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ABSTRACT 

 This research is about to analyze the carbon dioxide (CO2) emission of the 

Heat Recovery Steam Generator (HRSG). The exhaust heat from the Gas Turbine 

(GT) released to the environment consists of CO2 and other air pollutant emission, 

which contribute to the global warming and the greenhouse effect. The main 

objective of this project is to study the carbon dioxide (CO2) emission by HRSG, 

which is fueled by exhaust gas heat from the GT and when 100% of exhaust gas heat 

from the GT is emitted to the environment. Block diagram energy models are 

develop based on the principle of First Law of Thermodynamics, mass and energy 

models. Using mass and energy balances for each subcomponent of HRSG and for 

the exhaust gas heat from GT, computations of energy contents and flow are possible 

for thermodynamics analysis. THREE (3) assumptions are used for CO2 analysis; i. 

The flow rate of flue gas is kept constant as 19.22 kg/s, ii. The inlet and outlet 

temperature of evaporator is set as 95
o
C and 180

o
C respectively and iii. The 

temperature of hot gases at economizer is set to 182
o
C. The result of 100% of waste 

heat emitted to the environment is compared with the waste heat used by the HRSG 

for the conversion of steam. It is noted that the amount of CO2 emission by HRSG is 

inversely proportional with the amount of CO2 emission by the exhaust heat from GT 

because at 8am, the maximum amount of CO2 emission by HRSG is the minimum 

amount of CO2 emission by the exhaust heat from GT. By comparing these values, it 

is noted that HRSG contributes about 32.21% of CO2 emission at UTP GDC in 

comparison to the exhaust heat from GT when it is 100% emitted to the environment. 

Moreover, it is noted that the amount of CO2 emission by HRSG is less than when 

100% of exhaust heat is emitted to the environment by approximately 35.59%. 
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CHAPTER 1: INTRODUCTION 

1.1 Background of Study 

 Gas turbines (GT) are widely installed at the gas fuelled power plant to 

generate electricity. It is integrated to the power generation systems either as open 

cycle system, combined cycle system or cogeneration system. Besides generating 

electricity, the GT generate exhaust heat. The exhaust heat released to the 

environment consists of carbon dioxide (CO2) and other air pollutant emission. 

Studies on CO2 emission have been undertaken by a number of authors. (Graus & 

Worrell, 2011) reported that the amount of CO2 intensity released using power and 

heat method by gas-fuelled power generating system is 404 g/kWh. (Harrison et al, 

1997) found that CO2 accounts for 99 wt% of all air emissions. The contributions 

from CO2 gas is considered in the assessment of the global warming potential (GWP) 

of natural gas combined-cycle system. The GWP for this system is 499.1 g CO2-

equivalent/kWh (Houghton, et al, 1996). The following table (Table 1.1) contains the 

emission rates for CO2 gas and its contribution to the total GWP.  
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TABLE 1-1: Emissions of CO2 Gas and Contribution to GWP (IEA Greenhouse Gas 

Programme. (1999), “Greenhouse Gas Emissions from Power Stations”, United 

Kingdom, Website: www.ieagreen.org.uk.) 

 

FIGURE 1.1: Steam Generations by HRSG  

Source: S. Amear et.al. (2013) [5] 

 For the district cooling plant at Universiti Teknologi Petronas (UTP), the 

exhaust heat from GT is used to generate steam by Heat Recovery Steam Generator 

(HRSG). During peak periods, it is operated with full load capacity. The waste heat 

from GTG is used to generate steam by HRSG. As shown in Figure 1.1 & Figure 1.2, 

the waste heat from the GTG is diverted to HRSG to generate steam. The steam is 

then transferred to the steam header. For the analysis, only 66.6% of exhaust heat is 

captured to produce the steam while the remaining 33.4% is emitted to the 

environment [5]. 
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FIGURE 1.2: Energy System Circulation  

Source: S. Amear et.al. (2013) [5] 

1.2 Problem Statement  

 Carbon dioxide comprises about 0.03% of the earth’s atmospheric volume but 

because of combustion of fossil fuels and deforestation, this percentage has increased 

by about 25% since pre-industrial times. Scientists estimate that excessive CO2 

emissions into the atmosphere will increase the earth’s surface temperature 

approximately by 1.5-4
o
C in the next 30-40 years [6]. Due to climate change the 

worldwide consensus is to make every effort to limit the global average increasing 

temperature to 2
o
C compared to pre-industrial times [7]. 

 Waste heat from GT is normally emitted to the environment. This contributes 

to CO2 emission to the surrounding where it leads to the environmental hazard. CO2 

is considered to be responsible for the greenhouse effect and global warming. 

Concentrations of 3-6% can cause headaches; larger concentration can lead to 

unconsciousness and possibly death. One option to overcome this is to use the 

exhaust heat to generate steam using HRSG.  
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  Many authors have done analyses of cogeneration system at Universiti 

Teknologi Petronas (UTP) covering Gas Turbine [8], Electric Chillers and Steam 

Absorption Chillers [9] and Thermal Energy Storage [10]. However, there is no 

specific study on the evaluation of the amount of carbon dioxide (CO2) emitted from 

steam generation process by HRSG. 

1.3 Objective and Scope of Study 

1.3.1 Objective 

 The main objective of this study is to study the carbon dioxide (CO2) 

emission by HRSG, which is fueled by exhaust gas heat from the GT and when 

100% of exhaust gas heat from the GT is emitted to the environment. 

1.3.2 Scope of Study 

The scope of study covers the following: 

i) The gas turbines and HRSG at UTP GDC available are taken as case study  

ii) For the analysis, the CO2 analysis will cover two scope, namely: 

- 100% of exhaust gas heat from the GT emitted to the environment  

- only 66.6% of exhaust heat captured by HRSG to produce the steam 

while the remaining 33.4% is emitted to the environment 
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CHAPTER 2: LITERATURE REVIEW 

2.1 HEAT RECOVERY STEAM GENERATOR 

 Heat Recovery Steam Generators (HRSGs) are widely used in process and 

refineries, power plants and in several cogeneration/combined cycle systems. HRSG 

is a steam boiler that recovers heat from the hot exhaust gases of gas turbine engine 

for steam generation.  

 

FIGURE 2.1: Heat Recovery Steam Generator  

(Sources: Gas District Cooling Plant, UTP, 2001) [11] 

 From Figure 2.1, the exhaust gases from the GT enter the evaporator where 

steam is generated. The hot gases leaving the evaporator pass through the 

economizer unit. After a pre-heating step in the economizer, water enters into the 

drum, slightly sub cooled. From the drum, the water flows to the evaporator and 

returns as a water/steam mixture to the drum where water and steam are separated. 
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The saturated steam leaves the drum to the superheater where it reaches the 

maximum temperature (J.Y. Shin, Y.J. Jeon, D.J. Maeng, J.S. Kin, S.T. Ro, 

2002).[12] 

 Some HRSGs are single-pressure units, but much more common are multi-

pressure systems, as they offer improved efficiency. P.R Kumar and V.D Raju 

(2012) [13] clarify that HRSGs are categorized into single, dual, and triple pressure 

types depending on the number of drums in the boiler. With a single-pressure HRSG 

about 30% of the total plant output is generated in the steam turbine. A dual-pressure 

arrangement can increase the power output of the steam cycle by up to 10%, and an 

additional 3% can result with a triple-pressure cycle.  

