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CHAPTER 1  

INTRODUCTION 

 

 

1 ABSTRACT 

Volunteer and grid computing framework systems have helped create several of 

today’s largest resource pools for scientific and engineering computing. At the same 

time, as computers evolve, there is a greater demand for more environmental-aware 

scheduling systems to be deployed with these frameworks in order to address existing 

concerns of the preservation of resources like energy, and computers themselves. In 

response to this concern, the High Performance Computing Services Center of 

Universiti Teknologi PETRONAS (HPC-UTP) sought to incorporate thermal-aware 

scheduling into its campus grid. To achieve this, the center decided to modify an 

existing Volunteer Computing (VC) framework to make use of different schedulers at 

run time, without the need to recompile the server. This thermal-aware, dynamic-

scheduling capable framework will be deployed on a test environment, to assess its 

viability for the university’s campus grid. 
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2 BACKGROUND 

Grid computing can be loosely defined as the computation done by a group of 

interconnected computing devices, generally computers, trying to achieve a common 

objective. In and by themselves, grids are just networked computers. However, when 

seen as whole, they provide large scales of computational and data storage capacity to 

solve complex problems. Grids are one of the basic forms of distributed computing 

taxonomies, along with clouds. In modern society, cloud computing systems have 

been gaining wide attention from both IT service providers and users; though when 

seen from an infrastructure point of view, clouds can be thought of as a set of 

interconnected grids and other devices with levels of abstractions in their 

communication and coordination. 

To deploy a grid computing infrastructure, one needs to make use of software systems 

that can establish the connection between devices, for the purpose of enabling process 

coordination and data exchange. Such systems can be thought of as middleware, 

because they often create a level of abstraction between what can be homogenous or 

heterogeneous devices. 

Grids are not always formed by pools of dedicated computing resources. In fact, since 

the early 1990s, the largest grid deployments worldwide have been built on resources 

donated by the public, in the form of spare computational resources shared during 

computer idle periods. Projects like SETI@Home, which searchers for extraterrestrial 

life, were among the first grid projects ever created that worked with this paradigm, 

which later became known as Volunteer Computing. Other projects that came 

afterwards, followed a similar paradigm, and went on to create some of the world’s 

largest open computing systems. With the evolution of these systems some 

institutions, like the Berkely Open Space Laboratory, began creating grid frameworks 

to cater to the VC paradigm. 

Today, there are several VC computing frameworks in existence. Currently, the 

Berkeley Open Infrastructure for Networking and Computing (BOINC) can be easily 

considered the most widely used VC framework in academia. BOINC is also applied 

in several other grid environments, where resources are either fully or semi-dedicated. 
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BOINC, just as most of the other existing grid computing frameworks has its own 

scheduling policies embedded into it. This system is responsible for the distribution of 

jobs to all the connected devices, from a central server. Consequently the integration 

of a different scheduling policy into any such system requires substantial rework of 

the application’s code to adjust its working structure to the user’s intended needs. As 

several data and computing centers today try to address the energy crisis of the 

century, by incorporating smarter algorithms to manage their 

simulation/computational jobs, the demand for systems that are capable of 

accommodating different scheduling policies at different times is forthcoming. 

The need to incorporate different environment-aware scheduling systems at run-time 

within an existing VC system that has its own scheduling algorithm, without altering 

its working framework was the key driver to this project. 
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3  PROBLEM STATEMENT 

Environment-aware scheduling policies are policies that evaluate non-system related 

aspects of the environment under which machines operate to decide on the best task or 

data assignment scheme. For example, a heat-aware or thermal-aware system would 

consider the temperature of a device in scheduling task processing for it. 

If one were to integrate a thermal-aware policy into a system such as BOINC, one 

would surely have to alter the inner structure of the application to accommodate a 

different scheduling policy. However, at present, there are several thermal-aware 

scheduling algorithms in existence, and further being researched at HPC-UTP. 

Since the usage of any environment-aware scheduling policy generally requires the 

introduction of sensor-based information into the scheduling policies, the first 

challenge lies in designing a system that is capable of receiving and processing 

information from sensor systems. The second challenge lies in providing this 

information, along with job information as well as any other information concerning 

the resources of each computer system involved in the grid to the possibly different 

scheduling systems, for them to carry out scheduling without disrupting BOINC’s 

remaining inner framework.  

In summary, the main challenges of the project were to extend BOINC to work with 

thermal sensor systems, as well as to provide researchers with a simplified and 

intuitive mechanism to manage different scheduling applications.  
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4 OBJECTIVES 

This project aimed at achieving two objectives: 

1. To extend BOINC to work with thermal sensor systems; 

2. To deploy a pilot thermal-aware BOINC system on the university’s campus 

Despite the focus given to thermal-scheduling, this project’s scope does not involve 

the development or implementation of any rigorous thermal algorithms. The main 

emphasis is on the infrastructure side of the equation, i.e. the modification of an 

existing framework, i.e. BOINC, and its implementation on pilot project to support 

thermal-scheduling.  
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CHAPTER 2  

LITERATURE REVIEW 

 

 

5 LITERATURE REVIEW 

Despite the advent of Cloud computing, Grid computing still remains one of the 

leading forms of managing large scale scientific or engineering simulations and 

computing projects. Major university and corporate computing projects still rely on 

the several grid computing frameworks that are available, to harvest the 

computational power they need. Examples of these include SETI@Home, which is 

currently the largest distributed computing effort and seeks to find extraterrestrial life 

[1]; Folding@Home, which seeks to cure diseases like Cancer, and Parkinson’s 

disease by running protein folding simulations [2]; and LHC@Home which runs high-

energy particle collisions simulations for the Large Hadron Collider (LHC) at the 

European Organization for Nuclear Research (CERN), the world’s largest particle 

physics laboratory [3]. 

The fast growing capabilities of today’s computer systems require substantial efforts 

of sustainable management of their resources in order to respond to society’s needs of 

tomorrow. This management seeks not only to expedite data processing, but to do so 

without the incursion of extra costs to society in the form of greater energy 

consumption, or that of any other resource for that matter. To respond to this need, the 

concept of green scheduling has thus emerged in the realm of computing. IT systems 

have always placed great emphasis on efficiency: doing more within a shorter period 

of time; however, the objective had always generally been to relief resources so that 

other computing could take place. Green scheduling, as defined in [4] and [5], aims at 

reducing energy consumption, especially in cloud services, grid or data centers. Most 

of the algorithms in it work with sensor technology to monitor energy consumption 

and adjust work distribution accordingly, thus reducing the consumption of 

unnecessary resources.  
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BOINC is one of the leading frameworks used in VC projects, where the nature of the 

eco-system is one where users freely donate the idle time of their devices (e.g. PCs, 

laptops, mobile devices, and entertainment consoles) to help solve large scale 

scientific problems such finding a cure for diseases like Alzheimer’s [6]. 

As presented in [7], BOINC encompasses several key design concepts that make the 

gathering and retention of millions of personal computer resources donated by the 

general public on a daily basis not only possible, but feasible and to some extent 

effortless for users. These include management of trust between scientists and 

volunteers, the rewarding of users for the CPU cycles donated, the scaling of a 

project’s deployment, and others. 

