Cementing of geothermal wells

by,

Ilangkabilan a/l Manaharan

12586

Dissertation submitted in partial fulfilment of the requirements for the Bachelor of Engineering (Hons) (Petroleum Engineering)

MAY 2013

Universiti Teknologi PETRONAS Bandar Seri Iskandar 31750 Tronoh Perak Darul Ridzuan

Supervisor: Mr. Amin Shoushtari

CERTIFICATION OF APPROVAL

Cementing of Geothermal Wells

by

Ilangkabilan a/l Manaharan

A project dissertation submitted to the Petroleum Engineering Programme Universiti Teknologi PETRONAS In partial fulfilment of the requirement for the BACHELOR OF ENGINEERING (Hons) (PETROLEUM ENGINEERING)

Approved by,

(MR. AMIN SHOUSHTARI)

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

MAY 2013

CERTIFICATE OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the original work is my own except as specified in the references and acknowledgements, and that the original work contained herein have not been undertaken or done by unspecified sources or persons.

(ILANGKABILAN A/L MANAHARAN)

ABSTRACT

This project is related to drilling of well. Once a specific depth of well is drilled, casing will be run into the well. The casing will be cemented for a better support and to seal the well. [6]

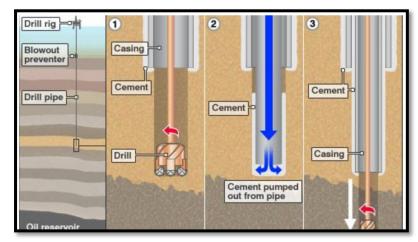


Figure 1: Drilling and cementing [9]

Drilling can only be continued after the cement slurries have reached an acceptable strength through hydration. Therefore, the drilling program can be done more efficiently if the time taken for the cement to hydrate and develop strength can be estimated. The main problem that brought up this project is, how long does it take for the cement slurry to achieve acceptable compressive strength and should temperature be considered? The aim is to determine the radius of thermal influence at cement hydration.. The objective will enable the understanding of the relationship between temperature or thermal influence and time taken for the cement hydration through the analysis of radius of thermal influence. The project mainly focuses on understanding the parameters involved in the research. The downhole temperature controls the pace of chemical reactions during hydration of cement. Besides that, the cement slurry hydrates and develops strength more rapidly with higher formation temperature. An analysis will be carried out using software to show how different formations have different waiting time for the cement to achieve strength based on radius of thermal influence. A semi-analytic formula which allows the estimation of the temperature increase versus setting time is used to describe the transient temperature at the cylinder's wall, while at the surface of the cylinder the radial heat flow rate is quadratic function of time.

TABLE OF CONTENT

1	INT	RODUCTION	1
	1.1	PROBLEM STATEMENT	2
	1.2	OBJECTIVES	3
	1.3	SCOPE OF STUDY	3
	1.4	RELEVANCY OF THE PROJECT	3
	1.5	FEASIBILITY OF THE PROJECT	4
2	LIT	ERATURE REVIEW	5
	2.1	RATE OF HEAT GENERATION VERSUS TIME	5
	2.2	TEMPERATURE INCREASE AT CEMENT HYDRATION	6
	2.3	RADIUS OF THERMAL INFLUENCE AS CEMENTING	7
	2.4	SIZE OF THE ANNULUS	8
3	ME	THODOLOGY	9
	3.1	PROCEDURAL PLAN	9
	3.2	PROCESS FLOW	0
	3.3	PROJECT WORK	1
	3.4	KEY MILESTONES	2
	3.5	GANTT CHART	4
	3.6	TOOLS REQUIRED	6
	3.7	KNOWLEDGE REQUIRED	7
4	RES	SULTS AND DISCUSSION	8
	4.1	DATA GATHERING	8
	4.2	RESULT TABULATION	0
	4.2.	I SAND	0
	4.2.2	2 SANDSTONE	3
	4.2.	3 LIMESTONE	6
	4.2.4	4 DOLOMITE	9
	4.3	DISCUSSION	2
5	CO	NCLUSION	6
6	RE	COMMENDATION AND FUTURE WORK	6
7	REI	SERENCE	7

LIST OF FIGURES

Figure 1: Drilling and cementing [9]	i
Figure 2: Typical well casing diagram [11]	1
Figure 3: Heat production rate per unit of mass as a function of time for class "G" neat	
cement at 2 different temperatures [4]	5
Figure 4: Rate of heat generation versus time hydration for cement	8
Figure 5: Maximum temperature increase versus cement ring thickness	8
Figure 6: The calculation using Matlab	9
Figure 7: Graph of radius of thermal influence versus time for sand formation	33
Figure 8: Graph of radius of thermal influence versus time for sandstone formation	33
Figure 9: Graph of radius of thermal influence versus time for limestone formation	34
Figure 10: Graph of radius of thermal influence versus time for dolomite formation	34

LIST OF TABLES

Table 1: FYP 1 key milestone	12
Table 2: FYP 2 key milestone	13
Table 3: FYP 1 Project Gantt Chart	14
Table 4: FYP 2 Project Gantt Chart	15
Table 5: Variable parameters	16
Table 6: Thermal conductivity and coefficient	
Table 7 : Constant values	19
Table 8: Sand dimensionless time	
Table 9: Sand G function	21
Table 10: Radius of thermal influence of sand	22
Table 11: Sandstone dimensionless time	23
Table 12: Sandstone G function	24
Table 13: Radius of thermal influence of sandstone	25
Table 14: Limestone dimensionless time	26
Table 15: Limestone G function	27
Table 16: Radius of thermal influence of limestone	
Table 17: Dolomite dimensionless time	29
Table 18: Dolomite G function	
Table 19: Radius of thermal influence of dolomite	31

NOMENCLATURE

q	Rate of heat generation
q_D	Dimensionless rate of heat generation
q_r	Reference rate of heat generation per unit mass
r_w	Well radius
r _c	Outside radius of casing
$ ho_c$	Density of cement
T_V	Transient temperature at the cylinder's wall
T_i	Initial temperature of formation
λ	Thermal conductivity of formations
t^*	Time since cement slurry placement
t_0	Time interval due to cement retardation
Q_D	Dimensionless cumulative heat flow rate
A_0	Reference heat flow rate per unit of length
R _{in}	Radius of thermal influence

1 INTRODUCTION

The first oil well was drilled in the year 1859 and it was a well of 69.5 feet deep in Tituville, Pennsylvania by Colonel Drake. However, a large number of wells were drilled earlier to produce water, brine and even naphtha but the first oil well was in 1859. When a well is drilled, it is regularly cased. The well is lined with a steel pipe, or casing, which is lowered into the hole under its own weight in smaller and smaller diameters as the hole gets deeper. The first length of pipe is run when the bit has drilled the surface formation and is then cemented in the hole. The casing could not be run into the borehole without it being cemented in the hole.

