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ABSTRACT 

Continuing trend towards deregulation and unbundling of transmission 

services has resulted in the need to measure the flow of power primarily for 

pricing and tariff purposes. Tracing methodology hence had been introduced to 

overcome problems related to the Marginal pricing of transmission costs. This 

study is twofold: the first revolves around the validation of the method and a 3600 

analysis of the proportional method which leads to a redefined power tracing 

method; the second is to further refine the proposed prediction method in [1] by 

establishing trends of the learning coefficients, using them to examine the 

relationship between accuracy and number of samples taken. Response of 
individual generators to change in demand and the corresponding associated 
losses are also presented. MATLAB with matpower4. Ob extension was used to 

present the study on the IEEE 24bus RTS. Finally a real time amenable prediction 
tool using the regression method will be proposed. 
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CHAPTER I 

INTRODUCTION 

1.1 Deregulation and the Current Energy Market 

Deregulation of the electric power industry started as early as 1996, 

where California begins to loosen controls on its energy market and takes 

measures to increase competition [2]. Similar to deregulation in any 
industry, this entailed in an increased competition in the electric power 
industry, which is now comprised of several players instead of the 

traditional monopoly by a single utility. This implies that consumers are 

presented with choices which would be determined by primarily price, 

reliability and quality of energy offered by respective retail company. 

Our current energy market, in reference to Malaysia in particular is 

in the form of a monopoly, by our national utility, Tenaga Nasional 

Berhad. The market model is also referred to as a vertically integrated 

model with a one party rule over all the services, from generation to 

distribution and retailing, illustrated in the following diagram: 

CONSUMERS 
Lghl- 
bulbs THE "UTILITY" 

LO-VOLT WIRES ESCOs RETAILING -- 
--- - ------ - kWh tý 

ýS3 
HI-VOLT WIRES +---º DISPATCH/TRADING 

kWh I 

Sbb Sbb 
GENERATION 335 

Figure 1 The Traditional Utility Structure [3] 
Boxed up entities are the building blocks of an energy market, currently 

provided solely by the utility. 
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Introduction of the independent power producers (IPP) some years 
back introduced some form of service unbundling and competition, only at 
the generation end to the energy market. Nonetheless, the utility is still the 

regulating body governing the management of the system, i. e. energy unit 

price and generation level. This however did not contribute significantly to 

consumer's benefit. 

A closer analysis of our energy system is seen to be a formation of 

several basic building blocks [3], i. e. the individual entities within the 

large box with the arrow showing the principal relationships among them 

(Figure] ). Having this in mind, the following question is given a thought: 

what is the possibility of having individual competing companies in each 

of the entities, reprising the role played by the traditional utility in that 

specific area, but with those companies in competition with each other? In 

this way, a retail company can choose to perform business transaction with 

their preferred generation company, while even be able to choose the 

transmission company. Consumers in turn will have a choice of retailers to 

purchase energy from, instead of solely from the utility in the past. This is 

called the deregulated energy market model, which is governed by the law 

of demand and supply. Of course the proposition is not for a total free 

market, especially in its inception stage but with the existence of a 

regulating body overlooking all market activities, and limited deregulation 

for starters. 

2 



CONSUMERS ss$ Energy service 
__LW1117a x. Cmmn: rn inc 

1.. (.. -_ _ýý_ 

(ESCOs) 

SSS 

LO-VOLT WIRES ' RETAILING 
. 

kWh 
--- 

Spot 

HI-VOLT WIRES ý'ý '--°14 DISPATCH/TRADING 
kWh ý //S 

Pot 
inr0 
ý sss 

GENERATION Contract SSS 

Figure 2 The deregulated market model [3] 
Notice the introduction of'the term Spot, Contract and Info in the above 

diagram, which will he the cornerstone of the following discussions. 

Trend towards deregulation and unbundling of transmission 

services proliferated in the US and Europe with the rest of the world 
jumping onto the bandwagon. Electricity is now a commodity bought and 

sold by generators, retailers (suppliers) and other traders [4] to end 

consumers like home users and the industries. Cross-border trades are 

taking place even as of now in Europe, where a generator in Norway can 
be supplying power to Denmark [5]. No commodity can be traded 

however, unless there are appropriate arrangements for its delivery and 

pricing [3]. This is represented in Figure 2 by the `Info' and `Spot' arrows 
depicting this scenario of how energy is to be priced and delivered. 

The coordination between the generation providers, transmission 

system operators (TSO) and retailers for technical operation of these sub 

entities and the commercial arbitration among them may be carried out by 

an independent system operator (ISO) for effecting power wheeling 
through agreed upon contract paths, while addressing vital attributes such 
as system security, voltage profile, losses and VAR reserves [I]. 
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Electric power flow is undefined when transmitted via the Grid, 

which poses a major question in realization of the deregulation: how is the 
flow of electric power traced in order to justify a pricing system of 

electricity and also how is coordination done to ensure those sub entities 

still function as they do under a vertically integrated structure? 

1.2 Problem Statement 

Such tool which would still uphold the functionality of a 
deregulated market by providing vital information in implementing 

coordination is power tracing. It is essentially the tracking of power flow 

path, quantity and related losses to the particular transaction. There has not 
been one proven method which was thoroughly justified to provide 

sufficiently accurate information in filling the void of the `Info' and `Spot' 

arrows in Figure 2. 

Deregulation not only reforms the way business transaction is 

performed in the energy market, but also the gencos' business strategy by 

only supplying sufficient power to meet the demand at a given point of 

time to prevent unrecovered generation cost. This is replicated in the 

retailers' approach by only purchasing sufficient power from these gencos 

to be sold to end users. However, all cost saving measures has to account 
for system reliability too because in any event of supply shortage, a 

possible major black out may be triggered. Prediction hence plays an even 

more crucial role in a deregulated market since no genco will be willing to 

generate power in excess than what is demanded. The question is now how 

to harness the information provided by any of those afore mentioned 

tracing methods in performing efficient forecasting in a deregulated energy 

market. 

Keeping in mind that deregulation would be a success if and only if 

the interests of both customers and utilities are sustained, i. e. the market 

concept of electricity (supply and demand) prevails, providing consumers 

cheaper electricity, with upheld security of system. 
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1.3 Objectives & Scope of Study 

The objective of the research will be to study existent power 
tracing methods [4,6,12,19] to perform comparisons and to discern 

feasible methods which would ultimately contribute to the adoption of it 

towards the deregulation of the energy market. The Proportional Method 

[4] is single-handedly picked out and assessed, for the sole reason that it is 

the most established and exhaustively justified, which is envisioned to fill 

up the loopholes left by the Locational Marginal Pricing (LMP) method. 

A simplification algorithm is proposed, which offers procedural 

standardisation and consistency of the method. Prediction using learning 

coefficients will be studied in the second part. Trends of the coefficients 

vs. number of samples taken will be analysed to prove the efficacy of the 

coefficients method in performing prediction. This project hence is 

twofold: first is providing the upstream and downstream algorithm with a 

more direct and straightforward approach, in terms of definitions and 

methodology, second is to establish the utilisation of learning coefficients 
in analysing the response of generators to change in demand with the 

associated losses in a deregulated energy market as an informative tool to 

market players in performing business related decisions. 

Finally a real time amenable prediction tool using the regression 

method and the learning coefficients will be proposed. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 The Locational Marginal Pricing (LMP) and Its Shortcomings 

The LMP is a market-pricing approach used to manage the 

efficient use of the transmission system to mitigate congestion in a 

transmission system. Marginal pricing is the idea that the market price of 

any commodity should be the cost of bringing to market, the last unit of 
that commodity which balances supply and demand. Hence for electricity, 
this marginal price may vary at different times and locations based on 
transmission condition [6]. 

LMP is currently the most employed method in establishing a 

pricing regime in a deregulated market system, also known as the nodal 

pricing method, which is highly volatile and provides perverse economic 

signals to the transmission company and fails to recover the incurred cost 
[7,8]. The method of incremental loss based charging may become 

negative, resulting in a negative marginal cost of loss, encouraging 

consumers to increase demand but ironically pay lesser for that increase. 

Dependency on the location of the slack bus in the LMP method would 

render the fairness of charges to be questionable. An alternative used at the 

moment is a uniform pro-rata charge, although certain users might induce 

more loss in the transmission than others, relative to the transmission path 
taken. 
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Transmission pricing regime should promote competition by 

presenting the network users a predictable, stable and practical to apply 
framework of charges while the prices should also provide signals to 

towards the efficient use, operation and expansion of the network [9]. 

2.2 The Proportional Tracing Methodology 

A relatively simple topological and straightforward method of 

tracing the flow of power in transmission network, known as the 

proportional tracing method is currently the most widely established and 

substantiated method amongst the few devised currently. This method can 
be used to allocate the charges for the reactive power, transmission 

services and transmission losses as well as the application of the method as 

a trading ground in cross border trades. Tracing methodologies have been 

proposed as an alternative to the LMP in devising a fairer pricing regime 
[10]. 

