Development of Fluid Properties Correlation For Malaysian Crude

Nazrin Bin Ramli 12776

PETROLEUM ENGINEERING UNIVERSITI TEKNOLOGI PETRONAS MAY 2013

Development of Fluid Properties Correlations for Malaysian Crude

by

Nazrin Bin Ramli 12776

Dissertation submitted in partial fulfillment of the requirement for the Bachelor of Engineering (Hons) (Petroleum Engineering)

MAY 2013

Universiti Teknologi PETRONAS Bandar Seri Iskandar 31750 Tronoh Perak Darul Ridzuan

CERTIFICATION OF APPROVAL

Development of Fluid Properties Correlation for Malaysian Crude

by

Nazrin Bin Ramli 12776

A project dissertation submitted to the Petroleum Engineering Programme Universiti Teknologi PETRONAS In partial fulfillment of requirement for the BACHELOR OF ENGINEERING (HONS) (PETROLEUM ENGINEERING)

Approved by,

(Dr. Aliyu Adebayo Sulaimon)

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

May 2013

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the original work is my own except as specified in the references and acknowledgements, and that the original work contained herein have not been undertaken or done by unspecified sources or persons.

(NAZRIN BIN RAMLI)

ABSTRACT

Crude oil is a complex mixture consist of up to 200 or more different organics compounds and mostly there are hydrocarbon. Each type of crude oils from different field might have different combination and concentration of these compounds. The American Petroleum Institute (API) value of a particular crude is the measure of its properties in terms of specific gravity or density. Higher API value implies less denser crude and vice versa. Each field has its own formation and the composition within a field can be similar or be significantly different. Other than API, crude can be characterized based on other non-wanted elements like sulphur which is regulated and must be removed.

The purpose of this project is to develop fluid properties correlation for Malaysian crude. This project will be using a dataset of 93 of PVT data gather from experimental work from previous researchers. There are three characteristic that will be developed in this project, those are bubble point pressure, solution gas oil ratio and oil formation volume factor. The model will be tested using experimental data to show the efficiency of the developed model and comparison will be done to compare new model more suitable for Malaysian crude rather than peviou researcher had done

This project will be used MATLAB software and Microsoft Excel through the method of Group Method of Data Handling (GMDH). GMDH is a family of inductive algorithms for computer-based mathematical modeling of multi-parametric datasets that features fully automatic structural and parametric optimization of models. The dataset were established and analyzed using summed contributions from each variable.

Based on the result, this model give better estimation by having lower average relative error compare to the previous one. The model describes and predicts and considered better than other published models for Malaysian crude with minimum error. The model can be used to predict the crude properties as the way out instead of using experimental work. The data are useful as an alternative for experimental works in order to predict the characteristics and can provide guidelines for future modification.

ACKNOWLEDGEMENTS

In the Name of Allah, The Most Merciful and Compassionate, praise to Allah, He is the Almighty. Eternal blessings and peace upon the Glory of the Universe, our Beloved Prophet Muhammad (S.A.W), his family and companions. First and foremost, thank to the Almighty for the strength given to carry out the Final Year Project II under the title of Development of Fluid Properties Correlation for Malaysian Crude in May 2013 Semester. A deep gratitude goes for the author's supportive families, who throughout the way provide her with motivation in completing the project.

Special regards with deepest appreciation dedicated to **Dr Aliyu Adebayo Sulaimon**, the author's supervisor for his continuous support and help throughout the project consultation. The supervision and support that he gave truly help the progression and smoothness of the author in completing this project. This acknowledgement is also extended to all other lecturers, lab executives, lab technicians and graduate assistants who continuously show their cooperation to the author.

The author's gratitude also goes to the course mates in exchanging ideas and providing guidance in unfamiliar experimental procedures and usage of laboratories equipments. Last but notleast, the author would like to show her heartfelt gratitude to all those who has directly or indirectly involved in this project, for their tremendous support and motivation during the progress and completion of this project.

TABLE OF CONTENTS

CERTIFICATION OF APPROVALii
CERTIFICATION OF ORIGINALITYiii
ABSTRACTiv
ACKNOWLEDGEMENTSv
LIST OF FIGURESviii
LIST OF TABLESviii
NOMENCLATURESviii
CHAPTER 1: INTRODUCTION1
1.1 Background of Study1
1.2 Problem Statement
1.3 Objectives
1.4 Scope of Study
CHAPTER 2: LITERATURE REVIEW AND THEORY 4
2.1 Standing Correlation
2.2 Lasater Correlation5
2.3 Vasquez and Beggs Correlation7
2.4 Glaso Correlation
2.5 Al- Marhoun Correlation10
2.6 Petrosky Correlation 11
2.7 Kartoatmodjo And Schmidt Correlations12

CHAPTER 3: METHODOLOGY/PROJECT WORK					
3.1 Data Collection					
3.2 Data Preparation					
3.3 Group Method of Data Handling Method17					
3.4 Statistical Error and Analysis19					
3.4.1 Average Relative Error					
3.4.2 Average Absolute Deviation					
3.4.3 Correlation Coefficient and Coefficient of					
Determination					
3.5 Gantt Chart and Key Milestone21					
CHAPTER 4: RESULT AND DISCUSSION					
4.1 Correlation for Solution Gas Oil Ratio					
4.1.1 Statistical Error Analysis					
4.1.2 Final Form of correlation					
4.2 Correlation for Oil Formation Volume Factor27					
4.2.1 Statistical Error Analysis					
4.2.2 Final Form of correlation					
4.3 Correlation for Bubble Point Pressure					
4.3.1 Statistical Error Analysis					
4.3.2 Final Form of correlation					
CHAPTER 5: CONCLUSION AND RECOMMENDATION					
REFERENCES					

LIST OF FIGURES

Figure 1:Microsoft Excel	. 17
Figure 2:Output displayed by MATLAB	. 19
Figure 3:Basic Step in GMDH Model Generation	. 20
Figure 4:Gantt Chart and Key Milestone for FYP 2	. 22
Figure 6:Crossplot of Solution Gas Oil Ratio	. 26
Figure 7:Crossplot of Oil Formation Volume factor	. 31
Figure 8:Crossplot of Bubble Point Pressure	. 35

LIST OF TABLES

Table 1:PVT Data of Malaysian Crude	15
Table 2:Solution Gas Oil Ratio Result	24
Table 3:Statistical Accuracy of Solution Gas Oil Ratio	27
Table 4: Oil Formation Volume Factor Result	28
Table 5:Statistical accuracy of Oil Formation Volume Factor	31
Table 6:Bubble Point Pressure Result	32
Table 7:Statistical Analysis of Bubble Point Pressure	35

NOMENCLATURE

Symbol	Definition
Bo	Oil formation volume factor
P_b	Bubble Point Pressure
R _s	Solution Gas Oil Ratio
$\gamma_{ m gas}$	Gas Gravity
γ_{oil}	Oil Gravity
M_{o}	Effective oil Molecular Weight
$\gamma_{ m g}$	Separator Gas Mole Fraction
Т	Reservoir Temperature

CHAPTER 1

INTRODUCTION

1.1 Background of Studies

Engineers typically require accurate estimation of crude oil properties in order to predict oil reserves, recovery efficiency, and production capacity of a reservoir. These properties will be used in analysis of well test and production data, as well as for production engineering activities such as hydrocarbon system optimization and flow measurement.

The best source of oil property data is laboratory PVT (pressure-volumetemperature) analysis of a reservoir fluid sample. However, in the absence of measured properties of reservoir fluids, these properties should be predicted by using suitable correlation.

Many correlations had been developed for estimating crude oil PVT properties in the past 50 years. Most of these correlations had been developed based on particular field and it might be applicable for certain field or might not applicable when we use it for another field. This work will be focusing on develop black oil correlation for Malaysian Crude. Previously, we use Standing's Correlation (M.1. Omar, A.C. Todd, Heriot-Watt U, 1993)

Another important result of this work is a new bubble point pressure, (P_b) solution gas oil ratio, (R_s) and formation volume factor, (B_o) and these correlation will be developed by using reservoir temperature, gas gravity, oil gravity, bubble point pressure, viscosity and formation volume factor. All parameters mentions might be used all or only certain of it.I am developing correlations by using Group Method of Data Handling Method (GMDH).This method will be described in detail in the next section.

Most of the correlations have been developed in the petroleum literature to estimate those characteristics of crude. However, some correlation were derived based on particular field depend on the researcher who developed it.Practicing engineer have used this empirical correlation of laboratory data. The efficiency of this correlation lies in the understanding of their development and the knowledge of their limitation. The most widely used black oil correlations are discussed in literature review.

1.2 Problem Statement

In reservoir engineering calculations, fluid property data are one of the important input data sets. These data can be obtained either by conducting a laboratory study on reservoir fluids or estimated from empirical correlations. Eventhough laboratory results will be giving better accuracy but the results are totally depend on the accuracy of the fluid samples, especially when the reservoir has depleted below the bubble point pressure. When the objective of experimental data cannot be achieved or there is a need to cross check the laboratory results, derivation from PVT correlations empirically can be used to estimate the reservoir fluid properties.

However, for Malaysian crude the crude correlations are yet to be developed and none of the existing correlations give good estimation of fluid properties for Malaysian crudes (Omar, and Todd, 1993). The PVT data are used in the calculation of reserves, material balance calculations and design of the surface operation facilities. The most commonly used correlation for Malaysian crude to determine the bubble point pressure, solution gas oil ratio and oil formation volume factor are those from Standing's correlation (Omar,1993). Since the correlating factors for these correlations are obtained empirically based on the field that had been used to develop the correlation, it is difficult to achieve higher accuracy as expected when these correlations are applied to crude oil systems in Malaysia which have different physical and chemical properties than those of the developed correlation.

