USB DEVICE CONNECTIVITY USING PYTHON

by

Mohamad Alif bin Mohd Roki
(Supervisor: Vijanth Sagayan a/l Asirvadam)

Dissertation submitted in partial fulfillment of
the requirement for the
Bachelor of Engineering (Hons)

(Electrical and Electronic Engineering)

SEPTEMBER 2013

Universiti Teknologi Petronas
Bandar Seri Iskandar
31750 Tronoh

Perak Darul Ridzuan

CERTIFICATION OF APPROVAL

DESIGN OF IMPROVED GRID FOR TURTLE ROBOT

by

Mohamad Alif bin Mohd Roki

A project dissertation submitted to the
Department of Electrical and Electronic Engineering
in Partial Fulfillment of the Requirement
for the Degree Bachelor of Engineering (Hons)

Electrical and Electronic Engineering

Approved by

(Vijanth Sagayan a/l Asirvadam)

UNIVERSITI TEKNOLOGI PETRONAS
TRONOH, PERAK
September 2013

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the
original work is my own concept as specified in the references and acknowledgements,
and that the original work contained herein have not been undertaken or done by
unspecified sources or persons.

(MOHAMAD ALIF BIN MOHD ROKI)

ABSTRACT

This thesis is the final manifestation of the final year project that aims to
determine how the Universal Serial Bus (USB) work in serial and parallel connection
with coding that had been design. By using Python 2.7.5 software allows the project
running smoothly, whether to send or transfer any data to or from the hardware devices.
The communication of this project was recorded in the Python 2.7.5 software itself as a

strong result.

ACKNOWLEDGEMENT

All praise due to Him, the most merciful for giving this opportunity to
successfully complete my Final Year Project (FYP) in 6 month. I am proud and glad to
express my utmost appreciation to those who have successfully guided me throughout my
project finishing.

| take this opportunity to express my profound gratitude and deep regards for
exemplary guidance, monitoring and constant encouragement throughout the course of
this project. The blessing, help and guidance given time to time shall carry me a long way
in the journey of life on which I am about to embark. Special thanks to these following
people:

AP Dr. Vijanth Sagayan a/l Asirvadam
Associate Professor in Electrical and Electronic Department
Supervisor for my FYP
Mr. Patrick Sebastian
Lecturer in Electrical and Electronic Department
Co-Supervisor of my FYP

| am obliged to committee of FYP in Electrical and Electronic Department in
Universiti Teknologi Petronas (UTP) for the valuable information provided by them. | am
grateful for their cooperation during the period of my project. This project would be
never has become a reality without the effort of FYP committee for conducting and
facilitating the course. Finally, | thank my parents, brother, sisters and friends for their

constant encouragement without which this assignment would not be possible.

NO TABLE OF CONTENT PAGE
CERTIFICATION OF APPROVAL ii
CERTIFICATION OF ORIGINALITY ii

ABSTRACT v
ACKNOWLEDGEMENT Vv
Table of Content vi
List of Figures vii
List of Tables viii
List of Abbreviation viii
1 INTRODUCTION
1.1 Project Background 1
1.2 Problem Statement 1
1.3 Objectives 1
2 LITERATURE REVIEW
2.1 Python as Base Language Programming 2
2.2 USB Connection 3
3 METHODOLOGY
3.1 Research Methodology 6
3.2 Key Milestone 18
3.3 Gantt Chart 19
3.4 Tools 20
4 RESULT AND DISCUSSION 21
5 CONCLUSION 27
6 REFERENCES 28
7 APPENDICES 29

Vi

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:

List of Figures

USB port

Serial port and Parallel port

USB Basic Communication flow

Flow of Methodology

Step 1 Python 2.7.5 Installation

Step 2 Python 2.7.5 Installation

Step 3 Python 2.7.5 Installation

Step 4 Python 2.7.5 Installation

Step 5 Python 2.7.5 Installation

Step 6 Python 2.7.5 Installation

Step 7 Python 2.7.5 Installation

Step 8 Python 2.7.5 Installation

Step 9 Python 2.7.5 Installation

Example how to find the Device using USB Module
USBview software that views the Component of USB Devices
USBview shows the Bulk Type Transfer of Thumb Drive
The Methodology of the Project

Python 2.7.5 Software Interface

Thumb Drive and PC that use for Project

Coding for Detect USB Device in Python Interface

Result for the Detection of USB Device in Python Interface
Coding for Reading the USB Thumb Drive

Expected Result of Reading USB Device

Result shown of Failure in Listing the Information from USB
Coding for Writing in USB Thumb Drive

Result shown of Failure in Communication of USB

Vii

© O 0 00 o O b b

NN D NN N DNMRN R R B B R R R e e
o O B B W N P O O © N O A N P B O O

List of Table

Table 1: Comparison of Python and Java Programming Languages
Table 2: Description of PyUSB Modules
Table 3: Gantt Chart for the Whole Semester Project Progress

List of Abbreviations

13
19

ACK Acknowledge

API Application Programming Interface
FYP Final Year Project

ISA Industrial Standard Architecture
oS Operating System

PC Personal Computer

PCI Peripheral Component Interconnect
UTP Universiti Teknologi Petronas

USB Universal Serial Bus

viii

INTRODUCTION

1.1 Background of Study

The project go deep to looks into how functional programming using python which is
used to interact with one or many hardware(s). The python programming is used to read
and send signal via USB connection which can be in form of serial (one way
communication) and parallel (with feedback) connections. In this project was use Python

