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- ABSTRACT

Reliability assessment of a working system is performed to identify the most likely
failures and time-to-failure so that appropriate actions can be planned to diminish the
effects of the failures. Traditional model of reliability assessment assumes every
working system would have two states which are the state during perfectly working
and the compiete failure state. However, systems that exhibit multi-state behavior
may have finite number of failure rate which are called multi-state system (MSS). The
MSS system wil degrade from a perfect working system to certain minor failure
states before it completely fail. Hence, new approach is needed to predict the
reliability of such system. This report contains the selected MSS analysis as the new
approach to assess the reliability of a MSS system and the findings about the selected
method which is Discrete-Time Markov Chain (DTMC) analysis. The data was taken
from UTP Gas District Cooling (GDC) production report focusmg on the performance
of a gas twbine in terms of kW. The performance data was clustered into some
performance states and the state fransition probabilties were estimated. From the
estimation, reliability function and distribution parameter were obtained to be used to
calculate the Mean Time Between Failure (MTBF) of the system. At the end of the
project, the reliability of the MSS that predicted using DTMC analysis was compared
to the reliability predicted using traditional method which was the exponential
distribution method. The analysis shows that DTMC analysis has better prediction
than the exponential distrbution method. Moreover, by expliting the state transition
probabilities estimation process, the change of operation demand as well as
Preventive Maintenance planning could be included in the analysis. Briefly, MSS
analysis gave better reliability prediction of the MSS and the behavior of the system
could be analyzed.
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CHAPTER 1

INTRODUCTION

1.1.  PROJECT BACKGROUND

Reliability is the probability of a system to perform its required function, performance
or demand without faikwe under stated operating condition for a stated period of time.
Reliability prediction of working systems is essential to assess the probability of the
faire thus appropriate maintenance actions can be planned to miticate the effects of
the failures.

In predicting reliability of working systems, traditional method assumes that the
systems only have two states which are perfectly working state and complete faiure
state. The changes in states may happen from the working state to failwe state and
from failure state to working state afler repar or maintenance. However, complex
systems may go through. a finte number of degradation states prior to complete
falhwe and it is known as multi-state system (MSS). Therefore, Multi-State System
Analysis is to be preferred in order to assess the reliability of MSS.

This project focuses on applying MSS method to analyze the reliability of
performance of a selected MSS which is UTP District Gas Cooling gas turbine.

1.2 PROBLEM STATEMENT

Traditional reliability model might not be applicable to predict MSS’s reliability.
Complex systems such as trbine and steam absorption chillers exhibit pulii-state
behavior and thus new approach is needed to predict performance reliabilty of a

VISS.



1.3 OBJECTIVE AND SCOPE OF STUDY

The objective of the project is to establish a model to assess the reliabilty of UTP Gas
District Cooling (GDC) Plant gas twbine using Discrete Time Markov Chain
(DTMC) approach and compare with the reliability prediction wusing traditional

method.

Scope of project covers the following:

[

The MSS system; UTP GDC gas turbine.

Performance data in term of kWh of MSS system from preduction report.
MATLAB to perform K-mean Cluster.

Discrete-Time Markov Chain (DTMC) analysis using Microsoft Excel

o

o



CHAPTER 2

LITERATURE REVIEVW / THEORY

2.1 WHAT IS RELIABILITY

Reliability is a broad term that focuses on the ability of a product to perform is
intended fimction. A practical definition of reliability is the probability that a piece of
equipment operating under specified conditions shall perform satisfactorily for a
given period of time. Mathematically speaking, assuming that an #tem is performing
its mtended function at time equals zero, reliability can be defined as the probability
that an item wil continue to perform its intended fimction without faikwe for a
specified period of time under stated conditions.

2.2 NEED FOR RELIABILITY

The reliability of engineering systems has become an important issue during their
design because of the increasing dependence of our day lves and schedules on the
satisfactory functioning of these systems [P.O Otasowie, S.O0 Omoruyi (2010)]. Some
examples of these systems are aircraff, trains, computers, awtomobiles, space
satellites, and nuclear power—generating reactors. Many of these systems have
become highly complex and sophisticated. For example, today a typical Boeing 747
jumbo airplane is made of approximately 4.5 million parts, including fasteners. Most
of these parts must finction normally for the aircraff to fly successfully. {P.O
Otasowie, S.0 Omoruyi (2010)].



2.3 RELIABILITY PREDICTION MODEL

In reliability prediction, models of the system have to be worked out. These models
may be graphical or mathematical A mathematical mode! is necessary in order to be
able to bring in data and use mathematical and statistical methods to estimate
reliability. To estimate the system relmbilty from a model, nput data is needed. The
data usually come from generic data sources and may also from the specific system.
When establishing the system model, we have to consider the type, amount and
quality of the available input data. [Marvin Rausand, Arljot Hyland (2004)]

Come

Figure 1 Reliability Function

Figure 1 shows reliability function of working systems vs time plot.

Or equivalently,

R(H) =1 —[ £ (u)du = fmf(u)du
“0 t

Where R(#) is the reliability function, f{u) is the probability density finction

Hence Rf?) is the probability that the system does not fail in the time interval {(0,¢] or
the probability that the system survives the time interval (0] and still finctioning at
time 7.



2.4 MULTI-STATE SYSTEM (MSS)

All technical system are designed to perform their intended tasks in a given
conditions. Some system can perform their tasks with various distinguished level of
efficiency usually referred to as performance rates. A system that can have a finite
number of performance rates s called a mubi-state system (MSS) [Anatoly
Lisnianski, Gregory Levitin (2003)]. There are many situations in which a system

should be considered to be a MSS;

1. Any system consisting of different unites that have a cumulative effect on
the entire system performance has to be considered as a MSS. Indeed, the
performance rate of such a system depends on the availability of its units, as
the different numbers of the available wnits can provide different levels of the
task performance.