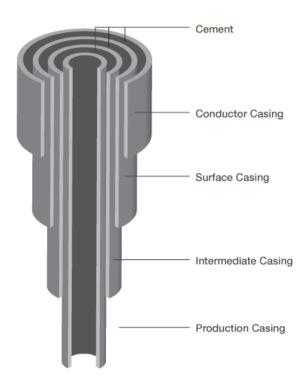


Figure 2: Typical well casing diagram [11]

Cementing is a crucial part in drilling operation. Lining a hole with casing prevents the hole from caving in after it has been drilled as well as sealing the wellbore from encroaching fluids and gasses. Cementing attaches the casing firmly to the wellbore wall and stabilizes the hole. Besides that, cementing protects and seals the wellbore. [8] An L-shaped cementing head is fixed to the top of the wellhead after casing to receive the slurry from the pumps. Two wiper plugs, or cementing plugs, that sweep the inside of the casing is used to prevent

mixing. The bottom plug is introduced into the well while keeping the drilling fluids

from mixing with the cement slurry and the cement slurry is pumped into the well behind it. The bottom plug is then caught just above the bottom of the wellbore by the float collar. This mechanism functions as a one-way valve that permits the entry of cement slurry. A top plug is pumped into the casing pushing the remaining slurry through the bottom plug after the proper volume of cement is pumped into the well. The pumps are turned off once the top plug

reaches the bottom plug and the cement is allowed to set. The time taken for the cement to harden is called thickening time. [10]

Cement slurries are influenced by temperature and pressure. These two parameters affect how long the slurry will be pumped and how it develops the strength necessary to support the pipe. The pace of chemical reaction during cement hydration is controlled by the downhole temperature. On the other side, the shut in temperature affects the time taken for the slurry to be pumped and how well it develops. This project focuses mainly on the heat transfer from the formation to the cement slurry which determines how fast the cement will reach an acceptable compressive strength. Therefore, a semi-analytical formula which enables the estimation of temperature increase versus setting time is used to describe the transient temperature at the cylinder's wall. The developer will be able to start production more effectively by estimating the time taken for the cement to achieve acceptable compressive strength at specific formation and depth. The cement slurry hydrates faster and develops strength rapidly at high formation temperature. [5]

1.1 PROBLEM STATEMENT

The main issues to be studied in this project are how long it takes for the cement slurry to achieve acceptable compressive strength and should the temperature be considered? Temperature or degrees of heat of an object to be specific in this project is the downhole temperature is not constant when different formations are involved. What is the relationship between temperature or thermal influence and time taken for cement hydration? If the temperature is not considered during cementing, there will be a very rough estimation of time taken for the cement to achieve the acceptable compressive strength. Therefore, there will be a delay in the drilling programme if the assumed time is much more than the real time taken. Consideration of temperature by calculating the heat transfer from the formation to the cement will certainly help in a more accurate assumption of time taken by the hydration of cement to achieve strength. Another problem will be, how to show the waiting time for the cement to achieve strength using considering different formations.

1.2 OBJECTIVES

The main objectives of the project are;

- To develop an analysis using software to show how different formations have different waiting time for the cement to achieve compressive strength based on radius of thermal influence of different formation.
- To determine the radius of thermal influence at cement hydration.
- To understand of the relationship between temperature or thermal influence and time taken for the cement hydration.

1.3 SCOPE OF STUDY

The project mainly focuses on understanding the parameters involved in the research. The theory of the research mainly divided into 3 parts namely, rate of heat generation versus time, temperature increase at cement hydration and radius of thermal influence as cementing. Therefore, calculations are done to obtain equations and values related to achieve the objective of the project. The composition of cement slurries is assumed constant. The thermal conductivity and the thermal diffusivity of formations are used as variable parameters.

1.4 RELEVANCY OF THE PROJECT

This project is relevant to the author's field of study as cementing is a crucial part in drilling. According to the University's curriculum structure of petroleum engineering, cementing was a part of the studies in subjects such as well completion and production, drilling engineering and advance drilling engineering. This research provides additional knowledge for the author to have better understanding not only in drilling but also process of heat transfer. This is because heat is one of the important forms of energy involved in cement hydration. Besides that, the project will enable the author to understand the whole process of drilling, casing and cementing which are the main processes in oil and gas field.

1.5 FEASIBILITY OF THE PROJECT

The project is feasible because it is within the scope and time frame. The author has planned very well the task to be done weekly for the project. The objectives of the project will be achieved at the before the end of the second semester. The first semester is dedicated in preparing the literature review as well as developing the ideas to illustrate the result whereas the second semester is used to implement the ideas to get the results. Calculations involved in the analysis are carried out in Microsoft Excel as well as the tabulation of data and the plotting of graph. However, the end result of obtaining radius of thermal influence involves complicated quadratic equation and require the use of Matlab software. Computational Method subject taken before has provided enough exposure to achieve the final result using the Matlab software.

2 LITERATURE REVIEW

2.1 RATE OF HEAT GENERATION VERSUS TIME

When cement is mixed with water, heat is produced by an exothermic reaction. This amount of heat is affected by chemical composition of the cement, additives and ambient temperature. It was observed that a quadratic equation can be used for short intervals of time to approximate the rate of heat generation (q) per unit of length as a function of time. [1], [2], [4]. Then

$$q = \pi (r_w^2 - r_c^2) \rho_c q_r q_D \tag{1}$$

and

$$q_D = a_0 + a_1 t + a_2 t^2 \quad , (2)$$

where r_w is the well radius, r_c is the outside radius of casing, ρ_c is the density of cement, q_r is the reference rate of heat generation per unit mass, q_D is the dimensionless rate of heat generation, and a_0 , a_1 , a_2 are coefficients. The rate of heat generation together with the amount of heat transferred from the formation into the slurries is the parameters required for the project. These parameters can lead to the estimation of time taken for the cement to achieve acceptable strength. This study will help the developers to save waiting time during drilling.

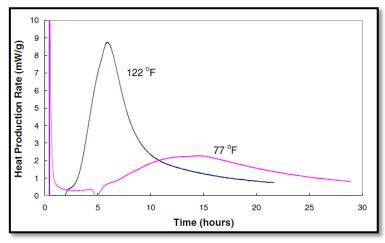


Figure 3: Heat production rate per unit of mass as a function of time for class "G" neat cement at 2 different temperatures [4]

2.2 TEMPERATURE INCREASE AT CEMENT HYDRATION

Temperature surveys following the cementing operation are used in order to locate the top of the cement column behind casing. The temperature of well casings increases significantly due to heat generation during cement hydration, which may lead to the development of thermal stresses in the casing strings and the cement behind them. The maximum value of heat generation occurs during the first 5 to 15hours [4]. Eq. (3) is a semi-analytical formula which enables to estimate the temperature increases versus setting time [3]. The radial heat flow rate at the surface of the cylinder is a quadratic function of time.

$$\Delta T = T_V(t) - T_i = \frac{A_0}{2\pi\lambda} [a_0 G_0(t) + a_1 G_1(t) + a_2 G_2(t)], \qquad (3)$$

$$G_0(t) = ln \frac{(b+2d\sqrt{t})^2}{b(b+d\sqrt{t})}, \qquad (3)$$

$$G_1(t) = -\ln(b) \left(t + \frac{B}{2}\right) - \frac{1}{2}t + \ln(b + 2d\sqrt{t}) \left(2t + \frac{B}{2}\right) + \ln(b + 2d\sqrt{t}) (B - t), \qquad (3)$$

$$G_2(t) = -\ln(b) \left(t^2 - \frac{7}{8}B^2 + Bt\right) - \frac{1}{4}(3t^2 + Bt) + \frac{3}{4}B\sqrt{Bt} + \ln(b + 2d\sqrt{t}) \left(2t^2 + \frac{1}{8}B^2 - Bt\right) - \ln(b + \sqrt{t}) (t - B)^2, \qquad (4)$$

$$b = 2.6691, d = \frac{\sqrt{a}}{r_w}, B = \frac{b^2}{d^2}, \qquad (4)$$

$$t = t^* - t_0.$$

Where T_V is the transient temperature at the cylinder's wall, T_i is the initial temperature of formations, *a* is the thermal diffusivity of formations, λ is thermal conductivity of formations, t^* is the time since cement slurry placement, t_0 is the time interval due to cement retardation. Therefore, the cement hydration starts at t = 0.

