
FYP II: FINAL REPORT

Implementation and Evaluation of a Thermal-Aware Campus Grid

by

Guilherme Dinis Chaliane Junior

14163

Bachelor of Technology (Hons)

(Information Communication Technology)

January 2014

Universiti Teknologi PETRONAS

Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

2

CERTIFICATION OF APPROVAL

Implementation and Evaluation of a Thermal-Aware Campus Grid

by

Guilherme Dinis Chaliane Junior

14163

A project dissertation submitted to the

Information Technology Programme

Universiti Teknologi PETRONAS

in partial fulfillment of the requirement for the

Bachelor of Technology (Hons)

(Information and Communication Technology)

Approved by,

(Dr. M Nordin Zakaria)

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

January 2014

3

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and acknowledgements,

and that the original work contained herein has not been undertaken or done by

unspecified sources or persons.

Guilherme Dinis Chaliane Junior

4

ACKNOWLEDGMENT

First and foremost, I am thankful to the creator, for blessing me with life. I am

eternally grateful to my mother, Olinda da Luz, for the years of guidance, care and

friendship. Your life and wisdom have always been an inspiration for me to pursue

my dreams, and become the best person I can be. To my sisters, Clavia, Telma and

Nicole, thank you for your loving support over the years.

I would also like to express my gratitude to everyone who was involved in this

project, starting with my supervisor, Dr. M Nordin Zakaria, whose mentorship has

always steered me in the right direction, and made me strive for excellence. To the

people at the laboratory, I give my deepest gratitude for their aid, and shared

knowledge.

Last, but not least, I would like to thank my sponsor, PETRONAS, for funding my

studies over the past 4 years. It has been a once in a lifetime experience.

5

TABLE OF CONTENTS

Acknowledgment ... 4

List of Figures .. 7

List of Tables ... 8

CHAPTER 1 INTRODUCTION .. 9

1 Abstract ... 9

2 Background ... 10

3 Problem statement ... 12

4 Objectives ... 13

CHAPTER 2 LITERATURE REVIEW ... 14

5 Literature Review.. 14

CHAPTER 3 METHODOLOGY & PROJECT WORK .. 18

6 Methodology ... 18

7 Project Work ... 20

7.1 The Architecture .. 20

7.2 Test Deployment.. 22

7.3 Thermal Server .. 22

7.4 Client ... 23

7.5 Dynamic Scheduling Framework .. 24

CHAPTER 4 RESULTS AND DISCUSSION ... 28

8 Results and Discussion ... 28

8.1 Thermal Server .. 28

8.2 Client for Windows ... 30

8.3 Sample Application & Work Generation .. 31

8.4 Server System .. 31

8.5 External Scheduler ... 32

8.6 Dashboard .. 35

6

8.7 Thermal Scheduling: Observations ... 38

8.8 Mass Deployment .. 40

CHAPTER 5 CONCLUSION AND RECOMMENDATAIONS 44

References .. 46

Appendices ... 49

Appendix 1 - Work Breakdown Structure ... 49

Appendix 2 – Template XML Files ... 51

External Scheduler (XS) Output .. 51

Appendix 3 – Thermal Aware Grid System Deployment Diagram 52

Appendix 4 – Sample Logs .. 53

Temperature Log .. 53

Availability Log ... 53

Assignments Log ... 54

Appendix 5 – System Testing: Test Cases ... 55

7

LIST OF FIGURES

Figure 1 One day transition of temperature and dew point in Ipoh, Malaysia (adapted

from [8])... 16

Figure 2 Throw-away prototyping ... 19

Figure 3 Proposed network deployment architecture .. 19

Figure 4 BOINC architecture ... 20

Figure 5 Thermal-aware BOINC architecture ... 22

Figure 6 Thermal server configuration .. 23

Figure 7 Boinc's scheduler program algorithm .. 25

Figure 8 Dynamic BOINC's scheduler algorithm .. 25

Figure 9 BOINC XSI ... 27

Figure 10 Round Robin Scheduling Pseudo Code ... 34

Figure 11 TAG Dashboard for HPC lab 2 (snapshot).. 35

Figure 12 Dashboard stats display ... 36

Figure 13 Dashboard temperature chart display: daily minimum and maximum 36

Figure 14 Dashboard workunits dispatched: total units dispatched per hour on

different days ... 37

Figure 15 Dashboard workunits assignment log .. 37

Figure 16 Workunits Dispatched, March 1 - March 15 ... 38

Figure 17 Daily Temperature, March 1 - March 15... 38

Figure 18 Reliability vs Workunit dispatchment, March 12 - March 18 39

Figure 19 Hourly temperature, March 12 - March 18 ... 39

file:///C:/Users/Frost/Dropbox/Super%208/FYP/Reports/FYPII%20Final%20Report%20-%2014163.docx%23_Toc384959730
file:///C:/Users/Frost/Dropbox/Super%208/FYP/Reports/FYPII%20Final%20Report%20-%2014163.docx%23_Toc384959731
file:///C:/Users/Frost/Dropbox/Super%208/FYP/Reports/FYPII%20Final%20Report%20-%2014163.docx%23_Toc384959733
file:///C:/Users/Frost/Dropbox/Super%208/FYP/Reports/FYPII%20Final%20Report%20-%2014163.docx%23_Toc384959734
file:///C:/Users/Frost/Dropbox/Super%208/FYP/Reports/FYPII%20Final%20Report%20-%2014163.docx%23_Toc384959735
file:///C:/Users/Frost/Dropbox/Super%208/FYP/Reports/FYPII%20Final%20Report%20-%2014163.docx%23_Toc384959736
file:///C:/Users/Frost/Dropbox/Super%208/FYP/Reports/FYPII%20Final%20Report%20-%2014163.docx%23_Toc384959738

8

LIST OF TABLES

Table 1 – System Test Case 1 .. 55

Table 2 – System Test Case 2 .. 55

Table 3 – System Test Case 3 .. 55

Table 4 – System Test Case 4 .. 56

Table 5 – System Test Case 5 .. 56

Table 6 – System Test Case 6 .. 56

Table 7 – System Test Case 7 .. 57

Table 8 – System Test Case 8 .. 57

Table 9 – System Test Case 9 .. 57

Table 10 – System Test Case 10 .. 58

Table 11 – System Test Case 11 .. 58

Table 12 – System Testing Results .. 58

9

CHAPTER 1

INTRODUCTION

1 ABSTRACT

Volunteer and grid computing framework systems have helped create several of

today’s largest resource pools for scientific and engineering computing. At the same

time, as computers evolve, there is a greater demand for more environmental-aware

scheduling systems to be deployed with these frameworks in order to address existing

concerns of the preservation of resources like energy, and computers themselves. In

response to this concern, the High Performance Computing Services Center of

Universiti Teknologi PETRONAS (HPC-UTP) sought to incorporate thermal-aware

scheduling into its campus grid. To achieve this, the center decided to modify an

existing Volunteer Computing (VC) framework to make use of different schedulers at

run time, without the need to recompile the server. This thermal-aware, dynamic-

scheduling capable framework will be deployed on a test environment, to assess its

viability for the university’s campus grid.

10

2 BACKGROUND

Grid computing can be loosely defined as the computation done by a group of

interconnected computing devices, generally computers, trying to achieve a common

objective. In and by themselves, grids are just networked computers. However, when

seen as whole, they provide large scales of computational and data storage capacity to

solve complex problems. Grids are one of the basic forms of distributed computing

taxonomies, along with clouds. In modern society, cloud computing systems have

been gaining wide attention from both IT service providers and users; though when

seen from an infrastructure point of view, clouds can be thought of as a set of

interconnected grids and other devices with levels of abstractions in their

communication and coordination.

To deploy a grid computing infrastructure, one needs to make use of software systems

that can establish the connection between devices, for the purpose of enabling process

coordination and data exchange. Such systems can be thought of as middleware,

because they often create a level of abstraction between what can be homogenous or

heterogeneous devices.

Grids are not always formed by pools of dedicated computing resources. In fact, since

the early 1990s, the largest grid deployments worldwide have been built on resources

donated by the public, in the form of spare computational resources shared during

computer idle periods. Projects like SETI@Home, which searchers for extraterrestrial

life, were among the first grid projects ever created that worked with this paradigm,

which later became known as Volunteer Computing. Other projects that came

afterwards, followed a similar paradigm, and went on to create some of the world’s

largest open computing systems. With the evolution of these systems some

institutions, like the Berkely Open Space Laboratory, began creating grid frameworks

to cater to the VC paradigm.

