

An Experimental Study on Relationship between

Performance and Energy Consumption

of Serial and Parallel Text Searching Algorithm.

By

Siti Zulaikha Isahak

A project dissertation submitted to the

Information & Communication Technology Programme

Universiti Teknologi PETRONAS

The requirements for the

Bachelor of Technology (Hons)

(Business Information System)

JAN 2013

UniversitiTeknologi PETRONAS

Bandar Seri Iskandar,

31750 Tronoh

Perak Darul Ridzuan

2

CERTIFICATION OF APPROVAL

An Experimental Study on Relationship between

Performance and Energy Consumption

of Serial and Parallel Text Searching Algorithm.by

By

Siti Zulaikha Isahak

A project dissertation submitted to the

Information & Communication Technology Programme

Universiti Teknologi PETRONAS

in partial fulfillment of the requirement for the

BACHELOR OF TECHNOLOGY (Hons)

(INFORMATION & COMMUNICATION TECHNOLOGY)

Approved by,

(Ms Nazleeni Haron)

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

APRIL 2013

3

ABSTRACT

The world data is growing vigorously intersecting of large ordered sets and it is a

common problem in the evaluation of data queries to a search engine. Thus, text retrieval

systems have become a popular way in providing support for text databases. However

this becomes a major question among us like how much energy is consumed? How to

reduce execution time in searching large amount of data?

In this paper, text searching algorithm is using to study the relationship between

performance of computer and amount of energy produced in serial and parallel text

searching algorithm. The amount of energy produced should be reduced along with the

execution time to increase performance in data searching. Based on data recorded from

the series of experiments, Serial Text Searching Algorithm is saving energy and reducing

power usage. However, their performance is reducing as a smaller processor speed is

using. In contrast to Parallel Text Searching Algorithm, there are larger amount of energy

consumed from this experiment. However, it is approved that the performance of parallel

experiment is far better than a single node performance.

4

LIST OF FIGURES

Figure 1: Shared memory 16

Figure 2: Distributed memory 17

Figure 3: A sample of organizational models. Arrows indicate data flow. 18

Figure 4: Practices of XP in the system development life cycle 25

Figure 5: Flowchart for Serial Text Searching Algorithm 29

Figure 6: Result for Serial Text Searching Algorithm 34

Figure 7: Number of processor against Voltage (V) and Power Consumed (W) 34

Figure 8: Number of processor (GHz) against Time taken to process data (s) 35

Figure 9: Performance graph for Serial Text Searching Algorithm 35

Figure 10: Master-Slave architecture 37

Figure 11: Flowchart for Parallel Text Searching Algorithm 40

Figure 12: Result for Parallel Text Searching Algorithm 41

Figure 13: Number of node against Power Consumed (W) 41

Figure 14: Number of node against Time taken to process data (s) 42

Figure 15: Result for optimal node in Parallel Text Searching Algorithm 43

Figure 16: Graph for optimal node in Parallel Text Searching Algorithm 43

ABBREVIATIONS AND NOMENCLATURES

HPC High Performance Computing

CPU Central Processing Unit

5

6

TABLE OF CONTENT

ABSTRACT i

LIST OF FIGURE ii

LIST OF TABLE ii

CHAPTER 1: INTRODUCTION

1.1 Background of Study 5

1.2 Problem Statement 11

1.3 Objectives and Scope of Study . . . 12

CHAPTER 2: LITERATURE REVIEW. 14

2.1 Parallelizing code. 14

2.2 Flynn's Classical Taxonomy. . . . 14

2.3 Parallel Computer Memory Architecture. . . 15

2.4 Processor Communication. 16

2.5 Parallel Programming Models. . . . 18

2.6 Parallel Programming Tools 20

CHAPTER 3: METHODOLOGY

 3.1 Research Methodology . . . 21

 3.2 Gantt Chart. 25

 3.3 Performance Measures 26

 3.4 Tools 26

CHAPTER 4: RESULT AND DISCUSSION . . .

4.1 Results and Discussion. 27

CHAPTER 5: CONCLUSION AND RECOMMENDATIONS . .

5.1 Conclusion. 44

REFERENCES. 45

7

CHAPTER 1

INTRODUCTION

1.1 Background of Study

Energy consumption in computing activity

The world is facing an environmental crisis. Global warming threatens to alter

weather patterns, with enormous human and economic consequences. Most

government, independent society including organization is working towards reducing

the carbon emission. There are many initiatives provide by them to reduce global

warming effect. One of very important ways to protect the environment is by

reducing electricity usage.

According to World Factbook of the CIA, it is stated that China is the largest nation

that consumed power electricity, 4,940,000,000 Watt, followed by United States,

3,886,400,000 Watt in between 2011 and 2012 years. Malaysia consumption is more

than 120,000,000 Watt as recorded in 2011. There are many factors contributing to

these amounts of electricity consumption like cooling and heating appliance,

television, refrigerator, washing machine, lighting and computers for household

category. For big organization, they have to pay higher electricity cost for every

month.

With the world moving very fast, most organization is fully depended on internet to

transmit, receive and search data. The energy consumption today is expected to

double by 2020 due to worldwide usage of computers, data storage and

communications network. Carbonfund.org claimed that deliver and dispose of junk

mail produces more greenhouse gas emissions than 2.8 million cars on the road.

8

Below is a normal usage of computers:

Device Power (W)

Desktop Computer & 17” CRT monitor 150 - 340

Desktop Computer & Monitor (in sleep mode) 1 - 20

17” CRT monitor 90

17” LCD monitor 40

Laptop computer 45

So what is the relationship between this algorithm and global warming? Main concept of

this algorithm is acting as a filter that read input and produces the output accordingly.