2.3 RADIUS OF THERMAL INFLUENCE AS CEMENTING

Thermal balance method is used to evaluate the value of radius of thermal influence, R_{in} for the cement hydration period. This parameter will allow estimating the degree of thermal disturbance created by the heat of the cement hydration. The dimensionless temperature distribution around the wellbore during drilling circulation can be approximated by eq. (4), (5) and (6).

$$\begin{cases} T_D(r_D, t_D) = \frac{T(r, t) - T_f}{T_w - T_f} = 1 - \frac{\ln r_D}{\ln R_{in}}, \\ R_{in} = \frac{r_{in}}{r_w}, r_D = \frac{r}{r_w}, 1 \le r_D < R_{in}. \end{cases}$$

$$t_D = \frac{at}{r_w^2} = \frac{\lambda t}{c_p \rho r_w^2}.$$
(4)
(5)

The dimensionless cumulative heat flow rate from the wellbore per unit of length (Q_D) was evaluated using eq. (6).

$$Q_D = \frac{1}{4} \frac{R_{in}^2 - 2\ln(R_{in}) - 1}{\ln(R_{in})}.$$
(6)

A quadratic function of the heat flow rate per unit length is shown through eq. (7). $q(t) = A_0(a_0 + a_1t + a_2t^2),$

where A_0 is the reference heat flow rate per unit of length. The cumulative heat flow per unit of length is

$$Q(t) = \int_0^1 q(t)dt = q_0 t (a_0 + a_1 \frac{t}{2} + a_2 \frac{t^2}{3}).$$
(8)

The cumulative heat flow per unit of length can also be shown as

$$Q = 2\pi\rho c_{p} r_{w}^{2} (T_{v} - T_{f}) Q_{D}.$$
(9)

By combining Eqs. (3), (5), (6), (8), and (9), an equation to determine radius of thermal influence, R_{in} is obtained.

$$\frac{R_{in}^{2} - 2\ln(R_{in}) - 1}{4\ln(R_{in})} \cdot \frac{a_{0}G_{0} + a_{1}G_{1} + a_{2}G_{2}}{a_{0} + \frac{a_{1}}{2}t + \frac{a_{2}}{3}t^{2}} = t_{D}$$
(10)

(7)

2.4 SIZE OF THE ANNULUS

It is clear from physical consideration that the maximum temperature anomaly caused by cement hydration depends on the actual well radius. When the well diameter is equal to the bit size which means a gauge well, the amount of cement slurry behind the casing can be estimated and transient temperature while cement hydration can be determined from formulas. To demonstrate the impact of annulus size on the maximum temperature increase, calculations are conducted using formulas listed below for a well drilled with a bit size of 12.250 inch and the outside diameter of casing is 8.625 inch. It was assumed that due to washouts the well diameter can be increased up to 8 inches. The rate of heat generation is presented in Figure 4, the density of cement slurry is $1874kg/m^3$, and the surrounding wellbore formation is sandstone. The result of calculation is presented in Figure 5. As can be seen, the hole enlargement significantly affects the maximum value of ΔT_{ch} .

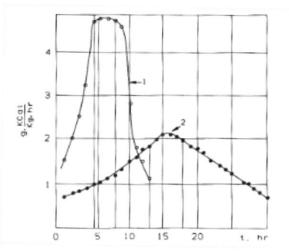


Figure 4: Rate of heat generation versus time hydration for cement

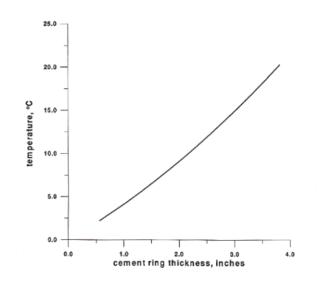


Figure 5: Maximum temperature increase versus cement ring thickness

3 METHODOLOGY

Methodology in this paper consists of the procedural plan to be followed or methods to be used in the study, key milestone, gantt-chart and tools.

3.1 PROCEDURAL PLAN

The research started by reading of books and papers related to the project. The auther started his understanding through reading the paper entitled "Cementing of Geothermal Wells" by I.M Kutasov and L.V Eppelbaum. This paper gave me the basic understanding of cementing and the parameters involved. Then, I the author referred to a book entitled "Applied Geothermics for Petroleum Engineers" by I.M. Kutasov to read about the heat transfer through porous medium. Various books and papers related to hydration heat on cement and well cementing were also used as literature review.

After a good understanding of the main idea and the parameters involved throughout the project, equations are derived and used to find the result for this paper. Matlab software is used to solve the complicated quadratic equation which involves ln function.

```
      Command Window
      →1 □ 7 ×

      >> solve ('x^2 - 1.879 *log(x) = 1')
      ^

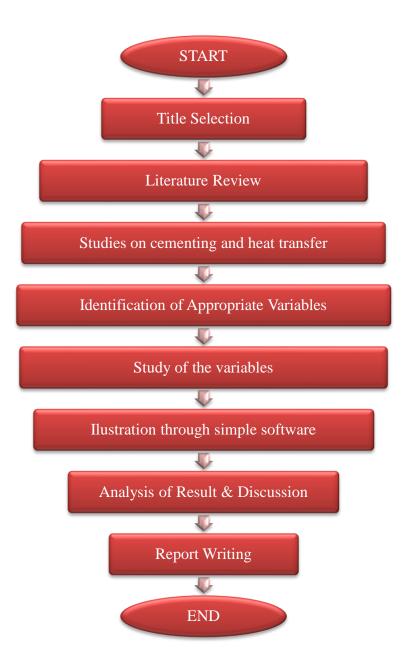
      ans =
      .93887742093863294414603001014029

      .93887742093863294414603001014029
      1.|

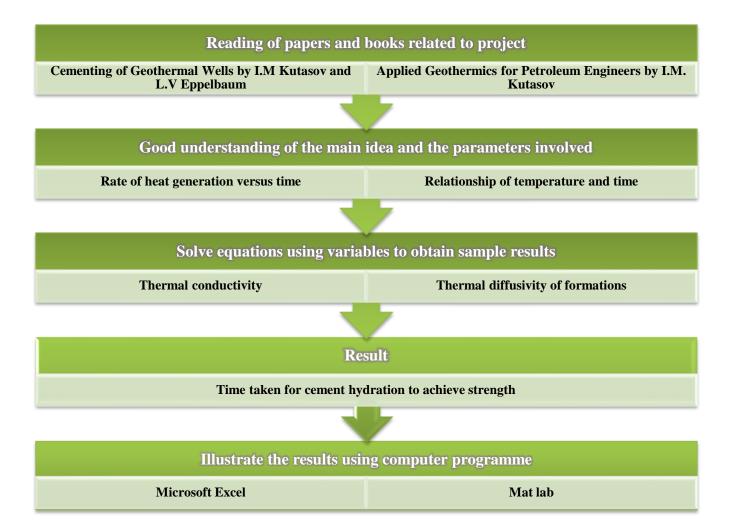
      >> solve ('x^2 - 1.858 *log(x) = 1')
      1.|

      ans =
      .92813950437120195467366955789658
      E

      .92813950437120195467366955789658
      I.


      >> solve ('x^2 - 1.853 *log(x) = 1')
      ans =

      .92557705487974714385523543397051
      I.
```


Figure 6: The calculation using Matlab

3.2 PROCESS FLOW

Below is the process flow diagram for the Project throughout Final Year Project 1(FYP1) and Final Year 2(FYP2) period. This diagram summarize the project flow and describe the activities or task that have been done and going to be done during the Final Year Project period. This is very important in order to make sure the project is going on the correct path and to know the work that have been left and have to be done in the future.

3.3 PROJECT WORK

3.4 KEY MILESTONES

The key milestone for Final Year Project consists of research which includes all the required work done to complete the project and administrative which includes the time given by administration to complete tasks such as the progress report and final report. The following is the tabulation of the key milestone of FYP 1 and FYP 2.