Today, there are several VC computing frameworks in existence. Currently, the

Berkeley Open Infrastructure for Networking and Computing (BOINC) can be easily

considered the most widely used VC framework in academia. BOINC is also applied

in several other grid environments, where resources are either fully or semi-dedicated.

11

BOINC, just as most of the other existing grid computing frameworks has its own

scheduling policies embedded into it. This system is responsible for the distribution of

jobs to all the connected devices, from a central server. Consequently the integration

of a different scheduling policy into any such system requires substantial rework of

the application’s code to adjust its working structure to the user’s intended needs. As

several data and computing centers today try to address the energy crisis of the

century, by incorporating smarter algorithms to manage their

simulation/computational jobs, the demand for systems that are capable of

accommodating different scheduling policies at different times is forthcoming.

The need to incorporate different environment-aware scheduling systems at run-time

within an existing VC system that has its own scheduling algorithm, without altering

its working framework was the key driver to this project.

12

3 PROBLEM STATEMENT

Environment-aware scheduling policies are policies that evaluate non-system related

aspects of the environment under which machines operate to decide on the best task or

data assignment scheme. For example, a heat-aware or thermal-aware system would

consider the temperature of a device in scheduling task processing for it.

If one were to integrate a thermal-aware policy into a system such as BOINC, one

would surely have to alter the inner structure of the application to accommodate a

different scheduling policy. However, at present, there are several thermal-aware

scheduling algorithms in existence, and further being researched at HPC-UTP.

Since the usage of any environment-aware scheduling policy generally requires the

introduction of sensor-based information into the scheduling policies, the first

challenge lies in designing a system that is capable of receiving and processing

information from sensor systems. The second challenge lies in providing this

information, along with job information as well as any other information concerning

the resources of each computer system involved in the grid to the possibly different

scheduling systems, for them to carry out scheduling without disrupting BOINC’s

remaining inner framework.

In summary, the main challenges of the project were to extend BOINC to work with

thermal sensor systems, as well as to provide researchers with a simplified and

intuitive mechanism to manage different scheduling applications.

13

4 OBJECTIVES

This project aimed at achieving two objectives:

1. To extend BOINC to work with thermal sensor systems;

2. To deploy a pilot thermal-aware BOINC system on the university’s campus

Despite the focus given to thermal-scheduling, this project’s scope does not involve

the development or implementation of any rigorous thermal algorithms. The main

emphasis is on the infrastructure side of the equation, i.e. the modification of an

existing framework, i.e. BOINC, and its implementation on pilot project to support

thermal-scheduling.

14

CHAPTER 2

LITERATURE REVIEW

5 LITERATURE REVIEW

Despite the advent of Cloud computing, Grid computing still remains one of the

leading forms of managing large scale scientific or engineering simulations and

computing projects. Major university and corporate computing projects still rely on

the several grid computing frameworks that are available, to harvest the

computational power they need. Examples of these include SETI@Home, which is

currently the largest distributed computing effort and seeks to find extraterrestrial life

[1]; Folding@Home, which seeks to cure diseases like Cancer, and Parkinson’s

disease by running protein folding simulations [2]; and LHC@Home which runs high-

energy particle collisions simulations for the Large Hadron Collider (LHC) at the

European Organization for Nuclear Research (CERN), the world’s largest particle

physics laboratory [3].

The fast growing capabilities of today’s computer systems require substantial efforts

of sustainable management of their resources in order to respond to society’s needs of

tomorrow. This management seeks not only to expedite data processing, but to do so

without the incursion of extra costs to society in the form of greater energy

consumption, or that of any other resource for that matter. To respond to this need, the

concept of green scheduling has thus emerged in the realm of computing. IT systems

have always placed great emphasis on efficiency: doing more within a shorter period

of time; however, the objective had always generally been to relief resources so that

other computing could take place. Green scheduling, as defined in [4] and [5], aims at

reducing energy consumption, especially in cloud services, grid or data centers. Most

of the algorithms in it work with sensor technology to monitor energy consumption

and adjust work distribution accordingly, thus reducing the consumption of

unnecessary resources.

15

BOINC is one of the leading frameworks used in VC projects, where the nature of the

eco-system is one where users freely donate the idle time of their devices (e.g. PCs,

laptops, mobile devices, and entertainment consoles) to help solve large scale

scientific problems such finding a cure for diseases like Alzheimer’s [6].

As presented in [7], BOINC encompasses several key design concepts that make the

gathering and retention of millions of personal computer resources donated by the

general public on a daily basis not only possible, but feasible and to some extent

effortless for users. These include management of trust between scientists and

volunteers, the rewarding of users for the CPU cycles donated, the scaling of a

project’s deployment, and others.

Now, despite having been originally designed to be a VC system, BOINC can actually

work as an alternative to a grid middleware system in an environment where a strict

grid-oriented system would not be suitable. An example of such an environment is a

university campus grid that is based on computers located in academic laboratories,

making use of their idle periods to perform computations. The Universiti Teknologi

PETRONAS (UTP) has an environment alike.

With over 800 machines distributed in more than 30 labs, UTP’s campus grid has the

potential to deliver Teraflops of computational power. In order to harvest that

potential, HPC-UTP makes use of BOINC. The robustness of the framework, coupled

with its open-source nature gives the center the ability to leverage the computers in

the university’s laboratories at a low cost. In spite of this, there is one issue that

concerns environmental preservation of hardware, and that is the constant availability

of dedicated machine cooling across all labs. Since air conditioning is only made

available during regular office hours, generally between 7am-7pm on weekdays, the

machines become dependent on the environment’s temperature to establish their own

during non-office periods [8]. This can expose the machines to a high risk of damage,

if they perform heavy computations during such periods as the indoor temperature can

rise above 28°C, as shown in Figure 1.

16

Figure 1 One day transition of temperature and dew point in Ipoh, Malaysia (adapted from [8])

BOINC’s resource matching based scheduling policies are capable of achieving high

project throughput. By assigning jobs to the first available candidates that can fulfill

their requirements, BOINC ensures projects’ overall progression, as described in [9].

Nonetheless, there are several different aspects of distributed computing that require

different approaches to resource scheduling that the traditional CPU centric batch

schedulers do not account for.

In [10], the authors point out that one of the overheads of distributed systems is data

transfer. In their work, they presented a data-aware scheduling algorithm for

computing grids. Their system managed to reduce data transfer requirements between

systems, lowering bandwidth usage and overall jobs runtimes, by assignment tasks

based on hosts’ proximity to the data source of the files needed by the task. The

authors in [11] developed an energy aware scheduling system for data centers that

maximized solar energy consumption up to 117%, by scheduling jobs based on

predicted availability in the near future and made use of grid energy to avoid

deadlines at the times when it would be cheapest, effectively reducing grid energy

consumption by up to 39%. In [4], the authors presented a similar green scheduling

concept; however, their solution reduced power consumption by overlapping

complementary jobs, i.e. CPU oriented with I/O oriented jobs, with a slightly higher

level of relaxation compared to an existing Fair Scheduler. Their green scheduler

showed 7-9% better energy efficiency. In the center’s ongoing work with thermal

based scheduling, several algorithms that can schedule jobs according to predicted

thermal availability of host machines in a non-dedicated environment, based on sensor

data, have been proposed.

17

Thermal scheduling allows the grid system to allocate work to machines which are

deemed thermally viable only; i.e. machines that are expected to be under an

acceptable temperature range during the computation, thus reducing the risk of any

damage caused by overheat [12][13][14]. The goal of thermal scheduling, as

explained by [15] and [16] is to either maximize the workload a machine can have

while under an acceptable temperature, or minimize the maximum temperature a

machine reaches while executing the maximum number of jobs it can.

The policy used in [11] required sensor based technology to feed the scheduler

relevant energy consumption information from host machines, just as the thermal

algorithms being research do. This might not be easy to directly apply in a standard

VC environment. Nonetheless, if battery performance of portable devices were to be

considered, instead of solar power or thermal availability, the concept could be easily

mapped. [10] and [17]’s solutions, on the other hand, were based on task data usage

prediction and machine’s proximity to data hosts as well as bandwidth availability,

respectively. Both could be applied in existing BOINC VC projects such as

SETI@home or Einstein@home. What these policies show is that, both in dedicated

and non-dedicated environments, distributed computing middleware systems should

be prepared to address different scheduling schemes. It is the center’s belief that the

capacity for a middleware system to support these different schemes should be as

dynamic as possible so that a single middleware system could be fit for different

environments, requiring only an additional or external scheduling application to be

attached to it at run time.