In contrary to common believe that electric power cannot be traced 

in a meshed network apart from the total current input and total current 

output at a node according to Kirchhoff's Current Law, J. Bialek et al [10] 

proved that the proportional method could be used to assess how much of 

the real and reactive power from a particular generator (station) goes to a 

particular load which simultaneously assesses the contribution of 
individual generators or loads to individual line flows. With this 

information, another algorithm was introduced, called the loss- 

apportioning which allows the breakdown of total transmission loss into 

components attributed to individual loads or generator. In this manner, 
justness is preserved where the load or generator pays for the losses it 

incurred through transmission, in layman's term: paying for what you've 

used (transmission service). 

The concept revolves around Kirchhoff's Current Law, and 
ignoring the voltage law would not introduce any further errors as the law 
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has already been used in obtaining the flow in power flow studies. The 

method suggests that in a meshed system with n nodes, m directed links 

and 2m flows, the output of a node i can be modelled as a pie chart with n 

portions, each supplied by the n number of input branches respectively. 
Consider the following network: 

Node X: 
Perfect mixer 

70 x 60/100 

60MW = 42MW 
70MW 

30MW 
30 x 60/100 
= 18MW 

Figure 3 Proportional sharing principle 

It can be said that the 70MW consists of 70 x 60/100 = 42MW 

supplied by the red line while 70 x 40/100 = 28MW supplied by the yellow 
line. The same can be stipulated for the 30MW line. Due to the nature that 

electricity is indistinguishable, it may be assumed that each MW leaving 

the node contains the same proportion of the inflows as the total nodal 
flow. Realisation of this method is done through two algorithms: the 

Upstream Algorithm which traces the gross flow (inflow) and the 

Downstream Algorithm which traces the net flow (outflow). 

2.2.1 Upstream Algorithm [101 

The total flow P, the inflow to the ih bus, is the sum of all the 
inflows through the lines connected to the bus and the local bus injection 

Pr = 
IPi-j I+P. 

jEq 
for i =1,2,... n (1) 
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where I is the set of nodes directly supplying node i, implying power flow 

towards irh node. If the line losses are neglected, then jPj_, I = IP; -jI. Equation 

(1) can be further expanded to become: 

P; = ý 
jEn 

P 
J_; P. 
pi + Pc; for i =1,2,... n (2) 

By defining cj; _ IPj. 4/Pj to express relationship between line flow 

and the nodal flow at the ph node, using proportional sharing principle jPP_; I 

= cj; Pj, substituting this in (2) yields: 

P-zjcj; Pl =PG; or A�P=Pc 
lE4 

(3) 

P is the vector of gross nodal flows; PG is the vector of nodal 

generations, while A. is called the Upstream Matrix, which elements can 
be generalized as follow: 

1 for i= j 

Ipý-rl -cý; for jc ri pi 

0 otherwise 

(4) 

The rrh element of P=A, -'PG shows the participation of the kih 

generation to the ih nodal flow and determines the relative participation of 

the nodal generations in meeting a retailer's demand, given by: 

PGk for i =1,2,.... n 
k=ý ik 

(5) 

Finally, load demand at the j-ih bus, applying the proportional 
methodology is given by: 

PLi=PL' Pi or 
Pi 

PLi n (( 1j PD - P. 
ý 

L'ý .J ii 

]PGk 
from 

ý k=1 

jEn 

i=1,2,.. n 
(6) 
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Equation (6) shows the gross demand at node i. Share of the output 

of the ih generator used to supply the k`h load demand at the point of 

generation is indicated by the respective k-i element of the AU -1 matrix. It 

can be used to trace where the power of a generator goes to. 

2.2.2 Downstream Algorithm [101 

The total flow P;, the outflow to the ih bus, is the sum of all the 

outflows through the lines connected to the bus and the local bus load 

P; =1: IP; 
_I 

I+PU 
!Ep 

for i =1,2,... n (7) 

where µ is the set of nodes directly supplied from node i, implying power 
flowing from the i" node. If the line losses are neglected, then 1P! 

-; 
I 

= IP; 
_iI. 

Equation (7) can be further expanded into: 

P; = y 
%E(! 

Pf=' 
P r prr 

+ PL; for i =1,2...., n ($) 

Defining cli= JPi_; 1/Pr expressing relationship between line flow and 

the nodal flow at the 1`h node and using proportional sharing principle, IPI-; 1 

= ci; Pl. Substituting this in (8) yields 

!Ep 

%E(! 

[1_iL]=PLI 

or AdP = Pc (9) 
fE, U 

P is the vector of net nodal powers; PL is the vector of nodal load 

demands, while Ad is called the Downstream Matrix, which elements can 
be generalized as follow: 

fori=j 

[Adli[ 
- IPr-rI -ct; - P 

forj¬p 
P 

0 otherwise 

(10) 
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The ih element of P= Ad'PL shows the distribution of the 1th nodal 

power between all the loads in the system. In summation form, 

P =E[AJ PLk for i=1,2,.... n (11) 
k=1 rk 

Finally, nodal generation as an inflow at the ih bus, applying the 

proportional methodology is given by: 

PG = 
PG' 

P; or P; 

(12) 
PG; = 

PP' [A]]P 
ý from i=1,2,... n 

r k=1 

Equation (12) shows the net generation at node i. Contribution of 

the k" generator to the ih load demand at the point of consumption is 

indicated by the respective i-k element of the Aj' matrix. It can be used to 

trace where the power of a specific load comes from. 

2.2.3 Relevancy of the Proportional Tracing Methodology 

The application of electricity tracing is to apportion losses to 

individual generators or loads. This can be done by accumulating the 

losses as the power flows to individual loads or from generators. The nodal 

loss is then assumed to be shared proportionally amongst loads (or 

generators) according to the proportional method or to the square of the 

outflows [10]. The worked out mathematics encompasses the logic in 

apportioning loss, which is not solely dependent on the load's power 
demand, but also the transmission path, as losses is proportional to the 

transmission distance which logically, the higher the losses, the higher the 

energy price will be. 
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Further establishing the rationale of proportional sharing, J. W. 

Bialek et al [4] pitches the proportional loss allocation to the square loss 

allocation (non proportional) demonstrating the loophole in the later, 

strengthening the rationality of the preceding despite well knowing that 

loss is proportional to the square of the current. Economics and 

mathematical concepts such as the game theory, Shapley value and the 
information theory [4] are evoked to strengthen the argument. The 

proportionality method thus has been painstakingly proven and 
demonstrated to be a viable tracing method. Relatively direct and simple, 

yet encompasses all aspects which would uphold fairness in determining 

pricing of electricity which is aggregation invariant. 

In [9], Bialek mentioned that the results obtained using optimal 

tracing (includes congestion pricing) in comparison with uniform, which is 

the proportional tracing, does not increase societal welfare significantly 
(an increase of only 6% in the pricing). This is supported by [I I] which 

the comparison of both methods only showed a little improvement of 
fairness with the optimal tracing. This suggests that a practical but not 

necessarily theoretically optimal methodology in power tracing is 

preferable to a theoretically optimal but complicated one [9]. 

12 



23 Optimal Tracing Method: The Commons Method 

Another issue heavily linked to power tracing is congestion 

management, where pricing derived from tracing based algorithm is 

always questioned to be reflective of the line condition at time of 

transmission or otherwise [12]. In [4], [5], [7], [9], [10], [13] and [14] 

there has been no citation of how the proportional tracing methodology 

could be used to address congestion. G. Strbac et. al [12] advocated that the 

conditions which lead to maximum flow is required to be determined, 

which then allocation of usage, where usage is apportioned among all the 

system users which contribute to the flow, should be done contingent to 

the conditions obtained. Maximum flow conditions require the 

consideration of a variety load levels and all contingencies within the 

security criteria [12] and are not to be attributed to solely peak load 

conditions. An algorithm is proposed to perform the identification of 

maximum flow conditions. 

For each load level, which was optimally suggested to be six [12], 

a security constrained optimal dispatch is performed. No further 

explanation by the authors is given as to why six load levels are chosen. 

For each load level, under normal and contingency condition, flows in all 
branches are determined. The subroutine is reiterated until the maximum 
flow condition for each branch under the specific load and contingency 

situation has been found. The whole process is then repeated for a different 

load level with their respective contingencies. No method for contingency 

selection was proposed in the paper which leaves it open for interpretation. 

As a result, large number of contingencies is anticipated to be included for 

analysis, which will lead to long load flow calculation time. Finally, 

allocation of usage of the system by individual generators and loads is 

done at this stage, upon determining the contingency case which leads to 

maximum flow. 

13 



2.4 Prediction Using Learning Coefficients 

The usage of learning coefficients in determining generators' 

optimal dispatch has been established in [15], by approximating the heat- 

rate curve of generator, shown below in Figure 4 with a generalized 

quadratic relationship in the form of H(PG) = a/PG +ß+ yPG [15], where 

a, ß and y will be solved for respectively by simultaneous equation. 

MWHIMBtu 
f 

ý Pc; iMIý) 

Figure 4 Generator Heat Rate Curve [15] 

The postulation to qualify the evocation of this method is the direct 

relationship of all the mentioned quantities to the power generated and cost 
(of generation). Essentially, the governing factor of price per unit of 

energy is the fuel consumption of the generator in supplying the demanded 

power, which is governed by the heat rate curve. Transmission losses is 

tacit within generated power for the reason that power supplied has to 

meet the demand of retailers, inclusive of losses. It is also straight forward 

that the greater the power demanded, the greater the generation level will 
be and subsequently the losses too, up to an allowable limit when no extra 

generation can take place, as observed from the heat rate curve. 