Event or Deliverable	Week	Responsibility
Project Selection and Acceptance by Supervisor	Week 1-2	Discuss the project topic and approval of topic from Supervisor.
Project execution initiated	Week 2-5	Research of project. Understanding theories such as drilling, cementing and heat transfer.
Submission of Extended Proposal	Week 6	Submission of Extended Proposal to FYP Coordinator
Proposal Defence (Seminar Presentation)	Week 8-9	Report on the progress of project to supervisor, fellow students and other lecturer.
Project execution continued	Week 10-12	Continue on project activities
Submission of Interim Report	Week 14	Hand in Interim Report to FYP Coordinator
FYP 2		

Event or Deliverable	Week	Responsibility
Project execution continued	Week 1-7	Obtaining data and results using Microsoft Excel.
Submission of progress report	Week 8	Submission of Progress Report to FYP Supervisor
Project execution continued	Week 9	Project continued by testing of different parameters as variables.
Pre-SEDEX	Week 10	Explain verbally to the audience through poster
Submission of Draft report	Week 11	Submission of the Final draft report to FYP Supervisor
Submission of Dissertation (soft bound) and Technical Paper	Week 12	Hand in Final Report in soft copy and Technical Paper to FYP Coordinator
Oral Presentation (viva)	Week 13	Verbally report the result and outcome to the Supervisor and External Examiner
Submission of Project Dissertation	Week 14	Hand in Final Report to FYP Coordinator

Table 2: FYP 2 key milestone

3.5 GANTT CHART

No.	Details / Weeks	1	2	3	4	5	6	7		8	9	10	11	12	13	14
1	Selection of Project Topic															
2	Preliminary Research work															
	i. Literature reviews															
	ii. Understanding the parameters								7							
3	Submission of Extended Proposal								MID							
	Proposal Defence								SEM							
	Project work continues								[BR							
	i. Literature reviews (continue)								BREAK							
	ii. Testing equations with parameters								\mathbf{x}							
	iii. Further analysis of the different formations															
	Submission of Interim Draft Report															
	Submission of Interim Report															

Table 3: FYP 1 Project Gantt Chart

No.	Details / Weeks	1	2	3	4	5	6	7		8	9	10	11	12	13	14
1	Project Work Continues															
2	Submission of Progress Report								MID	•						
3	Project Work Continues								D SEM							
4	Pre-SEDEX								îM B							
5	Submission of Draft Report								RE				●			
6	Submission of Dissertion (soft bound)								AK							
7	Submission of Technical Paper															
8	Oral Presentation (viva)														•	
9	Submission of Project Dissertation (hard bound)															

Process

Suggested Milestone

Table 4: FYP 2 Project Gantt Chart

3.6 TOOLS REQUIRED

The tools required for the project is Microsoft Word for the purpose of doing all the documentations, Microsoft Power Point for the purpose of doing project presentations. Besides that, programming software will be used to generate the results of the project using the codes developed. The software that will be use is C++ and Matlab. The following parameters will be used to show the results in the software.

Primary sediment or rock	Thermal conductivity	Diffusivity coefficient <i>a</i> ,
	coefficient λ , W/(m.k)	$10^{-7}m^2/s$
Sand:		2.54-20.43
Dry	0.18-3.49	
Moist	1.63-4.75	
Oil-saturated	2.3-4.28	
Sandstone:		2.54-20.43
Dry	0.67-6.49	
Moist	1.1-7.41	
Oil-saturated	0.84-4.24	
Limestone:		
Dry	0.69-2.51	3.91-16.94
Moist	0.92-4.4	7.8-12.0
Dolomite	1.63-6.5	8.26-16.8

3.7 KNOWLEDGE REQUIRED

There are several things that need to be understood in order to conduct the project successfully. They are:

- 1. Understanding the process of cementing
- 2. Understand the heat transfer involved between cement and formation
- 3. Understanding the relationship between temperature and time taken for cement hydration.
- 4. Understanding the study of radius of thermal influence.
- 5. Understanding the parameters involved in estimating the time taken.

Thus several papers and several books need to be referred to understand all the topics that are given above and one of the main book is "Applied Geothermics for Petroleum Engineers" by I. M. Kutasov.

4 RESULTS AND DISCUSSION

4.1 DATA GATHERING

The data required for the research is gathered from the references mentioned in the previous chapter. The main parameters to be used are thermal conductivity coefficient and diffusivity coefficient listed as follows which shows different values for different formations.

Primary sediment or rock	Thermal conductivity	Diffusivity coefficient <i>a</i> ,
	coefficient λ , W/(m.k)	$10^{-7}m^2/s$
Sand:		2.54-20.43
Dry	0.18-3.49	
Moist	1.63-4.75	
Oil-saturated	2.3-4.28	
Sandstone:		2.54-20.43
Dry	0.67-6.49	
Moist	1.1-7.41	
Oil-saturated	0.84-4.24	
Limestone:		
Dry	0.69-2.51	3.91-16.94
Moist	0.92-4.4	7.8-12.0
Dolomite	1.63-6.5	8.26-16.8

To understand the relationship between temperature and time taken for the cement hydration the values of quadratic function of time and also radius of thermal influence at different time need to be obtained. The main equation used is; Equation[10]:

$$\frac{R_{in}^2 - 2\ln(R_{in}) - 1}{4\ln(R_{in})} \cdot \frac{a_0G_0 + a_1G_1 + a_2G_2}{a_0 + \frac{a_1}{2}t + \frac{a_2}{3}t^2} = t_D$$

Where by R_{in} is radius of thermal influence, t_D is the dimensionless time, t is time, a_0 , a_1 , and a_2 is constants and G_0 , G_1 , and G_2 is functions represented by equation in following page.

$$G_0(t) = ln \frac{(b+2d\sqrt{t})^2}{b(b+d\sqrt{t})},$$

$$G_1(t) = -\ln(b)\left(t + \frac{B}{2}\right) - \frac{1}{2}t + \ln\left(b + 2d\sqrt{t}\right)\left(2t + \frac{B}{2}\right) + \ln\left(b + 2d\sqrt{t}\right)(B - t),$$

$$G_{2}(t) = -\ln(b)\left(t^{2} - \frac{7}{8}B^{2} + Bt\right) - \frac{1}{4}(3t^{2} + Bt) + \frac{3}{4}B\sqrt{Bt} + \ln(b + 2d\sqrt{t})\left(2t^{2} + \frac{1}{8}B^{2} - Bt\right) - \ln(b + \sqrt{t})(t - B)^{2},$$

$$b = 2.6691, d = \frac{\sqrt{a}}{r_w}, B = \frac{b^2}{d^2},$$

$$t_D = \frac{at}{r_w^2} = \frac{\lambda t}{c_p \rho r_w^2}$$

Table 7 : Constant values

a_0	a_1	<i>a</i> ₂
0.2211	0.4296	-0.0228

The equations and values above are used to tabulate the results using Microsoft excel to meet the objective of the research.

4.2 RESULT TABULATION

4.2.1 SAND

The tabulation of dimensionless time for the sand formation.

