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ABSTRACT 

 

The procedures of determining the oil compressibility through PVT analyses 

are usually costly and time consuming. Therefore, various empirical correlations 

were designed in order to accurately estimate the oil compressibility. This project 

focuses on designing a model correlation which could accurately predict the oil 

compressibility coefficient above bubble point pressure. The new model correlation 

using the Polynomial GMDH method will be compared in terms of its accuracy and 

reliability with actual PVT data and also current oil compressibility correlation using 

different types of analysis such as trend analysis, group error analysis, statistical 

error analysis and graphical error analysis. A total number of 195 data sets were 

collected from the Mediterranean Basin, Africa, Persian Gulf and the North Sea and 

after data filtration 183 data were used and divided into 3 sections of training, 

validation and testing data sets in a ratio of 2:1:1. Using the Polynomial GMDH 

technique, 3 input parameters were found to be affecting the outputs which are 

Reservoir Pressure, Solution GOR and Bubble Point Pressure. The new model 

correlations were then compared with the other correlations and it surpasses all of the 

other correlations in terms accuracy by having the lowest Root Mean Square Error, 

Average Percent Relative Errors, Average Absolute Percent Relative Error and 

Standard Deviations. Furthermore, it is worth to note that the Absolute Percent 

Relative Error was the main statistical analysis criteria in this study and the 

Polynomial GMDH model obtained the lowest value. Overall, the Polynomial 

GMDH model is a robust model and can be affectively applied within its trained data 

ranges. 
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Symbol    Definition 

co     Oil Compressibility (psi
-1

) 

(
  

   
)T     Slope of isothermal pressure-volume curve 

(
   

   
)T Slope of isothermal pressure-volume formation 

factor curve 

 

(
   

   
)T Slope of pressure-density curve 

 

Rs Gas Solubility (scf/STB) 

 

Rsb Gas solubility at bubble point pressure 

(scf/STB) 

 

T Temperature (°F) 

 

P Pressure (psia) 

 

γgs Corrected gas gravity 

 

γAPI Oil API Gravity (°API) 

 

Tsep Separator Temperature (°F) 

 

Psep Separator Pressure (psia) 

 

cofb Oil compressibility using extension of values 

from bubble point to higher pressure of interest 

 

cofi Oil compressibility using initial pressure to 

estimate oil compressibility at lower pressure 

 

Ei Relative deviation of the predicted value from 

the experimental values 

 

Er Average Percent Relative Error (%) 
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(co) meas Measured oil compressibility (psi
-1
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(co) pred Predicted oil compressibility (psi
-1
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Emin Minimum Absolute Percent Relative Error (%) 



xii 
 

 

 

Emax Maximum Absolute Percent Relative Error (%) 

 

R Correlation Coefficient 



1 
 

CHAPTER 1 

 

INTRODUCTION 

 

 

1.1   Background 

The isothermal compressibility of oil is defined as the fractional change of 

fluid volume per unit change in pressure at constant reservoir temperature and is 

denoted with the symbol co 
[1]

. When pressures exceed bubble point, it can be 

assumed that the coefficient of isothermal compressibility of oil is the same as that of 

the coefficient of isothermal compressibility of a gas. However at pressures below 

the bubble point an additional term has to be added to take into account for the 

volume of gas which evolves from it 
[2]

.  However in this project, it only focuses on 

the isothermal coefficient of oil compressibility above bubble point pressure. There 

are various applications of compressibility such as determining the extension of fluid 

properties from correlations starting at bubble point pressure, to derive a material 

balance equation for under saturated oil reservoirs and to determine the tangent 

compressibility for theoretical work 
[3]

. The basic equation to estimate the coefficient 

of isothermal compressibility of reservoir fluids for a finite change in pressure and 

volume above bubble point pressure is: -  

 

co = - 
 

 
(

  

   
)T               (1.1) 

 

Where,  

co = isothermal compressibility of oil, psi
-1

 and  

(
  

   
)T = slope of the isothermal pressure-volume curve 

 

 The isothermal oil compressibility can also be written in terms of formation volume 

factor, Bo as well as density of oil, ρo as given:- 

co =  -1/Bo(
   

   
)T                 (1.2) 

co =  1/ρo(
   

   
)T                 (1.3) 
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However problems are sometimes encountered when constructing the slope 

of the isothermal pressure-volume curve since the pressure and volume data are 

usually taken from laboratory studies on samples which are taken from the wellbores 

as well as at surfaces. There is a downside to this process as the reservoir samples 

collected might be jeopardized due to human errors which may result in inaccurate 

readings. The cost of taking the samples is also expensive which might not be the 

best of interest of the oil companies. Furthermore, PVT analyses are usually not 

ready when the data are needed and also to obtain an accurate PVT behavior of each 

reservoir fluid is costly and time consuming 
[1]

. Therefore, in cases where 

experimental data are not available, the coefficient of isothermal oil compressibility 

is determined from empirically derived correlations or equation of state. Therefore in 

this project, the main objective is to estimate the coefficient of isothermal oil 

compressibility at reservoir pressure greater than bubble point pressure using Group 

Method of Data Handling.  

 

 

1.2   Problem Statement 

There are several problems which need to be analyzed in the process of 

completing this project. The problem statements include:- 

1. Laboratory PVT analysis are not available whenever fluid properties such as 

coefficient of oil compressibility are needed. 

2. Difficulty in predicting the oil compressibility due to the complexity of the 

relationship between the various parameters involved. 

3. The reliability of the existing oil compressibility correlations have 

limitations.  
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1.3   Objectives and Scope of Study 

The main objective of the project is to come up with a new correlation using 

Polynomial GMDH techniques by modeling it with MATLAB software and compare 

the accuracy of the results with the current available correlations. To reduce the 

complexity of this project, the new correlation will only look at coefficient of 

isothermal oil compressibility above bubble point pressures. 

 

In order to achieve the goal of this project, several objectives were outlined as such: 

1. To model a new correlation using Polynomial GMDH technique utilizing 

MATLAB software by applying the appropriate level of detail. 

2. To test the reliability and accuracy of the new model compared to actual PVT 

data as well as the existing correlations by using several statistical error 

analysis, group error analysis and graphical error analysis.  

3. To identify any problems or constraints faced in modeling or implementing 

the new correlations 

 

 

1.4   Benefits of the Research 

There are three benefits identified by doing this research, those are:- 

1. The new correlation model will assist in the prediction of isothermal oil    

compressibility with reduced dependency on PVT data.  

2. To explore the potential of using Polynomial GMDH techniques in this era. 

3. To determine the potentially best empirical correlations to predict isothermal 

oil compressibility above bubble point pressure.  
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CHAPTER 2 

 

LITERATURE REVIEW 

 

 

2.1   Existing Correlations 

There are several existing correlations developed in order to overcome 

problems faced in the field when laboratory PVT analyses are not available. Several 

correlations were developed by using the fluid properties available in order to 

estimate the coefficient of oil compressibility. However each of these correlations are 

accurate up to a certain degree of accuracy compared to the actual data. 

 

2.1.1   Vasquez-Begg’s Correlation 

Vasquez and Beggs used a total of 4036 experimental data points in a linear 

regression model to correlate the isothermal oil compressibility coefficients using Rs, 

T, °API gravity, γg and p. Their proposed correlations are given below:- 

 

co = 
              (     )                  

    
       (2.1) 

 

Vasquez and Beggs added the adjustment of gas gravity to give a more 

accurate prediction. The proposed relationship is for the adjustment of gas gravity γg 

to the reference separator pressure γgs as follows:- 

 

γgs = γg [1+5.912 (10
-5

)( γAPI)(Tsep - 460)Log(
    

     
) ]        (2.2) 

 

The pressure limits for Vasquez-Beggs correlation are as follows:- 
[5]

 

140.7 ≤ p (psia) ≤ 9514.7 

 

2.1.2   Petrosky and Farshad Correlation 

The Petrosky and Farshad correlation can be used to estimate the oil 

compressibility above bubble point. The correlation was developed using samples 

from the offshore regions mainly in Texas and Louisiana. The authors claim 
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improved results over those done by Standing, Vasquez and Beggs, Glaso and Al-

Marhoun in the Gulf of Mexico region.
[5] 

The correlation is as follows:- 

 

co = [(1.705*10
-7

)(   
       )(  

      )(    
      )(           )(        )]   (2.3) 

 

However there is a range of values which can be utilized by this correlation which 

are:- 
[5]

 

2.464*10
-5

 < co < 3.507*10
-5 

114 ≤ T (°F) ≤ 288 

1700 ≤ p (psia) ≤ 10692 

217 ≤ Rs ≤ 1406 

 

2.1.3   De Ghetto et al Correlations  

De Ghetto et al (1994) characterize the fluid samples used in their studies to 4 

types of oil which are extra-heavy oils (°API ≤ 10), heavy oils (10 < °API ≤22.3), 

medium oils (22.3 < °API ≤ 31.1) and light oils (°API > 31.1). He developed the 

correlations from reservoir fluid samples taken from the Mediterranean Basin, Africa 

and Persian Gulf. 
[5] 

The reported improvements from errors were decreased by five 

percentage points. In contrast to other existing correlations, De Ghetto correlation 

requires the pressure and temperature at the separator. The advantage of these 

correlations is that the oil correlations are more specific for each oil API gravity 

range. The modified correlations are as follows:- 

 

1. Extra-heavy oils (Modified Vasquez-Beggs Correlation) 

co = 
                                          

    
   (2.4) 

 

2. Heavy oils (Modified Vasquez-Beggs Correlation) 

co = 
                                                

    
  (2.5) 
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3. Medium oils (Modified Vasquez-Beggs Correlation) 

co = 
                                                    

    
  (2.6) 

4. Light oils (Modified Labedi’s Correlation) 

co = (           
          

             ) – (1-
  

 
)(         

            ) (2.7) 

 

Where, 

γgeorr = γg [1+0.5912           (
   

     
)      

The oil correlation limits for De Ghetto (Heavy and Extra Heavy Oils) are as 

follows:- 
[5]

 

131.4≤ T (°F) ≤250.7 

1038.49 ≤ p (psia) ≤7411.54 

17.21 ≤ Rs ≤ 640.25 

 

2.1.4   Dinodruk-Christman Correlation 

The correlation proposed by Dinodruk and Christman (2001) predicts the oil 

compressibility values with an average relative error of -0.85% and an average 

absolute relative error of 6.21%.
[1] 

The following correlations are for undersaturated 

oil reservoirs. 

(co)bp = (4.487462368 + 0.005197040A + 0.000012580A
2
) x 10

-6
  (2.8) 

 

Where, 

A = 

(
  

             
           

  
                       (    )                         )

(            (    )
   

            

  
           ) 

 

 

2.1.5   Spivey et al. Correlation  

Spivey et al. (2005) introduced a set of correlations for estimating the 

isothermal compressibility for 3 applications in reservoir engineering which are to 

determine the isothermal compressibility from the bubble point to a pressure of 

interest, to determine the isothermal compressibility from the initial pressure to a 
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pressure of interest and to determine the isothermal compressibility tangent at some 

pressure of interest. [2] 

 

1. Determination of Isothermal Compressibility from Bubble Point to 

Pressure of interest.                                                                                                          

This correlation is used to estimate the oil compressibility using extension of 

values of some fluid properties from bubble point to a higher pressure of 

interest 

ln(cofb) = 2.434 + 0.475z + 0.048z
2
   (2.9) 

z = ∑   
 
         (2.10) 

z = Co,n + C1,n xn + C2,n xn
2
    (2.11) 

 

Table 2.1 shows the coefficients listed to calculate value of zn for each of the 6 

independent variables.  

 

Table 2.1: Coefficients for the cofb Correlation 
[2]

 

Coefficients for the cofb Correlation 

n xn C0n C1n C2n 

1 ln °API 3.011 -2.6254 0.497 

2 ln γgsp -0.0835 -0.259 0.382 

3 ln pb 3.51 -0.0289 -0.0584 

4 ln p/pb 0.327 -0.608 0.0911 

5 ln Rsb -1.918 -0.642 0.154 

6 ln TR 2.52 -2.73 0.429 

 

 

2. Determination of Isothermal Compressibility from Initial Pressure to a 

Pressure of Interest 

This correlation uses the values from isothermal oil compressibility at initial 

pressure, cofb to estimate isothermal compressibility at a lower pressure, cofi. 

 

cofi = 
(    )      (     )      

    
     (2.12) 
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3. Determination of Isothermal Compressibility Tangent at Some Pressure 

of Interest 

This correlation gives the tangent or instantaneous compressibility, co. 

 

co = cofb + (p-pb)cofb (0.475+0.096z)
               

 

  

 
  (2.13) 

 

 

2.2   Polynomial GMDH Technique  

Group method of Data Handling (GMDH) was developed in the late 1960s by 

Ivakhnenko to identify the relationships between nonlinear input and output.
[7]

 The 

GMDH method will generate an optimal structure of the model through successive 

generations of partial descriptions (PDs) of data using quadratic regression 

polynomials with 2 input variables
 [8]

. The disadvantage of this method is that it tends 

to generate complex polynomial for simple data. GMDH also has the tendency to 

generate complex network models when it comes to highly nonlinear systems. Not 

only that, GMDH will not produce a versatile structure if there are less than 3 input 

variables. 
[8] 

The Polynomial Neural Networks (PNNs) uses the concept of the GMDH 

model where it uses polynomials similar to GMDH such as linear, modified 

quadratic, cubic, etc.
[8]

 After the selection of the important input variables followed 

by an order of polynomial are chosen, the vital inputs will be chosen from the 

extracted PDs according to the selected nodes of each layer. Additional layers will be 

generated until the model reaches its optimum state. Optimum state is a state 

whereby any additional layers added will not generate a better prediction value. 