To integrate these algorithms on a campus grid, the middleware application in use,

BOINC, has to be modified to dynamically make use of different scheduling

programs. The goal is to deliver a scheduler-independent, thermal-aware BOINC

system, and to implement it in a pilot test environment.

18

CHAPTER 3

METHODOLOGY & PROJECT WORK

6 METHODOLOGY

To deliver the next stage of the all-encompassing goal of creating and fully dynamic

VC and grid computing framework that supports sensor-based environment-aware

scheduling algorithms, the author took a tiered-approached to the problem. There

were 2 distinct tiers in consideration: system back-end, and the client application.

The first tier, system back-end, concerns the modification of the BOINC server

system components responsible managing hosts/client’s data, and scheduling

available jobs. This portion of the system was modified to accept thermal data from

clients, and to assign job scheduling responsibilities to third-party/external (XS)

applications, as specified by system administrators and/or researchers.

The second tier comprises of the client application. Most modification efforts here

covered the alteration of the client to integrate itself with a thermal sensor system, and

to send thermal information to the BOINC server for it to carry out thermal-aware

scheduling when applicable.

The strategy used to complete this task was to take a disciplined approach to system

development, applying formal project management strategies where they fitted. The

project’s work breakdown structure (WBS) on Appendix 1 outlines the project

timeline, milestones, as well as tasks executed throughout the project’s life cycle,

from conceptualization to deployment and evaluation.

To provide a working solution within the given time frame for the project’s

completion, while maintaining a highly flexible work dynamic that supports rapid

adjustments, the project followed a throw-away prototyping development approach,

shown in Figure 2.

19

Planning

Analysis

Analysis

Design

Implementation

Design

Implementation

System

Design Prototype

Throw-away prototyping

Figure 2 Throw-away prototyping

The system’s proposed network deployment architecture is shown in Figure 3.

LAN/Internet

BOINC Server

Host 01

Host 02

Host 03

Temperature Contoller

RPC/HTTP

RPC/HTTP

RPC/HTTP

HTTP

Figure 3 Proposed network deployment architecture

A temperature controller system was setup in the test environment laboratory to

regularly monitor room temperature. The hosts in each lab collected the

environment’s temperature information from this system, and used it while

communication with the BOINC server when they made work requests.

20

7 PROJECT WORK

7.1 The Architecture

BOINC’s system uses a client server architectural style. Servers host applications and

work-units, and wait for clients to request work from them. The clients are the ones

who initiate communication with the server to either report work in progress, or

request for new work. BOINC’s general component architecture is depicted in Figure

4.

BOINC Architecture

Feeder

Scheduler

Shared

memory

Transitioner

DB Purger

Validator

Assimilator

File

Deleter

Work

Generator

MySQL

Database

Server

Client

Server Side

Client Side

RPC/HTTTP RPC/HTTP

Figure 4 BOINC architecture

All communication between client and server is done via RPC/HTTP requests. When

a server receives a request from a client, its scheduler module is the only component

that interacts with that request. Meanwhile, the other server components perform tasks

to keep the project running in the background. The transitioner manages the work

unit/results that reside in the database according to their state. The validator and

assimilator daemons are application specific; one verifies results while the other

processes the canonical result, handling the output as specified, respectively. The file

deleter removes upload and download files that are no longer required by workunits

21

and results, and the DB purger removes unnecessary database records. The work

generator is used to create work units, and finally the feeder and scheduler are

responsible for work distribution and result processing. These last two components

were the most relevant to this project.

The feeder and scheduler communicate via a shared memory scheme that keeps jobs

taken from the database, waiting to be sent out to hosts. When a host sends a request,

in the form of an XML file, the scheduler processes it by performing non-trivial user

and host validation, and then checking if there are any jobs available, first on the

shared memory and, if necessary, on the database, provided that the host has

requested work. If the host is simply reporting work in progress, the scheduler

responds by notifying the host of whether it should continue running the tasks it has

or abort them immediately for a given reason. The reply is sent out as an XML file as

well. Once a request is processed, the scheduler updates the database records of the

host and the tasks that it’s currently running so that the other daemons can process

credit attribution and update overall project status

Bearing this working framework in mind, the objective of extending the BOINC

system to integrate dynamic thermal scheduling should not interfere with the tasks of

the other also important components of the system.

To achieve this, the efforts of the project concentrated on modifying the existing

scheduler component to build into it a module that handles third party/external

schedulers, i.e. an external scheduler manager (XSM). To schedule job assignment to

clients, the external scheduling application has to have both client information, and

information about all existing workunits on the server. Consequently, a standardized

communication method between the XS and the XSM had to be devised. The chosen

approach was to use a standardized XML representation for both information sent

from the XSM to the scheduler, and the assignments made by the XS to the server

(Appendix 2). This standardized communication format is similar to that used by

client-server communication in BOINC. The architecture of the modified system is

depicted in Figure 5, and the corresponding deployment diagram in Appendix 3.

22

Thermal BOINC Architecture

Feeder

Scheduler

Shared

memory

Transitioner

DB Purger

Validator

Assimilator

File

Deleter

Work

Generator

MySQL

Database

Server

Client

Server Side

Client Side

RPC/HTTTP (3) RPC/HTTP(5)

Thermal

Server

Temp. Records Request (1)

Temp Records (2)

X
S

MThermal

Scheduler
(4)

Figure 5 Thermal-aware BOINC architecture

7.2 Test Deployment

Before deploying the system on campus, a proof of concept test environment was be

used to run a small deployment of the entire framework. On this deployment, all of

the impending components of the to-be system were tested: the thermal server, the

thermal-aware client, and the thermal-aware scheduling application.

The environment was being setup in a lab, using commodity desktop computers,

similar to the ones used in the university’s laboratories, in a closed circuit network.

7.3 Thermal Server

One of the main components of this entire system is the thermal server. The thermal

server monitors room temperature, and provides this information to all hosts that

request it in its environment.

To deploy this server, the author made use of USB sensor device that could be

directly plugged into any computer, and a custom built system to store the sensor’s

23

readings on a public directory which could be accessed via HTTP requests. The

configuration is shown in Figure 6.

Thermal Server

USB sensor device

Hardware Interface
Connector

TempReader
(.py)

Web Directory

Figure 6 Thermal server configuration

7.4 Client

BOINC’s client application was being altered to actively pull thermal data from a

thermal server in its environment, and add this information to its work requests.

Whenever the client sends a request to the server, it sends information about its

hardware specification, software environment and workunits’ status. The new client

needs only to add to this request the thermal information it pulls from its localized

thermal server. Once the server receives this information it provides it to the thermal

aware scheduling application, which decides how to allocate workunits to it.

24

7.5 Dynamic Scheduling Framework

The concept of dynamic scheduling was being developed with the goal of allowing

researchers to actively switch between scheduling applications, be them thermal or

not, at run time, without recompiling the server system. The idea for the

implementation is rather simple: the decision of which scheduling application to use

should be configurable by users, and checked by the BOINC scheduler/XSM at each

BOINC server startup (or restart).

After reverse engineering BOINC’s scheduler system, the author could identify an

approach to making modifications that would accommodate the new scheduling

paradigm. First though, there were key issues to be taken into consideration:

 Deadlock: the implementation had to avoid deadlocks in case of race

conditions. Currently, BOINC’s scheduler is deadlock free, and multiple

scheduling instances can run at the same time for different hosts. If lists were

to be used to queue requests for external scheduling applications, deadlock

would not have been as easy to avoid.

 Functionality: hosts must have their work requests effectively processed. A

host could be delayed endlessly waiting for new work to be assigned by an

external scheduling application or to be notified of the lack of available work-

units.

 Efficiency: Reported work should be acknowledged in a timely manner and

new work assigned in the same fashion.

Atop of these issues, certain constraints were chosen by the author to be observed

while modifying with the system:

 Maximize the usage of existing infrastructure, framework (processes) and

code base

 Minimize the level of changes to the original source code.