2.7.5 software that interacts with Windows 7 64bits operating system (OS).
1.2 Problem Statement

The project problem formulation involves studying two form of USB connections
— serial and parallel using python programming which are different in paradigm. The
USB serial connection uses 8 bits single transmission whereas parallel connection
sending and receiving information in form packets. The aim of these is project
diagnostics toolkits which can be record activity of USB devices. The diagnostic tool is
also able to interact with USB devices using serial (one way communication) and parallel
(with feedback). As we know USB got many problems, based on the designer, they said
USB have communications issues which are lack of latency time problem and sometime
the USB port is not found or unrecognized[1]. The diagnostic toolkit is important to solve
these problems.

1.3 Objective

The objectives of this project are as stated below:
1. To understand Python based USB connectivity
2. To diagnose (send or receive control signal) to/from USB serial devices and
record the activity.
3. To investigate USB parallel connection using Python which involved packet

based information transfer.

LITERATURE REVIEW

2.1 Python as base language programming

Easiest Language Design

Programming language requires a lot of patience to learn. As a beginner language
learner, It is required a lot of patience to learn, but in Python it has a easiest way to learn
the language compare to other programming languages like Java, Cobra, Curl, Dylan,

Z++ and others.

This is because python are easily used in an object oriented and functional design
patterns, from these method users will easily access and edited the programming
languages by user’s intention. From the previous programmer, it said that the python are
fully featured and practical; this is because the power of iterators and function-as-

variables makes many users to easily determine the concise and intuitive solutions[2].

In python, the also have a modules and functions are passed as an object. Users
from other language specialist will simply understand the python concept of
programming languages. Comparing with the other programming languages such as Java,
python programming language are more simple and powerful. The table below shows as

research had been done toward it.

Variables Python Programming Language Java Programming
Languages
Language Variable Dynamic typing Static typing
Defining the function | Indentation Braces
Speed and portable Faster but not portable Slow but portable

Table 1: Comparison of Python and Java Programming Languages

As shown above, the python are more likely useful and easy for beginner
programmer[2]. From the research that been done, the Java is entirely use by today
world, but the process to create a coding is too complicated and long. But, python are

direct and easily to use.

Libraries and Modules

The available of libraries and modules means that, Python have very much
libraries and modules that can be extend with installing them. For example, pyusb,
beautifulsoup, markupsafe, numpy, jinja2 and others[3]. These libraries usually come
from third party and sometimes they are not suitable with some Python version. This will

have a compatibility issues on that particular interface.

2.2 USB Connection

How USB work

USB (Universal Serial Bus) is to be considered simple, easier and flexible
connections between computer and the lots of peripheral. The peripheral connection of
USB includes many ways and many methods which are supported by motherboard’s
BIOS. For example of the device that connect using a USB port are; mouse, keyboard,

printer, speaker, and etc. In USB there are 4 different transfer’s modes. Which are;[4]

1. Interrupt - Transfer little amount of data but need fast response (e.g.
mouse, keyboard)

2. Bulk : Which receive big packet of data (e.g. printer)

3. Isochronous : Requires streaming process (e.g. speaker, webcam)

4. Control : Short, simple command to the devices, and status
responses.

The unique design of USB is, it is intended to eliminate the need for the addition
of an ISA expansion card to a computer or the PCI bus, and improves the ability to plug-
and-play to allow the equipment exchanged or added to the system without the need to
reboot the computer. When the USB is installed, it is immediately recognized and the

computer system to process the necessary device drivers to run it.[5]

Figure 1: USB Port

Before the USB device is fully used, there are serial port and parallel port that continuous
used by users at that time. The serial port connection takes a byte of data and transmits
the 8 bits in the byte one at a time[6] and transmit in a single row. Whereas the parallel
connection work by sending 8 bits of data (1byte) at a time and transmitted parallel to
each other[7]. So, from this advance of technology, people move to use USB connection

for better speed compare to the serial port connection and parallel port connection is a bit

slow.
Fin & Ground
Pin 9 Ringing
Pind Data Indicator (RI)
Terminal)
Ready (OTF) Pin & Clear

to Send (CTS)

Fin 3 Transmit
Diata (TD) Fin 7 Request to

Send (RTS)

Fin 2 Receive
Data (RO Fin & Data 2et

Ready (DSF)

Fin 1 Data Carrier
Detect (DGO

Figure 2: Serial Port and Parallel Port

All USB data is sent serial connection, the process is starting from a least
significant bit (LSB) then go to the High significant bit (HSB). USB will transfer data in
form of packets of data which it sent back and forth between the host and the peripheral
devices. All the packets of data are sent from the host to the devices via a root hub. In

reply, some packets are sending to the device directly. Each of transfers USB consists of:

1) Token Packet
2) Data Packet
3) Status or handshake Packet

Token packet is generated by the host to described what is to follow and whether the data
transfer will be a read or write. The second packet is data packet which it is carrying the
content information. For the last packet it is a status or handshake packed which used to

acknowledge transactions and to provide a means of error correction.

Host Device Token Packet
PIL» SAold v E nadprodmt CRCE
IN Tken Diata Packet
Diata PIT Draia (ECls

H andshake Facket.

