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ABSTRACT

The purpose of this project is to implement Model Predictive Control strategy to a

Crude Distillation Unit model and to compare it to PI controllers in terms of controller

performance. The motivation of this project comes to the fact that there is a need to

reduce CO2 emission and at the same time to reduce energy consumption within the

unit. The author has developed the CDU model using HYSYS and also in state-space

representation using MATLAB, the latter was being used to design MPC controllers.

From this project, it can be seen that the success of MPC implementation depends on

the accuracy of the plant model to represent actual process. The MPC controller proved

to be more effective in regulating the percent liquid level of the condenser but not so

effective for the other two variables being studied.
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND OF STUDY

Carbon dioxide (C02) plays a very important role in global warming, as it is one of the

greenhouse gases. Most of the current CO2 emission comes from fossil fuel combustions.

High CO2 emission is also often linked to high energy consumption. This is especially

true in distillation systems (Gadalla and co-workers, 2006).

As a result, Kyoto Protocol, a protocol to the United Nations Framework Convention on

Climate Change (UNFCCC or FCCC), has been adopted on 1997 to stabilize the

greenhouse gas emission to prevent global warming. As on 2009, 187 countries,

including Malaysia has signed and ratified the protocol.

The primary objective of the protocol is to stabilize and control greenhouse gas

concentration in the atmosphere to a "safe" level. By "safe", it means that the level of

greenhouse gas emissions will not have adverse effects on the environment and world

climate.

Therefore, over the years, process control in industry has been developed to meet the

following objectives:

1. To maintain a process at the desired operating conditions, safely and efficiently

2. To satisfy product quality and environmental requirements

New technologies in process control have emerged with better responses to changes in

process variables and more computational speed, aside from the advances in computer

technology that enable more rigorous control calculation to be made.



One of such technologies is Model Predictive Control (MPC). Although MPC has been

around in the industry since 1970s, new technologies are still underdevelopment to meet

current demands in industry. MPC has significant applications in chemicals and other

industries, aside from the traditional PID (Proportional, Integral & Derivative)

controllers and Programmable Logic Controllers (PLCs).

1.2 PROBLEM STATEMENT

Current process control approach typically uses PI controllers, with some process

utilized PID controllers. The type of controller used usually depends on the process

requirement and also the nature of the process variables, with temperature being a slow-

response variable and flow rate being the fast-response variable.

However, these controllers are not very energy-efficient, in which some cases; the

controller requires a large control move to the input to enable the output to reach its

desired set point. This large move will cause energy usage, and consequently CO2

emission to be increased. Therefore, alternative control strategy is required that can

mitigate this situation.

1.3 OBJECTIVES

The objectives of this Final Year Project are as follow:

1. To develop a steady-state and dynamic model for Crude Distillation Unit based

on actual plant data.

2. To implement Model Predictive Control strategy on the CDU plant model by

designing the appropriate MPC controllers.

3. To compare the action of the MPC controller with PI controllers in terms of its

performances.



1.4 SCOPE OF STUDY

For this project, a Crude Distillation Unit (CDU) will be controlled by using MPC

strategy. In order to apply MPC to CDU, a plant model must first be established through

simulation program from actual plant data.

From the model, MPC calculations will then be executed on the plant model and the

response from the model is then obtained and analyzed for response speed and accuracy.

Theresponse is then will be compared with thatof PI controller for its performance.

1.5 SUMMARY OF REPORT

The report starts with an introduction to the project (Chapter 1), with an outline of the

background, problem statement and objectives of study. Then, a section of the literature

review and theory behind the study, i.e. Model Predictive Control (MPC) is presented in

Chapter 2. In Chapter 2, an introduction to distillation systems, specifically thatof CDU,

will be presented. In addition, an overview of MPC concept, as well as its

characteristics, advantages and limitations is also presented. Then, the methodology of

research and project activities is outlined in the Chapter 3. After that, a detailed

description of CDU is presented in Chapter 4, together with its operating conditions. The

results of the project is presented and discussed in Chapter 5. Finally, a conclusion about

this project is made and stated in Chapter6.



CHAPTER 2

LITERATURE REVIEW

In this chapter, a discussion on C02 emission and its relation to distillation systems is

presented first. Then, an overview of MPCtechnology is presented, along with its

concept, advantages and disadvantages and also further developments in MPC.

2.1 C02 EMISSION AND DISTILLATION SYSTEMS

A distillation system such as Crude Distillation Unit (CDU) typically utilizes a lot of

energy andconsequently has significant contribution to the greenhouse gases (especially

C02) emission. This is due to the usage of heat exchange network and auxiliary units

within the CDU itself. Efforts have been made to reduce energy consumption and

consequently, to reduce CO2 emission.

There are many sources of high energy usage within the unit, some which are as below:

1. High feed preheating temperature in the column

2. Increased reflux ratio in the distillation column

3. Increased flow rate of the stripping steam at the column

By decreasing the three variables within the column, the energy consumption can be

reduced by decreasing reboiler and condenser duties. This in turn will lead to lesser CO2

emission.