$\lambda \left(\frac{W}{mk}\right)$	t(hr)	$c_p \left(\frac{kJ}{kg.K}\right)$	$r_{w}(m)$	$r_w^2(m^2)$	$ ho (rac{kg}{m^3})$	t _D
1.835	1	2.01	0.127	0.016129	1874	0.030204
1.835	2	2.01	0.127	0.016129	1874	0.060408
1.835	3	2.01	0.127	0.016129	1874	0.090612
1.835	4	2.01	0.127	0.016129	1874	0.120816
1.835	5	2.01	0.127	0.016129	1874	0.151019
1.835	6	2.01	0.127	0.016129	1874	0.181223
1.835	7	2.01	0.127	0.016129	1874	0.211427
1.835	8	2.01	0.127	0.016129	1874	0.241631
1.835	9	2.01	0.127	0.016129	1874	0.271835
1.835	10	2.01	0.127	0.016129	1874	0.302039
1.835	11	2.01	0.127	0.016129	1874	0.332243
1.835	12	2.01	0.127	0.016129	1874	0.362447
1.835	13	2.01	0.127	0.016129	1874	0.392651
1.835	14	2.01	0.127	0.016129	1874	0.422855
1.835	15	2.01	0.127	0.016129	1874	0.453058
1.835	16	2.01	0.127	0.016129	1874	0.483262
1.835	17	2.01	0.127	0.016129	1874	0.513466
1.835	18	2.01	0.127	0.016129	1874	0.54367
1.835	19	2.01	0.127	0.016129	1874	0.573874
1.835	20	2.01	0.127	0.016129	1874	0.604078
1.835	21	2.01	0.127	0.016129	1874	0.634282
1.835	22	2.01	0.127	0.016129	1874	0.664486
1.835	23	2.01	0.127	0.016129	1874	0.69469
1.835	24	2.01	0.127	0.016129	1874	0.724894
1.835	25	2.01	0.127	0.016129	1874	0.755097
1.835	26	2.01	0.127	0.016129	1874	0.785301
1.835	27	2.01	0.127	0.016129	1874	0.815505
1.835	28	2.01	0.127	0.016129	1874	0.845709
1.835	29	2.01	0.127	0.016129	1874	0.875913
1.835	30	2.01	0.127	0.016129	1874	0.906117

Table 8: Sand dimensionless time

The tabulation of G function which is required to obtain radius of thermal influence for the sand formation.

$a\left(\frac{m^2}{hr}\right)$	$\lambda \left(\frac{W}{mk}\right)$	t(hr)	d	В	G ₀	G ₁	G ₂
0.004135	1.835	1	0.506306	27.79097	0.469579	-	36.48471
0.004135	1.835	2	0.506306	27.79097	0.621402	-	79.87843
0.004135	1.835	3	0.506306	27.79097	0.726059	-	127.8075
0.004135	1.835	4	0.506306	27.79097	0.807589	-	179.6037
0.004135	1.835	5	0.506306	27.79097	0.874977	-	234.9504
0.004135	1.835	6	0.506306	27.79097	0.932695	-	293.6729
0.004135	1.835	7	0.506306	27.79097	0.983329	-3.67994	355.6685
0.004135	1.835	8	0.506306	27.79097	1.028524	-1.21668	420.8751
0.004135	1.835	9	0.506306	27.79097	1.069396	-1.09331	489.2559
0.004135	1.835	10	0.506306	27.79097	1.106741	-1.24599	560.7902
0.004135	1.835	11	0.506306	27.79097	1.14115	-1.51703	635.4686
0.004135	1.835	12	0.506306	27.79097	1.173072	-1.85576	713.2893
0.004135	1.835	13	0.506306	27.79097	1.202857	-2.23949	794.256
0.004135	1.835	14	0.506306	27.79097	1.230787	-2.65629	878.3765
0.004135	1.835	15	0.506306	27.79097	1.257087	-3.09933	965.6612
0.004135	1.835	16	0.506306	27.79097	1.281946	-3.56458	1056.123
0.004135	1.835	17	0.506306	27.79097	1.305519	-4.04975	1149.776
0.004135	1.835	18	0.506306	27.79097	1.327938	-4.55384	1246.636
0.004135	1.835	19	0.506306	27.79097	1.349313	-5.07693	1346.719
0.004135	1.835	20	0.506306	27.79097	1.369742	-5.62017	1450.043
0.004135	1.835	21	0.506306	27.79097	1.389308	-6.18611	1556.624
0.004135	1.835	22	0.506306	27.79097	1.408082	-6.7792	1666.48
0.004135	1.835	23	0.506306	27.79097	1.426128	-7.40711	1779.63
0.004135	1.835	24	0.506306	27.79097	1.443503	-8.08356	1896.091
0.004135	1.835	25	0.506306	27.79097	1.460255	-8.83565	2015.881
0.004135	1.835	26	0.506306	27.79097	1.47643	-9.72827	2139.018
0.004135	1.835	27	0.506306	27.79097	1.492067	-10.9973	2265.52
0.004135	1.835	28	0.506306	27.79097	1.507201	-	2395.405
0.004135	1.835	29	0.506306	27.79097	1.521865	-	2528.691
0.004135	1.835	30	0.506306	27.79097	1.536088	-	2665.396

Table 9: Sand G function

The tabulation of time and the radius of thermal influence for sand formation

R _{in}	<i>t</i> (<i>hr</i>)
0.9388	7
0.9281	8
0.9256	9
0.9246	10
0.9246	11
0.9256	12
0.9271	13
0.9286	14
0.9312	15
0.9337	16
0.9373	17
0.9409	18
0.9445	19
0.9491	20
0.9531	21
0.9582	22
0.9633	23
0.9688	24
0.9744	25
0.9799	26
0.986	27

Table 10: Radius of thermal influence of sand

4.2.2 SANDSTONE

The tabulation of dimensionless time for the sandstone formation.

$\lambda \left(\frac{W}{mk}\right)$	t(hr)	$c_p \left(\frac{kJ}{kg.K}\right)$	$r_{w}(m)$	$r_w^2 (m^2)$	$ ho (rac{kg}{m^3})$	t _D
2.775	1	2.01	0.127	0.016129	1874	0.045676
2.775	2	2.01	0.127	0.016129	1874	0.091352
2.775	3	2.01	0.127	0.016129	1874	0.137029
2.775	4	2.01	0.127	0.016129	1874	0.182705
2.775	5	2.01	0.127	0.016129	1874	0.228381
2.775	6	2.01	0.127	0.016129	1874	0.274057
2.775	7	2.01	0.127	0.016129	1874	0.319733
2.775	8	2.01	0.127	0.016129	1874	0.36541
2.775	9	2.01	0.127	0.016129	1874	0.411086
2.775	10	2.01	0.127	0.016129	1874	0.456762
2.775	11	2.01	0.127	0.016129	1874	0.502438
2.775	12	2.01	0.127	0.016129	1874	0.548114
2.775	13	2.01	0.127	0.016129	1874	0.593791
2.775	14	2.01	0.127	0.016129	1874	0.639467
2.775	15	2.01	0.127	0.016129	1874	0.685143
2.775	16	2.01	0.127	0.016129	1874	0.730819
2.775	17	2.01	0.127	0.016129	1874	0.776495
2.775	18	2.01	0.127	0.016129	1874	0.822171
2.775	19	2.01	0.127	0.016129	1874	0.867848
2.775	20	2.01	0.127	0.016129	1874	0.913524
2.775	21	2.01	0.127	0.016129	1874	0.9592
2.775	22	2.01	0.127	0.016129	1874	1.004876
2.775	23	2.01	0.127	0.016129	1874	1.050552
2.775	24	2.01	0.127	0.016129	1874	1.096229
2.775	25	2.01	0.127	0.016129	1874	1.141905
2.775	26	2.01	0.127	0.016129	1874	1.187581
2.775	27	2.01	0.127	0.016129	1874	1.233257
2.775	28	2.01	0.127	0.016129	1874	1.278933
2.775	29	2.01	0.127	0.016129	1874	1.32461
2.775	30	2.01	0.127	0.016129	1874	1.370286

Table 11: Sandstone dimensionless time

The tabulation of G function which is required to obtain radius of thermal influence for the sandstone formation.