 Deschamps P.J. (1998) [14] states “in a combined cycle power plant (CCPP), 

the HRSG represents the interface element between the gas turbine and the steam 

cycle”.  The process is known as combined-cycle power generation when the steam 

drives a turbine for electricity production. When steam is used for industrial 

purposes, the process is known as co-generation (Buecker, B. 2002). The quality of 

steam generated by the HRSG depends on the flow and temperature of the exhaust 

gases entering it.  

 The overall efficiency of the plant increases due to the harnessing of energy 

from the gas turbine exhaust gas which would be otherwise wasted. Efficiencies of 

combined-cycle units may approach 60% as compared to a conventional steam 

turbine only power generation plant without a combined steam and gas turbine (US 

Patent No. 6367258, 2002)[15]. 

2.1.1 Fundamental Part of HRSG  

 The fundamental part of HRSG is explained by P.R Kumar and V.D Raju 

(2012) [13]. HRSG consists of steam drum, evaporator, economizer and superheater. 
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Steam Drum 

 The steam drum is the boiler shell that is connected by short tubes with the 

uptake riser and by longer tubes to the down take header. The water level in the drum 

is slightly above the center. The water tubes are connected to the top and bottom 

header and are kept inclined at an angle of 15
o
 to the horizontal.  

Evaporator  

 Evaporator is the portion of HRSG in which water is boiling to form steam. 

Typically a mixture of water and steam exists of this portion. It acts to vaporize 

water and produce steam in one component, like kettle in the kitchen. 

Economizer 

 The economizer is placed at the end of side flues before exhausting the hot 

gases to the chimney. The water before being fed into the boiler through the valve is 

passed through the economizer.  

 In single pressure HRSG, the economizer will be located directly downstream 

(with respect to gas flow) of the evaporator section. In a multi-pressure unit the 

various economizer sections may be split and be located in several locations both 

upstream and downstream of the various evaporators.  

Superheater 

 The superhater is the portion of HRSG in which saturated steam is heated to 

higher temperatures. While the evaporator produces dry-saturated steam, this is 

rarely acceptable for large steam turbines and is frequently not appropriate condition 

for process applications. 

 In these cases, the saturated steam produced in the evaporator is sent to 

superheater. This component adds sensible heat to the dry steam, superheating it 

beyond the saturation temperature. 
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2.2 THE FIRST LAW OF THERMODYNAMICS  

 Energy is a fundamental concept of thermodynamics and one of the most 

significant aspects of engineering analysis. Energy has number of different basic 

forms: kinetic energy, gravitational potential energy and internal energy, all of which 

measure the ability of an object or system to do work on another subject or system. 

Energy can also be transformed from one form to another and transformed from one 

form to another and transferred between systems. For closed systems, energy can be 

transferred by work and heat transfer. The total amount of energy is conserved in all 

transformations and transfers.  

2.2.1 Work 

 In thermodynamics, the term work denotes a means for transferring energy. 

Work is an effect of one system on another which is identified and measured as 

follows: Work is done by a system on its surrounding if the sole effect on everything 

external to the system could have been rising of a weight. Notice that the raising of a 

weight is in effect a force acting ever, the sole effect could be the change in elevation 

of a mass. The magnitude of the work is measured by the number of standard 

weights that could have been raised.  

 Work done by a system in considered positive in value; work done on a 

system is considered negative. Using the symbol W to denote work, we have  

W > 0: work done by the system 

W < 0: work done on the system 

 The time rate of doing work or power is symbolized by W 

2.2.2 Energy 

 A closed system undergoing a process that involves only work interactions 

with its surroundings experiences an adiabatic process. On the basis altered 

adiabatically, the amount of work Wad is fixed by the end states of the system and is 

independent of the details of the process. Regardless of the type of work interaction 
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(KE2 – KE1) + (PE2 – PE1) + (U2 – U1) = -Wad 

involved the type of process or the nature of the system; this is proved as one way the 

first law of thermodynamics can be stated.  

 As the work in an adiabatic process depends on the initial and final states 

only, it can be concluded that an extensive property can be defined for a system such 

that its change in value between two states is equal to the work in an adiabatic 

process that has these as the end states. This property is called energy.  

According to Moran, MJ., (1999a) [16] 

In engineering thermodynamics the change in the energy of a system is considered to 

be made up of three macroscopic contributions. One is the change in kinetic energy 

(KE) associated with the motion of the system as a whole relative to an external 

coordinate frame. Another is the change in gravitational potential energy (PE) 

associated with the position of the system as a whole in Earth’s gravitational field. 

All other energy changes are lumped together in the internal energy (U) of the 

system. Like kinetic energy and gravitational potential energy, internal energy is an 

extensive property.(p.p 5) 

 Bejan, Adrian., et.al (1996a) [17] further describes that the change in energy 

between two states in terms of the work in an adiabatic process between these states 

is  

(2.1) 

where 1 and 2 denote the initial and final states respectively and the minus sig n 

before the work term is in accordance with the previously stated sign convention for 

work. 

 Meanwhile, internal energy is a state function of a system and can has 

intensive thermodynamic property called specific internal energy. The specific 

internal is symbolized by u or  ̅, respectively. The specific internal is expressed on a 

unit mass or per mole basis.  
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According to Moran, MJ., (1999b) [16] 

The specific energy (energy per unit mass) is the sum of the specific internal energy 

u, the specific kinetic energy      and the specific gravitational potential energy gz. 

That is,  

   Specific energy = u + 
 

 
 V

2
 + gz            (2.2)      

where V is the velocity and z is the elevation, each relative to a specified datum and 

g is the acceleration of gravity. 

2.2.3 Energy balance 

 Closed systems can also interact with their surroundings in a way that cannot 

be categorized as work. This type of interaction is called a heat interaction and the 

process can be referred to as a non-adiabatic process.  

 A fundamental aspect of the energy concept is the energy is conserved. 

According to Bejan, Adrian., et.al (1996b) [17],  

Since a closed system experiences precisely the same energy change during a non-

adiabatic process as during an adiabatic process between the same end states, it can 

be concluded that the net energy transfer to the system in each of these processes 

must be the same. It follows that heat interactions also involve energy transfer. 

Further, the amount of energy Q transferred to a closed system in such interactions 

must equal the sum of the energy change of the system and the amount of energy 

transferred from the system by work. That is, 

  Q = [(KE2 – KE1) + (PE2 – PE1) + (U2 – U1)] + W                    

 This expression can be rewritten as  
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  (U2 – U1) + (KE2 – KE1) + (PE2 – PE1) = Q – W           (2.3) 

Equation 2.4, called the closed system energy balance, summarizes the conservation 

of energy principle for closed systems of all kinds.   

2.3 PREVIOUS STUDY ON EVALUATION OF CO2 EMISSION 

 There are many researchers studied about evaluation of CO2 intensity such as 

Graus, WHJ. et al (2011) [1] studied the five methods to calculate CO2 intensity 

(g/kWh) of power generation, based on difference ways to take into account 

combined heat and power generation. They reveal that heat correction method has 

large impact on CO2 intensity of CHP plant. In addition, they reported that CO2 

intensity electricity consumption is 8-14% higher than electricity generation and they 

concluded that CO2 emission from power generation can be reduced by 

implementing best practice technology for fossil power generation. 

