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ABSTRACT 
 

Nowadays, natural gas has become one of the most efficient energy in the globalization 

uses. The principal constituent of natural gas is methane. Carbon dioxide is impurity in 

natural gas. Separation of carbon dioxide from natural gas before continues to separate 

each hydrocarbon is one of the important processes in natural gas processing. Membrane 

is one low cost technology that gives promising performance in gas separation. The 

objectives of project are to study on carbon dioxide and methane permeability and 

selectivity, to study on carbon dioxide separation using inorganic membrane and to 

study on membrane performance at certain operating conditions. The experimental 

works were conducted using inorganic tubular membrane module in membrane pilot gas 

to investigate permeability and selectivity for carbon dioxide and methane gas 

individually at different feed flowrate of 1000 ml/min, 2000 ml/min and 3000ml/min 

and feed pressure of 1, 3, and 5 bars with room temperature. Blending gas experimental 

also been conducted to study on membrane separation performance and methane 

recovery. As the result, it is found that higher flowrate and higher pressure gave higher 

permeability until reach the constant value. Results show that for ideal selectivity for 

CO2:CH4 was found to be range of 0.7 to 3.5. Selectivity reduced as feed pressure 

increase, thus reduce methane recovery in retentate stream. At 15% carbon dioxide and 

85% methane in feed concentration at 3 bar feed pressure, we got 94% methane 

recovery in retentate stream, which was the highest recovery for all of experiments.  We 

found that increase carbon dioxide concentration from 15% to 30%, based on analysis, 

has lower methane recovery in retentate stream. For the conclusion, the study shows that 

the natural gas separation using inorganic tubular membrane module has a very 

promising potential to be used for carbon dioxide and methane separation.  
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CHAPTER 1 : INTRODUCTION 

 

1.1 BACKGROUND OF STUDY 
 

Natural gas is combination of light hydrocarbons components together with 

inorganic compounds. Mostly methane is major component hydrocarbon, together 

with small amount of other light hydrocarbon such as ethane, propane, butane and 

little small of heavy hydrocarbon. As for inorganic compound, it includes mostly 

carbon dioxide gas, nitrogen gas, hydrogen sulfide, water vapor and small amount of 

inert gas. Different location of reservoir has different value of concentration for 

natural gas.  

First developed membrane was in 1961. However membrane area only become 

establishes and famous in research and commercial since 1980s, because of 

economic downturn in 1981, while industry is looking for new alternative that has 

low cost and good performance. Before 1980s, membrane initial acceptance was 

slow and limited due to unknown process design parameter for most process, but it 

also has economic risk with investment in membrane research at the time. 

Membrane has been proven that has good performance in gas separation as the time 

come by.    
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1.2 PROBLEM STATEMENT 
 

Natural gas contains light gas, mostly methane. Ethane, propane and butane are also 

natural gas composition. Besides, there are inert gases like carbon dioxide and 

nitrogen. Carbon dioxide is the impurity in the natural gas, mostly to methane and 

ethane product purity. Act as impurity in the natural gas, carbon dioxide reduce the 

quality of natural gas. Besides, carbon dioxide also has no heating value to the 

natural gas treatment process. The condition cause natural gas has low heating value 

in the treatment process. Heating value is the amount of heat released during the 

combustion of specified amount of natural gas. Moreover, excess carbon dioxide act 

as inert gas can take capacity in pipeline instead of methane or ethane. This problem 

will reduce the product quality. Carbon dioxide also can freeze in the pipeline and 

heat exchanger surface if been send to low temperature unit, that usually range of -

45oC to -60oC.   

Current technology used in separate carbon dioxide from natural gas is amine 

system. Liquid alkanoamine has performance in absorbing carbon dioxide molecule 

from natural gas. However, there are issues with amine system. It cause the foaming 

problem in absorber, where require the uses of anti-foam chemical. Another issue is 

high market price which become a great deal to gas processing plant.  

Membrane has shows positive results in separating carbon dioxide from natural gas. 

It has become best alternative due to its low production cost and gives promising 

result in treating natural gas. Polymide membrane and cellulose acetate is the 

example of organic membrane that successfully can handle medium scale of gas 

stream. However, it has low selectivity and flux when be treated with large-scale gas 

stream and become unstable when treat in high temperature.  
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1.3 OBEJCTIVE OF THE PROJECT 
 

a) To study on carbon dioxide separation from natural gas using inorganic 

membrane 

b) To study on characteristics of the inorganic membrane when treated with natural 

gas on certain operating conditions. 

c) To study on permeability and ideal selectivity of carbon dioxide on inorganic 

membrane 

 

1.4 SCOPE OF STUDY 
 

As outlined in the objectives, the purpose of this project is to investigate the 

performance of inorganic membrane in separate carbon dioxide from natural gas. 

Equipment use is membrane test unit, which specifically for the gas treating is been 

used for the study. The simulation use is National Instrument (NI), Labview. 

Parameters used in observing the membrane module performance are feed pressure, 

feed flow rate and feed concentration. Transport equation, flux and selectivity of 

inorganic membrane also been studied with treated with those parameters. 

Percentages of feed gas before and after membrane separation also been calculated.  
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CHAPTER 2 : LITERATURE REVIEW 

 

2.1 NATURAL GAS 
 

Natural gas is a subcategory of petroleum, which contain complex mixture of 

hydrocarbon, minor inorganic compounds. Major component in the natural gas is 

methane (CH4), while other hydrocarbon have minor amount. The inorganic compounds 

like nitrogen, carbon dioxide (CO2) and H2S are impurities  and undesirable due to no 

heating value and can cause problem in gas processing plant aside of their hazard to 

environment. The composition of the natural gas is different at different area of 

reservoir.  

The hydrocarbon like ethane, propane and butane, those hydrocarbons will be use as 

feed in the petrochemical industry. Currently the demand of the petrochemical industry 

is increasing, as the many products in the market are made from petrochemical product. 

Below is shown the figure of natural gas composition result from gas chromatography 

analysis, taken from Chromatography Lab, Gas Processing Plant B (GPPB), Petronas 

Gas Berhad, Kerteh, Terengganu on 4th February 2010. 
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Source from Chromatography Lab, Gas Processing Plant B (GPPB), Petronas Gas Berhad, Kerteh , Terengganu on 4th February 2010 

Figure 2. 1: Natural gas composition analysis from GPPB lab 
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2.2 CARBON DIOXIDE IN NATURAL GAS 
 

Carbon dioxide is inert gas in the natural gas, together with nitrogen. Both of the gases, 

nitrogen and carbon dioxide are impurities that lower the quality of natural gas. Besides, 

they are inorganic compounds, which undesirable due to heating value and can cause 

problem in gas processing plant aside of their hazard to environment. Both of gases is 

having no heat value to the processing, which will increase the consumption of the 

energy needed to separate the natural gas.  