Now, despite having been originally designed to be a VC system, BOINC can actually 

work as an alternative to a grid middleware system in an environment where a strict 

grid-oriented system would not be suitable. An example of such an environment is a 

university campus grid that is based on computers located in academic laboratories, 

making use of their idle periods to perform computations. The Universiti Teknologi 

PETRONAS (UTP) has an environment alike. 

With over 800 machines distributed in more than 30 labs, UTP’s campus grid has the 

potential to deliver Teraflops of computational power. In order to harvest that 

potential, HPC-UTP makes use of BOINC. The robustness of the framework, coupled 

with its open-source nature gives the center the ability to leverage the computers in 

the university’s laboratories at a low cost. In spite of this, there is one issue that 

concerns environmental preservation of hardware, and that is the constant availability 

of dedicated machine cooling across all labs. Since air conditioning is only made 

available during regular office hours, generally between 7am-7pm on weekdays, the 

machines become dependent on the environment’s temperature to establish their own 

during non-office periods [8]. This can expose the machines to a high risk of damage, 

if they perform heavy computations during such periods as the indoor temperature can 

rise above 28°C, as shown in Figure 1. 
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Figure 1 One day transition of temperature and dew point in Ipoh, Malaysia (adapted from [8]) 

 

BOINC’s resource matching based scheduling policies are capable of achieving high 

project throughput. By assigning jobs to the first available candidates that can fulfill 

their requirements, BOINC ensures projects’ overall progression, as described in [9]. 

Nonetheless, there are several different aspects of distributed computing that require 

different approaches to resource scheduling that the traditional CPU centric batch 

schedulers do not account for.  

In [10], the authors point out that one of the overheads of distributed systems is data 

transfer. In their work, they presented a data-aware scheduling algorithm for 

computing grids. Their system managed to reduce data transfer requirements between 

systems, lowering bandwidth usage and overall jobs runtimes, by assignment tasks 

based on hosts’ proximity to the data source of the files needed by the task. The 

authors in [11] developed an energy aware scheduling system for data centers that 

maximized solar energy consumption up to 117%, by scheduling jobs based on 

predicted availability in the near future and made use of grid energy to avoid 

deadlines at the times when it would be cheapest, effectively reducing grid energy 

consumption by up to 39%. In [4], the authors presented a similar green scheduling 

concept; however, their solution reduced power consumption by overlapping 

complementary jobs, i.e. CPU oriented with I/O oriented jobs, with a slightly higher 

level of relaxation compared to an existing Fair Scheduler. Their green scheduler 

showed 7-9% better energy efficiency. In the center’s ongoing work with thermal 

based scheduling, several algorithms that can schedule jobs according to predicted 

thermal availability of host machines in a non-dedicated environment, based on sensor 

data, have been proposed. 
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Thermal scheduling allows the grid system to allocate work to machines which are 

deemed thermally viable only; i.e. machines that are expected to be under an 

acceptable temperature range during the computation, thus reducing the risk of any 

damage caused by overheat [12][13][14]. The goal of thermal scheduling, as 

explained by [15] and [16] is to either maximize the workload a machine can have 

while under an acceptable temperature, or minimize the maximum temperature a 

machine reaches while executing the maximum number of jobs it can. 

The policy used in [11] required sensor based technology to feed the scheduler 

relevant energy consumption information from host machines, just as the thermal 

algorithms being research do. This might not be easy to directly apply in a standard 

VC environment. Nonetheless, if battery performance of portable devices were to be 

considered, instead of solar power or thermal availability, the concept could be easily 

mapped. [10] and [17]’s solutions, on the other hand, were based on task data usage 

prediction and machine’s proximity to data hosts as well as bandwidth availability, 

respectively. Both could be applied in existing BOINC VC projects such as 

SETI@home or Einstein@home. What these policies show is that, both in dedicated 

and non-dedicated environments, distributed computing middleware systems should 

be prepared to address different scheduling schemes. It is the center’s belief that the 

capacity for a middleware system to support these different schemes should be as 

dynamic as possible so that a single middleware system could be fit for different 

environments, requiring only an additional or external scheduling application to be 

attached to it at run time.  

To integrate these algorithms on a campus grid, the middleware application in use, 

BOINC, has to be modified to dynamically make use of different scheduling 

programs. The goal is to deliver a scheduler-independent, thermal-aware BOINC 

system, and to implement it in a pilot test environment. 
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CHAPTER 3  

METHODOLOGY & PROJECT WORK 

 

 

6 METHODOLOGY 

To deliver the next stage of the all-encompassing goal of creating and fully dynamic 

VC and grid computing framework that supports sensor-based environment-aware 

scheduling algorithms, the author took a tiered-approached to the problem. There 

were 2 distinct tiers in consideration: system back-end, and the client application. 

The first tier, system back-end, concerns the modification of the BOINC server 

system components responsible managing hosts/client’s data, and scheduling 

available jobs. This portion of the system was modified to accept thermal data from 

clients, and to assign job scheduling responsibilities to third-party/external (XS) 

applications, as specified by system administrators and/or researchers. 

The second tier comprises of the client application. Most modification efforts here 

covered the alteration of the client to integrate itself with a thermal sensor system, and 

to send thermal information to the BOINC server for it to carry out thermal-aware 

scheduling when applicable. 

The strategy used to complete this task was to take a disciplined approach to system 

development, applying formal project management strategies where they fitted. The 

project’s work breakdown structure (WBS) on Appendix 1 outlines the project 

timeline, milestones, as well as tasks executed throughout the project’s life cycle, 

from conceptualization to deployment and evaluation. 

To provide a working solution within the given time frame for the project’s 

completion, while maintaining a highly flexible work dynamic that supports rapid 

adjustments, the project followed a throw-away prototyping development approach, 

shown in Figure 2. 
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Figure 2 Throw-away prototyping 

 

The system’s proposed network deployment architecture is shown in Figure 3. 

LAN/Internet

BOINC Server

Host 01

Host 02

Host 03

Temperature Contoller

RPC/HTTP

RPC/HTTP

RPC/HTTP

HTTP

 

Figure 3 Proposed network deployment architecture 

 

A temperature controller system was setup in the test environment laboratory to 

regularly monitor room temperature. The hosts in each lab collected the 

environment’s temperature information from this system, and used it while 

communication with the BOINC server when they made work requests. 
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7 PROJECT WORK 

7.1 The Architecture 

BOINC’s system uses a client server architectural style. Servers host applications and 

work-units, and wait for clients to request work from them. The clients are the ones 

who initiate communication with the server to either report work in progress, or 

request for new work. BOINC’s general component architecture is depicted in Figure 

4. 

BOINC Architecture

Feeder

Scheduler

Shared 

memory

Transitioner

DB Purger

Validator

Assimilator

File 

Deleter

Work 

Generator

MySQL 

Database 

Server

Client

Server Side

Client Side

RPC/HTTTP RPC/HTTP

 

Figure 4 BOINC architecture 

 

All communication between client and server is done via RPC/HTTP requests. When 

a server receives a request from a client, its scheduler module is the only component 

that interacts with that request. Meanwhile, the other server components perform tasks 

to keep the project running in the background. The transitioner manages the work 

unit/results that reside in the database according to their state. The validator and 

assimilator daemons are application specific; one verifies results while the other 

processes the canonical result, handling the output as specified, respectively. The file 

deleter removes upload and download files that are no longer required by workunits 
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and results, and the DB purger removes unnecessary database records. The work 

generator is used to create work units, and finally the feeder and scheduler are 

responsible for work distribution and result processing. These last two components 

were the most relevant to this project. 