 Wu, L., Zeng W. (2013) [18] reported that based on the use of the long-mean 

Divasia Index Decomposition Method (LMDI) the carbon dioxide emissions 

intensity is decomposed into the contribution from four components: industry 

structure effect, industrial intensity effect, energy structure effect and emission 

coefficient effect. In their paper, it is found that the contribution of industry and 

energy structure effect into the decrease of carbon dioxide emissions intensity is 53-

98% and 26.84% respectively. NA Odeh, TT Cockerill (2007) [19] investigates the 

global warming potential (GWP, g CO2–e/kWh) and energy balance of three 

generation technologies; supercritical pulverized coal (super-PC), natural gas 

combined cycle (NGCC) and integrated gasification combine cycle (IGCC) using life 

cycle approach. In their paper, results show that for 90% CO2 capture efficiency, life 

cycle GHG emissions are reduced by 75-84% depending on what technology is used. 

Meanwhile, S.P. Raghuvanshi et al. (2005) [20] provide a brief investigation of CO2 

emission from coal based power generation in India. Energy indicators, trends in 

energy consumption and CO2 emissions have been thoroughly investigated. They 

decomposed CO2 emissions as the product of the primary energy consumption and 

the carbon intensity of primary supply (CO2/PEC). The growth rate can thus, be 

approximated as the sum of the growth rates in energy and carbon intensity. Kaya Y. 

(1989) [21] given CO2 emissions equation known as Kaya identity also relates the 



12 

 

carbon dioxide per GDP with the improvement in energy intensity for GDP (process 

efficiency improvement) and carbon intensity (energy conversion efficiency) of 

power conversion devices. G. Chicco and P. Mancarella (2008) [22] noted that, to 

assess the emission reduction of CO2 and other Greenhouse Gas (GHG) from 

cogeneration system, it should be broken up to subsystems which are represented 

with block diagram models. From the experience M. Kanoglu et al.,[23] on the 

evaluation of energy systems; the assessment of the cogeneration system should be 

based on the thermodynamic principles. 

2.3.1 Evaluation of Carbon Dioxide Emission using Energy Analysis Approach: 

A Case Study of a District Cooling Plant  

 This study was done by S. Amear, et al. (2013) [5] at district cooling plant at 

Universiti Teknologi Petronas (UTP). The focus of their study was to analyze the 

amount of heat loss and CO2 released to the environment. Using the First Law of 

Thermodynamics, the emission reduction of CO2 is assessed by broken up the 

cogeneration system to subsystem using block diagram models.  

Block diagram energy model  

 The block diagram energy model is developed from the past research based 

on the principle of first law of thermodynamics, mass and energy balance models. 

Using principles developed thus far, a detailed thermodynamic model is developed 

and presented for heat recovery steam generator (HRSG) system as illustrated in 

Figure 2.2.  
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FIGURE 2.2: Energy Model of HRSG [5] 

Where; 

QinHRSG  = energy in to HRSG (kWh) 

QoutHRSG  = energy out from HRSG (kWh) 

QLH   = energy loss from HRSG (kWh) 

ṁwh  = flow rate of waste heat (kg/s)  

ṁst  = flow rate of steam (kg/s) 

Cpwh  = enthalpy of waste heat 

Cpst  = enthalpy of steam 

Twh  = temperature of waste heat 

Tst  = temperature of steam 
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Thermodynamic analysis [First Law of Thermodynamics]  

 Thermodynamic First Law states that energy can neither be created nor 

destroyed but can only alter the form. The thermodynamics models are based on 

fundamental mass and energy balances. Using the mass and energy balance 

equations for each component in the power plant model, it is possible to compute 

energy contents and flows at each device of the plants and efficiency of the plants 

[24]. Energy balance equations used for the analysis as shown by Equation (2.4) 

[25]. 

 

Energy balance equations: 

  ̇   ̇  ∑  ̇ [(     )  (
  
    

 

 
)   (     )]                                        (2.4) 

 

Where; 

 ̇  = heat rate into the system 

 ̇  = rate of work done by the system 

 ̇  = mass flow rate 

    = specific enthalpy of the working fluid entering the system 

    = specific enthalpy of the working fluid leaving the system 

    = velocity of mass inlet 

   = velocity of mass outlet  

   = acceleration due to mass 

    = elevation of mass inlet                     

    = elevation of mass outlet 

Notes: For the analysis, the velocity and elevation components are assumed zero.  
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 For the case of HRSG, it generates steam by utilizing the energy in the 

exhaust heat from the gas turbine. The energy balance equations model with 

reference to Figure 2.2 is formulated as follows; 

                (       )   ̇                                                           (2.5) 

 While the produced steam out from HRSG is shown below; 

                  (        )   ̇                                                          (2.6) 

 Therefore, the difference between the energy in the exhaust heat from the gas 

turbine and the produced steam out from HRSG is denoted as; 

                    (   )                                                 (2.7)  

Results  

 In this paper, the historical data for August 2011 is used. The plots of the 

result are shown in Figure 2.3 and Figure 2.4.  
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FIGURE 2.3: Energyin of HRSG for August 2011  

Source: S. Amear et.al. (2013) [5] 

 Figure 2.3 shows the total energy that was supplied to HRSG. It assumed the 

input energy to the HRSG is constants which is around 10 000 kWh. However, the 

output energy is about 5500 kWh as shown in Figure 2.4. Thus, energy loss during 

the process within HRSG is about 57%. 

 

FIGURE 2.4 Energyloss of HRSG for August 2011  

Source: S. Amear et.al. (2013) [5] 

 The results are summarized in Table 2-1. 
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TABLE 2-1: Results from Energy Analysis for HRSG 

 

Source: S. Amear et.al. (2013) [5] 

 From Table 2-1, it is noted that the minimum of           for HRSG is 9582 

kWh; the maximum of          to HRSG is 9926 kWh while           for HRSG 

is constant (4245 kWh).  
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CHAPTER 3: METHODOLOGY 

3.1 Introduction 

 This chapter explains research methodology beginning with flow chart, block 

diagram energy model, thermodynamic analysis and the development of spreadsheet 

template.  
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FIGURE 3.1: Project Flow Chart 

3.2 RESEARCH METHODOLOGY 

 Overall the project is following the flow chart with the beginning of received 

and clarification of title from the supervisor. Literature review starts from finding 

journals that related to the project as references to study. After that, the HRSG daily 

checklist from UTP GDC (APPENDIX 3-1) is acquired. The date chosen is on 25
th

 

July 2013. The data includes steam line pressure (kPa), steam flowrate (ton/hour) and 

boiler steam pressure (bar). The schematic diagram of HRSG comprising evaporator 

and economizer is created based on the operation of UTP GDC.as shown below. 

 

FIGURE 3.2: The Schematic Diagram of HRSG 

(Based on UTP GDC HRSG) 
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 3.2.1 BLOCK DIAGRAM ENERGY MODELS 

 Block diagram energy models are develop based on the principle of First Law 

of Thermodynamics, mass and energy models. Based on the principle developed thus 

far, detailed thermodynamic models for subcomponents of HRSG; evaporator and 

economizer are presented and illustrated.  