Handshake
\ PID

FID' (Facket ldenbfication) provides mfcenaton doot the
OUT Token puckat,

\’ Addmss 1 used to select aspecific device on the TTEE baas
Doata Endpoind represents aspecific data soarce on the device,
ouT \ CEC (oyche mdundancy check) is used for error checkme
Hanc=hake The manb ey (5 or 16 repmserts the muvber of bibs used oy
4_'_,/ that prrpose]

Figure 3: USB Basic Communication Flow

METHODOLOGY

3.1 Research Methodology

To smoothness the flow of this project, the Gantt chart has been established in the
pre-project stage in order to have specific dateline indicator for the each task ahead that is

required by the course.

FYP 2

Literature Review

FYP 2

Project Work
W

Reviews and Improvements
W
FYP 2

Documentations

Figure 4: Flow of Mmethodology
Literature Review

For the literature review, all the information are searching and then the collected
information and resources are gathered to make a beautiful and complete literature
review. This information and resource mainly focus on the USB connectivity and Python
programming language. The information are collected from the book, thesis paper,

internet sources and others resource.

Project Work

In this stage the collected information and resource had been analyze to see the
problem occur. Within it, the coding for python programming language are create based

on the literature review and other analyzing result.
Review and Improvement

During the coding was created, the review and any improvement are made to meet
an expectation. This project was guided by supervisor for better improvement. It is very

important for us to know the originality of the project itself.
Documentation

Documentation is a last stage for compilation. At this stage all the create project
and result are compile in one file to submitted to the organizer.

Python 2.7.5

As a beginner, to run Python software in our computer is first to know how to
install it. The software can be downloads from many source that provide it. But, in this
time the latest version of the Python software is Python 2.7.5. As know, python is open
source software, where with it people can used, changed, and distribute the software to
anyone with licensed.

Below shows the step on how to install the Python 2.7.5 and its module with are
PyUSB 1.0, pywinusb-0.3.2, libusb1-1.1.0 and pyserial-2.7. The installed modules are
needed to be installing in OS for communication and access to USB.

For the installation of the Python 2.7.5 software it is very common, mostly we can
install directly with the given instruction in that software. But for the module it is a bit
complicated.

i o (5
s> Computery - [GfsonCompuer P

Organize v System properties Uninstall or change a program Map network drive 3 B~ O ®
-
4.7 Favorites — 4 Hard Disk Drives (4)
B Desktop Local Disk (C:) Local Disk (D:)
& Downloads = -
@z 56.2 GB free of 187 GB W 261 GB free of 257 GB
12| Recent Places
Local Disk (E:) Win32 (G2
- - = |) | =
4@l Libraries S0 57 VB free of 130 GB S0 563 GB free of 19.5 GB
[@ Documents E Devi ith R ble 3
a
b @ Music evices with Removable Storage (3)
i Pictures oUD R D - Removable Disk (H:)
X J rive (F: o —
> B Videos 3 S 2 55 GB free of 373 GB

© # Homegroup @ DVD Drive (L)

4 m Computer
» & Local Disk (C:)
b 5 Local Disk (D)
b =y Local Disk (E]
b = Win32 (G:)
! g Removable Disk (H:

a e_ MNetwork
4
& |8 AARIFBILLAH -
' [ALIFROKI-PC Workgroup: WORKGROUP Memory: 4.00 GB
[ALIFROKI's Computer Processor: Intel(R) Core(TM) i5-23...

Figure 5: Step 1 Python 2.7.5 Module Installation

Open my computer and then click at the system properties tab.

Contral Panel H . tP il
ontrol FanelTiomE View basic information about your computer

B Device Manager Windows edition

&) Remote settings Windows 7 Ultimate

@ System protection Copyright © 2009 Microsoft Corporation. All rights reserved,
) Advanced system settings

Systern
Rating: medows Experience Index =
Processor: Intel(R) Core(TM) i5-2310 CPU @ 2.90GHz 2.90 GHz
Installed memory (RAM): 4.00 GB
System type: B4-bit Operating System
Pen and Touch: No Pen or Touch Input is available for this Display

Computer name, domain, and workgroup settings
Computer name: ALIFROKI-PC @'Change settings

Full computer name: ALIFROKI-PC
See also) .

Computer description: ALIFROKI's Computer
Action Center

Waorkgroup: WORKGROUP

Windows Update

Performance Information and Windows activation B
Tools

A You must activate today. Activate Windows now

Dediiea IN. ANAIE AFKA BONIEEY ABAON . .

Figure 6: Step 2 Python 2.7.5 Module Installation

Then click at advanced system setting tab at the left column. The below windows should
Pop up.

swmporenes T e

| Computer Name I Hardware| Advanced |System Protection I Hemote|

You must be logged on as an Administrator to make most of these changes.

Performance
Visual effects, processor scheduling, memory usage, and virtual memary

g

User Profiles
Desktop settings related to your logon

d

Startup and Recovery
System startup, system failure, and debugging information
Settings...

Environment Variables...

[ok |[canced || ppy

=

Figure 7: Step 3 Python 2.7.5 Module Installation

Then click at the environment variable at the advanced tab of the System Properties

window. The Environment Variables should show.