1.3 Objective

The objective of this project is to study the fluid properties correlation for Malaysian crude. There are also several objectives to be achieved in this study:

- i. To study the current correlation being used for Malaysian crude
- ii. To study the advantages and disadvantages or the current correlation that being used in the oil and gas industry.
- iii. To develop new and suitable correlation for Malaysian crude.
- iv. To ensure the new correlation gives good estimation of fluid properties by applying with the experimental data and compare both of the result.

1.4 Scope of the study

The scope of the study is to conduct research on the theory and the definition pf terms related to the study. In order to to know the current situation in this area, research will be done to see which correlation being used in industry. Lastly, a research to choose the right way to develop the method to finish this project also will be done.

CHAPTER 2

LITERATURE REVIEW AND THEORY

In this chapter, will present the popular black oil correlation developed during the period from 1947 to 1994. This section provides the necessity background perspective of the necessity for the development of the new correlation that will be present in Result and Discussion section later. This literature review considers work done by the following researchers: Standing, Vasquez & Beggs, Glaso, Al-Marhoun, Petrosky and Kartoatmodjo & Schmidt.

Although they presented correlating equation to estimates a variety of PVT properties, my work will be focusing on develop for estimating the bubble-point pressure, (P_b) , as well as estimating the oil formation volume factor, (B_o) and the solution gas-oil ratio, (R_s) correlations.

2.1 Standing Correlation

In 1947, Standing published correlation for estimating bubble-point pressure, (P_b) and oil formation volume factors (B_o) of gas saturated oils using field values of resevoir temperature, solution gas oil-oil-ratio at the bubble point, and the oil and gas gravities. Basically, Standing used 105 experimentally data points obtained from 22 different crude oil/naturals gas mixtures from California Fields. The Standing's correlation are:

Bubble-Point Pressure

$$p_{\delta p} = 18.2 \cdot \left(\left(\frac{R_s}{\gamma_g} \right)^{0.83} \cdot \frac{10^{0.0009\,r}}{10^{0.0125\,\gamma_g}} - 1.4 \right)$$
(2.1)

Solution Gas-Oil Ratio

$$R_{s} = \left(\left(\frac{p}{18.2} + 1.4 \right) \cdot \frac{10^{0.0125} \gamma_{p}}{10^{0.0009T}} \right)^{\frac{1}{0.03}} \cdot \gamma_{g}$$
(2.2)

Oil Formation Volume Factor

$$B_{o} = 0.972 + 1.47 \cdot 10^{-4} \left(R_{s} \left(\frac{\gamma_{g}}{\gamma_{o}} \right)^{0.5} + 1.25 \cdot T \right)^{1.175}$$
(2.3)

Standing used two-stage flash liberation tests to collect the experimental data and the values that obtained by him were solution gas-oil ratios, gas gravity, oil gravity and formation volume factor and then were used to develop his correlation. During the experiments,the gas released must be free of Nitrogen (N_2) and Hydrogen Sulfide (H_2S). However, a few samples did contain carbon dioxide (CO_2) in quantities less than 1 mole percent. In short, Standing's correlation should be considered valid only for black oil systems with minimum composition of any non-hydrocarbon components.

Standing just developed bubble point pressure and oil formation volume factor correlations. Solution gas oil ratio, (R_s) been developed through the rearrangement of bubble point pressure to get the correlation for solution gas oil ratio (Standing, 1947). Based on the Standing's report, average relative error (ARE) obtained by him was 4.8% and 1.17% for P_b and R_s (Standing, 1947). The range of data used by Standing to come out with his correlation are:

$$130 < P_{b} < 7000 \text{ psia}$$

$$100 < T < 258 ^{\circ}F$$

$$20 < Rs < 1425 \text{ scf/STB}$$

$$16.5 < \gamma_{API} < 63.8 ^{\circ}API$$

$$0.59 < \gamma_{g} < 0.95 \text{ (air=1)}$$
(2.4)

2.2 Lasater Correlation

In 1958, Lasater came up a correlation for bubble-point pressure, (P_b) based on 158 experimentally data using 137 different crude oil system from reservoirs in Canada, U.S, and South America. The natural gas associated with these crudes essentially free of non-hydrocarbon.

To be used for developing his correlation, he assumed that a unique molecular weight could be assigned to a given black oil sample, where it was called the *'effective oil molecular weight'*,(Lasater, 1958).The effective oil molecular weight was correlated as a function of the API gravity of the oil. He introduced a bubble-point pressure factor and correlated this parameter with the separator gas mole fraction.Eventhough the original correlation was presented graphically in the form of two charts, he had developed the correlation to give the best fit of Lasater's graphical results.

Bubble Point Pressure

$$P_{b} = \frac{\frac{0.2268 \times 10^{4.258 \gamma_{g}}}{\gamma_{g}}}{(T+459.67)} \qquad (\gamma_{g} \le 0.7) \qquad (2.5)$$

$$P_{b} = \frac{8.26\gamma_{g}^{3.56} (T + 459.67)}{\gamma_{g}} \qquad (\gamma_{g} > 0.7) \qquad (2.6)$$

Separator Gas Mole Fraction

$$\gamma_{g} = \frac{\frac{R_{s}}{379.3}}{\frac{R_{s}}{379.3} + \frac{350\gamma_{o}}{Mo}}$$
(2.7)

Effective Oil Molecular Weight

 $M_{o} = 630 - 10\gamma_{API} \qquad (API \le 40)$ (2.8)

$$M_{o} = 73,110\gamma_{API}^{-1.562} \qquad (API < 40)$$

Bubble-Point Pressure Factor

$$y_{g} = \frac{\ln(\frac{P_{f}}{0.2268})}{4.258} \qquad (P_{f} \le 5) \qquad (2.9)$$

$$y_{g} = \left(\frac{P_f - 1.95}{8.26}\right)^{0.2809}$$
 (P_f > 5)

Solution Gas Oil Ratio

$$R_{s} = \frac{132,755\gamma_{o}\gamma_{g}}{M_{o}(1-\gamma_{g})}$$
(2.10)

The correlation for solution gas oil ration, (R_s) as a result from the rearrangement of bubble point pressure. Lasater did not develop correlation for oil formation volume factor, B_o . The ranges of data used to develop his correlation as below:

2.3 Vasquez And Beggs Correlations

In 1976, Vasquez and Beggs used experimental data more than 600 crude oil system to develop empirical correlation to predict several crude oil properties such as solution gas-oil ratio, (R_s) and the oil formation volume factor, (B_o). Their data included approximately 6000 data points, measured over wide ranges of pressure, temperature, oil gravity, and gas gravity.

Vasquez and Beggs found that the gas gravity was a main correlating parameter (Vasquez and Beggs, 1980) and unfortunately, this is often one of the variable measured with the least degree of consistency. The gravity of the evolved gas

depends on the pressure and temperature of the separators, which might not be available. The gas gravity used to develop all of the correlations presented by Vasquez and Beggs was the gas gravity which would have resulted from a two stage separation. The first separation stage was chosen as 100 psig and the second stage was the stock tank which is 0 psig.(Vasquez and Beggs, 1980).

Correlation for solution gas oil ratio was originally planned to estimate solution gas oil ratio values at and below bubble-point pressure, this equation can be arranged and used to solve for the bubble-point pressure.

Solution Gas-Oil Ratio

$$R_{s} = C_{1} \gamma_{g} p^{C_{2}} \exp\left(C_{3}\left(\frac{\gamma_{o}}{(T+460)}\right)\right)$$
(2.12)

Bubble-Point Pressure

$$p_{\delta p} = \left(\frac{R_s}{C_1 \gamma_g \exp\left(C_3\left(\frac{\gamma_o}{(T+460)}\right)\right)}\right)^{\frac{1}{C_2}}$$
(2.13)

where

<u>Coefficient</u>	<u>γ₀ <= 30°API</u>	<u>γ_o > 30°API</u>
C_1	0.0362	0.0178
C_2	1.0937	1.1870
C_3	25.7240	23.9310

Oil Formation Volume Factor

$$B_o = 1 + C_1 R_s + C_2 \left(T - 60\right) \left(\frac{\gamma_o}{\gamma_g}\right) + C_3 R_s \left(T - 60\right) \left(\frac{\gamma_o}{\gamma_g}\right)$$
(2.15)

where

Coefficient	<u> γ_o <= 30°API</u>	<u>γ_o > 30°API</u>
C_1	4.677×10^{-4}	4.670x10 ⁻⁴
C_2	1.751×10^{-5}	1.100×10^{-5}
C_3	-1.811x10 ⁻⁸	1.377x10 ⁻⁹

The range of data used to develop his correlation as below:

2.4 Glaso Correlation

Glaso presented his correlation in 1980. It was used to estimate bubble-point pressure, (P_b) as well as the solution gas-oil ratio, (R_s) and the oil formation volume factor, (B_o) at the gas saturated of black oils. Glaso took data from 26 different crude oil system, primarily from North Sea Region.(Glaso, 1980). Glaso approached was based on the theory of the paraffinicity of the oil influences the gas equilibrium of black oil mixtures containing methane. Using graphical method and regression analysis, Glaso come out with his correlation as below:

Bubble-Point Pressure

$$\log(p_{\delta p}) = 1.7669 + 1.7447 \cdot \log(x) - 0.30218 \cdot \left(\log(x)^2\right)$$
(2.17)

$$p_{\delta y} = 10^{\log(p_{\delta y})} \tag{2.18}$$

where
$$x = \left(\frac{R_s}{\gamma_g}\right)^{0.016} \frac{T^{0.172}}{\gamma_o^{0.0989}}$$

Solution Gas-Oil Ratio

$$R_{s} = \left(\frac{x \cdot \gamma_{o}^{0.989}}{T^{0.172}}\right)^{\frac{1}{0.816}} \gamma_{g}$$
(2.19)

where

$$\log(x) = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

$$x = 10^{\log(x)}$$

 $a = -0.30218$
 $b = 1.7447$

$$c = 1.7669 - \log\left(p\right)$$

Oil Formation Volume Factor

$$\log (B_{\rho} - 1) = \log \left(-6.58511 + 2.91329 \cdot \log (\gamma) - 0.27683 \cdot (\log (\gamma))^2\right)$$
(2.20)
$$B_{\rho} = 1 + 10^{\log(B_{\rho} - 1)}$$

where

$$y = R_s \left(\frac{\gamma_g}{\gamma_o}\right)^{0.526} + 0.968 \cdot T$$

Glaso also provided a bubble point correlation for volatile oils as well as method for correcting the predicted bubble-point pressure for the presence of CO₂, N₂, and H_2S in the surface gases. The range of data used as below:

$$165 < P_{b} < 7142 \text{ psia}$$

$$80 < T < 280 °F$$

$$90 < Rs < 2637 \text{ scf/STB}$$

$$22.3 < \gamma_{API} < 48.1 °API$$

$$0.650 < \gamma_{g} < 1.273 \text{ (air=1)}$$

$$(2.21)$$

2.5 Al-Marhoun Correlations

In 1985, Al- Marhoun developed his correlations for estimating the bubble-point pressure, (P_b) as well as the solution gas-oil ratio, (R_s) and the oil formation volume factor, (B_o) for Middle East crude oils at the bubble point pressure. These correlations were developed froam a database 69 bottomhole fluid samples and expressed as functions of reservoir temperature, gas gravity, solution gas-oil ratio and stock tank oil gravity. Al-Marhoun used nonlinear regression methods to develop the following correlation:

Bubble-Point Pressure,

$$P_{\rm b} = 5.38088 \ge 10^{-3} R_s^{0.715082} \gamma_g^{-1.87784} \gamma_o^{3.1437} (T + 460)^{1.32657}$$
(2.22)

Oil Formation Volume Factor_o

$$R_s = 0.497069 + 8.26963 \times 10^{-4}(T + 460) + 1.82594 \times 10^{-3}F + 3.18099 \times 10^{-6}F^2$$

where

$$\mathbf{F} = R_s^{0.74239} \gamma_g^{0.323294} \gamma_o^{-1.202040}$$

(2.23)

Solution Gas-Oil Ratio

$$R_{s} = \left(\frac{x}{\gamma_{g}^{-1.879109} \cdot \gamma_{o}^{3.04659} \cdot T^{1.302347}}\right)^{\frac{1}{0.722569}}$$
(2.24)

where

$$x = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

$$a = -2.278475 \cdot 10^{-9}$$

$$b = 7.02362 \cdot 10^{-3}$$

$$c = -64.13891 - p$$

Al-Marhoun reported an avergae error 0.03% for bubble point pressure and average relative error of -0.01% for oil formation volume factor. (Al- Marhoun, 1988) The ranges of data used to develop his correlation are:

$$\begin{array}{rll} 130 < P_{b} < 3573 \ \text{psia} \\ 74 < T & < 240 \ ^{\circ}\text{F} \\ 26 < \text{Rs} & < 1602 \ \text{scf/STB} \\ 19.4 < \gamma_{API} < 44.6 \ ^{\circ}\text{API} \\ 0.752 < \gamma_{g} & < 1.367 \ (air=1) \end{array} \tag{2.25}$$

2.6 Petrosky Correlations

In 1990, Petrosky developed empirical PVT correlation for Gulf of Mexico crude oils. His correlation included the bubble-point pressure, solution gas-oil ratio and oil formation volume factor at the bubble point. Petrosky used a total of 128 data and he developed his correlation by using non-linear regression analysis.

Bubble-Point Pressure

$$p_{\delta p} = 112.727 \cdot \left(\frac{R_s^{0.5774}}{\gamma_g^{0.8439}} \cdot 10^n - 12.34\right)$$
(2.26)

where

$$x = 4.561 \cdot 10^{-5} \cdot T^{13911} - 7.916 \cdot 10^{-4} \cdot \gamma_o^{-1.541}$$

Solution Gas-Oil Ratio

$$R_{s} = \left(\left(\frac{p}{112.727} + 12.34 \right) \cdot \gamma_{g}^{0.8439} \cdot 10^{x} \right)^{1.73184}$$
(2.27)

Oil Formation Volume Factor

$$B_{\rho} = 1.0113 + 7.2046 \cdot 10^{-5} \cdot \left(R_{s}^{0.3738} \left(\frac{\gamma_{g}^{0.2914}}{\gamma_{\rho}^{0.6265}} \right) + 0.24626 \cdot T^{0.5371} \right)^{3.0936}$$
(2.28)

Petrosky's correlation get average relative error of -0.17% for P_b and -0.01% for B_o .(Petrosky, 1990) The ranges of data used to develop his correlation are:

$$1574 < P_{b} < 6523 \text{ psia}$$

$$114 < T < 288 ^{\circ}F$$

$$217 < Rs < 1406 \text{ scf/STB}$$

$$16.3 < \gamma_{API} < 45.0 ^{\circ}API$$

$$0.578 < \gamma_{g} < 0.851 \text{ (air=1)}$$

$$(2.29)$$

2.7 Kartoatmodjo And Schmidt Correlations

In 1994, Kartoatmodjo and Schmidt presented what should be considered the most comprehensive study of balck oil PVT properties. Kartoatmodjo and Schmidt developed a new set of empirical correlations based on a large data collection developed from reservoirs all over the world. The authors used to independent databases; the first database was used to develop the correlations while the second was used to verify the developed correlation. The first database contained 740 different crude oil samples and the second database contained 998 data points. The following were presented by them:

Bubble-Point Pressure

$$P_b = \left[\frac{R_s}{0.05958\gamma_g^{0.7972} 10^{13.1405\gamma_{API}(T+460)}}\right]^{0.9986} \text{ (API} \le 30 \text{)}$$
(2.30)

$$P_b = \left[\frac{R_s}{0.03150\gamma_g^{0.7587} 10^{11.28955\gamma_{API}(T+460)}}\right]^{0.9143} \text{(API > 30)}$$

Solution Gas-Oil Ratio

$$\begin{split} R_s &= 0.05958 \gamma_g^{0.7972} p^{1.0014} 10^{13.1405 \gamma_{API}(T+460)} \quad (\text{API} \leq 30) \\ R_s &= 0.05958 \gamma_g^{0.7972} p^{1.0014} 10^{13.1405 \gamma_{API}(T+460)} \quad (\text{API} > 30) \end{split}$$

Oil Formation Volume Factor

$$B_{o} = 0.98496 + 0.0001 \text{ X F}^{1.50}$$
(2.32)

where

$$\mathbf{F} = R_s^{0.755} \gamma_g^{0.25} \gamma_o^{-1.5} + \ 0.45T$$

Kartoatmodjo and Schmidt reported average relative errors of 3.34% for P_b and 4.68% for R_s and 0.104 for B_o .(Kartoatmodjo and Schmidt, 1994). The ranges of data used to develop are:

$$\begin{array}{ll} 15 < P_{b} & < 6054 \ psia \\ \\ 75 < T & < 320 \ ^{\circ}F \\ 14 & < Rs & < 2473 \ scf/STB \\ \\ 14.4 < \gamma_{API} < 58.9 \ ^{\circ}API \\ \\ 0.37 < \gamma_{g} & < 1.71 \ (air=1) \end{array} \end{array} \tag{2.33}$$

From the solution gas-oil ratio equations presented in this chapter, it is clear that although each of the authors (excepts Vasquez ang Beggs) developed their correlations for bubble point pressure, and then arranged these correlation to solve for solution gas-oil ratio. In practice, for pressure below bubble point, the bubble point pressure term is replaced by other values of pressure, with all other variable remaining the same. This concept is assumed to be valid because all conditions below the original bubble-point pressure also represent saturated conditions.