25

After a careful, analytical evaluation of the application, the following algorithm was

extracted from the existing scheduling system:

The modified system, which embedded dynamic scheduling into the framework

seamlessly, is given below:

The workflow in Figure 8 provides, in theory, two key advantages. First, by making

the external scheduler integration (XSI) framework connection at the point of new

work distribution only (step 5), the rest of the BOINC system’s framework is left

intact to carry out its other non-trivial operations as intended: verify users, register

new hosts, validate results, etc. Second, by making the call to use the XS optional,

users have the alternative to simply use the BOINC as if it were in its original state,

which might be necessary or even required in certain cases. Both of these aspects

were seen as fundamentally required in maintaining the functionality and efficiency

factors described earlier. Deadlock prevention on the other hand, is an issue to be

mitigated at the implementation level, and the algorithm designed to address it is

show in Figure 9. The algorithm describes how the process flow changes when the

XSM runs, using an XS, and when the native scheduler runs instead. Essentially, only

1. Authenticate users

2. Handle results (work in progress)

3. Resend lost work

4. Abort results

5. Send new work

6. End

Figure 7 Boinc's scheduler program algorithm

1. Authenticate users

2. Handle results (work in progress)

3. Resend lost work

4. Abort results

5. if (configured to use XS scheduler)

run XSM

 else

run native scheduler

6. End

Figure 8 Dynamic BOINC's scheduler algorithm

26

one request can make the scheduler run, either because the run interval or number of

hosts on queue limit has been reached; both parameters are configurable. When the

XSM runs, the waiting queue is locked, preventing any forthcoming requests from

accessing. These requests are given a short back-off period of 10 to 60 seconds to

request for work again. If the XS is called, the ready queue is then locked and updated

by the same request. This 2-phase lock system precludes conflicting access to the

waiting and ready queue, thus effectively preventing deadlock.

27

PROCESS REQUEST (sched/handle_request.cpp)

Start

Authentica
te user

Handle
results

(work in
progress)

Resend lost
work

Abort
results

Send (new)
work

(native)

End

Configured for
XS

FALSE

Start (XS Manager)

TRUE

Host has work on
the ready Q

Send (new)
work

True

Host is on
waiting Q

FALSE

Update
request

TRUE

Add host to
waiting Q

FALSE

XS can run

Run XS

TRUE

Host has
work on

the ready
Q

Send (new)
work

End (XS
Manager)

Update ready
Q

Update
ready Q

and waiting
Q

FALSE

Figure 9 BOINC XSI

28

CHAPTER 4

RESULTS AND DISCUSSION

8 RESULTS AND DISCUSSION

The purpose of this project was to address one the concerns in the deployment of a

computing grid on campus: the environmentally friendly usage of hosts in the grid

during non-viable periods. The development of the project was divided in the

following stages:

1. Thermal Server

2. Client of Windows

3. Sample Application & Work Generation

4. Server System

5. External Scheduler (XS)

6. Dashboard

7. Thermal Scheduling

8. Mass Deployment

These stages affect certain components of the overall system. We now discuss the

process, challenges and current status of each stage.

8.1 Thermal Server

This stage affects the server application that feeds thermal data to hosts in its

environment. In it, the development of 2 applications took place: a hardware interface

that reads room temperature from a sensor, and a “wrapper” application that uses the

first to log temperature and hosts availability to a web directory.

The first application, the sensor reader, was developed using an API provided by the

sensor manufacturer, Temperature Alert (http://www.temperaturealert.com/). The

application reads temperature from a USB sensor attached to the computer where the

program is running. It can provide the readings in either degrees Celsius or

Fahrenheit.

http://www.temperaturealert.com/

29

The second application is the main program researchers will interact with. Its

parameters are configurable, so as to let users tweak its run in a manner that suites

their needs. The following are the parameters users can adjust:

config.json

{

 "readInterval":60,

 "logFile":"tempread.log",

 "availabilityFile":"/var/www/tempread_ws/availability.log",

 "temperatureFile":"/var/www/tempread_ws/temperature.log",

 "tagFile":"/var/www/tempread_ws/tag.log",

 "maxTAGRecords":"30",

 "thresholdTemp":"29"

}

 readInterval: defines the frequency with which the temperature sensor should

be read, and it is defined in seconds. 60 means the sensor is read every minute

(i.e.: at intervals that are 60 seconds apart).

 logFile: defines the logging file for the application, used to log errors

 availabilityFile: destination of host availability measures after each

temperature reading

 temperatureFile: destination of the temperature log read from the sensor

 tagFile: this parameter is specific for the project. It defines the file where the

recent availability of the hosts is stored, to be used by the thermal scheduler,

as opposed to all availability readings.

 maxTAGRecords: defines the number of recent records to be logged in the

tagFile for the thermal aware grid (TAG) project’s thermal scheduler.

 thersholdTemp: specifies the threshold temperature, used to determine hosts’

availability.

Industry guides recommend that server or data room temperature should be set

between 26-30° Celsius [18] [19] [20], with some advising against reaching the 27-

28° Celsius limit [19]. Currently, the threshold temperature has been set to 29°

Celsius because the highest temperature observed in the test environment, functioning

under constant cooling, was of 31.56° C, logged on March 11 at 6.59PM while the

lowest was 25.06° C registered on March 18 at 9.17PM. A temperature reading above

the threshold temperature makes the application set the availability flag in the

30

availability log to false, i.e. the value of zero. Sample log files can be seen on

Appendix 4.

8.2 Client for Windows

The outcome of this stage was to have a compiled client, ready to run on test

machines for simulation purposes. To deploy the test project, TAG, the BOINC client

application had to be capable of pulling thermal records from a thermal server and

appending those records to its XML requests. Since most lab computers run on

Windows operating system, a Windows build of the client was modified and tested.

During this stage, 2 issues were encountered: thermal data readings access, and size.

The first issue, thermal readings access, had to do with the facilities for running

HTTP/GET requests on Windows. BOINC has a set of classes that perform CGI

based requests to servers. However, there was no simple mechanism for making

HTTP /GET requests to retrieve data files. To circumvent this issue, the author made

use of a third party tool called Wget for Windows, a free program that performs

HTTP/GET requests. Currently, the modified BOINC client requires this application

to be installed on the client machine to be able to download thermal records from the

server.

The second issue had to do with the volumes of data the host and server have to

handle when managing thermal information. If a host continuously pulls its entire

historical availability records from the thermal server prior to sending XML requests

to the server, the size of the XML data transferred over the network increases quickly,

depending on the frequency of thermal readings. This may not be a big issue for each

individual host, but it poses a problem for a server handling multiple hosts’ requests

on a waiting queue, and to the network traffic. To counter this issue in this project, the

records retrieved by the hosts were limited to past half hour, i.e. last 30 records with a

read interval of 60 seconds, prior to any request being made. The reasoning for this

decision is given in section 8.5, Thermal Scheduler.

The modified client was tested with a native BOINC server prior to being testing with

a modified server. Test cases and test results can be found in Appendix 5.

31

8.3 Sample Application & Work Generation

BOINC has been used to distribute work units from several scientific fields across the

world, some requiring user intervention while most do not. For the purpose of this

project, the prime directive was to evaluate the system’s extensibility in alternating

between scheduling applications at run time, and supporting sensor based thermal

scheduling frameworks. Thus, the context of the test application was deemed to be

less relevant compared to its required work cycles and time to completion.

The test application used was based on one of the sample applications provided by

BOINC, named uppercase. It simply converts letters of the alphabet from lowercase to

their uppercase counterpart, where applicable. However, a few modifications had to

be made to the original application to extend its runtime on the test machines, and to

make it more CPU intensive. In defining the estimated work cycles (FLOPS) an

application requires, one has to run tests on a machine and derive the value from the

runtime and work cycle (FLOPS) capacity of the test machine. The resulting test

application had runtime of 10 ~ 15 minutes of the test machines.

A work generating engine, UppercaseWG, was devised to create work units and

results (jobs) periodically, with randomly generated input, for the test application.

The engine generated random input data files, and created results to be sent to hosts,

at periods specified by the user. In the testing environment, where 3 nodes were used,

10 results were generated at regular intervals per hour, i.e. every 12 minutes. If each

host took the upper limit of 15 minutes to complete each result, it should be capable

of handling 3 to 4 results per hour under the best circumstances. With 3 hosts, the

total number of results that could be processed per hour, under the best conditions,

was 15 to 18. The gap was there to account for periods of unavailability the hosts

could have gone through after being assigned a result. The work generation frequency

of the engine can be altered throughout the testing cycle, based on observed behavior.

8.4 Server System

The new BOINC server’s main feature was its ability to support different schedulers,

switching between them at a run time’s notice, and to support thermal data

processing. This stage centered on altering the workflow of the native scheduler

32

component, and that of its companion application, the feeder, as well as the

management of thermal information provided by hosts to feed it to external

scheduling applications. The latter had already been achieved during the first

semester.