$a\left(\frac{m^2}{hr}\right)$	$\lambda \left(\frac{W}{mk}\right)$	t(hr)	d	В	G ₀	G ₁	<i>G</i> ₂
0.0041346	2.775	1	0.506306	27.79096531	0.469579	-	36.48471
0.0041346	2.775	2	0.506306	27.79096531	0.621402	-	79.87843
0.0041346	2.775	3	0.506306	27.79096531	0.726059	-	127.8075
0.0041346	2.775	4	0.506306	27.79096531	0.807589	-	179.6037
0.0041346	2.775	5	0.506306	27.79096531	0.874977	-	234.9504
0.0041346	2.775	6	0.506306	27.79096531	0.932695	-	293.6729
0.0041346	2.775	7	0.506306	27.79096531	0.983329	-3.67994	355.6685
0.0041346	2.775	8	0.506306	27.79096531	1.028524	-1.21668	420.8751
0.0041346	2.775	9	0.506306	27.79096531	1.069396	-1.09331	489.2559
0.0041346	2.775	10	0.506306	27.79096531	1.106741	-1.24599	560.7902
0.0041346	2.775	11	0.506306	27.79096531	1.14115	-1.51703	635.4686
0.0041346	2.775	12	0.506306	27.79096531	1.173072	-1.85576	713.2893
0.0041346	2.775	13	0.506306	27.79096531	1.202857	-2.23949	794.256
0.0041346	2.775	14	0.506306	27.79096531	1.230787	-2.65629	878.3765
0.0041346	2.775	15	0.506306	27.79096531	1.257087	-3.09933	965.6612
0.0041346	2.775	16	0.506306	27.79096531	1.281946	-3.56458	1056.123
0.0041346	2.775	17	0.506306	27.79096531	1.305519	-4.04975	1149.776
0.0041346	2.775	18	0.506306	27.79096531	1.327938	-4.55384	1246.636
0.0041346	2.775	19	0.506306	27.79096531	1.349313	-5.07693	1346.719
0.0041346	2.775	20	0.506306	27.79096531	1.369742	-5.62017	1450.043
0.0041346	2.775	21	0.506306	27.79096531	1.389308	-6.18611	1556.624
0.0041346	2.775	22	0.506306	27.79096531	1.408082	-6.7792	1666.48
0.0041346	2.775	23	0.506306	27.79096531	1.426128	-7.40711	1779.63
0.0041346	2.775	24	0.506306	27.79096531	1.443503	-8.08356	1896.091
0.0041346	2.775	25	0.506306	27.79096531	1.460255	-8.83565	2015.881
0.0041346	2.775	26	0.506306	27.79096531	1.47643	-9.72827	2139.018
0.0041346	2.775	27	0.506306	27.79096531	1.492067	-10.9973	2265.52
0.0041346	2.775	28	0.506306	27.79096531	1.507201	-	2395.405
0.0041346	2.775	29	0.506306	27.79096531	1.521865	-	2528.691
0.0041346	2.775	30	0.506306	27.79096531	1.536088	-	2665.396

Table 12: Sandstone G function

The tabulation of time and the radius of thermal influence for sandstone formation

R _{in}	<i>t</i> (<i>hr</i>)
0.9071	7
0.8905	8
0.8874	9
0.8853	10
0.8853	11
0.8869	12
0.8889	13
0.8915	14
0.8952	15
0.8993	16
0.9045	17
0.9096	18
0.9158	19
0.9225	20
0.9292	21
0.9363	22
0.9445	23
0.9526	24
0.9607	25
0.9698	26
0.9789	27

Table 13: Radius of thermal influence of sandstone

4.2.3 LIMESTONE

The tabulation of dimensionless time for the limestone formation.

$\lambda \left(\frac{W}{mk}\right)$	t(hr)	$c_p \left(\frac{kJ}{kg.K}\right)$	$r_{w}\left(m ight)$	$r_w^2(m^2)$	$\rho \left(\frac{kg}{m^3}\right)$	t _D
1.6	1	1.066	0.127	0.016129	1874	0.049658
1.6	2	1.066	0.127	0.016129	1874	0.099315
1.6	3	1.066	0.127	0.016129	1874	0.148973
1.6	4	1.066	0.127	0.016129	1874	0.19863
1.6	5	1.066	0.127	0.016129	1874	0.248288
1.6	6	1.066	0.127	0.016129	1874	0.297946
1.6	7	1.066	0.127	0.016129	1874	0.347603
1.6	8	1.066	0.127	0.016129	1874	0.397261
1.6	9	1.066	0.127	0.016129	1874	0.446918
1.6	10	1.066	0.127	0.016129	1874	0.496576
1.6	11	1.066	0.127	0.016129	1874	0.546234
1.6	12	1.066	0.127	0.016129	1874	0.595891
1.6	13	1.066	0.127	0.016129	1874	0.645549
1.6	14	1.066	0.127	0.016129	1874	0.695206
1.6	15	1.066	0.127	0.016129	1874	0.744864
1.6	16	1.066	0.127	0.016129	1874	0.794522
1.6	17	1.066	0.127	0.016129	1874	0.844179
1.6	18	1.066	0.127	0.016129	1874	0.893837
1.6	19	1.066	0.127	0.016129	1874	0.943494
1.6	20	1.066	0.127	0.016129	1874	0.993152
1.6	21	1.066	0.127	0.016129	1874	1.04281
1.6	22	1.066	0.127	0.016129	1874	1.092467
1.6	23	1.066	0.127	0.016129	1874	1.142125
1.6	24	1.066	0.127	0.016129	1874	1.191782
1.6	25	1.066	0.127	0.016129	1874	1.24144
1.6	26	1.066	0.127	0.016129	1874	1.291098
1.6	27	1.066	0.127	0.016129	1874	1.340755
1.6	28	1.066	0.127	0.016129	1874	1.390413
1.6	29	1.066	0.127	0.016129	1874	1.44007
1.6	30	1.066	0.127	0.016129	1874	1.489728

Table 14: Limestone dimensionless time

The tabulation of G function which is required to obtain radius of thermal influence for the limestone formation.

$a\left(\frac{m^2}{hr}\right)$	$\lambda \left(\frac{W}{mk}\right)$	t(hr)	d	В	G ₀	<i>G</i> ₁	G ₂
0.003753	1.6	1	0.482376	30.61671	0.450974	-	39.75637
0.003753	1.6	2	0.482376	30.61671	0.598167	-	86.77766
0.003753	1.6	3	0.482376	30.61671	0.699977	-	138.5234
0.003753	1.6	4	0.482376	30.61671	0.779471	-	194.2638
0.003753	1.6	5	0.482376	30.61671	0.845291	-	253.6464
0.003753	1.6	6	0.482376	30.61671	0.901744	-	316.4724
0.003753	1.6	7	0.482376	30.61671	0.951327	-	382.6212
0.003753	1.6	8	0.482376	30.61671	0.995627	-2.29993	452.0169
0.003753	1.6	9	0.482376	30.61671	1.035724	-1.4778	524.6117
0.003753	1.6	10	0.482376	30.61671	1.07239	-1.46326	600.3761
0.003753	1.6	11	0.482376	30.61671	1.106195	-1.65336	679.2928
0.003753	1.6	12	0.482376	30.61671	1.137576	-1.94101	761.3536
0.003753	1.6	13	0.482376	30.61671	1.166874	-2.28704	846.5565
0.003753	1.6	14	0.482376	30.61671	1.194359	-2.67279	934.9043
0.003753	1.6	15	0.482376	30.61671	1.220254	-3.08804	1026.403
0.003753	1.6	16	0.482376	30.61671	1.24474	-3.52668	1121.062
0.003753	1.6	17	0.482376	30.61671	1.267968	-3.98496	1218.892
0.003753	1.6	18	0.482376	30.61671	1.290067	-4.46056	1319.904
0.003753	1.6	19	0.482376	30.61671	1.311146	-4.95218	1424.113
0.003753	1.6	20	0.482376	30.61671	1.331297	-5.45931	1531.533
0.003753	1.6	21	0.482376	30.61671	1.350603	-5.98216	1642.179
0.003753	1.6	22	0.482376	30.61671	1.369133	-6.5217	1756.066
0.003753	1.6	23	0.482376	30.61671	1.38695	-7.07983	1873.21
0.003753	1.6	24	0.482376	30.61671	1.404108	-7.65974	1993.627
0.003753	1.6	25	0.482376	30.61671	1.420655	-8.2666	2117.334
0.003753	1.6	26	0.482376	30.61671	1.436636	-8.90909	2244.346
0.003753	1.6	27	0.482376	30.61671	1.452089	-9.60269	2374.68
0.003753	1.6	28	0.482376	30.61671	1.467048	-10.3785	2508.353
0.003753	1.6	29	0.482376	30.61671	1.481545	-11.3147	2645.38
0.003753	1.6	30	0.482376	30.61671	1.495609	-12.7354	2785.779