2. The performance rate of elements composing system can also vary as a
result of their deterioration or partial fahwes, Flement failures can lkad to the
degradation of the entire MSS performance.

2.4.1 Multi-State System Analysis

Multi-state system (MSS) reliability analysis relates to systems for which one cannot
formulate an "all or nothing" type of falhwe criterion. Such systems are abk to
perform their task with partial performance (intensity of the task accomplishment).
Failwre of some system elments lead only to degradation of the system performance.
The methods of MSS reliability assessment are based on some approaches such as an
extension of Boolean models to the multi-valued case, the stochastic process and the

universal generating function approach. [Anatoly Lisnianski, Gregory Levitin (2003)]



2.4.2 Markov Chain

A Markov chain is a mathematical system that undergoes transitions ffom one state to
another (from a finte or countable number of possible states) in a chainlke manner. It
is a random process characterized as memoryless as the next state depends only on the
current state and not on the entire past. Figure 2 shows a Markov Model State-Space
Diagram for 3 working states and a failure states. Markov chains have many

applications as statistical models of realworld processes.

i X

<7 T T
) : (*)

N

Figure 2 Markov Model State-Space Diagram

2.43 Discrete-Time Markov Chain (DTMC)

A discrete time stochastic process {Xp, n=0, 1, 2, . . .} with discrete state space is a
Markov chain if i satisfies the Markov property.

PXa=in | Xo =i, X1 = i1, ..., Xn-1 = in-1) = P(Xg =i | X1 = dn-1)y

where i for altk = 0, 1, . . ., n are realized states of the stochastic process. [Taylor &
Karlin (1998)] In the other word, DTMC is a markov process with discrete parameter

T and discrete state space X(1) which i time-homogeneous,
2.4.3.1 Transition Probabilities

Transition probabilities is defined as probability to jump from state i/ to state 7. It is
assumed to be stationary; independent of time. A simple transition probability matrix
is written as P = (py)

For two states Markov Chain, the transition probability is writtten as

1-p »p
p:[
qg 1-g¢



2.4.4 Stochastic Process

Stochastic or random process is, essentially, a set of random variables, where the
variables are ordered in a given sequence. For example, the daily maximum
temperatures at a weather station form a sequence of random variables, and this
ordered sequence can be considered as a stochastic process. More formally, the
sequence of random variables in a process can be denoted by X(#) where ¢ is the index
of the process which usually represents time. [Anatoly Lismanski, Gregory Levitin
(2003)]

2.4.5 K-Mean Cluster Algorithm and Silhouette Plot
2451 K-Mean Cluster Algorithm

K means clustering algorithm was developed by J. MacQueen (1967) and then by J.
A. Hartigan and M. A, Wong around 1975. K-means is one of the simplest
unsupervised learning algorithms that solve the welkknown clustering problem. To
simplify, k-means clustering is an algorithm to classify or to group your objects based
on attrbutes into K number of group where K is positive integer number. The
grouping is done by minimizing the sum of squares of distances between data and the
corresponding cluster centroid. Thus the purpose of K-mean clustering s to classify
the data. '

The basic step of k-means clustering is by determining the number of cluster K and
assume the centroid or center of these clusters as shown in Figure 3. Any random
objects can be taken as the initial centroids or the first K objects in sequence can also
serve as the initial centroids. Then the K means algorithm will do the three steps

below until convergence or stable where no object move groups.

1. Determine the centroid coordinate
2. Determine the distance of each object to the centroids
3. Group the object based on minimum distance



Figure 3 Steps in K means Algorithm

To get an idea of how well-separated the resulting clusters are, a silhouette plot can be
made using the cluster indices output from K means.

2452 Silhouette Plot

Sihouette refers to a method of interpretation and validation of clusters of data. The
technique provides a brief graphical representation of how well each object lies within
its cluster [Peter J. Rousseeuw (1986)]. The sihouette plot displays a measure of how
close each point in one clster i to the points in the neighboring clusters. This
measure ranges from +1, indicating points that are very dstant from neighboring
clusters, through 0, indicating points that are not distinctly in one cluster or another, to
-1, indicating points that are probably assigned to the wrong cluster. [R. Lleti M.C.
Ortiz, L.A. Sarabia, M.S. Sanchez (2004)]. Figure 4 below shows the examplk of
Silhouette Plot.

Figure 4 Example of Silhouette Plot



A more quantitative way to compare the solutions is to look at the average silhouette
value for the cases where the highest value indicates the best amount of chster, %.

2.5 TRADITIONAL MODEL
2.5.1 Exponential Distribution Method

The exponential distrbution i a commonly used distribution in reliability
engineering. Mathematically, it is a fairly simple distrbution, which many times lead
to its use in mappropriate situations. It is, i fact, a special case of the Weibull
distribution where #= 1. The exponential distribution is used to model the behavior of
units that have a constant failure rate (or units that do not degrade with time or wear
out). fwww.weibull.com]

The exponential distribution i often used to model the failure time of manufactured
tems in production. For example, if X denotes the time to failwre of a light bulb of a
particular make, with exponential distribution, then P(X>x) represent the survival of
the light bub. The larger the average rate of fatre, the bigper will be the faiure
time. One of the most mnportant properties of the exponential distribution is the

memorylkss property.