Both the native scheduler and the feeder coordinate their work activities via status

flags set on results that reside on the work list/queue populated by the feeder. When a

new result is added, its status is set to “present”. When the scheduler assigns it to a

host, the flag is set to “empty” for the feeder to remove it and populate it with a new

result. In the modified system, these flags are also being used by the external

scheduler manager to notify the native scheduler of the hosts to which the results have

been assigned to. Consequently, the interpretation of the flag status depends on

whether or not an XS is being used, instead of the native scheduler, especially after a

change in the scheduler. This stage ended with a beta build of the server, which is was

used in the test environment.

8.5 External Scheduler

In order to assess the effectiveness of the modifications made to both client and

server, a scheduling application was built and attached to the server for the scheduling

of workunit results created by the UppercaseWG engine, to hosts in the test

environment. In building this application, there were certain factors that were

carefully considered.

Scheduling Factors

There are 3 factors that were used in judging the work assignment for hosts in the

scheduling application: work request, fairness, and reliability.

Work request simply addresses the question of how much work a host is requesting.

In doing work assignment, the hosts’ capacity has to be compared against the

estimated work cycle requirements of the results/jobs to be assigned to it. Each host

makes a request for work in the form of CPU seconds. The results have their work

cycle requirements expressed in FLOPS. To estimate incremental work assigned to a

host, given a result/job in seconds, we use the following formula:

33

Where:

IWA: incremental work assigned by the workunit’s result/job (seconds)

FPOPS(wu): work cycles required by the workunit (FLOPS)

FPOPS(host): work cycles capacity of the host (FLOPS)

For each workunit result assigned to the host, we add the IWA to its’ total work

assigned.

 ∑

Where:

TWA: total work assignment

IWA(k): incremental work assignment at turn k, k = {0, 1, 2… n}

n: number of workunit results assigned to a host

This value is checked before each result is assigned to a host, as a way to ensure that a

host isn’t given more work than it requested. For computers in a dedicated

environment, the amount of work requested should generally correspond to the

computer’s full capacity, at a certain point in time, determined by the client

application.

The second factor, fairness, concerns the fairness of work distribution, given the new

queue based scheduling framework developed. In the native scheduler, work is

distributed on first fit, first served basis. Any host requesting work that matches the

requirements for a specific jobs, gets the task. While using a queue, this is not

practical. The scheduler runs at predefined regular time intervals, or based on a

threshold factor that limits the number of hosts of on the waiting queue before the

scheduler runs. In either case, whenever the scheduler runs, it generally has several

34

hosts on a list waiting for work. To assign work fairly to these hosts in a manner that

ensures overall project progression, a round robin scheme was used, where workunit

results were interleaved between hosts on the waiting queue that were capable of

taking them. The pseudo code for the scheduling scheme is as follows:

The third factor assessed by the scheduler is the hosts’ reliability. Reliability here is a

measure of the host’s predicted ability to successfully complete the tasks that it is

assigned by the scheduler. In the scheduler devised, reliability is estimated based on a

single factor: hosts’ recent availability. As stated in section 8.2, the logging frequency

of the thermal server is once every 60 seconds. The thermal server determines the

hosts’ availability status by using the configured threshold temperature, and logs this

information to 2 different files: one with for historical records, and a second for recent

records only. With the frequency set to once every minute, and maxTAGRecords flag

set to 30, all hosts collect the thermal data pertaining to the past half an hour before

sending a request to the BOINC server. The reason why only recent thermal

information was used is that, despite providing insight into trends, historical data does

not provide as highly accurate estimates of the hosts’ immediate future availability

with low standard deviations as recent data does. This is supported by forecasting

principles, which dictate that relevant data in forecasting analysis is generally recent

data, as opposed to historical data, which is better suited for trend analysis [21][22].

The formula for reliability is given below:

foreach wuResult in wuResults:

 assigned = False

 foreach request in requests:

 if (request.currentAssignment + wu.workEstimate) <=

request.workRequested:

 assign work to host (request)

 request.currentAssignment += wu.workEstimate

 assigned = True

 break

 if assigned == True:

 //push next host to the front – round robin

 move host that was assigned work to the bottom of the list

Figure 10 Round Robin Scheduling Pseudo Code

35

The scheduler has a threshold parameter to assess reliability. This parameter was set

to 66.7%. Therefore, only hosts that had been available for at least 20 minutes out of

the past 30 minutes were deemed reliable enough to receive new jobs. Conceptually,

this factor should assist in predicting whether or not the host will be in a viable

environment for the coming time. Had the host been under a non-viable period for the

past 10 out of 30 minutes, it was still deemed viable. However, if it remained in such

condition progressively over time, the server would become aware of the fact, as the

host would check in; and the scheduler would not assign it work, because of the hosts’

low availability score. The developed scheduler was used in the test environment, to

assign results/jobs generated by the UppercaseWG engine to the 3 hosts in the setup.

8.6 Dashboard

The dashboard was one of final stages of development in this project. Its goal was to

allow people to observe the behavior of the system over time, within the context of:

temperature logging, hosts’ reliability, and work assignment. The dashboard was built

as a web based application. It was designed to regularly read the temperature,

availability, and work assignment logs from the thermal server and the scheduling

application, compute statistical measures for the day, and display this information in

an intuitive and meaningful manner to users. Figure 11 shows a snapshot of the

dashboard, taken March 8, at 2.22PM.

Figure 11 TAG Dashboard for HPC lab 2 (snapshot)

36

A snapshot of the daily statistics analyzed by the dashboard is shown in Figure 12.

The table displayed compares the total number of workunits and overall lab

reliability, measured as an average of all 3 nodes, for that day and the previous one.

Figure 13 shows the temperature log displayed on the dashboard. The chart shows

daily minimum and maximum temperatures for the lab, with a highlight on the values

for March 1
st
, 2014.

Figure 14 shows similar chart: the workunits dispatched dispalyed on the dashboard.

It maps the hourly count of workunits dispatched to all nodes for each day. The

snaphost shows the highest value of workunits sent at the peak hour on March 2
nd

.

Figure 12 Dashboard stats display

Figure 13 Dashboard temperature chart display: daily minimum and maximum

37

Figure 14 Dashboard workunits dispatched: total units dispatched per hour on different days

With the dashboard display, administrators can have a live feed to the grid’s current

and past performance. The usage of charts illustrates the behavioral pattern of the

temperature, and work distribution over time. In addition, the zoom-in feature of the

charts allows for users to zero in on a particular date and time, and observe the

temperature readings and work distribution for that particular period alone.

Another piece of information available to users on the dashboard is the log of work

assignment by the server, as in Figure 15.

Figure 15 Dashboard workunits assignment log

38

8.7 Thermal Scheduling: Observations

The thermal scheduling application designed for the testing environment makes use of

the concept of reliability presented in section 8.5. The time frame of the data that each

host provides to the server corresponds to the availability logs of the past half hour

(30 minutes), from the moment each request is made. The testing deployment began

operating on the 20
th

 of February 2014. Since then, the system has been logging both

daily temperatures, and workunits assignments. Figure 15 shows a graph of total

workunits dispatched during a 15 day period, from March 1 to March 15; and Figure

16 shows temperature logs for the same time period.

Figure 16 Workunits Dispatched, March 1 - March 15

The average number of workunits distribute to the 3 nodes in the environment is about

800, which gives us a work distribution of about 266 and 267 units per host.

Figure 17 Daily Temperature, March 1 - March 15

700
750
800
850
900
950

1
-M

ar
-1

4

2
-M

ar
-1

4

3
-M

ar
-1

4

4
-M

ar
-1

4

5
-M

ar
-1

4

6
-M

ar
-1

4

7
-M

ar
-1

4

8
-M

ar
-1

4

9
-M

ar
-1

4

1
0

-M
ar

-1
4

1
1

-M
ar

-1
4

1
2

-M
ar

-1
4

1
3

-M
ar

-1
4

1
4

-M
ar

-1
4

1
5

-M
ar

-1
4W

o
rk

u
n

it
s

Date

Workunits Dispatched (Daily)

Workunits

24
26
28
30
32

1
-M

ar
-1

4

2
-M

ar
-1

4

3
-M

ar
-1

4

4
-M

ar
-1

4

5
-M

ar
-1

4

6
-M

ar
-1

4

7
-M

ar
-1

4

8
-M

ar
-1

4

9
-M

ar
-1

4

1
0

-M
ar

-1
4

1
1

-M
ar

-1
4

1
2

-M
ar

-1
4

1
3

-M
ar

-1
4

1
4

-M
ar

-1
4

1
5

-M
ar

-1
4

Te
m

p
e

ra
tu

re
 (

°
C

)

Date

Temperature (Daily)

Maximum

Minimum

39

The logs in Figure 17 show the minimum and maximum temperatures registered

throughout the day. They do not, however, indicate for how long each temperature

period lasted, and therefore cannot tell us how long each viable period lasted. The day

with a highest registered temperature could also be the day with the lowest registered

temperature. What needs to be assessed, therefore, is the relationship between the

periods during which the temperature remained under the threshold, as well as the

periods where it went over, and work distribution, as a factor of reliability.