Figure 2.1 shows the overall structure of the PNN. 
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Figure 2.1: Structure of the Polynomial Neural Network 
[8]

 

 

Thus, various techniques have been developed to further improve GMDH 

technique one of them is where it will be combined with Polynomial Neural Network 

which will be currently used in this project which is also known as the Polynomial 

Group Method of Data Handling Technique. It utilizes smart type of regression 

where it will take 3 steps to reach the final output which consists of representation, 

selection and stopping. Representation is a phase whereby the network tries all the 

possible combinations from the input layer in order to achieve the actual oil 

compressibility values. Next is the selection phase whereby the critical parameters or 

parameters which have a large impact on the final output are chosen. These 

selections are done with minimal interference from the user. The iteration process 

starts here where it uses the “regularity criterion”   such as average absolute 

percentage error to reduce the error between the actual and estimated value at each 

layer or iteration within a threshold value.
 [9]

 The codes function in such a way that it 

starts with a simple regression relationship and starts deriving a better representation 

between the input and output with each iteration. Finally is the stopping phase where, 

the network will stop when the new generated regression equations start to have 

poorer prediction performance compared to the previously generated predictions.  
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2.3   Types of Analysis  

2.3.1   Trend Analysis 

To check whether generated model is physically correct and obeying the real 

behavior of the input parameter being used. To test the input parameter, the said 

parameter is set to vary in values where all other parameters are set to a constant 

mean value. A graph is then plotted for the input parameter value against the oil 

compressibility and the trend is observed and analysed.  

 

2.3.2   Group Error Analysis 

To demonstrate the reliability of the developed model where errors were 

quantified by each input and grouped to several classes based on average absolute 

relative error as the indicator. Average absolute relative error was chosen as the 

indicator as it is a reliable indicator for empirical correlations and for the new 

developed model being tested. These is done by grouping the input parameters to a 

few ranges and see the average absolute relative error for each model according to 

the range and decide which model has the lowest average absolute relative error for 

the defined range. 

 

2.3.3   Statistical Error Analysis 

Error analysis to check for the accuracy of the models such as average 

percent relative error, average absolute percent relative error, minimum and 

maximum absolute percent error, root mean square error, standard deviation of error 

and the correlation coefficients. Equations are as below:- 

 

1. Average Percent Relative Error (APE) 

Used to measure the relative deviation from the experimental data and is 

given by the equation:- 

Er = 
 

 
∑   

 
        (3.1) 

 Where Ei is the relative deviation of the predicted value from the experimental 

values and is given by this equation:- 

 

Ei = [
(   )     (  )    

      

]        i = 1,2,3,4,…n  (3.2) 
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Where, 

(co) meas is the measured oil compressibility  

(co) pred is the predicted oil compressibility 

 

2. Average Absolute Percent Relative Error (AAPE) 

Used to measure the relative absolute deviation from the experimental data 

and is given by the equation:- 

Ea = 
 

 
∑    

 
         (3.3) 

This type of statistical error analysis will be used for most of the sections in 

this study as it is a good representation of variability of each sample of data. 

Furthermore, it is easy to calculate and easy to interpret as it is in percentage units. 

 

3. Minimum Absolute Percent Relative Error 

Emin =       
    |     (3.4) 

 

4. Maximum Absolute Percent Relative Error 

Emax =       
    |     (3.5) 

 

5. Root Mean Square Error (RMSE) 

RMSE is used to measure the dispersion around the zero deviation and is 

given in the equation below:- 

RMSE =√ 
 

 
∑   

  
          (3.6) 

 

6. Standard Deviation 

Standard deviation is used to measure the dispersion and is given in the 

equation below:- 

SD =   √ ∑
  ̅                   

 

   

 
       i = 1,2,3,4 ..n 

where,  

xi errors = (co)meas – (co)pred 
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7. Correlation Coefficient  

It is used as a measure of comparison of the actual value to the predicted 

value and is defined by the equation below:-  

 

 R=√  
∑  (   )              

   

∑  (   )        ̅̅ ̅̅ ̅  
   

 

Where, 

  ̅̅̅̅
  = 

 

 
∑           

 
   I 

The R value can vary from 0 to 1 whereby the closer the value is to 1 the 

better or more accurate the correlation is to the actual value whereas for a value of 0 

means there is no correlation at all among the independent variables. Therefore the R 

value is a good indicator for a goodness of fit. 

 

2.3.4   Graphical Error Analysis 

This type of analysis uses visualization to analyse the performance and 

accuracy of the correlation models. There are 3 types of graphical error analysis 

utilized in project which are the cross-plots, error distribution and the residual 

analysis. 

 

1. Cross-plots 

This type of analysis is used to compare the predicted values and the actual 

values by plotting the predicted values against the latter in a cross plot form and with 

the aid of a 45° straight line drawn to indicate the perfect correlation line. The closer 

the unity slope line is to the 45° straight line the more accurate the prediction is to the 

actual values.  

 

2. Error Distributions 

This type of analysis is done to observe the error distribution in the form of 

histograms. The normal distribution curve will be fitted on the graph and the errors 

are considered normally distributed if the mean around the 0% and the standard 

deviation is equal to 1.0. This is a good indicator to observe if the model have 

skewed error distributions. 
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3. Residual Analysis 

This type of analysis shows the relative difference of the measured with the 

actual value around the zero line to verify if the models have error trends. This type 

of analysis is also good to check for model deficiencies. 
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CHAPTER 3 

 

METHODOLOGY 

 

 

3.1   Project Planning 

After defining the problems and objectives that need to be achieved in 

Chapter 1, the next step is conducting the literature review on publications, previous 

works and books relevant to the project. The time allocated for each section is 

sufficient in order to meet with the project dateline for each chapter. For the studies 

done by previous authors, most of the information is obtained from books and 

journals which can be found in the Information Resource Centre (IRC) as well as 

websites.  

        Once a better understanding of the methods to determine oil coefficient is 

attained, the next steps to determine the important parameters from the existing 

methods which will be used as a screening process in our methodology section. After 

writing the methodology, the next step is data collection and the simulation process. 

For the Chapter 4 which is the results and discussion section, the new correlation is 

compared with the existing correlations using several graphical, statistical and group 

error analysis.  The final Chapter 5 is where the recommendations and conclusions 

are summarized. 

 

 

3.2   Project Resources 

Resources are defined as an input required by an individual to generate the 

desired output. It can vary in different forms such as machine, man and money. Thus, 

it is important to identify the resources needed for the implementation of the work 

before taking in account the magnitude of the project. Since the type of project 

conducted is a simulation project, the amount of resources needed is limited.. Given 

that there is no need for purchasing of materials in this project, resources such as 

money or capital is not critical and thus will not be discussed. 
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3.3   Equipment/Software Simulation Software (MATLAB 7.10.0 r2010a) 

 Since there is no need for physical experimentation in this project, the main 

equipment used in this project is the author’s laptop. However, for the simulation 

stage, a simulation package (MATLAB 7.10.0 r2010a) was employed to carry out 

these activities. MATLAB is software which utilizes a high-performance language 

for technical computing. It integrates computation, visualization and programming to 

solve problems and the solutions are expressed in mathematical notations. The 

typical uses of the software include: 
[6] 

 

1. Mathematics and Computation 

2. Developing Algorithms 

3. Modelling, simulation and prototyping 

4. Data analysis, exploration and visualization 

5. Scientific and engineering graphics 

6. Application development which includes the Graphical User Interface 

building 

 

MATLAB allows solving of many technical computing problems specifically 

those using matrix and vector formulation in a fraction of time compared to other 

non-interactive language software. For this project, MATLAB is used to come up 

with the most suitable correlation by applying the GMDH Polynomial Method and 

using the critical parameters to determine oil compressibility with the highest 

accuracy above bubble point pressure compared to actual value using a set of PVT 

data. 

 

 

3.4   Parameters Screening 

Table 3.1 shows the screening of existing correlations done by various 

authors of 5 different correlations, namely Vasquez-Beggs, Petrosky and Farshad, De 

Ghetto, Dinodruk-Christman and Spivey. The all 5 correlations are listed out and the 

parameters used are identified and summarized in the table. Then the parameters that 

are used by 2 or more authors are identified as crucial parameters which will be used 

in the simulation process using MATLAB. To identify these parameters, it is done 

manually by selecting only parameters used by the authors and the parameters that is 
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overlapped by more than 2 types of correlations is then selected as the critical 

parameters.  

 

Table 3.1: Screening of Existing Criteria 

 

Y = Parameters used 

 

Based on the screening criteria, 8 critical parameters were identified which 

are the reservoir temperature, reservoir pressure, bubble point pressure, API gravity, 

gas specific gravity, solution GOR, separator temperature and separator pressure. 

Therefore, the using the Polynomial GMDH Method, MATLAB will utilize these 8 

inputs and determine the number of critical parameters used to determine the best 

correlation by generating a relationship between the input and the output variables.  
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3.5   Project Process Flow 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Project Process Flow  
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1. Problem Formulation 

It is essential to first understand the problem statement. If the problem 

statement was developed by the analyst or in this case the author, then it is essential 

for the author to understand and agree with the formulation. In order to achieve the 

main goal of this project, 3 problems statements identified. 

 

2. Setting of Objectives and Overall Project Plan 

The second stage is to come up with the objectives and overall project plan 

where 3 main objectives were set. These objectives will assist the process of solving 

the problem statement set earlier. In setting the overall project plan, other aspects 

must be put into considerations such as the cost of this study and also the time aspect 

which includes the duration to complete this project.  

 

3. Data Collection 

The purpose of this project is for the validation of numerical predictions 

using MATLAB software with experimental measurements acquired from PVT data. 

The data collection is a tedious process where the data of the crucial parameters need 

to be collected from dependable sources. The source of the data is taken from an SPE 

paper consisting of 195 crude oil samples from the Mediterranean Basin, Africa, the 

Persian Gulf and the North Sea. 
[11] 

It is necessary to begin data collection at the early 

stages of the project as it takes an enormous amount of time to get the suitable data. 

The data sets used in this study is in APPENDIX A. 

 

4. Data Partitioning 

Data partitioning is a phase whereby the total number of data are divided 

accordingly to this ratio of 2:1:1 which are training, validation and testing data sets 

respectively. Training data is the main data sets which will be utilized by the 

software to develop and adjusts the weights in the network, thus the highest amount 

of data is given to this particular data set. As for validation data set, it is used during 

the training phase to ensure the optimum generalization of the developed network.
[9]

 

The test data set is however used for examining the final performance of the network 

and it is not seen by the network during the training phase. The testing data sets are 

also used for comparing the performance of existing correlations to the developed 
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Polynomial GMDH model as this data set is independent as it is not used to develop 

the model. Thus, for this project, the number of data allocated for each sets are 91, 46 

and 46 for training, validation and testing data sets respectively. 

 

5. Data Filtration 

Data filtration also involves removing data that is incomplete as well as 

outliers. Outliers will affect the output of the generated model and is usually caused 

by noise when measuring. Another reason of anomalies can be due to errors or 

improper methods to collect these data. Outliers are usually filtered using linear 

regression as shown in Figure 3.2. The solid line shows the most ideal fit for the data 

while the dotted line shows the confidence level.
[9]

 The dot in black is the outlier 

point which is removed from the main data sets. A total of 2 data sets were removed 

due to outliers and an additional 10 data sets were removed due to missing data. 

Outliers are identified by running the data sets for all existing correlations as well as 

the newly developed model and values which have AAPE value of more than 40% 

for all of the correlations are then identified as outliers. Missing data on the other 

hand are data sets which are incomplete for example data sets which have missing 

bubble point pressure, solution GOR, etc. Thus from an initial 195 data sets, 183 data 

sets were used in this project after data filtration. 
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Figure 3.2: Linear Regression Method to Determine Outliers 

 

6. Building the Polynomial GMDH model 

To build the Polynomial GMDH model, firstly the data which was earlier 

screened were used as the input parameters. There are 8 input parameters selected. 

The source code were obtained from Jekabsons (2010) and were tested using 

MATLAB 7.10.0 (R2010a). The detailed model input and output notions were 

defined in APPENDIX B.  

 

7. Optimizing the Polynomial GMDH Model 

The codes are constantly modified in a trial and error basis in order to achieve 

the best performance and true trend. 

 

8. Selecting Best Model 

Models are then selected based on the optimum performance as well as the 

true trend analysis. True trend analysis is done by varying the crucial parameters and 

fixing the other parameters to see whether these parameters follow the actual 

behavior or trend. The behavior trend is how the parameter for example the oil 

compressibility changes with a change in pressure. If an increase in reservoir 
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pressure results in a decrease in oil compressibility. Thus it can be concluded that it 

is physically correct.  

 

9. Comparing Networks Output with Actual Value Correlations   

Once the optimum model is obtained, the values are then compared with the 

actual measured values obtained from PVT data. Different types of analysis are done 

to determine its accuracy such Statistical Error Analysis and Graphical Error 

Analysis. 

 

10. Comparing Networks Output with Current Correlations 

The predicted outputs are compared with the current existing correlations 

using various Statistical Error Analysis methods with the Average Absolute Percent 

Relative Error (AAPE) being the main criteria. 

 

11. Reporting and Analysis 

        At this stage, the oil coefficient generated using Polynomial GMDH methods 

are then compared and analysed with the current correlations to determine its 

reliability and accuracy. Types of analysis include Group Error Analysis. 
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3.6   Modeling Process Flow 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Modeling Process Flow  
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1. Setting default Polynomial GMDH codes 

The Polynomial GMDH codes are inputted into the MATLAB software and 

modifying the codes based on the project. 

 

2. Debugging 

The codes are then debugged for errors which prevents the network from 

proceeding further. 

 

3. Model Run 

Model is then put to an initial run to see if it can perform error free and the 

graphs produced are observed for errors or strange patterns. 

 

4. Optimizing Codes 

The codes are optimized in a trial and error basis to obtain the optimized 

performance as well as obeying the true trend. 

 

5. Setting Of Parameters for Trend Analysis 

Parameters are set in order to produce graphs for trend analysis. Usually the 

parameter being investigated is allowed to vary while the remaining parameters are 

set to the constant mean value. 

 

6. Model Run 

The model is run to observe whether it reaches optimum performance and 

obeying true trend. Optimum performance is in terms of correlation coefficient and 

the graphical error analysis. 

 

7. Selection of Best Model 

The best models based on optimum performance are then selected for 

analysis purposes in the next phase of the project. 
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CHAPTER 4 

 

RESULTS AND DISCUSSION 

 

 

4.1   Introduction 

In this chapter, firstly the trend analysis is done to ensure the model is 

physically correct. Then, the results from the generated model by the Polynomial 

GMDH method will be analysed by the statistical and graphical methods. The 

Polynomial GHDH method will then be compared with the 5 existing correlations 

which were mentioned earlier. The method of comparison would be the group error 

analysis. Then the reliability of this new generated model will be discussed 

comparing with the current correlations. 