 

FIGURE 3.3: Evaporator Block Diagram Energy Model 

(Based on UTP GDC HRSG) 

Where 

Qin-eva = energy input from evaporator (kWh) 

Qout-eva = energy output from evaporator (kWh) 

Qlos-eva = energy loss from evaporator (kWh) 

 ̇   = flow rate of flue gas (kg/s) 

 ̇       = flow rate of steam (kg/s) 

        = enthalpy inlet from evaporator (kJ/kg) 

          = enthalpy outlet from evaporator (kJ/kg) 

        = enthalpy of steam (kJ/kg) 

     = enthalpy of saturated water (kJ/kg) 
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FIGURE 3.4: Economizer Block Diagram Energy Model 

(Based on UTP GDC HRSG) 

Where 

Qin-eva = energy input from economizer (kWh) 

Qin-eco = energy input from economizer (kWh) 

Qout-eco = energy output from economizer (kWh) 

Qlos-eco = energy loss from economizer (kWh) 

 ̇   = flow rate of flue gas (kg/s) 

 ̇    = flow rate of warm water (kg/s) 

        = enthalpy from the economizer (kJ/kg) 

     = enthalpy of saturated water (kJ/kg) 

    = enthalpy of feed water (kJ/kg)   
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3.2.2 THERMODYNAMICS ANALYSIS [FIRST LAW OF 

THERMODYNAMICS]  

 The thermodynamics models are developed based on mass and energy 

balances for each subcomponent of HRSG and when 100% of exhaust gas heat from 

the GT is emitted. Using mass and energy balances for each subcomponent of HRSG 

and for the exhaust heat, computations of energy contents and flow are possible. 

 For the case of evaporator, the energy balance in the evaporator is the energy 

supplied by the flue gas which must be equal to energy gained by steam and energy 

lost in the evaporator. The energy balance equations model with reference to 

evaporator energy model is formulated as follows; 

The energy supplied by hot gases at evaporator is denoted as: 

 ̇        ̇       ̇        ̇ (              )                      (2.7) 

While the energy gained by steam is shown below; 

 ̇         ̇       ̇    ̇     (          )         (2.8) 

 For economizer, energy supplied by hot gases at economizer is less than at 

evaporator due to energy lost. So, the energy supplied by hot gases at evaporator is 

subtracted with the energy lost at economizer. The energy balance equations model 

with reference to economizer energy model is formulated as follows; 

The energy supplied by hot gases at economizer is denoted as: 

 ̇       [ ̇        ̇ (       )]                                        (2.9) 

While the energy gained by warm water is shown below: 
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 ̇         ̇  (       )                                          (2.10) 

 The energy loss at evaporator is the difference between the energy supplied 

by hot gases at evaporator and the energy gained by steam. Therefore, balance 

equation model of the energy loss at evaporator with reference to evaporator energy 

model is formulated as follows; 

 ̇         ̇ (              )   ̇     (          )                       (2.11) 

Meanwhile, the energy lost in the economizer is the difference between the energy 

supplied by hot gases at economizer and the energy gained by warm water. Thus, 

balance equation model of the energy loss at economizer with reference to 

economizer energy mode is denoted as: 

 ̇         [ ̇        ̇ (       )]   ̇  (       )                    (2.12)  

 

 Then, the total energy loss by HRSG with reference to balance equation 

model is the sum of the energy loss at the evaporator and the energy loss at the 

economizer. Thus, the total energy loss by HRSG is then denoted as: 

 ̇         
̇

          ̇         

 (2.13)  

For analysis, the percentage of energy loss by HRSG is computed below;  

                              ( )  
                

             
     (2.14) 

 Lastly, when 100% of waste heat emitted to the environment, the energy 

supplied by exhaust heat is shown below; 

 ̇    ̇                                                                (2.15) 
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       These equations will be used in the spreadsheet to obtain energy contents and 

flow, CO2 analysis by HRSG, CO2 analysis by exhaust heat from GT and 

comparison of both CO2 analysis data.  

3.2.3 DEVELOPMENT OF SPREADSHEET TEMPLATE & CO2 ANALYSIS   

 The development of spreadsheet template cover the subcomponent of HRSG; 

evaporator and economizer as well as the exhaust heat generated by GT when 100% 

of waste heat emitted to the environment. THREE (3) assumptions are used to 

develop the spreadsheet template & analyze the CO2 emission by HRSG (66.6%).  

i. The flow rate of flue gas is kept constant as 19.22 kg/s 

ii. The inlet and outlet temperature of evaporator is set as 95
o
C and 

180
o
C respectively 

iii. The temperature of hot gases at economizer is set to 182
o
C and the 

specific heat capacity of the flue gas is 1.068 kJ/kg.
o
C. 

 For evaporator, the inlet and outlet enthalpy of evaporator is gained from the 

thermodynamics property tables [APPENDIX 4-1]. Setting the inlet and outlet 

temperature of evaporator as 95
o
C and 180

o
C respectively, the inlet enthalpy of 

evaporator is 2270.2kJ/kg and the outlet enthalpy of evaporator is 2015 kJ/kg.  The 

steam flow supplied to steam header (ṁsteam) in which the unit of ton/hour acquired 

from the HRSG daily checklist on 25
th

 July 2013 is first changed to kg/s. 

Furthermore, the steam and saturated water pressure from that HRSG daily checklist 

is used in the thermodynamics property tables [APPENDIX 4-2] to find the enthalpy 

of steam and saturated water. The pressure unit is altered from kPa to bar. Noted that 

1 bar =10
3
 kPa. Now, the energy supplied by hot gases at evaporator, the energy 

gained by steam and the energy lost in the evaporator is calculated and recorded in 

the spreadsheet.  

 The warm water flow (ṁww) in which the unit of ton/hour picked up from the 

HRSG daily checklist on 25
th

 July 2013 is changed to kg/s. Likewise, the 

temperature of warm water from that HRSG daily checklist is used in the 
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thermodynamics property tables [TABLE A-2] to find the enthalpy of warm water. 

Now, the energy supplied by hot gases (Qin) at the economizer, the energy gained by 

warm water (Qout-eco) and the energy lost in the economizer is calculated and 

developed in the spreadsheet. 

 CO2 analysis is started when the total energy loss and the amount of CO2 

emission by HRSG (66.6%) and the energy supplied by hot gases and the amount of 

CO2 emission from GT (100%) are acquired. The total energy loss by HRSG is 

formulated in Equation (2.13) while energy supplied by hot gases from GT is in 

Equation (2.15).  

 To analyze the amount of CO2 emission, the total energy loss by HRSG and 

the energy supplied by hot gases from GT which are in kWh are then converted to 

the amount of CO2 emission. The amount of CO2 emission is termed in kg of CO2. 

The conversion is made by using the CO2 emission factor as reported by R.Kannan et 

al [27], which is 0.474 kg/kWh for gas fired combined cycle.  

The amount of CO2 emission can be summarized as below; 

             [   ]                      [     
  

   
]  (2.16) 

 Finally, the CO2 released to the environment by HRSG and the amount of 

CO2 released from GT is compared. The contribution of the amount of CO2 emission 

by HRSG is compared in terms of percentage with the amount of CO2 emission by 

exhaust heat from GT. Comparison is done in graphical form.  