This is extended to the prediction of the (i) share of generations 

meeting a retailer's demand, (ii) retailers demand and the power loss in a 
transaction, (iii) a retailers demand and the share of the part transactions in 

a line and (iv) a retailer's demand and the losses pertaining to each of the 

transactions in a line. All the relationships assume the form of the 

aforementioned heat-rate curve of a generator. 
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Four types of learning coefficients (a,, ßj, yr), (a2ß2, y2), (a3, ß3. y3), 

and (a4, ß4, y4), need to be generated at each demand node of the network. 
Thus, there will be (ngxnpq) sets of (aj, ßj, yf), (ngxnpq) sets of (a2, ß2, y2), 
(ngxnpgxnl) sets of (a3, ß3, y3), and (ngxnpqxnl) sets of (a4, ß4, y4) to be 

generated using real time operating scenarios, during learning exercise, 

where `ng' represents number of generations, ̀ npq' represents number of 

retail or demand points and `nl' represents number of active links in an 

operating scenario. 

2.4.1 Learning relationship between a generator's contribution to a retailer's 
demand at the receiving end 

CtIL 
Pd '} fl1 + Y1Pd - Pgd (13) 

Where Pd is the total demand at a retailer's point of receipt in per 

unit (p. u. ), Pgd is a generator's contribution to a retailers demand at the 

point of receipt in p. u. 

This equation presents a relationship of the generator's end 

generated power to the power demanded where Pgd is the dependent 

variable and Pd is the independent variable. 

2.4.2 Learning relationship between a retailer's demand and the associated 
loss in a transaction 

Pd + 162 + y2Pd = Lossr (14) 

Where Pd is the total demand at a retailer's point of receipt in p. u., 
Loss, is loss in a transaction in p. u. (The difference between a generation's 

contribution to a demand at the generation end and a generation's 

contribution to a demand at the load bus, which is the result of the Sending 

Algorithm less the result of Receiving Algorithm for the same generator 

and load). 
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This equation presents a relationship of the transmission loss 

incurred supplying a given load in the system to the power demanded 

where Pgd is the dependent variable and Pd is the independent variable. 

2.4.3 Generation of the coefficients 

For improved credibility in the learning coefficients, a higher 

number of samples are to be used. As a rule of thumb, a minimum of 3 

samples suffices for the generation of a set of learning coefficients: Three 

unknowns require a minimum of three samples for the generation of one 

set of learning coefficients. The four equations presented above can then 

be solved respectively, in matrix form: 

al Pdl 
n1 

1= Pd2 
Y1 1 

Pd3 

1 
-1 

1 

1 

11 

a2 Pdi 

ß z=11 Pd2 
Yz 11 

Pd3 

Pdl 
pgdl 

Pd2 Pgd2 

Pgd3 
Pd3 

Pdl 

Pd2 

Pd3 

Lossrl 
Lossra 
Lossr3 

-1 

(15) 

(] 6) 

As the number of samples increases, the learning coefficients will 
be determined using the regression method, where x= (AA)-'A Tb for 

matrices or the form Ax = b. Addition of samples will elicit a row addition 
to the A and b matrices, changing the dimensions to a rectangular matrix. 
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CHAPTER 3 

METHODOLOGY 

3.1 Procedure Identification 

Literature Search: 
Power Tracing Methods 

I 

Critical review of the 
Proportional Method 

J Propose simplification 
algorithm 

Mathematically 

equivalent? 

Literature Search: 
Learning coefficients, 

prediction 

Critical analysis 
of combined 

results 

Figure 5 Process flow of project, from FYP Ito II 

MATLAB implementation 
of the simplification 

algorithm and prediction 
using learning coefficients 

on IEEE 24 bus system 

Validity test 

Analysis of learning 
coefficients trend and 

perform prediction 

Unsatisfactory 
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The first part of the project is geared towards the familiarization of 
the deregulated energy market, power tracing concept, methods, and 

application. After identifying proportional tracing methodology as the 

method to build on, its strengths and weaknesses are analysed, leading to 

the inception of the Simplified Algorithm, this is detailed in the Results 

and Discussion section. 

Building on the application of the tracing methodology in the 
deregulated energy market, issues such as congestion management, ATC 

and prediction are studied. The prediction methodology proposed in [1] 

was analysed, with several areas identified for refinements. MATLAB 

implementation of the tracing methodology is first implemented. The 

results are then verified manually to be mathematically correct. 
Modification is then done to the M-File to evoke the Simplified Algorithm 

instead. The results are then cross referenced with that of the original 
Proportional Methodology. For simplicity purposes, a four bus test system 
is used as input data to perform tracing. Upon verification, the programme 
is then tested on the IEEE 24 bus RTS [16]. Only upon ascertaining the 

credibility of the M-File, implementation of the prediction method through 

calculation of learning coefficients is done. 

The challenge in the implementation of the learning coefficient 

method is the data handling and addressing in the M-File, due to the sheer 

amount of learning coefficients to be dealt with, as described in the 
Literature Review section. Hence for purpose of clarity and simplicity, 

only one relationship was picked to be examined, which is the relationship 
between a generator's contribution to a retailers demand at the receiving 

end. Prior to implementation in MATLAB, careful attention is given to 

efficient manipulation and handling of data using matrices to produce a 
minimal execution time M-File coding. One set of learning coefficients is 

generated and the data plotted on graphs to analyse the trend. 
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Only upon establishing a relationship and reasoning to the trends, 

the relationship between a retailer's demand and the associated loss in a 

transaction is analysed. Load hourly demand for week I to week 52 

presented in [16] is used as data source to perform all mentioned studies. 

Next, the short term prediction of the oncoming demand using the 

learning coefficients is done. This section involves in depth analytical and 

critical review of the learning coefficient and the regression method to 

devise a prediction algorithm, where no previous references exist. The 

performance of the devised prediction method is gauged in terms of the 

mean absolute percentage error (MAPE) defined below: 

MAPS =1 EN1 
I Actual (i)-Forecast(i)I X 100 (17) 

N- Actual(i) 

In general, a MAPE of 10% is considered good, while a MAPE in the 

range 20% - 30% or even higher is quite common [17]. Hence the 

acceptance criterion for the prediction method is set to an MAPE of below 

10%. Trial and error was done continuously until the criterion is satisfied. 

Lastly, all the individual sub routines are integrated into a fully 

automated programme which would prompt the user for the load ID, week 

and hour of the day to be predicted. Upon receiving the required input, the 

programme will run and display the primary result first: the predicted 
demand in p. u. with the option to either display or suppress subsequent 
intermediate results, where the programme ends by displaying the 

estimated breakdown of power anticipated to be supplied by respective 

generators in the system and the associated losses for the predicted power 

of the particular load. 
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3.2 Actual and Planned Project Time Line 

The overall progress of the project is on time, with actual progress 

quicker than planned. All that is left in this completion phase of project is 

proper documentation of all work done. Also, the preparation of 

conference paper is brought forward instead of planned, in conjunction 

with the 4"' International Power Engineering and Optimization 

Conference, where the conference paper has been prepared and submitted 

as a proceeding to the mentioned conference. Project Gantt Chart is 

presented in Appendix A. 

3.3 Tools 

MATLAB is the sole software required. All simulations are carried 

out by first writing the codes in M-Files. The MatPower extension to 

MATLAB, developed by the Power Systems Engineering Research Centre 

(PSERC) is used to perform load flow in written M-Files. The MatPower 

extension is free for download from PSERC's homepage. 

Other indispensible resources are Bialek's conference papers on 

the Proportional Tracing methodology and the book entitled Power 

Generation, Operation and Control by Allen J. Wood and Bruce F. 

Wollenberg. 

The IEEE Reliability Test System file [16] which contains all load 

and generation data for the 24 bus IEEE Reliability Test System is used to 

obtain the detailed line, load and generator data. Of the 15 tables in the 

documentation, tables 1,2,3,4,5 and 7 were used. Tables 2,3,4,5 were 

used in conjunction with Table 1 to provide specific load demand at all 
load buses for a given time of a day in a given week of the year. 

20 



3.4 Algorithm of the Prediction Programme 

The prediction programme first prompts for the load ID, week and 
hour to be predicted. Prediction results with percentage error will be 

displayed, along with a graphical representation of the prediction done. 

Programme will then wait for prompt from user to hit any key to continue. 

It will continue to perform load flow and tracing, using the Sending 

and Receiving Algorithm for all the hourly demand data used to perform 

prediction in the preceding section, i. e. if previous 5 hours of demand is 

used to predict the oncoming demand, load flow and tracing will be 

conducted for all 5 hours respectively. Once completed, trends of 

generated power or trends of associated losses can be displayed on 3 

graphs, each plotting the trend of respective a, ß and y vs. number of 

samples for all generators in the system. 