According to Külekci M. O, data is available electronically and requires efficient

searching techniques to extract the desired data.

There are several Search Engines that commonly been used by users like Google, Yahoo

and Bing. As recorded by Google, their average searches per day are reaching 4, 717,

000, 000. For every single search button you hit on Google, about 0.3 watts produced to

our surrounding. So, the total energy produced by Google search per day is 1, 415, 100,

000 watts. This huge amount of energy can use to light up 100 watt bulb for almost 1801

days continuously.

Above data show that, there are billions of energy produced per day just from our simple

search activity in search engine. Therefore, this project is purposely to conduct several

experiments to study the trade-off between performance of text searching algorithm in

parallel and serial with the amount of energy consumed.

9

Parallel Computing

During the earlier generation, computers were built with a single central processing

unit (CPU) and performed serial fixed-point arithmetic using a program counter,

branch instructions, and a processor registers which used to store intermediate results.

The CPU is consists of memory access and input/ output mechanisms act as the

interface to the human operator. This design is based on Hungarian mathematician

John von Neumann architecture. The design of Von Neumann architecture is simpler

which an instruction fetches and a data operation cannot occur at the same time

because they share a similar bus.

Later the evolution of computers continue by implementing High level languages

(HLLs) such as Fortran, Algol and Cobol and inventing of pipelining and cache

memory to increase speed between CPU and main memory. Currently, parallel

computing is on rising by implementing various architectures, using shared or

distributed memory or optional vector hardware. According to Hwang.K, starting

from 1975 until 1990, the technology of parallel processing gradually become mature

and entered the production mainstream. The example of parallel computing is Illiac

IV, MasPar and Cray Y-MP. (Hwang, K., 2005)

According to Quentin F. Stout, the use of two or more processors (cores, computers)

in combination to solve a single problem is called parallel computing. In parallel

computing, a problem is broken into discrete parts where each part is further broken

down to series of instructions. The instructions from each part will be executed

simultaneously on different CPUs.

In most condition, software codes have been written to suit the environment of serial

computing. The codes aimed to be run on single CPU. Then the code will be broken

into several parts and executes one by one. Only one instruction will be processed at

one time. (Barney B. 2012). In order to run the text processing systems in parallel

computing method, the written codes must be changed a little bit. The written codes

should be work by breaking apart into discrete parts where they can be processed

10

simultaneously by several CPUs. This method is to allow several instructions been

executed simultaneously on different CPUs.

UTP has abundance of available computer in the lab and has utilized the usage of

available computers resource in lab to form parallel grid. The idle time on computers

in lab will be used and form a distributed high performance computer. The main

reasons UTP set their own campus grid are to save time and money. Those computers

can be used to compute and solve larger problems which are impossible or taking

longer time to be solved if using a single computer. For example in this project is to

search a data by implementing text searching algorithm. One processor requires

longer time to compute huge data in contrast to several processors.

This is good enough for an organization like UTP to have parallel computing source.

However, it is a question to wonder on how much the energy consumption by campus

grid in contrast with serial computing. The energy consumption is becoming

important limiting factor while there are many people out there working out to reduce

energy to save money and in the same time increases the performance of computing

process. (Freeh V. W., Lowenthal D. K. and et. al., 2007).

11

Text Searching Algorithms

To conduct the experiment, some large data is required to be processed on both serial

and parallel computing. Thus, Text Searching Algorithm is implemented. The texts

are main thing in "word processing" systems, which provide facilities for the

manipulation of texts. Several existing studies have applied text classification

techniques in handling the problem with ambiguous requirements. (Polpinij, J., 2009).

The systems require advance processor to filter objects which are quite large. There

are several examples of these applications are text filtering, text searching,

information extraction, information statistic, content rewriting, automatic generation

of text and others.

Text Searching Algorithm is getting famous nowadays since the hostilely rising of

textual information electronically. It is reported by WorldWideWebSize.com that

until 29 January, 2013 there are at least 12.86 billion pages in Indexed Web. This

number is believed to grow year by year. Basically Text Searching Algorithm is to

find within a text t a match for a pattern p, where text, pattern, and match can be

interpreted in different ways. (Obaja A., 2012). This technique is usually involved

text document that contains very large data. This concept acts as filters that read input

and produce the output simultaneously. There are several ways can be implemented

in Text Searching:

 Simple text searching

 Rabin-Karp algorithm

 Knuth-Morris-Pratt algorithm

 Boyer-Moore(-Horspool) algorithm

 Approximate matching

 Regular expression

Throughout this project, a simple text searching is implemented to search for a

students’ ID in a text file.

12

1.2 Problem Statement

Power consumption is becoming a critical issue for high performance computing because

of some limitation factors including cost, space, reliability, and maintenance. (Son S. W.,

Malkowski K. and et. al., 2006). For larger dataset they may take longer time to run on

single machine. For example, the longer time taken to process data on serial searching

algorithm, the more energy will be consumed by the machine. In contrast, it is known that

parallel text searching algorithm can reduce response time in processing data. However,

the total amount of energy consumed by numbers of nodes in parallel machine is yet to be

measured.

This experiment is conducted on both machines, serial and parallel to study the

relationship between performance and energy consumption by Text Searching Algorithm.

It is imperative to know the optimal node size for trade-off between performance and

energy consumption. By knowing the optimal node size, it can help in maximizing

energy saved without increasing execution time. This can increase performance on high

performance computer.

13

1.3 Objectives of study

The purpose of this project is to investigate on the performance of the campus grid set up:

 To evaluate the trade-off between energy and performance of Text Searching

Algorithm.