Table 15: Limestone G function

The tabulation of time and the radius of thermal influence for limestone formation

R _{in}	t(hr)
0.8936	8
0.8869	9
0.8843	10
0.8837	11
0.8849	12
0.8863	13
0.8889	14
0.8926	15
0.8967	16
0.9014	17
0.9071	18
0.9132	19
0.9194	20
0.9266	21
0.9343	22
0.9419	23
0.9506	24
0.9592	25
0.9683	26
0.9779	27
0.9875	28
0.9975	29
1.0075	30

Table 16: Radius of thermal influence of limestone

4.2.4 DOLOMITE

The tabulation of dimensionless time for the dolomite formation.

$\lambda \left(\frac{W}{mk}\right)$	t(hr)	$c_p\left(\frac{kJ}{kg.K}\right)$	$r_{w}\left(m ight)$	$r_w^2(m^2)$	$ ho (rac{kg}{m^3})$	t _D
4.065	1	1.0565	0.127	0.016129	1874	0.127296
4.065	2	1.0565	0.127	0.016129	1874	0.254592
4.065	3	1.0565	0.127	0.016129	1874	0.381887
4.065	4	1.0565	0.127	0.016129	1874	0.509183
4.065	5	1.0565	0.127	0.016129	1874	0.636479
4.065	6	1.0565	0.127	0.016129	1874	0.763775
4.065	7	1.0565	0.127	0.016129	1874	0.89107
4.065	8	1.0565	0.127	0.016129	1874	1.018366
4.065	9	1.0565	0.127	0.016129	1874	1.145662
4.065	10	1.0565	0.127	0.016129	1874	1.272958
4.065	11	1.0565	0.127	0.016129	1874	1.400254
4.065	12	1.0565	0.127	0.016129	1874	1.527549
4.065	13	1.0565	0.127	0.016129	1874	1.654845
4.065	14	1.0565	0.127	0.016129	1874	1.782141
4.065	15	1.0565	0.127	0.016129	1874	1.909437
4.065	16	1.0565	0.127	0.016129	1874	2.036733
4.065	17	1.0565	0.127	0.016129	1874	2.164028
4.065	18	1.0565	0.127	0.016129	1874	2.291324
4.065	19	1.0565	0.127	0.016129	1874	2.41862
4.065	20	1.0565	0.127	0.016129	1874	2.545916
4.065	21	1.0565	0.127	0.016129	1874	2.673211
4.065	22	1.0565	0.127	0.016129	1874	2.800507
4.065	23	1.0565	0.127	0.016129	1874	2.927803
4.065	24	1.0565	0.127	0.016129	1874	3.055099
4.065	25	1.0565	0.127	0.016129	1874	3.182395
4.065	26	1.0565	0.127	0.016129	1874	3.30969
4.065	27	1.0565	0.127	0.016129	1874	3.436986
4.065	28	1.0565	0.127	0.016129	1874	3.564282
4.065	29	1.0565	0.127	0.016129	1874	3.691578
4.065	30	1.0565	0.127	0.016129	1874	3.818874

Table 17: Dolomite dimensionless time

The tabulation of G function which is required to obtain radius of thermal influence for the dolomite formation.

$a\left(\frac{m^2}{hr}\right)$	$\lambda \left(\frac{W}{mk}\right)$	t(hr)	d	B	G ₀	G ₁	G ₂
0.004511	4.065	1	0.528839	25.4732	0.48684	-	33.78368
0.004511	4.065	2	0.528839	25.4732	0.642874	-	74.17546
0.004511	4.065	3	0.528839	25.4732	0.750101	-	118.9455
0.004511	4.065	4	0.528839	25.4732	0.833459	-	167.4785
0.004511	4.065	5	0.528839	25.4732	0.90225	-	219.4887
0.004511	4.065	6	0.528839	25.4732	0.961095	-	274.8222
0.004511	4.065	7	0.528839	25.4732	1.012664	-1.21206	333.3915
0.004511	4.065	8	0.528839	25.4732	1.058653	-0.80998	395.1463
0.004511	4.065	9	0.528839	25.4732	1.100211	-0.88489	460.0592
0.004511	4.065	10	0.528839	25.4732	1.138157	-1.1215	528.1174
0.004511	4.065	11	0.528839	25.4732	1.173098	-1.44272	599.3178
0.004511	4.065	12	0.528839	25.4732	1.205496	-1.81768	673.6643
0.004511	4.065	13	0.528839	25.4732	1.235711	-2.23115	751.1654
0.004511	4.065	14	0.528839	25.4732	1.264031	-2.67482	831.833
0.004511	4.065	15	0.528839	25.4732	1.290688	-3.14402	915.6814
0.004511	4.065	16	0.528839	25.4732	1.315874	-3.63637	1002.727
0.004511	4.065	17	0.528839	25.4732	1.339749	-4.15115	1092.986
0.004511	4.065	18	0.528839	25.4732	1.362447	-4.68914	1186.478
0.004511	4.065	19	0.528839	25.4732	1.384082	-5.25286	1283.222
0.004511	4.065	20	0.528839	25.4732	1.404754	-5.84722	1383.235
0.004511	4.065	21	0.528839	25.4732	1.424546	-6.48107	1486.539
0.004511	4.065	22	0.528839	25.4732	1.443532	-7.171	1593.152
0.004511	4.065	23	0.528839	25.4732	1.461779	-7.95166	1703.095
0.004511	4.065	24	0.528839	25.4732	1.479342	-8.91453	1816.386
0.004511	4.065	25	0.528839	25.4732	1.496273	-10.4983	1933.046
0.004511	4.065	26	0.528839	25.4732	1.512617	-	2053.093
0.004511	4.065	27	0.528839	25.4732	1.528413	-	2176.548
0.004511	4.065	28	0.528839	25.4732	1.543699	-	2303.429
0.004511	4.065	29	0.528839	25.4732	1.558508	-	2433.755
0.004511	4.065	30	0.528839	25.4732	1.572868	-	2567.544

Table 18: Dolomite G function

The tabulation of time and the radius of thermal influence for dolomite formation

R _{in}	t(hr)
0.6778	7
0.6559	8
0.6474	9
0.6451	10
0.6468	11
0.6519	12
0.6593	13
0.6694	14
0.6817	15
0.6956	16
0.7117	17
0.7288	18
0.7479	19
0.7681	20
0.7896	21
0.8124	22
0.8361	23
0.8608	24
0.8869	25

Table 19: Radius of thermal influence of dolomite

4.3 **DISCUSSION**

The results obtained from the steps taken to achieve the objective of the project. The dimensionless time increases as the time in hour increases for all the formations based on the observation from the tables shown in Section 4.2:

$$\frac{R_{in}^2 - 2\ln(R_{in}) - 1}{4\ln(R_{in})} \cdot \frac{a_0G_0 + a_1G_1 + a_2G_2}{a_0 + \frac{a_1}{2}t + \frac{a_2}{3}t^2} = t_D$$

In the equation above, the values of G function and dimensionless time has been calculated and tabulated using Microsoft Excel and tabulated. These values were used to determine the radius of thermal influence in order to understand the relationship between temperature and time taken for the cement hydration based on the objective of the project. A graph of radius of thermal influence versus time is plotted using the data obtained from the calculations.