Different with nitrogen, carbon dioxide is the hazardous gas, which can cause problems 

in the gas processing plant if no separation of CO2 has be done. CO2 can freeze in heat 

exchanger and make corrosion.  In the gas processing plant, there is one unit called low 

temperature separation unit, where the demethanizer column, function is to separate 

methane from ethane and heavier hydrocarbon, placed. The temperature for the heat 

exchanger in this unit can reach up to -60 degC using propane refrigerant. At this low 

temperature, water vapor and CO2 will freeze in the heat exchanger. The formation of 

solid in the heat exchanger will close the surface area of braze-plate aluminum in the 

heat exchanger. The effect of this phenomena, damage braze-plate aluminum, and low 

production because of low feed gas enter the plant. For this problem, it can be detected 

by checking the pressure difference across the heat exchanger. The possible action to be 

taken in order to remove the solid CO2 in heat exchanger is by doing the thawing. 

Beside, at the pipeline of the gas, freezing solid CO2 also can happen along the pipeline, 

due to low temperature of the unit. Heat exchanger at gas processing plant, or usually 

known as cold box, has cold temperature down to -45oC until -60oC. 

Next, CO2 is among methane and ethane composition. If the CO2 is not properly 

removed from the natural gas, it will end up in methane and ethane product. This will 

reduce the quality of the product and excess carbon dioxide in pipeline for the transfer, 

act as inert gas can take capacity in pipeline instead of methane or ethane. 
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2.3. INORGANIC MEMBRANE 
 

Membrane has two types of classes which are dense membrane and porous membrane. 

Dense membrane is solid layer of metal with non-porous structure. While porous 

membrane has porous wall, which has variety of pore shapes. Another type of 

membrane is asymmetric membrane, which actually is combination of dense and porous 

structure. Usually, dense membrane as the main layer, and porous membrane at the top 

as support. Basically this type or support porous membrane is metal-oxide. 

Types of microporous membrane are non-crystalline (X-ray amorphous), zeolite types 

and crystalline (non-zeolites type). For the non-crystalline, it formed by silica or carbon 

membrane and it has very low of porosity. For the zeolites type, it is in MFI type, from 

silicalite type. Its permeance value is lower than amorphous membrane. While for 

crystalline, it has wide pore and good stability. Its packing formed with very small 

particle diameter (1 – 2nm). Membrane with wide pore and good stability is very 

difficult to be made from zeolite. 

Permeation means the penetration of permeate (gas, liquid, or solid) through solid layer. 

The grade of transmissibility is called permeability, which depends on many things, 

such as time, type of permeate, operating condition (temperature, pressure, pH, velocity, 

flowrate), membrane thickness and area size. Permeate or the substance get through the 

membrane, will migrate from high concentration of solvent, to lower concentration area. 

There are three types of permeation process, little bit discuss below. 

1. Sorption  

-it happen on the surface of membrane, where gases. Vapor, dissolved chemical 

adsorbed at the surface of membrane 

2. Diffusion 

-it happen when the permeate penetrates throughout the membrane pores 

3. Desorption 

-the adsorbate leaves the membrane a gas.  
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2.4. MEMBRANE MODULE FOR GAS SEPARATION 
 

2.4.1. Spiral Wound module 

Spiral module consists of four sheets wrapped around a central core of a perforated 

collecting tube. Its concept is a house inside a metal shell. Sour natural gas enter left end 

of shell, then enter the fed channel, will flow through this channel in axial direction of 

spiral until reach the right end. Here, it called as sweet natural gas or retentate. The 

process of permeation happened on the surface of the membrane inside the feed channel. 

Acid gas as permeate, flow through permeate channel to perforated collecting tube. 

Below shown the spiral-wound elements and its assembly figure and gas flow path for 

spiral-wound module. 

 

Figure 2. 2: Spiral-wound elements and assembly 
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2.4.2. Hollow fiber module 

Hollow fiber module consist of bundle of very small-diameter hollow fibers. The design 

of module reassembles shell and tube heat exchanger. Thousand of fine tubes are bound 

together at each end into a tube sheet, which surround by metal shell. Sour natural gas 

enter the equipment from the bottom, flowing inside the equipment while acid gas 

diffuses through very thin membrane, and exit at bottom while the sweet natural gas exit 

at the top of equipment. Hollow fiber is known to be having large surface area of 

membrane, which in this case, it can up to 3000 ft2/ft3. Besides, other advantages of this 

module are low pumping power, very high packing density, and ability to achieve high 

concentrations in the retentate.  

 

 

 

 

 

Figure 2. 3: Example of hollow fiber module 
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2.4.3. Tubular membrane module 

Tubular membranes operate in tangential, or cross-flow, design where process fluid is 

pumped along the membrane surface in a sweeping type action. Several tubular 

membranes arranged as in a shell and tube type heat exchanger. The membrane is cast 

on the inside surface of a porous tube. These cross-flow velocities minimize the 

formation of a concentration polarization layer on the membrane surface, promoting 

high and stable flux and easy cleaning. The advantages of this module are low fouling, 

easy cleaning and high transmembrane pressures. 

 

 Figure 2. 4: Example of tubular membrane module 
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2.5. CURRENT TECHNOLOGY AND PROBLEMS 
 

2.5.1. Amine System 

Amine system is mostly used in large-gas stream plant because of its capability to 

absorb acid gas (CO2) from natural gas greatly at high pressure (35-80 bars). Separation 

of CO2 from gas stream by alkanoamines is exothermic reaction. Amine itself has 

groups, which are primary amine, secondary amine and tertiary amine. Different amine 

has different reaction rates with respect to several of acid gases and has different 

sensitivities with respect to solvent stability and corrosion factors.  

a. Primary amine (monoethanol amine, MEA, and digylcolamine, DGA) 

MEA is the cheapest amine, and has lowest molecular weight. This group can 

absorb CO2 in low pressure condition due to its high reaction of energy. 

b. Secondary amine (diethanolamine, DEA and di-siopropylamine, DIPA) 

Heat of reaction is lower than primary amine 

c. Tertiary amine (triethanolamine, TEA and methyl-diethanolamine, MDEA) 

Lowest heat of reaction, low tendency to degrade the product and more easy to 

regenerate 

Absorption using amine system, liquid amine and natural gas (gas stream) will have 

contact by countercurrent flow in the absorber. Natural gas will enter absorber from 

bottom, flow up and leaves at the top column while liquid amine will enter the absorbers 

at the top, flow down, and rich amine will leaves the bottom column with CO2 and H2S 

into the regeneration system afterward. In the regeneration system, CO2 and H2S will be 

separate and send into incinerator to be burn. 

The problems or issues with amine system are its market price is very high, foaming 

problem in absorber and amine loss in the system. From operational side of view, amine 

system can lead to extensive of foaming in the acid gas removal unit, which require to 

have antifoam injection into the system. This issue can increase the operational cost in 

purchasing antifoam in order to control foaming. Foaming can decrease the absorption 



14 

 

process in the absorber, due to less contact of surface area of countercurrent flow. 

Amine losses to system are common problem in gas processing plant, which it affects in 

reducing concentration or strength of the amine. Certain level of amine strength and 

concentration is needed to extract the CO2 and H2S into certain specifications. Every 

time capacity is reduce, additional amount of amine need to be top up into the system. 