£
k=1
o

Figure 5 Example of Exponentiai Distribution Curve

Figore 5 shows the standard exponential distribution curve with parameter
distribution, A.



Figwe 6 and Figure 7 show the plot of exponential probability density finction with
formla pdf =e™™ and the plot of exponential cumulative density function with
formula cdf =1 —e ™.

Figure 6 Examplk of Exponential Probability Density Function

Eaponertial GOF

Figure 7 Exampl of Exponential Cumulative Density Function

2.5.2 Maximum Likelihood Estimation

The principle of maximum lkelihood estimation (MLE), origmally developed by
R.A. Fisher in the 1920s, states that the desired probability distribution is the one that
makes the observed data “most likely,” which means that one must seek the value of
the paramcter vector that maximizes the lkclhood fimction L{wly) The rcsulting
parameter vector, which is sought by searching the multi-dimensional parameter
space, is called the MLE estimate, and is denoted by wy,z = (Wy yigs-o» Wiemie)-
Briefy, maximum likethood estimation is a method to seek the probability
distribution that makes the observed data most fikely.

10



2.6 PREVENTIVE MAINTENANCE

Preventive maintenance (PM) is a schedule of planned maintenance actions aimed at
the prevention of breakdowms. and failwes. The primary goal of preventive
maintenance s to prevent the failure of equipment before it actually occurs. It is
desicned to preserve and enhance equipment reliability by replacing worn
components before they actually faill Preventive maintenance activities inchide
equipment checks, partial or complete overhauls at specified periods, oil changes,
lubrication and so on. In addition, workers can record equipment deterioration so they
know to replace or repar worn parts before they cause system failure,

[www.weibullcom]
2.6.2 Minimum and Perfect PM
Miimum PM is done to restore the system to the next acceptable better working

state. Contrary to minimum PM, perfect PM is done to restore the system to the

perfectly working state which also known as good as new.

11



CHAPTER 3

METHODOLOGY / PROJECT WORK

3.1 METHODOLOGY

3.1.1 Data Collection

Data was taken from UTP Gas District Cooling (GDC) operation report. For the
purpose of the project, daily operation report for gas turbine in terms of kWh was only
collected. The data from the turbine output performance was collected in two different
sets of resolutions which were day and howr resolttions that were required for the

analysis stage.
3.1.2 Identify Performance States

Both sets of the data were analyzed using the same processes. To divide the data into
some performance states, the collected performances data of the MSS were
partitioned into several clusters. K-means cluster analysis was used to acquire the best

amount of clusters,

The analysis was done using MATLAB. Sihouette plots were made for all the vales
of clusters tested, &k from k = 3, 4, 5, 6, and 7. The selection of the best value of & was

done by analyzing the silhouette plot and sihouette average value for each k value.
After the best & valie was obtained, the performances data were chstered into %

amount of groups that indexed the MSS performance states.
3.1.3 Tramsition Probability Estimation

After the performance data were clustered accordingly into & amount of performance
states, the transition from one state to another was calculated using Microsoft Excel
functions. Prior to the project assumptions and later analysis stage, several sets of
state transitions were calculated. Next, the state transition probability was estimated.

12



3.1.4 DTMC Governing Equation

The state transition probability is written in transition probability matrix as follow;

[Pn Py, Py . . P

Py Py Py . . Py

P = P31 P32 P33 = P3n
Poi Pz Ppz o o Pyl

And the state probability matrix for day » is equal to S™ = P™1, 5™ where SO is the
probability matrix at perfect state.
And Y §™ = R(t), the reliability of the system for day .

3.1.5 Solving Equation and Reliability Prediction

By using the state probability, S™ state probability graph was plotted for each
respective £ states.

Finally, the reliability, R(t} for the MSS was determined and the reliability graph was
plotted. From the value of parameter, A that obtained from the graph, Mean Time
Between Failure (MTBF) was cakulated,

3.1.6 Comparing MSS Method to the Traditional Method

The reliability of the MSS was cakulated using the traditional method. From both sets
of resolutions, times to failure (TTF) were cakulated to be used as input in Weibulb-+
sofiware to find the reliability of the MSS. The results were represented in graphs and

the MTBF were calculated,

The MSS reliability caloulated using traditional method was compared to the
reliability calculated using MSS method.

13



3.2 METHODOLOGY FLOW CHART

Data Collection

Identify
Performance State

Transition Probability
Estimation

DTMC Governing
Equation

Solving Equation &
Reliability Prediction

DTMC Governing Equation

Probability for each state

Reliability function

Figure 8 Project Flow Chart
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3.3 PROJECT TIME LINE
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CHAPTER 4

RESULT AND DISCUSSION

4.1 UTP GDC GAS TURBINE PRODUCTION REPORT

Data for analysis for this project was taken from the UTP GDC Production Report in

Year 2009,

'DAILY LOGGING DATA(AVG) FOR ELECTRICITY.

o3 pea 2o [ for (e o | €9 100 e {0y | B ] D [0 fER

4558 2906 085

129 | e0x 0
887 4338 170 3852 327 1206
574 | a4 453 3250 384 2
§58 | 453 287 342 3453 )
T 21 3087 3436 o
L. 2180 BT 3445 89 | e 49 4 0
30 | el | 34eg 53 | 2884 3503 9
2300 | T4 3@ | ¢ o i 2ees | 0 3 ¢

Figure 10 Piece of UTP GDC Operation Report
Figure 10 above shows piece of Day Production Report for January 2009 for 2 gas
turbines (GTGA and GTGB) in terms of kW. Data that were collected prior to this
project were the output performance of GTGA gas twrbine during working days
| (Monday — Friday) and collected into two sets of data resolution;
1. Day resohtion — The reading was taken at 0800 on every working day by
assuming that the output represents the MSS performance for the whole day.

o

Howr resoltion — The reading was taken from 0800 untdl 1700 for every

working day.

