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ABSTRACT 
 

 
This project is concerning the thermodynamic analysis on the transesterification of palm 

oil to Biodiesel.  Eventhough the chemical process for Biodiesel production have been 

worldwide used, the computation of phase and chemical equilibrium involve in the 

reaction is still lacking. Therefore this project will analyze the product composition of 

the transesterification reaction when it is in equilibrium. Equilibrium state is very 

important as at this state, the measurable properties of the system do no undergo any 

noticeable changes under a particular set of condition. The maximum allowable 

conversion of the ester will also be calculated by manipulation of reactant ratio, different 

operating temperature and type of alcohol (methanol/ethanol). The method used to 

calculate the equilibrium composition is stoichiometric method. In this method, the palm 

oil or specifically Triolein and glycerol will be assumed in pure liquid phase meanwhile 

alcohol and ester will be in solution phase. The activity coefficient is estimated using 

UNIFAC Group Contribution method. There are also some of the properties like Gibbs 

free energy of formation and enthalpy of formation that is estimated using properties 

estimation method, the Joback and Constantinou and Gani method. From the results, it 

can be concluded that when the reactant ratio is increased, the equilibrium concentration 

for the ester increase. The proposed ratio of alcohol to triolein ratio would be 5:1. As for 

manipulation of operating temperature, for methyl oleate system when temperature 

increase conversion will also increase and for ethyl oleate conversion is decrease when 

temperature is increased. When different type of alcohol is used, methanol gives much 

higher conversion compared to ethanol. This is expected as methanol has more 

advantages in term of physical and chemical properties.  
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CHAPTER 1 

 

INTRODUCTION 

 
1.1 BACKGROUND OF STUDY 

 

With rapidly increasing crude oil prices, limited fossil fuels, and intensified environment 

pollution, it is increasingly necessary to develop alternative clean and renewable energy 

sources like Biodiesel [1]. Nowadays Biodiesel has become the most widely accepted 

renewable alternative fuel for diesel engines due to its technical, environmental and 

strategic advantages. It has enhanced biodegradability, reduced toxicity and improved 

lubricity in comparison with conventional diesel fuels. The advantage of Biodiesel can 

further being explained as below: 

 

a) Biodiesel is derived from crop oil, therefore it is naturally non-toxic. [2] [4] 

b) By blending biodiesel with conventional diesel as low as 5%, the lubricity of the fuel 

can be improved .[2] [4] 

c) Biodiesel also can be used directly as usage in the existing engine, without engine 

modification. Biodiesel can be pumped, stored and burned just like petroleum diesel 

fuel, and can be used pure, or in blends with petroleum diesel fuel in any proportion. 

[2] 

d) Lower carbon dioxide emission than conventional diesel. [3] 
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Biodiesel is a fuel that being created from vegetable oils, animal fats, and greases 

through a chemical process called transesterification process[3]. This process involves 

the reaction between the natural oil with short chain alcohol such as methanol and 

ethanol and then refining the mixture to create molecules which can be easily burned in 

a diesel engine.  

 

It is well known that the product composition of a transesterification reaction is 

governed by equilibrium thermodynamics [5]. Equilibrium thermodynamic investigates 

the product composition for transesterification system when the system is approaching 

the equilibrium. Equilibrium state is very important as at this state, the measurable 

properties of the system do no undergo any noticeable changes under a particular set of 

condition [6]. And if the equilibrium is subjected to some changes, it will definitely 

affect the rate of the reaction. By changing the concentration, temperature and pressure 

of any of the reactants and products the position of the equilibrium can be changed. The 

effect of these changes can be explained by the Le Chatelier’s principle.  

 

1.2 PROBLEM STATEMENT 

 

The transesterification process has long been a preferred method of producing biodiesel 

fuel. The technology behind most plant that produces biodiesel is using this type of 

process. Eventhough the chemical process have been worldwide used, the computation 

of phase and chemical equilibrium involve in the reaction is still needed. The phase and 

chemical equilibrium problem is extremely important for predicting fluid phase behavior 

for a very large number of separation process applications. Therefore it is important to 

know the equilibrium distribution of reaction mixture involve in the transesterification 

for this clean burning alternative fuel. 
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1.3 OBJECTIVE AND SCOPE OF STUDY 

 

Below is the objective of this project: 

a) To analyze the equilibrium composition and yield of Biodiesel in transesterification 

of palm oil. 

b) To know the maximum allowable conversion of palm oil to Biodiesel by 

manipulating a different reactant ratio and different operating condition. 

 

The scope of this project will be focusing on finding the equilibrium composition and 

yield of Biodiesel. The equilibrium composition can be determined by stoichiometric 

method or Gibbs Energy Minimization method. The former is inapplicable to pure liquid 

or solid species in the reaction system. Meanwhile for a heterogeneous system, the 

approach using the minimization of the Gibbs free energy is commonly used for 

thermodynamic analysis [7].  

 

In this research, effect of type of alcohol (methanol/ethanol) need in the 

transesterification reaction will be determined. In order to find the equilibrium 

composition and the maximum allowable conversion, a simulation algorithm will be 

developed using Excel. In addition, the miscibility of all reaction components will be 

assumed to make the computation easy. The parameters that will be varied are alcohol to 

oil ratio and temperature. Pressure can be neglected as the operating pressure used in this 

reaction is low pressure. The range of optimum operation condition that yields 

maximum yield (> 90%) of Biodiesel will also be identified. 
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1.4 RELEVANCY OF PROJECT 

 

The new regulation in Malaysia for Diesel selling specification stated that there should 

be at least 5% of palm oil blending with conventional Diesel [8]. Therefore any research 

or knowledge about Biodiesel is very important and valuable to the development of this 

alternative fuel not only in Malaysia but also worldwide. In addition, the thermodynamic 

analysis especially the equilibrium composition yield of Biodiesel production has not yet 

being thoroughly investigated due to the complex composition of palm oil. 

 

1.5 FEASIBILITY OF PROJECT WITHIN THE SCOPE AND TIME FRAME 

 

This project mainly involves calculation and simulation using software where the 

simulation requires manipulation of the operating condition and the reactant ratio. The 

reactant ratio should follow the principle of transesterification where the natural oil 

needs to be the limiting reactant and alcohol is in excess. In addition, calculation of 

stoichiometric equation and Gibbs free energy is not simple because the author’s 

knowledge about this complex reaction is still average. All of this factor is time 

consuming and will require a timeline of one year as given.  
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                                       CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1 BIODIESEL PRODUCTION PROCESS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Biodiesel Production Process [3], [9], [10] 
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Above diagram shows the Biodiesel production process. Basically there are three basic 

routes to biodiesel production from oils and fats [10]: 

 Base catalyzed transesterification of the oil. 

 Direct acid catalyzed transesterification of the oil. 

 Conversion of the oil to its fatty acids and then to biodiesel. 

 

However mostly biodiesel today is produced by base catalyzed transesterification of the 

oil. This situation is due to the reactions’ advantages where it utilizes low temperature 

and pressure, produces high conversion up to 98% with minimal side reactions and 

reaction time, has direct conversion to Biodiesel without intermediate compound and 

need no exotic materials of construction.  

 

Transesterification is a process that involves reaction between the natural oil and alcohol 

with strong base catalyst such as sodium hydroxide and potassium hydroxide in order to 

produce alkyl ester and glycerin [4] [11]. However, for this project which focusing on 

finding the equilibrium composition of Biodiesel, the activity of the catalyst will not be 

considered because the purpose of catalyst is to increase the rate of the reaction and do 

not involve directly in the reaction. 

 

Figure 1 shows the steps applied in producing Biodiesel using base catalyzed reaction. 

In this reaction, firstly the alcohol and catalyst will be mixed where the catalyst is 

dissolved in the alcohol using standard agitator or mixer. Since this project will not take 

account the catalyst activity or the residence time, therefore it can be assumed that only 

alcohol is fed into the reactor. The alcohol is charged into a closed reaction vessel and 

the oil or fat is added. The system from here on is totally closed to the atmosphere to 

prevent the loss of alcohol. The reaction mix is kept just above the boiling point of the 

alcohol to speed up the reaction and the reaction takes place. Excess alcohol is normally 

used to ensure total conversion of the fat or oil to its esters. 
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Care must be taken to monitor the amount of water and free fatty acids in the incoming 

oil or fat. If the free fatty acid level or water level is too high it may cause problems with 

soap formation and the separation of the glycerin by-product downstream. 

 
Once the reaction is complete, two major products will exist which is glycerin and 

biodiesel. Each has a substantial amount of the excess methanol that was used in the 

reaction. The reacted mixture is sometimes neutralized at this step if needed. The 

glycerin phase is much denser than biodiesel phase and the two can be gravity separated 

with glycerin simply drawn off the bottom of the settling vessel. In some cases, a 

centrifuge is used to separate the two materials faster. 

 

Once the glycerin and biodiesel phases have been separated, the excess alcohol in each 

phase is removed with a flash evaporation process or by distillation. In others systems, 

the alcohol is removed and the mixture neutralized before the glycerin and esters have 

been separated. In either case, the alcohol is recovered using distillation equipment and 

is re-used. Care must be taken to ensure no water accumulates in the recovered alcohol 

stream. 

 

Nevertheless the purpose of this study is to find the chemical equilibrium, yield of 

Biodiesel and maximum allowable conversion in the transesterification of palm oil. 

Therefore the production will be focusing only on the reactor part. The simplest method 

for producing alcohol esters is to use a batch, stirred tank reactor where alcohol to 

triglyceride ratios are from 4:1 to 20:1 (mole:mole)[3], [9]. However the most common 

ratio is 6:1 ratio [3], [9]. The operating temperature is usually about 65°C (338 K), if 

methanol is used and around 78°C (351 K) if ethanol is used. 
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2.2 PALM OIL COMPOSITION 

  

The transesterification process of palm oil to Biodiesel is very complicated due to the 

complex structure of palm oil. Therefore a model compound which obtained from the 

palm oil itself need to be used. Known as triglyceride of oleic acid called olein, this 

model compound will be chosen for this project.  

 

Palm oil is extracted from the mesocarp of the fruit of the palm Elaeis guineensis. The 

mesocarp comprises about 70 - 80% by weight of the fruit and about 45 -50% of this 

mesocarp is oil. Palm oil is like all natural fats and oils which comprise mainly 

Triglyceries, mono and diglycerides. Palm oil also contains free fatty acids, moisture, 

dirt and minor components of non oil fatty matter which practically referred to 

unsaponifiable matter [11].  