 

 

4.2   Polynomial GMDH Model Run 

The MATLAB software was used to build the GMDH model. The model 

consists of 2 layers and 28 neurons were tried in the first layer and only 2 neurons are 

included at the end of first layer run. As for the second layer, one neuron was 

included as per default and that is the oil compressibility. During the run, 3 input 

parameters have shown significant impact on the final oil compressibility predictions 

which were Reservoir Pressure, Solution GOR and Bubble point Pressure. The 

selections of these inputs are done with minimal interference of the user as it was 

done from the mapping of values inside the network to come up with the closest 

actual oil compressibility values. Figure 4.1 shows the schematic diagram of the 

Polynomial GMDH model. 
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Figure 4.1: Schematic Diagram of Polynomial GMDH Model 

 

4.3   Summary of the Model Equation  

The 2 layers from the GMDH Polynomial model are as follows:- 

 

Layer number 1 

Number of neurons: 2 

 

 

 

Where, 

 

 

 

P= Reservoir Pressure 

Pb = Bubble Point Pressure  

Rs = Solution GOR 
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Layer number 2 

Number of neurons: 1 

 

 

Where,  

 

 

co = oil compressibility (psia)
-1

 

 

 

4.4   Trend Analysis for the GMDH Polynomial Model 

Trend analysis is to ensure that the model is physically correct. Thus, 2 of the 

crucial input parameters were run and only the parameters tested is varying while the 

rest of the parameters are set constant. The trend is plotted against oil compressibility 

to see if the behavior of the parameters follows the true trend of the actual behavior. 

The 2 input parameters were Reservoir Pressure and Solution GOR. 

For reservoir pressure against oil compressibility in Figure 4.2, it shows the 

true trend whereby as reservoir pressure increase, the oil compressibility decreases. 

This shows the real relationship between pressure and oil compressibility assuming 

all data points of reservoir pressure is above bubble point pressure. 
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Figure 4.2: Reservoir Pressure vs Oil Compressibility  

 

As for the trend of solution GOR against oil compressibility as shown in 

Figure 4.3, the oil compressibility is increasing with an increase in solution GOR. 

This behavior trend is also true as more gas is in the solution thus gives an increase 

in oil compressibility. However one of the correlation study done by Ahmed show a 

decrease in oil compressibility with increase solution GOR as shown in Figure 

4.4.
[10]

 Therefore, it can be safely concluded that the trend analysis for solution GOR 

vs Oil compressibility is also obeying the real physical behavior. 
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Figure 4.3: Solution GOR vs Oil Compressibility  

 

 

Figure 4.4: Correlation Trend by Other Authors 
[10]
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4.5   Group Error Analysis  

This analysis was done to show the reliability of the new model compared to 

the current existing correlations. For this analysis, the average absolute relative error 

was used to evaluate the accuracy of all the empirical correlations as well as the 

polynomial GMDH model. This is done to the 3 crucial input parameters selected 

earlier by the GMDH Polynomial Method. The input parameter is grouped into 

different ranges and is plotted with corresponding values attained by the average 

absolute relative error for the oil compressibility for each data set. 

 

 

Figure 4.5: Statistical Accuracy for Oil Compressibility for Different Pressure 

Range  

 

Figure 4.5 shows the AAPE for different pressure range and the GMDH 

Model shows a reasonable low AAPE for all pressure range. For the lowest pressure 

range which was from 1000 to 2500psia, the Spivey correlation model has the lowest 

AAPE value and the GMDH model is ranked second. For the next pressure range 

which was from 2500 to 4000 psia, the Spivey model was still the best with the 

lowest AAPE value followed by the GMDH model. However for the following 

pressure ranges which was from 4000 to 5500 psia, De Ghetto correlation model now 

has the lowest AAPE value followed by GMDH model. For the final pressure range 
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which is at the higher pressure range, the GMDH model now has the lowest AAPE 

value far outranking the other correlations with a big margin. Thus the GMDH model 

is much stable compared to the other correlations as the AAPE for all pressure ranges 

does not exceed 20%. 

 

 

Figure 4.6: Statistical Accuracy for Oil Compressibility for Different Solution 

GOR Range  

 

In Figure 4.6, the models are now compared with the ranges in solution GOR 

whereby for the lowest solution GOR range from 0 to 500 scf/STB, Spivey has the 

lowest AAPE followed by GMDH model coming second. For the next solution GOR 

range from 500 to 1000 scf/STB, Spivey model still has the lowest AAPE followed 

by De Ghetto and GMDH model coming third. As for solution GOR range from 

4000 to 5500 scf/STB, De Ghetto correlation model has the lowest AAPE followed 

by Petrosky and Farshad, Spivey, Dinodruk and Christman and GMDH model 

coming at 5
th

. In terms of solution GOR ranges, although GMDH model did not 

achieve the lowest AAPE value in all of the ranges, it outperforms the existing 

correlations at the lowest and highest limits of solution GOR. 

 

0

10

20

30

40

50

60

70

80

0<Rs≤500 500<Rs≤1000 1000<Rs≤1500 1500<Rs≤2000 

A
v
er

a
g
e 

A
b

so
lu

te
 P

er
ce

n
ta

g
e 

R
el

a
ti

v
e 

E
rr

o
r 

(%
) 

 

GMDH Model Vasquez Beggs

Petrosky and Farshad De Ghetto

Dinodruk and Christman Spivey



31 
 

 

Figure 4.7: Statistical Accuracy for Oil Compressibility for Bubble Point 

Pressure Range  

 

In Figure 4.7, the AAPE is compared to the bubble point pressure ranges and 

for the low bubble point range of 0 to 1500 psia, Spivey has the lowest AAPE 

followed by the GMDH model. For the second range of bubble point pressure from 

1500 to 3000psia, Spivey still has the lowest AAPE with GMDH model coming at 

4
th

 lowest after Petrosky and Farshad and De Ghetto correlations. For the following 

bubble point pressure range which was from 3000 to 4500 psia, GMDH model is the 

5
th

 lowest where Spivey is having the lowest AAPE. However for the final range of 

bubble point pressure which was from 4500 to 7000 psia, the GMDH model obtained 

the lowest AAPE value. This shows that the GMDH model is also stable if bubble 

point pressure ranges are used as the limits for low and high bubble point pressure 

still displayed good AAPE values. 
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4.6   Statistical and Graphical Analysis  

 For statistical error analysis, the results are tabulated in Table 4.1 in terms of 

Absolute Percent Relative Error (Er), Average Absolute Percent Relative Error (Ea), 

Minimum Absolute Percent Relative Error (Emin), Maximum Absolute Percent 

Relative Error (Emax), Root Mean Square Error (RMSE), Correlation Coefficient (R) 

and Standard Deviation (SD). Graphical Error Analysis is used to visualize the 

performance of the Polynomial GMDH model compared to other current correlation 

models and these includes cross-plots, error distribution and residual analysis. 

 

Table 4.1: Comparisons Of Statistical Error Analysis For Polynomial GMDH  

      Model (Training, Validation and Testing) 

Parameters Data Sets 

 

Training Validation Testing 

 

Ea 15.45 15.81 12.08 

Er -3.30 

 

-5.08 

 

-2.91 

 

EMax 91.98 

 

66.49 

 

31.33 

 

EMin 0.54 0.17 0.11 

RMSE 21.08 

 

21.88 

 

14.64 

 

R “fraction” 0.94 

 

0.94 

 

0.96 

 

SD 2.27E-06 

 

3.05E-06 

 

1.94E-06 

 

 

For the 3 data sets used, the results from the statistical analysis does not show 

any unique trend as all 3 data sets showed reasonable good results in terms of RMSE, 

correlation coefficient and standard deviation. The testing data set are independent 

from the training and validation data sets. Thus the values seen for the testing data 

set shows the performance of the GMDH model. 
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1. Cross-Plots Analysis  

 

 

Figure 4.8: Cross plot for Predicted vs Measured Oil Compressibility for 

Training Data Sets 

 

Figure 4.8 shows the cross plots for the training data sets of the GMDH 

Model and a correlation coefficient of 0.94042 was obtained. As can be seen from 

the cross plots, the values of predicted oil compressibility is very close to the ideal 

correlation line which is set at 45° at lower oil compressibility values. This can mean 

that at lower compressibility values, the GMDH model has a more accurate 

prediction of oil compressibility. However, the cross plots are not the only indication 

of accuracy as it is just a visualization as it does not give a clear insight on the actual 

error trends. 
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Figure 4.9: Cross plot for Predicted vs Measured Oil Compressibility for 

Validation Data Sets 

 

The validation set was introduced to the training of the model to avoid 

overtraining.
[9] 

In Figure 4.9, the cross plots are used to compare the validation data 

sets and a correlation coefficient of 0.942 was obtained which was slightly higher 

compared to the one obtained using the training data sets. As can be seen from the 

trend, it also shows a good representation of oil compressibility at the lower oil 

compressibility range and not so accurate representation at a higher oil 

compressibility range. 

 

Figure 4.10: Cross plot for Predicted vs Measured Oil Compressibility for 

Testing Data Sets 
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As for the testing data sets, these data are not seen by the network during the 

training process, thus it can be considered independent and the values here can show 

the true trend of the GMDH model. From Figure 4.10, the measured and predicted 

oil compressibility shows the highest correlation coefficient compared to its earlier 

counterparts with a value of 0.95714. Same trend with the earlier 2 data sets can also 

be observed at lower oil compressibility values where it shows higher tendency 

towards unity compared to higher oil compressibility values. 

 

 

Figure 4.11: Comparison of Correlation Coefficient, Fraction (R)  

 

Figure 4.11 shows the comparison in terms of correlation coefficient 

whereby and the data sets used for these comparisons come from the testing data 

sets. The Petrosky and Farshad correlation model gives the highest value of 0.96 

followed by the GMDH model coming second at 0.957. However this comparison is 

not very accurate as it does not take into account the relative errors between actual 

and predicted values. Hence, the AAPE values are inserted as reference to give a 

clearer graphical representation of the correlation coefficient, R. The GMDH Model 

has the second highest correlation coefficient however it does have the lowest AAPE 

value which gives it an advantage over the Petrosky and Farshad correlation as its 

AAPE is 19 compared to 12.07 of the GMDH Model. 
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Figure 4.12: Comparison of Average Absolute Percent Relative Errors (%) 

 

The comparison for average absolute percent relative errors (AAPE) is shown 

in Figure 4.12 and again GHMD model has the lowest value of 12.07% followed by 

Spivey with 13.26%. This statistical analysis is the main criteria used in this project.  

Thus, this means that the error from actual value of the GMDH model is the smallest. 

 

 

Figure 4.13: Comparison of Root Mean Square Errors 
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In Figure 4.13, a comparison is done in terms of RMSE and the GMDH 

model has the lowest value of 14.63%. This means that the GMDH model has the 

lowest data dispersion around the zero deviation compared to other correlation 

models. Spivey correlation comes second with an RMSE value of 19.869%. 

 

 

Figure 4.14: Comparison of Standard Deviation, SD (psi
-1

) 

 

In Figure 4.14, a comparison in terms of Standard Deviation was done and 

the GMDH Model obtained the lowest value of 1.94E-06 psi
-1

 followed by Petrosky 

and Farshad. This means the values obtained by the GMDH model are not as 

dispersed compared to the other correlations. However the Spivey correlation shows 

quite a high standard deviation value this time with a value of 3.54E-06 psi
-1

. 

Although Spivey correlations showed good results in the AAPE and RMSE, the SD 

of the Spivey correlation is considerably high means the values are quite dispersed. 
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Table 4.2: Statistical Analysis of GMDH Model against Other Correlations  

Model Name Statistical Feature 

 

Ea Er EMax EMin RMSE R SD 

 

Vasquez Beggs 23.39 

 

6.78 

 

128.64 

 

0.78 

 

31.62 

 

0.90 

 

3.04E-06 

 

Petrosky and 

Farshad 

19.00 

 

5.33 

 

61.86 

 

0.64 

 

25.81 

 

0.96 

 

2.07E-06 

 

De Ghetto 35.75 

 

30.89 

 

260.53 

 

0.05 67.65 0.92 

 

3.71E-06 

 

Dinodruk and 

Christman 

28.57 

 

-23.72 

 

132.83 1.62 

 

40.34 0.91 

 

3.10E-06 

 

Spivey 13.26 

 

-8.20 

 

70.53 

 

0.25 

 

19.87 

 

0.94 

 

3.54E-06 

 

GMDH Model 12.07 

 

-2.88 

 

31.35 

 

0.06 

 

14.63 

 

0.96 

 

1.94E-06 

 

 

 

Table 4.2 is the summary of the statistical analysis done between GMDH 

model and the other correlations. It can be seen from the table that the GMDH Model 

gives a good correlation trend with having the lowest values in terms of Ea, Er, EMax, 

EMin, RMSE and Standard Deviation. This means that the values predicted by the 

new GMDH model is consistent as it does not produce outliers or values which are 

too far out of range to the actual value which can be seen from the minimum and 

maximum average percent relative error. The values are the least dispersed which 

can be seen from RMSE and SD values.  
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2. Error Distribution Analysis  

 

Figure 4.15: Error Distribution for Training Set (Polynomial GMDH Model) 

 

 

Figure 4.16: Error Distribution for Validation Set (Polynomial GMDH Model) 

 

 

Figure 4.17: Error Distribution for Testing Set (Polynomial GMDH Model) 
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Figure 4.15 shows the error distribution for the training sets of the 

Polynomial GMDH Model. As can be seen from the figure, there is a slight shift of 

mean of errors to the negative side of the plot. From Figure 4.16, the mean for the 

error distribution for the validation set is slightly skewed to the positive side of the 

plot. However for the testing data sets as shown in Figure 4.17, the mean of the error 

distribution of about less than 5% is towards the negative side of the plot. From these 

3 Figures, it can be observed that there is no trend for the error distribution to go 

towards the negative or positive side as the bell curve for all 3 data set peaks at zero 

error. 