2.2 CRUDE DISTILLATION UNIT

Crude distillation unit is at the core of any petroleum refinery and it is considered to be

one of the most complicated operations in the field of separation processes (Dave and

colleagues, 2003). The products from CDU are usually a mixture of hydrocarbon

compounds that canbe used as feedstock in petrochemical plants or as a source of fuel.



There are a large number of models that are available in literature (Inamdar and co

workers, 2004). These models are usually used for optimization problems, as well as for

product estimation problems. Forrefinery scheduling of crude oil unloading, storage and

processing from the CDU, a model predictive control strategy can be utilized. The next

section will give an overview of Model Predictive Control

2.3 OVERVIEW OF MODEL PREDICTIVE CONTROL

Model Predictive Control can be described as an optimization based strategy in which a

plant model is utilized together with current measurements of process variables to

predict future values of the output or control actions. The plant model must be

reasonably accurate to ensure the success of MPC.

The overall objectives of an MPC controller, as summarized by Qin and Badgwell

(2003) are:

1. To prevent violations of input and output constraints.

2. To drive some output variables to their optimal set points, while maintaining

other outputs within specific ranges.

3. To prevent excessive movement of the input variables.

4. To control as many process variables as possible when a sensor or actuator is not

available.

In MPC application, the input variables are also called manipulated variables (MV)

while the output variables are also referred to as controlled variables (CV). Disturbance

variables (DV) that can be measured are sometimes called feedforward variables. These

terms are used interchangeably in various MPC applications and literature.
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Figure 2.1: Blockdiagramfor model predictive control

Figure 2.1 shows a block diagram of a model predictive control system. A process

model is used to predict the current values of the MV, based on the measurements from

the process. The differences between the two outputs, the residuals, are then being sent

to Prediction block in feedback manner. The Prediction block is used in two types of

MPC calculations: set-point calculations and control calculations. Both of these

calculations are done at each sampling instant.

The set-point calculations are performed from an economic optimization based on a

steady-state model of the process (usually a linear model). The optimization objectives

are usually (but not limited) to maximize a profit function, to minimize a cost function

or to maximize production rate In MPC, the set-points are typically calculatedeach time

the control calculations are performed. Also, the optimum value of set-points can change

due to varying process conditions.



The objective of the MPC control calculations are to determine a sequence of control

moves or manipulated input changes so that the predicted response moves to the set

point in an optimal manner. The control calculations are based on current measurements

and predictions of future values of the outputs. The predictions can be made using a

dynamic model (typically a linear model), transfer functions or state-space models. For

non-linear processes, a non-linear dynamic model can be employed to predict future

outputs.

At the current sampling instant k, the MPC strategy calculates a set of M values of the

manipulated input u (u(k + i - I), i = 1, 2, ..., M}. After M control moves, the input is

held constant. The inputs are calculated so that a set of P predicted outputs (y(k+i), i =

1, 2, ..., P} reaches the set-point in an optimal manner. The number of predictions P is

referred to as the prediction horizon while the number of control moves M is called the

control horizon.

The following figure (Figure 2.2) illustrates the basic concept of model predictive

control, with N denotes the prediction horizon and t - t+k, k = 1, 2, ..., N denotes

sampling instant.

u(t)

t-1 I t+1

Figure 2.2: Basic concept of model predictive control (Adaptedfrom Seborg &co
workers, 2004)



2.4 CHARACTERISTICS OF MODEL PREDICTIVE CONTROL

Following below are several important characteristics of an MPC strategy:

1. Moving horizon approach

Although a sequence of M control moves is calculated at each sampling instant,

only the first move is actually implemented. Then, a new sequence is calculated

at the next sampling instant, after new measurements become available.

However, only the first input move is implemented. This procedure is repeated at

each sampling instant.

Thisprocedure utilizes the mostrecentmeasurements of the output to be usedfor

next M sampling instant. If this procedure is not used, the multistep predictions

and control moves would be based on old information which can be affected by

unmeasured disturbances.

2. Incorporation of constraints

Constraints usually come from variations or restrictions in process conditions,

equipment and instrumentations, as well as economic requirements. These can be

described as either hard constraints (constraints that cannot be violated at any

time) or soft constraints (constraints that can be tolerated for small violations).

If there are any constraints to the system, these constraints can be included in

either of the two MPC calculations described before. Consequently, MPC is very

useful for controlling constrained MIMO (multiple-input, multiple-output)

systems, since these constraints are accounted explicitly in the calculations.



3. An explicit system model used to predict future plant dynamics

A system model is important and required in MPC strategy because the model

serves as a replicate of the actual process. The model can be utilized to predict

future outputs from current process measurements and also can capture dynamic

and static interactions between MVs, CVs and DVs.