 

Triglycerides are formed from combination of a single molecule of glycerol with three 

fatty acids. The property of a triglyceride will depend on the different fatty acids that 

combine to form the triglyceride. The fatty acids are different depending on the chain 

length and degree of saturation. The short chain fatty acids has lower melting point and 

are more soluble in water. Meanwhile the longer chain fatty acids have higher melting 

points. Below show the composition of fatty acid in the palm oil [11]: 

a)  C12:0 Lauric   

b)  C14:0 Myrstic   

c)  C16:0 Palmitic  

d)  C18:0 Stearic   

e)  C18:1 Oleic   

f)  C18:2 Linoleic  

 

Palmitic and Oleic acid make the largest composition of fatty acid in the palm oil [11]. If 

the fatty acid is oleic acid, then after reacting with glycerol it will form triolein, 

glycerion trioleate or commonly known as olein.  
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2.3 ALCOHOL 

 

Alcohol plays an important role in transesterification reaction because it is used to drive 

the reaction to completion and also the fuel property of Biodiesel obtained.[12]. The 

ratio of alcohol used in the reaction will definitely give an impact towards the 

conversion as more excess of alcohol used, the conversion will also likely become high. 

Other than the ratio, the type of alcohol used also gives effect towards the ester 

conversion. For this study, there will be two types of alcohol that will be investigated 

which is methanol and ethanol. 

 

2.3.1 Methanol 

In the transesterification process, the natural oil is chemically acidic; the methanol is 

chemically a base. This chemical reaction breaks the fat molecules in the natural oils and 

converts it into a methyl ester, which is the biodiesel fuel, and glycerol. Among all the 

alcohols used in biodiesel production, the most commonly preferred one is methanol 

because of its low price and physical and chemical advantages (polar and the shortest 

chain alcohol). It can easily react with triglycerides, and catalyst, and also can be 

dissolved inside it faster compared with the other alcohols. 
 
 

2.3.2 Ethanol 

Unlike methanol, creating ethyl-esters biodiesel using ethanol is not a simple process. 

However, Ethanol is also a preferred alcohol in this process compared to methanol 

because it is derived from agricultural products and is renewable and biologically less 

objectionable in the environment [13]. However, the acidity of ethanol is low, thus the 

reactivities of its reactions with catalysts in order to produce alkoxide anion, which is the 

real active catalyst in transesterification, are low as well. Because of this, extremely high 

molar alcohol ratios such as 66:1 need to be used. Moreover, in spite of these 

unacceptable high alcohol values in terms of the economical point of view, the ester 

yield is low as well as the amount of contaminants inside the produced ester (biodiesel) 

fuel such as mono- and diglycerides showing that the reaction is not complete [12]. 

 



                                                                                                                           

10 
 

 
2.4 BIODIESEL AND GLYCEROL 

 

The ester fuel produced contain in its structure the bonds of the alcohol used in the 

transesterification. It means the monoalkyl esters produced through transesterification 

are termed as biodiesel. This alkyl group of the fuel is the alkyl radical of the alcohol 

used[12]. If methanol is used, the biodiesel produced is methyl ester and in the case of 

ethanol usage, ethyl ester will be produced. The model compound for palm oil is triolein, 

therefore the reaction of triolein with methanol will produce methyl oleate meanwhile 

reaction of triolein with ethanol will produce ethyl oleate. 

 

2.4.1 Methyl Oleate 

Transesterification of methanol and triolein will produce methyl oleate. Usually in many 

research and journal found, methyl oleate often becomes the biodiesel product chosen. 

This might due to methanol where years it has become the alcohol used in Biodiesel 

study and thus with bundle of information about methyl oleate-methanol, methyl oleate 

always being selected as the biodiesel product used in the study.  

 

Below show the chemical reaction in producing methyl oleate [3], [9]: 

 

1 triolein + 3 Methanol = 3 Methyl Oleate + 1 glycerol 

 
             O 

CH2-O-C-(CH2)7CH=CH(CH2)7CH3 

 

            O 

CH -O-C-(CH2)7CH=CH(CH2)7CH3                          

 

             O                                                                                                                

CH2-O-C-(CH2)7CH=CH(CH2)7CH3 

 

 

 

 

 
 
             O 
 
3 CH3-O-C-(CH2)7CH=CH(CH2)7CH3 

 

                              + 

                 
 
+      3CH3OH 

 
CH2-OH 
 
 
CH-OH 
 
 
CH2-OH 
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2.4.2 Ethyl Oleate 

The transesterification of triolein and ethanol will produce ethyl oleate. Ethyl oleate also 

can be produced by human body during ethanol intoxication.  

 

Below show the chemical reaction in producing ethyl oleate [3], [9]: 

 

1 triolein + 3 Ethanol = 3 Ethyl Oleate + 1 glycerol 

 
                               O 

CH2-O-C-(CH2)7CH=CH(CH2)7CH3 

 

         O 

CH -O-C-(CH2)7CH=CH(CH2)7CH3         + 

 

                       O                                                                                                                

CH2-O-C-(CH2)7CH=CH(CH2)7CH3 

 

 

 

 

 

2.4.3 Glycerol 

Glycerol is the by-product in transesterification process of palm oil to Biodiesel. 

Biodiesel will undergo certain type of separation process in order to remove glycerol and 

also alcohol from its system. Alcohol vapor will be compressed and recycled back to be 

used as the feed [14]. Meanwhile glycerol can be reused to produce triolein by reacting 

it with oleic acid.  

 

 
                

 

 

 

 

                
 
3C2H5OH 

 
 
                 O 
 
3 C2H5-O-C-(CH2)7CH=CH(CH2)7CH3 

 

  + 

 
CH2-OH 
 
 
CH-OH 
 
 
CH2-OH 
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2.5 EQUILIBRIUM COMPOSITION  

 
Reaction equilibrium can be mathematically described by the equilibrium equation and 

the reaction equilibrium composition can be calculated by solving this equation. The 

equilibrium composition can either be found using stoichiometric equation or Gibbs Free 

Energy Minimization. However for this study, the stoichiometric equation method will 

be used as the method is more detail and can be easily understand. Either way, both of 

the methods are explained in this section.  

 

2.5.1 Gibbs free energy Minimization Method 

Gibbs free energy can be used to describe equilibrium at conditions of constant 

temperature and pressure. A global minimum of the Gibbs free energy corresponds to 

the true equilibrium solution. However, there is difficulty in minimization of Gibbs free 

energy method in finding its global minimum since for many systems found by chemical 

engineers the Gibbs free energy function is very complex and can have multiple local 

minima [16]. Nevertheless, in 1973 Luus and Jaakola proposed a direct search 

optimization method using random search points and region reduction, and successfully 

used it for minimization of Gibbs free energy for a single phase situation [17].  

 

In order to understand the fundamental of equilibrium at constant temperature and 

pressure, we must first understand the most basic Gibbs free energy minimization 

method [18], [19]. 

The function of G as a arbiter of equilibrium is analogous to that of the entropy in 

determining the equilibrium state of isolated systems. If volume and internal energy are 

fixed, the entropy is a maximum at equilibrium. This criterion is concisely described by: 

  

dSU,V = 0 at equilibrium of an isolated system      (2.1) 

 

where the subscripts denote the constraints on the system and the vanishing of dS 

indicates a maximum entropy at equilibrium. If an isolated system is off equilibrium, its 

entropy must increase as it spontaneously moves towards equilibrium: 
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dSU,V > 0 disequilibrium of an isolated system     (2.2)  

 

The equilibrium condition of Eq(2.1) is of minimal practical consequence because the 

constraints of constant U and V are rarely imposed on real systems. Instead, the usual 

properties that are specified during a process are total pressure and temperature. With 

these constraints, the equilibrium criterion is no longer the entropy maximum of Eq (2.1) 

but the minimization of the Gibbs free energy. This criterion, which is derived below, 

forms the foundation of the thermodynamics of multiphase and multicomponent as well 

as equilibrium in chemically reacting systems. 

 

For the practically important case of constant T and p, the equation can be as follow: 

 

dWext = -dGT,p           (2.3)  

 

where the subscript T,p indicates that these two properties are held constant during any 

change in the system. With this constraint, the Gibbs free energy decreases as the system 

performs work (other than expansion work) on its surroundings. 

 

A useful definition of a system in equilibrium is one that cannot perform useful(non-

expansion) work. The criterion of equilibrium for closed systems constrained by fixed T 

and p is: 

 

dGT,p = 0 (at equilibrium)        (2.4) 

.  

Equation (2.4) states that G is an extremum at equilibrium under the constraint of fixed 

T and p. However, it does not indicate whether the extremum is maximum or a 

minimum. Equation (2.3) clarifies this point: if a system could perform useful work, its 

Gibbs free energy would necessarily decrease, or 

 

dGT,p < 0 (disequilibrium)         (2.5) 
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The appropriate interpretation of Eq (2.5) is that a system at constant T and P will 

spontaneously seek to minimize its Gibbs free energy. This process occurs whether or 

not the system performs external work in moving towards its equilibrium state. 

Equations (2.4) and (2.5) give conditions on G for equilibrium and spontaneous change, 

respectively, that are analogous to Eqs (2.1) and (2.2) for S.  

 

At equilibrium in an isolated system, the entropy is maximized; if pressure and 

temperature are fixed, the Gibbs free energy is minimized. Between entropy and Gibbs 

Free energy, the latter is by far the most important by virtue of the constant p-T 

restriction, which is much more practical than the constant U-V condition required of the 

maximum-entropy criterion.  

 

Below show the equations for Gibbs Energy Minimization method: 

lno i
i i i fi i o

i

fnG n G n G RTn
f

          (2.6) [19] 

Liquid phase reaction, thus ln i
i io

i

f x
f

      (2.7) [16] 

 

Substitute equation (3.2) in equation (3.1)  

ln lno
i fi i i i i

nG n G n RT n RT x          (2.8)  

 

Equation (3.3) is the objective for this method where it needs to be minimized due to 

below constraint. 

i ji j
n a b          (2.9) [19] 

 

The number of gram atoms of element j in a mole of species i, aji  with the number of 

moles of species i, ni need to be equal with the total number of gram atoms of element j 

in the reaction mixture, bj where ni  also is being used in the Gibbs equation. 
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2.5.2 Stoichiometric Equation Method 

Analysis of chemical equilibrium for industrial production is an important part of 

chemical engineering practice. Stoichiometric method begins with understanding the 

generalized stoichiometry of a reaction. The reaction equation may be written as  

௜݅ݒ∑ ௜ܣ  = 0         (2.10)  [18] 

 

Where Ai’s represent chemical species and the vi’s are the stoichiometric coefficients 

which are taken positive for products and negative for reactants. 
ௗ௡భ
௩భ

= ௗ௡మ
௩మ

= ⋯ =  ௗ௡೔
௩೔

=  (2.11)        ߙ݀

  

All the ratios are equal and are equated to a change in α which will be called extent of 

reaction. Thus a single variable α can be used to express the extent of reaction and 

stoichiometric calculations can be performed systematically. 

