TABLE OF CONTENTS

ACKNOWLEDGEMENT		i	
ABSTRACT			ii
CHAPTER 1:	INTRODUCTION		1
1.1	Proble	m Statement	1
1.2	Object	ive	2
1.3	Scope	of study	2
CHAPTER 2:	LITE	RATURE REVIEW AND/OR THEORY	
2.1	Hybrid	l Electric Vehicle (HEV)	3
2.2	In-Wh	eel Motor (IWM)	4
2.3	Existi	ng Hybrid Electric Vehicle in the Market	5
2.4	Torqu	e Vectoring	5
CHAPTER 3:	METI	HODOLOGY/PROJECT WORK	
3.1	Resear	rch Methodology	6
3.2	Tools	and Equipment	7
3.3	Projec	t milestone and Gantt chart	8
CHAPTER 4:	HEV	MODELING	
4.1	Matlal	o SimMechanic	11
4.2	ADAN	AS/Car	15
	4.2.1	Hard Point Gathering Data	16
	4.2.2	Front Macpherson Suspension	17
	4.2.3	Rear Twist Beam Suspension	18
	4.2.4	Body Chassis	19
	4.2.5	Internal Combustion Engine	20
	4.2.6	Steering Rack	21
	4.2.7	Additional Torque	22
4.3	Modif	ication of Rear Suspension	23
	4.3.1	Design Analysis Boundary Condition	24

CHAPTER 5	:	RESULT AND DISCUSSION	25
CHAPTER 6:		CONCLUSION AND RECOMMENDATION	
		FOR FUTURE WORK	
	6.1	Conclusion	27
	6.2	Future Work	28
PEFERENCES		29	
KETEKEI(C.	20		2)
APPANDICH	ES		
Appendix A:	Von M	Aisses Stress Case 1, Pot Hole Impact and	
	Von M	Aisses Stress Case 2, Cornering	i
Appendix B:	Von M	Aisses Stress Case 3, Acceleration and	
	Von M	Aisses Stress Case 4, Frontal Impact	ii
Appendix C:	Von N	Aisses Stress Case 5, Side Impact and	

Von Misses Stress Case 6, Torque Impact

iii

LIST OF FIGURES

Figure 1.1:	Torque Vectoring	1
Figure 2.1:	Split-parallel hybrid electric vehicle configuration	3
Figure 2.2:	In-Wheel Motor Technology	4
Figure 2.3:	Torque Vectoring Flow Diagram	5
Figure 3.1:	Research Methodology Flowchart	6
Figure 4.1:	Vehicle Modelling in Matlab Simulink	11
Figure 4.2:	Cornering of Bicycle Model	12
Figure 4.3:	Steer Angle & Ackerman Angle	12
Figure 4.4:	Tire Cornering Force Properties	13
Figure 4.5:	Cornering Equation	13
Figure 4.6:	Cornering Stiffness	13
Figure 4.7:	Steer Angle	14
Figure 4.8:	Steer Characteristic	14
Figure 4.9:	Front Suspension Macpherson Strut	17
Figure 4.10:	Front Suspension Hard Point	17
Figure 4.11:	Rear Twist Beam Suspension	18
Figure 4.12:	Rear Suspension Hard Point	18
Figure 4.13:	Body Chassis Subsystem	19
Figure 4.14:	Body Chassis Mass and Location	19
Figure 4.15:	Engine Subsystem	20
Figure 4.16:	Engine Hard Point	20
Figure 4.17:	Steering Rack and Pinion	21
Figure 4.18:	Steering Hard Point	21
Figure 4.19:	Additional Torque at Rear Wheel	22
Figure 4.20:	Full Vehicle Assembly	22
Figure 4.21:	Existing Rear Suspension with Axle	23
Figure 4.22:	In-Wheel Motor and Assembly Design Rear Axle with IW	23
Figure 5.1:	Constant Radius Cornering in Adams/Car	25
Figure 5.2:	Constant Radius Cornering in Matlab Simulink	26

LIST OF TABLES

Table 3.1:	Project Gantt Chart	8
Table 3.2:	Key Milestone	9
Table 4.1:	Daihatsu K3-VE Engine Specification	15
Table 4.2:	Boundary Condition Parameter	24