The percentage of the amount of CO2 emission by HRSG (%) is shown below; 

 
                                  

(                                         )
      (2.17) 
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TABLE 3-1: Evaporator Spreadsheet 

EVAPORATOR 

TIME 
GAS 

FLOW,ṁg 
ENTHALPY 

INLET, hev,in 

ENTHALPY 
OUTLET, 
hev,out 

STEAM 
FLOW, 

ṁsteam 

ENTHALPY 
STEAM,hsteam 

ENTHALPY 
SATURATED 

WATER 

ENERGY 
SUPPLIED 
BY HOT 

GASES, Qin 

ENERGY 
GAINED BY 

STEAM,Qout 

ENERGY 
LOST, Qlos 

8:00 19.22 2270.2 2015 1.1222 2770.4 736.314 4904.944 2282.651 2622.293 

9:00 19.22 2270.2 2015 1.2583 2770.3 736.314 4904.944 2559.365 2345.579 

10:00 19.22 2270.2 2015 1.2417 2770.3 736.314 4904.944 2525.600 2379.344 

11:00 19.22 2270.2 2015 1.25 2770.3 736.314 4904.944 2542.483 2362.462 

12:00 19.22 2270.2 2015 1.25 2770.3 736.314 4904.944 2542.483 2362.462 

13:00 19.22 2270.2 2015 1.2528 2770.3 736.314 4904.944 2548.178 2356.766 

14:00 19.22 2270.2 2015 1.25 2770.3 736.314 4904.944 2542.483 2362.462 

15:00 19.22 2270.2 2015 1.2583 2770.3 736.314 4904.944 2559.365 2345.579 

16:00 19.22 2270.2 2015 1.2472 2770.3 736.314 4904.944 2536.787 2368.157 

17:00 19.22 2270.2 2015 1.25 2770.2 736.097 4904.944 2542.629 2362.315 

18:00 19.22 2270.2 2015 1.2417 2770.3 736.097 4904.944 2525.870 2379.074 

19:00 19.22 2270.2 2015 1.2611 2770.3 736.314 4904.944 2565.060 2339.884 

20:00 19.22 2270.2 2015 1.256 2770.3 736.097 4904.944 2554.959 2349.985 
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TABLE 3-2 Economizer Spreadsheet 

TIME 

ECONOMIZER 

GAS 
FLOW,

ṁg 

SPECIFI
C HEAT 
CAPACI
TY ,fg 

TEMPE
RATUR
E FLUE 

GAS 

ENERGY 
LOST BY 

FLUE GAS 

WARM 
WATER 
FLOW, 
ṁww 

ENTHALPY 
SATURATED 

WATER 

TEMPERAT
URE WARM 

WATER 

ENTHALPY 
WARM 
WATER 

ENERGY 
SUPPLIED BY 
HOT GASES, 

Qin 

ENERGY 
GAINED BY 

WARM 
WATER, 

Qout-eco 

ENERGY 
LOST, Qlos 

8:00 19.22 1.068 182 3735.9067 1.2 736.314 90.1 376.92 1169.0373 431.2728 737.76448 

9:00 19.22 1.068 182 3735.9067 1.325 736.314 83.6 350 1169.0373 511.86605 657.17123 

10:00 19.22 1.068 182 3735.9067 1.3944 736.314 86.3 361.3574 1169.0373 522.83948 646.1978 

11:00 19.22 1.068 182 3735.9067 1.3305 736.314 87 364.296 1169.0373 494.96995 674.06733 

12:00 19.22 1.068 182 3735.9067 1.4361 736.314 87.2 365.1356 1169.0373 533.0493 635.98798 

13:00 19.22 1.068 182 3735.9067 1.3944 736.314 86.9 363.8762 1169.0373 519.32727 649.71001 

14:00 19.22 1.068 182 3735.9067 1.4056 736.314 87.2 365.1356 1169.0373 521.72836 647.30892 

15:00 19.22 1.068 182 3735.9067 1.3278 736.314 87.7 367.2346 1169.0373 490.06363 678.97365 

16:00 19.22 1.068 182 3735.9067 1.3278 736.314 84.3 352.9614 1169.0373 509.01558 660.0217 

17:00 19.22 1.068 182 3735.9067 1.2667 736.097 86.4 361.7772 1169.0373 474.15089 694.88639 

18:00 19.22 1.068 182 3735.9067 1.3278 736.097 86.6 362.6168 1169.0373 495.90701 673.13027 

19:00 19.22 1.068 182 3735.9067 1.3361 736.314 86.8 363.4564 1169.0373 498.17504 670.86224 

20:00 19.22 1.068 182 3735.9067 1.3361 736.097 86.8 363.4564 1169.0373 497.88511 671.15217 
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TABLE 3-3: The Energy Supplied By Hot Gases from GT Spreadsheet 

TIME 
GAS 

FLOW,ṁg 
EXHAUST GAS 

TEMPERATURE,Tfg 

SPECIFIC 
HEAT 

CAPACITY, 
Cpg 

THE 
ENERGY 

SUPPLIED 
BY HOT 
GASES, 

Qex 

8:00 19.22 448 1.135 9775.052 

9:00 19.22 434 1.129 9418.198 

10:00 19.22 427 1.126 9241.014 

11:00 19.22 422 1.124 9113.34 

12:00 19.22 430 1.127 9316.849 

13:00 19.22 425 1.125 9189.889 

14:00 19.22 432 1.128 9367.49 

15:00 19.22 433 1.129 9392.836 

16:00 19.22 434 1.129 9418.198 

17:00 19.22 426 1.126 9215.443 

18:00 19.22 423 1.124 9138.838 

19:00 19.22 448 1.135 9775.052 

20:00 19.22 459 1.140 10057.76 
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3.3 Key Milestones 

 Each of the activities is considered a milestone, in a sense that the first activity is 

finished before being able to continue to the next.  

TABLE 3-4: Key Milestones  

Activities (FYP1) Week 

Confirmation of project supervisor 1 

Confirmation of research title 2 

Completion of first stage of literature study 4 & 5 

Completion of extended research proposal submission 6 

Completion of second stage literature review 7 

Outlining detailed methodology and project activities 8 

Activities (FYP2) Week 

Completion of data acquisition  2 

Formulation of Equation & Energy Models Development  5 

Configuring Spreadsheet template 9 

Configuring results of energy analysis 10 

CO2 Evaluation 12 
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3.4 Gantt Charts 

Study Plan for Final Year Project (FYP1) 

Action / Event 
Number of Weeks 

1 2 3 4 5 6 7 

    M
ID

         S
E

M
E

S
T

E
R

    B
R

E
A

K
 

8 9 10 11 12 13 14 

Initial Studies and Title Selection  
 

             1 FYP registration                             

2 Title selection on FYP1                             

3 Study on HRSG and its subsystem                             

Preparation on completing extended proposal 

and proposal defense 

    
 

         5 Submission of extended proposal                             

6 Study methodology for project in detailed                             

7 Study on  governing equations 

related to HRSG 
                            

8 Proposal defense for FYP1                             

Details of study and final report for FYP1 

        
 

     9 Study on basic concepts and definitions  
                            

10 Outlining the steps in result and 

discussion 
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Study Plans for Final Year Project (FYP2) 

11 Submission of interim report               

No Task / Activities 
Weeks 

1  2  3  4  5  6  7  

M
ID

 S
E

M
E

S
T

E
R

 B
R

E
A

K
 

8  9  10  11  12  13  14  

Project Work Continues  

 

             

1 Data Acquisition        
       

2  
Formulate equation, energy models and 

developed into spreadsheet  

       

       

3  
Analyze data and provide graphical 

illustration  

              

4 Analyze result, discussion, and modification                

5 Progress report submission       ●        

 Project finalization 
      

 

       

6  Review spreadsheet template               

7 
Review result and data obtain. Modification 

if necessary   

              

8 CO2 Evaluation                

9  Submission of Draft Report            ●     
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10  Submission of Dissertation             ●    

11  Submission of Technical Paper              ●   

12 Oral Presentation              ●   

13 
Submission of Project Dissertation (hard 

Bound)  

             ●  
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3.5 Software and Tools 

 Microsoft Office Word & Excel 2007 is used in order to draw the schematic 

diagram of HRSG, develop block diagram energy models, thermodynamics analysis 

as well as the development of spreadsheet template. Data and mathematical equation 

is developed and used in this software to compute the energy contents and flows at 

HRSG and the exhaust heat from GT for CO2 evaluation.   
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CHAPTER 4: RESULTS AND DISCUSSION  

 Graph of the amount of heat loss & CO2 released to the environment for 

subcomponents of HRSG; evaporator & economizer and for the exhaust heat from 

GT on 25th July 2013 will be provided. Before that, the amount of heat loss & CO2 

released to the environment by HRSG and exhaust heat are computed. Comparison 

of the amount of heat loss & CO2 released to the environment for subcomponents of 

HRSG; evaporator & economizer and energy supplied by the exhaust heat and the 

CO2 released from GT are done and illustrated in graphical form.  