CHAPTER 3

METHODOLOGY / PROJECT WORK

3.1 Data Collection

For the data collections, the PVT data can be collected from published literature. These data can be found in 'Development of New Modified Black Oil Correlation', (Omar,1993).During dataset preparation, the first step is to write all the data into Microsoft Excel. This file will be used by MATLAB Software to perform the prediction. The data in Table 1 will be used as a dataset for MATLAB code to process the data comprised in this dataset and predict the best fit model (the model which can give the most accurate results between the experimental and predicted values). The accuracy of the obtained results will be depending on how accurate the data set table build.The PVT data of Malaysian crude will be shown below:

P_b ,	$B_0,$	μ,	R_s	$\gamma_{\rm gas}$	γ_{oil} ,	T,
(psia)	(UUI/SID)	(cp)	(SCI/SID)		(API)	(Г)
2193	1.425	0.459	634	0.717	45.3	214
2402	1.619	0.627	844	0.919	40.7	242
2194	1.438	0.376	664	0.750	42.9	214
1562	1.261	0.693	463	1.281	38.9	196
1225	1.176	0.806	267	1.263	38.0	211
1660	1.221	1.605	421	1.298	37.1	203
1530	1.241	1.211	355	1.228	35.0	209
1760	1.222	1.625	372	1.195	31.0	211
1225	1.171	0.806	260	1.168	38.0	211
1700	1.232	0.826	364	1.028	36.6	206
1370	1.192	0.785	313	1.174	38.2	205
1593	1.268	0.625	421	1.181	39.8	203
1982	1.246	0.802	415	1.140	36.1	224
1450	1.214	1.534	359	1.250	35.4	208
1570	1.241	0.938	366	1.315	39.0	207
1750	1.521	0.336	714	0.820	48.7	189
1810	1.423	0.316	606	0.707	50.5	189
1658	1.212	0.538	368	0.865	41.4	186
2632	1.578	0.255	888	0.730	49.3	228
1755	1.481	0.339	694	0.790	49.5	190
1728	1.259	0.481	397	0.941	41.8	215

Table 1:PVT Data of Malaysian Crude

2058	1.52	0.159	765	0.939	48.8	205
2221	1.362	0.310	547	0.693	45.3	238
2274	1.451	0.327	546	0.689	45.2	245
2081	1.315	0.356	494	0.677	44.5	230
1220	1.173	0.930	267	0.884	31.4	174
2390	1.538	0.736	956	0.811	43.2	226
1302	1.170	1.243	242	0.824	31.4	180
1085	1.128	1.931	169	0.638	29.1	187
1271	1.139	1.814	198	0.775	29.2	187
1195	1.152	1.257	214	0.664	31.9	180
2562	1.491	0.383	741	0.795	42.0	234
0790	1.168	0.940	274	1.005	39.8	150
1530	1.334	0.493	566	0.817	45.2	185
1510	1.365	0.438	522	0.730	47.8	189
1741	1.409	0.357	563	0.759	48.4	217
2111	1.471	0.146	692	0.740	53.2	220
1758	1.442	0.212	628	0.762	48.4	199
1769	1.401	0.365	585	0.765	49.1	204
1805	1.424	0.351	599	0.767	48.1	204
1414	1.249	0.590	425	1.155	41.0	185
2540	1.712	0.236	1020	0.730	50.4	239
1790	1.496	0.212	686	0.800	47.1	224
1620	1 265	0.416	404	0.847	42.9	188
2165	1.517	0.244	856	0.916	46.6	211
2550	1 884	0.225	1170	0.858	48.9	231
2360	1 716	0.172	993	1 014	48.4	267
2020	1 321	0.606	491	1.051	39.2	211
2145	1.697	0.000	1022	1.031	47.9	211
2090	1.697	0.210	1011	1.019	48.2	210
2822	1.600	0.238	1006	0.876	46.8	280
2022	1.653	0.230	990	0.801	43.1	200
2500	1.873	0.197	1355	0.877	43.1	200
2300 31/18	1.045	0.127	1440	0.788	40.0 50.3	220
0052	1.002	0.212	142	0.700	26.0	146
0952 2368	1.092	0.481	142	0.007	20.9	235
2300	1.282	0.481	440 636	0.750	32.5	161
2310	1.345	0.380	683	0.801	38.5	101
2408	1.364	0.380	800	0.621	20.2	100
3449	1.303	0.407	099 962	0.709	39.5 27 A	195
3440 1010	1.433	0.343	003 294	0.704	27.4	192
1910	1.238	0.990	584	0.735	52.0 27.1	152
2108	1.297	0.41/	J44	0.789	3/.1	164
2480	1.357	0.360	080	0.757	38.2 27.0	1/1
2350	1.352	0.380	680	0.818	37.0	169
1744	1.325	0.351	524	0.727	40.5	190
3142	1.484	0.372	761	0.723	33.3	247
2970	1.445	0.227	737	0.707	34.6	239

1951	1.23	0.527	367	0.627	37.5	173
2616	1.371	0.386	667	0.842	37.7	177
1818	1.153	1.105	285	0.704	26.6	152
2611	1.525	0.340	810	0.789	39.6	225
1058	1.130	0.890	220	0.790	32.3	127
3387	1.505	0.338	919	0.673	41.4	194
1492	1.201	0.710	341	0.716	37.4	159
935	1.085	1.460	150	0.612	31.9	125
3780	1.581	0.380	1023	0.658	40.2	209
3063	1.301	0.483	577	0.737	31.2	180
2423	1.399	0.294	713	0.765	40.1	169
2360	1.399	0.325	694	0.765	40.0	167
1838	1.208	0.810	366	0.664	34.8	153
2106	1.194	1.250	344	0.648	28.9	161
1390	1.154	0.880	287	0.718	33.4	141
2470	1.429	0.430	760	0.758	40.0	166
2692	1.230	0.503	393	0.631	38.6	179
3420	1.683	0.330	1212	0.685	42.3	194
3160	1.707	0.305	1213	0.705	45.4	186
1765	1.184	0.600	345	0.695	34.0	151
1780	1.362	0.470	509	0.853	37.8	205
3063	1.287	0.448	586	0.628	32.2	180
2609	1.622	0.350	1019	1.038	40.4	198
2344	1.429	0.460	791	0.743	40.4	184
1698	1.408	0.460	646	0.964	40.0	193
3851	1.466	0.371	819	0.663	34.1	243

3.2 Data Preparation

A1 - <i>f</i> x Y						
	А	В	С	D	E	F
1	Y	x1	x2	x3	x4	
2						
3						
4						

Figure 1: Microsoft Excel

Before the data being imported into MATLAB, it must be arranged first according to what we are looking for.As example, if we would like to predict bubble point pressure, the experimental datamust be write at column A and other parameter can be put any column as long as not column A. When the file being imported into MATLAB, column A will be automatically read by MATLAB as Y and other column as $X_{1,} X_{2}$ and etc. So, the output later will come out in form of Y, X_{1} , $X_{2,}X_{3}$ and etc. In this project, there are three correlation will be developed. Thus three files of Microsoft Excel need to be prepared namely with Bubble Point Pressure, Solution Gas Oil Ratio and Oil Formation Volume Factor.

3.3 Group Method of Data Handling Method

This project will be using Group Method of Data Handling (GMDH) method to perfom the prediction.GMDH is a family of inductive algorithms for computer-based mathematical modeling of multi-parametric datasets that features fully automatic structural and parametric optimization of models. GMDH is used in such fields as data mining, knowledge discovery, prediction, complex systems modeling, optimization and pattern recognition.GMDH algorithms are characterized by inductive procedure that performs sorting-out of gradually complicated polynomial models and selecting the best solution by means of the so-called external criterion.A GMDH model with multiple inputs and one output is a subset of components of the base function :

$$Y(x_1, \dots, x_n) = a_0 + \sum_{i=1}^m a_i f_i$$
 (3.1)

where f are elementary functions dependent on different sets of inputs, a are coefficients and m is the number of the base function components. In order to find the best solution GMDH algorithm consider various component subsets of the base function called partial models. Coefficients of these models estimated by the least squares method. GMDH algorithm gradually increase the number of partial model components and find a model structure with optimal complexity indicated by the minimum value of an external criterion. This process is called self-organization of models. The most popular base function used in GMDH is the gradually complicated Kolmogorov-Gabor polynomial :

$$Y(x_1, \dots, x_n) = a_0 + \sum_{i=1}^n a_i x_i + \sum_{i=1}^n \sum_{j=i}^n a_{ij} x_i x_j + \sum_{i=1}^n \sum_{j=i}^n \sum_{k=j}^n a_{ijk} x_i x_j x_k + \dots$$
(3.2)

GMDH approach will be very useful because:

- The optimal complexity of model structure is found, adequate to level of noise in data sample. For real problems solution with noised or short data, simplified forecasting models are more accurate.
- ii. The number of layers and neurons in hidden layers, model structure and other optimal Neural Network parameters are determined automatically.
- iii. It guarantees that the most efficient will be found and the method does not miss the best solution during sorting of all variants.
- iv. Input variables are used any non-linear functions, which can influence the output variable.
- v. It automatically finds interpretable relationships in data and selects effective input variables.
- vi. GMDH sorting algorithms are rather simple for programming..
- vii. Method uses information clearly from data sample and minimizes influence of assumptions about results of modeling.
- viii. Approach gives possibility to find unbiased physical model of object and the same for future samples.

MATLAB has been used to write the code and predict the fluid properties correlation. The author will be supervised by an experienced person in MATLAB. The computing facility is provided by UTP. In order to develop the model, in this project, there will be three models of correlation will be develope. All of them will be using the same coding but the different is how the data will be arranged in the Microsoft Excel file as explained earlier. As mentioned earlier, GMDH method will eliminate the least contribution factor to the result and the will use the remaining variable to develop the correlation. Figure below show how the model will be showed by MATLAB at the end of the process.

Layer #1				
Number of neurons: 1				
y = 4677.68367375698	-114.913506589439*x5	-5622.90910059234*x4	+9.5514441670233*x3	+14.2557079884696*x4*x5

Figure 2: Output displayed by MATLAB

Figure 3:Basic Step in GMDH Model Generation

3.4 Statistical Error Analysis

There are four main statistical and error analysis parameters that will be considered in this study. These parameters help to evaluate the accuracy of the predicted value of fluid properties obtained from the estimations.