  

The number of moles of each species present then can be obtained by integration of the 

extent of reaction using appropriate boundary conditions. The number of moles of any 

species presents at any extent reaction then can be generalized to 

݊௜ = ݊଴௜  (2.12)                    ߙ௜ߥ +

 

When the composition change is the result of a single chemical reaction, the equation 

(2.10) can be written as  

݀݊௜ =  (2.13)          ߙ௜݀ݒ 

 

And by substituting above equation into fundamental equation for a process involving a 

composition change and occurring in a closed system, we yields: 

ܩ݀ = ܸ݀ܲ − ܵ݀ܶ +  (2.14)        ߙ݀(௜ߤ௜ݒ∑)

 

And by differential equation reveals 

௜ߤ௜ݒ∑ =  ቀడீ
డఈ
ቁ
்,௉

         (2.15)
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As we know, dGT,P = 0 applied to variations constrained to constant temperature and 

pressure which originate from an equilibrium state. Applying this condition to equation 

above results in: 

ቀడீ
డఈ
ቁ
்,௉

=  0          (2.16) 

 

Or 

௜ߤ௜ݒ∑  =  0          (2.17)

  

  

Equation above is the condition of equilibrium for a chemical reaction but in this form it 

has little utility. A more useful relation may be obtained by expressing the chemical 

potentials in term of fugacities.  

௜ߤ = ௜௢ߤ  + ܴܶ ln ௙೔
௙೔
೚         (2.18) 

 

Substitute this equation into equation (2.17), the condition of equilibrium becomes 

௜௢ߤ௜ݒ∑ + ݅ݒ∑ ܴܶ  ln ௙೔
௙೔
೚ =  0        (2.19) 

 

Or 

 ∑௩೔ఓ೔
೚

ோ்
=  −∑ ln ௙೔

௙೔
೚         (2.20) 

 

Or 

 ∑௩೔ఓ೔
೚

ோ்
=  − ln∏ ௙೔

௙೔
೚         (2.21) 

 

And can be further simplified by using equilibrium constant K: 
∑௩೔ఓ೔

೚

ோ்
=  − ln K          (2.22) 
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 ௜௢ is the chemical potential of component i when its standard state and that chemicalߤ

potentials are identical with Gibbs Free Energies. Thus, 
௱ீ೚

ோ்
=  − ln K                                                                                        (2.23) 

 

K is defined as summation of fugacity ratio in the component. Meanwhile fugacity ratio 

can be defined same as: 
௙೔
௙೔
೚ = ௜ߛ   ௜                      (2.24)ݔ 

 

Therefore equating both equation of K, value of x can be obtained and used to find the 

extent of reaction in the equilibrium mixture to find the number of moles of each 

component and finally the equilibrium concentrations.  

 

2.5.2.1 Activity Coefficient Model 

 

Activity coefficient, γi is one of the parameters in stoichiometric method. It will be 

discussed here as the method to obtain it is quite complicated. This parameter will be 

obtained from activity coefficient model such as Margules Equation, Van Laar Equation 

and Wilson Equation.  

 

However if the reaction is ideal solution, then γi will be assumed equal to 1. Comparison 

has been made to the three models where the Margules and Van Laar equation can be 

rearranged to linear form and not Wilson equation [18]. Therefore for simplicity the 

author will only consider Margules Equation and Van Laar equation. Following are 

these equations in the linear form [18]: 

 

The Margules Equation 

ln γ1/x2
2 = A12 + 2(A21-A12)x1        (2.25) 

ln γ2/x2
2 = A21 + 2(A12-A21)x2        (2.26) 
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The Van Laar Equation 

1/ ln γ1
1/2 = 1/B12 ½ + (B12 ½ / B21) (x1/x2)      (2.27) 

1/ ln γ2
1/2 = 1/B21 ½ + (B21 ½ / B12) (x2/x1)      (2.28) 

 

In these equations the A’s and B’s are adjustable parameters which must be determined 

from an experimentally derived set of γx data. Because each equation contains only two 

parameters, a minimum of one Vapor-Liquid Equilibrium (VLE) data point is sufficient 

to determine them. This one data point provides T, P, x1, and y1 and allows the 

calculation of γ1 and γ2 which along with the values of x1 and x2 may be substituted into 

the equations to provide a set of two equations and two unknown parameters. 

 

All the parameters in these equations are obtained from an experimentally determined 

isothermal set of γx data by fitting straight line to plot: 

a) Margules Equation – plot ln γ1/x2
2 vs. x1 and ln γ2/x2

2 vs. x2 

b) Van Laar Equation – plot 1/ ln γ1
1/2 vs. x1/x2 and 1/ ln γ2

1/2 vs. x2/x1 

 

This procedure is useful when data for only one component are available but its 

disadvantage is that it yields a set of parameters from the plot for each component. As 

the two sets of parameters will rarely be in agreement, some type of averaging procedure 

must be used to obtain a single set. This problem can be avoided if the data for both 

components are combined through the function Q where Q is related to the excess Gibbs 

free energy of mixing [18]. 

 

Q = x1 ln γ1 + x2 ln γ2         (2.29) 

 

Thus, instead of two sets of γx data, there is a single set of Qx data as follow:[20]  

   

The Margules Equation 

Q /x1x2 = A12 + 2(A21-A12)x1        (2.30) 
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The Van Laar Equation 

x1x2/ Q = 1/B12
 +[ (B12-B21) /( B12B21)] x1      (2.31) 

 

Unfortunately for this study, the vapor-liquid equilibria experimental data for binary 

methyl oleate-methanol and ethyl oleate-ethanol at the respected temperature and 

pressure are difficult to find. Thus, an estimation of activity coefficients from group-

contribution method is used. 

 

2.5.2.2 Group Contribution Method 

In the group contribution method, the basic idea is that whereas there are thousands of 

chemical compounds of interest in chemical technology, the number of functional 

groups that constitute these compounds is much smaller. Therefore, if we assume that a 

physical property of a fluid is the sum of contributions made by the molecule’s 

functional groups, we obtain a possible technique for correlating the properties of a very 

large number of fluids in terms of a much smaller number of parameters that 

characterize the contributions of individual groups.[20] 

 

Any group-contribution method is necessarily approximate because the contribution of a 

given group in one molecule is not necessarily the same as that in another molecule. The 

fundamental assumption of a group contribution method is additivity: the contribution 

made by any group within a molecule is assumed to be independent of that made by any 

other group in that molecule. This assumption is valid only when the influence of any 

one group in a molecule is not affected by the nature of other groups within that 

molecule.  

 

There are two method used in estimation of activity coefficients from group contribution 

method namely analytical solution of group (ASOG) and UNIFAC. However in this 

project, UNIFAC method will be chosen. 

 



                                                                                                                           

20 
 

In concept, the UNIFAC method follows the ASOG method, where activity coefficients 

in mixtures are related to interactions between structural groups. The essential features 

are: 

1. Suitable reduction of experimentally obtained activity coefficient data to yield 

parameters characterizing interactions between pairs of structural groups in 

nonelectrolyte system.  

2. Use of those parameters to predict activity coefficients for other systems that have 

not been studied experimentally but that contain the same functional groups. 

 

Basically, the UNIFAC method is the combination of ASOG method and UNIQUAC 

equation. The UNIQUAC equation often gives good representation of vapor-liquid and 

liquid-liquid equilibria for binary and multicomponent mixtures containing a variety of 

nonelectrolyte. In multicomponent mixture, the UNIQUAC equation for the activity 

coefficient of component i is: 

ln ௜ߛ = ln ௜஼ߛ + ln ௜ோߛ          (2.32) 

 

 

Where   

  ln ௜஼ߛ = ln஍௜
௫௜

+ ௭ 
ଶ
݅ݍ ln ఏ௜

஍௜
+  ݈௜ −  ஍௜

௫௜
∑ ௝ݔ ௝݈௝         (2.33) 

 

  ln ௜ோߛ =  ∑ ௞ ቀlnΓ୩ݒ − ln Γ୩
(୧)ቁ௞        (2.34) 

 

The combinatorial contribution to the activity coefficient depends only on the sizes and 

shapes of the molecules present. Meanwhile the residual contribution to the activity 

coefficient depends on group areas and group interaction. The residual equation is not 

part of UNIQUAC equation and is extracted from solution-of-groups concept from 

ASOG method. 

 

For combinatorial part: 

Φ୧ =  ௥೔௫೔
∑ ௥ೕ௫௝ೕೕ

          (2.35) 

combinatorial residual 
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Where       ݎ௜ = ∑ ௞ݒ
(௜)

௞ ܴ௞         (2.36) 

 

Parameter ܴ௞   is given in the table provided in the book ‘Properties of Gases and Liquid’  

 

z =  10 

z is a constant number  

 

௜ݍ =  ∑ ௞ݒ
(௜)

௞ ܳ௞         (2.37) 

Parameter ܳ௞   is given in the table provided in the book ‘Properties of Gases and Liquid’  

 

௜ߠ =  ௤೔௫೔
∑ ௤ೕ௫ೕೕ

          (2.38) 

 

݈௜ =  ௭
ଶ

݅ݎ)  − −(݅ݍ ݅ݎ)  − 1)        (2.39) 

 

For residual part: 

 

ln Γ௞ =  ܳ௞  ቂ1 − ݈݊ (∑ ௠Ψ௠௞ߠ  ௠ ) −∑ ఏ೘ஏೖ೘
∑ ఏ೙ஏ೙೘೙

௠ ቃ     (2.40) 

 

Equation above also holds for lnΓ୩
(୧) 

 

Where    ߠ௠ =  ொ೘௑೘
∑ ொ೙௑೙೙

        (2.41) 

Ψ୫୬ = exp(−  ௔೘೙
T

)          (2.42) 

௠ݔ =
௏ೕ
೔

∑௩ೕ
೔          (2.43) 
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2.6 PROPERTIES ESTIMATION METHOD 

 
Properties estimation method is used when there is no experimental data available at 

hand. Estimation carries the meaning of approximate. It may be based on theory, on 

correlations of experimental values or on a combination of both. A theoretical relation 

although not strictly valid, it will still serve adequately in specific cases. An ideal system 

for the estimation of a physical property would be able to serve below criteria [20]: 

a. Provide reliable physical and thermodynamic properties for pure substance and for 

mixtures at any temperature, pressure and composition. 

b. Indicate the phase (solid, liquid or gas) 

c. Require a minimum of input data. 

d. Choose the least-error route. 

e. Indicate the probable error. 

f. Minimize computation time. 