This can increase the cost of purchase the new amine in some period of time. Based on 

current market, the price of amine is very expensive, depends on the group and type of 

amine use for the plant. The upper level of amine group, the strong the amine in 

absorption and the higher price is. Different type of natural gas field that has different 

carbon dioxide concentration may use different type of amine group. 

 

2.5.2. Physical Solution Absorption 

The process is according to Henry’s Law, which depends on pressure and temperature 

and CO2 in higher partial pressure. Typical solvent is selexol (dimethylether of 

polyethylene glycol). Selexol has been used since 1969 to sweeten natural gas, both for 

bulk CO2 removal and H2S removal. Absorption takes place at low temperature (0 - 

5
o
C). Desorption of the rich Selexol solvent can be accomplished either by letting down 

the pressure (CO2 removal) or by stripping with air, inert gas or steam. Additionally, the 

low absorption temperature used requires that the lean solvent be returned to the 

absorber via a refrigeration unit. Absorption of heavy hydrocarbon in refinery plant is 

drawback of this process. 
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2.5.3. Solid Physical Adsorption 

This process consists of two major steps, which are adsorption and desorption. The 

adsorption controls the technical feasibility step, and desorption control the economic 

feasibility step.  The main advantage of this process than absorption process is the 

process is simple and energy efficient operation and regeneration. This can be achieving 

with pressure or temperature swing cycle. The primary material is using zeolites or 

molecular sieve. However, this system cannot handle large concentration of CO2 in gas 

stream. 

 

2.5.4. Membrane 

Separation membranes are thin barriers that allow selective permeation of certain gases. 

They are predominately based on polymeric materials. Membranes for gas separation 

are usually formed as hollow fibers arranged in the tube-and-shell configuration, or as 

flat sheets, which are typically packaged as spiral-wound modules. The membrane 

process also has been widely used on the commercial scale for hydrogen recovery from 

purge gases in ammonia synthesis, refinery and natural gas dehydration, sour gas 

removal from natural gas, and nitrogen production from air.  

Membrane can be use to separate high concentration of acid gas from hydrocarbon 

gases. The process is involving the permeation of acid gas through the membrane. It use 

large pressure drop as the driving force, to separate permeate (acid gas) from retentate 

(natural gas). The process is simple but it require large amount of horsepower and 

compressor if acid gas must be recompressed for disposal (after separation) 

The commercial membranes for CO2 separation are mainly prepared from cellulose 

acetate, polysulfone, and polyimide which are organic membranes. However, this 

organic membrane cannot handle large concentration of CO2 in gas stream and unstable 

when treating in high temperature. 
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2.5.5. Summary Advantages and Disadvantages of Amine System and 

Membrane System 

Technology Advantages Disadvantages 

Amine System Can operate at high and 

extreme operating condition 

Foaming Problem 

Good performance in 

treating high concentration 

of natural gas 

Loss of concentration in 

system and has 

environmental impact 

Can absorb carbon dioxide 

in high perofrmance 

High price and amine 

regeneration cost 

Membrane System Cost benefit : low cost Commercial membrane 

cannot operate at high or 

extreme operating condition 

Lack of mechanical 

complex 

Low flux in treating high 

concentration of natural gas 

No phase change involve 

and low environmental 

impact 

Fragile and unstable with 

chemical attack and heavy 

hydrocarbon 
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2.6. LATEST RESEARCHS ON NATURAL GAS TREATING USING 
MEMBRANES 
 

2.6.1. POLYETHER BASED BLOCK COPOLYMER MEMBRANES  

 

In this research, it presented a polyether based segmented block copolymer system as 

soft segment combine with short monodisperse di-amide as a hard segment. Polyether 

and especially poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) based 

segmented block copolymers are very well known for their high CO2 permeability 

combined with a high CO2/light gas selectivity, but most (commercially) available block 

copolymers have incomplete phase separation between the soft and hard blocks in the 

polymer leading to reduced performance. 

Block copolymer has been used in investigations for carbon dioxide removal from light 

gas. It consists of an alternating series of exible soft segment, dominant phase for gas 

permeation and crystallizable hard segment for its mechanical stability. The type of soft 

and hard segment can be chosen independently, this makes them a versatile instrument 

to tune the properties of gas separation membranes. 

 

This research study on the effect of the length of the PEO soft segment, the type of soft 

segment (PPO vs. PEO) and the use of a mixture of these two different types of soft 

segment. For the first experiment, The CO2 permeability increases with increasing PEO 

soft segment length and the polymers show an increase in gas permeability with 

increasing temperature. 

For second experiment which study on type of soft segment (PPO vs PEO), the 

permeability of the PPO based block copolymers is a factor 4{5 higher than the 

permeability of the PEO based block copolymers. This can be attributed to the extra 

methyl side group in PPO compared to PEO, which prevents close chain packing 

(leading to soft phase crystallization), thus increasing the free volume and gas 

permeability.  

 



18 

 

 

2.6.2. Thermal Rearranged Membrane 

The new plastic membrane permits carbon dioxide and others small molecules to go 

through hour-glass shaped pores within it while impeding natural gas (methane) 

movement through. This thermal rearranged plastic works four times better than 

membranes at separating the carbon dioxide. It is also found that by Dr. Hom Bum Park 

that this TR act quicker in separating the carbon dioxide. Beside than that, this new 

membrane also can tolerate 600 degree Fahrenheit, which be able to transformed the 

material into the better performing membrane.   
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2.7. FUNDAMENTAL OF TRANSPORT MECHANISM IN MEMBRANE 
SEPARATION PROCESS 

 

There are three types of transport mechanisms, which are Knudsen diffusion, molecular 

sieving and solution-diffusion. Based on Knudsen diffusion, separation is achieved if the 

free path of molecules is large relative to the membrane pore radius. It is based on the 

inverse square root ratio of two molecular weights, assume that gas mixture only consist 

of two type of molecules. The process is limited to systems with large values for the 

molecular weight ratio (Jennifer Chih-Yi Chen, 2002) 

 

 For the molecular sieving, the separation happened when based on molecular size and 

membrane pore size. Smaller molecules have higher diffusion rates. This can happen 

when sufficient driving force applied. The main limitation is that condensable gases 

cause fouling, and alter the structure of the membrane (Jennifer Chih-Yi Chen, 2002) 

 

Solution-diffusion separation is based on both solubility and mobility factors. It is the 

most commonly used model in describing gas transport in non-porous membranes and it 

is applied in our studies. (Jennifer Chih-Yi Chen, 2002) 

 

Figure 2. 5: General transport mechanisms for gas separations using membranes 
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The upstream gas, which has a pressure of p1, comes in contact with the membrane 

interface. With a driving force (e.g.,chemical potential, concentration gradient, etc.), the 

permeate gas forms a concentration profile across the membrane with respect to 

membrane thickness, l. The normalized flux is gas flow rate divided by the membrane 

surface area and it is denoted as NA. Separation of the gas mixture is achieved when one 

of the components interacts more strongly with the membrane material or, in other 

words, diffuses faster through the membrane. 