3.4.1 Average Relative Error

This parameter is to measure the average value of the absolute relative deviation of the measured value from the experimental data. The value of ARE is expressed in percent. The parameter can be defined as:

$$ARE = \frac{1}{N} \sum_{i=1}^{n} \left| \frac{X_{Exp} - X_{Est}}{X_{Exp}} \right|$$
(3.2)

3.4.2 Average Absolute Deviation

The absolute difference between that element and a given point. The parameter can be defined as:

$$\frac{1}{n}\sum_{i=1}^{n}|x_{i}-m(X)|.$$
(3.3)

Where,

m(X) = Mean of the dataset

 $X_{i=}$ Data Element

3.4.3 Correlation Coefficient and Correlation of Determination

The purpose of performing correlation coefficient is to describe the strength of the association between two variables namely experimental and calculated values that obtained from the developed correlation. The value of correlation coefficients varies from -1.0 to +1.0 where zero indictae no relationship between experimental and calculated while +1.0 shows good estimation through the developed correlation. The correlation coefficient can be calculated using the following equation.

$$R = \sqrt{1 - \left[\sum_{1}^{n} (X_{exp} - X_{Est})^{2} / \sum_{1}^{n} (X_{exp} - \bar{X})^{2}\right]}$$
(3.4)

where

$$\bar{X} = \frac{1}{n} \sum_{1}^{n} (X_{exp})$$

The square value of correlation coefficient is known as coefficient of detennination, R^2 . The coefficient of detennination is defined as the proportion of the validity in the predicted value that is encountered for experimental value.

3.5 GANTT CHART AND KEY MILESTONE

No.	Detail/ Week	1	2	3	4	5	6	7		8	9	10	11	12	13	14	15
1	Project Work Continues																
2	Submission of Progress Report							•									
3	Project Work Continues																
									<u>×</u>								
4	Pre-SEDEX								S			•					
									B								
5	Submission of Draft Report								ter				•				
									es								
6	Submission of Dissertation (soft bound)								em					•			
									Ň								
7	Submission of Technical Paper								lid					•			
									2								
8	Oral Presentation														•		
9	Submission of Project Dissertation (Hard Bound)																•

Suggested milestone
 Process

₽

Figure 4:Gantt Chart and Key Milestone for FYP 2

CHAPTER 4:

RESULT AND DISCUSSION

In this chapter, I will present the result and discussion that has been obtained of our new set of correlation for Malaysian crude.A total of 93 PVT data taken from various Malaysian offshore oil-fields was used in the study. The PVT data consist of oil gravity range from 26.6 - 53.2 API and bubble point pressures of 790 psig to 3851 psig. The crudes are essentially free of hydrogen sulphide with low nitrogen content . Developed correlation for the following properties:

- i. Solution Gas Oil Ratio, R_s
- ii. Oil Formation Volume Factor, B_o
- iii. Bubble Point Pressure, P_b

Three correlations presented in this report are the result of Group Method of Data Handling (GMDH) applied over experimental data. All these correlations were developed using MATLAB and Microsoft Excel interactively. Excel was used to tune to the initial guesses on small portions of a particular database, and MATLAB was used to develop coding for GMDH to generate the correlation.

4.1 Correlation For Solution Gas Oil Ratio

As mentioned earlier, this correlation has been developed strictly to estimate values of solution gas oil ratio. In contrast to the approaches presented in the past, our calculation of solution gas oil ratio is not derived from rearranging the bubble point pressure correlation. The solution used GMDH approach to develop new correlation for Malaysian Crude. The performance of the power series model was superior to any model tested. The power series model was tested on a case by case basis and as a multi-case correlating equation and the result that by using this model have been excellent. From five parameters, only three used by this model to estimate the value of solution gas oil ratio. Those are formation volume factor, oil gravity and

gas gravity. Table below will show the data of Malaysian Crude that has been used and the estimated value using new correlation.

Table 2 shows the experimental data and estimated value of solution gas oil ratio and those variable that been used to develop this correlation.based on the result obtained, the new model give good estimation of the value of solution gas oil ratio by having lower relative error.

R_s	Bo	$\gamma_{ m g}$	γo	R _s	
(Experimental)	bbl/STB	scf/STB	API	(Estimated)	Е, %
590	2500	0.617	40.0	571.0460	3.2124
844	2290	0.919	40.7	846.7402	0.3246
664	2350	0.850	42.9	651.2493	1.9202
463	1650	1.181	38.9	459.3618	0.7857
267	1300	1.263	38.0	266.1156	0.3312
421	1800	1.198	37.1	421.9819	0.2332
330	1700	1.038	35.0	318.1651	3.5863
376	1650	1.295	31.0	383.9987	2.1273
260	1225	1.168	38.0	272.4316	4.7813
420	1700	0.735	36.6	425.6548	1.3464
305	1250	1.274	38.2	301.6168	1.1092
405	1580	1.061	40.0	397.4852	1.8555
515	1982	1.140	36.1	514.6718	0.0637
359	1450	1.250	35.4	370.2750	3.1406
640	1570	1.315	39.0	649.1518	1.4299
714	1760	0.820	48.7	701.0374	1.8154
400	1810	0.770	50.5	382.1355	4.4661
720	1658	0.865	41.4	725.7537	0.7991
888	2640	0.630	49.3	873.4083	1.6431
400	1755	0.790	49.5	406.6548	1.6637
750	1728	0.941	41.8	777.1521	3.6200
765	2058	0.939	48.8	777.5163	1.6361
650	2221	0.693	45.3	661.4551	1.7623
546	2220	0.599	45.2	520.5384	4.6632
120	2081	0.677	44.5	120.1456	0.1213
490	1220	0.884	31.4	498.6104	1.7570
330	2390	0.811	43.2	332.4300	0.7360
242	1302	0.824	31.4	221.0483	8.6576
175	1085	0.638	29.1	179.5283	2.5876
290	1271	0.775	29.2	301.7253	4.0432
400	1195	0.664	31.9	401.3880	0.3470
741	2562	0.795	42.0	730.2743	1.4474

Table 2:Solution Gas Oil Ratio Result

274	790	1.005	39.8	267.7729	2.2726
566	1530	0.817	45.2	549.7636	2.8686
450	1510	0.730	47.8	445.7276	0.9494
710	1741	0.759	48.4	715.0554	0.7120
692	2111	0.740	53.2	667.5466	3.5337
628	1758	0.762	48.4	607.5352	3.2587
585	1769	0.765	49.1	577.2983	1.3165
390	1805	0.767	48.1	396.1280	1.5712
600	1300	1.155	41.0	600.5407	0.0901
850	2540	0.730	50.4	845.4164	0.5392
490	1790	0.800	47.1	491.0508	0.2144
606	1620	0.847	42.9	606.9867	0.1628
950	2165	0.916	46.6	957.5899	0.7989
1070	2550	0.858	48.9	1069.481	0.0484
730	2360	1.014	48.4	732.2966	0.3146
944	2020	1.051	39.2	944.3734	0.0395
1022	2145	1.045	47.9	987.8630	3.3402
900	2090	1.050	48.2	910.8004	1.2000
1006	2822	0.876	46.8	998.1958	0.7757
990	2290	0.801	43.1	967.4259	2.2802
1100	2500	0.877	48.8	1141.808	3.8007
153	3148	0.788	50.3	153.4108	0.2685
270	952	0.667	26.9	272.6460	0.9800
710	2368	0.756	32.5	718.2476	1.1616
636	2310	0.801	38.3	649.4950	2.1210
683	2408	0.821	38.6	719.6231	5.3621
899	3449	0.769	39.3	928.5524	3.2870
674	3440	0.764	37.4	674.5773	0.0856
600	1910	0.733	32.6	521.9501	13.008
580	2168	0.789	37.1	597.4224	3.0038
590	2480	0.737	38.2	593.1390	0.5320
760	2350	0.818	37.0	765.7145	0.7519
220	1744	0.727	40.5	226.8801	3.1273
761	3142	0.723	33.3	739.7461	2.7928
800	2970	0.707	34.6	801.0336	0.1290
367	1951	0.627	37.5	382.3046	4.1702
260	2616	0.842	37.7	264.9814	1.9159
670	1818	0.704	26.6	671.1945	0.1782
450	2611	0.789	39.6	449.6280	0.0826
380	1058	0.790	32.3	380.0564	0.0148
770	3387	0.673	41.4	765.3924	0.5983
200	1492	0.716	37.4	181.3117	9.3441
258	935	0.612	31.9	258.7093	0.2740
500	3780	0.658	40.2	499.6278	0.0744
1000	3063	0.737	31.2	1041.8340	4.1834
713	2423	0.765	40.0	692.2320	2.9127

460	2360	0.765	4001	465.6871	1.2363
166	1838	0.664	34.8	166.4964	0.2990
470	2106	0.648	28.9	471.5817	0.3365
420	1390	0.718	33.4	420.9896	0.2356
650	2470	0.758	40.0	645.3195	0.7200
790	2692	0.631	38.6	781.3130	1.0996
1212	3420	0.685	42.3	1230.7170	1.5443
490	3160	0.705	45.4	489.3275	0.1372
450	1765	0.695	34.2	454.4384	0.9863
310	1780	0.853	37.8	317.2167	2.3279
950	3063	0.628	32.2	952.4424	0.2570
930	2609	1.038	40.4	927.3812	0.2815
642	2344	0.743	40.4	639.8678	0.3321
360	1698	0.964	40.2	366.7657	1.8793
1360	3851	0.663	34.1	1362.5301	0.1861

Figure 5: Crossplot of Solution Gas Oil Ratio

Based on the Figure 5, the crossplot of solution gas oil ratio show best fit line that passed through all the points that has been plotted. Based on the crossplot, that prove that new correlation been developed through GMDH method for solution gas oil ratio for Malaysian crude give better estimation.