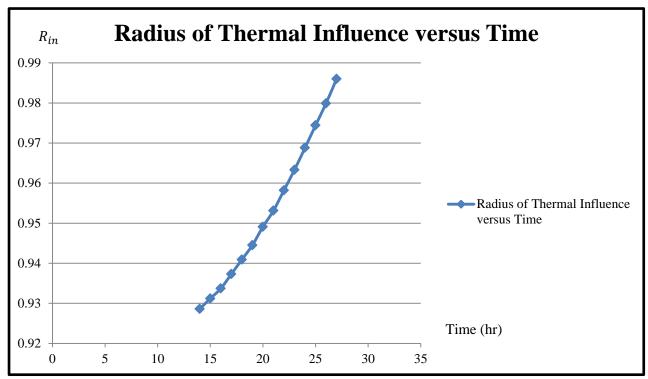


Figure 7: Graph of radius of thermal influence versus time for sand formation

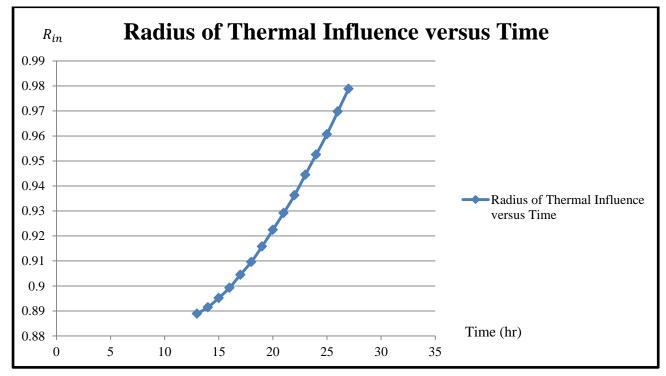


Figure 8: Graph of radius of thermal influence versus time for sandstone formation

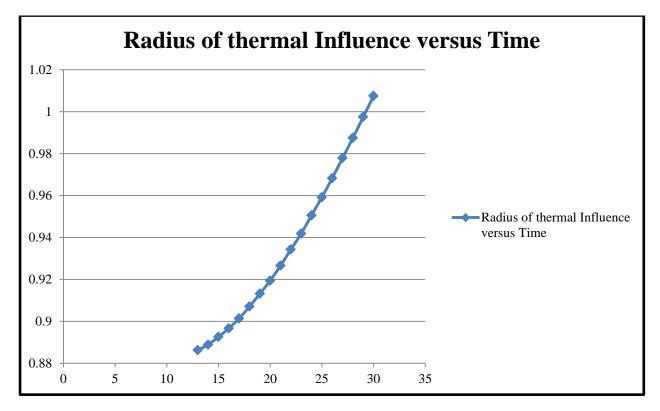


Figure 9: Graph of radius of thermal influence versus time for limestone formation

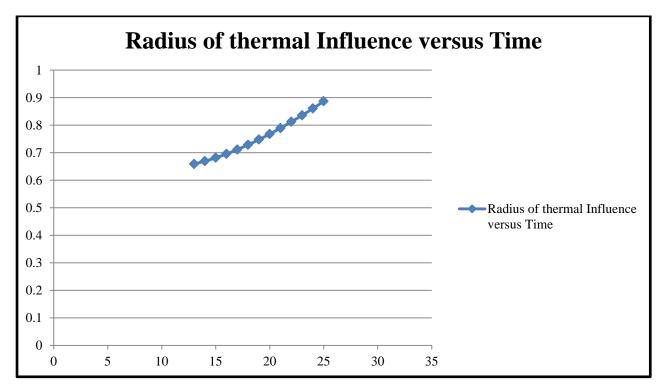


Figure 10: Graph of radius of thermal influence versus time for dolomite formation

Figure 7 shows the result of the research presented in graph for the sand formation. From the graph, it can be observed that the radius of thermal influence for sand formation increases drastically with time. The radius of thermal influence is obtained based on the thermal conductivity and diffusivity of the formation. The dimensionless radius of thermal influence is obtained using the formula;

$$\frac{R_{in}^2 - 2\ln(R_{in}) - 1}{4\ln(R_{in})} \cdot \frac{a_0G_0 + a_1G_1 + a_2G_2}{a_0 + \frac{a_1}{2}t + \frac{a_2}{3}t^2} = t_D$$

Figure 8, 9 and 10 shows the plot of the graph dimensionless radius of thermal influence against time for different formations. The results vary due to the different thermal conductivity and diffusivity coefficient of the formations. Thermal conductivity value used to form the analysis are 1.835, 2.775, 1.6 and 4.065 respectively for sand, sandstone, limestone and dolomite formation. However, the effect of thermal influence on different formation is observable on the gradient of the graph. Dolomite formation is less steep compared to other formation as it has the highest thermal conductivity value. Its shows that dolomite has the capability to transfer heat faster. The analysis allows the estimation of the degree of thermal disturbance created by the heat of cement hydration at a particular time. Therefore, on the hand, the time taken can also be estimated with the data of thermal influence. The dimensionless temperature distribution around the wellbore during drilling fluid circulation can be approximated.

5 CONCLUSION

The objective of the project so far has been successfully achieved according to the planned milestone. The cement hydration process is understood based on the studies of papers and books. The project mainly focuses on using the parameters to estimate the time. The thermal conductivity and the thermal diffusivity of formations are used as variable parameters whereas the composition of cement slurries is assumed constant. A new semi-analytical equation for estimation of the radius of thermal influence at cement hydration is proposed. The dimensionless radius of thermal influence has been obtained for different time. The relationship between temperature and time has been studied using the graph plotted.

6 RECOMMENDATION AND FUTURE WORK

The research can be continued in future to have a better understanding on this process which can help the oil and gas industry. The research can be carried out considering the moist condition of formation as moist formation has a higher thermal conductivity than the dry formation. The readings are established in tables and graph in the analysis is this paper. In future, it will be more convenient to develop coding in C++ programme to get the output values of radius of thermal influence and time in a more fast and convenient manner.

7 **REFERENCE**

- R.L Dillenbeck, T. Heinold, M.J Rogers and I.G. Mombourquette, "The effect of Cement heat Hydration on Maximum Annular Temperature of Oil and Gas wells", in SPE Annual Technical Conf, Texas, 2002.
- [2] I. M. Kutasov, Applied Geothermics for Petroleum Engineers, The Netherlands: Elsivier, 1999.
- [3] I. M. Kutasov, "Dimensionless temperatures at the wall of an infinitely long, variable-rate, cylindrical heat source," 2007, pp. 223-229.
- [4] J. Romero and M. Loizzo, "The Importance of Hydration Heat on Cement Strength Development for Deep Water Wells", at the 2000 SPE Annual Technical Conference and Exhibition, Dallas, Texas, 2000.
- [5] I. M. Kutasov and L.V. Eppelbaum, "Cementing of Geothermal Wells-Radius of Thermal Influence", Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel, 2012
- [6] J.P. Nguyen, Oil and Gas Field Development Techniques. France: Editions Technip, 1996.
- [7] E. J. William, "Casing and Cementing, 3rd. Ed., Texas: Petroleum Extension Service, 2001.
- [8] Evans Kiprotich Bett, "Geothermal Well Cementing, Materials and Placement Techniques", Geothermal Resource Development, Kenya, 2010.
- [9] Blow-out. info,: "Oil well Cement Sunk the Transocean Deep Water Horizon", (<u>http://blow-out.info/?p=26</u>) 24/2/2013
- [10] Rigzone.: "How Does Cementing Work?",
 (<u>http://www.rigzone.com/training/insight.asp?insight_id=317&c_id=23</u>). 24/2/2013

[11] Encana.: "Wellbore Construction",

(http://www.encana.com/environment/water/protection/construction.html). 10/4/2013