16



Both of the resolutions were analyzed under an assumption that the data recorded in
the production reports were the real output from the turbine and not manually set to
certain desired outputs.

The same processes were done for both of the resolutions to get the MSS’s reliability
respectively.

4.2 RELIABILITY ANALYSIS IN DAY RESOLUTION

4.2.1 Identify Performance State

To apply MSS method, the performances of gas turbine GTGA were segregated into
certain number of performance states. K-mean cluster analyss was performed using
MATLAB and the number of suitable cluster could be determined.

4.2.1.1 K-Mean Cluster Analysis and Silhouvette Plot

Figure 11 shows command window in MATLAB to find the value of suitable & where
the value tested & equal to 3. The & values were tested ranged from k=3.4,5,..8.

T X
>> idx3 = kmeans (X, 3, 'distance', ‘city'):
>> [#ilh3,h] = silhouette(X,idx3, ‘city'):
>> set(get(gca, 'Children'), 'Facelolor’,[.8 .8 1]) E
>> xlabel('Silhouette Value')
>> ylabel ('Cluster’)
>> idx3 = kmeans(X,3, ‘'dist',’‘city’, 'display’',6'iter'):
iter phase num sum
1 1 560 Ra78.74
2 1 15 2465.27
3 1 6 2463.8
4 % 2 2463.44
5 L 2 2463.14
L 1 1 2463.11
7 2 0 2463.11

F 7 iterations, total sum of distances = 2463.11 5
‘ m [

Figure 11 Command Window in MATLAB for k=3
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To get an idea of how well-separated the resulting clusters, sihouette plots were
drawn using the cluster indices output from k-means values for each k value.
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Figure 12 Silhouette plot for each value of k, (a) k=3, (b) k=4, (c) k=5, and (d) k=6
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The average silhouette value for each amount of £ was cakulated and shown in Tabk
L.

Table 1 Average Silhouette Values for every value of k for Day Resolution Data

“kvalue | Average Silhouette Value -

3 0.7112

4 0.7080

5 0.7543

6 0.7266
0.76 0.7543 T
0.75 R / \
0.74 ~ o
0.73 -

=== Avg Silhouette

0.72 S o R Value
0.7112
0-7 1 .9_—=—~ T SUS—— e e e s i s

0.708
0.7 S
0.69 N
0.68 : ‘ . S
3 4 5 6

Figure 13 Comparison of Average Sithouette Values for every value of k for Day Resolution
Data

Based on Figure 13, the average sihouette valie for k=5 shows the highest vahe.
Thus, the data for day resolution & divided into 5 performance states. A scatter plot
was drawn to get a better view of how well the data were distributed as well as to
determine the minimum value of each state as shown in Figure 14,

19



T v

ummrﬂmmmm
Dade h A50B8L-Q DE =0 mme &0
500} e
000} E
35
-
2500
2000
1500} .
1000}
Eols
o ] ] ® W W 0] ]

Figure 14 Scatter Plot for Day Resolution Data

From the plot, the minimum values for each state are 1462, 2643, 3089, and 3459
respectively.

4.2.2 Estimate State Transition Probability

After the performance data were chustered accordingly mto & amount of performance
states, the transition from one state to another was cakulated using Microsoft Excel

For day resolttion, the performance data was clustered into 5 performance states as
shown in Table 2 below.

Table 2 Performance States with Minimum Values for Day Resolution

State Minimum Values
0

1462

2643

3089

3459

— Wl o

After grouping the data into respective performance states, the number of each state
was counted as well as the state transitions as shown i Tabk 3.
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Table 3 State Transition for Day Resolution Data

1 2643 7

2 3391 3 7-3
3 3324 3 3-3
4 3852 1 3-1
5 3719 1 1-1
6 3885 1 1-1
7 0 0 1-0
8 0 0 0-0
9 2703 5 0-5
10 3336 3 5-3
11 3304 3 3-3
12 3351 3 3-3
13 1624 7 3-7
14 3274 3 7-3
15 3294 3 3-3
16 2908 5 3-5
17 0 0 3-0

From the state transition count, the state transition probabilities were calculated and

shown i Table 4 as follows;

Table 4 State Transition Probabilities for Day Resolution Data

1-0 2 0.030 5-0 2 0.100
1-1 39 0.582 5-1 8 0.400
13 20 0.299 5-3 5 0.250
1-5 4 0.060 5-5 5 0.250
1-7 2 0.030 5-7 0 0.000
3-0 1 0.016 7-0 0 0.000
3-1 16 0.262 7-1 2 0.400
3-3 33 0.541 7-3 3 0.600
3-5 9 0.148 7-5 0 0.000
3-7 2 0.033 7-7 0 0.000
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4.2.3 Reliability Prediction Using MSS Method

The state transition probabilities are written in state transition probability, P where

-p11 P12 -p13
P21 Pzz P23
P = P.31 Ps_z P33
P, P, P

ml

m3 -

in

For day resolution data, the state transition probabilities matrix is equal to

1.000
0.030
P= 0.016
0.100
0.000

0.000
0.582
0.262
0.400
0.400

0.000
0.299
0.541
0.250

G.600

0.000
0.060
0.148
0.250
0.000

To find the state probability matrix, S™ for day »,

§" = pn-1 8§71 Table 5 shows the calculated state probability matrix for 5 working

days.