The feeder and scheduler communicate via a shared memory scheme that keeps jobs 

taken from the database, waiting to be sent out to hosts. When a host sends a request, 

in the form of an XML file, the scheduler processes it by performing non-trivial user 

and host validation, and then checking if there are any jobs available, first on the 

shared memory and, if necessary, on the database, provided that the host has 

requested work. If the host is simply reporting work in progress, the scheduler 

responds by notifying the host of whether it should continue running the tasks it has 

or abort them immediately for a given reason. The reply is sent out as an XML file as 

well. Once a request is processed, the scheduler updates the database records of the 

host and the tasks that it’s currently running so that the other daemons can process 

credit attribution and update overall project status 

Bearing this working framework in mind, the objective of extending the BOINC 

system to integrate dynamic thermal scheduling should not interfere with the tasks of 

the other also important components of the system.  

To achieve this, the efforts of the project concentrated on modifying the existing 

scheduler component to build into it a module that handles third party/external 

schedulers, i.e. an external scheduler manager (XSM). To schedule job assignment to 

clients, the external scheduling application has to have both client information, and 

information about all existing workunits on the server. Consequently, a standardized 

communication method between the XS and the XSM had to be devised. The chosen 

approach was to use a standardized XML representation for both information sent 

from the XSM to the scheduler, and the assignments made by the XS to the server 

(Appendix 2). This standardized communication format is similar to that used by 

client-server communication in BOINC. The architecture of the modified system is 

depicted in Figure 5, and the corresponding deployment diagram in Appendix 3. 
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Figure 5 Thermal-aware BOINC architecture 

 

7.2 Test Deployment 

Before deploying the system on campus, a proof of concept test environment was be 

used to run a small deployment of the entire framework. On this deployment, all of 

the impending components of the to-be system were tested: the thermal server, the 

thermal-aware client, and the thermal-aware scheduling application. 

The environment was being setup in a lab, using commodity desktop computers, 

similar to the ones used in the university’s laboratories, in a closed circuit network.  

 

7.3 Thermal Server 

One of the main components of this entire system is the thermal server. The thermal 

server monitors room temperature, and provides this information to all hosts that 

request it in its environment.  

To deploy this server, the author made use of USB sensor device that could be 

directly plugged into any computer, and a custom built system to store the sensor’s 
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readings on a public directory which could be accessed via HTTP requests. The 

configuration is shown in Figure 6. 

Thermal Server

USB sensor device

Hardware Interface
Connector

TempReader
(.py)

Web Directory

 

Figure 6 Thermal server configuration 

 

7.4 Client 

BOINC’s client application was being altered to actively pull thermal data from a 

thermal server in its environment, and add this information to its work requests. 

Whenever the client sends a request to the server, it sends information about its 

hardware specification, software environment and workunits’ status. The new client 

needs only to add to this request the thermal information it pulls from its localized 

thermal server. Once the server receives this information it provides it to the thermal 

aware scheduling application, which decides how to allocate workunits to it. 
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7.5 Dynamic Scheduling Framework 

The concept of dynamic scheduling was being developed with the goal of allowing 

researchers to actively switch between scheduling applications, be them thermal or 

not, at run time, without recompiling the server system. The idea for the 

implementation is rather simple: the decision of which scheduling application to use 

should be configurable by users, and checked by the BOINC scheduler/XSM at each 

BOINC server startup (or restart). 

After reverse engineering BOINC’s scheduler system, the author could identify an 

approach to making modifications that would accommodate the new scheduling 

paradigm. First though, there were key issues to be taken into consideration: 

 Deadlock: the implementation had to avoid deadlocks in case of race 

conditions. Currently, BOINC’s scheduler is deadlock free, and multiple 

scheduling instances can run at the same time for different hosts. If lists were 

to be used to queue requests for external scheduling applications, deadlock 

would not have been as easy to avoid.  

 Functionality: hosts must have their work requests effectively processed. A 

host could be delayed endlessly waiting for new work to be assigned by an 

external scheduling application or to be notified of the lack of available work-

units.  

 Efficiency: Reported work should be acknowledged in a timely manner and 

new work assigned in the same fashion. 

Atop of these issues, certain constraints were chosen by the author to be observed 

while modifying with the system: 

 Maximize the usage of existing infrastructure, framework (processes) and 

code base 

 Minimize the level of changes to the original source code. 
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After a careful, analytical evaluation of the application, the following algorithm was 

extracted from the existing scheduling system: 

 

 

 

 

 

The modified system, which embedded dynamic scheduling into the framework 

seamlessly, is given below: 

 

 

 

 

 

 

The workflow in Figure 8 provides, in theory, two key advantages. First, by making 

the external scheduler integration (XSI) framework connection at the point of new 

work distribution only (step 5), the rest of the BOINC system’s framework is left 

intact to carry out its other non-trivial operations as intended: verify users, register 

new hosts, validate results, etc. Second, by making the call to use the XS optional, 

users have the alternative to simply use the BOINC as if it were in its original state, 

which might be necessary or even required in certain cases. Both of these aspects 

were seen as fundamentally required in maintaining the functionality and efficiency 

factors described earlier. Deadlock prevention on the other hand, is an issue to be 

mitigated at the implementation level, and the algorithm designed to address it is 

show in Figure 9. The algorithm describes how the process flow changes when the 

XSM runs, using an XS, and when the native scheduler runs instead. Essentially, only 

1. Authenticate users 

2. Handle results (work in progress) 

3. Resend lost work 

4. Abort results 

5. Send new work 

6. End 

Figure 7 Boinc's scheduler program algorithm 

1. Authenticate users 

2. Handle results (work in progress) 

3. Resend lost work 

4. Abort results 

5. if (configured to use XS scheduler) 

run XSM 

   else 

run native scheduler 

6. End 

Figure 8 Dynamic BOINC's scheduler algorithm 
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one request can make the scheduler run, either because the run interval or number of 

hosts on queue limit has been reached; both parameters are configurable. When the 

XSM runs, the waiting queue is locked, preventing any forthcoming requests from 

accessing. These requests are given a short back-off period of 10 to 60 seconds to 

request for work again. If the XS is called, the ready queue is then locked and updated 

by the same request. This 2-phase lock system precludes conflicting access to the 

waiting and ready queue, thus effectively preventing deadlock. 
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PROCESS REQUEST (sched/handle_request.cpp)
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Manager)
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Q

Update 
ready Q 

and waiting 
Q
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Figure 9 BOINC XSI  
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CHAPTER 4  

RESULTS AND DISCUSSION 

 

 

8 RESULTS AND DISCUSSION 

The purpose of this project was to address one the concerns in the deployment of a 

computing grid on campus: the environmentally friendly usage of hosts in the grid 

during non-viable periods. The development of the project was divided in the 

following stages: 

1. Thermal Server 

2. Client of Windows 

3. Sample Application & Work Generation 

4. Server System 

5. External Scheduler (XS) 

6. Dashboard 

7. Thermal Scheduling 

8. Mass Deployment 

These stages affect certain components of the overall system. We now discuss the 

process, challenges and current status of each stage. 