 

In this case, property estimation method is used to estimate the Gibbs energy of 

formation ΔGo
f,T and enthalpy of formation ΔHo

f,T. The method used is Joback and 

Constantinou and Gani (CG) Method.  

 

Joback method assigns contributions to common molecular groupings such as –CH3, -

NH2 and –COOH. Research done show by using Joback method the average absolute 

error for Gibbs of formation at 298.15K is about 9.9 (for carbon more than 3) meanwhile 

for enthalpy of formation at 298.15K, the average absolute error is around 10.2% (for 

carbon more than 3). However Joback method will be optional. It will only be used 

when the property estimated by Constantinou and Gani does not fit with this research 

requirement. Below show the calculation of Gibbs of formation and enthalpy of 

formation at 298.15K: 

 

௙௢ܩ∆ = 53.88 + [∑ ௞ܰ(݂݃1݇)௞ ]       (2.44)
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௙௢ܪ∆ = 68.29 + [∑ ௞ܰ(ℎ݂1݇)௞ ]       (2.45) 
 

 

Constantinou and Gani developed an advanced group contribution method based on the 

UNIFAC group but enhanced by allowing for more sophisticated functions of the 

desired properties and by providing contributions at a ‘Second Order’ level. The 

functions give more flexibility to the correlation while the Second order partially 

overcomes the limitation of UNIFAC which cannot distinguish special configurations 

such as isomers, multiple groups located close together, resonance structures etc. at the 

First Order [20]. 

 

This method is much more complicated and more accurate compared to Joback Method. 

It assigns contributions to common molecular groupings and allows interactions with 

next nearest neighbors to the atom or group. This allowance is generally the limits for 

estimation method because allowance for atoms or groups that are two or more atoms 

removed from the one of interest treats very small effects but still making the technique 

quite cumbersome[20].   

 

Below show the equation employed in obtaining Gibbs energy of formation ΔGo
f,T and 

enthalpy of formation ΔHo
f,T of Triolein.  

௙௢ܩ∆  = −14.83 + ൣ∑ ௞ܰ(݂݃1݇) +  ܹ ∑ ௝(݂݃2݆)௝௞ܯ ൧    (2.46)

  

 

௙௢ܪ∆ = 10.835 + ൣ∑ ௞ܰ(ℎ݂1݇) +  ܹ ∑ ௝(ℎ݂2݆)௝௞ܯ ൧    (2.47) 

 
The value of W is set to zero for first order calculations and unity for second-order 

calculations. 

 
A research is done using all substances in Appendix A from the Properties of Gases and 

Liquids book, to compare the absolute percentage error between experimental value and 
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calculated value using Constantinou and Gani Method. The calculated value can be 

divided into two; first order group and second order group. From standard enthalpy of 

formation value, the average absolute percentage error for first order is 8%. Meanwhile 

for second order, the average absolute percentage error is 4.7%. This demonstrates that 

by including second order group in Constantinou and Gani Method, a more accurate 

result can be obtained. The trend is basically same with result from standard Gibbs of 

formation value where for the average absolute percentage error for first order (12%) is 

more than second order group (10%).   

 

With low error in this method, it implies that Constantinou and Gani method is reliable 

and applicable in estimating the property of the substance. Other than that, it also 

requires a minimum of input data and minimizes the computation times.  
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2.7 CONVERSION 

 

In defining conversion, reactants should be choose as the basis of calculation and then 

relate the other species involve in the reaction to this basis. In virtually all instances it is 

best to choose the limiting reactant as the basis of calculation [21]. The stoichiometric 

relationships and design equation is developed by considering the general equation 

below: 

 

aA bB cC dD    

 

The uppercase letters represent chemical species and the lowercase letters represent 

stoichiometric coefficients. Taking species A as our basis calculation, the reaction 

expression is divided through by stoichiometric coefficient of species A, in order to 

arrange the reaction expression in the form such as below in order to put every quantity 

on a “per mole A” basis, the limiting reactant. 

 

b c dA B C D
a a a

    

 

Now in order to quantify how far a reaction has proceeds to the right hand side of the 

equation or how many moles of C are formed for every mole A consumed, the 

convenient way is to define the parameter of conversion. The conversion of XA is the 

number of moles of A that have reacted per mole of A that fed to the system: 

 

஺ܺ =
݀݁ݐܿܽ݁ݎ ܣ ݂݋ ݏ݈݁݋ܯ
݂݀݁ ܣ ݂݋ ݏ݈݁݋ܯ  

 

For irreversible reaction, the maximum conversion is 1.0 which is the complete 

conversion meanwhile for reversible reaction, the maximum conversion would be the 

equilibrium conversion (Xe). Therefore Xmax = Xe 
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CHAPTER 3 

METHODOLOGY 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Methodology 
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3.1 EQUATION DEVELOPMENT 

 

Stoichiometric Method is chosen as the method used to identify the equilibrium 

composition of transesterification process as the information about it is more detail and 

can be easily understand. There will be two models applied in this study by which the 

two models will be differ in number of phase exist. In first model, there are two pure 

liquid phase and one solution phase. Meanwhile in second model, there will be one pure 

liquid phase and two solution phase.  

 

3.1.1 First Model 

 In this model the triolein and glycerol will be in liquid phase meanwhile alcohol and 

ester will be in one solution phase. It can be concluded that the alcohol only dispersed to 

ester by using this model. 

The transesterification reaction from palm oil to Biodiesel can be simplified as below: 

 

Triglyceride (T)  +  3 Alcohol (A)  =  3 Ester (E)  +  Glycerol (G) 
 

 Degree of freedom 

P = 3 liqid phases (T, A+E, G) 

C = 4 components (T, A, E, G) 

r = 1 reaction 

 

F = C – P + 2 – r = 4 – 3 + 2 – 1 = 2 degrees of freedom 

 

Two types of operating condition need to be chosen to fix the system. It can be 

temperature, pressure, or initial composition. Since pressure effect is negligible for low 

pressure liquid-phase reaction, temperature and initial composition is chosen as two 

independent variables to define the system. 

 

1. For a given temperature, K will be calculated by Eq (3.1). 
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
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

     (3.1) 

 ΔGf,T
o will be determined by Gibbs Hemholtz Equation   

   
  3

3

ˆˆ

ˆˆ
)(

o
AA

o
TT

o
GG

o
EE

ffff

ffff
TK         (3.2) 

 

Since Triolein and Glycerol are pure liquid phases,  

 o
TT ff̂  =  o

GG ff̂  = 1   

 

For liquid solution (A+E),  

  EEo
E

E
EE

o
EE x

f
fxff  








ˆ ,      (3.3) 

 Similarly   AA
o

AA xff ˆ
       (3.4) 

 

Thus,    
33

)1(
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



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
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



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EE
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EE

x
x

x
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TK




       (3.5) 

  

2. Values  for mol fraction of alcohol, xA and ester, xE will be assumed such that xA + xE 

= 1. 

3. Then, at the same temperature, the activity coefficient of ester,E(T, xE) and alcohol, 

A(T, xA) will be found using estimation of activity coefficient using Group 

Contribution Method UNIFAC. 

4. The values of xA and xE then can be corrected from Eq (3.5). 

5. Step 2 is repeated until convergence is achieved. 
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6. The concentrations or moles of the components in the equilibrium mixture can be 

calculated using the reaction stoichiometry as follow: 

           T      +     3A       =     3E       +     G 
Initial:    nT0                  nA0                      nE0                   nG0 
Extent:     
Equili:  (nT0- nA0 nE0 nG0 

    

 

7. From the reaction stoichiometry, the extent of reaction,  is calculated. 

AO
A

E A E0 A0 E0 A0

3 3
( 3 ) ( 3 )

AOA n nn x
n n n n n n

 
 

 
  

         (3.6) 

8. The number of moles for each component can now be calculated using below 

equation.  

 iii nn  0          (3.7)

  

9. Following with the total number of moles ni. 

  0G0E0A0T0GEAT )()3()3()( ii nnnnnnnnnn 
           
 (3.8) 

 
10. And lastly, equilibrium concentrations of each component, yi is obtained.  




i

i
i n

ny          (3.9) 
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3.1.2 Second Model 

Second Model 

In the second model, there will be two liquid solutions phase and one pure liquid phase. 

The solution phase is alcohol and ester and alcohol and glycerol. Different from first 

method, glycerol now become the solution phase and only triolein stay as the pure liquid 

phase. Below show the transesterification of palm oil to Biodiesel reaction: 

 
Triglyceride (T)  +  3 Alcohol (A)  =  3 Ester (E)  +  Glycerol (G) 

 
 

Degree of Freedom 
 
P = 3 liqid phases (T, A+E, A+G) 

C = 4 components (T, A, E, G) 

r = 1 reaction 

F = C – P + 2 – r = 4 – 3 + 2 – 1 = 2 degrees of freedom 

 

Two types of operating condition need to be chosen to fix the system. It can be 

temperature, pressure, or initial composition. Since pressure effect is negligible for low 

pressure liquid-phase reaction, temperature and initial composition is chosen as two 

independent variables to define the system. 

 

1. For a given temperature, K will be calculated by Eq (3.1). 

 















 








 



RT

G

RT
GTK i

o
Tfiio

T
,

expexp)(


     (3.10) 

 ΔGf,T
o will be determined by Gibbs Hemholtz Equation   
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For pure liquid phase T,  o
TT ff̂  = 1 

 

For liquid solution 1 (A+E),  
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For liquid solution 2 (A+G),  
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For phase equilibrium,  
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2. The values for mol fraction of alcohol 1, xA1 and ester, xE1 is assumed such that xA1 + 

xE1 = 1. 

3. At specified operating temperature, T, the activity coefficient of ester E1(T, xE1) and  

activity coefficient of alcohol 1,A1(T, xA1)  is calculated using a suitable activity 

coefficient model. 

4. The initial value for mol fraction of alcohol 2, xA2 will be assumed such that xA2 < 1. 

5. The activity coefficient of glycerol, G2(T, xG2)  is calculated using a suitable activity 

coefficient model. 

6. The value of xA2 from Eq (5) is corrected using G2 value obtained above. 

7. Step 5 is repeated until convergence of xA2.  

8. The activity coefficient of alcohol 2, A2(T, xA2)  is calculated using the same activity 

coefficient model as in step 5. 

9. The value of xA1 is obtained from equation (4), using the current xA2, A2, and A1. 
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10. Step 3 is repeated until convergence of xA1. 