Scope of Study

To fulfill the research project requirement, there are three main areas that need to be

deliberated:

 Text Searching Algorithms (TSA).

 Parallel computing architecture.

 Distributed memory (MPI Library)

 Electrical power consumption.

14

CHAPTER 2

LITERATURE REVIEW and/ or THEORY

The World Wide Web is growing rapidly and forming into a massive collection of

information. This data is available electronically and requires efficient searching

techniques to extract the desired data. Because of this, searching for keyword on text files

becomes a very common task on everyday activity. (Külekci M. O., 2007). According to

Google, there are more than one billion questions asked by prople around the globe. 15%

of the searches in everyday are new to them. (Matt Cutts, 2012).

Parallel computing is undergoing evolution and attempts to solve many complex and

interrelated natural events or industrial process happening at the same time. For example

are galaxy formation, research in genetics, rush hour traffic, auto assembly, data mining

and medical imaging and diagnosis. Currently, fast and inexpensive computers are now

essential for almost all human activity and have been critical factor in increasing

economic productivity, enabling new defense systems, and advancing the frontiers of

science. As demand for increased technology performance shows no signs of slowing,

thus researchers need to find ways to sustain increasing performance. (Murphy B. 2011).

Since the capabilities of single-core processors cannot satisfy the requirements of the

computer applications. Multicore processors are more and more popular to be used to

provide computational power. (Liu Y. and Gao F., 2010). Individual computer processors

have limits to their performance. Only through parallel programming developers can

scientific and practice high performance scale their workloads. (Demko, A. B., 2011).

However, a programmer must be skilled in many areas especially in low level language

like C or getting familiarize with Linux as the operation system, for example.

15

2.1 Parallelizing code

Through scalability, parallel program can be executed faster than those constrained to

single processors. (Demko, A. B., 2011). As a result user can process more data and

generate more accurate results. This process made impossible problem become possible

to be solved.

In parallel computing, there are two major camps, homogenous and heterogeneous.

Homogenous systems are widely used to this day including hardware like the traditional

multicore processor which contains a number of similar or symmetrical cores. Conclude

that homogenous does not contain any processing elements that differ from others within

the same system. In contrast, heterogeneous systems contain processing elements that

differ from others within the same system. They are not composed in the same hardware

instead of contain elements that may be more suited to specialized tasks. (Solomon, S.

2012).

2.2 Flynn's Classical Taxonomy

Flynn’s classification is based on multiplicity of instruction streams and data streams

observed by the CPU during program execution. All the computers classified by Flynn

are not parallel computers, but to grasp the concept of parallel computers, it is necessary

to understand all types of Flynn’s classification.(Vedyadhara, 2010).

Outside of definition based on processing elements composition, Flynn with his

taxonomy, splits up parallel computing systems into three categories Single Instruction,

Multiple Data (SIMD), Multiple Instruction, Single Data (MISD) and Multiple

Instruction, Multiple Data (MIMD). (Barney, B., 2012). Single Instruction, Single Data

(SISD) is not considered as parallel computing. It is a serial computer processor because

only one instruction stream is being processed by the CPU during any one clock cycle.

16

In MIMD each processing element executes independently of one another. It allows for

each processing element to execute different instructions on different data from one

another. SIMD, on the other hand, involves each processing element executing in lock-

step with one another. In the other meaning, every pro processing element executes the

same instruction at the same time, but executes this instruction on different data. MIMD

exploits task-level parallelism (achieving parallelism by executing multiple tasks at one

time), while SIMD exploits data-level parallelism (achieving parallelism by taking

advantage of repetitive tasks applied to different pieces of data). (Solomon, S., 2012).

2.3 Parallel Computer Memory Architectures

There are three common type of memory architecture implement in parallel computing.

The first one is Shared memory. Generally, shared memory has ability for all processors

to access all memory as global address space. There will be multiple processors operate

independently but share the similar memory resources. (Barney, B., 1995). The major

advantage for this memory is easy for user to use memory efficiently and data sharing

will be faster. The limitation of this memory is can cause severe bottlenecks due to

limited bandwidth.

Figure 1. Shared memory

MEMORY

CPU

CPU CPU

CPU CPU

CPU

17

The second type of memory is Distributed memory. In distributed memory, each

processor has its own local memory. Memories between processors do not rely on each

other. Data is shared across a communication network using message passing. The

advantage of this type of memory is memory size depends on number of processors, size

of memory and volume of bandwidth. Besides, processors can access their own data

without any interference.

Figure 2. Distributed memory

The third type of memory is Hybrid Distributed-Shared memory. This type of memory is

combination of Shared and Distributed memory.

2.4 Processor Communication

On the other hand, programmer must decide the best way to interconnect and organize

the various task processors in the system. In the delegation (boss-worker, master-slave)

model Figure 1 (a), one process is the boss, while one or more processes are the workers.

The workers do nothing but pull work from the boss and return results. The boss is

responsible for distributing work, controlling overall application flow and terminating the

NETWORK

 MEMORY CPU

 MEMORY CPU MEMORY CPU

 MEMORY CPU

18

workers. The boss does not do any computational work itself and simply sits and waiting

for requests and results from the workers. (Solomon, S. 2012).

In the peer-to-peer model Figure 1 (b), all the processes are more or less equal. All of

them are doing the same work. This implementation is the closest to a pure SIMD or

MIMD implementation. In the pipeline model Figure 1 (c), each process or thread

handles one step in a multi-step process. This process is dividing by task and an example

of MIMD implementation. Pipelining computations can provide an efficient solution to

cross-node dependencies in loops. As a result, a number of parallelizing compilers and

systems use pipelining to exploit parallelism. (Balasubramanian, K. and Lowenthal, D.