A choice of displaying nothing can be selected if analysis of trends 

is not of interest at the moment. Finally, the programme will calculate 

using the learning coefficients obtained, the estimated values of generation 

and the associated losses in meeting the predicted oncoming demand. The 

overall process flow is illustrated in the form of a flow diagram overleaf. 
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Figure 6 Flow Chart of the Prediction Programme 
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CHAPTER 4 

RESULTS AND DISCUSSION 

4.1 The Sending and Receiving Algorithms 

The prime purpose of power tracing is to allocate losses associated 

with a particular transaction which then allows the determination of 

transmission pricing. These have been presented over the works of Bialek, 

often implicitly. It was demonstrated how the method could determine loss 

allocation to either generator or load. Bialek further went on employing 

the Downstream and the Upstream method to allocate loss and 
transmission usage. Also, the robustness of the method in yielding results 

when applied on a system with cyclic flow was demonstrated. 

It would be desirable to implement the Proportional Method in a 

more straight forward manner whereby it could be understood even by 

laypeople for transparency especially in pricing matters. The benefit of 
having a method which resembles the condition of the power system 

would also be ease of results interpretation. This is in specific reference to 

both the Upstream and Downstream matrices which are to be formed by 

merely using the power flow data of the system. The ability to directly 

relate the matrix elements to the matrices would allow direct interpretation 

of data. Also consistency in the representation of row and column of those 

matrices would eliminate confusions or possible errors. It is foreseen in a 

real time implementation, computing efficiency is of utmost importance, 

where the shortest calculation time is desirable. 
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In an attempt to imbue the upstream and downstream algorithms 

with the afore-mentioned qualities, the Sending and Receiving algorithms 
were conceived. The concept is demonstrated on the same 4 bus test 

system used in [10] shown below. 

3CCI loc. 
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ö: 

i. 
- 
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93 
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ý_ ý \_ I 

Figure 74 bus test system, from [10] 

I is 

For the 4 bus test system shown, the nodal power balance equation for bus 

P11 Piz Pis P14 
-Pi_-Pz--P3--P4 =P G1 Pl PZ P3 P4 

Where L Pi is the power level of bus i and it represents the diagonal Pi 

elements in the Au matrix which are substituted with I for the following 

reasons: 

" Maintain a non singular matrix to ensure invertibility 

" To keep the power flow equation balanced 

What was tacitly done was the following: 

Pa A-11 
P 

Pi _P Pj - Pci 
Pi 

jEa(u) 
J*i 

Where the power outflow from bus i subtracted from the bus power level 
(sum of all inflows) is equivalent to the power generated at bus i. 
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Putting the above equation into matrix form for a4 bus system: 
Pi -P12 -P13 -P14 
Pl P1 P1 P1 
P21 P2 -P23 -P24 P1 PG1 
P2 P2 P2 P2 P2 

__ 
PG2 

-P31 -P32 P3 -P32 P3 PG3 

P3 P3 p3 p3 I Lp4 J LPG4 
P41 -P42 -P43 P4 
P4 P4 P4 P4 

Factorizing the common denominator out, 

P1 -P12 -P13 -P14 P1 

-P21 P2 -P23 -P24 P2 
-P31 -P32 

P3 
-P34 

-P41 -P42 -P43 P4 
P3 

P1 pGi 
P2 PG2 
P3 PG3 

P4 P4 PG4 

Defining the left most matrix as the Sending Matrix, A. where for a 

given element of the matrix Pik, the column, j represents the sending bus 

while row, i represents the receiving bus. In congruence to the definition 

of the Upstream matrix, this matrix describes how much power bus j is 

contributing to bus i. 

The second matrix after the Sending Matrix is called the inverse 

nodal through flow power, which is sum of either the inflow or the 

outflow. The third matrix from the left is the gross power flow matrix and 

the matrix on the right side of the equation is the generation matrix. Using 

the test system shown in Figure 8, 

400 000 400 000 Pi PG1 = 400- 

-60 173 000 173 00 P2 
- 

PG2 = 114 
-225 0 300 -83 00 300 0 P3 PG3 =0 
-115 -173 0 283 000 283 P4 PC4 =0 

-1 

25 



Solving the equation above: 
Pi 400 000 400 
Pi 

-0 
173 00 -60 P3 -00 300 0 -225 

P4 000 283 -115 

Evaluating AS 1, 

400 0 
AS i= -60 173 

-225 0 

-115 -173 
P1 
P2 
P3 
P4 

gross 

v Loss factor matrix 
(loss attributed to load) 

Attributing losses to individual loads, 

L3 = (loss factor3 - 1) X PL3 = (1.0325 - 1) x 300 = 9.75MW 

L4 = (loss factor4 - 1) x PL4 = (1.0212 - 1) x 200 = 4.24MW 

which sums to 14MW of losses attributed to loads in the system. Further 

attributing losses to loads in respect to the generators contribution to 

respective load's demand: 

Table I Breakdown of generator's contribution to load's demand 

G1 G2 Total Loss 
L3 As-(3, I) X PU X PG I AS (3,2) x PU X PG2 309.75 9.75 

= 2.3027x10"3x 300 x 400 = 0.97762x10"3x 300 x 114 

= 276.32 = 33.43 
L4 A'(4,1) x Pu x PGi AS (4,2) x PIA X PG2 204.24 4.24 

= 1.5459x10"3x 200 x 400 = 1.5459x10"3x 200 x 114 

= 123.68 = 80.56 

Total 400 114 514 14 

000 -1 400 
173 00 114 

0 300 -83 0 
-173 0 283 0 

00 -1 2.5 000 
00= 10_3 0.86705 5.7803 00 

300 -83 2.3027 0.97762 3.333 0.97762 
0 283 1.5459 3.5536 0 3.5336 

400 0001 
0 173 001.0058 
00 300 0 1.0325 
000 283 1.0212 
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The whole algorithm to some point has been made intuitive with a 

more direct relation to the nature of a power system - the Sending Matrix 

was formed by only mere inspection of the power flow. 

Also, observe in the above table that the rows and columns 

corresponds to a systematic coordinate system, where the calculation of 

loss requires the (x, y) element of the AS-' matrix multiplied by the power 

of generator and load in interest. 

The same could be done to the Downstream algorithm too, but 

instead of a downstream matrix, a receiving matrix, A, is formed. Using 

the similar test system, 

400 -59 -218 -112 400 000 Pi PL1 =0 
0 173 0 -171 0 173 00 P2 PL2 =0 
00 300 000 300 0 P3 PL3 = 300 
00 -82 283 000 283 P4 PL4 = 200 

Pi 400 000 400 -59 -218 -112'-' 0 
P2 

-0 
173 000 173 0 -171 0 

P3 -00 300 000 300 0 300 
P4 

net 
000 283 00 -82 283 200 

A,. takes the transpose form of the AS matrix, but is derived from 

the power received by bus j from bus i. Upon solving, 
Pl 400 0000.9693 
Pi 

_0 
173 000.9849 

P3 -00 300 01 
P4 

net 
000 283 0.9965 

Boxed up are the factor of generator's useful power, where multiplied with 

the generator's generation level produces the actual power available to 

loads, after accounting for transmission losses. Attributing losses to 

generators: 
G1: (1 - 0.9693) x 400 = 12.28 MW 

G2: (1 - 0.9849) x 114 = 1.71MW 

which sums to 14MW of total losses attributed to generators. Notice that the total 
loss here is equivalent to that found from the Sending Algorithm. 
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Since we are more interested in looking at loss incurred by a 

generator supplying a particular load (generator's point of view), a sub 

algorithm, dubbed the Loss Tracing is proposed utilizing the two sending 

and receiving matrices: 

AS' - (AT-1)T = AL(G) 

Where AL(G) is the loss matrix from the generator's point of view. AT 1 is 

transposed to transform the shape of the matrix to mimic that of AS' where 

the 2 matrices now carry a common convention where the column 

represents the sending bus while row represents the receiving bus. Also, 

AL. c is always a positive matrix. 

Continuing the demonstration on the 4 bus system in Figure 8 with the 

found AS-' and A-' 
, 

r0000 I 
AL(G) = 10-5 1.4451 000 

7.4792 2.2944 0 1.1779 
41 qF, 1 4 nRS1 nn 4.1361 4.0851 00 

Further apportioning losses with respect to the transactions of the 

system, 

Table 2 Loss apportioning to respective generators and loads 

G1 G2 Total 

L3 AuG) -1(3,1) x P13 X PG1 AuGj-1(3,2) x P13 x PG2 9.76 

=7.4792x10'5x300x 400 = 2.2944x10'5x300 x114 

= 8.975 = 0.7847 

L4 AuGj 1(4,1) x PLa X PGI AuG)-1(4,2) x PLA X PG2 4.24 

=4.1361 x 10'5x200x 400 =1.5459x 10'3x200 x 114 

=3.31 =0.93 
Total 12.28 1.71 14 

Notice the table takes the same form as that of the Sending 

Algorithm with the same reference convention (row and column of table to 
the row and column of matrix). 
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Data interpretation has been made more explicit with close 

relations to the condition of the power system under analysis. This 

improvisation is more convenient and less confusing with one convention 

used - for a given element Pik of the As matrix, the column, j represents 

the sending bus while row, i represents the receiving bus, while the Ar 

takes the transpose form of As. 