11. After convergence of xA1 and xA2, the concentrations or moles of the components in 

the equilibrium mixture can be calculated from the reaction stoichiometry as follow: 

 

              T      +     3A       =     3E       +     G 
Initial:    nT0                  nA0                      nE0                   nG0 
Extent:     
Equili:  (nT0- nA0 nE0 nG0 



12. From the reaction stoichiometry,the extent of reaction, can now be calculated by 

using below equation:      
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13. The number of moles for each component (triolein, alcohol, ester and glycerol) is 

calculated using equation (3.7).  

 
 iii nn  0          (3.15) 

 
14. Followed by the total number of moles in the mixture as in equation (3.8). 

 
  0G0E0A0T0GEAT )()3()3()( ii nnnnnnnnnn 

           
 (3.16) 
 
15. With that, the equilibrium concentrations for each of the components, i can be 

directly obtained using equation (3.9). 
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3.2 SOFTWARE 

 

3.2.1 MATLAB 

MATLAB  is a high-level technical computing language and interactive environment for 

algorithm development, data visualization, data analysis, and numeric computation. This 

software will be used to check the validity of value of activity coefficient obtained by 

calculation using the UNIFAC method [22]. 

 

3.2.2 Microsoft Excel 

Microsoft Excel spreadsheet is written application that features calculation, graphing 

tools, pivot table and a macro programming language. The equations computation for 

equilibrium composition for this study will be developed using Microsoft Excel 

spreadsheet.  

 

3.3 MAXIMUM ALLOWABLE CONVERSION 

 

In order to obtain maximum allowable conversion for this system, the parameters to be 

manipulated are reactant ratio and temperature. For reactant ratio, natural oil needs to be 

the limiting reactant and alcohol is in excess. The reactant ratio will be manipulated 

likely starting from 3:1 to 10:1 (mole:mole). As for temperature and pressure, it will 

start at the boiling point of the alcohol and atmospheric pressure and gradually decrease 

until the maximum conversion is achieved. The conversion of palm oil (triolein) to 

biodiesel (ester) is calculated using the difference of number of moles in the Triolein at 

initial and at the end of the reaction divided by number of moles at initial. The equation 

for the conversion can be shown as below: 

 

100io i

io

n nConversion
n


          (3.18) 
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3.4 GANTT CHART 

No Detail. Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 Topic Awarded               
2 Preliminary Report (Research)               

3 Submission of Preliminary Report               

4 Minimization of Gibbs Free Energy and 
Stoichiometric Method research               

5 Submission of Progress Report and Seminar               
6 Equation Development               

7 Result Gathering               

8 Submission of Interim Report               

9 Oral Presentation               
Table 1: Gantt chart for Semester 1 

No Detail.Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

1 Activity coefficient by UNIFAC method               
     

2 Submission of Progress Report I               
     

3 Equation Development for second 
method               

     

4 Equilibrium composition               
     

4 Submission of Progress Report II               
     

6 Maximum conversion                
     

7 Poster Exhibition               
     

8 Project Work Continue               
     

9 Submission of Dissertation (softbound)               
     

10 Oral Presentation               
     

11 Submission of Dissertation (hard bound)               
     

Table 2: Gantt Chart for semester 2 
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CHAPTER 4 

 

RESULT AND DISCUSSION 
 

In the first phase of this study, the author will focus on finding equilibrium composition 

of transesterification of palm oil to biodiesel by using stoichiometric equation method. 

For easier computation to find the equilibrium composition and maximum allowable 

conversion, the miscibility of all reaction components will be assumed where all the 

reaction components are in liquid phase. In order to solve the equation, firstly the 

parameters involved must be identified: 

 

4.1 PARAMETER  

 

4.1.1 Gibbs Energy of Formation, Δ G0 
fi 

Gibbs free energy of formation for methanol, ethanol and glycerol is directly obtained 

from the Gibbs free energy of formation function of temperature. However it is different 

for Triolein, Methyl Oleate and Ethyl Oleate. The Gibbs free energy of formation for 

those components will be obtained from Properties Estimation Methods, Joback and 

Constantinou and Gani Method. Joback and Constantinou and Gani Method will give the 

value of Gibbs free energy of formation only at standard temperature 298 K. Therefore 

another equation needs to be used in correlation with the value from Joback and  

Constantinou and Gani method. The equation used is Gibbs Hemholtz Equation. This 

equation will require enthalpy of formation constant a, b, c, d. However the constant 

cannot be obtained and thus the enthalpy of formation will be assumed constant and 

using Joback and Constantinou and Gani method again, the enthalpy of formation at 298 
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K is acquired. Below is the summary of properties estimation method used by each 

component: 

 

Components Property Estimation Method 

Triolein for methyl oleate Joback 

Triolein for ethyl oleate Constantinou and Gani (CG) 

Methyl Oleate Constantinou and Gani (CG) 

Ethyl Oleate Constantinou and Gani (CG) 

Table 3: Property estimation method for each component 

 

The reason why Joback method is used instead of Constantinou and Gani in estimation 

of Gibbs of formation of triolein for methyl oleate is it produces a value where the Gibbs 

of reaction is close to the positive value. When the Gibbs of reaction is close to positive 

value, the K(T) produced will become small and thus avoid the possibility of obtaining 

negative value for equilibrium composition. Below summary show using Joback for 

Triolein and CG method for methyl oleate produces the highest value for Gibbs free 

energy of reaction for triolein-methyl oleate system: 

 

Number of try Component Method/ Source of 

Gibbs of formation 

DG reaction (kJ/mol) 

Try 1 Triolein Joback -51.571 

Methyl Oleate Database 

Try 2 Triolein Joback -61.30 

Methyl Oleate Joback 

Try 3 Triolein Joback -12.094 

Methyl Oleate CG 

Try 4 Triolein CG -52.177 

Methyl Oleate CG 

Try 5 Triolein CG -101.375 

Methyl Oleate Joback 

Table 4: DG reaction using various methods of Gibbs of formation 

 



                                                                                                                           

37 
 

The first step in Joback and Constantinou and Gani Method for estimation of properties 

is to identify the groups that exist in the component. Below show the groups that exist in 

Triolein, Methyl Oleate and Ethyl Oleate and how to obtain the enthalpy of formation 

and Gibbs free energy of formation using these methods. 

 

Triolein 
                            O 

CH2-O-C-(CH2)7CH=CH(CH2)7CH3 

 

                         O 

CH -O-C-(CH2)7CH=CH(CH2)7CH3                          

 

                         O                                                                                                                

CH2-O-C-(CH2)7CH=CH(CH2)7CH3 

 

 

1. Joback Method 

 

The groups for triolein are forty four CH2, six =CH, one CH, three CH3 and three COO. 

Using the information above, the group values can be obtained from table C2 and C3 in 

The Properties of Gases and Liquids Fifth Edition book.  

 

Group k Nk hf1k Nk * hf1k gf1k Nk * gf1k 
CH3 3 -76.45 -229.35 -43.960 -131.880
CH2 44 -20.64 -908.16 8.420 370.480
CH 1 29.89 29.89 58.360 58.360
=CH 6 37.97 227.82 48.530 291.180
COO 3 -337.92 -1013.76 -301.950 -905.850

Total -1893.56 Total -317.71
Table 5: Property estimation using Joback approach for Triolein 

 

Using the values and substitute in equation (2.44) and (2.45), the Gibbs free energy of 

formation and enthalpy of formation for triolein at 298 K is -263.83 kJ/mol and  

-1825.27  kJ/mol respectively. 
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2. Constantinou and Gani Method 

 

The first order groups for triolein are forty four CH2, three CH=CH, one CH, three CH3 

and three COO. Using the information above, the group values can be obtained from 

table C6 and C7 in The Properties of Gases and Liquids Fifth Edition book.  

 

Group k Nk hf1k Nk * hf1k gf1k Nk * gf1k 
CH2 44 -20.763 -913.572 8.231 362.164 
CH=CH 3 69.939 209.817 92.900 278.700 
CH 1 -3.766 -3.766 19.848 19.848 
CH3 3 -45.947 -137.841 -8.030 -24.090 
COO 3 -313.545 -940.635 -281.495 -844.485 

Total -1786 Total -207.863 

Table 6: Property estimation using Constantinou and Gani approach for Triolein 

 

Using the values and substitute in equation (2.44) and (2.45), the Gibbs free energy of 

formation and enthalpy of formation for triolein at 298 K is -222.693kJ/mol and  

-1775.16 kJ/mol respectively. 

 

Methyl Oleate 

                            O 

CH3-O-C-(CH2)7CH=CH(CH2)7CH3 

 

Group k Nk hf1k Nk * hf1k gf1k Nk * gf1k 
CH2 14 -20.763 -290.682 8.231 115.234 
CH=CH 1 69.939 69.939 92.900 92.900 
CH3 2 -45.947 -91.894 -8.030 -16.060 
COO 1 -313.545 -313.545 -281.495 -281.495 

Total -626.182 Total -89.421 

Table 7: Property estimation using Constantinou and Gani approach for Methyl Oleate 
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The group values can be obtained from table C2 and C3 in The Properties of Gases and 

Liquids Fifth Edition. Substitute the above values in equation (2.44) and (2.45), the 

Gibbs free energy of formation and enthalpy of formation for Methyl Oleate at 298 K is 

-104.251 kJ/mol and -615.347 kJ/mol respectively. 

 

Ethyl Oleate 

 
                            O 

C2H5-O-C-(CH2)7CH=CH(CH2)7CH3 

 

The first order groups for ethyl oleate are fifteen CH2, one CH=CH, one CH, two CH3 

and one COO. Using the information above, the group values can be obtained from table 

C2 and C3 in The Properties of Gases and Liquids Fifth Edition.  

 

Group k Nk hf1k Nk * hf1k gf1k Nk * gf1k 
CH2 15 -20.763 -311.445 8.231 123.465 
CH=CH 1 69.939 69.939 92.900 92.900 
CH3 2 -45.947 -91.894 -8.030 -16.060 
COO 1 -313.545 -313.545 -281.495 -281.495 

Total -646.945 Total -81.19 

Table 8: Property estimation using Constantinou and Gani approach for Ethyl Oleate 

 

Using the values and substitute in equation (2.46) and (2.47), the Gibbs free energy of 

formation and enthalpy of formation for ethyl oleate at 298 K is -96.02 kJ/mol and  

-636.11 kJ/mol respectively. 

