Consequence Study on Toxicity of Engineered Nanomaterial

by

Yanisa Klinsamorn 12937

Dissertation submitted in partial fulfilment of the requirements for the Bachelor of Engineering (Hons) (Chemical Engineering)

JANUARY 2014

Universiti Teknologi PETRONAS Bandar Seri Iskandar 31750 Tronoh Perak Darul Ridzuan

CERTIFICATION OF APPROVAL

Consequence Study on Toxicity of Engineered Nanomaterial

by Yanisa Klinsamorn

A project dissertation submitted to the Chemical Engineering Programme Universiti Teknologi PETRONAS In partial fulfilment of the requirement for the BACHELOR OF ENGINEERING (Hons) (CHEMICAL ENGINEERING)

Approved by,

(Dr. Risza Bt Rusli)

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

January 2014

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the original work is my own except as specified in the references and acknowledgements, and that the original work contain here in have not been undertaken or done by unspecified sources or persons.

(YANISA KLINSAMORN)

ABSTRACT

The introduction, literature review and the methodology are covered in this Final Year project under the title "Consequence study on toxicity of engineered nanomaterial". The production and the use of Engineered Nanomaterials have begun to increase in large volume, in which this material may cause new or increased risks to the worker in the ENMs industry as they need to expose themselves to ENMs every day. The main aim for this research is to develop the existing risk assessment tool for ENMs. Occupational exposure limit for nanomaterial has been added to the calculation of the tool. Microsoft Excel and Microsoft Visual Basic is used to develop the risk assessment tool for ENMs industry. However, the develop tool still need further validation by compute the result from the tool in the real ENM industry under the recommendation of Industrial Hygiene. The modification of the points and parameters can be adjust accordingly when more research is available.

ACKNOWLEDGEMENTS

I would never have been able to finish my dissertation without the guidance of my supervisor, help from friends, and support from my family.

I would like to express my deepest gratitude to my supervisor, Dr. Risza Bt Rusli, for her excellent guidance, caring, patience, and providing me with an excellent environment for doing research.

I would like to thank Vanessa Eija Anak Enjob, who as a good friend, was always willing to help and give her best suggestion.

I would like to thank my parents for their supporting and encouragement to me toward this research.

TABLE OF CONTENT

CERTIFICAT	ION OF APROVALII
CERTIFICAT	ION OF ORGINALITYIII
ABSTRACT	IV
ACKNOWLEI	OGEMENTV
LIST OF FIGU	URESVIII
LIST OF TAB	LEIX
Chapter 1	INTRODUCTION1
	1.1 Background Study1
	1.2 Problem statement
	1.3 Objective
	1.4 Scope of study4
Chapter 2	LITERATURE REVIEW5
	2.1 Nanotoxicology5
	2.2 Human exposure routes to nanoparticle
	2.2.1 Workplace exposure
	2.3 Health effects induced by engineered nanomaterial8
	2.3.1 Pulmonary inflammation
	2.3.2 Genotoxicity of engineered nanomaterial
	2.3.3 Effect of engineered nanomaterials on circulation9
	2.4 Existing risk assessment tool for ENM9
	2.4.1 Control Banding Tool9
Chapter 3	METHODOLOGY18

REFERENCES		35
Chapter 5	CONCLUSION AND RECOMMENDATION	33
	4.4 Case studies from journal	30
	4.3 Developed tool	26
	4.2 Developed tool activity diagram	25
	4.1 Modification of Weighting in severity factors in NM part	22
Chapter 4	RESULT AND DISCUSSION	22
	3.5 Gantt chart	21
	3.4 Tools	20
	3.3 Key Milestone	19
	3.2 Project Activities	19
	3.1 Research methodology	18

LIST OF FIGURES

Figure 1:	Classification of nanostructured materials	2
Figure 2 :	Schematic of exposure route	6
Figure 3 :	Entry sheet in CB nanotool	10
Figure 4 :	Calculation sheet in CB nanotool	11
Figure 5:	Research methodology	18
Figure 6:	Develop Nanotool activity diagram	25
Figure 7:	Existing NanoTool Data Entry page	26
Figure 8:	Developed Nanotool Data Entry page	26
Figure 9:	Activity information form	27
Figure 10:	Parent material form	28
Figure 11:	Nanomaterial form	28
Figure 12:	Exposure form	29
Figure 13:	The result from developed tool	30
Figure 14:	The result from develop tool	32

LIST OF TABLES

Table 1:	Potential Source of Occupational Exposure	7
Table 2:	Surface activity and severity points	12
Table 3:	Particle diameter of NM and severity points	13
Table 4:	Particle shape of NM and severity points	13
Table 5:	Solubility of NM and severity points	13
Table 6:	Carcinogenicity and severity points	14
Table 7:	Reproductive toxicity and severity points	14
Table 8:	Mutagenicity and severity points	14
Table 9:	Dermal toxicity and severity points	14
Table 10:	Toxicity of PM and severity points	15
Table 11:	Carcinogenicity of PM and severity point	15
Table 12:	Reproductive toxicity of PM and severity points	15
Table 13:	Mutagenicity of PM and severity points	15
Table 14:	Dermal hazard potential of PM and severity points	16
Table 15:	Probability factor and severity points	17
Table 16:	Project activities	19
Table 17:	Final Year Project 1 Key milestone	19
Table 18:	Final Year Project 2 Key milestone	20
Table 19:	Gantt Chart	21
Table 20:	Risk level matrix	22
Table 21:	Severity factor point distribution	23
Table 22:	Probability factor point distribution	23

Table 23:	Severity factor point modification	24
Table 24:	Carbon nanotube case studies parent material detail	29
Table 25:	Carbon nanotube case studies nanomaterial detail	30
Table 26:	Carbon nanotube case studies exposure detail	30
Table 27:	Ceramic nanoparticle case study parent material detail	31
Table 28:	Ceramic nanoparticle case study nanomaterial detail	31
Table 29:	Ceramic nanoparticle case study exposure detail	31