  

Table 4.3: Evaluating Model Performances in Terms of Average Absolute    

                  Percent Errors and Correlation Coefficient 

Model Name Statistical Feature 

 

Average Absolute 

Percent Errors, Ea 

Correlation 

Coefficient, R 

Rating 

GMDH Model 12.07 

 

0.957 

 
1 

Spivey 13.26 

 

0.942 

 
2 

Petrosky and 

Farshad 

19.00 

 

0.960 

 
3 

Vasquez Beggs 23.39 

 

0.895 

 
4 

Dinodruk and 

Christman 

28.57 

 

0.909 

 
5 

De Ghetto 35.75 

 

0.921 

 
6 

 

 

To rank the performances of each model, the model performances in terms of 

AAPE and Coefficient Correlation as well as RMSE and Standard Deviation are 

summarized in Table 4.3 and 4.4 respectively. The reason why AAPE is compared 

together with correlation coefficient is due to the nature of estimating the correlation 

coefficient as there are cases whereby, the values are parallel to one another and it 

also displays a perfect correlation which is 1. Thus the purpose of the AAPE is to 

verify the reliability of the correlation coefficient. For the first evaluation, the 

GMDH model is the best by having the lowest AAPE and the second highest 

correlation coefficient followed by the Spivey correlation ranked at second place. 
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GMDH model is placed at rating 1 due to the fact that the AAPE of the GMDH 

model is far lower than Petrosky and Farshad which has the highest correlation 

coefficient. This proves that the correlation coefficient of Petrosky and Farshad does 

not display the actual situation. 

 

Table 4.4: Evaluating Model Performances in Root Mean Square Errors and  

                  Standard Deviation 

Model Name Statistical Feature 

 

Root Mean Square 

Errors 

Standard Deviation  Rating 

GMDH Model 14.63 

 

1.94E-06 

 
1 

 

Spivey 19.87 

 

3.54E-06 

 
2 

Petrosky and 

Farshad 

25.81 

 

2.07E-06 

 
3 

Vasquez Beggs 31.62 

 

3.04E-06 

 
4 

Dinodruk and 

Christman 

40.34 3.10E-06 

 
5 

De Ghetto 67.65 3.71E-06 

 
6 

 

 

 For evaluation in terms of RMSE and Standard Deviation, the GMDH model 

is again the best model as it is having the lowest RMSE as well as Standard 

Deviation followed by Spivey coming second again. This is a measure of dispersion 

where RMSE is the measure of dispersion around the zero and SD is the measure of 

dispersion. GMDH model attained the best rating which means the values predicted 

by the model is not as dispersed compared to the other existing correlations. 

 

3. Residual Analysis Error Distributions 

The residual analysis error distributions are to check for model consistency. It 

is the difference between the predicted and measured value and is plotted with a zero 

line to see where the error values are more distributed to the negative or positive 

side. Figure 4.18, 4.19 and 4.20 shows the error distribution for the training, 

validation and testing data sets of the GMDH Model respectively.  
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For the training data sets in Figure 4.18, the minimum and maximum 

residual errors are -6.9E-06 and 5.26E-06 respectively. As for the validation data sets 

in Figure 4.19, the minimum and maximum residual errors are -8E-06 and 1.4E-05 

respectively and the testing data sets shown in Figure 4.20 are having minimum and 

maximum residual errors of -5.5E-06 and 3.86E-06 respectively. The residual error 

shown by these 3 figures doesn’t seem to show strong tendency to skew to the 

positive or negative sides. 

 

 

Figure 4.18: Residual Graph for Training Set 

 

 

Figure 4.19: Residual Graph for Validation Set 
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Figure 4.20: Residual Graph for Testing Set 

 

 

 

Figure 4.21: Comparison of Residual Errors of GMDH Model with Existing 

Correlations 
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Table 4.5: Residual Limits of Polynomial GMDH Model against Other  

    Correlation Models 

Model Name Residual Limits 

 

Maximum Minimum 

  

Vasquez Beggs 4.82E-06 -1.03E-05 

 

Petrosky and 

Farshad 

4.10E-06 

 

-6.07E-06 

 

De Ghetto 6.67E-06 

 

-1.28E-05 

 

Dinodruk and 

Christman 

1.21E-05 

 

-5.14E-06 

 

Spivey 1.61E-05 

 

-2.47E-06 

 

GMDH Model 3.86E-06 

 

-5.51E-06 

 

 

 

Figure 4.21 shows the residual limits of Polynomial GMDH model compared 

with the existing correlations. Table 4.5 summarizes the values of maximum and 

minimum residual limits of the GMDH model against all investigated correlation 

models. From the table, it can be seen that Spivey shows the highest maximum 

residual limit of 1.61E-05 and GMDH model has the lowest maximum residual limit. 

As for the minimum residual limits, De Ghetto has the highest minimum residual 

limit of -1.28E-05 and the GMDH Model is ranked 4
th

 highest while Spivey is 

having the smallest minimum residual limit. The residual limits shows how far off 

the predictions of the model compared to the actual values. The larger the range, the 

higher the tendency for the model to have inconsistent predictions. 
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4.7   Testing Data Set 

Table 4.6 shows the data ranges used for the all the correlations being 

investigated which was the testing data set. The data range is fairly wide thus making 

it a reasonable set of data to ensure no set of data is focused or gathered in a certain 

range. 

 

Table 4.6: Data Ranges for Testing Data Set 

Data 

Range 

Temeprature 

(°F) 

 

Pressure, 

(Psia) 

 

Bubble 

Point 

Pressure 

(Psia) 

Oil °API 

Gravity 

 

Gas 

Specific 

Gravity 

 

Oil Specific 

Gravity 

 

Min 105.80 

 

1038.49 

 

171.15 

 

6.50 

 

0.62 

 

0.80 

 

Max 305.10 

 

7411.54 

 

6613.82 

 

45.40 

 

1.52 

 

1.03 

 

 

Table 4.6: Data Ranges for Testing Data Set (continued) 

Data 

Range 

Separator 

Gas 

Specific 

Gravity 

Gas 

Solubility 

(scf/STB) 

Oil Volume 

Formation 

Factor 

 

Separator 

Temperature 

(°F) 

Separator 

Pressure 

(Psia) 

Min 0.61 

 

54.13 

 

1.06 

 

68.00 

 

14.50 

 

Max 1.52 

 

1897.08 

 

2.10 

 

194.00 

 

867.34 

 

 

 

Table 4.7 shows the types of data being used by all the correlation models 

being investigated and as can be seen the GMDH Model used the least amount of 

data types which was 3 and was able to produce the best results in terms of statistical 

and graphical analysis. The more data used constitutes to higher cost as more PVT 

data are needed. The performance of the Spivey model came second after GMDH 

model, but the amount of data used by the Spivey model is twice as that of the 

GMDH model thus giving the GMDH model a huge advantage in terms of cost. 
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Table 4.7: Types of Data Used by Different Correlations 

 

Correlation Types of Data Used Total 

Data  T 

 

P Pb °API γg Rs Bo γgsep Tsep Psep 

Vasquez 

Beggs 
√ √ × √ √ √ × × √ √ 7 

 

Petrosky & 

Farshad 
√ √ × √ √ √ × × × × 

5 

De Ghetto 

 
√ √ √ √ √ √ √ × √ √ 9 

Dinodruk & 

Christman 
√ × × √ √ √ × × × × 

4 

Spivey 

 
√ √ √ √ × √ × √ × × 

6 

GMDH 

Model 
× √ √ × × √ × × × × 

3 

 

Where, 

T = Temperature,   Rs = Gas Solubility, 

P = Pressure,                     Bo = Oil Volume Formation Factor,       

Pb = Bubble Point Pressure,  γgsep = Separator Gas Specific Gravity 

°API = Oil API Gravity,  Tsep = Separator Temperature 

γg = Gas Specific Gravity,       Psep = Separator Pressure 

 

 

4.8   Sensitivity Analysis 

The sensitivity analysis is done to determine which input parameter has the 

largest impact on the GMDH Model. For this purpose, one parameter is change at a 

time by a variation of (+, -) 25%, 50%, 75% and 100% while the other input 

parameters are set constant as can be seen from Figure 4.22. The percentage change 

in oil compressibility of the GMDH Model is then recorded and the results are 

summarized in Table 4.8. 
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Figure 4.22: Sensitivity Analysis of the 3 Input Parameters 

 

Table 4.8: Summary of Sensitivity Analysis 

 Parameters Change (%) 

Parameters -100 -75 -50 -25 0 25 50 75 100 

Oil Compressibility Change (%) 

Reservoir 

Pressure 

22.85 

 

15.81 

 

9.74 

 

4.52 

 

0 

 

-3.48 

 

-6.83 

 

-9.45 

 

-11.61 

 

Solution 

GOR 

-67.02 

 

-51.86 

 

-35.58 

 

-18.25 

 

0 

 

19.35 

 

39.46 

 

60.39 

 

82.09 

 

Bubble 

Point 

Pressure 

89.85 

 

41.05 

 

15.54 

 

4.13 

 

0 

 

-0.89 

 

-0.60 

 

1.61 

 

8.84 

 

 

From Table 4.8, a parameter change of solution GOR of 100% gives an oil 

compressibility change of 82.09% compared to that of reservoir pressure with a value 

of -11.61 and bubble point pressure which is 8.84. Thus, the solution GOR has the 

largest impact on the GMDH model where the reservoir pressure is having the 

second largest impact and lastly the bubble point pressure. However due to the nature 

of the bubble point pressure trend, the oil compressibility change tend to increase 

drastically towards the lower end of bubble point pressure range making it having the 

largest impact at extreme low values. 

 

 

 

-100
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0
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4.9   Limitations of GMDH Model 

The limitations of this generated model may be due to the nature of the data 

value ranges as the model is depending on the parameters fed to it to determine the 

oil compressibility correlation. Therefore caution must be practiced if values out of 

the range of the data used in the Polynomial GMDH model generation are used.  
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CHAPTER 5 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

 

5.1     Conclusions 

The conclusions that can be drawn from this study are:- 

1. The Proposed Polynomial GMDH model outperforms the other investigated 

correlation models for estimating the isothermal oil compressibility above 

bubble point pressure with an outstanding average absolute percent relative 

error of 12.07%. 

2. Statistical analysis shows that the Polynomial GMDH Model achieved the 

lowest average percent relative error, average absolute percent relative error, 

root mean square error and standard division. 

3. Superiority of the Polynomial GMDH model can be seen in group error 

analysis when it is compared with other correlations for different ranges of 

pressure, solution GOR and bubble point pressure with outstanding 

performances. 

4. The GMDH Model can be applied confidently within the trained data ranges. 

5. The GMDH Model used the least amount of data but achieved the highest 

performance in isothermal oil compressibility prediction. 

6. Reservoir Pressure, Solution GOR and Bubble Point Pressure were found to 

be the parameters that were strongly influencing the prediction of isothermal 

oil compressibility. 
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5.2     Recommendations 

1. A wider range of data with higher and lower limits can be collected from 

different fields to construct a more robust model using the Polynomial 

GMDH technique.  

2. The Polynomial GMDH model should be incorporated into any commercial 

oil compressibility predicting software to serve as an easy programmable 

tool. 

3. A double verification of the existing correlation models should be conducted 

using smart simulators. 
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APPENDIX A 

MAIN DATA SET (source taken from SPE28904 
[10]

) 

Oil 

Compressibility, 

 co (1/psia) 

°API 
Temperature,  

Tr (°F) 

Pressure,  

Pr (psia) 

Solution 

GOR, 

 Rs 

(scf/STB)  

Total 

surface  

gas 

gravity, 

 γg   

Separator  

Temperature,  

Tsp (°F) 

Separator  

Pressure,  

Psp (psia) 

Bubble 

Point  

Pressure,  

Pb (psia) 