 

Among the three solution-diffusion stages, the diffusion step is the slowest; hence, it is 

the rate determining step in permeation. (Jennifer Chih-Yi Chen, 2002)  

 

The relationship between the linear flux, J and the driving force is: 

 

J = -A(dX/dx)     (Equation 2. 1) 

Where  A = some phenomenological coefficient,  

X = potential, and  

x denotes the space coordinate measured normal to the section.  

 

To describe gas diffusion in the membrane, or known as Fick’s first law: 

 

J = -D(dC/dx)    (Equation 2. 2) 

where  D = diffusion coefficient,  

X in Equation 1 now defines concentration and is denoted as C 

 

When the solubility of a penetrant gas in a polymer is sufficiently low, the concentration 

of the penetrant is proportional to the vapor pressure of penetrant in polymer. 

 

C = S * p             (Equation 2. 3) 

 

Where S = solubility coefficient 

 p = vapor pressure of penetrant  
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At steady state, the permeation of gas A through membrane defined as: 

 

PA = NA / [(p1-p2)/l]   (Equation 2. 4) 

 

 

Where PA  = permeation rate of gas A 

 NA  = membrane surface area 

 l  = membrane thickness 

 

 

If Henry’s law applies, then S is constant at a given temperature and so is D. The 

permeability coefficient, P, can also be defined as 

 

P = D * S    (Equation 2. 5) 

 

 

The diffusion coefficient, D, is a kinetic term governed by the amount of energy 

necessary for a particular penetrant to execute a diffusive jump through the polymer and 

the intrinsic degree of segmental packing in the matrix. The solubility coefficient, S, is a 

thermodynamic term that depends on factors such as condensibility of the penetrant, 

interactions between the polymer and penetrant, and the amount of penetrant-scale non-

equilibrium excess volume in glassy polymers. (Jennifer Chih-Yi Chen, 2002) 

 

For a binary gas mixture permeating through a polymer membrane, the selectivity of a 

polymer membrane towards two different penetrant gases, A and B, is commonly 

expressed in terms of the ideal selectivity or ideal permselectivity, aAB. (Jennifer Chih-

Yi Chen, 2002) 

 

When the downstream pressure is negligible relative to the upstream pressure, aAB can 

be written as the ratio of permeabilities: 
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aAB = PA/PB     (Equation 2. 6) 

 

Substitute the above equation with diffusivity and solubility terms,  

 

aAB =(DA/DB)(SA/SB)   (Equation 2. 7) 

 

Where DA/DB is the ratio of the concentration-averaged diffusion coefficients of 

penetrants A 

and B, and is referred to as the membrane’s”diffusivity selectivity”. SA/SB is the ratio of 

solubility coefficients of penetrants A and B, and is called the”solubility selectivity” 

(Jennifer Chih-Yi Chen, 2002).  
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CHAPTER 3 : METHODOLOGY 

 

3.1 MATERIALS 
 

3.1.1. Methane 

Methane is the lightest hydrocarbon, but most of the natural gas composition 

is methane. At room temperature and standard pressure, methane is a 

colorless, odorless gas; the smell characteristic of natural gas as used in 

homes is an artificial safety measure caused by the addition of an odorant, 

often methanethiol or ethanethiol. Methane is non toxic substance, however 

it is highly flammable. Methane is also an asphyxiant and may displace 

oxygen in an enclosed space 

 

3.1.2. Carbon Dioxide 

CO2 is an acidic oxide: an aqueous solution turns litmus from blue to pink. It 

is the anhydride of carbonic acid, an acid which is unstable in aqueous 

solution, from which it cannot be concentrated. O2 is toxic in higher 

concentrations: 1% (10,000 ppm) will make some people feel drowsy. 

Concentrations of 7% to 10% cause dizziness, headache, visual and hearing 

dysfunction and unconsciousness within a few minutes to an hour 
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3.2 EQUIPMENT 
 

3.2.1. Membrane Pilot Gas or Membrane Separation Test Unit 

Name of equipment use is Membrane Test Unit. This unit is from Singapore 

product. Consists of four types of membrane modules, identified as tubular, 

hollow fiber, spiral wound and flat sheet membrane module. There is one 

more module which use for research and development membrane called R & 

D module. All of the feed flowrate, composition, temperature and pressure 

are controlled and determined using software name National Instrument (NI) 

Labview, which is installed in the computer, next to the equipment. Tubular 

membrane module is used, as it is ceramic and porous membrane. 

 

3.3 EXPERIMENT 
 

3.3.1. Permeability test for methane and carbon dioxide 

 The reasons for these two tests are:  

3.3.1.1. To study permeability and selectivity of carbon dioxide 

and methane in tubular membrane module. 

3.3.1.2. To make hypothesis on membrane module performance 

when treating one type of gas. 

 

3.3.2. Conduct experiment on parameter 

3.3.2.1. Carbon dioxide concentration in feed 

3.3.2.2. Feed flowrate 

3.3.2.3. Operating pressure 

 

These types of parameters have effect on gas separation. Different parameter value will 

affect the gas separation in module. This is where we do the study on carbon dioxide 
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separation from methane, with different changing parameters to evaluate the 

performance of the membrane module 

 

Table 3. 1: CO2 permeability test on flowrate of 1000 ml/min 

 

 

 

 

 

 

Repeat experiment with listed pressure, but using different total flowrate, which here is 
CO2 flowrate at 2000 ml/min and 3000 ml/min 

 

Table 3. 2: CH4 permeability test on flowrate of 1000 ml/min 

CH4 Permeability Test 
Feed 
type 

Feed 
Pressure, bar Total Flowrate ml/min 

1 1 1000 
2 3 1000 
3 5 1000 

 

Table 3. 3: Gas blending with 15% CO2 and 85% CH4 with 2000 ml/min flowrate 
at different pressure 

Feed 
type 

Feed Pressure, 
bar 

Total Flowrate 
ml/min CO2/CH4 ratio 

1 3 2000 15% CO2 : 85 % CH4 
2 5 2000 15% CO2 : 85 % CH4 

 

 

 

CO2 Permeability Test 
Feed 
type 

Feed 
Pressure, bar Total Flowrate ml/min 

1 1 1000 
2 3 1000 
3 5 1000 
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Table 3. 4 : Gas blending with 30% CO2 and 70% CH4 with 2000 ml/min flowrate 
at different pressure 

Feed 
type 

Feed Pressure, 
bar 

Total Flowrate 
ml/min CO2/CH4 ratio 

1 3 2000 30% CO2 : 70% CH4 
2 5 2000 30% CO2 : 70% CH4 

 

3.4 PROCEDURES 
 

3.4.1. Equipment Start-up 

1. Turn on the computer that is linked to the system 

2. Open software ‘National Instrument (NI), Labview” in the start-up 

menu 

3. Do line tracing including checking the valve positioning mode on the 

overall equipment condition before proceed to next stage. 

4. Click on which module that need to use. In this procedure, the tubular 

membrane module has been choosing.  