System Properties L J

User variables for ALIFROKI

Variable Value

MOZ_PLUGIN_P... C:\PROGRAM FILES (X86)\FOXIT S0FT...
SUSERPROFILE % \AppDataiLocal {Temp
%GUSERPROFILE %:\AppDataLocal {Temp

][Delete

System variables

Variable Value

Windows_NT

PATHEXT LCOM;.EXE; BAT;.CMD; VBS; VEE; . J5;....
PROCESSOR_A... AMDS4

[NEW. . H Edit... ” Delete

Figure 8: Step 4 Python 2.7.5 Module Installation

Follow exactly as shown in the figure 5. Then, click at System variables place to find the

‘path’ variable. Then click on it.

Edit System Variable ot e

Variable name: Path

Variable value: tologies\ATL. ACENCore-Static |

|. Ok | | Cancel |

Figure 9: Step 5 Python 2.7.5 Module Installation

At the end of the variable value, add the “;C:\Python27’ as shown. Or add type where are
your Python 2.7.5 file destination as your install at the beginning of the installation here.

Then click ‘OK’.

In the next step, go to the Start button of your computer. Then type ‘cmd’ and then enter.

This will appear.

BN C:\Windows\system32\cmd.exe - l E‘El_z_hj

Microsoft Windows [UVersion 6.1.760081
Copyright <c?» 2809 Microsoft Corporation. All rights reserved.

m/| »

C:sUsers“\ALIFROKI >_

Ll_ = » - —_— 4

Figure 10: Step 6 Python 2.7.5 Module Installation

By typing ‘python’ on the cmd. We will be directly in the Python 2.7.5 interface.

10

Microsoft Windows [Version 6.1.76001 -
Copyright {(c?> 208? Microsoft Corporation. All rights reserved.

C:=“\Users“ALIFROKI >python
Python 2.7.5 (default. May 15 2813, 22:43:36> [MS5C v.1588 32 bit <(Intel>] on win
32

Type “"help",. "copyright", "credits" or "license' for more information.
3>

Figure 11: Step 7 Python 2.7.5 Module Installation

Then, to install the module, it needs to install in this cmd windows. For example,

installing a PyUSB 1.0.0a2 (need to be downloading from website) shows below.

B Ch\Windows\system32\cmd.exe = |] |t

Microsoft Windows [Version 6.1.766801
Copyright <c?» 2089 Microsoft Corporation. All rights reserved.

C:=“\Users“~ALIFROKI >cd c:“userssalifrokisDownloads“Compressedipyush—1.8.8a2

c = “Users“ALIFROKI“Downloadss\Compressedspyusb—1 .@.8aZ2>cd pyush-1.8.8a2

c :“Users“~ALIFROKI“Douwnloads“Compresseds~pyush—1 .B_BaZpyusbh—1 . HA.Ha2>_

Figure 12: Step 8 Python 2.7.5 Module Installation

Type as shown or where the PyUSB folder it located. For example

“c:\users\alifroki\Downloads\Compressed\pyusb-1.0.0a2\pyusb-1.0.0a2”

Then the last command needs to write “python setup.py install”. The installation process

is made by itself.

11

BN Ch\Windows\system

Microsoft Windows [Uersion 6.1.76881
Copyright <(c» 2087 Microsoft Gorporation. All rights reserved.

C:sUsers“ALIFROKI >cd c:“userssalifrokisDownloads“Compressedspyush—1.8.08a2
c =sUsers“ALIFROKI “Dounloads~Compressed~prush—1.08.8a2>cd pyusbh—1.8.68a2

c =~Users“ALIFROKI“Douwnloads“Compressedspyush—1.08.Ba2\pyush-1.8.Ba2>python setup.
py install
running install
running build
running build_py
creating build
creating build~lihb
creating build~libush
i usbhhcontrol.py —> buildslibush
usbhxcore.py —> buildsxlibush
usbhxlegacy.py —>» builds~libush
ushsutil.py —» buildslibsush
ushbs_debug.py —> build“lib“ush
usbhx_interop.py —-> build~libsush
i usbhs__init_ .py —>» build~libsush
creating build~lib~ush>\backend
i ushsbackend“libush8l .py -2 buildslibsush“backend
uszhvbackend«libushl@.py -> buildxlibxushxbackend
usbhxbackend~openusbh.py —> buildslib“usbsbackend
ushsbackends__init__.py —-» buildslib~ush“~bhackend
install_lib
i install_egg_info
PRemoving C:sPython27<Libssite—packagesspyusbhb—1.8.8a2-py2.7. egg—info
Writing GC:“Python2?~\Libxsite—packages~pyush—1.8.8a2-py2.7.egg—info

c =~ Uzers“ALIFROKI“\Dounloads~Compressedpyush—1.0.Ba2xpyush-1.8.8a2>_
e = e —

Figure 13: Step 9 Python 2.7.5 Module Installation

For the other module, the method for installation is same as above. So, with this
installation we can be access the USB device with some command shown below in the
PyUSB 1.0 section.