2.5 ADVANTAGES & DISADVANTAGES OF MODEL PREDICTIVE

CONTROL

MPC has several important advantages that make it one of the common advanced

process control (APC) technologies employed in industry. Theadvantages are:

1. Process and economical constraints are considered in a systematic manner.

2. The control calculations can be coordinated in a systematic manner.

3. Accurate model predictions canprovide early warning of potential problems.

4. Online computations can be performed quickly.

5. MPC controllers are easier to be tuned than other types of controllers

However, MPC also has its own disadvantages and limitations, among them are:

1. High computational cost for complex systems limits MPC applications to linear

processes with relatively slow dynamics (Rao & Rawlings, 2000)

2. Inaccurate process model canresults in inaccurate predictions andcontrol moves

for the process.

3. Several MPC models are limited to only stable, open-loop processes (Anderson

and colleagues, 2006).

Despite these limitations, MPC are still widely used in the industry, particularly in the

refineries (Jamsa-Jounela, 2007). Appendix A shows the current MPC products and

technologies that are used in the industry.



2.6 STEPS IN MODEL PREDICTIVE CONTROL CALCULATION

Outlined below is an overview of the MPC calculations. The seven steps are shown in

the orderthey areperformed at eachcontrol execution time, which for simplicity, willbe

assumed to be same as the measurement sampling instant.

Step 1: Acquire new data (CV, MV and DV values)

New process data are acquired via the regulatory control system (typically Distributed

Control System (DCS)) that is interfaced to the process.

Step 2: Update model predictions (output feedback)

After new data has been acquired, new output predictions are calculated by using the

process model together with the data.

Step 3: Determine control structure

Before each control execution, the current control structure is determined by identifying

the currently available outputs (CVs), inputs (MVs) anddisturbance variables (DVs) for

MPC calculations. The numbers of variables available can change from one time to

another for a variety of reasons, one of them being the unavailability of a sensor to

measure one particular output variable.

Thus, output variables are often classified as being critical or non-critical. If the sensor

is not available for a critical output, the MPC calculations can be stopped immediately or

after a specified number of control moves. For a similar case involving non-critical

output, the missing measurements could be replaced by model predictions or the output

could be removed from the control structure.

10



Step 4: Check for ill-conditioning

Ill-conditioning occurs when the available input have very similar effects on two or

more outputs. As a result, large input movements are required to control these output

independently. Therefore, it is important to check for ill-conditioning before executing

the MPC calculations.

If ill-conditioning is detected, three effective strategies are available:

1. Assign a priority to each output variable

2. Using singular value analysis

3. Adjusting move suppression matrix R

For the first approach, each output variable is assigned a priority. When ill-conditioning

is detected, low-priority outputs are sequentially removed from the control structure

until ill-conditioning is eliminated.

The second approach is based on singular value analysis. By omitting small singular

values, the process model can be adjusted so that it is no longer ill-conditioned. This

approach does not remove any of the output variables. However, the results depend on

how the inputs and outputs are scaled.

The final approach is basically adjusting move suppression matrix R, a design parameter

of MPC. R is a positive semi-definite matrix and is an unusually diagonal matrix with

positive diagonal elements.

Step 5: Calculate set points/targets (steady-state optimization)

After ill-conditioning has been removed, the optimum set points / targets are then been

calculated in the MPC calculations. This calculation optimizes a specified objective

function while satisfying inequality constraints.

11



Step 6: Perform control calculations (dynamic optimization)

From the set points calculated together with the predicted output before, the control

moves then can be calculated. The control moves are calculated in order to drive the

process to the desiredset point without violating constraints.

Step 7: Send MVs to the process

Finally, the calculated control moves are implemented to regulatory control loops at the

DCS level, usually as set points.

2.7 TYPES OF MODEL PREDICTIVE CONTROL

The classification of MPC system depends on the process model used in the

calculations. Typically the MPCsystem canbe described as either linear or non-linear.

A linear MPC system uses linear model x' = Ax + Bu and usually has quadratic-type

cost function

F =xTQx-huTRu

Where x = predicted error vector

u = control moves vector

R = move suppresion matrix

Q = positive-definite weighting matrix

A linear MPC also has linear constraints (usually in the form of Hx + Gu < 0) and the

program is in the quadratic form.

12



On the other hand, a non-linear MPC uses non-linear model x' = f(x, u) and its cost

function can be non-quadratic in nature, F(x, u). The constraints and program for a non

linear MPC are non-linear in nature.

2.8 FUTURE DEVELOPMENT IN MODEL PREDICTIVE CONTROL

TECHNOLOGY

MPC technologies are still evolving from the first-generation technologies developed in

the 1970s until now (fifth-generation). The following areas of MPC are possible

developments in the future:

1. Adaptive MPC

Currently, there are a few adaptive MPC algorithms, the most common being the

Generalized Predictive Control (GPC) algorithms developed by Clarke, Mohtadi and

Tuffs in 1987.

However, in the industry, only two of such algorithms have been employed:

Connoisseur from Invensys and STAR from DOT Product, despite the market

opportunity for self-tuning (adaptive) MPC controllers. Thus, there are possibilities that

more adaptive MPC technologies may emerge in the market in the future.