K., 2002). Finally, the models can be combined into a composition as in Figure 1 (d).

This is often the result of combining algorithms, either sequentially or in a nested way.

(Solomon, S. 2012).

Figure 3.A sample of organizational models. Arrows indicate data flow.

19

By far the most important reason for developing data parallel applications is the potential

for scalable performance. Even in the face of the longer development times, a

performance improvement of one or two orders of magnitude on current parallel

machines may well be worth the effort. (Nyland L. S., Prins J. F. et al., 2000).

2.5 Parallel Programming Models

According to Barney, B., there are several parallel programming models that are

commonly used.

 Shared Memory Model (without threads)

- Tasks are sharing common address space. Locks or semaphores can be used to

control access to the shared memory.

 Threads Model.

- Type of shred memory programming.

- Each thread local data but also shares the entire resource of program in the

main program, a.out. The a.out performs some serial works and generates

threads to be scheduled and run by operating system concurrently.

- It is best described as a subroutine within the main program.

- Thread can be implemented in POSIX Threads or OpenMP library.

 Distributed Memory/ Message Passing Model

- Tasks in this model exchange through communications by sending and

receiving messages.

- This model is using MPI library.

 Data Parallel Model

- Tasks will perform depending on data set. The data set usually in a form of

structure like array or cube.

- This model can implement shared or distributed memory. For shared memory,

all tasks can get access through global memory. While in distributed memory,

data is split up and resides as “chunks” in respective local memory.

20

 SPMD and MPMD

- SPMD: Single Program Multiple Data.

- All tasks execute the same instruction (a.out) simultaneously on different data.

- This program can be threads, message passing data parallel or hybrid

depending on nature of problem that need to be solved.

 Task 1 Task 2 Task 3 .…… Task n

- MPMD: Multiple Program Multiple Data.

- Tasks may execute different programs (a.out, b.out, and c.out) simultaneously

on different data.

- MPMD can extend problem into functional decomposition better than into

domain decomposition.

 Task 1 Task 2 Task 3 .…… Task n

a.out a.out a.out a.out

a.out b.out c.out a.out

21

2.6 Parallel Programming Tools

There are several programming languages available to compose parallel programming

application. Some programmers are prefer to use C++ and compiled with original SGI

compiler. (Amato, N. M. and Dale, L.K., 1999). The other languages are Fortran, and C.

Parallel programming tools that facilitate communication and coordination among master

and other nodes. For distributed memory application we are focusing on MPI.

MPI is stand for Message Passing Interface (MPI). It is a library has an extensive

collection of operations for exchanging messages and collecting information. MPI is

compatible with all major operating systems and can be used with C, C++ and

FORTRAN. MPI is commonly used for distribution memory system because they do not

share the memory. (De, M., De, S. and et. al, 2008). Unlike MPI, Open Multi-Processing

(OpenMP) which is a combination with MPI can be applied in shared memory machine.

(Kasabov, A. and Kerkwijk, J. V., 2011). The Open MP has provides a compiler which

can automatically parallelizing numbers of loops.

According to Barney, B., OpenMP is a compiler directive based. The OpenMP for

Fortran API was released earlier in 1997 compare to OpenMP C/ C++ was released in

late 1998. (Barney, B., 2012). OpenMP under C/C++ permits code to be augmented with

OpenMP directives. Plus, OpenMP is compatible with other platform including Unix and

Windows NT.

22

CHAPTER 3

RESEARCH METHODOLOGY

 and PROJECT WORK

Research Methodology

Throughout this project, my research methods have been focus on studying several

techniques in parallel computing and identify the relation of performance and energy

consumption:

1. Develop a Serial Text Searching Algorithm

2. Conduct experiment and repeat by using different number of processors.

3. Explore on architecture and task distribution in distributed memory of parallel

computing.

4. Design a programming architecture of Text Searching Algorithm.

5. Conduct Parallel Text Searching Algorithm on different number of nodes to

measure the level of energy consumed against the performance.

6. Analyzed data.

Project Work

Implementing agile method suits this project implementation. This is due to the basic

concepts of agile, adapt to change. Choosing agile method allows the logical program to

be amended easily. The code is designed to cope and adapt to new ideas from the

beginning to allow changes to be made easily. Implementing agile, changes can be made

if needed without getting the entire program rewritten.

Simply, agile development offers a lightweight framework for helping the project to

focus in achieving the main purpose of this project, the efficiency of parallelizing text

23

processing. These can reduce the potential of overall risk associated during software

development. Agile development promotes continuous planning and feedback to ensure

the project meets the ultimate goal. In particular, through agile development, it helps to

accelerate the delivery of systems value.

There are various methods present in agile testing like Scrum, Extreme

Programming and Adaptive Software Development. Extreme Programming (XP) allows

the development team to build software quickly and build software properly. The

development and testing happen in the same time. In XP the project requirements are

describe in one story.

In XP, focus is more on customer/client stories which represent the project requirements

for each system release. The XP approach involved many small releases of system

functionality and features. At first, the code is written to test the system functionality and

features before actually writing the specific code. The involvement of the customer from

the inception of the project through the Customer/Client acceptance testing before

production release of code ensures strong buy in the Customer/client. (Sauter, V. L.,

2012). In this project, the role of client can be UTP itself.