2.00E-05 41 277.2 6528.25 1398.8 0.826 152.6 440.92 5106.86 

5.67E-06 10.5 152.6 2916.75 260 0.815 158 156.64 2076.97 

5.02E-06 7.9 165.2 5518.77 250.5 0.768 129.2 369.85 2902.25 

2.71E-05 37.9 228.2 4345.4 1357.94 0.855 86 227.71 4267.08 

5.07E-06 6.3 165.2 5391.14 323.62 0.675 129.2 227.71 4021.96 

8.23E-06 21.2 183.2 3721.73 404.01 1.062 100.4 725.2 2432.32 

1.08E-05 28 114.8 1166.12 225.74 0.928 78.8 369.85 1166.12 

2.09E-05 44.5 289.4 6433.97 1404.3 0.795 194 583.06 5170.68 

4.48E-06 9.6 217.4 4895.1 108.54 1.129 133.5 58.02 967.42 

2.12E-05 41 287.6 6747.26 1575.35 0.763 122 440.92 5675.42 

5.07E-06 14.6 205.9 3684.02 41.92 1.178 167 85.57 337.94 

1.10E-05 33 219.2 3456.3 477.24 1.051 86 440.92 2483.08 

1.45E-05 37 186.8 4879.15 1021.05 0.902 86 156.64 2809.42 

1.08E-05 43 154.4 1601.24 356.21 1.292 80.6 156.64 1045.74 

5.31E-06 19.3 154.4 1877.54 175.44 1.406 80.6 71.07 796.27 

1.65E-05 35.6 190.4 2944.31 852.05 0.919 96.8 242.22 2774.62 

1.54E-05 41.7 167 3032.79 1046.87 0.895 86.5 85.57 2944.31 

1.31E-05 56.8 140.7 1170.47 300.91 0.649 71.6 156.64 1170.47 

1.32E-05 41.5 159.8 3420.04 769.83 0.872 69.8 85.57 2603.47 

1.26E-05 27 271 3713.02 595.05 1.28 149.9 725.2 3627.45 

4.78E-06 21.3 179.6 6272.98 100.93 1.035 59 49.31 654.13 

2.32E-05 41.5 302 7147.57 1555.36 0.818 116.6 440.92 5589.84 

1.50E-05 42.5 167 3663.71 931.61 0.893 78.4 298.78 2944.31 

9.51E-06 34.5 210.2 5293.96 516.83 1.04 95 156.64 2005.9 

2.61E-05 53 237.2 5956.79 2191.33 0.883 86 156.64 3826.16 

1.09E-05 38.8 183.2 2271.33 524.1 1.46 86 298.78 1863.76 

4.52E-06 7.3 221.7 4732.66 18.82 1.134 131 42.06 249.47 

5.85E-06 21.2 190.4 1209.63 27.76 1.421 86 85.57 213.21 

2.34E-05 38.5 224.6 3684.02 1134.14 0.923 76.5 156.64 3527.37 

4.95E-06 14.9 207.9 3727.53 25.04 1.307 167 50.76 208.86 

1.08E-05 38.8 152.6 2423.62 475.41 1.109 94.1 298.78 1493.91 

1.65E-05 37.2 269.6 5697.17 1081.29 0.866 158 440.92 4243.87 

3.18E-05 43.6 197.6 3044.39 1593.4 1.016 71.6 440.92 2760.11 

1.16E-05 43 222.8 5589.84 708.53 1.007 71.6 171.15 2120.48 

9.14E-06 37.2 180.5 2588.96 432.6 0.797 87.8 440.92 2517.89 

1.51E-05 38.5 204.8 3215.54 725.86 0.983 96.8 242.22 2496.14 

8.41E-06 36.2 140 5788.55 665.17 1.057 89.6 440.92 1891.32 



53 
 

1.37E-05 27.8 260.6 3691.27 629.86 1.19 73.4 213.21 3507.07 

1.48E-05 39 271.4 6187.41 763.39 1.025 125.6 440.92 3243.09 

8.84E-06 21 185.2 4873.34 500.23 0.965 68 156.64 2369.95 

1.12E-05 39 194 2233.62 436.43 1.464 86 440.92 1721.62 

1.05E-05 38 171.5 3114.01 583.01 0.936 104 440.92 2687.59 

6.53E-06 39.7 325.4 14466.29 387.52 0.939 86 583.06 2219.11 

6.58E-06 42.4 341.6 15304.62 690.16 1.045 158 156.64 2578.81 

2.71E-05 42 165.7 3480.96 1206.98 0.857 86 156.64 3362.03 

5.72E-06 25 262.4 3699.97 564.63 1.28 194 511.99 3100.96 

8.18E-06 35.7 212 3562.18 136.02 1.095 113 156.64 661.38 

1.63E-05 42.2 167 3201.03 1099.33 0.953 89.4 440.92 3201.03 

7.03E-06 40 334.4 14863.7 410.79 1.095 158 298.78 2133.54 

2.02E-05 40 303.1 6336.8 1585.4 0.752 158.9 227.71 5959.69 

1.08E-05 27.9 212 5533.28 686.33 0.934 86 156.64 2645.53 

8.00E-06 40 158 3079.2 217.47 1.349 102.2 87.02 511.99 

5.01E-06 11.4 153.1 2858.74 305.8 0.776 158 156.64 2622.32 

5.12E-06 8 215.6 4494.79 51.13 1.415 131 42.06 619.32 

4.41E-06 8.2 215.6 4851.59 84.06 1.334 141.8 71.07 725.2 

1.47E-05 42.5 167 3612.95 884.58 0.995 97.5 440.92 2631.03 

7.24E-06 36 118.4 384.36 105.04 1.137 91.4 29.01 384.36 

1.41E-05 42.5 167 3612.95 1113.66 0.991 98.6 440.92 2944.31 

1.57E-05 41.2 159.8 2760.11 913.18 0.993 75.2 440.92 2760.11 

4.57E-06 8.3 212 4883.5 89.27 1.47 122 71.07 639.63 

7.38E-06 31 138.2 1501.16 259.22 1.094 122 58.02 1282.15 

6.94E-06 36.6 118.4 351 72.12 1.077 86 85.57 327.79 

1.27E-05 25.7 271.4 3698.52 484.29 1.213 122 85.57 2831.18 

5.85E-06 28.6 111.7 1293.76 131.58 0.93 77 298.78 654.13 

2.49E-05 37.5 303.1 6301.99 550.92 0.764 158.9 227.71 6272.98 

1.27E-05 42.5 167 3567.98 942.99 0.885 92.3 227.71 2660.03 

5.10E-06 6 147.9 3428.75 231.46 0.696 131 58.02 2503.39 

7.93E-06 31.6 242.6 3860.96 69.23 1.072 77 29.01 503.29 

1.45E-05 34.1 237.9 4467.23 704.54 0.804 122 511.99 4039.36 

6.53E-06 40 334.4 14913.01 444.49 1.136 179.6 342.29 2140.79 

1.41E-05 38.4 224.6 4104.63 711.2 0.896 86 227.71 2924.01 

8.34E-06 38 257.7 13242.15 363.7 1.113 129.9 227.71 1670.86 

2.58E-05 37.2 300.9 6248.32 1396.86 0.749 149 440.92 6088.78 

7.05E-06 11.2 154.8 2850.04 316.51 0.812 158 156.64 2546.9 

1.98E-05 41.5 159.8 3655.01 1405.19 1.027 78.8 725.2 3655.01 

1.33E-05 40.8 186.8 4739.91 912.73 0.972 95 156.64 2657.13 

7.65E-06 30.7 141.4 1419.94 289.14 0.949 122 129.09 1419.94 

9.14E-06 46.9 90.5 1644.75 365.76 0.959 77 227.71 1380.78 

2.24E-05 41.1 296.6 6898.1 1717.76 0.82 176 440.92 5760.99 

5.96E-06 14 183.2 2552.7 40.97 1.295 158 156.64 1180.63 
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4.61E-06 8 210.2 4708 103.1 1.491 177.8 85.57 658.63 

5.58E-06 19.8 150.8 1749.47 147.96 1.256 69.8 56.57 839.78 

1.23E-05 50.9 183.9 2658.58 367.48 1.408 95 85.57 661.38 

1.25E-05 28.6 258.8 3726.08 763.66 1.249 174.2 440.92 3726.08 

5.96E-06 19.2 165.2 1792.26 166.33 1.402 69.8 71.07 796.27 

2.65E-05 41.5 226.4 4267.08 1306.64 0.977 86 440.92 3684.02 

4.72E-06 19.5 167 4238.07 25.37 1.105 75.2 58.02 256.72 

4.88E-06 11 167 5739.23 234.18 0.735 129.2 227.71 2588.96 

6.47E-06 29.7 134.6 1927.58 89.22 1.156 83.3 156.64 384.36 

6.27E-06 36.6 116.6 478.63 56.96 1.157 77 227.71 369.85 

6.58E-06 19 217.4 6557.26 330.12 0.914 86 114.58 2319.19 

1.15E-05 41 180.5 3369.28 529.15 1.047 77 440.92 1834.76 

6.18E-06 19.7 170.6 1877.54 186.54 1.336 80.6 71.07 967.42 

5.76E-06 24.8 178.2 4281.58 116.26 0.932 104 56.57 796.27 

1.01E-05 39.4 181.4 3370.73 533.87 1.057 88 440.92 2062.47 

1.33E-05 33 211.1 5006.78 859.77 0.914 86 156.64 2713.7 

6.05E-06 23.1 112.3 1315.51 141.02 0.83 77 298.78 796.27 

5.02E-06 15.1 207.7 3727.53 25.21 1.344 167 85.57 227.71 

4.30E-05 45.5 231.4 4793.57 2323.75 0.968 68 227.71 4082.88 

5.96E-06 19.4 172.4 1649.98 177.83 1.411 69.8 71.07 825.28 

4.20E-06 8.6 217.4 4996.63 86.55 1.479 128.8 71.07 626.57 

1.56E-05 37.5 271.4 5482.51 866.21 0.919 125.6 440.92 3652.11 

4.04E-06 18.8 244.4 7411.54 111.76 1.206 100.4 156.64 999.33 

7.38E-06 25.2 198.5 4381.66 323.68 1.2 100.4 265.42 1366.28 

3.02E-06 12.8 215.6 4519.45 17.21 1.323 176 85.57 227.71 

4.62E-06 24.5 129.2 1520.02 8.61 1.53 98.6 14.5 107.33 

7.03E-06 11 152.6 2916.75 586.67 1.253 158 56.57 2916.75 

5.86E-06 24.5 162.5 1437.35 36.75 1.38 86 85.57 210.31 

2.51E-05 40.1 302 5888.62 1760.56 0.924 122 440.92 5760.99 

6.86E-06 10.9 154.2 2893.55 331.34 0.81 158 156.64 2802.17 

4.92E-06 7.5 153.5 3563.63 208.7 0.756 131 58.02 2082.77 

5.65E-06 23.7 176 4216.31 120.09 0.864 107.6 42.06 768.71 

5.27E-06 19.6 231.8 6927.11 140.52 1.092 71.6 227.71 1209.63 

1.12E-05 37 222.8 4026.31 521.27 1.011 86 440.92 2375.76 

7.17E-06 10 154.8 2850.04 486.9 1.236 158 156.64 2665.84 

5.55E-06 23.8 80.6 242.22 58.02 1.197 140 43.51 200.16 

7.74E-06 47 140 2517.89 121.81 1.789 71.6 56.57 147.94 

1.24E-05 22.3 276.8 3740.58 396.41 1.218 131.9 440.92 2674.54 

2.50E-05 39.6 292.1 6899.55 1700.94 0.788 156.2 868.79 5868.32 

2.34E-05 44 277.9 6521 1678.62 0.847 194 867.34 5705.87 

3.05E-05 51 226.8 5974.2 2987.14 0.881 86 440.92 4210.51 

8.54E-06 27.8 134.6 3826.16 702.32 0.792 71.6 185.65 3826.16 

5.18E-06 12.4 152.6 2916.75 269.99 0.714 62.6 42.06 2432.32 
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1.81E-05 31 260.1 3713.02 781.99 1.001 113 440.92 3713.02 

1.87E-05 33.8 192.7 5395.49 1256.95 0.859 86 227.71 4326.54 

6.63E-06 19.5 178.7 5305.56 332.61 1.169 122 156.64 1322.76 

3.16E-05 41 266 4992.28 1559.47 0.663 107.6 227.71 4992.28 

6.05E-06 19.8 163.4 1806.47 167.89 1.333 75.6 71.07 896.35 

8.27E-06 29.6 163.4 1459.1 245.28 0.997 122 129.09 1295.21 

2.27E-05 37.8 231.8 5349.08 1467.2 0.861 104 440.92 4737.01 

7.58E-06 17.6 194 4873.34 429.16 0.934 68 156.64 2236.52 

6.54E-06 35.1 154.4 2716.6 120.7 1.27 100.4 298.78 526.5 

5.64E-06 29.8 128.1 1544.68 71.18 1.257 89.6 87.02 321.99 

5.98E-06 16.5 188.1 3328.67 97.32 1.188 86 227.71 697.64 

2.57E-05 49.2 172.4 3769.59 1617.27 0.928 64.4 114.58 3161.87 

5.34E-06 15.4 203 3665.16 21.49 1.276 134.6 43.51 355.35 

6.29E-06 34.6 226.4 5135.87 108.76 0.794 122 156.64 839.78 

1.30E-05 31.7 192.7 5405.64 1006.56 0.884 86 230.61 3862.42 

6.86E-06 16.8 140 1153.07 320.34 1.517 122 14.5 1074.75 

1.86E-05 37 221 3328.67 773.38 1.045 96.8 440.92 2858.74 

2.63E-05 41.5 235.4 5433.2 1657.52 0.901 77 440.92 4850.14 

5.69E-06 19 163.4 1806.47 188.82 1.292 86 71.07 952.91 

1.56E-05 29 275 3676.76 667.28 1.255 78.8 227.71 3676.76 

2.74E-05 37.2 300.9 6248.32 1396.86 0.749 149 440.92 6088.78 

6.14E-06 25 117.5 1279.25 135.8 0.933 75.2 227.71 739.7 

5.09E-06 17 250.7 7411.54 146.4 1.232 104 56.57 1082 

2.66E-05 42.8 253.4 4024.86 1390.75 0.928 82.4 440.92 3968.29 

4.14E-06 19.8 244 7137.42 135.47 1.347 100.4 156.64 1124.06 

4.46E-06 6.5 210.2 4808.08 93.77 1.429 128.3 71.07 697.64 

1.29E-05 31.1 185 3755.09 756.67 0.879 104 440.92 3755.09 

2.36E-05 45 276.8 6510.85 1664.63 0.85 194 867.34 5697.17 

1.11E-05 42.5 150.1 3295.31 641.47 1.113 84.2 327.79 1517.12 

4.99E-06 19 238.3 7047.49 113.7 1.172 100.4 156.64 1047.19 

8.23E-06 37.4 150.8 2503.39 417 1.268 77 440.92 1351.77 

5.97E-06 24.7 162.5 4011.81 162.67 0.866 104 56.57 1045.74 

1.55E-05 45.4 225.5 5064.8 971.75 0.695 104 298.78 4523.8 

1.51E-05 43.6 159.1 3498.36 941.05 0.861 104.9 116.03 2488.89 

1.30E-05 26 275 3713.02 578.51 1.241 78.8 227.71 3314.16 

1.85E-05 37.2 176 4873.34 1365.21 0.927 68 298.78 3753.64 

6.96E-06 16 211.3 4281.58 338 0.784 116.6 298.78 3769.59 

5.19E-06 19.9 231.8 6856.04 121.64 1.005 104 227.71 1067.49 

1.21E-05 26.4 255.2 3669.51 643.58 1.228 87.8 227.71 3669.51 

9.42E-06 28.6 111.2 1216.89 200.31 0.986 75.2 440.92 994.97 

7.94E-06 37.8 145.4 2423.62 234.01 1.416 91.9 440.92 783.22 

5.08E-06 19.2 158 1593.12 109.93 1.412 69.8 71.07 469.93 

5.00E-06 15.2 214 3784.09 54.13 1.064 122 129.09 570.01 
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1.61E-05 37.2 190.4 3215.54 871.65 0.92 100.4 242.22 3037.14 

1.92E-05 43.5 167 3612.95 1264.28 0.913 77 440.92 3441.8 

1.17E-05 38.8 238.1 5305.56 645.41 0.782 122 227.71 3456.3 

1.81E-05 42.6 167 3314.16 1165.01 0.945 90.3 440.92 3214.09 

6.52E-06 29 105.8 1579.49 233.4 0.624 71.6 156.64 1351.77 

9.49E-06 37.5 146.3 3103.86 576.95 0.909 104 440.92 2574.46 

1.10E-05 37.2 152.6 2423.62 495.45 1.054 104 227.71 1607.04 

1.18E-05 27.3 262.4 3710.12 591.17 1.295 194 511.99 3186.53 

4.57E-06 15.6 131.4 1038.49 102.82 0.788 78.8 29.01 754.21 

7.66E-06 28.8 208.4 4822.58 416.73 1.252 109.9 440.92 1550.48 

1.74E-05 40.6 269.6 6358.55 1253.73 0.861 158 440.92 4565.86 

2.28E-05 42 287.6 6747.26 1897.08 0.81 176 440.92 5788.55 

6.19E-06 31.3 120.2 1337.27 55.19 1.218 74.3 58.02 171.15 

5.35E-06 19.5 240.8 7211.39 115.98 1.059 100.4 227.71 1038.49 

1.38E-05 31.7 176 3499.82 785.26 0.981 98.6 513.44 3385.23 

2.08E-05 37.7 305.1 6613.82 1654.36 0.738 158.9 227.71 6613.82 

8.58E-06 40.4 252 5518.77 233.24 0.985 113 156.64 1276.35 
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APPENDIX B 