4.1 THE ENERGY CONTENT AND FLOW AT HRSG  

4.1.1 The Energy of Flue Gas Supplied To HRSG  

FIGURE 4.1: The Energy of Flue Gas Supplied to HRSG Spreadsheet 

TIME 

EVAPORATOR ECONOMIZER HRSG 

ENERGY 
SUPPLIED BY 
HOT GASES, 

Qin 

ENERGY 
SUPPLIED BY 
HOT GASES, 

Qin 

ENERGY 
IN, Qin 

8:00 4904.94 1169.04 6073.98 

9:00 4904.94 1169.04 6073.98 

10:00 4904.94 1169.04 6073.98 

11:00 4904.94 1169.04 6073.98 

12:00 4904.94 1169.04 6073.98 

13:00 4904.94 1169.04 6073.98 

14:00 4904.94 1169.04 6073.98 

15:00 4904.94 1169.04 6073.98 

16:00 4904.94 1169.04 6073.98 

17:00 4904.94 1169.04 6073.98 

18:00 4904.94 1169.04 6073.98 

19:00 4904.94 1169.04 6073.98 

20:00 4904.94 1169.04 6073.98 
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FIGURE 4.2: The Graph of the Energy of Flue Gas Supplied to HRSG against Time  

 From the spreadsheet above, for the case study of evaporator, the energy 

supplied by hot gases has a constant value of 4904.944 kWh. For the case study of 

economizer, the energy supplied by hot gases has a constant value of 1169.04 kWh. 

However, it is found that the energy supplied by hot gases at the economizer is lower 

than at the evaporator since there is energy lost by the flue gas from the economizer. 

From the graph above, the energy supplied by hot gases to HRSG has a constant 

value of 6073.98 kWh. The constant energy supplies by hot gases to HRSG are due 

to the energy equality from the flue gas as it enters the HRSG.  

4.1.2 The Energy of Steam Generated By HRSG 

 From the spreadsheet, for the case of the evaporator, the value of minimum 

energy gained by steam is 2282.65 kWh and it is happened at 8 am. Meanwhile, the 

maximum energy gained by steam is happened at 7 pm and the value is 2565.06 

kWh. For the case of the economizer, the value of maximum energy gained by warm 

water is 533.05 kWh and it is happened at 12 pm. Meanwhile, the minimum energy 

gained by warm water is happened at 8 am and the value is 431.27 kWh.  

0.00
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5000.00
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7000.00
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Time, h 
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TABLE 4-1: The Energy of Steam Generated by HRSG Spreadsheet 

TIME 

EVAPORATOR ECONOMIZER HRSG 

   

ENERGY 
GAINED BY 

STEAM,Qout-
eva 

ENERGY 
GAINED BY 

WARM 
WATER,Qout-

eco 

ENERGY 
OUT, 
Qout 

   8:00 2282.65 431.27 1851.38 
   9:00 2559.36 511.87 2047.50  

10:00 2525.60 522.84 2002.76 

11:00 2542.48 494.97 2047.51 

12:00 2542.48 533.05 2009.43 

13:00 2548.18 519.33 2028.85 
   14:00 2542.48 521.73 2020.75 
   15:00 2559.36 490.06 2069.30 
   16:00 2536.79 509.02 2027.77 
   17:00 2542.63 474.15 2068.48 
   18:00 2525.87 495.91 2029.96 
   19:00 2565.06 498.18 2066.88 
   20:00 2554.96 497.89 2057.07 
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FIGURE 4.3: The Graph of Energy of Steam Generated by HRSG against Time 

From the graph, the minimum energy of steam generated by HRSG is 1851.38 kWh 

and it is happened at 8 am. Meanwhile, the maximum energy of steam generated by 

HRSG is happened at 7 pm and the value is 2069.30 kWh.  

 Then, the energy of steam generated by HRSG is checked with the steam 

flow at the evaporator. 

TABLE 4-2: The Energy of Steam Generated by HRSG & Steam Flow at the 

Evaporator Spreadsheet 

 

At 8 am, the steam flow at the evaporator is the lowest and the steam flow at the 

evaporator is the highest at 12 pm.  This concludes that the energy of steam 

generated by HRSG depends on the steam flow at the evaporator. 

 The steam is generated by HRSG at the evaporator and the amount of steam 

generated to be supplied to steam header depends on the steam flow at evaporator. 
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As the steam flow increases, the amount of exhaust heat used to generate steam 

supplied to steam header increases.   

4.2 CO2 ANALYSIS BY HRSG (66.6%) 

4.2.1 The Percentage of the Total Energy Loss by HRSG 

TABLE 4-3: The Percentage of the Total Energy Loss by HRSG Spreadsheet 
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FIGURE 4.4: The Graph of the Percentage of Energy Loss by HRSG against Time 

 From the result above, the minimum percentage of energy loss by HRSG is 

49.37 % while the maximum percentage of energy loss by HRSG is 55.32 %. From 

these values, it is detected that the lowest percentage of energy loss by HRSG occur 

at 12 pm and the peak value of percentage of energy loss by HRSG is at 8 am. The 

percentage of the energy loss by HRSG is then checked with the steam flow at the 

evaporator and the warm water flow at the economizer. 
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TABLE 4-4: The Percentage of the Energy Loss by HRSG, the Steam Flow at the 

Evaporator & the Warm Water Flow at the Economizer 

 

 From the result above, it is noticed that the maximum percentage of energy 

loss by HRSG is the minimum flow of warm water at 8am and vice versa at 12pm. 

The minimum and maximum percentage of energy loss by HRSG is recorded as 

49.37% and 55.32% respectively while the minimum and maximum flow of warm 

water is recorded as 1.20 kg/s and 1.44 kg/s respectively. Thereby, the percentage of 

energy loss by HRSG is inversely proportional with flow of warm water in a time. 

4.2.2 The Total Energy Loss & Amount of CO2 Emission by HRSG  

 The total energy loss by HRSG is converted to the amount of CO2 emission 

by HRSG. The conversion is made by using the CO2 emission factor 0.474 kg/kWh. 