 

Inserting the Gibbs free energy and enthalpy of formation at 298 K from above 

Constantinou and Gani approach into constant enthalpy of Gibbs Hemholtz equation, the 

Gibbs free energy of formation can now be calculated. Below show the derivation of 

Gibbs Hemholtz equation when the enthalpy of formation is assumed to be constant 

[17],[19]: 
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Table 9 and 10 show the result of Gibbs free energy of formation for each molecule at 

respective temperature: 

 

Methanol-Methyl Oleate system 

Molecule (i) 
ΔGf

o (kJ/mol) 

T=333 K T=323 K T=313 K 

Triolein -80.4394 -92.4523 -144.5486 
Methanol -157.6394 -158.9622 -160.2737 

Methyl Oleate -44.2229 -61.3738 -78.5247 
Glycerol -432.7824 -437.3167 -441.8295 

Table 9: Gibbs free energy of formation of molecule involved 

Ethanol-Ethyl Oleate system 

Molecule (i) 
ΔGf

o (kJ/mol) 
T=345 K T=335 K T=325 K 

Triolein 22.1595 -29.9368 -82.0331 
Ethanol -157.0392 -159.3444 -161.6341 

Ethyl Oleate -10.8380 -28.9618 -47.0857 
Glycerol -427.3137 -431.8730 -436.4115 

Table 10: Gibbs free energy of formation of molecule involved 
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4.1.2 Activity Coefficient, γi 

 

As mentioned in the literature review section, due to the insufficient data of vapor liquid 

equilibria of methyl oleate-methanol system and ethyl oleate-ethanol system, thus an 

estimation of activity coefficients from Group-Contribution method is chosen. The 

Group-Contribution method selected is UNIFAC. There are two methods used in this 

study: (First method: T,A+E,G and Second method: T, A+E, A+G) by which 

T=Triolein, A=Alcohol, E=Ester and G=Glycerol. Therefore there will be four sets of 

activity coefficients in this study (since there are methyl oleate methanol system and 

ethyl oleate ethanol system). Below show the method employed in obtaining the activity 

coefficient [20]: 

 

1. Firstly we need to identify group in the system.  

1.1 First Method 

 

Methyl oleate - methanol system 

 

Group Identification 
Molecule (i) Name Main No. Sec No. vji Rj Qj 

Methyl-oleate (1) 

CH3 1 1 2 0.9011 0.848 
COO 41 77 1 1.38 1.2 
CH2 1 2 14 0.6744 0.54 
CH=CH 2 6 1 1.1167 0.867 

Table 11: Group identification for methyl-oleate 

 

Group Identification 
Molecule (i) Name Main No. Sec No. vji Rj Qj 

Methanol (2) 
CH3 1 1 1 0.9011 0.848 
OH 5 14 1 1 1.2 

Table 12: Group identification for methanol 
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Ethyl oleate – ethanol system 

 

Group Identification 
Molecule (i) Name Main No. Sec No. vji Rj Qj 

Ethyl-oleate (1) 

CH3 1 1 2 0.9011 0.848 
COO 41 77 1 1.38 1.2 
CH2 1 2 15 0.6744 0.54 
CH=CH 2 6 1 1.1167 0.867 

Table 13: Group identification for ethyl oleate 

 

Group Identification 
Molecule (i) Name Main No. Sec No. vji Rj Qj 

Ethanol (2) 
CH3 1 1 1 0.9011 0.848 
CH2 1 2 1 0.6744 0.54 
OH 5 14 1 1 1.2 

Table 14: Group identification for ethanol 

 

1.2 Second Method 

For second method, the needed activity coefficient is for both solutions (first 

solution: alcohol and ester, second solution: alcohol and glycerol). The group 

identification for first solution is the same as first method meanwhile for second 

solution, methanol and and ethanol are the same as in table 11 and 12. Group 

identification for glycerol is shown as below: 

 

Group Identification 
Molecule (i) Name Main No. Sec No. vji Rj Qj 

Glycerol (1) 
CH2 1 2 2 0.6744 0.54 
CH 1 3 1 0.4469 0.228 
OH 5 14 3 1 1.2 

Table 15: Group identification for glycerol 
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2. COMBINATORIAL PART. With information above, the parameters in 

combinatorial part can be found (here x1 and x2 will be assumed such that x1 + x2=1). 

݈௜ =  ௭
ଶ

݅ݎ)  − −(݅ݍ ݅ݎ)  − 1)       (2.39) 

௜ߠ =  ௤೔௫೔
∑ ௤ೕ௫ೕೕ

         (2.38) 

௜ݍ =  ∑ ௞ݒ
(௜)

௞ ܳ௞         (2.37) 

௜ݎ = ∑ ௞ݒ
(௜)

௞ ܴ௞          (2.36) 

Φ୧ =  ௥೔௫೔
∑ ௥ೕ௫௝ೕೕ

         (2.35) 

 
3. Substitute all in combinatorial equation as in equation (2.33). 

ln ௜஼ߛ = ln஍௜
௫௜

+ ௭ 
ଶ
݅ݍ ln ఏ௜

஍௜
+  ݈݅ −  ஍௜

௫௜
∑ ௝ݔ ௝݈௝      (2.33) 

 

4. RESIDUAL PART. Firstly the group interaction parameters, amn. This parameter can 

be obtained from Table 8-24 in book ‘Properties of Gases and Liquid’ and by pairing 

the main group that exist in the molecule or the mixture. Along with that is group 

interaction parameter, mn which can be obtained using equation (2.42). Below is the 

result: 

Group-interaction parameter  
a1,1 0 1,1 1 

a1,41 387.1 1,41 0.3181 
a41,1 529 41,1 0.2091 

a41,41 0 41,41 1 
a1,2 86.02 1,2 0.7753 
a2,1 -35.36 2,1 1.1103 
a2,2 0 2,2 1 

a41,2 1397 41,2 0.0160 
a2,41 48.33 2,41 0.8668 
a1,5 986.5 1,5 0.0540 
a5,1 156.4 5,1 0.6296 
a5,5 0 5,5 1 
a5,2 457 5,2 0.2587 

a5,41 190.3 5,41 0.5695 
a2,5 524.1 2,5 0.2121 

a41,5 88.63 41,5 0.7693 
                  Table 16: Group interaction parameter for each group in the mixture 
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For methyl oleate-methanol system, there are 3 main groups in molecule (1) which is 

1(CH3 and CH2), 41(COO) and 2 (CH=CH). Meanwhile for molecule (2), there are 2 

main groups which are 1 (CH3) and 5 (OH). Therefore as for overall mixture, 4 main 

groups exist.  

 

As for ethyl oleate-ethanol system, the main group for its molecule (1) is slightly the 

same with methyl oleate. The different is only at CH2 group where the number of 

group CH2 in ethyl oleate is more than methyl oleate. Meanwhile for molecule (2), 

other than CH3 and OH group, CH2 group also exist.  

 

For glycerol-methanol system, there are 2 main groups for molecule (1) which is 

1(CH2 and CH) and 5(OH) and also 2 main groups in molecule (2); 1(CH3) and 

5(OH). 

 

The number of main group in glycerol-ethanol system is almost the same with 

glycerol-methanol system. Molecule (2) in this system also has 2 main groups, 

however at main group (1), there are additional of CH2 group. 

 

5. Compute the mole fraction of each group, xm by using equation (2.43) and the area 

fraction of group m, θm by using equation (2.41). 

௠ݔ =
௏ೕ
೔

∑௩ೕ
೔          (2.43) 

௠ߠ =  ொ೘௑೘
∑ ொ೙௑೙೙

         (2.41) 

 

6. Obtain the residual activity coefficient of group k in the molecule i, Γ୩
(୧) by using 

equation (2.40). For methyl oleate methanol system, there would be 4 groups of 

component in molecule methyl oleate and as for molecule methanol; there would be 

2 groups of component. Hence, there are total of 6 values of Γ୩
(୧).  Meanwhile for 

ethyl oleate ethanol system there are total of 7 values of Γ୩
(୧). Glycerol methanol 
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system will have total of 6 values of Γ୩
(୧). and glycerol ethanol system will have 7 

values of Γ୩
(୧). 

 

Below show the example of calculation for ln Γେୌଷ
(୫ୣ୲୦ୟ୬୭୪). 

 

ln Γ௞ =  ܳ௞  ቂ1 − ݈݊ (∑ ௠Ψ௠௞ߠ  ௠ ) −∑ ఏ೘ஏೖ೘
∑ ఏ೙ஏ೙೘೙

௠ ቃ    (2.40) 

 

ln Γ஼ுଷ =  ܳ஼ுଷ  ቂ1 − ݈݊ (∑ ௠Ψ௠஼ுଷ ௠ߠ ) − ∑ ఏ೘ஏ಴ಹయ೘
∑ ఏ೙ஏ೙೘೙

௠ ቃ  

 

n and m can be any other groups in molecule (1). Therefore: 

ln Γ஼ுଷ

=  ܳ஼ுଷ  ቎
1 − ln(ߠ஼ுଷΨ஼ுଷି஼ுଷ + ( ைுΨைுି஼ுଷߠ 

−
஼ுଷΨ஼ுଷି஼ுଷߠ

஼ுଷΨ஼ுଷି஼ுଷߠ + ைுΨைுି஼ுଷߠ 
+  

ைுΨ஼ுଷିைுߠ

஼ுଷΨ஼ுଷିைுߠ + ைுΨைுିைுߠ 

቏ 

 

The calculation is repeated for other group for both molecule in both system methyl-

oleate and methanol, ethyl-oleate and ethanol, glycerol-methanol and glycerol-

ethanol.  

 

7. Find the mol fraction of each group, Xk for the mixture. For methyl oleate methanol 

system and ethyl oleate ethanol system, there are 5 groups of component exist in 

each mixture. Meanwhile for glycerol ethanol and glycerol methanol system, 4 

groups of component will be exist in each mixture. The example of calculation for 

XCH3 in methyl oleate-methanol system can be shown as below. 

 

ܺ௞ =
∑ ௫ೕ௩ೖೕೕ

∑ ௫ೕೕ ∑ ௩ೖೕೖ
          (4.3) 

       ܺ஼ுయ =  
௫ಾೀ ௩಴ಹయ/ಾೀା௫ಾಶೀಹ௩಴ಹయ/ಾಶೀಹ 

௫ಾೀ൫௩಴ಹయ,ಾೀା௩಴ೀೀ,ಾೀା௩಴ಹమ,ಾೀା௩಴ಹస಴ಹ,ಾೀା௩ೀಹ,ಾೀ൯
ା ௫ಾಶೀಹ(௩಴ಹయ,ಾಶೀಹା௩಴ೀೀ,ಾಶೀಹା௩಴ಹమ,ಾಶೀಹା௩಴ಹస಴ಹ,ಾಶೀಹା௩ೀಹ,ಾಶೀಹ)
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Where  MEOH = methanol 

MO = methyl oleate 

 

The calculation will be repeated for each group in the mixture. 