To derive this information, we must analyze measured reliability against the

workunits dispatched, and temperature logs shown in Figures 18 and 19, respectively.

We shall look at hourly logs for fine detailed analysis.

Figure 18 Reliability vs Workunit dispatchment, March 12 - March 18

Figure 19 Hourly temperature, March 12 - March 18

0

50

100

150

200

1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

1
2

1

1
2

9

1
3

7

1
4

5

1
5

3

1
6

1

W
o

rk
u

n
it

s
/

R
e

lia
b

ili
ty

 (
%

)

Time

Reliability vs Workunit Dispatchment

(Hourly)

Workunits

Reliability

25

26

27

28

29

30

31

32

25

27

29

31

33

35

1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

1
2

1

1
2

9

1
3

7

1
4

5

1
5

3

1
6

1

Te
m

p
e

ra
tu

re
 (

°
C

)

Time

Temperature (Hourly)

Maximum

Minimum

40

The green area under the charts represents time periods when average room

temperature for the hour was below the threshold of 29° Celsius, and the machines

were thus considered to be available. Visual observation indicates that the number of

workunits dispatched and workunit distribution seem to move in tune with each other.

As reliability remains stable, so does the number of workunits dispatched. When

reliability drops, the number of workunits dispatched also drops, by the exact same

degree. If we analyze the temperature logs in Figure 19 and compare them against the

reliability in Figure 18, we can observe that reliability is directly correlated to the

temperature. The hours with the highest registered temperature have the lowest

reliability grades, including 0%, and the hours with the lowest temperature have the

highest reliability grades, peaking at 100%.

As indicated earlier, so as long as a machine is deemed unavailable, it does not

receive any jobs. After being deemed unreliable, when a machine enters a viable

temperature period, its reliability gradually increases by the minute, and when it

reaches the threshold condition of 66.7%, it starts receiving work once again, in a

non-linear fashion, i.e. the number of workunits dispatched to it does not depend on

the node’s actual reliability score. However, machines with higher reliability are

placed on top of the work distribution list, and are thus are the first ones to receive

work.

8.8 Mass Deployment

With the observations that work can be intelligently assigned on a grid with the

modified version of BOINC, and developed thermal scheduler, the next issue of

concern would be mass deployment of client applications to the lab computers on

campus.

There are several tools available for mass software deployment, used by system

administrators and managers. Some of these tools, like Active Directory, PSExec, and

AutoIt are free, while others are not. Ideally, mass deployment should consist of a 2

stage process: software repackaging and deployment.

In first stage, software repackaging, the application’s setup process is re-redesigned so

as to not require any user input, thus removing the need for the physical presence of

41

the administrator during installation. Some setup applications require the user to

specify the installation directory, select the packages to be installed, key-in license

keys, etc. These details have to be pre-configured, so that setup wizard/process will

not ask the user for them.

The second stage, deployment, is where the application is actually distributed to the

target computers and remotely installed. If an application has already been pre-

packaged for a “silent” installation, mass deployment would boil down to copying the

setup packages to targeted remote machines, and activating them.

The processes involved in both stages are highly dependent on the actual setup

program of the target application, and the environment of the target machines, i.e.

operating system, user privileges, etc. On Windows, applications packaged with the

native installation wizard framework can easily be configure for silent installs,

provided that their distributors incorporate the necessary configuration parameters.

Not all setup wizards, however, provide mechanisms for silent configuration. This,

unfortunately, is the case of BOINC. There are, nonetheless, alternatives to

circumventing this shortfall. AutoIt, for example, provides scripting facilities to

emulate user input on a remote machine, when installs are not possible to configure at

the setup level. The system allows users to pre-define answers for predetermined

action steps in the installation process. Below is a sample script that can be used to

install an early client version of BOINC on a remote machine.

AutoIt BOINC Installation Script

#RequireAdmin

Run("boinc_6.12.34_windows_intelx86.exe")

WinWaitActive("BOINC - InstallShield Wizard", "Welcome to

the InstallShield Wizard for BOINC")

Send("!n")

WinWaitActive("BOINC - InstallShield Wizard", "License

Agreement")

Send("!a")

Send("!n")

WinWaitActive("BOINC - InstallShield Wizard", "These are

the current installation options")

42

Send("{ENTER}")

ControlClick("BOINC - InstallShield Wizard", "Allow all

users on this computer to control BOINC", 2598)

WinWaitActive("BOINC - InstallShield Wizard", "Customize

installation options")

Send("!n")

WinWaitActive("BOINC - InstallShield Wizard", "Ready to

Install the Program")

Send("!i")

WinWaitActive("BOINC - InstallShield Wizard",

"InstallShield Wizard Completed")

Send("!f")

WinWaitActive("BOINC Installer Information", "You must

restart your system")

Send("!y")

The script defines actions, e.g. run “boinc_6.12.34_windows_intelx86.exe”, and

indicates which screens or messages the system should wait for, as well as the

response it should send or action it should perform once the awaited screen or

message is displayed. Installation though, is not the only part of mass deployment.

One also needs to configure the BOINC client machines to connect to a specific

project. AutoIt can also be used to achieve this purpose. A similar script can define

how the program should be configured from startup to connect to the target BOINC

server.

Run("C:\Program Files\BOINC\boincmgr.exe")

WinWaitActive("BOINC Manager")

Send("!t")

Send("{ENTER}")

WinWaitActive("BOINC Manager", "Add project or account

manager")

Send("!n")

Send("{TAB}")

43

Send("[PROJECT’s URL]")

Send("!n")

WinWaitActive("BOINC Manager", "&Yes, existing user")

Send("!y")

Send("{TAB}")

Send("[USERNAME]")

Send("{TAB}")

Send("[PASSWORD]")

Send("!n")

WinWaitActive("BOINC Manager", "Project added")

Send("!f")

WinClose("BOINC Manager")

With the minor requirements of copying the installation files to the lab computers via

network shared folders and updating one of the client configuration files, i.e.

cc_config.xml, the 2 scripts above greatly minimize the effort required for deploying

client applications onto the campus computer labs.

44

CHAPTER 5

CONCLUSION AND RECOMMENDATAIONS

A grid deployment making use of idle periods of lab computers can make it possible

for one to leverage vast amount of existing resources, at a low cost; especially for an

academic institution. However, one needs to concern themselves first, with the

viability of using such machines, which are placed in non-dedicated environments for

a greater portion of time than not.

Green algorithms do not just help minimize energy consumption, but in certain

contexts, they can help preserve computers by safeguarding them against highly

potential hazards, such as overheat. If embedded into stable grid frameworks, they

make it possible to take advantage of freely available resources with less concern over

hardware damage. Further, making this integration dynamic/pluggable allows for

many to use the same grid framework to address different environmental concerns.

One of the primary goals of this project, i.e. the enablement of dynamic scheduling at

runtime within BOINC, was completed in the first stage, tested, and observed. Both

client and server machines were modified to support and manage thermal data

retrieved from a thermal server. The BOINC server also accurately fed this

information, along with other details of the hosts and workunit results available to a

developed external scheduling application. The second major goal of the project,

which was to have a pilot project of the system deployed, was also achieved. With the

pilot project running, performance of a thermal aware grid distribution system was

observed and analyzed. Visual evaluation of data showed that the system could

intelligently assign workload based on the thermal conditions of lab computers.

A dashboard was developed as a monitoring tool to accurately relay vital information

from the thermal server and scheduler in real-time. Although the system was not

45

deployed one of the academic laboratories, for organizational reasons, ease of mass

deployment was also studied, and conclusively determined to be fairly high.

Despite both primary goals of the system having been reached, there is much room for

further enhancement. For instance, the application used throughout testing was overly

simplistic. A more accurate study should consider not only different types of

applications with greater runtimes and requirements, but also with a fair share of both

CPU and I/O intensive cycles. Similarly, all hosts used in the testing environment

were homogenous, and located in the same environment. It would be interesting to

observe the behavior of the thermal scheduler for a deployment with computers

located in at least 2 distinct thermal environments, and of different architectures as

well as platforms.