The total energy loss by HRSG and the amount of CO2 emission by HRSG are 

developed in the spreadsheet below;  
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TABLE 4-5: The Total Energy Loss by HRSG and Amount of CO2 Emission by 

HRSG Spreadsheet 

TIME 

EVAPORATOR ECONOMIZER HRSG 

CO2 
EMISSION 
FACTOR 

AMOUNT 
OF CO2 

EMISSION 

   

ENERGY 
LOSS, Qlos 

ENERGY 
LOSS, Qlos 

ENERGY 
LOSS, 
Qlos 

   8:00 2622.29 737.76448 3360.06 0.474 1592.67 

   9:00 2345.58 657.17123 3002.75 0.474 1423.30 

   10:00 2379.34 646.197797 3025.54 0.474 1434.11 
 

11:00 2362.46 674.067331 3036.53 0.474 1439.31 

12:00 2362.46 635.9879798 2998.45 0.474 1421.27 

13:00 2356.77 649.7100117 3006.48 0.474 1425.07 

14:00 2362.46 647.308921 3009.77 0.474 1426.63 

   15:00 2345.58 678.9736527 3024.55 0.474 1433.64 

   16:00 2368.16 660.0216977 3028.18 0.474 1435.36 

   17:00 2362.32 694.8863893 3057.20 0.474 1449.11 

   18:00 2379.07 673.1302704 3052.20 0.474 1446.74 

   19:00 2339.88 670.8622406 3010.75 0.474 1427.09 

   20:00 2349.99 671.1521743 3021.14 0.474 1432.02 

    

 

FIGURE 4.5: The Graph of Total Energy Loss and the Amount of CO2 Emission by 

HRSG against Time 

 From the result above, the minimum total energy loss and the amount of CO2 

emission by HRSG are 2998.45 kWh and 1421.27 kg while the maximum total 

energy loss and the amount of CO2 emission by HRSG are 3360.06 kWh and 
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1592.67 kg. From these values, it is detected that the lowest total energy loss and the 

amount of CO2 emission occur at 12 pm and the peak value of CO2 emission is at 8 

am. Then, the total energy loss and the amount of CO2 emission by HRSG is checked 

with the warm water flow at the economizer.  

TABLE 4-6: The Total Energy Loss, the Amount of CO2 Emission by HRSG & the 

Warm Water Flow at the Economizer 

TIME 

ECONOMIZER HRSG 

   
WARM 
WATER 

FLOW, ṁww 

ENERGY 
LOSS, 
Qlos 

AMOUNT 
OF CO2 

EMISSION 

   8:00 1.20 3360.057 1592.67 

   9:00 1.33 3002.751 1423.30 
   10:00 1.39 3025.541 1434.11  

11:00 1.33 3036.529 1439.31 

12:00 1.44 2998.449 1421.27 

13:00 1.39 3006.476 1425.07 

14:00 1.41 3009.77 1426.63 
   15:00 1.33 3024.553 1433.64 
   16:00 1.33 3028.178 1435.36 
   17:00 1.27 3057.202 1449.11 
   18:00 1.33 3052.204 1446.74 
   19:00 1.34 3010.746 1427.09 
   20:00 1.34 3021.137 1432.02 
    

 At 8 am, the warm water flow at the economizer is the lowest and the warm 

water flow at the economizer is the highest at 12 pm.  This concludes that the total 

energy loss and the amount of CO2 emission by HRSG depends on the warm water 

flow at the economizer.  

 The warm water absorbs heat from the flue gas to the incoming economizer. 

As the warm water flow increases, the amount of exhaust heat used to generate steam 

supplied to steam header increases. Thus, the remaining exhaust heat and the amount 

of CO2 emission emitted to the environment will decrease.   
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 The 66.6% exhaust heat supplied to HRSG is used to generate steam supplied 

to steam header. However, the percentage of exhaust heat used by HRSG to generate 

steam supplied to steam header is not constant throughout the time. Thus, the 

remaining exhaust heat unused by HRSG will be the energy loss by HRSG and 

47.4% of the total energy loss by HRSG will be emitted to the environment as carbon 

dioxide.   

4.3 CO2 ANALYSIS BY EXHAUST HEAT FROM GT (100%) 

4.3.1 The Energy Supplied By Exhaust Heat from GT (Qex) & Amount of CO2 

Emission by Exhaust Heat from GT   

TABLE 4-7: The Energy Supplied By Exhaust Heat from GT (Qex) & Amount of 

CO2 Emission by Exhaust Heat Spreadsheet 

TIME 

THE 
ENERGY 

SUPPLIED 
BY HOT 
GASES, 

Qex 

CO2 
EMISSION 
FACTOR 

AMOUNT 
OF CO2 

EMISSION, 
kg 

   8:00 9775.1 0.474 4633.37 

   9:00 9418.2 0.474 4464.23 

   10:00 9241.0 0.474 4380.24 
 

11:00 9113.3 0.474 4319.72 

12:00 9316.8 0.474 4416.19 

13:00 9189.9 0.474 4356.01 

14:00 9367.5 0.474 4440.19 

   15:00 9392.8 0.474 4452.20 

   16:00 9418.2 0.474 4464.23 

   17:00 9215.4 0.474 4368.12 

   18:00 9138.8 0.474 4331.81 

   19:00 9775.1 0.474 4633.37 

   20:00 10057.8 0.474 4767.38 

   



44 

  

 

 

 

FIGURE 4.6: The Graph of the Energy Supplied by Exhaust Heat and the Amount of 

CO2 Emission by Exhaust Heat from GT against Time  

 From the result above, the minimum energy supplied by exhaust heat and the 

amount of CO2 emission are 9113.3 kWh and 4319.72 kg while the maximum energy 

supplied by exhaust heat and the amount of CO2 emission are 10057.8 kWh and  

4767.38 kg. From these values, it is detected that the lowest energy supplied by 

exhaust heat and the amount of CO2 emission occur at 11 am and the peak value of 

energy supplied by exhaust heat and the amount of CO2 emission is at 8 pm. Then, 

the energy supplied by exhaust heat and the amount of CO2 emission is compared 

with the temperature of flue gas entering HRSG.  
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8:00 448 9775.1 4633.37 
   9:00 434 9418.2 4464.23 
 

10:00 427 9241.0 4380.24 

11:00 422 9113.3 4319.72 

12:00 430 9316.8 4416.19 

13:00 425 9189.9 4356.01 

14:00 432 9367.5 4440.19 
   15:00 433 9392.8 4452.20 
   16:00 434 9418.2 4464.23 
   17:00 426 9215.4 4368.12 
   18:00 423 9138.8 4331.81 
   19:00 448 9775.1 4633.37 
   20:00 459 10057.8 4767.38 
   

 From the result above, the minimum the energy supplied by exhaust heat and 

the amount of CO2 emission by exhaust heat from GT are 9113.3 kWh and 4319.72 

kg while the maximum the energy supplied by exhaust heat and the amount of CO2 

emission by  exhaust heat from GT are 10057.8 kWh and 4767.38 kg.  From these 

values, it is detected that the lowest the energy supplied by exhaust heat and the 

amount of CO2 emission occur at 11am and the peak value of the energy supplied by 

exhaust heat and CO2 emission is at 8 pm.   

 At 11 am, the temperature of flue gas entering HRSG is the lowest and the 

temperature of flue gas entering HRSG is the highest at 8 pm.  This concludes that 

energy supplied by exhaust heat and the amount of CO2 emission from GT depends 

on the temperature of flue gas entering HRSG. As the temperature of flue gas 

entering HRSG increases, the energy supplied by exhaust heat and the amount of 

CO2 emission from GT increases. As a conclusion, the temperature of flue gas 

entering HRSG is inversely proportional to energy supplied by exhaust heat and the 

amount of CO2 emission from GT. 