PyUSB 1.0

To be understood further, a research had been made based on the PyUSB 1.0,
from understanding, PyUSB 1.0 are library and module for programmer to access the
USB device in their project. These PyUSB 1.0 is very helpful in term of communication
to the USB device which programmer can access the information in or out from the USB.
It is also let programmer feel less painful because to program and communicate via USB
device is playing with complex protocol[8]. There are some features that make PyUSB
1.0 is easily to handle which are:

1) Portability

2) Easiness

3) Support Isochronous Transfers
4) 100% written in Python language

12

Creating Coding

First of all, to creating a coding it needs to understand the behavioral of USB peripheral
and complex protocol of USB itself. From the PyUSB 1.0 modules it will reduce the

complex part and replace with easier way to access the USB device.

The information was gathering from PyUSB 1.0 tutorial website[9].

Content Description

usb_core Main of USB module

ush util Utility functions
control Standard control requests
legacy The 0.x version compatibility laver

backend A sub package containing the built-in backbends

Table 2: Description of PyUSB Modules.

Based on the tutorial of pyUSB[9], the example is given on how to import the core
module:

»»» import usk.core
>»» dev = usb.core.find()

As shown above, the imported module is an usb.core, this will allow a programmer to
access any kind of information in or out of the USB devices. Then, for the dev =
usb.core.find() is for searching a devices in the Python 2.7 software interface, whether it
find or not is depending on the USB Id product and Id vendor. The example of coding in
python language is shown below on how to access the USB devices. The main content of

the programming shown below,

13

r Fi tlpy - C:,-’UsersfﬂI_IFRDKI.r’Des;topftl.p:,r l = | =] |£h]1

File Edit Format Run Options Windows Help

usb.core _J
usb.util

=zearching the devices with idVendor and idProduct
dev=usb.core.find (idVendor = 0x1687 , idProduct = 0x3257T)

if not found the device
dew Hone:
ValueError ('Device not found')

=)

Ln: 10|Col: 0

Figure 14: Example how to find the Device using USB Module.

From the first two lines we can see that, the coding is importing PyUSB package
modules. usb.core and usb.util which is the main module and contains utility functions
respectively. The next line showed that #searching the devices with idVendor and
idProduct, which mean that we need to find our USB devices that connect to the PC. For
example the idproduct is 0x1687 and the idvendor is 0x3257, Python will look it up until
it finds the specific number that had been assigning. To know our device idproduct and
idvendor, we can find it form usbview software. Which can be downloaded here[10]. But
there are other method of coding for searching all the devices without putting the
idVendor and idProduct. Such as

dev = usb.core.find(find_all=True)

In the second command which is “if dev is None”, to determine the coding if not

found. Then the “Device not found” statement will display.

14

7 USB View BE

File Options Help

EI--- My Computer Device Descriptor: -
8-+5 Intel(R) 6 Series/C200 Seres Cr EEdUSE : 1 ng 2 8 8
T evicellass: H
5o ,EEJP 5445%c5080] HDUtHUt, bBDeviceSubClass: 0=00
S-mm [Loc1][PIP &1bcad8: |pheyiceProtocol 0=00
R [Loc 111] DeviceCoflt ro e =iy TIEe =Rty WR—— e W Y)
-2+ [Loc112] NoDevice! ¢ iggengc-r : gx% S g 3 i -
. . 1dProduct = [
r'-_'g;: [Loc113] Dev!ceCm e it
-+ [Loc114] DeviceCor iManufacturer: 0=z01
it [Loc12] NoDeviceConni [0%0409: "Kingmax"
1Product : 0=02
0=x0409: "USBZ2.0 FlashDisk"
15SerialHunber 0=03
O=x0409: "COS0000000003618"
bHumConf igurations: 0=01

ConnectionStatus: DeviceConnected
Current Config Walue: 0x01

Device Bus Speed: High

Device Addres=s: 0=04

COpen Pipes: 2

Endpoint Descriptor:

bEndpoint Addres=: O0=81 1IN

Transfer Tvpe: Bullk

wHaxPacketSize: 0=0200 (512} -

F] [T b F }

Devices Connected: 4 Hubs Connected: 1

Figure 15: USBview Software that views the Component of USB Devices.

USB to Communicate

As mentions at the previous session, to communicate with USB devices first things
first we should know the USB has four flavors of transfers: which are Interrupt, Bulk,

Isochronous and Control.

In short, for the interrupt type of transfer, USB devices send and receive small
amounts of data infrequently or in an asynchronous time frame. This type of transfer are
surely guarantees a maximum service period and also will make a re-attempted delivery
in the next period if there is an error happen on the bus. It also can operate for low, full
and high speed devices. The maximum packets are 8 byte or less for the low-speed
devices, 64bytes or less for full-speed devices, and 1024 bytes or less for high-speed

devices.

Besides, for the bulk transfer is typically used by all the devices which transferring a

huge data, such as printer and scanner that used any available bandwidth. From the

15

transfer itself, this transferring data are actually can allow access to the bus on an ‘as-
available’ basis and also providing an error checking if there are something bad happen.

The maximum packet size for the bulk transfers is can be whether 8, 16, 32, or 64byte.

The Isochronous transfer type is the most commonly used by time dependent
information, for example as a telecommunication system and others multimedia transfer.
This transfer may not support the low-speed devices. And the last is the control transfer
type, Control transfers are primarily intended to support configuration, command and

operational status of the software on the host and the device.

From this information, the coding is design based on the transfer; the coding is shown
in the result section. For the USB thumb drive that used in this project is a bulk type of
transfer as shown in the usbview software. Once, we know the type of transfer we are

easily to derive the coding.