2. Nonlinear MPC

In the future, new MPC technologies will allow nonlinear models to be developed by

combination of process knowledge with operating measurements. In this process, first

principle models and other modelling methods may be required for data based modelling

of nonlinear systems.

13



3. Robust MPC

Robustness is an important feature of controllers as it can significantly reduces the time

required for tuning and testing of industrial MPC algorithms. Robustness can also

guarantee that the system is feasible and stable.

There is possibility that robust MPC technology to make their appearances in the

industry, since a combination of robust stability guarantees with uncertainty estimates

from identification software can greatly simplifies the design and tuning of MPC

controllers.

14



CHAPTER 3

METHODOLOGY

For the project methodology, the project started with plant model development which

consists of steady state and dynamic model by using HYSYS process flow diagram. The

project then followed by MPC design implementation which are involve with plant

testing, MPC design and implementation and lastly, the comparison with base layer

control (PI Control) are implemented.

3.1 PROJECT ACTIVITIES

For this project, the author has outlined several important steps in the project. Figure 3.1

shows the flow of the activities that the author has done throughout the project time.

15
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1. Literature Review

A literature review of the project and its underlying theory has been

conducted by the author. Among other aspects of the project that are being

reviewed are MPC applications in the industry and its advantages and

limitations.

2. Familiarization with application of HYSYS and MATLAB

Since this project will be modelling-based, it is important for the author to be

familiar with the functions and features of software that will be used

throughout this project. For the beginning, the author has attempted the

tutorials on HYSYS and MATLAB modules to understand its functions.

3. Simulation of CDU to obtain steady-state and dynamic model

After the author has familiarized with the software, the author proceeded

with simulation of the CDU plant. Dueto timeconstraints, the author decided

(with approval from supervisor) to use the HYSYS simulation tutorial for the

CDU as the plant model. The objective of the simulation is to get the CDU

steady-state and dynamic model that will be applied to the MPC on

MATLAB.

From the simulation, the author has identified three possible controlled and

manipulated variables to be utilized in thenext step. Table 3.1 shows the

simulated variables, while Table 3.2 shows the selected variables in the

CDU.

17



Table3.1: The Simulated CVs and MVsfor theAtmospheric Crude Column
( illul \ .11i.iltK M.iiii|iiiI.iUiI\. lik-

Condenser Liquid Level Reflux How Rate

Reboiler Liquid Level Kero_SS_Draw Flow Rate

Off Gas Flow Rate AtmosCond Flow Rate

AGO Stream Flow Rate AGO„SS_Draw How Rate

Diesel Stream Flow Rate Diesel_SS_Draw How Rate

Table 3.2: The Selected CVs and MVsfor theAtmospheric Crude Column

Nil ( ••iHinlliil \.iii.ililf. \ , M.ini|iiil.iiid N.iii.ihk. ii

1 yi = Condenser Liquid Level (%) ui = Reflux How Rate (mVhr)

2
y2 = AGO Liquid How Rate @ Std.
Cond. (m3/hr)

u2 = AGO_SS_Draw How Rate (mVhr)

3
y3 = Diesel Liquid How Rate @ Std.
Cond. (m3/hr)

U3 = Diesel_SS_Draw How Rate
(mVhr)

*Note: Std. Cond. @P^latmandT= 25°C

4. Performing Step-testing on the model

The author then performed step testing on the plant model to determine the

response of the CVs when a step change is imposed for each MV. From the

test, the author was able to determine the relationship between the MVs' step

changes to response of the corresponding CVs. The step test was done for

one MV at a time for all MVs. After each step change, the MV will be

brought back to its initial value to ensure the stability of the system.

Table 3.3 shows the step input moves that were used for the step testing. The

changes are at the range of 5 to 10 percent change from the initial OP

(opening percentage) of the control valve.

18



Table 2.3: The Step Input Moves CVs andMVsfor the Atmospheric Crude Column

Controller PV MV SP Input# % Change OP(%)

CondLC
% Liquid

Level

Reflux

Molar

Flow

50%

1 5 5

2 -5 0

3 6 6

4 -6 0

5 7 7

6 -7 0

7 8 8

8 -8 0

9 9 9

10 -9 0

11 10 10

12 -10 0

Diesel FC

Diesel

Liquid
Flow rate

@Std
Cond

DieselJSS
Draw

Molar

Flow

127.5

mVhr

1 -5 95

2 5 100

3 -6 94

4 6 100

5 -7 93

6 7 100

7 -8 92

8 8 100

9 -9 91

10 9 100

11 -10 90

12 10 100

AGOFC

AGO

Liquid
Flow rate

@Std
Cond

AGO_SS_
Draw

Molar

Flow

29.8

m3/hr

1 -5 95

2 5 100

3 -6 94

4 6 100

5 -7 93

6 7 100

7 -8 92

8 8 100

9 -9 91

10 9 100

11 -10 90

12 10 100
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5. Derivation of Plant Transfer Functions Model using Systems

Identification (SI) tool in MATLAB

After that, the author used System Identification tool in MATLAB to

determine respective transfer functions for all the possible variable pairs. The

controlproblemwill be in 3-by-3 system, with 3 inputs and 3 outputs.

