INFLUENCE OF HEAT TREATMENT TEMPERATURE ON MECHANICAL PROPERTIES OF HEAT AFFECTED ZONE (HAZ)

By

NUR FAUZIANIE BINTI ROSLAN

Dissertation reporting submitted in partial fulfillment of the requirements for the Bachelor of Engineering (Hons) Mechanical Engineering

JULY 2010

Universiti Teknologi PETRONAS Bandar Sri Iskandar 31750 Tronoh

Perak Darul Ridzuan

CERTIFICATION OF APPROVAL

INFLUENCE OF HEAT TREATMENT TEMPERATURE ON MECHANICAL PROPERTIES OF HEAT AFFECTED ZONE (HAZ)

by

Nur Fauzianie Roslan

A project dissertation submitted to the Mechanical Engineering Programme Universiti Teknologi PETRONAS in partial fulfilment of the requirement for the Bachelor of Engineering (Hons) (Mechanical Engineering)

Approved:

.....

Assoc. Prof. Dr. Othman Mamat Project Supervisor

UNIVERSITI TEKNOLOGI PETRONAS TRONOH, PERAK

July 2010

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the original work is my own except as specified in the references and acknowledgements, and that the original work contained herein have not been undertaken or done by unspecified sources or persons

NUR FAUZIANIE ROSLAN 11045 MECHANICAL ENGINEERING

ABSTRACT

Welding is used in ships, bridges, pressure vessels, industrial machinery, automobile, rolling stock and many other fields. The weldability of a metal is usually defined as its capacity to be welded into a specific structure that has certain properties and characteristics. The most common properties considered are hardness and ductility of the materials itself. The main objectives of this project are to know the effect of different temperature applied on the welded joint properties itself. Samples were thermally undergoing different heat treatment temperature ranging from 300°C, 400°C, 500°C, 600°C, 700°C and 800°C and the hardness profile was drawn through the BM, HAZ and FZ. The characteristic of the mechanical properties of the HAZ in welded joint using SMAW method. The hardness values and toughness of the welds were were performed at room temperature via Vickers hardness test and Charpy V impact test. The result shows that hardness in HAZ area were decreases from 218HV to 195HV with increasing in temperature, while for toughness, the value were increase from 6.24J to 13.99J proportional to temperature.

ACKNOWLEDGEMENTS

The author wishes to take the opportunity to express her utmost gratitude to the individual that have taken the time and effort to assist the author in completing the project. Without the cooperation of these individuals, no doubt the author would have faced some minor complications through out the course.

First and foremost the author's deem it as a proud privilege to express her sincere regard and gratitude to Assoc. Prof. Dr. Othman Mamat, who act as a supervisor, whom guide and provide the author this valuable opportunity to pursue this study with him. His sincere support and continuous guidance helped the author in overcoming all the hurdles that came during the progress of this project.

To the Final Year Project Coordinator, Dr. Saravanan Karuppanan for provide the author with all the initial information required to begin the project.

To all technicians in Mechanical Engineering Department, thank you for assisting the author in completing her project.

Last but not least, to all individuals that has helped the author in any way, but whose name is not mentioned here, the author thank you all.

TABLE OF CONTENT

CERTIFICATION	OF API	PROVA	AL	•				ii
CERTIFICATION	OF OR	IGINA	LITY					iii
ABSTRACT .								iv
ACKNOWLEDGE	MENT						•	v
LIST OF FIGURE			•		•			viii
LIST OF TABLE			•		•			x
LIST OF ABBREV	IATION	Ň	•	•	•			xi
CHAPTER 1	INTR	ODUC	TION					1
	1.1	Backg	round	•	•		•	1
	1.2	Proble	em State	ement		•		2
	1.3	Object	tives					2
	1.4	Scope	of Stuc	ły	•		•	2
CHAPTER 2	LITEI	RATUI	RE RE	VIEW				3
	2.1	Metall	lurgy of	Weld	Metal			4
		2.1.1	Weld	Metal Z	Zone			4
		2.1.2	Heat A	Affecte	d Zone			4
	2.2	Weldi	ng				•	6
		2.2.1	Shield	led Met	tal Arc V	Welding	•	7
	2.3	Proper	rties and	d Testir	ng Meth	od	•	10
		2.3.1	Mech	anical T	ſest			11
		2.3.2.1	l Hardn	less Tes	st.			11
		2.3.2.2	2 Impac	t Test				15

