 nmp)*k2 nmp/A3*uZ;

der(z4) = -ad/Bd*sqrb (2 g*=z4]
gl nmp) *k1 nmp/A4*ul;

end QuadTank;

model QuadTankInit
extends QuadTank;
initial equation
der(x1) = 0;
der (x2} = 0;
der (x3) = Gy
der{zd; = 0;
end QuadTankInit;

optimization QuadTank Opt (objective =

startTime 0,

finalTime = 50)

(1-

€08t (£inalTime),
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APPENDIX 1-6

extends
QuadTank (ul {initialGuess=ul r),uZ{initialGuess=u2 r),

x1{initialGuess=x1 0, fixed=true},
®Z{initialGuess=x2 0, fixed=true},
x3{initialGuess=x3 0, fixed=true),

x4 (initialGuess=xd 0, fixed=true));

// Reference wvalues
parameter Modelica.SIunits.Length x1 r = 0.06410371;
parameter Modelica.SIunits.Length %2 r = 0.10324302;
parameter Modelica.SIunits.Length %3 r = 0.006156;
parameter Modelica.SIunits.Length =4 r = 0.00870028;

parameter Modelica.SIunits.Voitage ul r = 2.5;

parameter Modelica.SIunits.Voltage w2 r = 2.5;
Real cost{start=0, fixed=true);
equation
der (cost) = 40000* ((xl v - zl)]j"& «
20000% { (22 _% = =51)°2 +
A0000% ({3 r - x3})72 +

40000% ({xd_x = ®4])75 &
{{ul v - uijj 2 »

h

(i _r - uZ)icdy

end QuadTank Opt;
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APPENDIX 1-7

optimization QuadTank Static(objective=(x
(%2 meas-xZ) 2 +

bomeas-x1)"2 +

(x3 meas-x3)"Z +
(x4 meas-x4)"Z, static=true)

extends QuadTank (al{free=true),aZ{{ree=true));

parameter Real x1 meas = ®1_0+0.01;

parameter Real x2 meas = x2Z 0-0.01;

parameter Real x3 meas = x3 0~0.0%L;

parameter Real x4 meas = x4 (0+0.0L;

initial equation

der(xzl) = (0;
der (x2) = 0;
der (x3) = 0;
der(x4) = 0;

end QuadTank Staticy

optimization QuadTank Parkst (objective=sum({yl meas[i]
- gt.x1(t meas[i})}])"2 +

{vZ meas[i]

- gr.x2{t meas[i]})"2 for i in 1:N_meas),
startTime=0, finalTime=60)
// Initial tank levels

parameter Modelica.SIunits.lLength 51 0 = 0.06255;

parameter Modelica.SIunits.Length x2 0 = 0.06045;
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APPENDIX 1-8

parameter Modelica.SIunilts.Length x3 0 = 0.02395;

parameter Modelica.SIunits.Length x4 0 = 0.02325;
QuadTank gt (x1{fixed=true),xl 0=x1 0,
x2 (fixed=true),x2 0=x2 0O,
x3 (fixed=true),x3 0=x3 0O,
x4 (fized=true),z4 _O=xud G,
al (free=true, initialGuess = 0.03e~-
4,nominal=0.03e-4,min=0,max=0.1e-4),
a2 (free=true,initialGuess = (0.03e-
4, nominal=0.03e-4,min=0,max=0.1e~4)};
parameter Integer N meas = 61;
parameter Real t meas[N meas] = 0:60.0/(N meas-
1) :60;
parameter Real vyl meas|[N meas| = ones(N meas);

I

parameter Real yZ2 meas|N meas] ones (N _meas);
PRBS1 prbsl;
PRBSZ2 prbsi;

equation
connect (prbsl.y,gt.ul)};

connect (prbs2.v,gt.u2};

end QuadTank ParEst;

optimization QuadTank ParkEstZ (cbjective=sum{(yl meas[1]
- gt.xl{t meas[i])}"2 +

(vZ meas[i]
- gt.x2(t meas[i]}}" 2 +

(v3 meas{1]
- gt.x3{t meas[i]})"2 +

(v4 meas(i]
- gbt.x4({t meas{i]))"2 for 1 in 1:N neas),
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APPENDIX 1-9

startTime=0, finalTime=60)

// Initial tank levels
parameter Modelica.STunits.Length #1 0 = 0.06255;
parameter Modelica.SIunits.Length xZ 0 = 0.06045;
parameter Modelica.3TIunits.Length =3 0 = 0.02395;

parameter Modelica.S3Tunlits.Length x4 0 = 0.02325;

QuadTank ot (¢l (fixed=true),xl 0=x1 0,

al (free=true,init = 0.03e-
4,nominal=0.03e-4,min=0,max=0.1le-4},
aZ{free=true,initialGuess = 0.03a-
4,nominal=0.03e-4,min=0,max=0.1e-4},
a3 {free=true,initialGuess = 0.03e-
4,nominal=0.03e~4,min=0,max=0.1e-4),
ad {(free=true,lnitiaiGuess = 0.03e-
4,nominal=0,03e~-4, min=0,max=0.le-4}};
parameter Integer N meas = 61;
parameter Real t_meas[N_meas] = 0:60.6/ (N meas-
1):60;
parameter Real vyl meas[N_meas] = ones{N_meas);
parameter Real v2 meas[N meas] = ones({N meas);
parameter Real y3 meas[N_meas]| = ones(N meas);
parameter Real y4 meas[N_teeas] = ones (N meas);

PEBS1 prbsl;

PRBS? prbsZ;

equation

x2 (fixed=true),xZ O=xZ 0,

x3 (fixed=trus), =3

x4 (fizxed=true),xd O=x4 O,
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APPENDIX 1-10

connect (prhsl.v,qt.ul);

connect {(prhs?2.vy,qt.uj;

end QuadTank ParEstZ;

optimization QuadTank Sens

// Initial tank levels

o
i

parameter Modelica.SIunits.Lengtl xl

parameter Modelica.SIunits.Length x2 0 =

o
il

parameter Modelica.STunits.Length x3_

parameter Modelica.S3Tunits.Length =4 0 =

QuadTank gt (xl{fixed=true),xl 0O=x1 0,

%2 (fixed=true}, £

x4 (fixed=true) ,m4_Usgd_

al (free=true,initigiuess
4, nominal=0.03e~4,min=0,max=0.le-4),

az? (free=true, initialGuess
4, nominal=0.03e-4,min=0,max=0.1e-4)});

PRES1 prbsl;
PRBSZ prbs2;
equation
connect (prbsl.y,gt.ul);
connect (prhs2.y,gt.uZ};

end QuadTank Sens;

0.06255;

0.06045;

0.02395;

0.02325;

0.03e~

0.03e-
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