There are many ways to describe Agile XP method. For this project, the method is

summarized in 6 phases:

Planning

- Define problem

- Listing requirements

- Gather information on security related

Analysis

- Prioritize the main story or main function

- Define iteration span (time)

- Resource planning for development

24

Design

- Divide the tasks

- Test scenario preparation for each task

Execution

- Coding

- Unit testing

- Execution of serial Text Searching Algorithm program

- Iterate Text Searching Algorithm program for serial computing

- Iterate Text Searching Algorithm program for parallel computing

Wrapping

- Regression testing

- Demos and reviews

- Develop new requirements based on the need

- Process improvements based on end of iteration review comments from lecturers

Closure

- Upgrading software

- Status report

25

Figure 4. Practices of XP in the system development life cycle

26

GANTT CHART

Our defined Gantt chart is as below:

27

2.7 Performance Measures

Below are some measurements to indicate the performance of Serial and Parallel text

Searching Algorithm and power consumed.

• Number of processor / Frequency (GHz)

• Number of nodes

• Electric Power (Watt)

• Execution time (s)

• Voltage (V)

Tools

- C Programming Language

- Visual Studio 2008

- MPI library

- Personal computer (with processor of 1.6 GHz, 2.0 GHz, 2.7 GHz)

- Computers in lab

- Power Meter

28

CHAPTER 4

RESULT AND DISCUSSION

Sequence Algorithms

For this project, Sequence search algorithm is implemented to find an item in an unsorted

sequence. Under Sequence search topic, there are numbers of algorithm to perform this

task. For example, linear search, selection algorithm, binary search algorithm, jump

search, predictive search and Fibonacci search techniques. Different algorithms have

different level of efficiency in processing text.

For now, I have implemented a linear search technique which is used to find whether a

given Student name or Id number is presented in an array. If the data is found in text file,

it will display the corresponding number of line and Id number. The function will do

testing by looping on each element in array by comparing with the desired data.

For the parallel programming objective, this code will be rewrite again to run in parallel

machine. The comparison of the processing time will be recorded to find which has

greater efficiency performance.

29

Flowchart for Serial Text Searching Algorithm

Figure 5: Flowchart for Serial Text Searching Algorithm

Load database and
store data into

temporary memory.

Start

Go to menu selection:

1. Find
student ID

2. Exit

Text file

loaded

successfull

y?

Enter student
ID

Record found
on line x

End

No

No

Yes

Yes

30

Serial code to retrieve a string in text file.

First of all, I have to construct serial code to retrieve a string from text file. As mention in

Tools part, I choose to develop in C programming language. This code basically used to

retrieve a specific student ID from a large data stored in a text file.

Basically, there are there important functions in this code. The first one is to find student

Id and declared as int FindStudId(long int p). Then a function to check on lines of input

strings and been declared as int chkstrdig (char str[], int range). Another important

function is to load text file and compute the data to temporarily store in RAM. This

function is not returning any value and will only prompt user whether the text is

successful loaded or otherwise. The function is declared as void LoadDB(void). Below

are more details regarding functions involved in Serial Text Searching Algorithm;

 int FindStudId(long int p)

int FindStudId(long int p)

{

int k, studid_found_flag= -1;

 for(k=1; k < add_count + 1; k++)

 { if (add_count != 0)

 { //if (k != 0 && (k%15) == 0)

 if (k == 0)

 { getch();}

 if (p == studid[k])

 { printf("Student ID [%-4d] was found in

record No. [%3d]\n",studid[k],k+1);

 studid_found++;

 studid_found_flag = 0;

 }

 }

 }

 if (studid_found_flag == 0)

 { return(0); }

 else

 { return(-1); }

}

31

 int chkstrdig (char str[], int range);

CHAPTER 5

int chkstrdig (char str[], int range)

{

int lenght=0,k;

 lenght = strlen(str);

 if (lenght > range)

 { return(-1);}

 if (lenght <= range)

 { for (k=0; k < lenght; k++)

 { if (isdigit(str[k]) == 0)

 { return(-2); }

 }

 }

 return(0);

 }

}

32

 void LoadDB(void)

CHAPTER 5

void LoadDB(void)

{

int count,dbfilecount=0;

char finstudid[280];

int error_junk;

long int l_finstudid;

FILE *f1;

 f1 = fopen ("saya.txt","r");

 if (f1==NULL)

 {

 fprintf(stderr,"There was an error reading your

database file!\n");

 getch();

 exit;

 }

 else

 { for (count=0; count < MAXDB; count++)

 {

 if (!feof(f1)) /* if not end of file continue to

input data */

 { fscanf(f1,"%s\n",&finstudid);

 error_junk = chkstrdig(finstudid,4);

 if (error_junk == -1 || error_junk == -2)

 { printf("Sorry that was an invalid

database\n");

 printf("\nNow working in RAM MODE!");

 getch();

 break;

 }

 l_finstudid = atol(finstudid);

 studid[count] = l_finstudid;

 dbfilecount++;

 }

 }

 if (error_junk ==0)

 {

 printf("\nDatabase %s, was successfully

loaded!",dbload);

 getch();

 add_count = dbfilecount;

 }

 }

 fclose(f1);

}

33

Below are some print screens for Serial Text Searching Algorithm

 To indicate whether data is successfully loaded or not

 Print Screen 1

 Display menu option

 Print Screen 2

 Instruction to get string input and match string input with data in temporary

storage

 Print Screen 3

34

Result for Serial Text Searching Algorithm

Figure 6: Result for Serial Text Searching Algorithm

Energy Consumption Graph on Serial Text Searching Algorithm

Figure 7: Number of processor (GHz) against Voltage (V) and Power Consumed (W)

0

1

2

3

4

5

6

7

(GHz) 1.6 2 2.7

Power

Voltage (V)

Processor

(GHz)

Power

(W)

Voltage

(V)