The process model for each variable pair was estimated by FOTPD (first

order plus time delay) method.

Figure 3.2 shows the System Identification interface in MATLAB. For this

case, the tool is used to estimate the process model for the pair [yi, ui], where

yi is the condenser% liquid level and ui is the Reflux molar flow rate. Figure

3.3 shows the estimated process model for Gu. The rest of the transfer

functions are presented in the results as per Chapter 5.
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Figure3.2: System Identification Toolbox interface
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For the process model, the transfer function is in the form of:

Where Kp = ProcessGain

Tp = processtime constant

id = process time delay

6. Utilization of MATLAB and HYSYS to run MPC on plant model

The plant model from the previous activity was used on MATLAB (via

Simulink) to apply MPC strategy on the model. The MPC calculation steps as

per Figure 3.5 and Chapter 2 of this report was applied to this activity. The

resulting controller was then implemented on the plant model via HYSYS.

The results from this activity were interpreted and analysed to be compared

with that of PI controllers. Figure 3.4 shows the MPC implementation done

on CDU plant model via HYSYS.
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Acquirenew data (CV. MV and
DY values)

Update model predictions (output
feedback)

Determine control structure

Check for ill-conditioning

Calculate set points targets (steady
state optimization)

Perform control calculations (dynamic
optimization)

Send MYs to the process

Figure 3.5: Flow chartforMPC calculation (modifiedfrom Qin &Badgwell 2003).
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3.2 GANTT CHART

Figure 3.6 shows the Gantt chart and key milestones for the Final Year Project.

Item
Month

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Selection ofFYP Title

Literature Review

Progress Report 1 (FYP 1)

HYSYS & MATLAB Tutorial

Plant Model Simulation &

Dynamic Model Development

Interim Report
Plant Model Testing (including
Step-Testing and System
Identification)
MPC Controller Design

Simulation and MPC

Implementation
Comparison with PI Controllers

Progress Report I (FYP 2)

Progress Report 2 (FYP 2)

Final Report (Dissertation)
Figure 3.6: GanttChartfor FYP1 and FYPII

To ensure the project run smoothly and will be finish on time, a Gantt chart is needed.

For the FYP 1 progress, literature reviews are needed for the author to get the

understanding on project throughout the semester. For the steady state model simulation,

it was completed on June. After steady state model is simulated, the dynamic model is

the next step by using maximum two months which was finished by the end of July.

For FYP 2 planning progress, MPC design and implementation were done within two

months. After that, MPC design was done from August until September. After MPC

design is done, MPC implementation is the next step in this project and it was done

throughout October and November.
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3.3 SOFTWARE REQUIRED

The following software willbe utilized in theproject:

1. AspenTech HYSYS

HYSYS is commonsimulation softwaredevelopedby AspenTech. This software

will be used for simulation of CDU and thus, development of steady-state and

dynamic model for CDU.

2. MATLAB (with Simulinkor MPC toolbar)

MATLAB is a mathematical software and also fourth-generation programming

language developed by TheMathWorks. Forthis project, MATLAB will be used

for MPC application on the CDU dynamic model using the Model Predictive

Control toolbar available in the MATLAB.
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CHAPTER 4

PROCESS DESCRIPTION

In thisproject, a Crude Distillation Unit is being simulated using HYSYS and from this

simulation, the author has expected to obtain a steady-state and dynamic model of the

CDU. The CDU in this project consists of a pre-fractionation train and an atmospheric

crude column, as shown in Figure 4.1. The pre-fractionation train heats the crude oil,

while the atmospheric crude column separates the crude oil into its respective products

or fractions.

E3 File Edit Smulifein Ruwsheet PFD Toob Window Hdp

"1 ."-* y nga » |6 I•= x> ; jfr •&•&:&
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Figure 4.1: Overall ProcessFlowDiagram ofCDU
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Crude oil is processed in a CDUto produce several products, namely naphtha, kerosene,

diesel, atmospheric gas oil and atmospheric residues. Crude oil is first preheated and fed

to pre-flash drum, where vapours at the top of drum are separated from liquids, which

flows at the bottom of the drum. The liquid products are then heated in a furnace at a

temperature of 650 °F and the resulting hot crude is mixed with the vapour product

before beingfed to the atmospheric towerat the CDU for fractionation.
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For the purpose of simulation, the pre-flash drum is modelled as a Separator, while the

furnace is modelled as a Heater. Also, the atmospheric column is modelled as a

Refluxed Absorber with a Condenser

n File Edit SimulMion Flowsheet Column PFD Toots Window Help
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Figure 4.2: PFD ofAtmospheric Crude Tower

Figure 4.2 shows the PFD of atmospheric crude tower or column that is used to

fractionate the crude oil into its components. The column has 29 trays or stages, plus a

partial condenser. The feed, labelled "Atm Feed" enters the column on stage 28 as

shown in Figure 4.3, while the "Main Steam" stream enters the bottom stage and an

additional energy stream representing the Trim Duty enters on stage 28 as well.
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Figure 4.4: Topsection ofcolumn (includingpartial condenser)
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From Figure 4.4, it is shown that the outputs from the three-phase condenser at the top

ofcolumn are Naphta as a product and waste water (represented as "Waste H20").