Table § State Transition Probability Matrix for 5 Days for Day Resolution Data

0.000
0.030
0.033
0.000
6.000

'Day/state] S0 | 81| s3 | 85 1 §7
0 0.000 | 1.000 | 0.000 | 0.000 | 0.000
1 0.030 | 0.582 | 0.299 | 0.060 | 0.03
2 0.058 | 0.453 | 0.368 | 0.094 | 0.027
3 0.087 | 0409 | 0.374 | 0.105 | 0.026
4 0.116 | 0.388 | 0.366 | 0.106 | 0.024
5 0.144 | 0.374 | 0.355 | 0.104 | 0.024

The reliability of the MSS system, R, for day » is equal to

> st =R, )

And the reliability of the MSS for day » is cakulated and shown in Table 6 below
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Table 6 Reliability of GTGA Gas Turbine for 5 Days for Day Resolution

Day/State| . SO | S1 S3 - S5 S7 | Reliability
0 0.000 | 1.000 | 0.000 | 0.000 | 0.000 1.000
1 0.030 | 0.582 | 0.29%9 | 0.060 | 0.030 0.970
2 0.058 | 0.453 | 0.368 [ 0.094 [ 0.027 0.942
3 0.087 | 0409 | 0.374 | 0.105 | 0.026 0.913
4 0.116 | 0.388 | 0366 | 0.106 | 0.024 0.884
3 0.144 | 0374 | 0355 | 0.104 | 0.024 0.856

The reliability of the GTGA gas tubine is plotted in a graph as shown in Figwe 15.

Reliability vs Time

o 20 40 60 80 100 120 140 160 180 200

Figure 15 Reliability vs Time for Day Resolution Data

From the graph equation in Figure 15, the valie of parameter distribution, A is equal
to 0.032. Using DTMC analysis, the Reliability finction for GTGA gas turbine using
day resolution data i equal to R(t) = e~9032¢,
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4.2.4 Reliability Prediction Using Traditional Method

The selected traditional method was the exponential distribution. The data of different
resolutions were analyzed to cakulate the time to failure (TTF) and cumulative time
to failure (CTTF) of each set of data. The TTF for day resolution data was cakulated
and shown in Tabke 7 and graph as follows;

Table 7 TTF and CTTF for Day Resolution Data

T. | TIF | criF
1 8 8
2 19 27
3 45 72
4 77 | 149

The TTF was used as input data in Weibulh—+ to find the reliability of the system and
the result s shown in graph below;
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Figure 16 Reliability vs Time Plot for Day Resolution Da

From Figure 16, the value of 1 for the exponential distrbution s 0.021. By the
equation R(t) = e™¥, and the valee of 1 acquired from Weibulh+, the reliability of
GTGA gas turbine was cakulated. By exponential distribution, reliability finction for
the MSS using day resoltion & R(t) = e~ %021t
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4.3 RELIABILITY ANALYSIS IN HOUR RESOLUTION

4.3.1 Identify Performance State

4.3.1.1 K-Mean Cluster Analysis and Silhouette Plot

o | o v et o S— ——

Figure 17 Silhouette plot for each value of k, (a) k=3, (b) k=4, (c) k=5, (d) k=6, (e) k=7 and (f)
k=8
25



Figure 17 shows the silhouette plots for £=3, 4, 5, 6 and 7 for cakulation in hour
resolution. The Average Sithouette Values for every vale of £ was cakulated and
shown in Tabk 8.

Table 8 Average Sithouette Values for every value of k for Hour Resolution Data

. kvale

Average Silhouette Value

3

0.6976

0.7617

- 0.7110

0.7149

0.7402

Qo 3| On|n] b

0.7134

0.68

0.75 -

D

0.73 |-

0.72 [ TP [R——

0.7 -

0.69 |-0-

L T e ———

== Avg Silhouette
Value

Figure 18 Average Silhouette Values for every value of & for Hour Resolution Data

The average sihouette valne for each amount of k& was cakulated and shown in the
figure above. Based on Figure 18, the average sihouvette value for k=7 shows the
highest valie. Thus, the data for hour resohtion was divided into 7 performance
states, A scatter plot was drawn to get a better view of how well the data were

distributed as well as to determine the minimum value of each state as shown in

Figure 19.
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Figure 19 Scatter Plot for Hour Resolution Data

Based on Figure 19, the minimum valies for each state are 881, 2285, 2832, 3233,
3484 and 3711 respectively.

After clustering the data info suitable performance states, the state transitions were
cakulated.
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432 KEstimate State Transition Probability

For hour resolution, the data were clustered in 7 performance states as shown in Table

O bpfr\ur
- A VY .

Table 9 Performance States with Minimum Values for Hour Resolution

0 0

11 881
9 2285
7 2832
3 3233
3 3484
1 3711

Table 10 below shows the day data that were clustered into performance states and the
state transitions.