8.1 Thermal Server 

This stage affects the server application that feeds thermal data to hosts in its 

environment. In it, the development of 2 applications took place: a hardware interface 

that reads room temperature from a sensor, and a “wrapper” application that uses the 

first to log temperature and hosts availability to a web directory. 

The first application, the sensor reader, was developed using an API provided by the 

sensor manufacturer, Temperature Alert (http://www.temperaturealert.com/). The 

application reads temperature from a USB sensor attached to the computer where the 

program is running. It can provide the readings in either degrees Celsius or 

Fahrenheit.  

http://www.temperaturealert.com/
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The second application is the main program researchers will interact with. Its 

parameters are configurable, so as to let users tweak its run in a manner that suites 

their needs. The following are the parameters users can adjust: 

config.json 

{ 

 

 "readInterval":60, 

 "logFile":"tempread.log", 

 "availabilityFile":"/var/www/tempread_ws/availability.log", 

 "temperatureFile":"/var/www/tempread_ws/temperature.log", 

 "tagFile":"/var/www/tempread_ws/tag.log", 

 "maxTAGRecords":"30", 

 "thresholdTemp":"29" 

} 

 

 readInterval: defines the frequency with which the temperature sensor should 

be read, and it is defined in seconds. 60 means the sensor is read every minute 

(i.e.: at intervals that are 60 seconds apart). 

 logFile: defines the logging file for the application, used to log errors 

 availabilityFile: destination of host availability measures after each 

temperature reading 

 temperatureFile: destination of the temperature log read from the sensor 

 tagFile: this parameter is specific for the project. It defines the file where the 

recent availability of the hosts is stored, to be used by the thermal scheduler, 

as opposed to all availability readings. 

 maxTAGRecords: defines the number of recent records to be logged in the 

tagFile for the thermal aware grid (TAG ) project’s thermal scheduler. 

 thersholdTemp: specifies the threshold temperature, used to determine hosts’ 

availability.  

Industry guides recommend that server or data room temperature should be set 

between 26-30° Celsius [18] [19] [20], with some advising against reaching the 27-

28° Celsius limit [19]. Currently, the threshold temperature has been set to 29° 

Celsius because the highest temperature observed in the test environment, functioning 

under constant cooling, was of 31.56° C, logged on March 11 at 6.59PM while the 

lowest was 25.06° C registered on March 18 at 9.17PM. A temperature reading above 

the threshold temperature makes the application set the availability flag in the 
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availability log to false, i.e. the value of zero. Sample log files can be seen on 

Appendix 4. 

 

8.2 Client for Windows 

The outcome of this stage was to have a compiled client, ready to run on test 

machines for simulation purposes. To deploy the test project, TAG, the BOINC client 

application had to be capable of pulling thermal records from a thermal server and 

appending those records to its XML requests. Since most lab computers run on 

Windows operating system, a Windows build of the client was modified and tested. 

During this stage, 2 issues were encountered: thermal data readings access, and size. 

The first issue, thermal readings access, had to do with the facilities for running 

HTTP/GET requests on Windows. BOINC has a set of classes that perform CGI 

based requests to servers. However, there was no simple mechanism for making 

HTTP /GET requests to retrieve data files. To circumvent this issue, the author made 

use of a third party tool called Wget for Windows, a free program that performs 

HTTP/GET requests. Currently, the modified BOINC client requires this application 

to be installed on the client machine to be able to download thermal records from the 

server. 

The second issue had to do with the volumes of data the host and server have to 

handle when managing thermal information. If a host continuously pulls its entire 

historical availability records from the thermal server prior to sending XML requests 

to the server, the size of the XML data transferred over the network increases quickly, 

depending on the frequency of thermal readings. This may not be a big issue for each 

individual host, but it poses a problem for a server handling multiple hosts’ requests 

on a waiting queue, and to the network traffic. To counter this issue in this project, the 

records retrieved by the hosts were limited to past half hour, i.e. last 30 records with a 

read interval of 60 seconds, prior to any request being made. The reasoning for this 

decision is given in section 8.5, Thermal Scheduler. 

The modified client was tested with a native BOINC server prior to being testing with 

a modified server. Test cases and test results can be found in Appendix 5. 
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8.3 Sample Application & Work Generation 

BOINC has been used to distribute work units from several scientific fields across the 

world, some requiring user intervention while most do not. For the purpose of this 

project, the prime directive was to evaluate the system’s extensibility in alternating 

between scheduling applications at run time, and supporting sensor based thermal 

scheduling frameworks. Thus, the context of the test application was deemed to be 

less relevant compared to its required work cycles and time to completion. 

The test application used was based on one of the sample applications provided by 

BOINC, named uppercase. It simply converts letters of the alphabet from lowercase to 

their uppercase counterpart, where applicable. However, a few modifications had to 

be made to the original application to extend its runtime on the test machines, and to 

make it more CPU intensive. In defining the estimated work cycles (FLOPS) an 

application requires, one has to run tests on a machine and derive the value from the 

runtime and work cycle (FLOPS) capacity of the test machine. The resulting test 

application had runtime of 10 ~ 15 minutes of the test machines.  

A work generating engine, UppercaseWG, was devised to create work units and 

results (jobs) periodically, with randomly generated input, for the test application. 

The engine generated random input data files, and created results to be sent to hosts, 

at periods specified by the user. In the testing environment, where 3 nodes were used, 

10 results were generated at regular intervals per hour, i.e. every 12 minutes. If each 

host took the upper limit of 15 minutes to complete each result, it should be capable 

of handling 3 to 4 results per hour under the best circumstances. With 3 hosts, the 

total number of results that could be processed per hour, under the best conditions, 

was 15 to 18. The gap was there to account for periods of unavailability the hosts 

could have gone through after being assigned a result. The work generation frequency 

of the engine can be altered throughout the testing cycle, based on observed behavior. 

 

8.4 Server System 

The new BOINC server’s main feature was its ability to support different schedulers, 

switching between them at a run time’s notice, and to support thermal data 

processing. This stage centered on altering the workflow of the native scheduler 
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component, and that of its companion application, the feeder, as well as the 

management of thermal information provided by hosts to feed it to external 

scheduling applications. The latter had already been achieved during the first 

semester. 

Both the native scheduler and the feeder coordinate their work activities via status 

flags set on results that reside on the work list/queue populated by the feeder. When a 

new result is added, its status is set to “present”. When the scheduler assigns it to a 

host, the flag is set to “empty” for the feeder to remove it and populate it with a new 

result.  In the modified system, these flags are also being used by the external 

scheduler manager to notify the native scheduler of the hosts to which the results have 

been assigned to. Consequently, the interpretation of the flag status depends on 

whether or not an XS is being used, instead of the native scheduler, especially after a 

change in the scheduler. This stage ended with a beta build of the server, which is was 

used in the test environment. 