Time

(s)

1.6 2 0.8 0.72

2.0 4 1.0 0.60

2.7 6 1.2 0.55

35

 Performance Graph on Serial Text Searching Algorithm

Figure 8: Number of processor (GHz) against Time taken to process data (s)

Figure 9: Performance graph for Serial Text Searching Algorithm

Based from the result recorded, I can conclude that using a single node to compute Serial

Text Searching Algorithm is saving energy and reducing power usage. The smaller

processer speed used, the less energy consumed. In contrast, their performance is

reducing by using smaller processor speed.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1.6 2 2.7

Time (s)

Time (s)

0

1

2

3

4

5

6

7

0 1 2 3

Power

Voltage

Time

36

Parallel Text Searching Algorithm

Task parallelism on distributed memory is allowed by using MPI library. There will be

no communication between the running nodes during a computation (Constantinescu Z.

and Vladoiu M., 2011). Thus, I have to choose Single Processing Multiple Data, SPMD

to divide the task.

Single Program Multiple Data

- This will process similar task upon different type of data.

Task 1 Task 2 Task 3 .…… Task n

For parallel series of experiments, we implement distributed memory architecture

where each processor has its own local memory.

a.string

match

a. string
match

a. string
match

a. string
match

37

Figure 10: Master-Slave architecture

38

There are several basic functions used in Parallel Text Searching Algorithm.

 - MPI_Init(&argc,&argv);

- MPI_Comm_rank(MPI_COMM_WORLD,&myrank);

- MPI_Comm_size(MPI_COMM_WORLD,&mysize);

- MPI_File_close(&myfile);

- MPI_Finalize();

 To open file (file name – search.txt)

 To divide file into several chunk to be distributed to available nodes

 To scatter data

MPI_File_open(MPI_COMM_WORLD, "search.txt",

 MPI_MODE_RDONLY,

 MPI_INFO_NULL, &myfile);

 MPI_File_get_size(myfile, &size);

 size = size / sizeof(int);

 c = size/mysize + 1;

 buf = (int *) malloc(c * sizeof(int));

 chunk = (int *)malloc(c * sizeof(int));

 MPI_Scatter(buf, c, MPI_INT, chunk, c, MPI_INT, 0,

MPI_COMM_WORLD);

 free(buf);

 buf = NULL;

39

 To compute execution time

Below are some print screens for Parallel Text Searching Algorithm

Print Screen 1

Print Screen 2

 MPI_Barrier(MPI_COMM_WORLD);

 elapsed_time = - MPI_Wtime();

40

Flowchart for Parallel Text Searching Algorithm

Figure 11: Flowchart for Parallel Text Searching Algorithm

Yes

Load database and
store data into

temporary memory.

Start

-Open file and get size of
file.

- Divide size of file by
number of nodes
available and distribute
chunk of file into other
nodes

If rank > 0

If rank = 0

End

Receive chunk of
file and string to

find

Process data and
return result to

rank = 0

rank = 1, 2,3…n

Gather data

41

Result for Parallel Text Searching Algorithm

Figure 12: Result for Parallel Text Searching Algorithm

Energy Consumption Graph on Parallel Text Searching Algorithm

Figure 13: Number of node against Power consumed (W)

0

2

4

6

8

10

12

14

16

18

20

2 4 6

Power (W)

Power (W)

Number of

node

Power

(W)

Time

(s)

2 4 0.20

4 6 0.12

6 18 0.06

42

Performance Graph on Parallel Text Searching Algorithm

Figure 14: Number of node against Time taken to process data (s)

Based from result on Parallel Text Searching Algorithm, there are larger amount of

energy consumed by this parallel experiment. However, it is approved that the

performance of parallel experiment is far better than single node performance.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

2 4 6

Time (s)

Time (s)

43

I further this experiment to identify optimal node for Text Searching Algorithm in trade-

off between energy consumption and performance.

Figure 15: Result for optimal node in Parallel Text Searching Algorithm

1 node 2 nodes 4 nodes 8 nodes

Time

(s)

Power

(W)

Time

(s)

Power

(W)

Time

(s)

Power

(W)

Time

(s)

Power

(W)

4 10 2 27 1.2 36 0.83 44

3.3 8 1.85 23 1.0 31 0.8 40

3 10 1.3 20 0.9 29 0.8 39

2.9 12 1.2 18 0.85 28 0.75 37

2.9 12 0.9 16 0.7 27 0.5 33

44

 Execution time (s)

Figure 16: Graph for optimal node in Parallel Text Searching Algorithm

Based from data on Figure, we found out Text Searching Algorithm is experiencing

almost to a good speedup level. This is because the fastest node with execution time 0.5

seconds is when using 8 nodes but they consume 33 watts or power. However by using 4

numbers of nodes, the energy consumed is reduced to 27 watts which is equivalent to

20% of power reducing. Then, time taken is increased to 0.7 seconds which is 20% of

increased in time taken. For nodes 2 with 16 watts of power consumed can save up to

40% of energy usage compared to nodes of 4 and the execution time is increase only

20%. Thus, it showed that with node of 2 can reduce energy usage more rather than

increase of time execution.

0

5

10

15

20

25

30

35

40

45

50

0 1 2 3 4

1 node

2 nodes

4 nodes

8 nodes

P
o
w

er
 (

W
)

45

 CONCLUSION

This paper investigates the trade-off between energy and performance in both serial and

parallel using Text Searching Algorithm. This algorithm is chosen due to high frequency

of usage in our daily activity. Measuring this searching activity will help us to learn

amount of energy we produce every day. Besides, we can also find out the optimal node

for parallel computing to execute searching activity

Based on the series of experiments, we found out that the increasing number of nodes in

parallel computing can reduce execution time but consumed more energy. In contrast,

serial processing computing which is using a single processor consumed less energy but

it will take longer time to compute data. However, there is one part we discover that

amount of energy produced is at minimum in a given of shorter execution time. This node

is considered as an optimal node to execute Text Searching Algorithm.