Table 10 State Transition for Hour Resolution Data

it
1 2643 9
2 3081 7 9-7
3 3089 7 7-7
4 3084 7 7-7
3 3089 7 7-7
6 3085 7 7-7
7 3079 7 7-7
8 3086 7 7-7
9 3085 7 7-7
10 1206 11 7-11
11 3391 5 11-5
12 3536 3 5-3
13 3533 3 3-3
14 3541 3 3-3
15 3749 1 3-1
16 3751 1 1-1
17 3747 1 1-1
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The state transitions were calculated and the state transition probabilities could be

estimated as shown in Tablke 11 below,

Table 11 State Transition Probabilities for Hour Resolution Data

10 2 | 0.008 5-0 2 | 0.005 9-0 1 | 0034
11 | 197 | o081 5-1 2 | 0005 9-1 1 | 0034
13 29 | 0121 53 63 | 0.173 9-3 2 | 0.069
15 & | 0025 55 | 260 | 0.714 9-5 6 | 0207
17 6 | 0025 5-7 28 | 0077 9-7 6 | 0207
1-9 0 | 0.000 5-9 3 | 0008 9-9 13 | 0448
111 0 | 0.000 511 | 6 | 0016 | 911 0 | 0000
3.0 0 0.000 7-0 1 0.006 11-0 1 0.091
31 | 37 | 0091 71 2 | o012 111 0 | 0000
33 | 207 ] 0730 7-3 14 | 0085 113 0 | 0.00
35 49 | 0.120 75 38 | 0232 115 4. | 0.364
37 22 | 0.054 77 97 | 0.591 117 4 | 0364
39 2 | 0005 79 7 | 0.043 119 2 | 0.182
311 0 | 0000 | 711 5 | 0030 | 1111 | 0 | 0.000

4.3.3 Reliability Prediction Using MSS

The state transition probabilities matrix for hour resolution data is equal to

1.000 0.000 0.000 0.000 0.000 0.000 0.000
0.008 0.821 0121 0.025 0.025 0.000 0.060
0.000 0.081 0.730 0.120 0.054 0.005 0.000 {
P= 0.005 0.005 0.173 0.714 0,077 0.008 0.016
0.006 C.012 G.085 0.232 0.581 G.043 0.G30
0.034 0.034 0.069 0.207 0.207 0.448 0.000
0.091 0.000 0.000 0.364 0.364 0.182 0.000
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Since §" = pn1 gn-1
Thus, the statc probability matrix, S™ for day #» was calkeulatcd and tabulated in Tabk
12 below.

Table 12 State Transition Probability Matrix for 10 Days for Hour Resolution Data

0 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | ©0.000
1 0.008 | 0.821 | 0.121 | 0.025 | 0.025 | 0.000 | 0.00
2 0.015 | 0.685 | 0.194 | 0.059 | 0.044 | 0.002 | 0.001
3 0.022 | 0581 | 0.238 | 0.093 [ 0.059 | 0.004 | 0.002
4 0.028 | 0500 | 0.266 | 0.125 | 0.071 [ 0.007 | 0.003

5 0.034 | 0436 | 0282 | 0.153 | 0.081 | 0.009 | 0.004
6 0.040 | 0386 | 0293 | 0.176 | 0.089 | 0.011 | 0.005
7 0.045 | 0346 | 0.299 | 0.196 | 0.096 | 0.013 | 0.006
8 0.051 { 0.314 | 0303 | 0.211 | 0.101 | 0.014 | 0.006

9 | 0.056 | 0.288 | 0305 | 0.224 | 0.105 | 0.015 | 0.007

10 | 0061 | 0.267 | 0306 | 0.234 | 0.109 | 0.016 | 0.007

The reliability of the MSS system, R, for day » is equal to
2 Q" = R,(t), thus, reliability for every working day was calculated and the results
shown in Table 13. '

Table 13 Reliability of GTGA Gas Turbine for 10 Days for Hour Resolution

0 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000
1 0.008 0.821 0.121 0.025 0.025 6.000 0.000 0.892
2 0.015 0.685 0.194 0.059 0.044 0.002 0.001 0.985
3 0.022 0.581 0.238 0.093 0.059 0.004- 0.002 0.978
4 0.028 0.500 0.266 0.125 0.071 0.007 0.003 0.972
5 0.034 0.436 0.282 0.153 0.081 0.008 0.004 0.966
6 0.040 0.386 0.293 0.176 0.089 0.011 0.005 0.960
7 0,045 0.346 0.299 0.196 0.096 0.013 0.006 0.955
8 0.051 0.314 0.303 0.211 0.101 0.014 0.006 0.945
9 0.056 0.288 0305 | 0.224 0.105 0.015 0.007 0.944
10 0.061 0.267 0.306 0.234 0.109 0.016 0.007 0.939

The refiabilty of the GTGA gas turbine for hour resolution data was plotted In a
graph in Figure 20.
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Reliability vs Time
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Figure 20 Reliability vs Time for Hour Resolution Data

Using DTMC analysis, the Reliability finction for GTGA gas turbine uwsing hour
resoltion data i equal to R(t) = e~%006t
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4.3.4 Reliability Prediction Using Traditional Method

For hour resolution, the TTF cakulated are shown in Tabke 14.

Table 14 TTF and CTTF for Hour Resolution Data

Ta TTF CTTF
1 80 80
2 190 270
3 386 656
4 243 899
5 280 1179

Using Weibulh+, exponential dstribution for hour resolution data was obtained as
follows;

Relabity vs Teme Plot

Wabatslity, A0 1401}

Based on Figure 21, the valve of 1 for the exponential distribution 5 0.0034 and the
reliability of the system was cakulated. By exponential distribution, relability
function for the MSS using day resolution & R(t) = e~ 00034¢,
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4.4 MSS METHOD AND TRADITIONAL METHOD COMPARISON
The reliability of GTGA gas turbine that was calculated using DTMC was compared
to the reliabilty cakulated using exponential distribution. The comparsons for both

resolutions are shown in Figure 22 and Figure 23.