 

8. Obtain the area fraction of each group, θk for the mixture by using equation (2.41).  

௞ߠ =  ொೖ௑ೖ
∑ ொ೙௑೙೙

         (2.41) 

 
 

9. Along with that, the residual activity coefficient of group k in the mixture, Γ௞ is 

obtained by using the same equation (2.40) as the residual activity coefficient of 

group k in the molecule, Γ୩
(୧). 

ln Γ௞ =  ܳ௞  ቂ1 − ݈݊ (∑ ௠Ψ௠௞ߠ  ௠ ) −∑ ఏ೘ஏೖ೘
∑ ఏ೙ஏ೙೘೙

௠ ቃ    (2.40) 

 

 

10. Substitute all the values: vk, Γ௞ , Γ୩
(୧) into the residual equation as in equation (2.34). 

  ln ௜ோߛ =  ∑ ௞ ቀlnΓ୩ݒ − ln Γ୩
(୧)ቁ௞        (2.34) 

 

 

11. After substituting both the combinatorial part and residual part in equation (2.32), 

finally activity coefficients can be achieved. 

ln ௜ߛ = ln ௜஼ߛ + ln ௜ோߛ         (2.32) 
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4.2 RESULT INTERPRETATION 

 

4.2.1 FIRST MODEL 

4.2.1.1 METHYL-OLEATE METHANOL SYSTEM 

 

T 333 K 
Equilibrium  

concentration,yi 
  
  
  

Component/Ratio (A:T) 3:1 

E 2.2497 Triolein (T) 0.028023 

A 4.1547 Methanol (A) 0.084070 

E 0.88791 Methyl-Oletate (E) 0.665930 

A 0.11209 Glycerol (G) 0.221977 

Table 17: Equilibrium concentration of components in Methyl-Oleate methanol system 

at T=333 K 

 

T 323 
Equilibrium  

concentration,yi 
  
  
  

Component/Ratio (A:T) 3:1 

E 2.2492 Triolein (T) 0.028074 

A 4.1535 Methanol (A) 0.084222 

E 0.88770 Methyl-Oletate (E) 0.665778 

A 0.11230 Glycerol (G) 0.221926 

Table 18: Equilibrium concentration of components in Methyl-Oleate methanol system 

at T=323 K 

 

T 313 
Equilibrium  

concentration,yi 
  
  
  

Component/Ratio (A:T) 3:1 

E 2.2491 Triolein (T) 0.028087 

A 4.1532 Methanol (A) 0.084260 

E 0.88765 Methyl-Oletate (E) 0.665740 

A 0.11235 Glycerol (G) 0.221913 

Table 19: Equilibrium concentration of components in Methyl-Oleate methanol system 

at T=313 K 
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4.2.1.1.1 Different Reactant Ratio 

 

The reactant molar ratio, alcohol to triolein is manipulated starting from molar ratio 3:1 

and in increasing manner. The purpose is to see which of the ratio will produce the 

highest equilibrium concentration or yield of Biodiesel. Thou, a higher ratio like 8:1 or 

10:1 will not be favorable because excess alcohol means extra cost especially due to 

alcohol recovery process.  

 

However the equilibrium concentration becomes negative value when the molar ratio 

started to increase to 4:1. Therefore the data above only show the equilibrium 

composition at molar ratio 3:1 and change in equilibrium composition (increase or 

decrease) toward increasing of reactant ratio could not be observe. However this shows 

that at only molar ratio of 3:1, the equilibrium concentration of the system has already 

achieved its maximum concentration. This means the triolein has almost fully convert 

into Biodiesel at only molar ratio of 3:1. 

 

4.2.1.1.2 Different Operating Temperature 

 

 
Figure 3: Conversion of Methyl Oleate by manipulation of temperature 
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The purpose of temperature manipulation is to see which one of the operating 

temperature that will give the highest maximum conversion. The operating temperature 

of this system is manipulated at 333 K, 323 K and 313 K. Higher temperature than 333 

K is not used as above the boiling point of methanol, methanol will be evaporated and 

thus the vapor liquid equilibrium (VLE) has to be considered by which in this study the 

reaction is assumed to be only in liquid phase.  

 

From Figure 4, the conversion is showing an increasing trend when the temperature is 

increased. This might be due to the fact that transesterification reaction is an 

endothermic reaction and thus favoring a higher temperature in order to produce a higher 

conversion. This can be explained by the equilibrium theory where an endothermic 

reaction requires heat in order to change from reactant to product. Therefore if the 

temperature decreasing, it will tend to go the left hand side and cause lower conversion. 

 

The Gibbs free energy of this reaction is -12.094 kJ/mol. Due to the negative value, the 

forward reaction would be spontaneous.  However the equilibrium constant for this 

system at temperature 333 K is 78.9 which is moderate. When the value of equilibrium 

constant is neither very high nor very small, we conclude that the reaction occurs both in 

forward and backward direction and equilibrium will be attained after certain period of 

time.  

 

In addition if the temperature becomes too low, it can effect the kinetic of the system 

where in other word the kinetic is limited. The system will also take longer time to 

achieve the equilibrium. Thus, an optimum temperature should be the temperature that 

compromises both thermodynamically and kinetically namely 333 K as at this 

temperature the equilibrium concentration has already maximum. 
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4.2.1.2 ETHYL-OLEATE ETHANOL SYSTEM 

 

T 345 K

Equilibrium  
concentration 

  
  

Component/Ratio (A:T) 3:1 

E 2.309377 Triolein (T) 0.024818812

A 5.924482 Ethanol (A) 0.074456437

E 0.900725 Ethyl-Oleate (E) 0.675543563

A 0.099275 Glycerol (G) 0.225181188

Table 20: Equilibrium concentration of components in Ethyl-Oleate ethanol system at 

T=345 K 

 

T 335 Equilibrium  
concentration 

  
  
  

Component/Ratio (A:T) 3:1 

E 2.315039 Triolein (T) 0.024178473

A 5.944859 Ethanol (A) 0.072535418

E 0.903286 Ethyl-Oleate (E) 0.677464582

A 0.096714 Glycerol (G) 0.225821527

Table 21: Equilibrium concentration of components in Ethyl-Oleate ethanol system at 

T=335 K 

 

T 325 Equilibrium  
concentration 

  
  
  

Component/Ratio (A:T) 3:1 

E 7.200497 Triolein (T) 0.023445409

A 0.879137 Ethanol (A) 0.070336228

E 0.003118 Ethyl-Oleate (E) 0.679663772

A 0.996882 Glycerol (G) 0.226554591

Table 22: Equilibrium concentration of components in Ethyl-Oleate ethanol system at 

T=325 K 
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4.2.1.2.1 Different Reactant Ratio 

 

The data for ethyl oleate ethanol system shows only data for reactant ratio 3:1 as higher 

than that ratio, the equilibrium composition will produce negative value. However, this 

shows that at molar reactant ratio 3:1, the conversion already achieves its maximum with 

conversion of 90.07% at temperature of 345 K.  

 

4.2.1.2.2 Different Operating Temperature 

 

 
Figure 4: Conversion of Ethyl Oleate by manipulation of temperature 

 

The operating temperature for a Biodiesel reaction system is depending on the boiling 

point of the alcohol used. In this case, ethanol has the boiling point around 72 degree 

celcius or 345 K. Therefore, the manipulated operating temperature will be started at 345 

K, followed by 335 K and 325 K. From Table 14, Table 15 and Table 16 and Figure 4, 

decreasing the temperature resulted in higher equilibrium concentration and conversion. 

This trend can be explained by the equilibrium theory where an exothermic reaction will 

favor a lower temperature when higher conversion is required. However since we have 

to comply with effect in kinetic change and since the difference of conversion between 

345 K and 325 K is not high (0.6%), the optimal temperature should be 345 K. 
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4.2.1.3 DIFFERENT TYPE OF ALCOHOL 

 

The conversion for each system is observed at the respective reactant molar ratio of 3:1 

only since at molar ratio of 3:1, the equilibrium concentration for methyl oleate 

methanol system already achieve its maximum and since the optimum temperature is 

when thermodynamic and kinetic compromise, only consider the conversion at 

temperature of 333 K for methyl oleate methanol system and temperature of 345 K for 

ethyl oleate ethanol system. The conversion of Biodiesel will used Triolein as the basis 

calculation since Triolein is the limiting reactant. The equation of conversion can be 

shown as below: 

 

்ܺ = ே೅ೀି ே೅
ே೅ೀ

 × 100  

 
 Type of alcohol used Conversion (%) 

Methanol 88.79 
Ethanol 90.07 

Table 23: Conversion for both system 

 

As Table 23 show, the conversion for ethyl oleate is much higher than methyl. This 

result is not parallel with research by H. Sanli and M.Canakci [25] where methanol will 

gives better conversion when compared to other solvent like ethanol and propanol. The 

methanol’s structure where it has only one carbon and therefore it will produce higher 

reactivity and higher conversion. Low reactivity can definitely cause harder 

transesterification reaction and consequently the reaction time to completeness of the 

reaction become longer. 

 

Since in this method, the distribution of alcohol is only to ester, thus the result obtained 

will not be so precise. Therefore second method will be used in order to verify this 

condition. 
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4.2.2 SECOND METHOD 

4.2.2.1 METHYL-OLEATE METHANOL AND GLYCEROL-METHANOL 

SYSTEM 

 

T 333 K

Equilibrium 
 Composition 

Component/Ratio (A:T) 3:1 4:1 5:1 
XA1 0.168453009 Triolein (T) 0.1201 0.0615 0.0224 
XA2 0.684339787 Methanol (A) 0.3604 0.3845 0.4005 
    Methyl-Oletate (E) 0.3896 0.4155 0.4328 
    Glycerol (G) 0.1299 0.1385 0.1443 

Table 24: Equilibrium concentration of components in Methyl-Oleate methanol system 

at T=333 K 

 

T 323 K

Equilibrium  
composition 

Component/Ratio (A:T) 3:1 4:1 5:1 
XA1 0.168630285 Triolein (T) 0.1203 0.0616 0.0225 
XA2 0.684845726 Methanol (A) 0.3608 0.3849 0.4009 
    Methyl-Oletate (E) 0.3892 0.4151 0.4324 
    Glycerol (G) 0.1297 0.1384 0.1441 

Table 25: Equilibrium concentration of components in Methyl-Oleate methanol system 

at T=323 K 

 

T 313 K

Equilibrium  
composition 

Component/Ratio (A:T) 3:1 4:1 5:1 
XA1 0.168675360 Triolein (T) 0.1203 0.0617 0.0226 
XA2 0.684974318 Methanol (A) 0.3609 0.3850 0.4010 
    Methyl-Oletate (E) 0.3891 0.4150 0.4323 
    Glycerol (G) 0.1297 0.1383 0.1441 
Table 26: Equilibrium concentration of components in Methyl-Oleate methanol system 

at T=313 K 
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4.2.2.1.1 Different reactant ratio 

 

 
Figure 5: Equilibrium concentration vs. ratio for methyl oleate for second method 

 
Above figure shows when the reactant ratio (alcohol to triolein molar ratio) is increase, 

the equilibrium concentration also increases. This result applies for all temperatures 333 

K, 323 K and 313 K. This increasing trend is due to the more excess of alcohol used. 