 

3.4.2. Running the Experiment 

1. Set membrane 1, tubular membrane module on operation in the Labview 

software 

2. Perform line tracing and necessary valve positioning exercise to ensure 

the flow of feed gas into the membrane is not obstructed 

3. Make sure valve positioning for tubular membrane as per table below. Be 

in mind that we are conducting Tubular Membrane module, so other 

modules valve positioning should be close. 
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Table 3. 5: Valve Positioning for Tubular Membrane Module 

Line Open Close 

Feed Vfeed, V1feed, V1(heater)in, V1(heater)out Vr&d(feed) 

Retentate Vtubular-ret, SV1A(retentate), 

V1(retentate)vent 

Vr&d-ret,  SV1B(retentate),  

Permeate Vtubular-per, V1(permeate)vent Vr&d-per, SV1A(permeate), 

SV1B(permeate), 

 

 

4. Set the flow of each gases (carbon dioxide and methane) in accordance to 

the mass flow controller setting (MFC) 

5. Note the gas inlet temperature. Only turn on the heater if conducted the 

experiment under elevated temperature.  

6. Turn on vacuum pump to ensure all gas are cleared from gas analyzer 

and cooling chamber into vent 

7. To run data, go to top left corner of application and click “Run 

Continuously” button. Be note that all data is record in an Excel file the 

minute “Run” mode is selected. Experiment data must be retrieved and 

save after each experiment set. 

8. Gas pressure can be set up and detect manually from each gas vessel.  

9. Repeat the procedure from 1 until 9 for other membrane module by 

changing membrane module operation and valve numbering. 
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3.4.3. Equipment Shut Down 

1. Turn off heater if used 

2. Set flow of all gases to zero value in NI (Labview) 

3. Close gas vessel valves 

4. Monitor temperature of the outlet temperature of gas leaving the 

equipment. If temperature is lower than 30oC, stop cold water circulation 

by close Vwater manually and turn off vacuum pump. 

5. Save and print all experiment data in pen drive. Make sure there is no 

data record in saved in the computer hard disk.  

6. Shut down the computer 

 

3.4.4. Purging the System 

1. Purging the system can be done before experiment start or after 

experiment done 

2. Make sure the valve positioning is same as running the experiment 

procedure 

3. Turn on the vacuum pump 

4. Introduce compressed air into the equipment for several minutes. 

5. Stop nitrogen gas supply 

6. Stop vacuum pump after nitrogen supply stop a while 

7. Close all valves 

 

 

 

 

 

 



 

 

3.4.5. Process Schematic of Experimental

 

 

 

Figure 3.1: Process Schematic of Experimental Apparatus in handling 
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CHAPTER 4 : RESULT AND DISCUSSION 

 

All of important parameter needed to test in experiment has been tested, like 

permeability test, feed composition test, feed flowrate test and feed pressure test. For the 

permeability test, gas methane (CH4) and carbon dioxide (CO2) has been used in tubular 

membrane module. 

Permeability test and blending test experiments have been done in order to find 

permeability and selectivity of carbon dioxide and membrane. For all of experiments, 

the temperature is fixed to room temperature, or at 25oC.  

4.1 PERMEABILITY TEST  

Permeability test for both gases has been done two to three times at same condition to 

find the stable data.  

4.1.1 CO2  Permeability Test 
 

CO2 permeability test with different feed flow rate at same feed pressure 

1. 1 bar feed pressure 
2. 3 bar feed pressure 
3. 5 bar feed pressure 
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Figure 4-1 : CO2 Permeability with different flow rate and 1 bar feed pressure 

 

Figure 4.1 shows higher permeability value of 3000 ml/min of  feed flowrate than 2000 

ml/min and 1000 ml/min at same pressure (1 bar). By this we found that higher feed 

flowrate give higher permeability. This support by Knudsen Diffusion theory, where the 

free path of molecule is large relative to the membrane pore radius. Increasing number 

of carbon dioxide in the feed allow much more molecule to pass through membrane as 

long as membrane pore radius still allow molecule to pass through it.  

 

 

Figure 4-2 : CO2 Permeability with different flowrate and 3 bar feed pressure 
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Figure 4.2 shows higher permeability obtain when feed pressure is increase to 3 bars for 

3 types of feed flowrates. From the graph, both 2000 ml/min and 3000 ml/min do not 

has very obvious different in permeability, whereas for 1000 ml/min is low permeability 

than others. But still, in this graph, increasing feed flowrate and feed flowrate has higher 

permeability. However, as it reaching certain pressure and time, the permeability will 

remain constant and stable because it is not a linear line. 

 

 

 

Figure 4-3 : CO2 Permeability with different flowrate and 5 bar feed pressure 

 

Figure 4.3 shows the same trend as figure 4.2, but it clearly shows here that, at feed 

pressure of 5 bars for both 2000 ml/min and 3000 ml/min experiment, the trends has 

same value. This because of as pressure increase until reach the membrane limit, the 

permeability will not increase anymore. It remains at constant value, as the permeation 

still happen, but the molecule is permeating through membrane in slow speed. We can 

say that the porous or path way of membrane pore is ingested with molecules, due to 

higher flowrate and higher pressure as driving force for permeation.  
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  CO2 permeability comparison between feed pressure and feed flowrate. 

 

Figure 4-4 : CO2 Permeability at different pressure at increasing feed flowrate 

 

Figure 4.4 shows 3 different pressures graph with increasing feed flowrate. As from 

above trending, as feed flowrate increasing, the permeability is increasing. Same goes to 

increasing feed pressure. However, 5 bar feed pressure has lower permeability than 3 

bar pressure with increasing flowrate from 2000 ml/min until 300 ml/min. it shows that 

with 2000 ml/min and 3000 ml/min at 5 bar pressure, the membrane pore is ingested and 

full with molecules. It cannot increase permeation rate but constantly allow molecule to 

permeate through it. Whereas, for 3 bar pressure favor more permeation rate than 5 bar. 

Theoretically increasing pressure will both permeability and selectivity although it give 

higher driving force to allow higher permeation. But with increasing feed flowrate, 

lower pressure (3 bars) gave higher permeability than high pressure (5 bars) 
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4.1.2 CH4 Permeability Test 

 

CH4 permeability test with different feed pressure at same feed flowrate. Graphs below 

show the comparison between same flowrate but at different pressure 

 

Figure 4-5 : CH4 Permeability with different pressure at 1000 ml/min flowrate 

 

Figure 4.5 shows that at 1000 ml/min feed flowrate, 3 bars and 5 bars feed pressure has 

same permeability, while for 1 bar pressure, has lower permeability. All of them have 

stable permeability across the membrane. It seems that as increasing feed pressure, it 

increase the permeability, but until reach its limit, and the permeability will become 

constant. With the ingested molecule in membrane pores due to high feed flowrate, it 

deny higher permeation rate, but allow slow and constant permeation of molecule 

through membrane. The higher driving force here is different pressure across membrane 

cannot increase permeability of methane. 
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4.1.3 CO2 and CH4 permeability comparison 
 

Below show the graphs that compare the carbon dioxide permeability and methane 

permeability. Since 2000 ml/min and 3000 ml/min of methane permeability give almost 

the same pattern, only one pattern has been trend here. 