For future work, we believe this experiment can be continued on more complex

Searching Algorithm that mostly applied in Web Search Engine. To make experiments

more accurate, a more complex and larger data set can be used to study the energy

consumption in real world. Besides, other metrics like slack and misses per operation

(MPO) can be used to enhance accuracy of experiment.

46

REFERENCES

1. Stout, Q. F., (2000-2012): What is Parallel Computing? A Not Too Serious

Explanation. University of Michigan. Retrieved October 4, 2012, from

http://web.eecs.umich.edu/~qstout/parallel.html

2. Barney, B., (2012): Introduction to Parallel Computing. Lawrence Livermore

National Laboratory. Retrieved October 3, 2012, from

https://computing.llnl.gov/tutorials/parallel_comp/

3. Hoffman, F. M. and Hargrove W. W.: High Performance Computing: An

Introduction to Parallel Programming. Oak Ridge National Laboratory in Oak

Ridge, Tennessee. Retrieved October 6, 2012, from

http://climate.ornl.gov/~forrest/osdj-2000-11/

4. Murphy, B. (2011): Science and The Future of Computing: Parallel Processing to

Meet Tomorrow’s Challenges. The National Academic Press. Retrieved October

6, 2012, from http://notes.nap.edu/2011/04/13/science-and-the-future-of-

computing-parallel-processing-to-meet-tomorrows-challenges/#.UIdnHG_R6So

5. Lars S. Nyland, Jan F. Prins, et al. (2000): A Design Methodology for Data-

Parallel Application (Vol 26). Retrieved October 12, 2012, from

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=844491

6. Elwaer A., Harrison A. et al. (2011): Attic: A case Study for Distributing Data in

BOINC Projects. Anchorage, Alaska USA. Retrieved October 4, 2012, from

http://ieeexplore.ieee.org/stamp/

7. Guru 99. Agile Testing, Scrum and eXtreme Programming. Retrieved October 4, 2012,

from http://www.guru99.com/agile-scrum-extreme-testing.html

http://web.eecs.umich.edu/~qstout/parallel.html
https://computing.llnl.gov/tutorials/parallel_comp/
http://climate.ornl.gov/~forrest/osdj-2000-11/
http://notes.nap.edu/2011/04/13/science-and-the-future-of-computing-parallel-processing-to-meet-tomorrows-challenges/#.UIdnHG_R6So
http://notes.nap.edu/2011/04/13/science-and-the-future-of-computing-parallel-processing-to-meet-tomorrows-challenges/#.UIdnHG_R6So
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=844491
http://ieeexplore.ieee.org/stamp/

47

8. Sauter, V. L. (2012). Agile Methodologies. University of Missouri.

Retrieved October 4, 2012, from

http://www.umsl.edu/~sauterv/analysis/6840_f09_papers/Nat/Agile.html

9. Demko, A. B. (2011).A Parallel Library for User-friendly Applications. University

of Manitoba. Retrieved October 4, 2012, from

http://mspace.lib.umanitoba.ca/handle/1993/5046

10. Solomon, S. (2012). Parallel Algorithm Design and Implementation of Regular/

Irregular Problems: An In-depth Performance Study on Graphics Processing

Units. University of Manitoba. Retrieved October 4, 2012, from

http://mspace.lib.umanitoba.ca/handle/1993/5046

11. Vedyadhara, (2010). Classification of Parallel Computers. Retrieved

October 4, 2012, from http://mspace.lib.umanitoba.ca/handle/1993/5046

12. You, S., Lu, H. and et al. (2009) Research on Rule Definition and Engine for

General Text Processing. Beijing. Retrieved October 4, 2012, from

http://ieeexplore.ieee.org/stamp/

13. Polponij, J. (2009). An ontology-based Text Processing Approach for Simplifying

Ambiguity of Requirement Specifications. University of Wollongong, Australia.

Retrieved October 4, 2012, from http://ieeexplore.ieee.org/stamp/

14. Create a Virtual Campus Supercomputing Center (VCSC). (2012).

Retrieved October 4, 2012, from http://boinc.berkeley.edu/vcsc.php

15. Balasubramanian, K. and Lowenthal, D. K. (2002). Efficient Support for

Pipelining in Distributed Shared Memory Systems. University of Georgia.

Retrieved October 4, 2012, from http://boinc.berkeley.edu/vcsc.php

16. Hwang, K. (2005). Advanced Computer Architecture: Parallelism, Scalability,

Programmability. California: McGraw-Hill.

http://ieeexplore.ieee.org/stamp/

48

17. Wilson E. K. (2007). Using Computers at Home, Volunteers Participate in Big

Science. Retrieved 9 November, 2012 from

http://pubs.acs.org/isubscribe/journals/cen/85/i14/html/8514sci2.html

18. Constantinescu, Z. and Vladoiu, M. (2011). Using Open Source Desktop Grids in

Scientific Computing and Visualization. PG University of Ploiesti, Romania.

Retrieved 21 November, 2012 from http://www.intechopen.com

19. Trifa, Z., Labidi, M. and et al. (2011). Arabic Cursive Characters Distributed

Recognition using the DTW Algorith on BOINC : Performance Analysis.

