The Effect of Left Turn no Red on Road Users at Signalized Intersection

by

Hafizul Fiqry Bin Shahrul Anwar

13073

Dissertation submitted in partial fulfillment of

the requirement for the Bachelor of Engineering (Hons)

(Civil Engineering)

SEPTEMBER 2013

Universiti Teknologi PETRONAS Bandar Seri Iskandar 31750 Tronoh Perak Darul Ridzuan

CERTIFICATION OF APPROVAL

The Effect of Left Turn on Red on Road Users at Signalized Intersection

by

Hafizul Fiqry Bin Shahrul Anwar

13073

A project dissertation submitted to the

Civil Engineering Programme

Universiti Teknologi PETRONAS

in partial fulfillment of the requirement for the

BACHELOR OF ENGINEERING (Hons)

(CIVIL ENGINEERING)

Approved by,

Assoc. Prof. Dr. Madzlan Napiah

UNIVERSITI TEKNOLOGI PETRONAS TRONOH, PERAK September 2013

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the original work is my own except as specified in the reference and acknowledgements, and that the original work contained herein have not been undertaken or done by unspecified sources or persons.

Hafizul Fiqry Bin Shahrul Anwar

ABSTRACT

Huge amounts of road users mostly at the urban area nowadays become one of the factors that cause traffic congestion at the intersections. The intersections which are under the active level of traffic control only manage to settle the problem of traffic congestion at the intersection by adjusting the duration of time interval between traffic's colors. This only helps to reduce only a bit amount of delay facing by the road users while still considering their safety. However, the road users still require more time need to be saved while being at the intersection. In this research, further study on the effect of implementing authorized left turn on signalized intersection in Malaysia is made. The effect involves the improvement of the intersection level of service through reduction of traffic delay.

ACKNOWLEDGEMENT

I have taken efforts in this project. However, without bless from Allah s.w.t the almighty; it would not have been possible. Not only that, without the kind support and help of many individuals and organizations this research may not also become reality. I would like to extend my sincere thanks to all of them.

I am highly indebted to my supervisor, Assoc. Prof. Dr. Madzlan Bin Napiah for his guidance and constant supervision as well as for providing necessary information regarding the project and also for his support in completing the project.

I would like to express my gratitude towards my parents; Shahrul Anwar bin Hj. Mohd. Yusoff and Siti Habsah binti Kassim, and also friends; especially Muhammad. Hadhri bin Md. Yusuf for their kind co-operation and encouragement which help me in completion of this project.

My thanks and appreciations also go to my colleague in developing the project and people who have willingly helped me out with their abilities.

TABLE OF CONTENT

ABSTRACT	iv
ACKNOWLEDGEMENT	V
CHAPTER 1: PROJECT BACKGROUND	
1.1: Background of Study	1
1.2: Problem Statement	3
1.3: Objective	4
1.4: Scope of Study	4
CHAPTER 2: LITERATURE REVIEW	
2.1: Type of Road Intersections	5
2.2: Conflicts at the Intersections	6
2.3: Controlled Intersection	7
2.4: Delay at Signalized Intersection	11
2.5: Signalized Intersection Level of Service (LOS)	12
2.6: Left Turn on red	13
2.7: Usage of SIDRA for Signalized Intersection	15
2.8: Research Paper Critical Analysis	17

CHAPTER 3: METHODOLOGY

3.1: Selection of Intersection	18
3.2: Data collection at selected location	19
3.3: Results data analysis	19

3.4: Design for improvement and simulation	20
3.5: Project Activities	21
3.6: Key Milestone	22
3.6.1: Final Year Project I	22
3.6.2: Final Year Project II	22
3.7: Gantt Chart	23
3.8: Tools	24
CHAPTER 4: DATA COLLECTION AND RESULTS	26
4.1: Data Collection	27
4.1.1: 3-Legged Intersections	27
4.1.2: 4-Legged Intersections	29
4.2: Conversion of Volume in Passenger Car Unit (pcu)	31
4.2.1: 3-Legged Intersection	32
4.2.2: 4-Legged Intersections	33
4.3: Results	36
4.3.1: 3-legged Intersection Level of Service	36
4.3.2: 4-legged Intersection Level of Service	38
CHAPTER 5: DISCUSSION	41
5.1: Current Intersection Level of Service (LOS)	42
5.1.1: Current Level of Service of 3-legged Intersection	42
5.1.2: Current Level of Service of 4-legged Intersection	46
5.2: Intersection Level of Service (LOS) with Left Turn on Red (LTOR)	49

	5.2.1: LTOR of 3-legged Intersection	49
	5.2.2: LTOR of 4-legged Intersection	51
5.3	: Intersection Level of Service (LOS) with channelization (Slipways)	53
	5.3.1: Channelization of 3-legged Intersection	53
	5.3.2: Channelization of 4-legged Intersection	55
5.4	: Left Turn on Red (LTOR) VS channelization (Slipways)	58