44.1 Reliability Graphs and Parameter Distributions Comparison

« DTMC

= Exponential
Distribution

0 50 100 150 200

Figure 22 Reliability vs Time for Day Resolution Data

Figure 22 shows a graph of Reliability vs Time for day resolution data which displays
reliability cakulated using DTMC shows faster decrease than the reliability calkulated
using exponential distribution. The parameter distribution, . for DTMC & higher than
the exponential distribution.

Equally, the Reliability vs Time for hour resolution data that displyed in Figure 23
shows the same pattern where DTMC results with faster decrease than the exponential
distribution. The parameter distribution, A for DTMC & less by half of the vale for
the exponential distribution.
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Figure 23 Reliability vs Time for Hour Resolution Data

4.4.2 Mean Time Between Failure (MTBF) Comparison
Another comparison i by cakulating the MTBF of the results from both methods and
compared against the actual data. From equation, MTBF = 1/4, the comparisons are

shown in Table 15 and Tabk 16.

Table 15 Comparison between DTMC and Exponential Distribution for Day Resolution Data

# Failure | Act DTMC | Difference| EXP | Difference
1 8 31 23 50 42
2 27 63 36 100 73
3 12 94 22 150 78

Table 16 Comparison between DTMC and Exponential Distribution for Hour Resolution

Data
# Failure | Actual | DTMC | Difference | EXP | Difference
1 80 167 87 333 253
2 190 333 143 667 477
3 386 500 114 1000 614
4 243 667 424 1333 1090
5 280 833 553 1667 1387
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The differences are better viewed in Figure 24 and Figure 25 below.
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Figure 24 Comparison of Actual Failure Data to Predicted Failure Data For Hour Resolution
Data
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Figure 25 Comparison of Actual Failure Data to Predicted Failure Data For Day Resolution
Data

For both set of resolutions in Figure 24 and Figure 25, MTBF predicted using DTMC
have valwes that are closer to the actual failre time than the MTBF predicted using

exponential ditribution. From the above graphs, MTBF predicted using DTMC fit the
actual failure data better than the exponential distribution.
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4.5 DIFFERENT RESOLUTION COMPARISON

The two set of different resolutions are compared in graph below.

0.9

o8 * R(t) DTMC Hr Res |

0.7 * R(t) Exponential

0.6 Hr Res

kn R(t) DTMC Day
Res

0.4 R(t) Exp Day Res

—Log. (R(t) DTMC
Day Res)

0 200 400 600 800 1000 1200 1400

Figure 26 Reliability vs Time for Day and Hour Resolution Comparison

Based on Figure 26, both resolutions have bigger valie of distribution parameter, A
for cakulation using DTMC than using exponential distribution. However, calculation
using day resolution has faster decrease than the cakulation using hour resolution.

4.5.1 MTBF Comparison

For better analysss, the comparson was made based on the MTBF vale for each
resolution compared to the actual TTF data. The differences were converted into hour
and day respectively for better comparison. The difference of MTBF value for day
resolution i as shown in Table 17.

Table 17 MTBF difference to TFF for Day Resolution

# Failure | Actual | DTMC | Difference | Diff in Hrs
1 8 31 23 558
2 27 63 36 852
3 72 94 22 522
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Meanwhile, the difference of MTBF comparison for hour resolution gives results as
shown in Table 18.

Table 18 MTBF difference to TFF for Hour Resolution

# Failure | Actual | DTMC | Diff in Hrs | Diff in Days

1 80 167 87 4

2 190 333 143 6

3 386 500 114 5

4 243 667 424 18

5 280 833 553 23
1000
900 -
800
700 -
600 === Actual Day
500 - == DTMC day
400 « Actual Hr
— =i DTMC day2
200
100 -
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Figure 27 Comparison of DTMC and Actual Failure between Day and Hour Resolution
From Figure 27, by comparing the day and hour resolutions, difference between
MTBF and the TTF for hour resolution s lower than the difference for day resolution

data. Thus, it & safe to say that hour resoltion has better result than the day
resolution in predicting the reliability of MSS using DTMC.
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4.6 ADVANTAGES OF RELIABILITY PREDICTION USING DTMC

The advantage of predicting reliability of MSS using MSS method is that the system

an be partitioned into several states of performance where the working system will
degrade from one system to another system before i completely fail. Plus, the failure
state could be stated according to operating demand.

4.6.1 Predict Reliability of MSS with Variation of Demands,

In traditional method, output at valie 0 only will be marked as falre state or
complete faibre. However, n MSS method, valie of output that marks the
unacceptable performance could be specified according to the operation demand. As
the demand could be varied accordingly, the reliability of the MSS could still be

estimated.

For instance, GTGA gas turbine for hour resolution analysis that has 7 performance
states as show in Tabk 19 below i set to have operation demand at 2500kW. The
output that falls under state 9 and 11 will be grouped under absorbing group that equal
to state 0 {filure state).

Table 19 GTGA Gas Turbine State Performance for Hour Resolution

11 881
9 2285
7 2832
5 3233
3 3484
1 3711

By applying DTMC, the reliability of GTGA gas turbine with new operating demand

could be calculated.
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The data was partitioned into 5 performance states and i shown in Table 20 below.

Table 20 New State Performance of GTGA Gas Turbine

State | Minimum Value
0 0
7 2500
5 3233
3 3484
1 3711

And the state probability fransition matrix become

0.008333 0.820833 0.120833 0.025 0.025

P= 0 0.090909 0.72973 0.120393 0.058968
0.03022 0.005495 0.173077 0.714286 0.076923

0.04918 0.016393 0.076503 0.229508 0.628415

The reliability of GTGA gas turbines at 2500kW demand was cakulated and graph
Reliability vs Time was plotted.