Another aspect that could be given priority in future work is the use of more refined

thermal-aware scheduling algorithms. Although the basic scheduler developed here

does intelligently assign work load based on hosts’ thermal availability, its efficiency

has not been compared nor benchmark against that of any existing thermal scheduler,

seen as that the prime directives of the project were to evaluate the system’s

extensibility in alternating between scheduling applications at run time, and

supporting sensor based thermal scheduling frameworks only.

Finally, to observe actual performance on a larger-scale, the test deployment should

be expanded to include computers in laboratories that are used for academic purposes

during the day. Monitoring and evaluating the thermal availability, work distribution

and reliability of machines in such environment would give greater insight into the

development of more fine-tuned work scheduling algorithms the grid’s context. It is

the hope of the author that the work done so far can provide sustainable grounds for

the enhancements prescribed.

46

REFERENCES

[1] Rodrigues, R., and Druschel, P. (October, 2010). Peer-to-Peer Systems.

Communications of the ACM. 53 (10)

[2] Beberg, A.L., Ensign, D.L., Jayachandran, G., Khaliq, S., Pande, V. S. (2009).

Folding@home: Lessons From Eight Years of Volunteer Distributed Computing.

IEEE International Symposium on Parallel & Distributed Processing, 2009. IPDPS

2009.

[3] Giovannozzi, M., Harutyunyan, A., Hoimyr, N., Jones, P. L., Kerneyeu, A. ,

Marquina, M. A., McIntosh, E. , Segal, B., Skands, P. , Grey, F. , Lombrana

Gonzalez, D., Rivkin, L. , Zacharov, I.(2012). LHC@Home: A Volunteer Computing

System for Massive Numerical Simulations of Beam Dynamics and High Energy

Physics Events. International Particle Accelerator Conference (IPAC ’12).

[4] Zhu, T., Shu, C., & Yu, H. (2011). Green Scheduling: A Scheduling Policy for

Improving the Energy Efficiency of Fair Scheduler. 12th International Conference on

Parallel and Distributed Computing, Applications and Technologies. pp319-326, 2011

[5] Zhang, L. M., Zhang, Y., Li, K. (2010). Green Task Scheduling Algorithms with

Speeds Optimization on Heterogeneous Cloud Servers. 2010 IEEE/ACM

International Conference on Green Computing and Communications & 2010

IEEE/ACM International Conference on Cyber, Physical and Social Computing

[6] Anderson, D.P., Christensen, C., & Allen, B. (2006). Designing a Runtime System for

Volunteer Computing

[7] Berman, F., Fox, G., & Hey, T. (2002). The Grid: past, present, future. Grid

Computing – Making the Global Infrastructure a Reality

[8] Okitsu, J., Naono, K., Sulaiman, S. A, Zakaria, N., Oxley, A. (2012). Towards

Greening a Campus Grid: Free Cooling During Unsociable Hours. Unpublished

[9] Anderson, D. P., Korpela, E. & Walton, R. (n.d.). High-Performance Task

Distribution for Volunteer Computing. Space Sciences Laboratory. University of

California, Berkeley, unpublished

47

[10] Kosar, T. & Balman, M. (2008). A new paradigm: Data-aware scheduling in grid

computing. Future Generation Computer Systems. 25(2009). pp406-413

[11] Goiri, I., Haque, M. E., Le, K., Beauchea, R., Nguyen, T. D., Guitart, J., Torres, J.,

Bianchini, R. (2011). GreenSlot: Scheduling Energy Consumption in Green

Datacenters. SC '11 Proceedings of 2011 International Conference for High

Performance Computing, Networking, Storage and Analysis

[12] Liu, S., Qiu, M. (2010). Thermal-Aware Scheduling for Peak Temperature Reduction

with Stochastic Workloads. Work-in-Progress Proceedings

[13] Fisher, N., Chen, J., Wang, H., and Thiele, L. (2009). Thermal-Aware Global Real-

Time Scheduling on Multicore Systems. 15th IEEE Real-Time and Embedded

Technology and Applications Symposium, 2009. RTAS 2009.

[14] Shi, B., and Srivastava, A. (2010). Thermal and Power-Aware Task Scheduling for

Hadoop Based Storage Centric Datacenters. Green Computing Conference, 2010

International

[15] Mukherjee, K., Khullerm, S., Deshpande, A.(2012). Saving on Cooling: The Thermal

Scheduling Problem. SIGMETRICS '12 Proceedings of the 12th ACM

SIGMETRICS/PERFORMANCE joint international conference on Measurement and

Modeling of Computer Systems. pp397-398

[16] Mukherjee, K., Khuller, S., Deshpande, A. (2013). Algorithms for the Thermal

Scheduling Problem. 2013 IEEE 27th International Symposium on Parallel and

Distributed Processing

[17] Anderson, D. P. (n.d.). BOINC: A System for Public-Resource Computing and

Storage. Space Sciences Laboratory. University of California at Berkeley

[18] Dlaverty, (2009). Recommended Server Room Temperature. Openxtra. Retrieved

December 23, 2013 from http://www.openxtra.co.uk/articles/recommended-server-

room-temperature

[19] Miller, R. (2008). Google: Raise Your Data Center Temperature. Data Center

Knowledge. Retrieved December 23, 2013, from

48

http://www.datacenterknowledge.com/archives/2008/10/14/google-raise-your-data-

center-temperature/

[20] ITWatchDogs. (2013). IT Watch Dogs. Retrieved December 23, 2013, from

http://www.itwatchdogs.com/computer-room-temperature

[21] Armstrong, J.S. (2001). Principles of Forecasting: A Handbook for Researchers and

Practitioners. Springer Science+Business Media

[22] Tay, F.E.H. & Cao, L.J (2002). Modified Support Vector Machines in Financial Time