4.1.1 Statistical Error Analysis

In order to prove the perfomance of new correlation, this model has been compared with previous correlation by conducting statistical error analysis.. The result will be shown in the table below.

	This Study	Standing	Vasquez	Glaso	Petrosky
ARE, %	3.21	55.66	20.73	12.29	25.09
Average Absolute Deviation	2.79	10.05	36.34	26.06	30.10
Correlation Coefficient	0.99	0.91	0.71	0.92	0.82
Coefficent of Determination	0.99	0.82	0.50	0.85	0.67
Max. ARE, %	10.04	39.96	72.65	38.19	60.25
Min ARE, %	0.02	0.08	0.18	0.25	0.10

Table 3: Statistical Accuracy of Solution Gas Oil Ratio

4.1.2 Final Form of Correlation

The final form of the solution gas oil ratio correlation shown below:

$$\begin{array}{ll} R_{s=} \ A_{1} \cdot (A_{2}.\gamma_{o}) + (A_{3}.\gamma_{g}) - (A_{4}.B_{o}) + (A_{5}.\gamma_{g}.\gamma_{o}) + (A_{6}.B_{o}.\gamma_{o}) + & (A_{7}.B_{o}.\gamma_{g}) + \\ (A_{8}.\gamma_{o}^{\ 2}) - (A_{9}.\gamma_{g}^{\ 2}) + (A_{10}.B_{o}^{\ 2}) \end{array}$$

$A_{1=}880.530400778922$	$\mathbf{A_{6=}}0.01665509716446$
A ₂₌ 51.175351343501	A ₇₌ 0.200784044152712
A ₃₌ 535.47940627238	A₈₌0.100272767669885
A ₄₌ 0.512728646063882	A ₉₌ 1094.60230889884
A ₅₌ 36.9437213528499	A ₁₀ =9.31803133793895E-06

Using this correlation, it can estimate values for solution gas oil ratio for Malaysian crude. It is estimated the statistical accuracy of this correlation using least-square regression analysis and calculated average absolute error of 3.21% as shown in the Table 3. The crossplot of Figure 6 illustrates the excellent agreement between the plotted value of measured Rs versus estimated Rs.

4.2 Correlation For Oil Formation Volume Factor

Table 4 below show the result of estimated oil formation volume factor obtained by using new model generated through GMDH method. From five variables, only three parameters was chosen to be used for this model and those are solution gas oil ratio, gas gravity and oil gravity. Two parameter has been eliminated because gave least contribution to the model, they are bubble point pressure and temperature. Based on the result shown, there is no big gap between experimental data and the estimated data. This can be prove by performing relative error for each set of data. Thus, this model gives better estimation compare to the previous one and this statement will be proved by looking at statistical error analysis on Table 5.

Bo,	R _s	$\gamma_{ m g}$	γ_{o}	Bo,	Error,
(Experimental)	scf/STB	0	API	(Estimated)	%
1.425	634	0.717	45.3	1.4118	0.9245
1.619	844	0.919	40.7	1.5212	6.0394
1.438	664	0.750	42.9	1.4162	1.5148
1.261	463	1.281	38.9	1.2854	1.9366
1.176	267	1.263	38.0	1.1538	1.8804
1.221	421	1.298	37.1	1.2547	2.7675
1.240	355	1.228	35.0	1.2155	1.9694
1.222	372	1.195	31.0	1.2303	0.6840
1.170	260	1.168	38.0	1.1564	1.1620
1.232	364	1.028	36.6	1.2270	0.3994
1.192	313	1.174	38.2	1.1904	0.0840
1.268	421	1.181	39.8	1.2635	0.3507
1.246	415	1.140	36.1	1.2564	0.8404
1.214	359	1.250	35.4	1.2168	0.2366
1.241	366	1.315	39.0	1.2172	1.9136
1.500	714	0.820	48.7	1.4943	0.3786
1.423	606	0.770	50.5	1.4361	0.9246

Table 4: Oil Formation Volume Factor Result

1.212	368	0.865	41.4	1.2383	2.1748
1.578	888	0.730	49.3	1.6001	1.4030
1.480	694	0.790	49.5	1.4862	0.4211
1.259	397	0.941	41.8	1.2579	0.0809
1.520	765	0.939	48.8	1.5347	0.9682
1.362	547	0.693	45.3	1.3580	0.2880
1.451	546	0.689	45.2	1.3565	6.5077
1.315	494	0.677	44.5	1.3206	0.4294
1.173	267	0.884	31.4	1.1697	0.2747
1.538	956	0.811	43.2	1.5915	3.4843
1.170	242	0.824	31.4	1.1545	1.3162
1.128	169	0.638	29.1	1.1100	1.5480
1.139	198	0.775	29.2	1.1324	0.5739
1.152	214	0.664	31.9	1.1322	1.7182
1.491	741	0.795	42.0	1.4587	2.1633
1.168	274	1.005	39.8	1.1740	0.5464
1.334	566	0.817	45.2	1.3763	3.1720
1.365	522	0.730	47.8	1.3608	0.3058
1.409	563	0.759	48.4	1.3922	1.1873
1.471	692	0.740	53.2	1.5148	2.9809
1.442	628	0.762	48.4	1.4337	0.5712
1.401	585	0.765	49.1	1.4116	0.7607
1.424	599	0.767	48.1	1.4134	0.7396
1.249	425	1.155	41.0	1.2695	1.6468
1.712	1020	0.730	50.4	1.6920	1.1588
1.496	686	0.800	47.1	1.4627	2.2200
1.265	404	0.847	42.9	1.2653	0.0303
1.517	856	0.916	46.6	1.5733	3.7122
1.884	1170	0.858	48.9	1.7828	5.3680
1.716	993	1.014	48.4	1.6846	1.8272
1.321	491	1.051	39.2	1.3098	0.8438
1.697	1022	1.045	47.9	1.7009	0.2307
1.680	1011	1.050	48.2	1.6971	1.0191
1.695	1006	0.876	46.8	1.6632	1.8747
1.653	990	0.801	43.1	1.6082	2.7084
1.843	1355	0.877	48.8	1.8942	2.7823
1.954	1440	0.788	50.3	1.9475	0.3307
1.092	142	0.667	26.9	1.1036	1.0659
1.282	440	0.756	32.5	1.2537	2.2060
1.345	636	0.801	38.3	1.3794	2.5611
1.384	683	0.821	38.6	1.4086	1.7799
1.503	899	0.769	39.3	1.5225	1.2994
1.455	863	0.764	37.4	1.4896	2.3822
1.238	384	0.733	32.6	1.2235	1.1666
1.297	544	0.789	37.1	1.3231	2.0145
1.357	686	0.737	38.2	1.3991	3.1035

1.352	680	0.818	37.0	1.3987	3.4601
1.325	524	0.727	40.5	1.3211	0.2901
1.484	761	0.723	33.3	1.4095	5.0180
1.445	737	0.707	34.6	1.4020	2.9725
1.23	367	0.627	37.5	1.2161	1.1290
1.371	667	0.842	37.7	1.3973	1.9251
1.153	285	0.704	26.6	1.1732	1.7559
1.525	810	0.789	39.6	1.4801	2.9392
1.130	220	0.790	32.3	1.1411	0.9838
1.505	919	0.673	41.4	1.5347	1.9745
1.201	341	0.716	37.4	1.2076	0.5557
1.085	150	0.612	31.9	1.0968	1.0896
1.581	1023	0.658	40.2	1.5739	0.4458
1.301	577	0.737	31.2	1.3163	1.1780
1.399	713	0.765	40.0	1.4271	2.0136
1.399	694	0.765	40.0	1.4167	1.2681
1.208	366	0.664	34.8	1.2122	0.3502
1.194	344	0.648	28.9	1.1938	0.0152
1.154	287	0.718	33.4	1.1732	1.6667
1.429	760	0.758	40.0	1.4519	1.6072
1.230	393	0.631	38.6	1.2332	0.3035
1.683	1212	0.685	42.3	1.6950	0.7470
1.707	1213	0.705	45.4	1.7371	1.7750
1.184	345	0.695	34.0	1.2024	1.5598
1.362	509	0.853	37.8	1.3104	3.7815
1.287	586	0.628	32.2	1.3088	1.6987
1.622	1019	1.038	40.4	1.6320	0.6213
1.429	791	0.743	40.4	1.4695	2.8360
1.408	646	0.964	40.0	1.4049	0.2197
1.466	819	0.663	34.1	1.4308	2.3946

A crossplot in Figure 6 has been plotted between experimental value and estimated value. Based on the crossplot, we can see the line pass through majority all of the points and give best fit lines. This can show that this model give better estimation of the formation volume factor for Malaysian crude.

Figure 6: Crossplot of Oil Formation Volume factor

4.2.1 Statistical Error Analysis

	This Study	Standing	Glaso	Vasquez	Al- Marhoun	Petrosky
ARE, %	1.60	2.35	2.99	2.38	2.43	2.00
Average Absolute Deviation	2.07	3.11	3.65	3.34	3.23	2.54
Correlation Coefficient	1	0.97	0.95	0.94	0.96	0.98
Coefficent of Determination	1	0.94	0.91	0.88	0.92	0.96
Max. ARE, %	4.04	9.60	9.48	12.26	9.08	8.40
Min ARE, %	0.01	0.01	0.02	0.11	0.11	0.03

Table 5:Statistical accuracy of Oil Formation Volume Factor

Based on the statistical error analysis by comparing new model with previous, it gives better estimation compare to the previous researcher had done. This prove that the model gives better estimation value of oil formation volume factor.