PROGRAM CODE LIST 

 

GMDH Build Function 

function [model, time] = gmdhbuild(Xtr, Ytr, maxNumInputs, 

inputsMore, ... 
maxNumNeurons, decNumNeurons, p, critNum, delta, Xv, Yv, verbose) 
% GMDHBUILD 
% Builds a GMDH-type polynomial neural network using a simple 
% layer-by-layer approach 
% 
% Call 
%   [model, time] = gmdhbuild(Xtr, Ytr, maxNumInputs, inputsMore, 

maxNumNeurons, 
%                   decNumNeurons, p, critNum, delta, Xv, Yv, 

verbose) 
%   [model, time] = gmdhbuild(Xtr, Ytr, maxNumInputs, inputsMore, 

maxNumNeurons, 
%                   decNumNeurons, p, critNum, delta, Xv, Yv) 
%   [model, time] = gmdhbuild(Xtr, Ytr, maxNumInputs, inputsMore, 

maxNumNeurons, 
%                   decNumNeurons, p, critNum, delta) 
%   [model, time] = gmdhbuild(Xtr, Ytr, maxNumInputs, inputsMore, 

maxNumNeurons, 
%                   decNumNeurons, p, critNum) 
%   [model, time] = gmdhbuild(Xtr, Ytr, maxNumInputs, inputsMore, 

maxNumNeurons, 
%                   decNumNeurons, p) 
%   [model, time] = gmdhbuild(Xtr, Ytr, maxNumInputs, inputsMore, 

maxNumNeurons, 
%                   decNumNeurons) 
%   [model, time] = gmdhbuild(Xtr, Ytr, maxNumInputs, inputsMore, 

maxNumNeurons) 
%   [model, time] = gmdhbuild(Xtr, Ytr, maxNumInputs, inputsMore) 
%   [model, time] = gmdhbuild(Xtr, Ytr, maxNumInputs) 
%   [model, time] = gmdhbuild(Xtr, Ytr) 
% 
% Input 
% Xtr, Ytr     : Training data points (Xtr(i,:), Ytr(i)), i = 

1,...,n 
% maxNumInputs : Maximum number of inputs for individual neurons - 

if set 
%                to 3, both 2 and 3 inputs will be tried (default = 

2) 
% inputsMore   : Set to 0 for the neurons to take inputs only from 

the 
%                preceding layer, set to 1 to take inputs also from 

the 
%                original input variables (default = 1) 
% maxNumNeurons: Maximal number of neurons in a layer (default = 

equal to 
%                the number of the original input variables) 
% decNumNeurons: In each following layer decrease the number of 

allowed 
%                neurons by decNumNeurons until the number is equal 

to 1 
%                (default = 0) 
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% p            : Degree of polynomials in neurons (allowed values 

are 2 and 
%                3) (default = 2) 
% critNum      : Criterion for evaluation of neurons and for 

stopping. 
%                In each layer only the best neurons (according to 

the 
%                criterion) are retained, and the rest are 

discarded. 
%                (default = 2) 
%                0 = use validation data (Xv, Yv) 
%                1 = use validation data (Xv, Yv) as well as 

training data 
%                2 = use Corrected Akaike's Information Criterion 

(AICC) 
%                3 = use Minimum Description Length (MDL) 
%                Note that both choices 0 and 1 correspond to the so 

called 
%                "regularity criterion". 
% delta        : How much lower the criterion value of the network's 

new 
%                layer must be comparing the the network's preceding 

layer 
%                (default = 0, which means that new layers will be 

added as 
%                long as the value gets better (smaller)) 
% Xv, Yv       : Validation data points (Xv(i,:), Yv(i)), i = 

1,...,nv 
%                (used when critNum is equal to either 0 or 1) 
% verbose      : Set to 0 for no verbose (default = 1) 
% 
% Output 
% model        : GMDH model - a struct with the following elements: 
%    numLayers     : Number of layers in the network 
%    d             : Number of input variables in the training data 

set 
%    maxNumInputs  : Maximal number of inputs for neurons 
%    inputsMore    : See argument "inputsMore" 
%    maxNumNeurons : Maximal number of neurons in a layer 
%    p             : See argument "p" 
%    critNum       : See argument "critNum" 
%    layer         : Full information about each layer (number of 

neurons, 
%                    indexes of inputs for neurons, matrix of 

exponents for 
%                    polynomial, polynomial coefficients) 
%                    Note that the indexes of inputs are in range 

[1..d] if 
%                    an input is one of the original input 

variables, and 
%                    in range [d+1..d+maxNumNeurons] if an input is 

taken 
%                    from a neuron in the preceding layer. 
% time         : Execution time (in seconds) 
% 
% Please give a reference to the software web page in any 

publication 
% describing research performed using the software e.g., like this: 
% Jekabsons G. GMDH-type Polynomial Neural Networks for Matlab, 

2010, 
% available at http://www.cs.rtu.lv/jekabsons/ 
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% This source code is tested with Matlab version 7.1 (R14SP3). 

  
% 

====================================================================

===== 
% GMDH-type polynomial neural network 
% Version: 1.5 
% Date: June 2, 2011 
% Author: Gints Jekabsons (gints.jekabsons@rtu.lv) 
% URL: http://www.cs.rtu.lv/jekabsons/ 
% 
% Copyright (C) 2009-2011  Gints Jekabsons 
% 
% This program is free software: you can redistribute it and/or 

modify 
% it under the terms of the GNU General Public License as published 

by 
% the Free Software Foundation, either version 2 of the License, or 
% (at your option) any later version. 
% 
% This program is distributed in the hope that it will be useful, 
% but WITHOUT ANY WARRANTY; without even the implied warranty of 
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
% GNU General Public License for more details. 
% 
% You should have received a copy of the GNU General Public License 
% along with this program. If not, see 

<http://www.gnu.org/licenses/>. 
% 

====================================================================

===== 

  
display !! 
if nargin < 2 
    error('Too few input arguments.'); 
end 

  
[n, d] = size(Xtr); 
[ny, dy] = size(Ytr); 
if (n < 2) || (d < 2) || (ny ~= n) || (dy ~= 1) 
    error('Wrong training data sizes.'); 
end 

  
if nargin < 3 
    maxNumInputs = 2; 
elseif (maxNumInputs ~= 2) && (maxNumInputs ~= 3) 
    error('Number of inputs for neurons should be 2 or 3.'); 
end 
if (d < maxNumInputs) 
    error('Numbet of input variables in the data is lower than the 

number of inputs for individual neurons.'); 
end 
if nargin < 4 
    inputsMore = 1; 
end 
if (nargin < 5) || (maxNumNeurons <= 0) 
    maxNumNeurons = d; 
end 
if maxNumNeurons > d * 2 
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    error('Too many neurons in a layer. Maximum is two times the 

number of input variables.'); 
end 
if maxNumNeurons < 1 
    error('Too few neurons in a layer. Minimum is 1.'); 
end 
if (nargin < 6) || (decNumNeurons < 0) 
    decNumNeurons = 0; 
end 
if nargin < 7 
    p = 2; 
elseif (p ~= 2) && (p ~= 3) 
    error('Degree of individual neurons should be 2 or 3.'); 
end 
if nargin < 8 
    critNum = 2; 
end 
if any(critNum == [0,1,2,3]) == 0 
    error('Only four values for critNum are available (0,1 - use 

validation data; 2 - AICC; 3 - MDL).'); 
end 
if nargin < 9 
    delta = 0; 
end 
if (nargin < 11) && (critNum <= 1) 
    error('Evaluating the models in validation data requires 

validation data set.'); 
end 
if (nargin >= 11) && (critNum <= 1) 
    [nv, dv] = size(Xv); 
    [nvy, dvy] = size(Yv); 
    if (nv < 1) || (dv ~= d) || (nvy ~= nv) || (dvy ~= 1) 
        error('Wrong validation data sizes.'); 
    end 
end 
if nargin < 12 
    verbose = 1; 
end 

  
ws = warning('off'); 
if verbose ~= 0 
    fprintf('Building GMDH-type neural network...\n'); 
end 
tic; 

  
if p == 2 
    numTermsReal = 6 + 4 * (maxNumInputs == 3); %6 or 10 terms 
else 
    numTermsReal = 10 + 10 * (maxNumInputs == 3); %10 or 20 terms 
end 

  
Xtr(:, d+1:d+maxNumNeurons) = zeros(n, maxNumNeurons); 
if critNum <= 1 
    Xv(:, d+1:d+maxNumNeurons) = zeros(nv, maxNumNeurons); 
end 

  
%start the main loop and create layers 
model.numLayers = 0; 
while 1 
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    if verbose ~= 0 
        fprintf('Building layer #%d...\n', model.numLayers + 1); 
    end 

  
    layer(model.numLayers + 1).numNeurons = 0; 
    modelsTried = 0; 
    layer(model.numLayers + 1).coefs = zeros(maxNumNeurons, 

numTermsReal); 

  
    for numInputsTry = maxNumInputs:-1:2 

  
        %create matrix of exponents for polynomials 
        if p == 2 
            numTerms = 6 + 4 * (numInputsTry == 3); %6 or 10 terms 
            if numInputsTry == 2 
                r = [0,0;0,1;1,0;1,1;0,2;2,0]; 
            else 
                r = 

[0,0,0;0,0,1;0,1,0;1,0,0;0,1,1;1,0,1;1,1,0;0,0,2;0,2,0;2,0,0]; 
            end 
        else 
            numTerms = 10 + 10 * (numInputsTry == 3); %10 or 20 

terms 
            if numInputsTry == 2 
                r = [0,0;0,1;1,0;1,1;0,2;2,0;1,2;2,1;0,3;3,0]; 
            else 
                r = 

[0,0,0;0,0,1;0,1,0;1,0,0;0,1,1;1,0,1;1,1,0;0,0,2;0,2,0;2,0,0; ... 
                     

1,1,1;0,1,2;0,2,1;1,0,2;1,2,0;2,0,1;2,1,0;0,0,3;0,3,0;3,0,0]; 
            end 
        end 

  
        %create matrix of all combinations of inputs for neurons 
        if model.numLayers == 0 
            combs = nchoosek(1:1:d, numInputsTry); 
        else 
            if inputsMore == 1 
                combs = nchoosek([1:1:d 

d+1:1:d+layer(model.numLayers).numNeurons], numInputsTry); 
            else 
                combs = 

nchoosek(d+1:1:d+layer(model.numLayers).numNeurons, numInputsTry); 
            end 
        end 
        %delete all combinations in which none of the inputs are 

from the preceding layer 
        if model.numLayers > 0 
            i = 1;             
            while i <= size(combs,1) 
                if all(combs(i,:) <= d) 
                    combs(i,:) = []; 
                else 
                    i = i + 1; 
                end 
            end 
        end 

         
        makeEmpty = 1; 
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        %try all the combinations of inputs for neurons 
        for i = 1 : size(combs,1) 

  
            %create matrix for all polynomial terms 
            Vals = ones(n, numTerms); 
            if critNum <= 1 
                Valsv = ones(nv, numTerms); 
            end 
            for idx = 2 : numTerms 
                bf = r(idx, :); 
                t = bf > 0; 
                tmp = Xtr(:, combs(i,t)) .^ bf(ones(n, 1), t); 
                if critNum <= 1 
                    tmpv = Xv(:, combs(i,t)) .^ bf(ones(nv, 1), t); 
                end 
                if size(tmp, 2) == 1 
                    Vals(:, idx) = tmp; 
                    if critNum <= 1 
                        Valsv(:, idx) = tmpv; 
                    end 
                else 
                    Vals(:, idx) = prod(tmp, 2); 
                    if critNum <= 1 
                        Valsv(:, idx) = prod(tmpv, 2); 
                    end 
                end 
            end 

  
            %calculate coefficients and evaluate the network 
            coefs = (Vals' * Vals) \ (Vals' * Ytr); 
            modelsTried = modelsTried + 1; 
            if ~isnan(coefs(1)) 
                predY = Vals * coefs; 
                if critNum <= 1 
                    predYv = Valsv * coefs; 
                    if critNum == 0 
                        crit = sqrt(mean((predYv - Yv).^2)); 
                    else 
                        crit = sqrt(mean([(predYv - Yv).^2; (predY - 

Ytr).^2])); 
                    end 
                else 
                    comp = complexity(layer, model.numLayers, 

maxNumNeurons, d, combs(i,:)) + size(coefs, 2); 
                    if critNum == 2 %AICC 
                        if (n-comp-1 > 0) 
                            crit = n*log(mean((predY - Ytr).^2)) + 

2*comp + 2*comp*(comp+1)/(n-comp-1); 
                        else 
                            coefs = NaN; 
                        end 
                    else %MDL 
                        crit = n*log(mean((predY - Ytr).^2)) + 

comp*log(n); 
                    end 
                end 
            end 

  
            if ~isnan(coefs(1)) 
                %add the neuron to the layer if 
                %1) the layer is not full; 
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                %2) the new neuron is better than an existing worst 

one. 
                maxN = maxNumNeurons - model.numLayers * 

decNumNeurons; 
                if maxN < 1, maxN = 1; end; 
                if layer(model.numLayers + 1).numNeurons < maxN 
                    %when the layer is not yet full 
                    if (maxNumInputs == 3) && (numInputsTry == 2) 
                        layer(model.numLayers + 

1).coefs(layer(model.numLayers + 1).numNeurons+1, :) = [coefs' 

zeros(1,4+6*(p == 3))]; 
                        layer(model.numLayers + 

1).inputs(layer(model.numLayers + 1).numNeurons+1, :) = [combs(i, :) 