12

+ DTMC at demand Y = e-006x

2500kW

* Exponential y = e0.003x
Distribution
DTMC y = e0:018x

0 500 1000 1500

Figure 28 Reliability vs Time Graph of GTGA with New Demand

Figure 28 shows the reliability curve for new demand decreases faster than the
reliabilty of the MSS without demand. The parameter distribution, 1 & bigger than
the parameter distribution for reliability analyss without demand. Therefore, DTMC
analysis could be used to find MSS reliability with various operating demands.
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4.6.2 MSS Method Enable Preventive Maintenance (PM) Planning

The abiity of MSS method to access reliabilty of a working system that has multi
state of performance enablks Preventive Maintenance Planning to be drafied. MSS
method inclides calkulation of state transition probabilties i accessing reliability of
a MSS. To perform PM plamning, the state transition could be altered conferring to the
type of PM which is minimal PM or perfect PM.

4.6.2.1 Reliability Prediction for Minimal PM

When a system degrades imto certain state, minimal PM is done to mmprove the
performance of the system up until the next state of performance state.

13 Qas Qs.7 79 0o,

Figure 29 State Degradation of a 7 states MSS with minimal PM

Figure 29 shows state degradation of a MSS with o indicates the degradation rate
from one state to another and p indicates the repair rate. Note that the state moves
from one state, £ up to another state, k+1 since minimal PM is applied.

In the state transition probabilities estimation, the repair rate fiom one state to another
state more than next state & comsidered equal to 0. Thus, the state transition
probability matrix is

1 0 0 0 0 0 0

0.008333 0.820833 0.120833 0.025 0.025 0 0

0 0090908 0.72973 (.120393 0.054054 0.004914 0

P= 0.005525 0 0174033 0.718232 0.077348 0.008287 0.016575
0.006757 0 0 0.256757 0.655405 0.047297 0.033784

0.05 0 0 0 0.3 0.65 0

0.333333 0 0 0 0 0.666667 0
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4.6.2.2 Reliability Prediction for Perfect PM

When perfect PM was performed, the performance of the system will return to the
perfect working state which s state 1 as ilsstrated in Figare 30 below.

Figure 30 State Degradation of a 7 States MSS with Perfect PM

As only the repair rate, u for all degraded state to state 1 are considered, the state
transition probability matrix is wriften as

1 0 0 0 0 0 0

0.008333 0.820833 0.120833 0.025 0.025 0 0

0 0090902 0.72973 0.120393 0.054054 0.004914 0

p= 0.006645 0.006645 0 0.863787 0.093023 0.009967 0.019934
0.008929 0.017857 0 0 0866071 0.0625 0.044643

0.066667 0.066667 0 0 0 0.866567 0

1 0 0 0 0 0 0

Figure 31 shows the comparison of Reliability vs Time plot for Minimal PM and
Perfect PM. Refiability plot for system that applied with perfect PM has faster
decrease and bigger value of parameter distribution, 1. List of parameter distribution
is as shown in Tabk 21,

Table 21 Parameter Distribution Comparison

‘Method. . " | Distribution Parameter, A
DTMC with Minimal+Perfect PM 0.006
DTMC with Minimal PM 0.032
DTMC with Perfect PM 0.011
Exponential Distribution 0.003

" Using the parameter distribution, 1, from Table 21, reliability fimction, R} and
MTBF of the MSS could be cakulated.
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Figure 31 Reliability vs Plot Comparison Graph for Minimal and Perfect PM

Based on Figure 31, it was proven that DTMC Analysis could predict the reliability of
MSS. Moreover, the reliability of the system could ako be predicted if the system was
rnnning at certain operating demand. DTMC Analysis also allowed PM Plamming to
be drafled since the reliability of the system with PM planning ako could be predicted
using DTMC Analysk. |
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CHAPTER 35

CONCLUSION AND RECOMMENDATION

5.1 CONCLUSION

Reliability of a MSS which is UTP GTGA gas turbine was calulated using DTMC
approach and was compared to the reliability prediction using traditional method.
From the data analysis, the calculated MTBF for MSS analysis gave results that were
closer prediction to the actual TTF data than the traditional method. From the
analysis, it could be concluded that hour resolution gave better prediction than the day
resolution data since the prediction resulted from hour resolution data was closer to
the actual TTF.

Since the MSS method included estimation of state transition probabilities, the
performance data was partitioned into several performance states. By exploiting the
performance states separation, reliability prediction of a MSS could be done for
different operation demand by changing the mininum valie of a particular
performance states. Thus, the system behavior could be estimated. Other than that,
PM plming coukl be drafted for the system once its behavior was learned. By
applying DTMC method, reliability of a MSS could be predicted when minimal PM
or perfect PM was included in the PM planning.

5.2 RECOMMENDATION

The application of Markov Chain in MSS method can be viewed from many
directions and from lots of angle. Further studies are needed to explore the advantages
of using MSS method in reliability prediction. Life data that used in this project
analysis could be longer than 8 months to get better result and prediction. Therefore,
more time and commitment is needed prior to that target.

From the results, it is proven that, when the resolution of data is increased, the

closeness to the actual failure is increase. The resolution can be enlarged more and

43



more and the analysis will be instead of DTMC, will be a CTMC analysis. CTMC
analysis is believed to predict better prediction but is more complicated to be analyzed
in short period of time,

A template or sofiware could be built based on the finding from the analysis in order
to predict the MSS reliabilty in the fiture. Last but not least, the DTMC analysis used
in this project should be tested to other MSS life data ie. KLIA GDC turbine system.
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