4.2.2 Final Form of Correlation

$$\mathbf{B_{0}} = \mathbf{A_{1}} - (\mathbf{A_{2}}, \gamma_{0}) + (\mathbf{A_{3}}, \gamma_{g}) + (\mathbf{A_{4}}, \mathbf{R_{s}}) - (\mathbf{A_{5}}, \gamma_{g}, \gamma_{0}) + (\mathbf{A_{6}}, \mathbf{R_{s}}, \gamma_{0}) + (\mathbf{A_{7}}, \mathbf{R_{s}}, \gamma_{g}) + (\mathbf{A_{8}}, \gamma_{0}^{2}) - (\mathbf{A_{9}}, \gamma_{g}^{2}) - (\mathbf{A_{10}}, \mathbf{R_{s}})$$

A ₁₌ 1.08199630980282	A ₆₌ 9.11296341546098E-06
$A_{2=}0.00805577535122104$	A ₇₌ 0.000207478721653173
$A_{3=}0.294012771678018$	A ₈₌ 0.000133609923028163
$A_{4=}0.0000994971241197314$	A ₉₌ 0.111668392867066
A ₅₌ 0.00402938539792537	A ₁₀ =5.24239118889319E-08

4.3 Correlation For Bubble Point Pressure

Correlation for bubble point pressure has been developed through GMDH method. The correlation has been tested with 93 PVT data of Malaysian crude. After undergone elimination of few parameters through the GMDH method, there are four variables that will be used to develop this correlation and those are oil formation volume factor, solution gas oil ratio, gas gravity and oil gravity. Viscosity and reservoir temperature have been eliminated and will not be used to develop this model. The outcome of the result will be shown in Table 6:

Table 6: Bubble Poin	nt Pressure Result

	Pb	Bo	Rs	$\gamma_{ m g}$	γ_{o}	Pb,	
_	(Exp.)	Bbl/STB	Scf/STB	-	API	(Predicted)	Error,%
	2193	1.425	634	0.717	45.3	2153.3017	1.8102
	2402	1.619	844	0.919	40.7	2512.1320	4.5850
	2194	1.438	664	0.705	42.9	2261.9210	3.0957
	1700	1.261	463	1.281	38.9	1757.0990	3.3587
	1300	1.176	267	1.263	38.0	1304.7021	0.3617
	1728	1.259	540	0.941	41.8	1736.6007	0.4977
	2058	1.520	900	0.939	48.8	2056.3900	0.0782
	2221	1.362	647	0.693	45.3	2238.0115	0.7650
	2274	1.451	650	0.689	45.2	2258.6998	0.6721
	2081	1.315	560	0.677	44.5	2089.4312	0.4051
	1220	1.173	247	0.884	31.4	1219.2689	0.0599
	2390	1.538	776	0.811	43.2	2384.7905	0.2179

2300	1.683	620	0.685	42.3	2320.5620	0.8940
3160	1.707	1100	0.705	45.4	3136.3063	0.7497
1765	1.184	345	0.695	34.0	1744.8979	1.1389
1780	1.362	470	0.853	37.8	1786.6610	0.3742
3063	1.287	586	0.628	32.2	2966.9660	3.1352
2609	1.622	970	1.038	40.4	2630.8102	0.8350
2344	1.429	640	0.743	40.4	2342.5907	0.0601
1698	1.408	500	0.964	40.0	1688.4453	0.5627
3851	1.466	900	0.663	34.1	3850.0690	0.0241
1302	1.170	255	0.824	31.4	1300.1310	0.1431
1085	1.128	129	0.638	29.1	1076.8106	0.7547
1271	1.139	215	0.775	29.2	1268.1439	0.2247
1195	1.152	185	0.664	31.9	1202.5054	0.6280
2562	1.491	800	0.795	42.0	2547.5469	0.5640
730	1.168	150	1.005	39.8	724.04183	0.8161
1530	1.334	440	0.817	45.2	1530.4270	0.0279
1510	1.365	390	0.730	47.8	1505.2320	0.3157
1741	1.409	515	0.759	48.4	1725.7113	0.8781
2111	1.471	792	0.740	53.2	2097.4924	0.6398
2350	1.352	630	0.818	37.0	2368.2966	0.7785
1744	1.325	430	0.727	40.5	1750.1732	0.3539
3200	1.484	761	0.723	33.3	3279.0782	2.4711
3100	1.445	737	0.707	34.6	3126.0990	0.8419
1951	1.230	367	0.627	37.5	1836.2703	5.8805
2616	1.371	740	0.842	37.7	2599.7537	0.6210
1818	1.153	285	0.704	26.6	1828.6992	0.5885
2611	1.525	760	0.789	39.6	2623.1383	0.4648
1058	1.130	200	0.790	32.3	1078.0434	1.8944
3387	1.505	1000	0.673	41.4	3394.9374	0.2343
1492	1.201	320	0.716	37.4	1494.3677	0.1581
935	1.085	100	0.612	31.9	908.7660	2.8057
3780	1.581	1110	0.658	40.2	3831.7351	1.3686
3063	1.301	660	0.737	31.2	3058.2494	0.1550
2165	1.517	856	0.916	46.6	2153.8957	0.5129
2550	1.884	1170	0.858	48.9	2495.8501	2.1232
2360	1.716	1350	1.014	48.4	2342.4818	0.7422
2020	1.321	640	1.051	39.2	2025.9650	0.2951
2145	1.697	1022	1.045	47.9	2108.4974	1.7017
2090	1.680	1011	1.050	48.2	2073.0184	0.8125
2822	1.695	1320	0.876	46.8	2803.6860	0.6480
2290	1.653	720	0.801	43.1	2283.9811	0.2628
2500	1.843	1230	0.877	48.8	2515.3462	0.6138
3148	1.954	1700	0.788	50.3	2910.6102	7.5409
1165	1.092	142	0.667	26.9	1171.6091	0.5673
1740	1.221	421	1.298	37.1	1745.7242	0.3289
1530	1.24	355	1.228	35.0	1554.0268	1.5703

1760	1.222	372	1.195	31.0	1728.2201	1.8054
1100	1.170	260	1.168	38.0	1160.7507	5.5227
1400	1.232	364	1.028	36.6	1409.4786	0.6770
1300	1.192	313	1.174	38.2	1302.4428	0.1879
1500	1.268	400	1.181	39.8	1485.8223	0.9451
1982	1.246	440	1.140	30.0	1969.7613	0.6174
1450	1.214	315	1.250	35.4	1460.8250	0.7465
1570	1.241	345	1.315	39.0	1556.0375	0.8893
1750	1.500	570	0.820	48.7	1733.4441	0.9460
1810	1.423	600	0.770	50.5	1828.4780	1.0208
1658	1.212	470	0.865	41.4	1642.5358	0.9327
2632	1.578	888	0.730	46.3	2605.9362	0.9902
1755	1.480	570	0.790	49.5	1762.2553	0.4134
1758	1.442	628	0.762	48.4	1943.9109	10.5750
1769	1.401	585	0.765	49.1	1839.4079	3.9800
1805	1.424	599	0.767	48.1	1887.0057	4.5432
1414	1.249	425	1.155	41.0	1493.0150	5.5880
2540	1.712	1020	0.730	50.4	2546.6026	0.2599
1790	1.496	570	0.800	47.1	1800.2430	0.5722
1620	1.265	470	0.847	42.9	1619.0136	0.0608
2368	1.282	510	0.756	32.5	2351.1013	0.7136
2310	1.345	636	0.801	38.3	2337.0185	1.1696
2408	1.384	683	0.821	38.6	2417.3481	0.3882
3449	1.503	1050	0.769	39.3	3428.2057	0.6029
3440	1.455	963	0.764	37.4	3411.6584	0.8238
1910	1.238	384	0.733	32.6	1895.2345	0.7730
2168	1.297	544	0.789	37.1	2143.6922	1.1212
2480	1.357	646	0.737	38.2	2500.5703	0.8294
2423	1.399	713	0.765	40.0	2521.1900	4.0524
2360	1.399	694	0.765	40.0	2469.2937	4.6310
1838	1.208	366	0.664	34.8	1855.5887	0.9560
2106	1.194	344	0.648	28.9	2088.9708	0.8086
1390	1.154	287	0.718	33.4	1495.1928	7.5678
2470	1.429	760	0.758	40.0	2663.4591	7.8323
2692	1.230	600	0.631	38.6	2589.6920	3.8000

Figure 7 show the result of crossplot for bubble point pressure between experimental data and estimated data. Based on the result, the best fit line fit most of the points and this shows that new correlation give good estimation for bubble point pressure.

Figure 7: Crossplot of Bubble Point Pressure

4.3.1 Statistical Error Analysis

	This Study	Standing	Glaso	Vasquez	Al- Marhoun	Lasater
ARE, %	1.53	12.04	20.73	12.29	25.09	15.57
Average Absolute Deviation	2.53	16.05	26.34	16.06	30.10	20.09
Correlation Coefficient	0.99	0.92	0.81	0.92	0.82	0.90
Coefficent of Determination	0.85	0.85	0.66	0.85	0.68	0.81
Max. ARE, %	15.01	39.96	72.65	38.19	60.25	47.23
Min ARE, %	0.01	0.08	0.18	0.25	0.10	0.06

Table 7:Statistical Analysis of Bubble Point Pressure

Table 7 show the result of statistical error analysis for bubble point pressure. New model developed has been compared with the previous correlation to show new model give better estimation of bubble point pressure for Malaysian crude.