CHAPTER 3	MET	THODOLOGY	17
	3.1	Specific Project Activities	17
	3.2	Milestones	18
	3.3	Sample Preparations	19
		3.3.1 Welding Process	20
		3.3.2 Cutting Process	22
		3.3.3 Heat Treatment Process .	24
		3.3.4 Grinding and Polishing	
		Process	25
		3.3.5 Hardness Measurement .	27
		3.3.7 Impact Testing	28
CHAPTER 4	RES	SULTS AND DISCUSSION	29
	4.1	Hardness Test .	29
	4.3	Impact Test	35
CHAPTER 5	CON	NCLUSION AND RECOMMENDATION	38
	5.1	Conclusion	38
	5.2	Recommendation	38
REFERENCES			39

LIST OF FIGURE

Figure 1.1	HAZ regions in welded joint	proces	SS.	•	•	1
Figure 2.1	SMAW process .					8
Figure 2.2	Schematic diagram of hardnes	ss trave	erses of	welds		
	in each area					12
Figure 2.3	Vickers indentations .					14
Figure 2.4	Charpy test					16
Figure 3.1	Project process flow .					17
Figure 3.2	Test equipment used in this st	udy	•			19
Figure 3.3	KOBELCO welding electrode	es AWS	S E 601	3		
	(RB 26)					20
Figure 3.4	Raw mild steel.					21
Figure 3.5	Single V butt joint weld					21
Figure 3.6	Nichia arc welding machine,	ND – 3	00			22
Figure 3.7	Linear hacksaw machine					22
Figure 3.8	Material sectioning process					23
Figure 3.9	Actual specimen 15 mm \pm 5 m	nm				23
Figure 3.10	Carbolite RHF 1400 used for					
	heat treatment process					24
Figure 3.11	Buehler Metaserv 2000 dual p	oolishei	r grinde	r	•	25
Figure 3.12	Smooth and mirror surface fir	nish of	samples	8		26
Figure 3.13	Vickers hardness test equipme	ent	•			27
Figure 3.14	Amsler RKP 450 impact testi	ng mac	hine	•		28

Figure 4.1	Microhardness profile of the weld joints		
	at the position of A-a area .		32
Figure 4.2	Microhardness profile of the weld joints		
	at the position of a-b area .		32
Figure 4.3	Microhardness profile of the weld joints		
	at the position of b-c area .		33
Figure 4.4	Microhardness profile of the weld joints		
	at the position of c-d area .		33
Figure 4.5	Microhardness profile of the weld joints		
	at the position of d-A area .		34
Figure 4.6	Microhardness profile of the weld joints		
	for entire area		35
Figure 4.7	Impact energy of HAZ region in various		
	heat temperatures		36
Figure 4.8	Samples structure after impact test .		37

LIST OF TABLE

Table 3.1	FYP I and FYP II milestones .	•	•	18
Table 3.2	Heat treatment parameter	•	•	24
Table 4.1	Microhardness values for A-a area	•	•	29
Table 4.2	Microhardness values for a-b area	•	•	30
Table 4.3	Microhardness values for b-c area	•	•	30
Table 4.4	Microhardness values for c-d area	•	•	31
Table 4.5	Microhardness values for d-A area	•	•	31
Table 4.6	Charpy V impact test results at HAZ area	•		36

LIST OF ABBREVIATION

AWS	American Welding Society
AC	Alternating Current
ASTM	American Standard for Testing Material
BM	The Unaffected Base Metal
DC	Direct Current
FZ	The Fusion Zone
HAZ	Heat Affected Zone
HV	Hardness Vickers
ОМ	Optical Microscopic
PPE	Personal Protective Equipment
SMAW	Shield Metal Arc Welding
SEM	Scan Electrical Microscopic
WM	Weld Metal
WPS	Welding Procedure Specification