4.4 COMPARISON OF CO2 ANALYSIS BY HRSG (66.6%) & BY EXHAUST 

HEAT FROM GT (100%) 

 The contribution the amount of CO2 emission by HRSG is compared in terms 

of percentage with the amount of CO2 emission by exhaust heat from GT. The 
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percentage of the amount of CO2 emission by HRSG (%) is referred from Equation 

(2.18) and shown in the spreadsheet below; 

TABLE 4-9: The Percentage Contribution of the Amount of CO2 Emission by 

HRSG & the Amount of CO2 Emission by Exhaust Heat from GT Spreadsheet 

TIME 

% HRSG % GT 

  

AMOUNT 
OF CO2 

EMISSION, 
kg 

AMOUNT 
OF CO2 

EMISSION, 
kg 

  8:00 34.37 65.63 
  9:00 31.88 68.12 
 

10:00 32.74 67.26 

11:00 33.32 66.68 

12:00 32.18 67.82 

13:00 32.72 67.28 
  14:00 32.13 67.87 
  15:00 32.20 67.80 
  16:00 32.15 67.85 
  17:00 33.17 66.83 
  18:00 33.40 66.60 
  19:00 30.80 69.20 
  20:00 30.04 69.96 
   

TABLE 4-10: The Minimum, Maximum and Average Amount of CO2 Emission by 

HRSG (66.6%) and the Exhaust Heat from GT Spreadsheet 

  MIN MAX AVERAGE 

%HRSG 30.04 34.37 32.21 

% GT 65.63 69.96 67.79 
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FIGURE 4.7: The Column of the Minimum & Maximum Amount of CO2 Emission 

by HRSG & by the Exhaust Heat from GT (%) 

 

FIGURE 4.8: The Average Percentage of the Amount of CO2 Emission by HRSG 

(66.6%) and the Exhaust Heat from GT (100%) 

 From the result above, it is noticed that the maximum amount of CO2 

emission by HRSG is the minimum amount of CO2 emission by the exhaust heat 

from GT at 8am and vice versa at 8pm. The minimum and maximum amount of CO2 
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emission by HRSG is recorded as 30.04% and 34.37% respectively while the 

minimum and maximum amount of CO2 emission by the exhaust heat from GT is 

recorded as 65.63% and 69.96% respectively. Thereby, the amount of CO2 emission 

by HRSG is inversely proportional with the amount of CO2 emission by the exhaust 

heat from GT in a time. From Figure 4.8, HRSG contributes about 32.21% of CO2 

emission at UTP GDC in comparison to the amount of CO2 emission by the exhaust 

gas heat from GT which is 67.79% and it is noted that the average percentage 

difference between the amount of CO2 emission by HRSG and the amount of CO2 

emission by the exhaust heat from GT is approximately 32.21%.    
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CHAPTER 5: CONCLUSION AND RECOMMENDATION 

5.1 CONCLUSION 

 Overall, the objective of the project to analyze the CO2 emission at UTP 

GDC when 100% of exhaust gas heat from GT is emitted to the environment and 

when only 66.6% of exhaust heat captured by HRSG is emitted to the environment is 

completed. The CO2 analysis should be based on the thermodynamic principle of the 

First Law of Thermodynamics, mass and energy models. THREE (3) assumptions 

are used for CO2 analysis; i. The flow rate of flue gas is kept constant as 19.22 kg/s, 

ii. The inlet and outlet temperature of evaporator is set as 95
o
C and 180

o
C 

respectively and iii. The temperature of hot gases at economizer is set to 182
o
C. 

 Based on the result, the energy supplied by hot gases to HRSG is constant. 

The constant energy supplies by hot gases to HRSG are due to the energy equality 

from the flue gas as it enters the HRSG. The steam is generated by HRSG at the 

evaporator and the amount of steam generated by HRSG depends on the steam flow 

at evaporator. As the steam flow increases, the amount of exhaust heat used to 

generate steam supplied to steam header increases. This concludes that the energy of 

steam generated by HRSG depends on the steam flow at the evaporator. 

 For CO2 analysis by HRSG, the percentage of exhaust gas heat used by 

HRSG to generate steam is not constant throughout the time. Thus, the remaining 

exhaust heat unused by HRSG will be the total energy loss by HRSG and 47.4% of 

the total energy loss by HRSG will be emitted to the environment as carbon dioxide. 

Moreover, as the warm water flow increases, the amount of exhaust heat used by 

HRSG to generate steam increases before the steam is being supplied to steam 

header. Thus, the remaining exhaust heat and the amount of CO2 emission emitted to 

the environment will decrease. This concludes that the total energy loss and the 

amount of CO2 emission by HRSG are inversely proportional to the warm water flow 

at the economizer. 
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 Moreover, the CO2 analysis by exhaust heat from GT (100%) concludes that 

energy supplied by exhaust heat and the amount of CO2 emission from GT depends 

on the temperature of flue gas entering HRSG. As the temperature of flue gas 

entering HRSG increases, the energy supplied by exhaust heat and the amount of 

CO2 emission from GT increases. As a conclusion, the energy supplied by exhaust 

heat and the amount of CO2 emission from GT are directly proportional to the 

temperature of flue gas entering HRSG.  

 Finally, the amount of CO2 emission by HRSG (66.6%) is compared in terms 

of percentage with the amount of CO2 emission by exhaust heat from GT (100%). By 

comparing these values, it is noted that the amount of CO2 emission by HRSG is 

inversely proportional with the amount of CO2 emission by the exhaust heat from GT 

because at 8am, the maximum amount of CO2 emission by HRSG is the minimum 

amount of CO2 emission by the exhaust heat from GT. Moreover, it is noted that the 

amount of CO2 emission by HRSG is less than when 100% of exhaust heat is emitted 

to the environment by approximately 35.59%. 

5.2 RECOMMENDATION 

 There are several recommendations to be made regarding this project. 

Recommendations are not meant to be used to change this project wholly, but to 

allow improvements in certain aspects and to put some factors into considerations for 

the evaluation of CO2 emission of HRSG. 

 One of the recommendations for future plan is to develop an exergy analysis 

for the HRSG system. The presentation of thermodynamics and energy model 

initiated in the previous work should becontinued with emphasis on the exergy 

concept. Exergy should be defined and represent in terms of four components: 

physical, kinetic, potential and chemical energy. Additionally, the underlying 

concept of environment should be discussed in exergy analysis. 

 Another recommendation for future plan is to study the impact of the amount 

of CO2 emission with the global warming potential (GWP). The global warming 
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potential (GWP) is relative measure of how much heat of a greenhouse gas traps in 

the atmosphere. It should compares the heat trapped by a certain mass of the gas in 

question to the amount of heat trapped by a similar mass of carbon dioxide. A GWP 

should be calculated over a specific time interval, commonly 20, 100 or 500 years. 

GWP is expressed as a factor of carbon dioxide (whose GWP is standardized to 1). 

For example, the 20 year GWP of methane is 72, which means that if the same mass 

of methane and carbon dioxide were introduced into the atmosphere, that methane 

will trap 72 times more heat than the carbon dioxide over the next 20 years.[33] 
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APPENDICES 

APPENDIX 3-1: HRSG Daily Checklist on 25
th

 July 2013 

 

 

 

 

 

APPENDIX 3-2 

Information from DCS Screen 
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