A common matrix, which is the bus power level matrix, is created 

while changes only apply to the flow related matrices (Sending and 
Receiving). The decomposed final solution gives revelation to the loss 

factor of generators or loads, an easy way to assess extent of use of the 

system by either generator or load. 

This method has been tested on the IEEE 24 bus RTS and the 

results cross referenced with that of the original Upstream and 
Downstream Algorithms. The Sending and Receiving Algorithm yielded 

close matching results, with significant improvement seen in the 

calculation of losses where addressing of matrices has been made simpler 
by using only a single nested ̀ for' loop structure. 
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4.2 Learning Coefficients as a Prediction Tool 

4.2.1 Preamble 

While the main objective of the second part of the project is to 

establish a real time amenable prediction tool using the learning 

coefficients, the accuracy of the method in performing prediction is first 

examined through the trends of the learning coefficients generated with 
increasing number of samples employed. The process in ascertaining this 
fact also led to the discovery of greater implications of the trends with 

regards to the behaviour of generators and the associated losses in the 

system in response to increase in demand. 

The information obtained from the analysis would prove to be 

useful in a deregulated system for operators to make informed decisions in 

regards to the natural response of the power system for optimal operating 

conditions of the system under external influence (power purchasing 
decisions) by the retailers. 

4.2.2 Trends Analysis and the Learning Coefficients 

Load at bus 8 was chosen as load under inspection for prediction to 

be done, primarily for the reason of its remote location from most of the 

generators in the 24 bus system. Learning coefficients generation is to be 

performed specific to the day of the week in a particular season. Monday 

of the winter weeks: week 52 and 8 is selected at random. Subsequently, 5 

samples are selected by choosing 5 random hours within the day of week 
52, with the same done for the Monday in week 8. 
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Figure 8 IEEE 24 bus Reliability Test System [16] 

The 5 samples of the day are to be handpicked such that they 

reflect diverse load demands within a day, hence as a rule of thumb, no 

two consecutive hours are to be selected. Alternatively, the hours can be 

handpicked by emulating the 5 various time of day: midnight, beginning of 

office hours, midday, office dismissal hour and evening for a fair day/night 

hours representation. Such procedure is to ensure robustness of the 
learning coefficients since they are greatly influenced by the spread of the 

samples picked. 
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The order in which the samples are presented too, has a say on the 

values of the learning coefficients obtained. No predefined order exists or 

can be referenced to, hence at the time of simulation, a zigzag pattern is 

chosen as such, arranged from sample I to 10 for winter weeks: week52, 
12-lam; week8,2-3am; week52,4-5am; week8,7-8am; week52,8-9am; 

week8,10-11 am; week52,2-3pm; week8,4-5pm; week52,7-8pm; week8 
9-l Opm. The order of the sample points is illustrated in the table below. 

Table 3 Order of data picked for coefficient generation for winter weeks 
Hour\Week 52 8 Hour\Week 52 8 

12-1 am 111.5793 94.46732 noon-lpm 158.2094 133.9462 

Ihr -2hr 104.9178 88.82748 lhr-2hr 158.2094 133.9462 

2hr-3hr 99.92173 84.5976 2hr-3hr 154.8787 131.1263 

3hr4hr 98.25637 83.18764 3hr4hr 156.544 132.5362 

4hr-5hr 98.25637 83.18764 4hr-5hr 164.8709 139.586 

5hr-6hr 99.92173 84.5976 5hr-6hr 166.5362 140.996 

Ehr-7hr 123.2368 89.96804 6hr-7hr 166.5362 140.996 

7hr-Shr 143.2211 104.5575 7hr-8hr 159.8748 135.3562 

8hr-9hr 158.2094 133.9462 8hr-9hr 151.548 128.3064 

9hr-10hr 159.8748 135.3562 9hr-10hr 138.2251 117.0267 

10hr-11 hr 159.8748 135.3562 10hr-11 hr 121.5714 102.9271 

11-noon 158.2094 133.9462 llhr-12hr 104.9178 88.82748 
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Following ten tables are the results of the sending and receiving 

algorithm for the selected sample points: 

Table 4 week52,12-lam, demanded power = 111.5793MW 

Gen Gen End Retail End Loss 
1 0.0000 0.0000 0.0000 
2 0.0000 0.0000 0.0000 
7 106.4663 104.5743 1.8921 
13 0.4385 0.4336 0.0048 
15 0.3627 0.3503 0.0124 
16 0.5927 0.5724 0.0203 
18 0.5528 0.5265 0.0262 
21 0.6481 0.6173 0.0308 
22 0.7983 0.7501 0.0482 
23 3.8837 3.7547 0.1290 

113.7430 111.5793 2.1637 

Table 5 week8,2-3am, demanded power =84.5976MW 
Gen Gen End Retail End Loss 

1 0.0000 0.0000 0.0000 
2 0.0000 0.0000 0.0000 

7 86.1144 84.5976 1.5168 
13 0.0000 0.0000 0.0000 
15 0.0000 0.0000 0.0000 
16 0.0000 0.0000 0.0000 
18 0.0000 0.0000 0.0000 
21 0.0000 0.0000 0.0000 
22 0.0000 0.0000 0.0000 
23 0.0000 0.0000 0.0000 

86.1144 84.5976 1.5168 
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Table 6 week52,4-5am, demanded power= 98.2564MW 

Gen Gen End Retail End Loss 
1 0.0000 0.0000 0.0000 
2 0.0000 0.0000 0.0000 
7 99.1630 97.4092 1.7538 
13 0.0442 0.0438 0.0004 
15 0.0441 0.0427 0.0014 
16 0.0731 0.0708 0.0024 
18 0.0682 0.0651 0.0031 
21 0.0791 0.0755 0.0036 
22 0.0982 0.0924 0.0057 
23 0.4714 0.4568 0.0147 

100.0414 98.2564 1.7850 

Table 7 week8,7-8am, demanded power = 104.5575MW 

Gen Gen End Retail End Loss 

1 0.0000 0.0000 0.0000 
2 0.0000 0.0000 0.0000 
7 102.7191 100.8985 1.8206 

13 0.2086 0.2066 0.0020 
15 0.1900 0.1838 0.0062 
16 0.3128 0.3025 0.0103 
18 0.2918 0.2784 0.0134 
21 0.3400 0.3243 0.0157 
22 0.4205 0.3957 0.0248 
23 2.0323 1.9678 0.0646 

106.5150 104.5575 1.9575 

Table 8 week52,8-9am, demanded power = 158.2094MW 

Gen Gen End Retail End Loss 
1 0.0000 0.0000 0.0000 
2 0.0000 0.0000 0.0000 
7 115.0000 112.9032 2.0968 
13 4.7828 4.6754 0.1073 
15 1.8760 1.7912 0.0848 
16 3.7387 3.5705 0.1682 
18 3.4788 3.2769 0.2019 
21 3.4877 3.2843 0.2035 
22 4.7962 4.4561 0.3401 
23 25.3734 24.2517 1.1217 

162.5336 158.2094 4.3242 
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Table 9 week8,10-1 lam, demanded power =135.3562MW 

Gen Gen End Retail End Loss 
1 0.0000 0.0000 0.0000 
2 0.0000 0.0000 0.0000 
7 115.0000 112.9333 2.0667 
13 1.8833 1.8406 0.0426 
15 1.0641 1.0192 0.0449 
16 1.8776 1.7922 0.0855 
18 1.7491 1.6467 0.1025 
21 1.9295 1.8213 0.1082 
22 2.4796 2.3046 0.1750 
23 12.5571 11.9984 0.5586 

138.5402 135.3562 3.1840 

Table 10 week52,2-3pm, demanded power =154.8787MW 
Gen Gen End Retail End Loss 

1 0.0000 0.0000 0.0000 
2 0.0000 0.0000 0.0000 
7 115.0000 112.9082 2.0918 
13 4.2993 4.2043 0.0949 
15 1.7595 1.6810 0.0785 
16 3.4742 3.3190 0.1553 
18 3.2333 3.0466 0.1867 
21 3.2648 3.0760 0.1888 
22 4.4665 4.1513 0.3152 
23 23.5244 22.4923 1.0321 

159.0220 154.8787 4.1433 

Table 1l week8,4-5pm, demanded power = 139.5860MW 

Gen Gen End Retail End Loss 
1 0.0000 0.0000 0.0000 
2 0.0000 0.0000 0.0000 
7 115.0000 112.92 84 2.0716 
13 2.3468 2.2955 0.0513 
15 1.2167 1.1649 0.0518 
16 2.2305 2.1308 0.0997 
18 2.0774 1.9574 0.1200 
21 2.2231 2.0982 0.1249 
22 2.9182 2.7137 0.2045 
23 14.9507 14.2970 0.6537 

142.9634 139.5860 3.3774 
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Table 12 week52,7-8pm, demanded power = 159.8748MW 

Gen Gen End Retail End Lou 
1 0.0000 0.0000 0.0000 
2 0.0000 0.0000 0.0000 
7 115.0000 112.9007 2.0993 
13 5.0324 4.9184 0.1140 
15 1.9340 1.8461 0.0879 
16 3.8701 3.6953 0.1748 
18 3.6008 3.3912 0.2096 
21 3.5987 3.3878 0.2109 
22 4.9601 4.6074 0.3527 
23 26.2953 25.1279 1.1674 