16

-

B USE View

==l

-3 |

File Options Help

EI--- My Computer
E|~r'-_’;r Intel(R) & SeresC200 Seres Ch
B4 [PIP 5445%c5040] RootHuk
Eﬂ [Loc11] [PIP 6&1bcadi:
..... %;
ineriZr [Loc112] NoDevicel

w252 [Loc113] DeviceCor

: e [Loc114] DeviceCor
fnrsZr [Loc12] NoDeviceCaonrn

Fi 1 k

Devices Connected: 4 Hubs Connected: 1

iSerialHumnber : 0=03
0z0409: “"COS000000Q0003618"
BHunConf igurations: O=01
ConnectionStatus: DeviceConnected
Current Config Value: 0zx01
Device Bus Spesd: High
Device Address: O=04

COpen Fipes: 2
Endpoint Descriptor:
bEndpointAddres=: O=81 IH
Transfer Type: fBulls
wHaxFPacketSize: O=0290 (512)
bInterwval: 0=FF
Endpoint Descriptor:
bEndpointAddress: O=zdz2 oUT
Transfer Type: {Bulls
wHaxPacketSize: O=0200 (512)
bInterwal : I=FF

Configuration Descriptor:

wlotallength: 0=0020
bEHumInterfaces: 0=01
bConfiguration¥alue: 0x01
iConfigquration: O=00
bnattributes: 0=280 (Bu= Powere
HaxPower : O=x6d (200 Ha)
Interface Descriptor:
bInterfacedHumber: O=00
bAlternateSetting: O=00
bHunEndpoints: 0=02
bInterfaceCla==s: 0=08
bInterfaceSubClass: N=x06
bInterfaceProtocol . 0=E50
ilnterface: O=00
Endpoint Descriptor:
bEndpointAddress: O=81 IH
Transfer Type: {Bulkh
wHaxPacketSize: O=Aaad” (5123
bInterwval: 0=FF
Endpoint Descriptor:
bEndpointAddres=: Amig, OUT
Transfer Type: L Bullk §
wHaxFPacketSize: O=0&E0” (5120
bInterwval: 0=FF

d)

m

Figure 16: USBview shows the Bulk Type Transfer of Thumb Drive

17

3.2 Key Milestone

START

LITERATURE
REVIEW

e Identify the problem occurring in USB and
Python

e Find the information and thesis about the
previous project.

A
DRAFTING PYTHON
PROGRAMMING <
LANGUAGE

e Verify the information
l e Prepare the tools and equipment.

e Analyze the data to validate the result.
e If not validate, repeat the process.

NO

VALIDATION

e Report on the result and finding based on
the programming had been done.

e Recommendation for further research and
development.

STOP

Figure 17: The Methodology of the Project

FINAL REPORT

18

3.3 Gantt Chart

Activities

Department

FYPI

MONTH

May

Jun

July

August

September

WEEK

10

11

12

13

14

15

16

17

18

First title release

Second title release

Third title release

FYP 1Title confirmation
(USB Connectivity Using Python)

Extended Proposal

- Background Study

- Objectives

- Scope of work

- Problem Statement

- Literature review

- Methodology

- Conclusion

Submission of Extended Proposal

Proposal Defence

Project in Progress

Submission of Interim Draft Report

Submission of Interim Report

Activities

FYP Il

MONTH

September

Octobe

November

Disember

January

WEEK

10

11

12

13

14

15

16

17

18

Project Work Continues

Submission of Progress Report

Project Work Continues

Pre-EDX

Submission of Draft Report

Submission of Dissertation (soft bound)

Submission of Technical Paper

Oral Presentation

Submission of Project Dissertation (Hard bound)

Table 3: Gantt chart for the whole semester project progress

19

3.4 Tools

1) Python 2.7.5 software for windows 7 64bits.
2) Thumb Drive as USB devices

3) Desktop Personal Computer
i =4 Python 2.7.5 Shell = | B i

File Edit 5Shell Debug Options Windows Help
Python 2.7.5 (default, May 15 2013, 22:43:36) [MSC v.1500 32 bit (Intel)] ~|

on win32
Type "copyvright™, "credits" or "license()"™ for more information.
i

Ln: 3|Col: 4

Figure 18: Python 2.7.5 software interface

i]
g
LRI

ok
S

Figure 19: Thumb drive and PC that use for this project

20

RESULT AND DISCUSSION

Result and discussion
The first step of the coding was made to communicate with USB. The coding shows

below:

¥ - =
76 Detectpy - CUsers/ALIFROKY/DeskiopiDEIec Y ’ PN

File Edit Format Run Options Windows Help
i & string # string J

import windll # call funtion in dl1
real time
operating system
def get_drives():
drives = []
bitmask = windll.kernel32.GetLogicalDrives()
for letter in string.uppercase:

if bitmask & 1:
drives.append(letter)
bitmask >>= 1

return drives
if _ name == '_ main
before = set(get_drives())
pause = raw_input ("Please insert the USE device, then press ENTER")
print {('Please wait..."')
time.=sleep(5) # waiting time
after = set (get_drives())
| drives = after - before
delta = len(drives)
if (delta):
for drive in drives:
if os.system("cd " + drive + ":") == 0O:
newly mounted = drive
print "There were %d drives added: &s. l‘-lew'_}' mounted drive letter is =" % (delta, drives, newly mounted)
print "Sorry, I couldn't find any newly mounted drives."™

Ln: 26|Col: 55

Figure 20: Coding for detect USB device in python interface

21

The result shows below when | insert the USB device:

r e . e — s -
EEREER
g Python 2.7.5 Shell T — | /n{

File Edit Shell Debug Options Windows Help

Python 2.7.5 (default, May 15 2013, 22:43:36) [M5C w.1500 32 bit (Intel _:J
)] on win3z2

Type "copyright™, "credits" or "license ()" for more information.