The column contains three-stage side strippers; each stripper yields a straight run

product. The following figures (Figures 4.5 through 4.7) shows the three-stage strippers.

The Kerosene SideStripper contains a reboiler that produces Kerosene from the stripper,

while the Diesel SideStripper and AGO SideStripper does not contain suchreboiler; the

respective productsbeing producedvia steam stripping ofthe side streams.
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Mate SI»aB> State

•H W 0 : -H iH • /• A 9 Dynamic P/F Specs

Kero SS Return Kero__SS_Energy

Kero.S.S.

S^H^ffiraffj^^f Kero SS Reb

(ere SS Draw

Kero_SS_BoifUp

Kero SS ToReb

Diesel SS Return

Figure 4.5: KeroseneSide Stripper
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Figure 4.6: Diesel Side Stripper
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Figure 4.7: Atmospheric GasOil (AGO) Side Stripper andBottom Section ofColumn
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Figure 4.8 shows the three pump-arounds at the column; the purpose being to Tecover

process heat from the product streams and also acts as reflux, to increase the

composition ofend products ateach stage by further separation ofthe refluxed streams.

For this project, the feed enters the pre-fractionation train attemperature of232.2 °C and

pressure of 517.1 kPa, with a molar flow rate of 1730 kgmole/hr. After the train, the

heated crude oil then enters the atmospheric column at temperature of 338.5 °C and

pressure of448.2 kPa, an increase intemperature but a decrease inpressure ofcrude oil.

The molar flow rate remains unchanged after the train.
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CHAPTERS

RESULTS AND DISCUSSION

Firstly, the author has developed the dynamic model for CDU using HYSYS. The model

used is based on the simulation tutorial provided by HYSYS. As shown in Figure 5.1,

the face plates represent the control valves that are used to control the flow of the

streams.
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5.1 STEP TESTING

Figure 5.2 shows the response of the PV of Condenser LC with step change of+10%

(10% increase) from initial OP, while Figure 5.3 shows the response ofthe PV with step

change of-10% (10% decrease) from initial OP.
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Figure 5.2: Condenser LC - PVresponse to +10% step input

19.03 m

Figure 5.31: Condenser LC - PV response to -10% step input
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From Figure 5.2, it is shown that when a step input is introduced to the plant, the system

will initially increase slightly above its steady-state value and then the value of PV

decreases until it reaches its steady state value (19.05%). For the step decrease case

(Figure 5.3), the PV value will decrease to below its steady state value before increases

againuntil it reaches its steady statevalue (19.09%).

Figure 5.4 shows the response of the PV of Diesel FC with step change of+10% (10%

increase) from initial OP, while Figure 5.5 shows the response of the PV with step

changeof-10% (10% decrease) from initial OP.

-2.42ie>020 (n

Minutes
y&UsL^l£M&&^LU&£&y!^^

Figure5.42: Diesel FC - PVresponse to +10% step input
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Figure5.53: Diesel FC - PV response to -10% step input

From both figures, it can be seen that even when step change in input is introduced to

the system, the value of the PV did not change significantly from its steady state value

(7.334 x 10'21 m3/h). This is probably due to the low flow rate of the product stream

(Diesel).

Figure 5.6 shows the response of the PV of AGO LC with step change of+10% (10%

increase) from initial OP, while Figure 5.7 shows the response of the PV with step

change of-10% (10% decrease) from initial OP.

35



a-woe-as

-4.ocse-oo3

200.3 430.3

Minutes
MJfeaifeiMW

F/gwre 5.6: ,4GO FC- PVresponse to+10% stepinput

loo.o mo

Minutes

-2.421e>u2S jn

•3.1;2e-02i I!

I^Ki^!(y.a*Mia-?i«Ji!^?Jitt^ii*Si!4l^dMM?a»i4^*H-jl«I..t«<SA*ii &V-AS

Figure 5.7: AGO FC - PVresponse to -10% stepinput
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From both figures, it can be seen that even when step change in input is introduced to

the system, the value of the PV did not change significantly from its steady state value

(2.421 x 10"20 m3/h). This is probably due to the low flow rate of the product stream

(AGO).

All step-test datafor the three controllers were stored in a csv file, where the file is used

in system identification tool in MATLAB.

5.2 SYSTEM IDENTIFICATION

Table 5.1 shows the parameters for all the process models estimated by System

Identification tool. It is noted that Gyu is the transfer function for a particular MV (or u)

and CV (or y) pair.