164.2913 159.8748 4.4165 

Table 13 week8 9-10pm, demanded power= 117.0267MW 

Gen Gen End Retail End Loss 

1 0.0000 0.0000 0.0000 
2 0.0000 0.0000 0.0000 
7 109.2287 107.2832 1.9455 
13 0.6528 0.6449 0.0079 
15 0.5033 0.4856 0.0178 

16 0.8180 0.7891 0.0289 
18 0.7627 0.7257 0.0370 
21 0.8985 0.8548 0.0437 
22 1.1033 1.0355 0.0678 
23 5.3934 5.2080 0.1854 

1193608 117.0267 23341 

The same procedure is repeated for summer weeks, where week 20 

and week 28 were used, with the same pattern of hourly demands 

employed for the winter weeks to generate the coefficients, shown in 

Table 14 overleaf. 
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Table 14 Order of data picked for coefficient generation for summer 
weeks 

Hour\Week 20 28 Hour\Week 20 28 

12-1 am 98.52227 91.35701 noon-lpm 152.4016 141.3179 

lhr -2hr 92.36462 85.6472 lhr-2hr 153.941 142.7453 

2hr-3hr 89.2858 82.79229 2hr-3hr 153.941 142.7453 

3hr4hr 89.2858 82.79229 3hr4hr 149.3228 138.463 

4hr-5hr 86.20698 79.93738 4hr-5hr 147.7834 137.0355 

5hr-6hr 89.2858 82.79229 5hr-6hr 147.7834 137.0355 

6hr-Ihr 98.52227 91.35701 6hr-Ihr 143.1652 132.7532 

7hr-5hr 116.9952 108.4864 Ihr-8hr 141.6258 131.3257 

Shr-9hr 133.9287 124.1884 8hr-9hr 141.6258 131.3257 

9hr-10hr 146.244 135.6081 9hr-10hr 143.1652 132.7532 

10hr-l lhr 152.4016 141.3179 10hr-1 lhr 133.9287 124.1884 

11-noon 153.941 142.7453 ll hr-12hr 110.8375 102.7766 
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4.2.2.1 Generator's Contribution to a Retailer's Demand at the 
Receiving End 

The relationship being learnt is the generator's contribution to a 

retailer's demand at the receiving end. For the IEEE 24 bus system with 10 

generators and 10 samples with 4 samples as base case, there are 
10 x (10 - 4) = 70 of a1, ßl and yl respectively, totalling up to 210 

coefficients for one relationship under study. Since the trends of the 

coefficients are the subject under study, they are plotted on 3 graphs for 

representation purposes illustrated below: 
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The number of trends on a single graph (Figure 10,11,12 

respectively) is equivalent to the number of generators supplying load 8. 

This translates to 8 trends in each graph, with each generator having 3 

trends: one for a,, ßi and y, respectively. Notice that all trends converge 

with increasing number of samples. Using the values of a,, ßi and y, at 
the point of ten samples to predict the generator's contribution to a 

retailer's demand at the receiving end, the results obtained is highly 

accurate with deviation from the actual results, obtained from load flow by 

only a mere 0.03%. Hence the better the representation of data/samples 

are, the more precise the prediction will be. 

The trends and magnitude of the coefficients provide information 

pertaining to the response of generators in the system to increase in 

demand. Generators with diminutive contribution to the demanded power 
have near zero coefficients, while generators with larger contribution, 

notably generators 7 and 23 have greater magnitude, either positively or 

negatively. This provides an indication to the respective contribution of the 

generators in supplying the demand of a load. 

Closely examining trends of several generators, particularly 

generator 23 and 13 reveals a very imperceptible up tending trend before 

flattening out with increase in sample, shown in the series of figures below 

by using the trends of 02. 
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Figure 12 Trend comparison of G13 - winter weeks 
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Returning to the schematic diagram of the IEEE 24 bus RTS, it is 

observed that both these generators are in the closest proximity to bus 8, 

which naturally becomes the first choice of power source for a marginal 
increase in demand. Increase of power demanded is regarded on a 

marginal basis and so is the cost of delivery. From the tracing results 
(Tables 4 to 13) presented above, G13 is observed to have a greater 
contribution in meeting the marginal increase in demand, particularly in 

Table 12 where contribution of G13 begins to surpass G22. Shown below 

are the tracing results of imaginary demand at bus 8 to establish the 
hypothesis put forward. 

Table 15 Tracing results for demanded power of 170MW 

Gen Gen End Retail End Loss 
1 0 0 0 
2 0 0 0 
7 115 112.8840806 2.1159193 68 
13 6.664264808 6.503272562 0.160992246 
15 2.283396662 2.175353722 0.10804294 
16 4.65734992 4.440914891 0.216435029 
18 4.330980423 4.073348781 0.257631642 
21 4.266156932 4.008867603 0.257289329 
22 5.94304572 5.512194954 0.430850766 
23 31.86071076 30.40196685 1.458743905 

175.0059052 170 5.005905225 

Table 16 Tracing results for demanded power of 200MW 

Gen Gen End Retail End Loss 
1 0 0 0 
2 0 0 0 
7 115 112.821844 2.178155965 
13 12.66351538 12.28327129 0.380244092 
15 3.288441067 3.112850184 0.175590882 
16 6.880626381 6.525289055 0.355337326 
18 6.388503501 5.97602191 0.412481591 
21 6.17652348 5.768176571 0.40834691 
22 8.728006674 8.049752679 0.678253996 
23 47.91617547 45.46279427 2.453381198 

207.041792 200 7.041791959 
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While G7 has attained maximum operating limit at 115MW, it can 
be deduced that the sole reason G 13 begins to contribute more to meeting 

the demand of load 8 is due to the lower marginal loss incurred, in 

comparison to G22. G23 remains as the primary contributor in meeting the 

marginal increase in demand; attributed to the overall low transmission 

loss of G23 supplying load at bus 8 (Relationship of loss will be discussed 

in detail in the following section). Relating this to the trends of the 

coefficients, the mentioned properties of G 13 and G23 is reflected on the 

curves of G 13 and G23 which is identified with the upward trend before 

flattening out. The magnitude of the coefficients reveals the contribution, 

with larger coefficient values corresponding to greater contribution by that 

particular generator (as presented in the case of G 13 and G22). 

Thus it can be said that a non converging trend of the coefficients 
indicates the effect of a change in generation level has on the generation 
level of the particular generator. The degree of change can be measured 

through the slope of the curve. The same analysis can be done disregard of 

the season. Shown below are the trends for summer weeks (week 20 and 

28): 
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Similar trends are observed for the set of summer weeks, which 

conforms to those established for winter weeks. Since the same load bus is 

used for analysis, the trends are expected to be consistent disregard of the 

season. Further analysing the trends of G 13, G22 and G23: 
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Figure17 Trend comparison of G13 - summer weeks 
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Using the trends of ß,, it could be observed that the same argument 

could be put forward about the trends as it was for the winter weeks. 
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4.2.2.2 Retailer's Demand and the Associated Loss in a Transaction 

With the same procedure, the 210 coefficients of a2, ß2 and Y2 are 

generated and presented in graphical form: 

aZ 

0.035 G7 

0.025 G15 

0.015 G16 

-G I8 

0.005 G21 

G22 
-0.005 - G23 

-0.015 
ý} """- -ý 

-0.025 Samples 

456789 10 

Figure 19 a2 vs. samples - winter weeks 
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Figure 21 72 vs. samples - winter weeks 

A prevailing trend can be observed in Figure 20,21,22, where the 

generators with larger contribution notably generators 7 and 23 have 

greater values, either positively or negatively, while the other generators' 

coefficients tend to cluster along the zero line. This corroborates with the 

fact that loss is proportional with power supplied. 

Similar to the analysis done in the preceding section, both the 

magnitude and trends of the coefficients speaks of the loss contribution 

nature of the generators. The magnitude of the coefficients reflects the 

magnitude of loss incurred from the transaction supplying load at bus 8. 

With reference to Figure 22 above and the tracing results in Tables 4 to 
13, G7 is seen to be the lowest loss contributor in proportion to the power 

supplied while G23 is the greatest contributor to losses at bus 8 in 

proportion to the power supplied. 

There is an interesting revelation from the trend of curve G23 
(Figure 20,21,22). The positively (Figure 20,22) or negatively (Figure 
21) increasing trend indicates a decreasing marginal loss associated to G23 

supplying marginal increase in demand of load 8, in spite of the fact that it 
is the greatest loss contributor. 
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The arguments are in no way contradicting because G23 may well 
be the major loss contributor in meeting the demand of load 8; while every 
increase in unit of power supplied to load 8 (the marginal increase) 

reduces the overall loss in proportion to the power delivered. This can be 

seen from the tracing results presented in Tables 4 to 13. Further 

examining the trends of G13 and G22, shown in the figure below, it is seen 

that G13 has low base loss and low marginal loss in comparison to G22, 

making it a better choice of power source to supply marginal increase in 

demand of load at bus 8, than either G22 or G23, despite G23 being the de 

facto prime power supplier in response to a marginal increase in Pd after 
G7 reached its operating limits. 
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Figure 22 Trend comparison of G13 and G22 to G15, G16, G18 and 
G21 - winter weeks 

This discovery allows the retailers to discern the choice of 

generators to purchase power from, to supply a marginal increase of 
demand of a given load, with the function to minimize losses in the 

transaction, which in turn also minimizes congestion [19]. It would be a 
discerning economic decision by the retailer to purchase power from 

generators with low base losses, while purchasing power from generators 

with low marginal losses to supply marginal increase in demand to harness 

the lower marginal loss in devising a cost effective power purchasing plan. 
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Illustrated bellow is an example comparing the transaction losses 

from two power purchasing arrangements: one without power from G23 

and the other with. Assuming that transmission cost is proportional to loss, 

the choice of power purchasing from generators with low base loss and 
low marginal loss would minimize losses, thus transmission cost incurred. 