Excess alcohol is needed as it will drive the reaction towards completion. 

 

The reactant ratio for methyl oleate system in second method is manipulated starting 

from ratio 3:1 to 4:1 and 5:1. The reason for small different of reactant ratio chosen to be 

manipulated is due to at ratio 6:1, the system starts producing negative value for the 

equilibrium composition. Therefore it can be concluded that ratio 5:1 is the maximum 

ratio that can be used in order to produce high conversion of methyl oleate. Below show 

the summary of conversion using different ratio at constant temperature 333 K. 

 

Ratio Conversion 
3:1 51.94178317 
4:1 69.25571089 
5:1 86.56963862 

Table 27: Conversion at different molar ratio for methyl oleate system 
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4.2.2.1.2 Different operating temperature 

 

 
Figure 6: Conversion vs. temperature for methyl oleate system at ratio 5:1 

 

From above figure, conversion increase as temperature increase. This MIGHT be due to 

transesterification reaction for methanol is an endothermic reaction, thus it favors high 

temperature in order to produce high conversion. Since at highest allowable temperature, 

333 K (higher than 333 K, methanol will start to evaporate) achieves highest conversion, 

thus it will be the optimal temperature for this system.  

 

Observe that the ratio used to see the effect of temperature changes is 5:1. This is due to 

the maximum allowable ratio is 5:1 whereby this means above than this ratio, the 

equilibrium composition starts produce negative value and thus invalid conversion 

produced. 
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4.2.2.2 ETHYL-OLEATE ETHANOL AND GLYCEROL-ETHANOL SYSTEM 

 

T 345 K

Equilibrium  
composition 

Component/Ratio (A:T) 3:1 4:1 5:1 
XA1 0.143324840 Triolein (T) 0.2052 0.1522 0.1168 

XA2 0.929704057 Ethanol (A) 0.6155 0.6565 0.6839 

    Ethyl-Oletate (E) 0.1345 0.1435 0.1495 

    Glycerol (G) 0.0448 0.0478 0.0498 

Table 28: Equilibrium concentration of components in ethyl oleate ethanol system at 

T=345 K 

 

T 335 K

Equilibrium  
composition 

Component/Ratio (A:T) 3:1 4:1 5:1 
XA1 0.142195069 Triolein (T) 0.2028 0.1496 0.1142 
XA2 0.925295713 Ethanol (A) 0.6083 0.6489 0.6759 
    Ethyl-Oletate (E) 0.1417 0.1511 0.1574 
    Glycerol (G) 0.0472 0.0504 0.0525 

Table 29: Equilibrium concentration of components in ethyl oleate ethanol system at 

T=335 K 

 

T 325 K

Equilibrium  
composition 

Component/Ratio (A:T) 3:1 4:1 5:1 
XA1 0.140819548 Triolein (T) 0.1999 0.1466 0.1110 
XA2 0.919860646 Ethanol (A) 0.5997 0.6397 0.6663 
    Ethyl-Oletate (E) 0.1503 0.1603 0.1670 
    Glycerol (G) 0.0501 0.0534 0.0557 

Table 30: Equilibrium concentration of components in ethyl oleate ethanol system at 

T=335 K 
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4.2.2.2.1 Different reactant ratio 

 

 
Figure 7: Equilibrium concentration vs. ratio for ethyl oleate for second method 

 

From Figure 7 above, it shows that when the reactant ratio increases, the equilibrium 

composition also increases. This is parallel with the theory where when more excess of 

alcohol is used, the composition of product should be higher as more excess of alcohol is 

consumed to drive the reaction towards completion. 
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4.2.2.2.2 Different operating temperature 

 

 
Figure 8: Equilibrium conversion vs. temperature at alcohol to triolein ration 5:1 

 

The conversion for ethyl oleate when temperature is increase shows decreasing trend. 

This is the same with the first method where the conversion increases when temperature 

is decrease. Nevertheless, this shows that transesterification of reaction of triolein and 

ethanol is somehow an exothermic reaction. Exothermic reaction will favor lower 

temperature in order to achieve high conversion. This can be explained by the Le 

Chatelier principle where exothermic reaction release energy, thus if temperature 

decreases, the system will tend to go to the right hand side of equation and thus produce 

more conversion.   

 

However a very low temperature can effect the kinetic of the system. Therefore the 

temperature taken should be temperature that agree with both kinetic and 

thermodynamic (conversion). In this case is 345 K as if comparison is made between 

conversion at 325 K and 345 K, the conversion different is only 3.5%.  
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4.2.2.3 DIFFERENT TYPE OF ALCOHOL 

 

For the second method, alcohol is distributed to both products in the system: ester and 

glycerol. If we take the alcohol to triolein molar ratio 5:1 and temperature of 333 K for 

methyl oleate and temperature of 345 K for ethyl oleate, the comparison of conversion 

between these alcohols can be made. The temperature taken is the optimal temperature 

for both systems. Below table shows conversion of each ester: 

 

Type of Alcohol used Conversion (%) 

Methanol 86.57% 

Ethanol 29.89% 

Table 31: Conversion comparison between different types of alcohol used 

 

Using methanol achieves higher conversion compared with using ethanol for biodiesel 

production. This is parallel with the research by H.Sanli, M. Canakci where using 

methanol should gives higher conversion. As mentioned earlier, this is be due to the 

structure of methanol which proposes higher reactivity. High reactivity will drive 

reaction to completeness and thus higher conversion. 

 

 

 

 

 

 

 

 



                                                                                                                           

60 
 

 

CHAPTER 5 

 

CONCLUSION AND RECOMMENDATION 

 
The first part of this project is focusing on understanding and developing the 

Minimization of Gibbs Free Energy equations and Stoichiometric method equation 

meanwhile the second part will continue on developing the simulation program using 

Excel spreadsheet in order to find the equilibrium composition and maximum 

conversion. In the first part, the Stoichiometric method is chosen as it is detail and easy 

to understand. Using this method, the equilibrium composition is obtained by using 

extent of reaction. This extent of reaction is found from mol fraction that being predicted 

using the equilibrium constant equation. 

 

From this study, it shows that when the reactant molar ratio is increased, the equilibrium 

concentration will also increase. This might be due to the excess of alcohol being used 

that able to complete the reaction. Comparison of conversion in methyl oleate for both 

system shows using first method achieves higher conversion, 88.79% vs. 51.94% (at 

molar ratio 3:1). It is the same with ethyl oleate where the first method achieves higher 

conversion 90.07% vs. 17.93%. 

 

 The trend for temperature is also the same where in both method, methyl oleate 

conversion increase when temperature increases and in ethyl oleate, conversion 

decreases when temperature increases. Therefore it can be concluded that 
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transesterification reaction of triolein and methanol is endothermic meanwhile 

transesterification reaction of triolein and ethanol is exothermic.  

 

First model is distributed only to ester. Therefore the thermodynamic analysis on 

equilibrium composition will not be as precise as the second method. The distribution of 

alcohol in second method is to both product; ester and glycerol. Therefore the result in 

second method will be more reliable.  

 

Thus proposed alcohol used is methanol with alcohol to triolein ratio 5:1 and 

temperature of 333 K.  

 

As the recommendation, since there are some of the properties such as Gibbs free energy 

of formation and enthalpy of formation of some components are estimated using 

property estimation method, in the future there should be experimental value for this 

type of components as estimation value will definitely has errors compared to the real 

values.  

 

Other than that, there is no data mention whether transesterification reaction is 

exothermic or endothermic because from the result it shows that using ethanol is 

showing exothermic reaction meanwhile using methanol is endothermic reaction. 

Therefore experiment should be done in order to investigate whether using different 

types of alcohol gives different result in term of the temperature trend.  
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APPENDIX 

Appendix 1: Physical and Chemical Properties of Substance 

a) Triolein 
 

Appearance Colorless viscous liquid 

Molecular Formula C57H104O6 

Molecular weight 885.4321 

Density g/cm3 0.9210 

Melting Point °C -5.5 

Boiling Point °C 818.7  

Flash Point °C 302.6  

Solubility Soluble in chloroform: 0.1 g/mL 

       Table 32: Physical and Chemical Properties of Olein [23] 

 
b) Methanol 

 
Appearance Colorless liquid 

Molecular Formula CH3OH 

Molecular weight 32.04 

Density g/cm3 0.7918 

Melting Point °C -98 

Boiling Point °C 64.7 

Flash Point °C 11  

DHf  constant  

 

A = -188.188 

B = -4.9823e-02 

C= 2.0791e-05  

Gf  at 298 K (kJ/mole)  

 

-162.51  

 

              Table 33: Physical and Chemical properties of methanol [24], [25] 
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c) Ethanol 
 

Appearance Clear Colorless liquid 

Molecular Formula C2H5OH 

Molecular weight 46.0414 

Density g/cm3 0.7900  

Melting Point °C -114.1 

Boiling Point °C 78  

DHf  constant  

 

A = -216.961 

B = -6.9572E-02 

C= 3.1744E-05  

Gf  at 298 K (kJ/mole)  -168.28  

Table 34: Physical and chemical properties of ethanol [26], [25] 
 

d) Methyl Oleate 
 

Appearance Clear liquid 

Molecular Formula C19H36O2 

Molecular weight 296.48 

Density g/cm3 0.8700  

Melting Point °C -19.9 

Boiling Point °C 217 

Solubility Insoluble 

DHf  constant  

 

A = -531.982 

B = -3.7562E-01 

C= 1.9684E-04 

D=2.6007E-08 

E=-2.7203E-11 

Gf  at 298 K (kJ/mole)  -117.00 

Table 35: Physical and chemical properties of methyl oleate [27],[25] 
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e) Glycerol 
 

Appearance Clear liquid 

Molecular Formula C3H8O 

Molecular weight 92.09 

Density g/cm3 1.2600 

Melting Point °C 18 

Boiling Point °C 290 

Flash point °C 190 

DHf  constant  

 

A = -559.438 

B = -9.2185 E-02 

C= 4.5003E-05 

Gf  at 298 K (kJ/mole)  -448.89  

Solubility Miscible in water 

Table 36: Physical and chemical properties of glycerol [28],[25] 
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