0]; 
                    else 
                        layer(model.numLayers + 

1).coefs(layer(model.numLayers + 1).numNeurons+1, :) = coefs; 
                        layer(model.numLayers + 

1).inputs(layer(model.numLayers + 1).numNeurons+1, :) = combs(i, :); 
                    end 
                    layer(model.numLayers + 

1).comp(layer(model.numLayers + 1).numNeurons+1) = length(coefs); 
                    layer(model.numLayers + 

1).crit(layer(model.numLayers + 1).numNeurons+1) = crit; 
                    layer(model.numLayers + 

1).terms(layer(model.numLayers + 1).numNeurons+1).r = r; 
                    if makeEmpty == 1 
                        Xtr2 = []; 
                        if critNum <= 1 
                            Xv2 = []; 
                        end 
                        makeEmpty = 0; 
                    end 
                    Xtr2(:, layer(model.numLayers + 1).numNeurons+1) 

= predY; 
                    if critNum <= 1 
                        Xv2(:, layer(model.numLayers + 

1).numNeurons+1) = predYv; 
                    end 
                    if (layer(model.numLayers + 1).numNeurons == 0) 

|| ... 
                       (layer(model.numLayers + 1).crit(worstOne) < 

crit) 
                        worstOne = layer(model.numLayers + 

1).numNeurons + 1; 
                    end 
                    layer(model.numLayers + 1).numNeurons = 

layer(model.numLayers + 1).numNeurons + 1; 
                else 
                    %when the layer is already full 
                    if (layer(model.numLayers + 1).crit(worstOne) > 

crit) 
                        if (maxNumInputs == 3) && (numInputsTry == 

2) 
                            layer(model.numLayers + 

1).coefs(worstOne, :) = [coefs' zeros(1,4+6*(p == 3))]; 
                            layer(model.numLayers + 

1).inputs(worstOne, :) = [combs(i, :) 0]; 
                        else 
                            layer(model.numLayers + 

1).coefs(worstOne, :) = coefs; 
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                            layer(model.numLayers + 

1).inputs(worstOne, :) = combs(i, :); 
                        end 
                        layer(model.numLayers + 1).comp(worstOne) = 

length(coefs); 
                        layer(model.numLayers + 1).crit(worstOne) = 

crit; 
                        layer(model.numLayers + 1).terms(worstOne).r 

= r; 
                        Xtr2(:, worstOne) = predY; 
                        if critNum <= 1 
                            Xv2(:, worstOne) = predYv; 
                        end 
                        [dummy, worstOne] = 

max(layer(model.numLayers + 1).crit); 
                    end 
                end 
            end 

  
        end 

  
    end 

  
    if verbose ~= 0 
        fprintf('Neurons tried in this layer: %d\n', modelsTried); 
        fprintf('Neurons included in this layer: %d\n', 

layer(model.numLayers + 1).numNeurons); 
        if critNum <= 1 
            fprintf('RMSE in the validation data of the best neuron: 

%f\n', min(layer(model.numLayers + 1).crit)); 
        else 
            fprintf('Criterion value of the best neuron: %f\n', 

min(layer(model.numLayers + 1).crit)); 
        end 
    end 

  
    %stop the process if there are too few neurons in the new layer 
    if ((inputsMore == 0) && (layer(model.numLayers + 1).numNeurons 

< 2)) || ... 
       ((inputsMore == 1) && (layer(model.numLayers + 1).numNeurons 

< 1)) 
        if (layer(model.numLayers + 1).numNeurons > 0) 
            model.numLayers = model.numLayers + 1; 
        end 
        break 
    end 

  
    %if the network got "better", continue the process 
    if (layer(model.numLayers + 1).numNeurons > 0) && ... 
       ((model.numLayers == 0) || ... 
        (min(layer(model.numLayers).crit) - 

min(layer(model.numLayers + 1).crit) > delta) ) 

%(min(layer(model.numLayers + 1).crit) < 

min(layer(model.numLayers).crit)) ) 
        model.numLayers = model.numLayers + 1; 
    else 
        if model.numLayers == 0 
            warning(ws); 
            error('Failed.'); 
        end 
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        break 
    end 

  
    %copy the output values of this layer's neurons to the training 
    %data matrix 
    Xtr(:, d+1:d+layer(model.numLayers).numNeurons) = Xtr2; 
    if critNum <= 1 
        Xv(:, d+1:d+layer(model.numLayers).numNeurons) = Xv2; 
    end 

  
end 

  
model.d = d; 
model.maxNumInputs = maxNumInputs; 
model.inputsMore = inputsMore; 
model.maxNumNeurons = maxNumNeurons; 
model.p = p; 
model.critNum = critNum; 

  
%only the neurons which are actually used (directly or indirectly) 

to 
%compute the output value may stay in the network 
[dummy best] = min(layer(model.numLayers).crit); 
model.layer(model.numLayers).coefs(1,:) = 

layer(model.numLayers).coefs(best,:); 
model.layer(model.numLayers).inputs(1,:) = 

layer(model.numLayers).inputs(best,:); 
model.layer(model.numLayers).terms(1).r = 

layer(model.numLayers).terms(best).r; 
model.layer(model.numLayers).numNeurons = 1; 
if model.numLayers > 1 
    for i = model.numLayers-1:-1:1 %loop through all the layers 
        model.layer(i).numNeurons = 0; 
        for k = 1 : layer(i).numNeurons %loop through all the 

neurons in this layer 
            newNum = 0; 
            for j = 1 : model.layer(i+1).numNeurons %loop through 

all the neurons which will stay in the next layer 
                for jj = 1 : maxNumInputs %loop through all the 

inputs 
                    if k == model.layer(i+1).inputs(j,jj) - d 
                        if newNum == 0 
                            model.layer(i).numNeurons = 

model.layer(i).numNeurons + 1; 
                            

model.layer(i).coefs(model.layer(i).numNeurons,:) = 

layer(i).coefs(k,:); 
                            

model.layer(i).inputs(model.layer(i).numNeurons,:) = 

layer(i).inputs(k,:); 
                            

model.layer(i).terms(model.layer(i).numNeurons).r = 

layer(i).terms(k).r; 
                            newNum = model.layer(i).numNeurons + d; 
                            model.layer(i+1).inputs(j,jj) = newNum; 
                        else 
                            model.layer(i+1).inputs(j,jj) = newNum; 
                        end 
                        break 
                    end 
                end 
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            end 
        end 
    end 
end 

  
time = toc; 
warning(ws); 

  
if verbose ~= 0 
    fprintf('Done.\n'); 
    used = zeros(d,1); 
    for i = 1 : model.numLayers 
        for j = 1 : d 
            if any(any(model.layer(i).inputs == j)) 
                used(j) = 1; 
            end 
        end 
    end 
    fprintf('Number of layers: %d\n', model.numLayers); 
    fprintf('Number of used input variables: %d\n', sum(used)); 
    fprintf('Execution time: %0.2f seconds\n', time); 
end 

  
return 

  
%====================  Auxiliary functions  ==================== 

  
function [comp] = complexity(layer, numLayers, maxNumNeurons, d, 

connections) 
%calculates the complexity of the network given output neuron's 

connections 
%(it is assumed that the complexity of a network is equal to the 

number of 
%all polynomial terms in all it's neurons which are actually 

connected 
%(directly or indirectly) to network's output) 
comp = 0; 
if numLayers == 0 
    return 
end 
c = zeros(numLayers, maxNumNeurons); 
for i = 1 : numLayers 
    c(i, :) = layer(i).comp(:)'; 
end 
%{ 
%unvectorized version: 
for j = 1 : length(connections) 
    if connections(j) > d 
        comp = comp + c(numLayers, connections(j) - d); 
        c(numLayers, connections(j) - d) = -1; 
    end 
end 
%} 
ind = connections > d; 
if any(ind) 
    comp = comp + sum(c(numLayers, connections(ind) - d)); 
    c(numLayers, connections(ind) - d) = -1; 
end 
%{ 
%unvectorized version: 
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for i = numLayers-1:-1:1 
    for j = 1 : layer(i).numNeurons 
        for k = 1 : layer(i+1).numNeurons 
            if (c(i+1, k) == -1) && (c(i, j) > -1) && ... 
               any(layer(i+1).inputs(k,:) == j + d) 
                comp = comp + c(i, j); 
                c(i, j) = -1; 
            end 
        end 
    end 
end 
%} 
for i = numLayers-1:-1:1 
        for k = 1 : layer(i+1).numNeurons 
            if c(i+1, k) == -1 
                inp = layer(i+1).inputs(k,:); 
                used = inp > d; 
                if any(used) 
                    ind = inp(used) - d; 
                    ind = ind(c(i, ind) > -1); 
                    if ~isempty(ind) 
                        comp = comp + sum(c(i, ind)); 
                        c(i, ind) = -1; 
                    end 
                end 
            end 
        end 
end 
return 
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GMDH EQ Function 

function gmdheq(model, precision) 
% gmdheq 
% Outputs the equations of GMDH model. 
% 
% Call 
%   gmdheq(model, precision) 
%   gmdheq(model) 
% 
% Input 
%   model         : GMDH-type model 
%   precision     : Number of digits in the model coefficients 
%                   (default = 15) 

  
% This source code is tested with Matlab version 7.1 (R14SP3). 

  
% 

====================================================================

===== 
% GMDH-type polynomial neural network 
% Version: 1.5 
% Date: June 2, 2011 
% Author: Gints Jekabsons (gints.jekabsons@rtu.lv) 
% URL: http://www.cs.rtu.lv/jekabsons/ 
% 
% Copyright (C) 2009-2011  Gints Jekabsons 
% 
% This program is free software: you can redistribute it and/or 

modify 
% it under the terms of the GNU General Public License as published 

by 
% the Free Software Foundation, either version 2 of the License, or 
% (at your option) any later version. 
% 
% This program is distributed in the hope that it will be useful, 
% but WITHOUT ANY WARRANTY; without even the implied warranty of 
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
% GNU General Public License for more details. 
% 
% You should have received a copy of the GNU General Public License 
% along with this program. If not, see 

<http://www.gnu.org/licenses/>. 
% 

====================================================================

===== 

  
if nargin < 1 
    error('Too few input arguments.'); 
end 
if (nargin < 2) || (isempty(precision)) 
    precision = 15; 
end 

  
if model.numLayers > 0 
    p = ['%.' num2str(precision) 'g']; 
    fprintf('Number of layers: %d\n', model.numLayers); 
    for i = 1 : model.numLayers %loop through all the layers 
        fprintf('Layer #%d\n', i); 
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        fprintf('Number of neurons: %d\n', 

model.layer(i).numNeurons); 
        for j = 1 : model.layer(i).numNeurons %loop through all the 

neurons in the ith layer 
            [terms inputs] = size(model.layer(i).terms(j).r); 

%number of terms and inputs 
            if (i == model.numLayers) 
                str = ['y = ' num2str(model.layer(i).coefs(j,1),p)]; 
            else 
                str = ['x' num2str(j + i*model.d) ' = ' 

num2str(model.layer(i).coefs(j,1),p)]; 
            end 
            for k = 2 : terms %loop through all the terms 
                if model.layer(i).coefs(j,k) >= 0 
                    str = [str ' +']; 
                else 
                    str = [str ' ']; 
                end 
                str = [str num2str(model.layer(i).coefs(j,k),p)]; 
                for kk = 1 : inputs %loop through all the inputs 
                    if (model.layer(i).terms(j).r(k,kk) > 0) 
                        for kkk = 1 : 

model.layer(i).terms(j).r(k,kk) 
                            if (model.layer(i).inputs(j,kk) <= 

model.d) 
                                str = [str '*x' 

num2str(model.layer(i).inputs(j,kk))]; 
                            else 
                                str = [str '*x' 

num2str(model.layer(i).inputs(j,kk) + (i-2)*model.d)]; 
                            end 
                        end 
                    end 
                end 
            end 
            disp(str); 
        end 
    end 
else 
    disp('The network has zero layers.'); 
end 

  
return 
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GMDH Predict Function 

function Yq = gmdhpredict(model, Xq) 
% GMDHPREDICT 
% Predicts output values for the given query points Xq using a GMDH 

model 
% 
% Call 
%   [Yq] = gmdhpredict(model, Xq) 
% 
% Input 
% model     : GMDH model 
% Xq        : Inputs of query data points (Xq(i,:)), i = 1,...,nq 
% 
% Output 
% Yq        : Predicted outputs of query data points (Yq(i)), i = 

1,...,nq 

  
% This source code is tested with Matlab version 7.1 (R14SP3). 