Table 17 Comparison of power purchasing arrangement 
Without Power from G23 With Power from G23 

Gen Gen End Retail End Lou Gen End Retail End Loss 
1 0 0 0 0 0 0 
2 0 0 0 0 0 0 
7 115.0000 112.9080 2.0920 115.0000 112.9007 2.0993 
13 44.0899 42.7118 1.3780 5.0324 4.9184 0.1140 
15 0.3362 0.3240 0.0122 1.9340 1.8461 0.0879 
16 1.0894 1.0534 0.0361 3.8701 3.6953 0.1748 
18 1.0343 0.9861 0.0482 3.6008 3.3912 0.2096 
21 0.7190 0.6839 0.0350 3.5987 3.3878 0.2109 
22 1.2848 1.2076 0.0772 4.9601 4.6074 0.3527 
23 0 0 0 26.2953 25.1279 1.1674 

163.5536 159.8748 3.6788 164.2913 159.8748 4.4165 

The same analysis applies to the trends of coefficients for the 

summer weeks which are expected to be consistent disregard of the 

season. The trends are presented in the following three figures: 
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Figure 23 a2 vs. samples - summer weeks 
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Trends of G23 in all three figures are either positively increasing 

(Figure 24 & 26) or negatively increasing (Figure 25), but at a much more 

gradual rate, which implies the reduction in marginal loss with increase in 

marginal demand. The same is observed for the trends of G13 and G22, 

shown below in Figure 27. Despite the upward trend of G13 and G22, it is 

also seen to be fairly imperceptible even under a larger scale. This is due to 

the overall lower demand level in the summer weeks than those of winter 

weeks as illustrated in Figure 28, where the marginal increase in demand 

for summer weeks does not suffice to harness the reduction of marginal 
loss in comparison to that of winter weeks. 
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Figure 26 Trend comparison of G13 and G22 to G15, G16, G18 and 
G21 - summer weeks 
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4.3 A Proposed Real Time Prediction Algorithm 

4.3.1 Performance Evaluation of the Algorithm 

A novel prediction method of the oncoming demand on an hourly 

basis has been devised using the learning coefficients and regression 

method, along with some statistical tools to meet the acceptance criterion 

of 10% maximum MAPE given by equation 17 in Section 3.1 when 

compared to the hourly demand in [16]. 

The developed prediction tool is performs short term prediction or 

short term load forecasting (STLF) [ 18]. The algorithm is developed from 

the learning coefficients method, used in conjunction with some statistical 
tools such as correlation and the rate of change of hourly demand. Table 

18 displays the prediction result on an hourly basis for the Monday of 
Winter week 52. 

Table 18 Prediction results of Monday, Winter week 52 

Hour Prediction 
. u. Actua! . u. Error 

3 0.9826 0.9992 1.667 
4 0.9382 0.9826 4.5198 
5 0.9867 0.9826 0.4237 
6 1.0092 0.9992 1 
7 1.0325 1.2324 16.2162 
8 1.4655 1.4322 2.3256 
9 1.6543 1.5821 4.5614 
10 1.6945 1.5987 5.9896 
11 1.7042 1.5987 6.5972 
12 1.6099 1.5821 1.7544 

13 1.5488 1.5821 2.1053 
14 1.5588 1.5821 1.4737 
15 1.6099 1.5488 3.9427 
16 1.5044 1.5654 3.9007 
17 1.5821 1.6487 4.0404 
18 1.8263 1.6654 9.6667 
19 1.7264 1.6654 3.6667 
20 1.5543 1.5987 2.7778 
21 1.4267 1.5155 5.8608 
22 1.3989 1.3823 1.2048 
23 1.2102 1.2157 0.4566 
24 1.0214 1.0492 2.6455 
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1N IActual(i) - Forecast(i)j 86.7966% MAPS =N Actual(i) x 100 = 22 = 3.9453% 

The MADE of the results is below 10% and is within the established 

acceptance criterion. 

The algorithm is also tested on summer weeks to demonstrate the 

credibility and robustness of the algorithm, shown in the Table 19 below. 

The MADE is found to also fall well within the acceptable range of below 

10%. 

Table 19 Prediction results of Monday, Summer week 28 

Hour Prediction . u. Actual . u. Error 
3 0.7994 0.8279 3.4451 
4 0.7803 0.8279 5.7521 
5 0.8565 0.7994 7.1464 
6 0.8108 0.8279 2.0682 
7 0.847 0.9136 7.2868 
8 1.0753 1.0849 0.8816 
9 1.1991 1.2419 3.4451 
10 1.4596 1.3561 7.6337 
11 1.5217 1.4132 7.6792 
12 1.3323 1.4275 6.6659 
13 1.3656 1.4132 3.3668 
14 1.3656 1.4275 4.3331 
15 1.4703 1.4275 3.0016 
16 1.475 1.3846 6.5267 
17 1.318 1.3704 3.8206 
18 1.3133 1.3704 4.1635 
19 1.4179 1.3275 6.8073 
20 1.299 1.3133 1.0856 
21 1.2562 1.3133 4.3447 
22 1.3418 1.3275 1.0748 
23 1.3941 1.2419 12.2568 
24 1.0849 1.0278 5.5 590 

1N jActual(c7 - Forecast(i) I 108.3447% MAPE =N Actual(i) x 100 = 22 = 4.924896 
i- 
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Despite a slightly higher MAPE, it is still well below 10%, the 

acceptance criterion. Hence this real time amenable prediction tool, which 
is capable of producing accurate results in short execution time contributed 
by the sheer simplicity of the algorithm, is seen to be highly efficient in 

performing prediction task for a real time system whereby execution and 
calculation time is of utmost importance for a large system. 

4.3.2 Process towards the Establishment of the Algorithm 

The procedure begins with a direct adaptation of the learning 

coefficient method, where the heat rate curve equation, H(P&=a/PG +ß+ 

yPG was used to perform prediction by adapting it to the form 

P,, 1,. =a/Pord +ß+ yPord with P1,. representing the oncoming power 
demand and Pold the previous hour's demand. This direct adaptation did 

not yield satisfactory results because the oncoming power has no 

whatsoever relation to the generation capability of generators, which 
implies the inaptitude of the equation P1Q11. =a/Pard +ß+ yPord for prediction 

purposes. Hence despite large number of samples utilised in generating the 

coefficients, results obtained had large error percentage. 

Next, a thorough study was conducted to identify the key working 

principle of the method. The logic of the learning coefficient method was 

extricated, which is as such: the fundamental principle of the method is to 

obtain a polynomial function, by solving for the coefficients of the 

polynomial as an approximation to an arbitrary curve, formed by the 

several sample points on the curve, which then after, prediction is merely 

an extrapolation using the generated polynomial. 

From this juncture, the prediction method of the oncoming demand 

for the next hour utilising previous hours' demands is begun by examining 
the hourly demands of week 52 Monday using the data presented in [16]. 

The sole reason to why the particular day and week is chosen is for 

consistency to that selected for the trend analysis of the learning 

coefficient. It was observed that an order 5 polynomial approximated the 

curve as illustrated: 
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Figure 28 Graph of hourly demand for Monday week 52 and the 
approximating trend line 
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The same is done for the Monday of week 28 of the summer week, which 
led to the same finding of an order 5 polynomial approximation to the 

curve. 
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Figure 29 Graph of hourly demand for Monday week 52 and the 
approximating trend line 
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This hypothesis is done by assuming that the hourly demand data 

in [16] is drafted from credible sources, which qualifies the use of the data 

for modelling and simulation purposes. Now, a redefined method is to also 

generate coefficients of a 5`h order polynomial of the form 

Pnew = aPnew + ßPold + YP, 1d + 5Pöid + £P Id +A by using the 

regression method. The gist of the method is to accumulatively use all data 

from previous hours to generate the coefficients, aimed at achieving 

minimal prediction error with increasing number of samples. 

However after exhaustive testing of the method, it was found that 

the approximation with an order five polynomial produced extremely 

erratic results, with extremely large prediction error for certain hours of 

the day. This setback is attributed to the fact that an order five polynomial 

approximates the hourly demand curve as a whole, with all known 24 

points on the curve. Using an order five polynomial to perform prediction 
for any of the intermediary hours (hours 2 to 23) is excessive when a lower 

order polynomial would have sufficed. Also it was noticed that accuracy 

of prediction is not guaranteed with a good polynomial fit. A review of the 

polynomial approximation method in MATLAB's Help corroborates this 

fact, by further mentioning that the desired fit of the polynomial 

approximation depends entirely on the purpose of the approximation, 

whereby a good fit does not necessarily produce superior results. 