4.3.2 Final Form of Correlation

 $\begin{array}{l} P_{b=} A_{1} - (A_{2}.\gamma_{o}) - (A_{3}.\gamma_{g}) + (A_{4}.R_{s}) + (A_{5}.\gamma_{g}.\gamma_{o}) - (A_{6}.R_{s}.\gamma_{o}) - (A_{7}.R_{s}.\gamma_{g}) + (A_{8}.\gamma_{o}^{2}) + (A_{9}.\gamma_{g}^{2}) - (A_{10}.Rs^{2}) \end{array}$

$A_{1=}4677.68367375698$	A ₆₌ 0.109977471902134
A ₂₌ 114.913506589439	A ₇₌ 2.04440785144326
$A_{3=}5622.90910059234$	A ₈₌ 1.49020106743208
A ₄₌ 9.5514441670233	A ₉₌ 2857.29075281598
A ₅₌ 14.2557079884696	A ₁₀ =0.000609089867700527

CHAPTER 5

CONCLUSION AND RECOMMENDATION

The experimental investigations for fluid properties correlation are in need of sufficient time and significant in reservoir engineering. Therefore, a faster and more cost-effective approach should be introduced to estimate the properties of Malaysian crude Prior to that, the datasets have been collected from the published literature. The developed models, bubble point pressure, solution gas oil ratio and oil formation volume factor, for prediction the fluid properties is more accurately where the accuracy and standard error were estimated R2 higher than 0.97 and standard error less than 0.028, respectively. So, the model is giving more promising results as compare with other establish model. These models could be the alternative to experimental data of fluid properties

The R2 value can reach higher if the dataset utilized in this project were fragment in more detail. There are some error correction needs to be done where some values that obtain are far from the experimental data . In order to enhance the accuracy, the datasheet of PVT data need to be check.

In conclusion, the proposed model by using GMDH method is capable of reliably predicting the fluid properties for Malaysian crude. This model provides a practical, cost-effective, convenient and reliable alternative to experimental data of assessment.. This model show very accurate results when compared with those from published works such as Standing, Glaso, and Vasquez. Moreover, for the first trial, the accuracy of the developed models were compared with other established models and found to have a higher accuracy than others established models. It can be concluded that these models can save time and effort by providing the users with models that can be used to estimate fluid properties for Malaysian crude.

This research was carefully conducted and my results represent our best effort to correlate the experimental dat to get good estimation of each properties. Based on my experience during completing this project, I have some recommendation as possible extension of our work. In order to validate our result, the correlations presented here should be tested using and independent database. For a database nof similar size and type, Ii would expect that the errors should not be significantly different from the results reported in this work. Other than that, a recommendation for that future work, correlation developed will not be using parameter. If we see the researched that had been done in this are, most of the researcer used same parameter in order to come outwith new correlation. As example, if they would like to develop solution gas oil ratio, they will take bubble point pressure as one of the parameter used since bubble boint pressure also been estimated by correlation. So, this might effect the result later. Maybe in the future, when further research has been done, we can come out with correlation and least usage of same parameter.

REFERENCES

- 1. Correlations for Fluid Physical Property Prediction, M.E. Vasquez and H.D. Beggs, JPT 968 70, June .
- Development of New Modified Black Oil Correlation for Malaysian Crude, M.1. Omar, Petronas (PRI), and A.C. Todd, * Heriot-Watt U, February 1993.
- 3. Generalized Pressure-Volume-Temperature Correlations, Oistein Glaso, Journal of Petroleum Technology, 1980
- Pressure-Volume-Temperature Correlations for Saudi Crude Oils, M.A. Al-Marhoun, SPE 13718, 1985.
- ASTM: Distillation of Crude Petroleum, Designation D2892-84", Annual Book of ASTM Standards, 821-860 (1984).
- Vazquez, AME: "Correlations for Fluid Physical Property Predictions", MSc Thesis, Tuba University.
- Evaluation of Empirically Derived PVT Properties for Middle East Crude Oils", M.N. Hemmat and R. Kharrat, Scientia Iranica, Vol. 14, No. 4, pp 358, August (2007).
- Correlation of Black oil properties at pressure below the bublle point", J.J. Velarde, August (1996).
- Correlations for predicting solution gas-oil ratio, bubblepoint pressure and oil formation volume factor at bubble point of Iran crude oils", M.T. Mazandarani, S. M. Asghari, September 2007.
- PVT Properties and Viscosity Correlations for Gulf of Mexico Oils", B.
 Dindoruk and P. G. Christman, Shell Int. E & P. Inc, SPE 71633, 2001.
- 11. "A Guide to Matlab" guideline book, B. R. Hunt, R.L. Lipsman, J. M. Rosenrnberg.
- 12. Standin, M.B. : "A Pressure-Volume- Temperature Correlation for Mixtures of California Oil and Gases," Drill. & Prod. Prac., API (1947)
- 13. Lasater, J.A.: "Bubble-Point Pressure Correlation," Trans., AIME (1958).
- Vasquez, M.E. and Beggs, H.D.: "Correlations for Fluid Physical Property Prediction," JPT (June 1980).

- 15. Glaso, O.: "Generalized Pressure-volume-Temperature Correlation," JPT (May 1980).
- Al-Marhoun, M.A.: "PVT Correlations for Middle East Crude Oils," JPT (May 1988).
- 17. Petrosky, G.: PVT Correlations for gulf of mexico oils, MS Thesis, University of Southwestern louisina, Lafayette, LA (1990).
- 18. Kartoatmodjo, T. and Schmidt, Z.: " large Data Bank Improves crude Physical Property Correlations," Oil and Gas Jour. (July 1994).
- 19. http://www.hollandersland.com/Artificial-intelligence/Other/56822.html
- 20. http://www.codeforge.com/s/0/GMDH-NEURAL-NETWORK
- https://www.google.com.my/url?sa=f&rct=j&url=http://www.vincitechnologies.com/productsexplo.aspx%3FIDM%3D711153%26IDR%3D822
 91%26IDR2%3D82558&q=&esrc=s&ei=Hq0lUeOCI43RrQe4koDABg&us g=AFQjCNEoZit3UMAIOSUwJchzICgpyP1wBQ
- 22. http://www.pe.tamu.edu/blasingame/data/0_TAB_Grad/TAB_Grad_Thesis_A rchive/MS_013_VELARDE_Javier_TAMU_Thesis_(Aug_1996).pdf

APPENDIX

Group Method of Data Handling coding for MATLAB

• Prediction Coding

```
function Yq = gmdhpredict(model, Xq)
if nargin < 2</pre>
    error('Too few input arguments.');
end
if model.d ~= size(Xq, 2)
    error('The matrix should have the same number of columns as the
matrix with which the network was built.');
end
[n, d] = size(Xq);
Yq = zeros(n, 1);
for q = 1 : n
    for i = 1 : model.numLayers
        if i ~= model.numLayers
            Xq tmp = zeros(1, model.layer(i).numNeurons);
        end
        for j = 1 : model.layer(i).numNeurons
            numTerms = size(model.layer(i).terms(j).r,1);
            Vals = ones(numTerms, 1);
            for idx = 2 : numTerms
                bf = model.layer(i).terms(j).r(idx, :);
                t = bf > 0;
                tmp = Xq(q, model.layer(i).inputs(j,t)) .^ bf(1, t);
                if size(tmp, 2) == 1
                    Vals(idx,1) = tmp;
                else
                    Vals(idx, 1) = prod(tmp, 2);
                end
            end
            predY = model.layer(i).coefs(j,1:numTerms) * Vals;
            if i ~= model.numLayers
                Xq tmp(j) = predY;
            else
                Yq(q) = predY;
            end
        end
        if i ~= model.numLayers
            Xq(q, d+1:d+model.layer(i).numNeurons) = Xq tmp;
        end
    end
end
return
```

Correlation Development and Precision Coding

```
function gmdheq(model, precision)
if nargin < 1</pre>
    error('Too few input arguments.');
end
if (nargin < 2) || (isempty(precision))</pre>
    precision = 15;
end
if model.numLayers > 0
    p = ['%.' num2str(precision) 'g'];
    fprintf('Number of layers: %d\n', model.numLayers);
    for i = 1 : model.numLayers
        fprintf('Layer #%d\n', i);
        fprintf('Number of neurons: %d\n',
model.layer(i).numNeurons);
        for j = 1 : model.layer(i).numNeurons
             [terms inputs] = size(model.layer(i).terms(j).r);
            if (i == model.numLayers)
                str = ['y = ' num2str(model.layer(i).coefs(j,1),p)];
            else
                str = ['x' num2str(j + i*model.d) ' = '
num2str(model.layer(i).coefs(j,1),p)];
            end
            for k = 2 : terms
                if model.layer(i).coefs(j,k) >= 0
                     str = [str ' +'];
                else
                     str = [str ' '];
                end
                str = [str num2str(model.layer(i).coefs(j,k),p)];
                for kk = 1 : inputs
                     if (model.layer(i).terms(j).r(k,kk) > 0)
                         for kkk = 1 : model.layer(i).terms(j).r(k,kk)
                             if (model.layer(i).inputs(j,kk) <=</pre>
model.d)
                                 str = [str '*x'
num2str(model.layer(i).inputs(j,kk))];
                             else
                                 str = [str '*x'
num2str(model.layer(i).inputs(j,kk) + (i-2)*model.d)];
                             end
                         end
                     end
                end
            end
            disp(str);
        end
    end
else
    disp('The network has zero layers.');
end
return
```