Fr RESTART

i
Please insert the USEB device, then press ENTER
Flease wait...

Sorry, I couldn't find any newly mounted drives.
Fr RESTART

i
Please insert the USE device, then press ENTER
Flease wait...

There were 1 drives added: set(['J']). Newly mounted drive letter is
J
>33 | i
]
-
Ln:13 | Col: 40
% s]

Figure 21: Result for the detection of USB device in python interface

Below show the coding that we are trying to listing all the information in the USB device
(reading USB device).

Coding:

22

[7% Readpy - C:/Users/ALIFROKI/DeskiapiResc Pyl (= | B

File Edit Format Run Options Windows Help

import usb.core # import USE module -~
import usb.util

Searching for the devices
dev = usb.core.find(find all=True)
busszes = usb.busses{)

If the device i= not found
if dev i= None:
raize ValueError('Device not found'})

Di=zplaying the content of USE devices
or bu=s in busses:

1] devices = bus.devices
for dev in devices:
Try:
_mame = usb.util.get_string(dev.dev, 13, 1)
except:
“ continue

dev.set configuration()

cfg = dev.get_active configuration()

interface number = cfg[(0,0)].bInterfaceNunber

alternate settting = usb.control.get interface (interface number)
print "Device name:", name

print "Dewvice:", dewv.filename
print " i1dVendor:",hex (dev.idVendor) I
print " idProduct:",hex{dev.idProduct)
for config in dev.configurations: "
print " Configuration:", canfig.halue
print " Total length:", config.totallength
print " selfPowered:", config.selfPowered I
print " remoteWakeup:", config.remoteWakeup
print " maxPower:", config.maxPower
print <
Ln: 29|Col: 45|
h _— | Pl

Figure 22: Coding for reading the USB thumb drive.

23

Expected Result:

File Edit Format Run Options Windows Help

¥»» Device name: Removable Disk
Device: (H:)
idVendor: O0xl1&87
idProduct: O0x3257

Configuration: 0x01
Total length: 0x0020
S5elfPowered: 0Ox00
remoteWakeup: 0x00
maxPower: 0x64 (200 Ma)

Figure 23: Expected Result of reading USB devices

The real result shown below:

File Edit S5Shell Debug Options Windows Help

Python 2.7.5 (default, May 15 2013, 22:43:36) [MSC v.1500 32 bit (Intel)] on

|| win32
|| Tvype "copyright"™, "credits"™ or "license ()" for more information.

P RESTART

>xr
e

Figure 24: Result shown of failure in listing the information from USB

24

Then, we are trying to communicate with USB device (writing in USB device):

4 A.py - C:/Users/ALIFROKL/Desktop/4.py EEI
File Edit Format Run Options Windows Help
import usb.core -~

import usb.util

dev = usb.core.find(idVendor=0x1687, idProduct=0x3257)
dev = usb.core.find(find all=True)

if the device not found
if dew i= Hone:
raize ValueError('Device hct found'})

zet the active configuration. With no arguments, the first
configuration will be the active one
dev.set_configuration()

get an endpoint instance
cfg = dev.get_active configuration/()
interface number = cfg[(0,0)].bInterfaceNumber
alternate_ settting = usb.control.get_interface (dev,interface number)
intf = usb.util.find descriptor|
cfg, bInterfacelumber = interface number,
bAlternateSetting = 0

ep = usb.util.find descriptor| ||
intf,

match the first OUT endpoint

custom match = %

lambda e: %
usb.util.endpoint direction(e.bEndpointiddress) == A
usb.util.ENDPOINT OUT

[

a

not None

4]
4]
4]

ert ep i

write the data

ep.write("L'") -
Ln: 8| Col: 29

Figure 25: Coding for writing in USB thumb drive

25

The real result shown below:

[T4 Python 2.7.5 Shell M ’ = | B | S

File Edit Shell Debug Options Windows Help

BFython 2.7.5 (defauwlt, May 15 2013, 22:43:36) [M3C +.1500 32 bit (Intel)] on w J
in32

Type "copyright™, "credits" or "license ()" for more information.

e RESTART
i

Tracekack (most recent call last):
File "C:\Users“"ALIFROEI‘Desktop'4.pv", line 9, in <module>]
raize ValueError('Device not found')

ValueError: Device not found
33> |

Ln: 10(Col: 0[]

1l
|
|
||
1l
1l
|

Figure 26: Result shown of failure in communication of USB.