 

Figure 4-6 : CO2 and CH4 permeability comparison at 1 bar feed pressure 

 

Figure 4.6 indicate that higher flowrate (3000 ml/min) has higher permeability than 

other flowrates. From the graph, methane permeability at 1000 ml/min has higher 

permeability than 1000 ml/min and 2000 ml/min of carbon dioxide permeability. At 1 

bar feed pressure, low different pressure across membrane may lower the carbon dioxide 

permeability at 1000 ml/min and 2000 ml/min than methane permeability. Insufficient 

driving force may have denied molecular sieving theory where smaller molecules have 

higher diffusion rates. 
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Figure 4-7 : CO2 and CH4 permeability comparison at 3 bar feed pressure 

 

Figure 4.7 show that methane has lower permeability than carbon dioxide at 3 bar feed 

pressure. It also show that higher flowrate has higher permeability for carbon dioxide 

permeability than methane, although for 2000 ml/min and 3000 ml/min do not show 

much different in permeability value. From this graph, we can say that carbon dioxide 

has higher permeability value than methane. For fundamental transport theory using 

molecular sieving transport, it says that smaller molecules have higher diffusion rates 

and this can happen when sufficient driving force applied. This is at 3 bars feed 

pressure, carbon dioxide has higher permeability than methane, which is carbon dioxide 

molecule is smaller than methane.  
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Figure 4-8 : CO2 and CH4 permeability comparison at 3 bar feed pressure 

 

Figure 4.8 show the same trend and almost have same value as Figure 4.7. Carbon 

dioxide permeability is higher than methane permeability. It supports the molecular 

sieving theory that smaller molecules have higher diffusion rates.  
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4.1.4 Ideal Selectivity of methane and dioxide 

The formula of calculation ideal selectivity of tubular membrane for both gases is same 

as Equation 2.6 and shown below: 

aAB = PA/PB 

Where PA is permeability of CO2, while PB is permeability of CH4, with respect to 

operating condition.  

 

Table 4-1 : Ideal selectivity of different pressure at different flowrate  

 1000ml  2000ml  3000ml  

1 bar  0.727  0.883  2.314  

3 bar  1.763  3.542  3.870  

5 bar  1.773  3.390  3.405  

 

Table 4.1 as per above is the average value of selectivity at different feed pressure and 

feed flowrate.  
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Figure 4-9 : CO2/CH4 selectivity with different pressure at 1000 ml/min 

Figure 4.9 give us three type selectivity of different feed pressure. 1 bar feed pressure 

has lowest permeability while 3 bars and 5 bars feed pressure seem look alike, although 

from table 4.1; average selectivity for 5 bars has slightly highest value than 3 bars. From 

these results, the carbon dioxide permeates 0.7 to 1.77 faster than methane.  

 

Figure 4-10 : CO2/CH4 selectivity with different pressure at 2000 ml/min 
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Figure 4.10 give us the same trend of selectivity but in different value from Figure 4.9. 

Higher feed flowrate give higher selectivity value. For comparison, from Table 4.1, 3 

bars feed pressure has higher average selectivity than 5 bar pressure. From this graph, 

carbon dioxide permeates 0.883 to 3.542 faster than methane. 

 

 

 

Figure 4-11 : CO2/CH4 selectivity with different pressure at 3000 ml/min 

 

Figure 4.11 show the stable selectivity for 3 bars and 5 bars feed pressure. All of 

selectivity has slightly higher value than Figure 4.10, but still 3 bars feed pressure has 

the higher selectivity over 5 bars feed pressure. It may due to membrane reach it 

limitation for both permeability and selectivity, based on these 3 feed pressures. 

Membrane has the higher permeability and selectivity at 3 bars feed pressure, where 

higher driving force or higher feed pressures do not improve selectivity. Higher pressure 

is used, the selectivity will become lower or reduces, where it give other molecules to 

past thru the membrane.  
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4.2 BLENDING GAS OF METHANE AND CARBON DIOXIDE IN FEED 

COMPOSITION 

 

In order to calculate the composition of retentate and permeate,  I calculated the number 

of mole for feed stream and permeate stream. From the number of mol for each stream, 

we can find the amount percentages of methane and carbon dioxide gas inside each 

stream. Figure 4.12 below shows how much methane recovery we got in retentate 

stream and the composition of permeate stream after gas separation.  

 

Figure 4-12 : Block diagram of blending gas separation 

 

Figure 4.12 show the example of experiment at operating pressure of 3 bar, with feed 

flowrate of 2000 ml/min on 15% CO2 and 85% CH4 concentration in feed. By the 

figure, we has achieve high methane recovery on retentate stream, up to 95% purity of 

methane, with 5 % of impurity of carbon dioxide. 
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  4.2.1 Feed Composition of 15% Carbon Dioxide gas with different Feed 
Pressure 
 

Below shows the tables of composition percentage at 2000 ml/min at 15 % CO2 
concentration in feed at 3 bar feed pressure and 5 bar feed pressure. 

Table 4-2 : Composition in each stream for 15% CO2 and 85% CH4 as feed 
concentration at 3 bar feed pressure 

 

Table 4.2 shows high carbon dioxide permeability to permeate stream, where at the 

retentate stream, only 5 % to 7 % of carbon dioxide left. This has give higher methane 

recovery in retentate stream, which almost 94% of recover methane. This can be support 

by Figure 4.2 and Table 4.1 where at 3 bars feed pressure; it has high permeability and 

high selectivity for carbon dioxide. So it permeates carbon dioxide with easy and repels 

methane out.  

 

 



43 

 

 

Table 4-3 : Composition in each stream for 15% CO2 and 85% CH4 as feed 
concentration at 5 bar feed pressure 

 

Table 4.3 shows the composition for all streams with 15% carbon dioxide and 85% 

methane as feed composition at 5 bars. Looking at the data calculated methane recovery 

in retentate stream only improve 3% and have carbon dioxide impurity of 11.6%. if 

compare with table 4.2, this experiment has lower methane recovery at higher pressure. 

By using data of table 4.1, higher feed pressure at 2000 ml/min will has low selectivity 

than 3bar pressure. Low selectivity effect in more permeation of methane, which reduce 

the methane recovery in retentate stream. 
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   4.2.2 Feed Composition of 30% Carbon Dioxide gas with different Feed Pressure 
 

Below shows the tables of composition percentage at 2000 ml/min at 30 % CO2 
concentration in feed at 3 bar feed pressure and 5 bar feed pressure. 

 

Table 4-4 : Composition in each stream for 30% CO2 and 70% CH4 as feed 
concentration at 3 bar feed pressure 

 

Table 4.4 shows improvement in methane recovery, where it increase methane purity 

from 70% to 74% with impurity of 26%. With high concentration of carbon dioxide in 

feed concentration, the membrane seems to only can separate carbon dioxide molecule 

up to 5%. Increasing amount of molecule in feed may have reduced the free path of 

carbon dioxide free path to permeate through membrane. As lot of molecules inside the 

membrane pore, the pore becomes ingested and full with molecules. This may reduce or 

lower the permeation rate of molecules through membrane. The permeation still happen, 
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but in slow speed due to low free path of molecule and small space of molecules pore, as 

it transport theory is based on Knudsen Diffusion.  