 

8.5 External Scheduler 

In order to assess the effectiveness of the modifications made to both client and 

server, a scheduling application was built and attached to the server for the scheduling 

of workunit results created by the UppercaseWG engine, to hosts in the test 

environment. In building this application, there were certain factors that were 

carefully considered. 

Scheduling Factors 

There are 3 factors that were used in judging the work assignment for hosts in the 

scheduling application: work request, fairness, and reliability. 

Work request simply addresses the question of how much work a host is requesting. 

In doing work assignment, the hosts’ capacity has to be compared against the 

estimated work cycle requirements of the results/jobs to be assigned to it. Each host 

makes a request for work in the form of CPU seconds. The results have their work 

cycle requirements expressed in FLOPS. To estimate incremental work assigned to a 

host, given a result/job in seconds, we use the following formula: 
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Where: 

IWA: incremental work assigned by the workunit’s result/job (seconds) 

FPOPS(wu): work cycles required by the workunit  (FLOPS) 

FPOPS(host): work cycles capacity of the host (FLOPS) 

For each workunit result assigned to the host, we add the IWA to its’ total work 

assigned.  

    ∑      

 

   

 

Where: 

TWA: total work assignment 

IWA(k): incremental work assignment at turn k, k = {0, 1, 2… n} 

n: number of workunit results assigned to a host 

This value is checked before each result is assigned to a host, as a way to ensure that a 

host isn’t given more work than it requested. For computers in a dedicated 

environment, the amount of work requested should generally correspond to the 

computer’s full capacity, at a certain point in time, determined by the client 

application. 

 

The second factor, fairness, concerns the fairness of work distribution, given the new 

queue based scheduling framework developed. In the native scheduler, work is 

distributed on first fit, first served basis. Any host requesting work that matches the 

requirements for a specific jobs, gets the task. While using a queue, this is not 

practical. The scheduler runs at predefined regular time intervals, or based on a 

threshold factor that limits the number of hosts of on the waiting queue before the 

scheduler runs. In either case, whenever the scheduler runs, it generally has several 
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hosts on a list waiting for work. To assign work fairly to these hosts in a manner that 

ensures overall project progression, a round robin scheme was used, where workunit 

results were interleaved between hosts on the waiting queue that were capable of 

taking them. The pseudo code for the scheduling scheme is as follows: 

          

 

 

 

 

 

 

 

 

The third factor assessed by the scheduler is the hosts’ reliability. Reliability here is a 

measure of the host’s predicted ability to successfully complete the tasks that it is 

assigned by the scheduler. In the scheduler devised, reliability is estimated based on a 

single factor: hosts’ recent availability. As stated in section 8.2, the logging frequency 

of the thermal server is once every 60 seconds. The thermal server determines the 

hosts’ availability status by using the configured threshold temperature, and logs this 

information to 2 different files: one with for historical records, and a second for recent 

records only. With the frequency set to once every minute, and maxTAGRecords flag 

set to 30, all hosts collect the thermal data pertaining to the past half an hour before 

sending a request to the BOINC server. The reason why only recent thermal 

information was used is that, despite providing insight into trends, historical data does 

not provide as highly accurate estimates of the hosts’ immediate future availability 

with low standard deviations as recent data does. This is supported by forecasting 

principles, which dictate that relevant data in forecasting analysis is generally recent 

data, as opposed to historical data, which is better suited for trend analysis [21][22]. 

The formula for reliability is given below: 

 

foreach wuResult in wuResults: 

   assigned = False 

          

   foreach request in requests:        

                         

   if (request.currentAssignment + wu.workEstimate) <=    

request.workRequested:     

                             

      assign work to host (request) 

      request.currentAssignment += wu.workEstimate 

      assigned = True 

      break             

         

   if assigned == True: 

       //push next host to the front – round robin  

       move host that was assigned work to the bottom of the list 

          

 

 

Figure 10 Round Robin Scheduling Pseudo Code 
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The scheduler has a threshold parameter to assess reliability. This parameter was set 

to 66.7%. Therefore, only hosts that had been available for at least 20 minutes out of 

the past 30 minutes were deemed reliable enough to receive new jobs. Conceptually, 

this factor should assist in predicting whether or not the host will be in a viable 

environment for the coming time. Had the host been under a non-viable period for the 

past 10 out of 30 minutes, it was still deemed viable. However, if it remained in such 

condition progressively over time, the server would become aware of the fact, as the 

host would check in; and the scheduler would not assign it work, because of the hosts’ 

low availability score. The developed scheduler was used in the test environment, to 

assign results/jobs generated by the UppercaseWG engine to the 3 hosts in the setup. 

 

8.6 Dashboard 

The dashboard was one of final stages of development in this project. Its goal was to 

allow people to observe the behavior of the system over time, within the context of: 

temperature logging, hosts’ reliability, and work assignment. The dashboard was built 

as a web based application. It was designed to regularly read the temperature, 

availability, and work assignment logs from the thermal server and the scheduling 

application, compute statistical measures for the day, and display this information in 

an intuitive and meaningful manner to users. Figure 11 shows a snapshot of the 

dashboard, taken March 8, at 2.22PM. 

Figure 11 TAG Dashboard for HPC lab 2 (snapshot) 
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A snapshot of the daily statistics analyzed by the dashboard is shown in Figure 12. 

The table displayed compares the total number of workunits and overall lab 

reliability, measured as an average of all 3 nodes, for that day and the previous one. 

 

 

 

 

 

 

Figure 13 shows the temperature log displayed on the dashboard. The chart shows 

daily minimum and maximum temperatures for the lab, with a highlight on the values 

for March 1
st
, 2014.  

 

Figure 14 shows similar chart: the workunits dispatched dispalyed on the dashboard. 

It maps the hourly count of workunits dispatched to all nodes for each day. The 

snaphost shows the highest value of workunits sent at the peak hour on March 2
nd

. 

Figure 12 Dashboard stats display 

Figure 13 Dashboard temperature chart display: daily minimum and maximum 
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Figure 14 Dashboard workunits dispatched: total units dispatched per hour on different days 

 

With the dashboard display, administrators can have a live feed to the grid’s current 

and past performance. The usage of charts illustrates the behavioral pattern of the 

temperature, and work distribution over time. In addition, the zoom-in feature of the 

charts allows for users to zero in on a particular date and time, and observe the 

temperature readings and work distribution for that particular period alone. 

Another piece of information available to users on the dashboard is the log of work 

assignment by the server, as in Figure 15. 

 

 

 

 

 

 

 

 

  

Figure 15 Dashboard workunits assignment log 
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8.7 Thermal Scheduling: Observations 

The thermal scheduling application designed for the testing environment makes use of 

the concept of reliability presented in section 8.5. The time frame of the data that each 

host provides to the server corresponds to the availability logs of the past half hour 

(30 minutes), from the moment each request is made. The testing deployment began 

operating on the 20
th

 of February 2014. Since then, the system has been logging both 

daily temperatures, and workunits assignments. Figure 15 shows a graph of total 

workunits dispatched during a 15 day period, from March 1 to March 15; and Figure 

16 shows temperature logs for the same time period. 