As obtaining the result, we are searching to the error that show in figure 5, we
found out there is no such solution for this error, there are probably cause of the Python
2.7 software itself. Then the project cannot be proceeding unless using another method
that makes us to discover the perfect technique to determine it compatibility. Based on
research that made, we understand this is causing of the compatibility with the windows 7
64bits. Some software is not compatible with these windows. As supported by literature
review, the library and module of pyUSB 1.0 come from third party, and it support with
python 2.7.5 but it is not supported with Windows 7 64bit. Previous project had done by
researcher not in Windows 7 64bit. So, we conclude that with Windows 7 64bit cannot be
done a USB device connectivity using python. Within time constraint we suggest for
another researcher to do this project or just continue to research on it in another time.
From our experience we are suggesting to use another method that use to communicate
with USB devices.

26

CONCLUSION

In conclusion, this project research aims to understand Python based USB
connectivity. By the first objective of the project it is achievable, which is to understand
the Python and USB connectivity. But, as a result stated from these project, it show that
the programming itself have a difficulty to determine the solution. In which these case
there are no such solution for that error. According to the key milestone and project
details it is already set in order to achieve the objectives. So, by our conclusion and the
hypothesis, to make a better USB connectivity using python programming language, it is
better to make by using another method. The programming interface itself is stable but
the content of the library or module is not stable for the windows 7 64bit. We are
suggesting this project need to be continuing in another future to prove that the working
coding with the perfect method which trying to do in OS windows 7 32bits or any better
solution. [11]

27

[1]
[2]
3]
[4]
[5]
6]
[7]
(8]
[9]
[10]

[11]

REFERENCES

J. Hyde, USB Design by Example: A Practical Guide to Building 1/0 Devices with CD-
ROM: Intel Press, 2002.

K. Mikoluk. (30 December). Python vs Java: Key Differences [Online]. Available:
https://www.udemy.com/blog/python-vs-java/

(6 January). Third-party Libraries in Python 2.7 [online]. Available:
https://developers.google.com/appengine/docs/python/tools/libraries27

W.-J. Wu, "USB connection-detection circuitry and operation methods of the same,"
ed: Google Patents, 2001.

R.-Y. Shieh, G. Tsai, Y.-A. Chen, and C.-L. Chang, "Externally connection type USB2. 0
interface flash card reader," ed: Google Patents, 2001.

J. Tyson, "How Serial Ports Work," 09 February 2001.

J. Tyson, "How Parallel Ports Work," 03 october 2000.

J. Axelson, USB complete: everything you need to develop custom USB peripherals:
lakeview research lic, 2005.

(30 November). Programming with PyUSB 1.0 [Online]. Available:
http://pyusb.sourceforge.net/docs/1.0/tutorial.html

(11 November). USBView [Online]. Available: http://msdn.microsoft.com/en-
us/library/windows/hardware/ff560019%28v%3Dvs.85%29.aspx

(11 November). libusb-win32 [Online]. Available:
http://sourceforge.net/apps/trac/libusb-win32/wiki

28

http://www.udemy.com/blog/python-vs-java/
http://pyusb.sourceforge.net/docs/1.0/tutorial.html
http://msdn.microsoft.com/en-us/library/windows/hardware/ff560019%28v%3Dvs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff560019%28v%3Dvs.85%29.aspx
http://sourceforge.net/apps/trac/libusb-win32/wiki

HowTo
Install LibUSB on Windows 7

LibUSBE 1.2.1
Pinguino need libusb to eommunicate with your computer. Do not install a previous version of
LibUSE on windows 7, only use the version 1.2.1 with a windows 7 computer.

Download this compressad file:

sre-1 .z.l.g_ﬂmggwnlﬂg

and extract it in a new felder in your personnal folder.

Disconnect your pinguing.
Then you need to know what is the processor in your computer.

If your computer is a X86 32 bits system:
« go to the libush-win32-bin-1.2.1.0\bin\xB6 folder,
+* rename the file libusb0_x86.4Il to libusbO.dll,
* copy this new file in the c:\Windows\systemn32\, folder,
+ copy the file libushO.sys to the c:\Windows\system32\driversl, folder,

If your computer is a X86 64 bits system:
+ go to the libusb-win32-bin-1.2.1.0\bin\xB6 folder,
+« rename the file libusb0_x86.4dll to libusbO.dll,
* copy this new file in the c\Windows\syswowg4\, folder,
+ copy the file libusb0.sys to the c:\Windows\system32\driversy, folder,

If your computer is an AMD &4 bits system:
+ go to the libush-win32-hin-1.2.1.0\bin\amd&4 folder,
+ copy this new file in the c:\Windows\systern32\, folder,
* copy the file libusb0.sys to the c\Windowsh\system32\driversy, folder,

If your computer is an intel IAG4 bits system:
+ go to the libusb-win32-hin-1.2.1.0\bin\iat4 folder,
+ copy the file libusb0.dll in the c:\Windows\system32\, folder,
« copy the file libusb0.sys to the c\Windows\systerm32\driversy, folder,

Then you can download the windows 7 Pinguino driver an hackinglab:

http: S www hackinglab. ire L Wil Fiv 20pinguingts 20windows/driver
Y 20pinguinoe%.20w 7 .Zip

extract this file in the examples folder of libush-win32-bin-1.2.1.0 folder.

Connect your Pinguino, and go to the control panel, system ,Device Manager

Pinguino is a non recognised device [with the waming icon).

Right click on the device, then dick properties.

You must now install the driver for Pinguine. Click on the update driver button, then go to the
folder with Pinguino driver { the one you downloaded before).

Then click OK.

29