Beside, the methane composition in permeate also increase than feed composition, as the 

selectivity is reducing as impurity concentration increase.  

 

 

Table 4-5 : Composition in each stream for 30% CO2 and 70% CH4 as feed 
concentration at 5 bar feed pressure 

 

 

Table 4.5 shows methane recovery in retentate stream is 74%, increase 4% than feed 

composition, while it has higher carbon dioxide composition in permeate stream. It is 

known that, when feed pressure is increased, the methane recovery in residue stream 

should be increased. This mean carbon dioxide recovery in permeate stream is 

increased. This is due to higher pressure give greater driving force across membrane. 
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This give high permeability to carbon dioxide and methane to separated thru membrane. 

As known, usually, when permeability is high, the selectivity will be low or reduce.  

If we compare table 4.4 and table 4.5, both give us same methane recovery in retentate 

stream, around 74%, which only increase 4% from methane composition in feed. 

However, the permeation of carbon dioxide into permeate stream for table 4.5 is higher 

than table 4.4, and also has low methane recovery. We can conclude for this comparison 

that, at high carbon dioxide concentration, high feed pressure give high permeation rate 

for carbon dioxide to past through membrane. High pressure will be increase the 

different pressure between feed pressures and permeate pressure, and become sufficient 

driving force to separate carbon dioxide.  
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CHAPTER 5 : CONCLUSION 

 

The separation of carbon dioxide from methane is very challenging in term of process 

and technology. Experiments result show that membrane process has a promising 

technology to be used for carbon dioxide and methane separation. From the result and 

discussion, we found that higher feed flowrate and higher feed pressure gave higher 

permeability, but it gave almost same permeability value for feed pressure at 3 and 5 

bars. This is because of membrane permeability is not linear with increasing pressure 

and it will be a constant value once it reach its limitation. This is due to constant 

permeation transport, using Knudsen Diffusion, as many molecules in stream have 

reduced the free path of molecule relative to membrane pore size in permeating through 

membrane. Carbon dioxide has higher selectivity than methane, average value of 3.5 

which mean that carbon dioxide permeate through membrane 3.5 faster than methane. 

Found that selectivity both gases reduced as feed pressure increased. As we know, as 

pressure increase, both permeability and selectivity decrease, with give us higher driving 

force which increase permeation rate of both gases.  

Blending gas experiment using different feed concentration and feed pressure as the 

operating parameter gave us some interesting results. At 15% carbon dioxide and 85% 

methane in feed concentration at 3 bar feed pressure, we got 94% methane recovery in 

retentate stream, which was the highest recovery for all of experiments.  We found that 

increase carbon dioxide concentration from 15% to 30%, based on analysis, has lower 

methane recovery in retentate stream. Based on Knudsen Diffusion, as many of 

molecule in the stream, the free path of molecule is reduced, relatively with membrane 

pore. Pores become ingested with lots of permeating molecules, effect in slow speed of 

permeation rate.  
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From here, the first objective is to study permeability and selectivity of carbon dioxide 

and methane is achieved. Second objective is to study on carbon dioxide separation 

using inorganic membrane is achieved during blending test, where there is carbon 

dioxide been separated when blend with methane, although only slightly amount of 

carbon dioxide be separated at certain operating parameters. Last objective is to study on 

membrane performance in separation at certain operating condition also has been 

achieved. It is found that at 15% carbon dioxide and 85% methane at 3 bars feed 

pressure of 2000 ml/min, the methane recovery is the highest, with up to 94% purity. 

The purity can be increase by doing multi-staged of membrane system, or the residue 

(retentate) stream is supply to amine system. 

 

Recommendations for project improvement and future work are 

1. Use temperature as one the manipulating parameter in experiment and membrane 

research for this project 

2. Exposed and supply membrane module with desired gas for long period of time 

such as one hour per experiment in order make separation more stable and get a 

good data 

3. Use known membrane materials, or develop personal inorganic membrane where 

student can fully understand the characteristics of the membrane material 
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GANTS CHART FOR THE FYP II 
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MILESTONES FOR FYP II 
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FLOW OF THE PROCEDURES IN DOING THE EXPERIMENT 
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equipment

Equipment 
shutdown
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PICTURES OF THE LAB EQUIPMENT 

 

Tubular Membrane Module 

Membrane Separation Pilot 
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TABLE OF THE PERMEABILITY TEST RESULT 

 

Table of permeability test carbon dioxide in tubular membrane module 

FEED RETENTATE PERMEATE 

CH4 (%) CO2(%) Flowrate (ml/min) Flowrate (ml/min) CH4 (%) CO2(%) Flowrate (mil/min) CH4 (%) CO2(%) 

3.33 98.30 1074.27 0.00 92.29 9.38 961.18 95.07 6.60 

3.27 97.21 1074.25 0.00 58.06 43.61 954.00 79.16 22.50 

3.24 96.31 1074.15 0.00 -0.10 101.77 942.45 45.13 56.53 

3.20 94.92 1074.73 0.00 -0.10 101.77 945.13 25.06 76.61 

3.15 93.59 1074.53 0.00 -0.10 101.77 954.32 14.48 87.18 

 

 

Table of permeability test methane in tubular membrane module 

 

Time 

Stamp 

CH4 

Flowrate 

Feed 

CH4 

Feed 

CO2 

Feed 

O2 

Feed 

Pressure 

Feed (2) 

Pressure 

Feed (2) 

Temperature 

Feed (2) 

Flowrate 

DP 

(2) 

Retentate 

(2) 

Flowrate 

Retentate 

(2) 

Pressure 

Retentate 

(2) CH4 

Retentate 

(2) CO2 

Retentate 

(2) O2 

Permeate 

(2) 

Flowrate 

Permeate 

(2) 

Pressure 

Permeate 

(2) CH4 

Permeate 

(2) CO2 

Permeate 

(2) O2 

5:39:09 

PM -296.25 96.35 0 0 0.48 0.4 26.9 1252 36.64 0 0.57 72.55 15.25 0.05 914 0.41 45.34 7.95 0.06 

5:39:10 

PM -296.25 96.28 0 0 0.48 0.4 27 1252 36.67 0 0.57 72.22 15.18 0.05 1246 0.41 45.16 7.88 0.06 

5:39:30 

PM -296.25 96.31 0 0 0.48 0.4 27 1252 36.93 0 0.57 70.38 14.64 0.05 1245 0.41 43.44 7.61 0.06 

5:39:31 

PM -296.25 96.26 0 0 0.48 0.4 27 1253 36.93 0 0.57 70.34 14.61 0.05 1245 0.41 43.36 7.65 0.06 

5:39:32 

PM -296.25 96.26 0 0 0.48 0.4 27 1253 36.93 0 0.57 70.23 14.62 0.05 1246 0.41 43.29 7.6 0.05 

5:40:00 

PM -296.25 96.23 0 0 0.48 0.4 27.1 1252 37.31 0 0.57 68.9 14.06 0.05 1245 0.41 42.34 7.31 0.05 

5:40:01 

PM -296.25 96.23 0 0 0.48 0.4 26.9 1252 37.31 0 0.57 68.87 14.05 0.05 1245 0.41 42.28 7.3 0.05 

5:40:02 

PM -296.25 96.27 0 0 0.48 0.4 27 1254 37.34 0 0.57 68.87 13.99 0.05 1245 0.41 42.32 7.25 0.05 
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5:40:30 