 

 

Figure 16 Workunits Dispatched, March 1 - March 15 

 

The average number of workunits distribute to the 3 nodes in the environment is about 

800, which gives us a work distribution of about 266 and 267 units per host.   

 

Figure 17 Daily Temperature, March 1 - March 15 
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The logs in Figure 17 show the minimum and maximum temperatures registered 

throughout the day. They do not, however, indicate for how long each temperature 

period lasted, and therefore cannot tell us how long each viable period lasted. The day 

with a highest registered temperature could also be the day with the lowest registered 

temperature. What needs to be assessed, therefore, is the relationship between the 

periods during which the temperature remained under the threshold, as well as the 

periods where it went over, and work distribution, as a factor of reliability.  

To derive this information, we must analyze measured reliability against the 

workunits dispatched, and temperature logs shown in Figures 18 and 19, respectively. 

We shall look at hourly logs for fine detailed analysis. 

 

Figure 18 Reliability vs Workunit dispatchment, March 12 - March 18 

 

 

Figure 19 Hourly temperature, March 12 - March 18 
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The green area under the charts represents time periods when average room 

temperature for the hour was below the threshold of 29° Celsius, and the machines 

were thus considered to be available. Visual observation indicates that the number of 

workunits dispatched and workunit distribution seem to move in tune with each other. 

As reliability remains stable, so does the number of workunits dispatched. When 

reliability drops, the number of workunits dispatched also drops, by the exact same 

degree. If we analyze the temperature logs in Figure 19 and compare them against the 

reliability in Figure 18, we can observe that reliability is directly correlated to the 

temperature. The hours with the highest registered temperature have the lowest 

reliability grades, including 0%, and the hours with the lowest temperature have the 

highest reliability grades, peaking at 100%. 

As indicated earlier, so as long as a machine is deemed unavailable, it does not 

receive any jobs. After being deemed unreliable, when a machine enters a viable 

temperature period, its reliability gradually increases by the minute, and when it 

reaches the threshold condition of 66.7%, it starts receiving work once again, in a 

non-linear fashion, i.e. the number of workunits dispatched to it does not depend on 

the node’s actual reliability score. However, machines with higher reliability are 

placed on top of the work distribution list, and are thus are the first ones to receive 

work. 

 

8.8 Mass Deployment 

With the observations that work can be intelligently assigned on a grid with the 

modified version of BOINC, and developed thermal scheduler, the next issue of 

concern would be mass deployment of client applications to the lab computers on 

campus.  

There are several tools available for mass software deployment, used by system 

administrators and managers. Some of these tools, like Active Directory, PSExec, and 

AutoIt are free, while others are not. Ideally, mass deployment should consist of a 2 

stage process: software repackaging and deployment.  

In first stage, software repackaging, the application’s setup process is re-redesigned so 

as to not require any user input, thus removing the need for the physical presence of 
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the administrator during installation. Some setup applications require the user to 

specify the installation directory, select the packages to be installed, key-in license 

keys, etc. These details have to be pre-configured, so that setup wizard/process will 

not ask the user for them.  

The second stage, deployment, is where the application is actually distributed to the 

target computers and remotely installed. If an application has already been pre-

packaged for a “silent” installation, mass deployment would boil down to copying the 

setup packages to targeted remote machines, and activating them. 

The processes involved in both stages are highly dependent on the actual setup 

program of the target application, and the environment of the target machines, i.e. 

operating system, user privileges, etc. On Windows, applications packaged with the 

native installation wizard framework can easily be configure for silent installs, 

provided that their distributors incorporate the necessary configuration parameters. 

Not all setup wizards, however, provide mechanisms for silent configuration. This, 

unfortunately, is the case of BOINC. There are, nonetheless, alternatives to 

circumventing this shortfall. AutoIt, for example, provides scripting facilities to 

emulate user input on a remote machine, when installs are not possible to configure at 

the setup level. The system allows users to pre-define answers for predetermined 

action steps in the installation process. Below is a sample script that can be used to 

install an early client version of BOINC on a remote machine. 

AutoIt BOINC Installation Script 

#RequireAdmin 

Run("boinc_6.12.34_windows_intelx86.exe") 

WinWaitActive("BOINC - InstallShield Wizard", "Welcome to 

the InstallShield Wizard for BOINC") 

Send("!n") 

WinWaitActive("BOINC - InstallShield Wizard", "License 

Agreement") 

Send("!a") 

Send("!n") 

WinWaitActive("BOINC - InstallShield Wizard", "These are 

the current installation options") 
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Send("{ENTER}") 

ControlClick("BOINC - InstallShield Wizard", "Allow all 

users on this computer to control BOINC", 2598) 

WinWaitActive("BOINC - InstallShield Wizard", "Customize 

installation options") 

Send("!n") 

WinWaitActive("BOINC - InstallShield Wizard", "Ready to 

Install the Program") 

Send("!i") 

WinWaitActive("BOINC - InstallShield Wizard", 

"InstallShield Wizard Completed") 

Send("!f") 

WinWaitActive("BOINC Installer Information", "You must 

restart your system") 

Send("!y")  

 

The script defines actions, e.g. run “boinc_6.12.34_windows_intelx86.exe”, and 

indicates which screens or messages the system should wait for, as well as the 

response it should send or action it should perform once the awaited screen or 

message is displayed. Installation though, is not the only part of mass deployment. 

One also needs to configure the BOINC client machines to connect to a specific 

project. AutoIt can also be used to achieve this purpose. A similar script can define 

how the program should be configured from startup to connect to the target BOINC 

server. 

Run("C:\Program Files\BOINC\boincmgr.exe") 

WinWaitActive("BOINC Manager") 

Send("!t") 

Send("{ENTER}") 

WinWaitActive("BOINC Manager", "Add project or account 

manager") 

Send("!n") 

Send("{TAB}") 
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Send("[PROJECT’s URL]") 

Send("!n") 

WinWaitActive("BOINC Manager", "&Yes, existing user") 

Send("!y") 

Send("{TAB}") 

Send("[USERNAME]") 

Send("{TAB}") 

Send("[PASSWORD]") 

Send("!n") 

WinWaitActive("BOINC Manager", "Project added") 

Send("!f") 

WinClose("BOINC Manager") 

 

With the minor requirements of copying the installation files to the lab computers via 

network shared folders and updating one of the client configuration files, i.e. 

cc_config.xml, the 2 scripts above greatly minimize the effort required for deploying 

client applications onto the campus computer labs.  
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CHAPTER 5  

CONCLUSION AND RECOMMENDATAIONS 

 

 

A grid deployment making use of idle periods of lab computers can make it possible 

for one to leverage vast amount of existing resources, at a low cost; especially for an 

academic institution. However, one needs to concern themselves first, with the 

viability of using such machines, which are placed in non-dedicated environments for 

a greater portion of time than not. 

Green algorithms do not just help minimize energy consumption, but in certain 

contexts, they can help preserve computers by safeguarding them against highly 

potential hazards, such as overheat. If embedded into stable grid frameworks, they 

make it possible to take advantage of freely available resources with less concern over 

hardware damage. Further, making this integration dynamic/pluggable allows for 

many to use the same grid framework to address different environmental concerns. 