CHAPTER 6: CONCLUSION	60
REFERENCES	63
APPENDIX	65

LIST OF FIGURE

Figure 2.1: Conflicts Point of Fou-legged intersection	6
Figure 2.2: Conflict Point of Three-legged intersection	7
Figure 2.3: Yield Sign	8
Figure 2.4: STOP Sign	8
Figure 2.5: Channelization	9
Figure 2.6: Traffic Rotaries	9
Figure 2.7: Traffic Signal	10
Figure 2.8: Selection of Intersection Type	10
Figure 3.1: Project Stage Sequences	18
Figure 3.2: Project Activities Flow	21
Figure 3.3: Gantt Chart Project Planning	23
Figure 4.1: 3-legged intersection	27
Figure 4.2: 4-legged intersection	29
Figure 4.3: 3-legged Current LOS	36
Figure 4.4: 3-legged Left Turn on Red LOS	37
Figure 4.5:3-legged Slipways LOS	37
Figure 4.6: 4-legged Current LOS	38
Figure 4.7: 4-legged Left Turn on Red LOS	39
Figure 4.8: 4-legged Slipways LOS	40
Figure 5.1: Current 3-legged intersection traffic delay	42
Figure 5.2: Map of selected 3-legged intersection	45
Figure 5.3: Current 4-legged intersection traffic delay	46

Figure 5.4: Map of selected 4-legged intersection	48
Figure 5.5: 3-legged intersection traffic delay with LTOR	49
Figure 5.6: 4-legged intersection traffic delay with LTOR	51
Figure 5.7: 3-legged intersection traffic delay with channelization	54
Figure 5.8: 4-legged intersection traffic delay with channelization	56
Figure 6.1: Left turn during red	61
Figure 6.2: Stop inside the Yellow Box during red	61
Figure 6.3: Signage related to Left Turn on Red in Overseas	62

LIST OF TABLE

Table 2.1: Level of Service Criteria for Signalized Intersections	12
Table 2.2: Research Paper Critical Analysis	17
Table 3.1: Conversion factors to pcu's	20
Table 3.2: Key Milestone for FYP I	22
Table 3.3: Key Milestone for FYP II	22
Table 4.1: Vehicles classification	26
Table 4.2: 3-legged intersection details	27
Table 4.3: JALAN NG WENG HUP APPROACH	27
Table 4.4: JALAN SILIBIN WEST APPROACH	28
Table 4.5: JALAN SILIBIN EAST APPROACH	28
Table 4.6: PEAK HOUR VOLUME	28
Table 4.7: 4-legged intersection details	29
Table 4.8: JALAN LEONG BOON SWEE WEST APPROACH	29
Table 4.9: JALAN LEONG BOON SWEE EAST APPROACH	30
Table 4.10: JALAN BENDAHARA NORTH APPROACH	30
Table 4.11: JALAN BENDAHARA SOUTH APPROACH	31
Table 4.12: PEAK HOUR VOLUME	31
Table 4.13: Vehicle PCU value	31
Table 4.14: JALAN NG WENG HUP APPROACH	32
Table 4.15: JALAN SILIBIN WEST APPROACH	32
Table 4.16: JALAN SILIBIN EAST APPROACH	33
Table 4.17: PEAK HOUR VOLUME	33
Table 4.18: JALAN LEONG BOON SWEE WEST APPROACH	33
Table 4.19: JALAN LEONG BOON SWEE EAST APPROACH	34
Table 4.20: JALAN BENDAHARA NORTH APPROACH	34

Table 4.21: JALAN BENDAHARA SOUTH APPROACH	35
Table 4.22: PEAK HOUR VOLUME	35
Table 4.23: Summary of 3-legged Intersection Left Turn Level of Service	38
Table 4.24: Summary of 4-legged Intersection Left Turn Level of Service	40
Table 5.1: Level of Service definitions based on delay	41
Table 5.2: Current 3-legged intersection traffic delay	43
Table 5.3: Current 4-legged intersection traffic delay	47
Table 5.4: 3-legged intersection traffic delay with LTOR	49
Table 5.5: Comparison of 3-legged intersection traffic delay (current vs LTOR)	50
Table 5.6: 4-legged intersection traffic delay with LTOR	52
Table 5.7: Comparison of 4-legged intersection traffic delay (Current vs LTOR)	52
Table 5.8: 3-legged intersection traffic delay with channelization	54
Table 5.9: Comparison of 3-legged intersection traffic delay (Current vs channelization)	55
Table 5.10: 4-legged intersection traffic delay with channelization	56
Table 5.11: Comparison of 4-legged intersection traffic delay (Current vs channelization)	57
Table 5.12: 3-legged Intersection Left Turn	58

 Table 5.13:
 4-legged Intersection Left Turn

58