Series Forecasting. Neurocomputing. 48. pp847–861

http://www.itwatchdogs.com/computer-room-temperature

49

APPENDICES

APPENDIX 1 - WORK BREAKDOWN STRUCTURE

Task # Task Name Duration Start Date Finish Date

1 Initiating 14 9/25/2013 8:00 10/14/2013 16:00

2 Identify project title 10 9/25/2013 8:00 10/8/2013 16:00

3 Submit project title 0 10/9/2013 8:00
 4 Planning 56 9/25/2013 8:00 12/11/2013 16:00

5 Develop project extended proposal 26 9/25/2013 8:00 10/30/2013 16:00

6 Analyze requirements 7 10/30/2013 8:00 11/7/2013 16:00

7 Specify system modification requirements 3 11/7/2013 8:00 11/11/2013 16:00

8 Define scope 7 11/11/2013 8:00 11/19/2013 16:00

9 Verify scope 7 11/11/2013 8:00 11/19/2013 16:00

10 Develop a schedule 1 10/28/2013 8:00 10/28/2013 16:00

11 Executing 188 9/25/2013 8:00 6/13/2014 16:00

12 Feasibility study 7 11/19/2013 8:00 11/27/2013 16:00

13 System Architecture 14 11/27/2013 8:00 12/16/2013 16:00

14 Define interfacing requirements 4 12/12/2013 8:00 12/17/2013 16:00

15 System design 7 12/10/2013 8:00 12/18/2013 16:00

16 Validate solution 1 12/19/2013 8:00 12/19/2013 16:00

17 Present solution and feasibility to SV 1 12/20/2013 8:00 12/20/2013 16:00

50

18 Present system conceptual design 1 12/20/2013 8:00 12/20/2013 16:00

19 Create quality metrics 1 9/25/2013 8:00 9/25/2013 16:00

20 Build/Modify modules 45 1/8/2014 8:00 3/11/2014 16:00

21 Perform unit testing 45 1/8/2014 8:00 3/11/2014 16:00

22 Testing & Evaluation 24 2/18/2014 8:00 3/21/2014 16:00

23 Integration tests of relevant modules 7 2/18/2014 8:00 2/26/2014 16:00

24 System testing 4 2/28/2014 8:00 3/5/2014 16:00

25 Application effectiveness testing 3 3/10/2014 8:00 3/12/2014 16:00

26 Measure system impact on processes 3 3/11/2014 8:00 3/13/2014 16:00

27 Define implementation strategy 5 3/18/2014 8:00 3/24/2014 16:00

28 Closing 25 4/1/2014 8:00 5/5/2014 16:00

29 Close project 9 4/15/2014 8:00 4/25/2014 16:00

30 Create report 19 4/1/2014 8:00 4/6/2014 16:00

31 Submit extended proposal 0 10/30/2013 8:00

32 Submit interim report 0 12/30/2013 8:00

33 Submit progress report 0 2/10/2014 8:00

34 Submit technical report 0 4/14/2014 8:00

35 Viva presentation 0 4/28/2014 8:00

36 Submit project dissertation 0 4/28/2014 8:00

51

APPENDIX 2 – TEMPLATE XML FILES

External Scheduler (XS) Output

<xs_output>

 <assignment>

 <host_id>4</host_id>

 <wu_id>4</wu_id>

 <result_id>25</result_id>

 </assignment>

 <assignment>

 <host_id>3</host_id>

 <wu_id>4</wu_id>

 <result_id>26</result_id>

 </assignment>

 <assignment>

 <host_id>5</host_id>

 <wu_id>5</wu_id>

 <result_id>27</result_id>

 </assignment>

 <assignment>

 <host_id>4</host_id>

 <wu_id>5</wu_id>

 <result_id>28</result_id>

 </assignment>

 <assignment>

 <host_id>3</host_id>

 <wu_id>5</wu_id>

 <result_id>29</result_id>

 </assignment>

 <assignment>

 <host_id>5</host_id>

 <wu_id>5</wu_id>

 <result_id>30</result_id>

 </assignment>

 <assignment>

 <host_id>4</host_id>

 <wu_id>5</wu_id>

 <result_id>31</result_id>

 </assignment>

 <assignment>

 <host_id>3</host_id>

 <wu_id>5</wu_id>

 <result_id>32</result_id>

 </assignment>

</xs_output>

52

APPENDIX 3 – THERMAL AWARE GRID SYSTEM DEPLOYMENT DIAGRAM

Device

Custom AMD Bulldozer Server : Application Server

MySQL : Database System

«schema»
Users

«schema»
Workunits

«schema»
Results

«schema»
Applications

BOINC : Application System

«component»
Feeder

«component»
Native Scheduler

«artifact»
XSM

Device

PC : Windows Client

BOINC Client
HTTP(s): Protocol

DBA

ThermalScheduler : Application System

«component»
External Scheduler

«component»
XS Log

iXSM

Device

Custom Thermal Server : Application Server

ThermalReader

HTTP(s): Protocol

Device

Custom AMD Bulldozer Server : Application Server

Dashboard : Application System

«component»
Visuals

«component»
Analytics

iXSLogThermal Log

iThermalLog

«component»
Uppercase WG

53

APPENDIX 4 – SAMPLE LOGS

Temperature Log

Day Month Year Hour Minute Temperature

12 3 2014 0 0 28.06

12 3 2014 0 1 28.06

12 3 2014 0 2 28.06

12 3 2014 0 3 28.0

12 3 2014 0 4 28.0

12 3 2014 0 5 28.0

12 3 2014 0 6 28.0

12 3 2014 0 7 28.0

12 3 2014 0 8 28.0

12 3 2014 0 9 28.0

12 3 2014 0 10 28.06

Availability Log

Day Month Year Hour Minute Availability

12 3 2014 0 0 1

12 3 2014 0 1 1

12 3 2014 0 2 1

12 3 2014 0 3 1

12 3 2014 0 4 1

12 3 2014 0 5 1

12 3 2014 0 6 1

12 3 2014 0 7 1

12 3 2014 0 8 1

12 3 2014 0 9 1

12 3 2014 0 10 1

54

Assignments Log

HostId WorkunitId WorkunitName ResultId Year Month Day Hour Minute Second

5 5121 wu_uppercase_1_2_5120 9453 2014 3 12 0 16 22

5 5122 wu_uppercase_1_2_5121 9454 2014 3 12 0 16 22

5 3869 wu_uppercase_1_2_3868 9456 2014 3 12 0 16 22

5 3873 wu_uppercase_1_2_3872 9457 2014 3 12 0 16 22

5 3875 wu_uppercase_1_2_3874 9458 2014 3 12 0 16 22

5 4419 wu_uppercase_1_2_4418 9459 2014 3 12 0 16 22

5 5123 wu_uppercase_1_2_5122 9460 2014 3 12 0 16 22

5 5124 wu_uppercase_1_2_5123 9461 2014 3 12 0 16 22

5 5125 wu_uppercase_1_2_5124 9462 2014 3 12 0 16 22

5 4096 wu_uppercase_1_2_4095 7793 2014 3 12 0 16 22

5 4097 wu_uppercase_1_2_4096 7794 2014 3 12 0 16 22

55

APPENDIX 5 – SYSTEM TESTING: TEST CASES

Table 1 – System Test Case 1

Test Case Identifier ST1

Test Module XSM (Server)

Purpose
Verify that the unit can successfully dump hosts’

request and available jobs’ data to the xs_input.xml file

Input Waiting queue, and Jobs list (on shared memory)

Expected Output

Valid XML file is created, named xs_input.xml, with

valid data of jobs available and data of hosts that have

sent work requesting

Intercase Dependencies -

Table 2 – System Test Case 2

Test Case Identifier ST2

Test Module XSM (Server)

Purpose

Verify that the unit properly calls the user defined

external scheduling application, and waits for it to

return control

Input

A valid XS on the xscheduler folder, and its full path

specified in the config.xml file under the, a host

request

Expected Output
Test XS program runs, and generates expected

xs_output.xml file for the XSM

Intercase Dependencies ST1

Table 3 – System Test Case 3

Test Case Identifier ST3

Test Module XSM (Server)

Purpose

Verify that the unit detects when the specified XS

program is not present, and calls the native scheduling

sequence

Input
Invalid XS path specified in the config.xml file, a host

request

Expected Output Native BOINC scheduler sequence is initiated

Intercase Dependencies -

56

Table 4 – System Test Case 4

Test Case Identifier ST4

Test Module XSM (Server)

Purpose

Verify that the unit reads the XS work assignments in

the xs_output.xml, and assigns jobs to hosts as

specified by the XS

Input

A valid xs_output.xml, with valid job assignments (i.e.

assignment of available jobs) to hosts on the waiting

queue

Expected Output
XSM assigns jobs to hosts, and hosts receive jobs the

next time they send a work request

Intercase Dependencies ST2

Table 5 – System Test Case 5

Test Case Identifier ST5

Test Module XSM (Server)

Purpose
Verify that the unit logs the timestamp after calling the

XS application

Input
A valid XS speficied in the config.xml file, and a host

request

Expected Output
A file named xs_last_run is created/update with a valid

timestamp

Intercase Dependencies -

Table 6 – System Test Case 6

Test Case Identifier ST6

Test Module XSM (Server)

Purpose
Verify that the unit properly parses hosts’ availability

data from their request files

Input A valid host request, with thermal availability data

Expected Output Thermal data is parsed, and logged

Intercase Dependencies -

57

Table 7 – System Test Case 7

Test Case Identifier ST7

Test Module Client

Purpose
Verify that the unit downloads thermal data from the

thermal server

Input A valid thermal profile URL

Expected Output Host gets thermal data, and logs it

Intercase Dependencies

Table 8 – System Test Case 8

Test Case Identifier ST8

Test Module Client

Purpose
Verify that the unit parses downloaded thermal data,

and appends it to its work request

Input A valid thermal profile URL

Expected Output
Hosts appends retrieved thermal data to its work

request file, request.xml

Intercase Dependencies ST7

Table 9 – System Test Case 9

Test Case Identifier ST9

Test Module Client

Purpose
Verify that the unit sends a work request file with

thermal data appended to it

Input
A valid thermal profile URL, and connection with

thermal-aware server

Expected Output
Host sends requests, and receives server response

successfully

Intercase Dependencies ST8

58

Table 10 – System Test Case 10

Test Case Identifier ST10

Test Module Client

Purpose
Verify that the unit receives jobs assigned to it by an

XS application, upon sending a second work request

Input
Two work requests from host to server, interleaved by

at least 5 seconds

Expected Output Host receives jobs from server, assigned by an XS

Intercase Dependencies ST4, ST9

Table 11 – System Test Case 11

Test Case Identifier ST11

Test Module Client, Scheduler (Server)

Purpose
Verify that the unit sends completed job results to the

server

Input -

Expected Output
Server receives and acknowledges completed jobs from

a client

Intercase Dependencies ST10

Table 12 – System Testing Results

Test Case Count Pass Fail Error

ST1 5 5 0 0

ST2 5 5 0 0

ST3 5 5 0 0

ST4 5 5 0 0

ST5 5 5 0 0

ST6 5 5 0 0

ST7 5 5 0 0

ST8 5 5 0 0

ST9 5 5 0 0

ST10 5 5 0 0

ST11 5 5 0 0