One of the primary goals of this project, i.e. the enablement of dynamic scheduling at 

runtime within BOINC, was completed in the first stage, tested, and observed. Both 

client and server machines were modified to support and manage thermal data 

retrieved from a thermal server. The BOINC server also accurately fed this 

information, along with other details of the hosts and workunit results available to a 

developed external scheduling application. The second major goal of the project, 

which was to have a pilot project of the system deployed, was also achieved. With the 

pilot project running, performance of a thermal aware grid distribution system was 

observed and analyzed. Visual evaluation of data showed that the system could 

intelligently assign workload based on the thermal conditions of lab computers. 

A dashboard was developed as a monitoring tool to accurately relay vital information 

from the thermal server and scheduler in real-time. Although the system was not 
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deployed one of the academic laboratories, for organizational reasons, ease of mass 

deployment was also studied, and conclusively determined to be fairly high. 

Despite both primary goals of the system having been reached, there is much room for 

further enhancement. For instance, the application used throughout testing was overly 

simplistic. A more accurate study should consider not only different types of 

applications with greater runtimes and requirements, but also with a fair share of both 

CPU and I/O intensive cycles. Similarly, all hosts used in the testing environment 

were homogenous, and located in the same environment. It would be interesting to 

observe the behavior of the thermal scheduler for a deployment with computers 

located in at least 2 distinct thermal environments, and of different architectures as 

well as platforms. 

Another aspect that could be given priority in future work is the use of more refined 

thermal-aware scheduling algorithms. Although the basic scheduler developed here 

does intelligently assign work load based on hosts’ thermal availability, its efficiency 

has not been compared nor benchmark against that of any existing thermal scheduler, 

seen as that the prime directives of the project were to evaluate the system’s 

extensibility in alternating between scheduling applications at run time, and 

supporting sensor based thermal scheduling frameworks only.  

Finally, to observe actual performance on a larger-scale, the test deployment should 

be expanded to include computers in laboratories that are used for academic purposes 

during the day. Monitoring and evaluating the thermal availability, work distribution 

and reliability of machines in such environment would give greater insight into the 

development of more fine-tuned work scheduling algorithms the grid’s context. It is 

the hope of the author that the work done so far can provide sustainable grounds for 

the enhancements prescribed. 
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APPENDICES 

APPENDIX 1 - WORK BREAKDOWN STRUCTURE 

 

Task # Task Name Duration Start Date Finish Date 

1 Initiating 14 9/25/2013 8:00 10/14/2013 16:00 

2 Identify project title 10 9/25/2013 8:00 10/8/2013 16:00 

3 Submit project title 0 10/9/2013 8:00 
 4 Planning 56 9/25/2013 8:00 12/11/2013 16:00 

5 Develop project extended proposal 26 9/25/2013 8:00 10/30/2013 16:00 

6 Analyze requirements 7 10/30/2013 8:00 11/7/2013 16:00 

7 Specify system modification requirements 3 11/7/2013 8:00 11/11/2013 16:00 

8 Define scope 7 11/11/2013 8:00 11/19/2013 16:00 

9 Verify scope 7 11/11/2013 8:00 11/19/2013 16:00 

10 Develop a schedule 1 10/28/2013 8:00 10/28/2013 16:00 

11 Executing 188 9/25/2013 8:00 6/13/2014 16:00 

12 Feasibility study 7 11/19/2013 8:00 11/27/2013 16:00 

13 System Architecture 14 11/27/2013 8:00 12/16/2013 16:00 

14 Define interfacing requirements 4 12/12/2013 8:00 12/17/2013 16:00 

15 System design 7 12/10/2013 8:00 12/18/2013 16:00 

16 Validate solution 1 12/19/2013 8:00 12/19/2013 16:00 

17 Present solution and feasibility to SV 1 12/20/2013 8:00 12/20/2013 16:00 
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18 Present system conceptual design 1 12/20/2013 8:00 12/20/2013 16:00 

19 Create quality metrics 1 9/25/2013 8:00 9/25/2013 16:00 

20 Build/Modify modules 45 1/8/2014 8:00 3/11/2014 16:00 

21 Perform unit testing 45 1/8/2014 8:00 3/11/2014 16:00 

22 Testing & Evaluation 24 2/18/2014 8:00 3/21/2014 16:00 

23 Integration tests of relevant modules 7 2/18/2014 8:00 2/26/2014 16:00 

24 System testing 4 2/28/2014 8:00 3/5/2014 16:00 

25 Application effectiveness testing 3 3/10/2014 8:00 3/12/2014 16:00 

26 Measure system impact on processes 3 3/11/2014 8:00 3/13/2014 16:00 

27 Define implementation strategy 5 3/18/2014 8:00 3/24/2014 16:00 

28 Closing 25 4/1/2014 8:00 5/5/2014 16:00 

29 Close project 9 4/15/2014 8:00 4/25/2014 16:00 

30 Create report 19 4/1/2014 8:00 4/6/2014 16:00 

31 Submit extended proposal 0 10/30/2013 8:00  

32 Submit interim report 0 12/30/2013 8:00  

33 Submit progress report 0 2/10/2014 8:00  

34 Submit technical report 0 4/14/2014 8:00  

35 Viva presentation 0 4/28/2014 8:00  

36 Submit project dissertation 0 4/28/2014 8:00  

 

 



51 

 

APPENDIX 2 – TEMPLATE XML FILES 

External Scheduler (XS) Output 

<xs_output> 

  <assignment> 

    <host_id>4</host_id> 

    <wu_id>4</wu_id> 

    <result_id>25</result_id> 

  </assignment> 

  <assignment> 

    <host_id>3</host_id> 

    <wu_id>4</wu_id> 

    <result_id>26</result_id> 

  </assignment> 

  <assignment> 

    <host_id>5</host_id> 

    <wu_id>5</wu_id> 

    <result_id>27</result_id> 

  </assignment> 

  <assignment> 

    <host_id>4</host_id> 

    <wu_id>5</wu_id> 

    <result_id>28</result_id> 

  </assignment> 

  <assignment> 

    <host_id>3</host_id> 

    <wu_id>5</wu_id> 

    <result_id>29</result_id> 

  </assignment> 

  <assignment> 

    <host_id>5</host_id> 

    <wu_id>5</wu_id> 

    <result_id>30</result_id> 

  </assignment> 

  <assignment> 

    <host_id>4</host_id> 

    <wu_id>5</wu_id> 

    <result_id>31</result_id> 

  </assignment> 

  <assignment> 

    <host_id>3</host_id> 

    <wu_id>5</wu_id> 

    <result_id>32</result_id> 

  </assignment> 

</xs_output> 
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APPENDIX 3 – THERMAL AWARE GRID SYSTEM DEPLOYMENT DIAGRAM 