The conclusion drawn from the previous attempt was to cap the 

maximum order of polynomial at five, while the possibility of using lower 

order polynomials when predicting intermediary hours (hours 2 to 23) is 

examined. In a real power system operating scenario, the oncoming 
demand is usually affected by the demand of preceding hours, to a certain 

extent. Evoking this fact, the method of using correlation of rate of change 

of demand in determining the optimal order of polynomial was conceived, 
drawn from the hypothesis that power demand at hour 9 of the day may 

not have any relation to the power demand at hour 20 of the similar day. 
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Only highly correlated rate of change of demand to the immediate 

preceding hour's rate of change of demand is qualified as a sample point. 
The maximum allowable degree of the generated polynomial is contingent 

upon the number of available sample points: polynomial order = available 

samples - 1, i. e. an order three polynomial would require at least 4 data 

(points on the curve) to generate a unique set of coefficient. Since the 

maximum allowable order of polynomial was mentioned above to be five, 

the corresponding maximum number of samples is capped at six. This 

combined method now forms the prediction tool described in Section 

4.3.1. 

It has to be pointed out that human analysis is imperative in 

performing prediction. This algorithm is only a tool to aid decision making 

and is not to be relied solely on without any analysis. 
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4.4 The Integrated Prediction Tool 

All developed sub routines were integrated to form a prediction 

programme, the programme utilises the predicted oncoming demand and 

the learning coefficients to obtain the estimated generation level of all 

generators in the system with their associated losses. The trends of the 

coefficients can also be displayed if desired. Displayed below is the 
MATLAB Command Window printout when the programme is executed. 

MATLAB Command Window 

Week of the day to be predicted ->52 

Hour of the day to be predicted ->16 

Prediction for hr 16, wk 52= 1.5044 @ 3.9007 percent of error 

Hit any key to continue 

1-Trends for Pgd 
2. Trends for Loss t 
3. Display nothing 
Enter choice of trends to be displayed: 3 

Estimation for oncoming Load at bus 8 
L8 = 150.437715 MW 

--Gen-- --Gen End-- --Loss-- 
1MW] (MWI 

1 0.0000 0.0000 
2 0.0000 0.0000 
7 115.1794 2.0893 

13 3.7645 0.0821 
15 1.5923 0.0700 
16 3.0902 0.1366 
18 2.8761 0.1646 
21 2.9436 0.1685 
22 3.9885 0.2794 
23 20.9005 0.9069 

154.3350 3.8973 

Figure 30 Prediction results for Monday week 52, hour 16 
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CHAPTER 5 

CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

Comparing the Upstream and the Downstream algorithms to the 

newly derived Sending and Receiving Algorithm, it was observed that 

more information were revealed from the analysis and were able to be 

picked out at ease. Simplification of the method also contributes to the 

reduction in computation steps and time, since execution can be done with 

minimal programming. 

Converging trend of the learning coefficients underpins the 
learning coefficient method in performing prediction, where given 

sufficient samples and spread of samples, prediction done for an oncoming 
demand could be done to a highly accurate degree. Other valuable 
information from the trends if harnessed would aid as an effective decision 

making tool in optimization of profit and operation in a deregulated 

market, for both generator company and retailer. 

The proposed prediction programme is amenable to real time 
implementation and has been extensively proven to perform well within 
established standards. It has been demonstrated the capability of the 

prediction tool to perform prediction with MAPE of below 5%, lower than 
the 10% threshold which was considered good. The sheer simplicity of the 
concept employed in developing the prediction tool gives it an edge in 

execution time, which is seen to be relatively shorter and quick. 
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5.2 Recommendation 

More studies are to be conducted to extend the now capable of 

performing hour ahead prediction with lead-time of 1 hour to also perform 
day ahead prediction with lead-time less than 24 hours [18]. Also, the 

programme is to be tested with actual load demand data to further enhance 
its credibility. Further prospect on reducing the MAPE to a more stringent 
3% is also envisioned to be greatly beneficial. 
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APPENDIX A 

PROJECT GANTT CHART 

Week 
No Activity 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
1 Literature Search (continuation) 
2 MATLAB Simulation/Programming: 

(i)Pow in : Sim orithm d Al T lifi g g er rac p e 
(ii)Trend Analysis of Learning Coefficient 
(iii)Prediction of Oncoming Dearnnd 

3 
Data analysis and finalization of project 
base 

i 
1 

4 
Integration of M-Files forming the 
complete prediction algorithm 

iI 

5 Documentation 
(i)Pro ress Report I Preparation 
(ii)Progress Report 2 Preparation 
(iii)Poster preparation 
(h)Conference paper preparation 
(v)Dissertation preparation r" 

Work planned 
Work completed 

I 
Reporting date 
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APPENDIX B 

CODING DOCUMENTATION 

run this2 

This main programme is to be run to execute the complete 

prediction process. Generator and bus data are input is this part of the 

programme. It starts by performing prediction for the desired hour and 

week. Prediction results along with the corresponding error will be printed 

and waits for user prompt to proceed with the execution. Upon receiving 

the prompt, the programme will calculate and display the tracing 

breakdown for the predicted hour, based on the prediction result and 
internally generated learning coefficients to perform the calculation. 

prediction2 

As the name suggests, this subroutine performs the prediction 

function by first calculating the rate of change of previous hours' rate of 

change of demand. The correlation of the rate of change is then calculated 

to determine the number of samples (past hour demand data) to be used for 

the prediction of the desired hour. The number of samples are capped at 

six to maintain a maximum order of five polynomial used for 

approximation. 

The order of polynomial to be used for approximation is contingent 

upon the number of samples used, where order = samples - 1. Regression 

is then performed to generate the coefficient. This is done by using the 

polyfit function of MATLAB. The sample points are scaled to ensure that 

coefficients generated are unique. As of date, the data contained in this sub 
routine is data for Monday week 48 to 52 and week I to week 5. This data 

section has to be changed with relevant data of day and week of the year 
for prediction of that specific time. 
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flow tracingprep bus8 2 

This programme performs load flow using the Newton-Rhapson 

method and preliminary data preparation for power tracing. Load bus in 

interest is prompted for with the corresponding change in load, which for 

convenience sake; the programme has been slightly modified to use bus 8 
by default. This sub routine is amenable to systems of various sizes apart 
from the current IEEE 24 bus system. Only required changes are branch 

and bus data. 

Read bus, 
gen, branch 

Performs load 
flow ý10 

Determines branch 
inflow and outflow 

Determines bus 
power level 

Figure 31 Flow chart of flaw tracingprep subroutine 

tracing and store 

This subroutine performs the tracing function and all related loss 

apportioning and extent of use of line calculations for all the sample points 

selected from prediction2. The programme displays only relevant results 

to the load bus entered in flow_tracingprep_bus8_2. For example a 

simulation performed with load at bus 8 under scrutiny, only the loss 

apportioning of load 8 and extent of use of line serving bus 8 will be 

displayed. This feature will avoid cluttering of the results screen and 
information overload to allow quick analysis and viewing of results. 

Results are compiled into a single matrix and then disintegrated 
into three matrices: generation end power, retail end power, loss. All 

elements of the matrices are in p. u. These results are stored to be passed to 
the learningcoef#2 subroutine for generation of the coefficients. 
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Key to effective data manipulation in this subroutine is the 

appending of matrix. Each set of data from one sample is contained in one 
large matrix by appending the consecutive sets of data to the current 

matrix. 
One set of data from one sample is a 10 x4 matrix, hence the 

final data matrix dimension will be 10 x (4 x no. of samples), with 

each 1+ 4n column being the generator id, column 2+ 4n being the 

power delivered from generator's end, column 3+ 4n the power received 

at load's end and column 4+ 4n the loss incurred in that transaction. In 

such indexing manner, like data are extracted and stored in 3 distinct 

matrices: Pgenend, Pretailend and Ploss. 

Read data from 
flow_tracingprep ý No 

Displays results of 
relevant branches 

If --ý 

Formation of AS 
and A, matrix 

F-º 

Power tracing 
extent of use of line 

I4 

Power tracing - 
loss apportioning 

Displays results 

Figure 32 Flow chart of tracing_up_down subroutine 

Learningcoe, ff2 

Learning coefficients are calculated for a given day in a season. 

a, ß and y are matrices with dimension of (no. of gen) x (samples - 
3). Logic behind the (samples - 3) is attributed to the fact that the 

coefficients are calculated with 4 cases as the base, hence matrix indexing 

has to account for that. 
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As of yet, this sub routine only solves for one complete set of 

learning coefficients (a, ß and y) related to one of the four relationships 

under examination described in section 2.5 of Literature Review for a 

given day in a given season. A `complete' set of learning coefficients 

constitutes of (no. of gen) x (samples - 3) values of a, ß and y 

respectively. 3 graphs are plotted as the final result being a vs. samples, ß 

vs. samples and y vs. samples, with each graph individually having 

(no. of gen) curves plotted on the same axis. 
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