Table 5.1: The Transfer FunctionParametersfor All Variable Pairs

Transfer Function Kp TD Td

Gil 0.0014604 1.47625 2.4203

G12 -0.0027793 177.5026 30

G13 -5.5909 x lO-5 136.5467 30

G21 1.5269 xlO-2 0.010081 0.52765

G22 -5.2072*10--" 0.01013 0.4722

G23 -1.2531 xlO'2' 0.010318 0.48041

G31 6.1182 xl0"i4 0.01056 0.4722

G32 -3.2871 x W1Z 0.010043 0.4722

G33 208383 x 10"^ 0.010503 0.4722

For the transfer function, a negative value of the process gain indicates that the process

is reverse-acting, i.e. an increase in the input will cause a decrease in the output. For a

positive value of the gain, the process is direct-acting, that is an increase in the input will

cause an increase in the output as well.
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5.3 MPC DESIGN

The author used the MPC toolbar in MATLAB to design the MPC controllers and

implement the controllers on the plant model. However, at this time, the author is only

able to come up with the state-space model of the plant. The author then used this model

to design the MPC controllers to be implemented to the CDU.

The state-space model is in the formatofmatrix notations, as follows:

k~Ax-¥ Bu

y = Cx+Du

Where A = the system matrix (n x n)

B = the input matrix (n x r)

C = the output matrix (m x n)

D = the transmission matrix (m x r)

x = process states matrix (number of states, n = 9)

u = input (manipulated) variablesmatrix (numberof inputs, r - 3)

y = output (controlled) variables matrix (number ofoutputs, m = 3)

The MATLAB m-file that is used to derive the state-space model of the CDU are as

shown:

gll=data(l,:)
gl2=data<2,:)
gl3=data(3,:)
g21=data{4,:)
g22=data{5,:)
g23=data(6,:)
g31=data(7,:)
g32=data(8,:)
g33=data(9,:);

gll=gll'

gl2=gl2'

gl3=gl3"
g21=g21'
g22=g22'

g23=g23'
g31=g31'
g32=g32'
g33=g33'

model=[gll gl2 g!3 g21 g22 g23 g31 g32 g33]

3c=l;

for i=l:3

for j=l:3

; Td^-rinie delay
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Kp(i,j)=model(k,i;
Tp(i,j)=model(k,2;
Td(i,j)=model(k,3;

k=k+l;
end

end

Li iier - P- 'i

ysc=-': j.anr.Model,: -:2 Pa

A B C D.i^linmod( JV5C!

y = >-.:=;?:. (A, B,C,D) ;

gu,
gd,
gd.

g(3,

g(3,
g(3,

l)=tf{Kp(l,D
2)=tf<Kp{l,2)
3}=tf(Kp(l,3)
l)-tf (Kp(2,l)
2)=tf(Kp(2,2)
3}=tf(Kp(2,3)
l)=tf(Kp{3,l)
2)=tf{Kp(3,2)
3)=tf(Kp(3,3)

,[Tp{l,l}
,[Tp{l,2)
, [Tp(l,3)

, tTp(2,l)
, [Tp{2,2)
, [Tp{2,3)
, [Tp{3,l)
,[Tp{3,2)
, [Tp{3,3)

1] ,'lOdelay'

1],'lOdelay'
1],'lOdelay'
1],'lOdelay'
1],'lOdelay'
1],'lOdelay'
1],'lOdelay'
1],'lOdelay'
1],'lOdelay1

,Td(l,D)
,Td(l,2))
,Td{l,3))

,Td(2,l))
,Td{2,2))

,Td{2,3))
,Td(3,l))
,Td{3,2))
,Td{3,3))

sysc_tf=[g(l,l) g(l,2) g(l,3);
sysc=ss {sysc_tf) ; \ In SS ionv

g(2rl) g{2,2) g(2,3); g{3,l) g{3,2) g(3,3)]

From the file, the state space model for the CDU is as follows:
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5.4 COMPARISON OF CONTROLLER PERFORMANCES ON CDU MODEL

After MPC implementation was done on the plant model via HYSYS, the resulting responses of

the output variables were compared with that of PI controllers. The measure used to compare

both controllers' performance is the time taken for the controller to bring the output to its steady

state value.

Figure 5.8 shows the response ofthe 1st PV (liquid level percent inside the condenser) to change

in input variable using PI controller, while Figure 5.9 shows the same PV response using MPC

controller.
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Figure 5.8: Condenser LC(PIcontroller) - liquidpercent levelfluctuations over time
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Figure 5.9: Condenser LC(MPC controller) - liquidpercent levelfluctuations over time

From Figure 5.8, the percent level was initially lower than 12% due to less liquid containment

inside the condenser at the beginning of the simulation. However, after around 360 minutes (6

hrs) of simulation, the percent liquid level increases as the control valve opening percentage

decreases to avoid more liquid being refluxed back to the column. The steady state value of the

liquid level, 19.09% has beenreached after around 420 minutes from the start of simulation.