Device

Custom AMD Bulldozer Server : Application Server

MySQL : Database System

«schema»
Users

«schema»
Workunits

«schema»
Results

«schema»
Applications

BOINC : Application System

«component»
Feeder

«component»
Native Scheduler

«artifact»
XSM

Device

PC : Windows Client

BOINC Client
HTTP(s): Protocol

DBA

ThermalScheduler : Application System

«component»
External Scheduler

«component»
XS Log

iXSM

Device

Custom Thermal Server : Application Server

ThermalReader

HTTP(s): Protocol

Device

Custom AMD Bulldozer Server : Application Server

Dashboard : Application System

«component»
Visuals

«component»
Analytics

iXSLogThermal Log

iThermalLog

«component»
Uppercase WG
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APPENDIX 4 – SAMPLE LOGS 

Temperature Log 

Day Month Year Hour Minute Temperature 

12 3 2014 0 0 28.06 

12 3 2014 0 1 28.06 

12 3 2014 0 2 28.06 

12 3 2014 0 3 28.0 

12 3 2014 0 4 28.0 

12 3 2014 0 5 28.0 

12 3 2014 0 6 28.0 

12 3 2014 0 7 28.0 

12 3 2014 0 8 28.0 

12 3 2014 0 9 28.0 

12 3 2014 0 10 28.06 

Availability Log 

Day Month Year Hour Minute Availability 

12 3 2014 0 0 1 

12 3 2014 0 1 1 

12 3 2014 0 2 1 

12 3 2014 0 3 1 

12 3 2014 0 4 1 

12 3 2014 0 5 1 

12 3 2014 0 6 1 

12 3 2014 0 7 1 

12 3 2014 0 8 1 

12 3 2014 0 9 1 

12 3 2014 0 10 1 
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Assignments Log 

HostId WorkunitId WorkunitName ResultId Year Month Day Hour Minute Second 

5 5121 wu_uppercase_1_2_5120 9453 2014 3 12 0 16 22 

5 5122 wu_uppercase_1_2_5121 9454 2014 3 12 0 16 22 

5 3869 wu_uppercase_1_2_3868 9456 2014 3 12 0 16 22 

5 3873 wu_uppercase_1_2_3872 9457 2014 3 12 0 16 22 

5 3875 wu_uppercase_1_2_3874 9458 2014 3 12 0 16 22 

5 4419 wu_uppercase_1_2_4418 9459 2014 3 12 0 16 22 

5 5123 wu_uppercase_1_2_5122 9460 2014 3 12 0 16 22 

5 5124 wu_uppercase_1_2_5123 9461 2014 3 12 0 16 22 

5 5125 wu_uppercase_1_2_5124 9462 2014 3 12 0 16 22 

5 4096 wu_uppercase_1_2_4095 7793 2014 3 12 0 16 22 

5 4097 wu_uppercase_1_2_4096 7794 2014 3 12 0 16 22 
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APPENDIX 5 – SYSTEM TESTING: TEST CASES 

Table 1 – System Test Case 1 

Test Case Identifier ST1 

Test Module XSM (Server) 

Purpose 
Verify that the unit can successfully dump hosts’ 

request and available jobs’ data to the xs_input.xml file 

Input  Waiting queue, and Jobs list (on shared memory) 

Expected Output  

Valid XML file is created, named xs_input.xml, with 

valid data of jobs available and data of hosts that have 

sent work requesting 

Intercase Dependencies - 

 

Table 2 – System Test Case 2 

Test Case Identifier ST2 

Test Module XSM (Server) 

Purpose 

Verify that the unit properly calls the user defined 

external scheduling application, and waits for it to 

return control 

Input  

A valid XS on the xscheduler folder, and its full path 

specified in the config.xml file under the, a host 

request 

Expected Output  
Test XS program runs, and generates expected 

xs_output.xml file for the XSM 

Intercase Dependencies ST1 

 

Table 3 – System Test Case 3 

Test Case Identifier ST3 

Test Module XSM (Server) 

Purpose 

Verify that the unit detects when the specified XS 

program is not present, and calls the native scheduling 

sequence 

Input  
Invalid XS path specified in the config.xml file, a host 

request 

Expected Output  Native BOINC scheduler sequence is initiated 

Intercase Dependencies - 
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Table 4 – System Test Case 4 

Test Case Identifier ST4 

Test Module XSM (Server) 

Purpose 

Verify that the unit reads the XS work assignments in 

the xs_output.xml, and assigns jobs to hosts as 

specified by the XS 

Input  

A valid xs_output.xml, with valid job assignments (i.e. 

assignment of available jobs) to hosts on the waiting 

queue 

Expected Output  
XSM assigns jobs to hosts, and hosts receive jobs the 

next time they send a work request 

Intercase Dependencies ST2 

 

Table 5 – System Test Case 5 

Test Case Identifier ST5 

Test Module XSM (Server) 

Purpose 
Verify that the unit logs the timestamp after calling the 

XS application 

Input  
A valid XS speficied in the config.xml file, and a host 

request 

Expected Output  
A file named xs_last_run is created/update with a valid 

timestamp 

Intercase Dependencies - 

 

Table 6 – System Test Case 6 

Test Case Identifier ST6 

Test Module XSM (Server) 

Purpose 
Verify that the unit properly  parses hosts’ availability 

data from their request files 

Input  A valid host request, with thermal availability data 

Expected Output  Thermal data is parsed, and logged 

Intercase Dependencies - 
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Table 7 – System Test Case 7 

Test Case Identifier ST7 

Test Module Client 

Purpose 
Verify that the unit downloads thermal data from the 

thermal server 

Input  A valid thermal profile URL 

Expected Output  Host gets thermal data, and logs it 

Intercase Dependencies  

 

Table 8 – System Test Case 8 

Test Case Identifier ST8 

Test Module Client 

Purpose 
Verify that the unit parses downloaded thermal data, 

and appends it to its work request 

Input  A valid thermal profile URL 

Expected Output  
Hosts appends retrieved thermal data to its work 

request file, request.xml 

Intercase Dependencies ST7 

 

Table 9 – System Test Case 9 

Test Case Identifier ST9 

Test Module Client 

Purpose 
Verify that the unit sends a work request file with 

thermal data appended to it 

Input  
A valid thermal profile URL, and connection with 

thermal-aware server 

Expected Output  
Host sends requests, and receives server response 

successfully 

Intercase Dependencies ST8 
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Table 10 – System Test Case 10 

Test Case Identifier ST10 

Test Module Client 

Purpose 
Verify that the unit receives jobs assigned to it by an 

XS application, upon sending a second work request 

Input  
Two work requests from host to server, interleaved by 

at least 5 seconds 

Expected Output  Host receives jobs from server, assigned by an XS 

Intercase Dependencies ST4, ST9 

 

Table 11 – System Test Case 11 

Test Case Identifier ST11 

Test Module Client, Scheduler (Server) 

Purpose 
Verify that the unit sends completed job results to the 

server 

Input  - 

Expected Output  
Server receives and acknowledges completed jobs from 

a client 

Intercase Dependencies ST10 

 

Table 12 – System Testing Results 

Test Case Count Pass Fail Error 

ST1 5 5 0 0 

ST2 5 5 0 0 

ST3 5 5 0 0 

ST4 5 5 0 0 

ST5 5 5 0 0 

ST6 5 5 0 0 

ST7 5 5 0 0 

ST8 5 5 0 0 

ST9 5 5 0 0 

ST10 5 5 0 0 

ST11 5 5 0 0 

 

 

 