University of Sfax, Tunsia. Retrieved 21 November, 2012 from

http://ijacsa.thesai.org/

20. Tuovinen, L. and Rӧning, J. (2010). Everybody wins: Challenges and Promises of

Knowledge Discovery through Volunteer Computing. University of Oulu,

Finland. Retrieved 29 November, 2012 from http://www.journalogy.org/

21. Amato, N. M. and Dale, L.K. (1999). Probabilistic Roadmap Methods are

Embarrassingly Parallel. A & M University, Texas. Retrieved 29 November, 2012

from http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=770055&tag=1

22. De, M., De, S. and et. al. (2008). Parallel Architecture and Algorithms for Space

Weather Prediction. University of Kalyani, India. Retrieved 29 November, 2012

from http://nopr.niscair.res.in/handle/123456789/2497

23. Kasabov, A. and Kerkwijk, J. V. (2011). Distribution GPU Password Cracking.

University of Amsterdam. Retrieved 29 November, 2012 from

http://staff.science.uva.nl/~delaat/rp/2012-2013/index.html

24. Capizzi, S., (2008). A Tuple Space Implementation for Large-Scale

Infrastructures. University of Bologna, Padova. Retrieved 13 December, 2012

from www.cs.unibo.it/pub/techreports/2008/2008-07.pdf

25. Barney, B., (1995). Introduction to Parallel Programming. Maui High

Performance Computing Center. Retrieved 13 December, 2012 from

http://pubs.acs.org/isubscribe/journals/cen/85/i14/html/8514sci2.html
http://www.intechopen.com/
http://ijacsa.thesai.org/
http://www.journalogy.org/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=770055&tag=1
http://nopr.niscair.res.in/handle/123456789/2497
http://staff.science.uva.nl/~delaat/rp/2012-2013/index.html
http://www.cs.unibo.it/pub/techreports/2008/2008-07.pdf

49

http://phi.sinica.edu.tw/tyuan/old.pages/pcfarm.19991228/aspac/instruct/worksho

p/html/parallel-intro/ParallelIntro.html

26. Crochemore, M. and Rytter, W. (1994). Text Algorithms. Retrieved 13

December, 2012 from http://monge.univ-mlv.fr/~mac/REC/B1.html

27. Jiang, L. Z. and Zeng, Z., (2011). A BOINC based System for Global

Topographic Structure Extraction Using SRTM Digital Elevation Models.

Beijing. Retrieved 13 December, 2012 from http://wenku.baidu.com

28. Mighell, K. J. (2009). A Parallel-processing Computational Framework for

Embarrassingly-parallel Image-analysis Algorithms. North Cherry Avenue,

Tucson. Retrieved 13 December, 2012 from http://arxiv.org/abs/1008.2192

29. (2007). Research projects involving BOINC. Retrieved 13 December, 2012 from

http://boinc.berkeley.edu/trac/wiki/ResearchProjects

30. Freeh V. W., Lowenthal D. K. and et. al. (2007). Analyzing the Energy-Time

Trade-Off in High-Performance Computing Applications. Retrieved 13

December, 2012 from http://ieeexplore.ieee.org/

31. Külekci M. O. (2007). TARA: An Algorithm for Fast Searching of Multiple

Patterns on Text Files. Anakara, Turkey. Retrieved 11 March, 2013 from

http://ieeexplore.ieee.org/

32. Obaja A. (2012). Text Searching Algorithms (CS3230R Presentation). Retrieved

11 March, 2013 from www.comp.nus.edu.sg/~rahul/allfiles/aldrian-text-

searching.pdf

33. Son S. W., Malkowski K. and et. al.(2007). Reducing Energy Consumption of

Parallel Sparse Matrix Applications Through Integrated Link/CPU Voltage

Scaling. Pennsylvania, United States. Retrieved 11 March, 2013 from

www.eecs.northwestern.edu/~sson/paper/TJS07.pdf

34. CERN opeblab. (2008). Reducing Data Center Energy Consumption. Intel

Coporation, USA. Retrieved 20 March, 2013 from

http://www.cs.berkeley.edu/~istoica/classes/cs294/09/CERN_Whitepaper_r04.pdf

http://phi.sinica.edu.tw/tyuan/old.pages/pcfarm.19991228/aspac/instruct/workshop/html/parallel-intro/ParallelIntro.html
http://phi.sinica.edu.tw/tyuan/old.pages/pcfarm.19991228/aspac/instruct/workshop/html/parallel-intro/ParallelIntro.html
http://monge.univ-mlv.fr/~mac/REC/B1.html
http://wenku.baidu.com/
http://arxiv.org/abs/1008.2192
http://boinc.berkeley.edu/trac/wiki/ResearchProjects
http://ieeexplore.ieee.org/
http://ieeexplore.ieee.org/
http://www.comp.nus.edu.sg/~rahul/allfiles/aldrian-text-searching.pdf
http://www.comp.nus.edu.sg/~rahul/allfiles/aldrian-text-searching.pdf
http://www.eecs.northwestern.edu/~sson/paper/TJS07.pdf
http://www.cs.berkeley.edu/~istoica/classes/cs294/09/CERN_Whitepaper_r04.pdf

50

35. Carbonfund.org Foundation. How to Reduce your Carbon Footprint. Bethesda

Metro Center, Bethesde. Retrieved 20 March, 2013 from

http://www.carbonfund.org/reduce

36. Brin S. and Page L. (1999). The Anatomy of a Large-Scale Hypertextual Web

Search Engine. Stanford University, Stanford. Retrieved 2 March, 2013 from

http://infolab.stanford.edu/~backrub/google.html

http://www.carbonfund.org/reduce
http://infolab.stanford.edu/~backrub/google.html