From Figure 5.9, the controllertook less than 50 minutes to bring the percent liquid level around

its steady state value, which is 13.33%. This shows that the MPC controller takes less time to

control the liquid percent level inside the condenser than that of PI controller (50 minutes vs.,

420 minutes).

Figure 5.10 shows the response ofthe 2nd PV (AGO liquid flow rate) to change in input variable

using PI controller, while Figure 5.11 shows the same PV response using MPC controller.

42



s

2«.0 ;*oo swo jao isi: *aa coo nc.o *»o: «oo sow ass

Mnuffis
iTl-.-i •,...J,1^.JJ^,I.^.JAII,^'^l^.rlJ.I^-^^^^ MJM.MJJJJMJJJJJJt.1 ••• ihHJ••• ),»J-,M.A.«..frfrl^.l.jrfAM.i,l.|.ih.i J-fr-K.'iJ-'-r.iM-VrV.-tiYJiMte.Wi-WllWW*1-"

Figure 5.10: AGO FC(PIcontroller) - liquidflowratefluctuations over time

Minutes
m WW 11 i.vwum°™i"••" mmw-uwwwtmJ-" w WWMWM M» V '*'•*•

Figwre 5.11: AGO FC(MPC controller) - liquidflow ratefluctuations over time

From Figure 5.10, it can be seen that at the beginning of the simulation, the liquid flow rate of

AGO from the AGO side stripper isaround 1.0 m3/h. However, due to problems associated with

the pump-arounds at the column, the flow rate decreases significantly to 1.872 x 10" m /h after

around 280 minutes from the start of simulation.
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From Figure 5.11, the value of AGO flow rate is constant around 3.296x 10"21 m3/h. This is due
to material and energy balance problems inside the column that results in the significant least

amount ofAGO being produced from the side stripper.

Figure 5.12 shows the response ofthe 3rd PV (Diesel liquid flow rate) to change in input variable

using PIcontroller, while Figure 5.13 shows thesame PV response using MPC controller.
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From Figure 5.12, it can be seen that at the beginning of the simulation, the liquid flow rate of

Diesel from the Diesel side stripper is around 1.0 m3/h. However, due to problems associated

with thepump-arounds and flash calculations at thecolumn, the flow rate decreases significantly

to 0 m3/h after around 270 minutes from the start of simulation.

From Figure 5.13, the value ofDiesel flow rate is also constant around 0m3/h. This is also due to
material and energy balance problems inside thecolumn that results inthesignificantiy noDiesel

beingproduced from the side stripper.

5.5 OVERALL DISCUSSIONS ON MPC IMPLEMENTATION

From the results of controller performances, it can be seen that the plant model may not be

reasonably accurate enough to predict future inputmoves for the process model. The controller

performances canbe compared for condenser percent level butcannot be compared for theother

two variables due to insignificant steady state value and inability of the author to determine the

time taken for the output to reach steady state.

Therefore, it is important for a plantmodel to be accurate enough for successful implementation

of MPC, sincean accurate plantmodel is one of the requirements and characteristics of MPC.
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CHAPTER 6

CONCLUSION & RECOMMENDATIONS

From the project, the author was able to develop a dynamic model of CDU using HYSYS and

then the state-space model of the plant was also presented. The author was able to see the

difference ofperformances of the MPC controllers with that ofPIcontrollers interms ofspeed of

response of the CVs with step change inMVs. The author also realized the importance ofhaving

an accurate plantmodel to ensure successful implementation of MPC.

For further improvements of this project, the author would like to suggest that this model been

modified to include actual plant data from a current operating CDU. Also, the input and output

variables mustbe chosenin sucha waythat their responses to inputchanges can be seenclearly.
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APPENDIX A

MODEL PREDICTIVE CONTROL TECHNOLOGY & PRODUCTS

Table A.l summarizes the currently available MPC products mat are employed in the industry.

TableA.1: MPC Industrial Technology

Company Product Name Description MPC Type

Aspen Tech DMC-plus Dynamic Matrix Control package Linear

DMC-plus model Identification package Linear

Aspen Target Nonlinear MPC package Nonlinear

Adersa IDCOM Identification and Command Linear

HIECON Hierarchical Constraint Control Linear

PFC Predictive Functional Control Linear &

Nonlinear

Honeywell Profimatics RMPCT Robust Model Predictive Control

Technology
Linear

PCT Predictive Control Technology

Shell Global Solutions SMOC-II Shell Multivariable Optimizing
Control

Linear

Pavillion Technologies
Inc.

PP Process Perfecter Nonlinear

Invensys Connoisseur Control and Identification

Package
Linear

Continental Controls,
Inc.

MVC Multivariable Control Nonlinear

DOT Products NOVA-NLC NOVA nonlinear controller Nonlinear

Linear MPC products are usually employed by refining, petrochemicals and chemicals plants,
while nonlinear MPC products have wide applications in chemicals, polymers and air & gas

plants. (Qin& Badgwell, 2003)
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