PM -296.25 96.18 0 0 0.48 0.4 27.1 1253 37.72 0 0.57 68.84 13.37 0.05 1246 0.41 43.01 6.98 0.05 

5:40:31 

PM -296.25 96.18 0 0 0.48 0.4 27.2 1253 37.72 0 0.57 68.89 13.37 0.05 1246 0.41 43.11 6.92 0.05 

5:40:32 

PM -296.25 96.21 0 0 0.48 0.4 27.1 1253 37.72 0 0.57 68.9 13.4 0.05 1246 0.41 43.13 6.96 0.05 

5:41:00 

PM -296.25 96.1 0 0 0.48 0.4 27.2 1254 38.13 0 0.57 70.22 12.69 0.05 1247 0.41 45.47 6.53 0.06 

5:41:01 

PM -296.25 96.15 0 0 0.48 0.4 27.4 1253 38.13 0 0.57 70.26 12.66 0.05 1247 0.41 45.57 6.49 0.06 

5:41:02 

PM -296.25 96.14 0 0 0.48 0.4 27.3 1253 38.13 0 0.57 70.34 12.61 0.05 1246 0.41 45.71 6.51 0.06 

5:41:30 

PM -296.25 96.14 0 0 0.48 0.4 27.3 1253 38.51 0 0.57 72.25 11.92 0.05 1247 0.41 48.77 6.09 0.06 

5:41:31 

PM -296.25 96.15 0 0 0.48 0.4 27.2 1254 38.51 0 0.57 72.36 11.86 0.05 1246 0.41 48.93 6.07 0.06 

5:41:32 

PM -296.25 96.1 0 0 0.48 0.4 27.3 1254 38.55 0 0.57 72.46 11.87 0.05 1247 0.41 49.01 6.09 0.06 

5:42:00 

PM -296.25 96.07 0 0 0.48 0.4 27.4 1254 38.9 0 0.57 74.58 11.01 0.05 1247 0.41 52.39 5.6 0.06 

5:42:01 

PM -296.57 96.01 0 0 0.48 0.4 27.4 1254 38.93 0 0.57 74.65 11.01 0.05 1247 0.41 52.45 5.61 0.06 

5:42:02 

PM -296.25 96.07 0 0 0.48 0.4 27.4 1255 38.93 0 0.57 74.73 10.96 0.05 1247 0.41 52.61 5.56 0.06 

5:42:30 

PM -296.25 96.01 0 0 0.48 0.4 27.6 1254 39.34 0 0.57 77.02 10.13 0.05 1249 0.41 56.12 5.11 0.06 

5:42:31 

PM -296.25 95.99 0 0 0.48 0.4 27.5 1255 39.34 0 0.57 77.11 10.12 0.05 1247 0.41 56.12 5.12 0.06 

5:42:32 

PM -296.25 96.04 0 0 0.48 0.4 27.5 1255 39.37 0 0.57 77.17 10.1 0.05 1248 0.41 56.24 5.12 0.06 

5:43:00 

PM -296.25 95.92 0 0 0.48 0.4 27.4 1254 39.72 0 0.57 79.15 9.42 0.05 1247 0.41 59.58 4.7 0.06 

5:43:01 

PM -296.25 95.99 0 0 0.48 0.4 27.6 1254 39.75 0 0.57 79.25 9.41 0.05 1247 0.41 59.67 4.68 0.06 

5:43:02 

PM -296.25 95.94 0 0 0.48 0.4 27.5 1254 39.75 0 0.57 79.37 9.33 0.05 1247 0.41 59.8 4.66 0.06 

5:43:30 

PM -296.25 95.89 0 0 0.48 0.4 27.6 1255 40.1 0 0.57 81.15 8.71 0.05 1248 0.41 62.57 4.34 0.06 

5:43:31 

PM -296.57 95.92 0 0 0.48 0.4 27.7 1254 40.13 0 0.57 81.26 8.68 0.05 1248 0.41 62.71 4.27 0.06 

5:43:32 

PM -296.25 95.87 0 0 0.48 0.4 27.5 1254 40.13 0 0.57 81.32 8.7 0.05 1247 0.41 62.76 4.32 0.06 
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Table of Feed Concentration Selectivity 

Separation Factor for Feed Concentration 

1;10 1;5 1;3.5 1;2 

CO2/CH4 CH4/CO2 CO2/CH4 CH4/CO2 CO2/CH4 CH4/CO2 CO2/CH4 CH4/CO2 

2.7156 0.3682 2.6440 0.3782 0.6050 1.6529 0.4896 2.0425 

2.6599 0.3760 2.1165 0.4725 0.5802 1.7237 0.5028 1.9887 

2.5891 0.3862 1.7526 0.5706 0.5668 1.7642 0.5364 1.8641 

2.4721 0.4045 1.5057 0.6641 0.5589 1.7893 0.6204 1.6119 

2.3640 0.4230 1.3461 0.7429 0.5602 1.7851 0.7336 1.3631 

 

Table of Feed Flowrate Selectivity 

Separation Factor for Feed Flowrate 

500ml/min 1000ml/min 2000ml/min 3000ml/min 

CO2/CH4 CH4/CO2 CO2/CH4 CH4/CO2 CO2/CH4 CH4/CO2 CO2/CH4 CH4/CO2 

2.026024 0.493578 2.904425 0.344302 1.577966 0.633727 0.310135 3.224404 

2.074048 0.482149 2.791927 0.358176 1.703746 0.586942 0.579164 1.726626 

2.135745 0.468221 2.645279 0.378032 1.801049 0.555232 0.741081 1.349381 

2.190512 0.456514 2.306402 0.433576 1.858428 0.538089 0.856587 1.167423 

2.241699 0.44609 1.888485 0.529525 1.886787 0.530002 1.014359 0.985844 
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Table of Feed Pressure Selectivity 

Separation Factor for Feed Pressure 

3 bar 5 bar 6 bar 9 bar 

CO2/CH4 CH4/CO2 CO2/CH4 CH4/CO2 CO2/CH4 CH4/CO2 CO2/CH4 CH4/CO2 

0.556583 1.796677 0.960836 1.040761 0.996471 1.003541 1.034109 0.967016 

0.732622 1.36496 0.97354 1.027179 1.003904 0.996112 1.030468 0.970433 

0.83917 1.191654 0.988121 1.012022 1.00718 0.992871 1.020906 0.979522 

0.895785 1.116339 0.992359 1.0077 1.008331 0.991738 1.014712 0.985502 

0.926174 1.079711 0.991448 1.008626 1.008295 0.991774 1.014611 0.9856 
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Gas Membrane Separation Unit Control from computer 

 