  
% 

====================================================================

===== 
% GMDH-type polynomial neural network 
% Version: 1.5 
% Date: June 2, 2011 
% Author: Gints Jekabsons (gints.jekabsons@rtu.lv) 
% URL: http://www.cs.rtu.lv/jekabsons/ 
% 
% Copyright (C) 2009-2011  Gints Jekabsons 
% 
% This program is free software: you can redistribute it and/or 

modify 
% it under the terms of the GNU General Public License as published 

by 
% the Free Software Foundation, either version 2 of the License, or 
% (at your option) any later version. 
% 
% This program is distributed in the hope that it will be useful, 
% but WITHOUT ANY WARRANTY; without even the implied warranty of 
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
% GNU General Public License for more details. 
% 
% You should have received a copy of the GNU General Public License 
% along with this program. If not, see 

<http://www.gnu.org/licenses/>. 
% 

====================================================================

===== 

  
if nargin < 2 
    error('Too few input arguments.'); 
end 
if model.d ~= size(Xq, 2) 
    error('The matrix should have the same number of columns as the 

matrix with which the network was built.'); 
end 

  
[n, d] = size(Xq); 
Yq = zeros(n, 1); 
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for q = 1 : n 
    for i = 1 : model.numLayers 
        if i ~= model.numLayers 
            Xq_tmp = zeros(1, model.layer(i).numNeurons); 
        end 
        for j = 1 : model.layer(i).numNeurons 

  
            %create matrix for all polynomial terms 
            numTerms =  size(model.layer(i).terms(j).r,1); 
            Vals = ones(numTerms,1); 
            for idx = 2 : numTerms 
                bf = model.layer(i).terms(j).r(idx, :); 
                t = bf > 0; 
                tmp = Xq(q, model.layer(i).inputs(j,t)) .^ bf(1, t); 
                if size(tmp, 2) == 1 
                    Vals(idx,1) = tmp; 
                else 
                    Vals(idx,1) = prod(tmp, 2); 
                end 
            end 

  
            %predict output value 
            predY = model.layer(i).coefs(j,1:numTerms) * Vals; 
            if i ~= model.numLayers 
                %Xq(q, d+j) = predY; 
                Xq_tmp(j) = predY; 
            else 
                Yq(q) = predY; 
            end 

  
        end 
        if i ~= model.numLayers 
            Xq(q, d+1:d+model.layer(i).numNeurons) = Xq_tmp; 
        end 
    end 
end 

  
return 
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GMDH Test Function 

function [MSE, RMSE, RRMSE, R2] = gmdhtest(model, Xtst, Ytst) 
% GMDHTEST 
% Tests a GMDH-type network model on a test data set (Xtst, Ytst) 
% 
% Call 
%   [MSE, RMSE, RRMSE, R2] = gmdhtest(model, Xtst, Ytst) 
% 
% Input 
% model     : GMDH model 
% Xtst, Ytst: Test data points (Xtst(i,:), Ytst(i)), i = 1,...,ntst 
% 
% Output 
% MSE       : Mean Squared Error 
% RMSE      : Root Mean Squared Error 
% RRMSE     : Relative Root Mean Squared Error 
% R2        : Coefficient of Determination 

  
% Copyright (C) 2009-2011  Gints Jekabsons 

  
if nargin < 3 
    error('Too few input arguments.'); 
end 
if (size(Xtst, 1) ~= size(Ytst, 1)) 
    error('The number of rows in the matrix and the vector should be 

equal.'); 
end 
if model.d ~= size(Xtst, 2) 
    error('The matrix should have the same number of columns as the 

matrix with which the model was built.'); 
end 
MSE = mean((gmdhpredict(model, Xtst) - Ytst) .^ 2); 
RMSE = sqrt(MSE); 
if size(Ytst, 1) > 1 
    RRMSE = RMSE / std(Ytst, 1); 
    R2 = 1 - MSE / var(Ytst, 1); 
else 
    RRMSE = Inf; 
    R2 = Inf; 
end 
return 
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Polynomial GMDH Script 

clc; 
% the aim is to clear all input and output from the Command Window  
% display, giving you a "clean screen." 
clf; % it deletes from the current figure all graphics objects 
clear all;%Clears all variables and other classes of data too. 
close all;% it force deletes all figures (hidden and non-hidden 

strings) 
tic; 
%  
% Step (1) Reading the input file 
% =============================== 
% Loads data and prepares it for a neural network. 
%ndata= xlsread('all_data.xls'); 
ndata= xlsread('OC_Data.xlsx'); 
%50% of data will be used for training 
%25% of data will be used for cross-validation 
%25% of data will be used for testing 
for i=1:91 
    atr(i,:)=ndata(i,:); 
end 
for i=92:137 
    aval(i-91,:)=ndata(i,:); 
end 
% 
for i=138:length(ndata) 
    atest(i-137,:)=ndata(i,:); 
end 
Ytr=atr(:,1); 
Xtr=atr(:,2:9); 
Xtst=atest(:,2:9); 
Ytst=atest(:,1); 
Yv=aval(:,1); 
Xv=aval(:,2:9); 
[model, time] = gmdhbuild(Xtr, Ytr, 2, 0, 2, 0, 2, 1, 0.9, Xv, 

Yv,1); 
gmdheq(model, 3); 
[Yqtst] = gmdhpredict(model, Xtst); 
[Yqval] = gmdhpredict(model, Xv); 
[Yqtr] = gmdhpredict(model, Xtr); 
[MSE, RMSE, RRMSE, R2] = gmdhtest(model, Xtst, Ytst); 

  
% Evaluating Relative Error for training set: 
%============================================ 
Et1=(Ytr-Yqtr)./Ytr*100; 
[q,z] = size(Et1); 
figure 
plot(Ytst,Yqtst,'o') 
grid off 
set(gcf, 'color', 'white') 
axis ([0 4e-5 0 4e-5]) 

  
title('Predicted Oil Compressibility vs Measured Oil 

Compressibility'); 
xlabel('Measured Oil Compressibility "1/psi"'); 
ylabel('Predicted Oil Compressibility "1/psi"') 
legend('Training set', 'location', 'Northwest') 
% Addding Reference Line with 45 degree slope  
line([0 ; 5e-5],[0 ; 5e-5]) 
%HINT: Select the y-value based on your data limits 
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hold 
% Evaluating the correlation coefficient for training set: 
% ======================================================== 
Rt1=corrcoef(Yqtr,Ytr); 
Rt11=min(Rt1(:,1)); 
gtext(['correlation coefficient = (' num2str(Rt11) ')']); 
hold 

  
% Addding Reference Line with 45 degree slope  
%line([0 ; 300],[0 ; 300])  
%HINT: Select the y-value based on your data limits 

  
% Evaluating Relative Error for validation set: 
%============================================== 
Ev1=(Yv-Yqval)./Yv*100; 
[m,n] = size(Ev1); 
figure 

  
plot(Yv,Yqval,'o') 
grid off 
set(gcf, 'color', 'white') 
axis ([0 5e-5 0 5e-5]) 
title('Predicted Oil Compressibility vs. Measured Oil 

Compressibility'); 
xlabel('Measured Oil Compressibility "1/psi"'); 
ylabel('Predicted Oil Compressibility "1/psi"') 
legend('Validation set', 'location', 'Northwest') 
% Addding Reference Line with 45 degree slope  
line([0 ; 5e-5],[0 ; 5e-5]) 
%HINT: Select the y-value based on your data limits 

  
% Evaluating the correlation coefficient for validation set: 
% ========================================================== 
% for the first target Pressure Drop 
Rv1=corrcoef(Yqval,Yv); 
Rv11=min(Rv1(:,1)); 
gtext(['correlation coefficient = (' num2str(Rv11) ')']); 
hold 

  
% Evaluating Relative Error for testing set: 
%=========================================== 
% for the first target Pressure Drop 
Ett1=(Ytst-Yqtst)./Ytst*100; 
[m,n] = size(Ett1); 
figure 
% 
plot(Ytst,Yqtst,'o') 
grid off 
set(gcf, 'color', 'white') 
axis([0 4e-5 0 4e-5]) 

  
title('Predicted Oil Compressibility vs.Measured Oil 

Compressibility'); 
xlabel('Measured Oil Compressibility "1/psi"'); 
ylabel('Predicted Oil Compressibility "1/psi"') 
legend('Testing set', 'location', 'Northwest') 
% Addding Reference Line with 45 degree slope  
line([0 ; 5e-5],[0 ; 5e-5]) 
%HINT: Select the y-value based on your data limits 
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% Evaluating the correlation coefficient for testing set: 
% ======================================================= 
Rtt1=corrcoef(Yqtst,Ytst); 
Rtt11=min(Rtt1(:,1)); 
gtext(['correlation coefficient = (' num2str(Rtt11) ')']); 
hold 
% plotting the histogram of the errors for training set: 
% ====================================================== 
figure 
histfit(Et1,10) 
%hist(Et1,10) 
h = findobj(gca,'Type','patch'); 
set(h,'FaceColor','w','EdgeColor','k') 
title('Error Distribution for Training Set (Polynomial GMDH 

Model)'); 
legend('Training set') 
xlabel('Error'); 
ylabel('Frequency') 
set(gcf, 'color', 'white') 
hold 

  
% plotting the histogram of the errors for validation set: 
% ======================================================== 
figure 
histfit(Ev1,10) 
%hist(Ev1,10) 
h = findobj(gca, 'Type', 'patch'); 
set(h,'FaceColor','w','EdgeColor','k') 
title('Error Distribution for Validation Set (Polynomial GMDH 

Model)'); 
legend('Validation set') 
xlabel('Error'); 
ylabel('Frequency') 
set(gcf, 'color', 'white') 
hold 

  
% plotting the histogram of the errors for testing set: 
% ===================================================== 
figure 
histfit(Ett1,10) 
%hist(Ett1,10) 
h = findobj(gca,'Type','patch'); 
set(h,'FaceColor','w','EdgeColor','k') 
title('Error Distribution for Testing Set (Polynomial GMDH Model)'); 
legend('Testing set') 
xlabel('Error'); 
ylabel('Frequency') 
set(gcf, 'color', 'white') 
hold 
% Estimating the residuals for training set: 
% ========================================== 
figure 
Errort1 = Yqtr-Ytr; 
plot(Errort1,':ro'); 
grid off 
set(gcf, 'color', 'white') 
title('Error Distribution for Training Set (Polynomial GMDH Model)') 
legend('Training Set') 
xlabel('Data Point No') 
ylabel('Errors') 
hold 
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% Estimating the residuals for validation set: 
% ============================================ 
figure 
Errorv1 = Yqval-Yv; 
plot(Errorv1,':ro'); 
grid off 
set(gcf, 'color', 'white') 
title('Residual Graph for Validation Set (Polynomial GMDH Model)') 
legend('Validation Set') 
xlabel('Data Point No') 
ylabel('Errors') 
hold 
% Estimating the residuals for testing set: 
% ========================================= 
figure 
Errortt1 = Yqtst-Ytst; 
plot(Errortt1,':ro'); 
grid off 
set(gcf, 'color', 'white') 
title('Residual Graph for Testing Set (Polynomial GMDH Model)') 
legend('Testing Set') 
xlabel('Data Point No') 
ylabel('Errors') 

  
% ******************** 
% STATISTICAL ANALYSIS: 
% ******************** 
% Training set: 
% ============= 
% Determining the Maximum Absolute Percent Relative Error 
MaxErrt1 = max(abs(Et1)); 

  
% Evaluating the average error 
Etavg1 = 1/q*sum(Et1); 

  
% Evaluating the standard deviation 
STDT1 = std(Errort1); 

  
% Determining the Minimum Absolute Percent Relative Error   
MinErrt1 = min(abs(Et1)); 

  
% Evaluating Average Absolute Percent Relative Error  
% =================================================== 
AAPET1 = sum(abs(Et1))/q; 

  
% Evaluating Average Percent Relative Error 
% ========================================= 
APET1 = 1/q*sum(Et1); 

  
% Evaluating Root Mean Square  
% =========================== 
RMSET1 = sqrt(sum(abs(Et1).^2)/q); 

  
% Validation set: 
% =============== 
% Determining the Maximum Absolute Percent Relative Error 
MaxErrv1 = max(abs(Ev1)); 

  
% Determining the Minimum Absolute Percent Relative Error  
MinErrv1 = min(abs(Ev1)); 
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% Evaluating the average error 
Evavg1 = 1/m*sum(Ev1); 

  
% Evaluating the standard deviation 
STDV1 = std(Errorv1); 

  
%  
% Evaluating Average Absolute Percent Relative Error  
% ================================================== 
AAPEV1 = sum(abs(Ev1))/m; 

  
% Evaluating Average Percent Relative Error 
% ========================================= 
APEV1 = 1/m*sum(Ev1); 

  
% Evaluating Root Mean Square  
% =========================== 
RMSEV1 = sqrt(sum(abs(Ev1).^2)/m); 

  
% Testing set: 
% ============ 
% Determining the Maximum Absolute Percent Relative Error 
MaxErrtt1 = max(abs(Ett1)); 

  
% Determining the Minimum Absolute Percent Relative Error 
MinErrtt1 = min(abs(Ett1)); 

  
% Evaluating the average error 
Ettavg1 = 1/m*sum(Ett1); 

  
% Evaluating the standard deviation 
STDTT1 = std(Errortt1); 

  
% Evaluating Average Absolute Percent Relative Error  
% =================================================== 
AAPETT1 = sum(abs(Ett1))/m; 

  
% Evaluating Average Percent Relative Error 
% ========================================== 
APETT1 = 1/m*sum(Ett1); 

  
% Evaluating Root Mean Square  
% ============================ 
RMSETT1 = sqrt(sum(abs(Ett1).^2)/m); 

  

  
% ================================================== 
%-------------------------------------------------------------------

----------- 
% Simulation: Variation Reservoir Pressure while fixing the other 

parameters 
% ------------RESERVOIR PRESSURE VARIATION--------------------------

------------ 

  
ps1=[linspace(30.18,30.18,10); %DEGREE API [min=6    max=56.8   

mean=30.18] 
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linspace(201.37,201.37,10);%RESERVOIR TEMPERATURE[min=80.6    

max=341.6 mean=201.37] 
linspace(242.22,15304.62,10);%RESERVOIR PRESSURE [min=242.22   

max=15304.62  mean=4204.37] 
linspace(614.60,614.60,10);%SOLUTION GOR [min=8.61    max=3298.66   

mean=614.60] 
linspace(1.044,1.044,10);%GAS GRAVITY[min=0.624    max=1.789    

mean=1.044] 
linspace(108.58,108.58,10);%SEPARATOR TEMPERATURE [min=59   max=194  

mean=108.58] 
linspace(254.88,254.88,10);%SEPARATOR PRESSURE [min=14.5    

max=868.79  mean=254.88] 
linspace(2357.18,2357.18,10)]';%BUBBLEPOINT PRESSURE [min=107.33 

max=6613.82    mean=2357.18] 

  
% Now simulate 
[Yq_length] = gmdhpredict(model, ps1); 
% Plot Figures for Reservoir Pressure Variation 
figure 
px1=plot(ps1(:,3),Yq_length(:,1),'-rs'); 
set(gca,'YGrid','off','XGrid','off') 
set(gca,'FontSize',12,'LineWidth',2); 
set(px1,'LineStyle','-.','LineWidth',1.5,'Color','k','MarkerSize',6) 
xlabel('Reservoir Pressure (psia)','FontSize',12) 
ylabel('Oil Compressibility (1/psi)', 'fontsize',12) 

  
%-------------------------------------------------------------------

----------- 
% Simulation: Variation of Solution GOR while fixing the other 

parameters 
% ------------SOLUTION GOR VARIATION--------------------------------

------ 

  
ps2=[linspace(30.18,30.18,10); %DEGREE API [min=6    max=56.8   

mean=30.18] 
linspace(201.37,201.37,10);%RESERVOIR TEMPERATURE[min=80.6    

max=341.6 mean=201.37] 
linspace(4204.37,4204.37,10);%RESERVOIR PRESSURE [min=242.22   

max=15304.62  mean=4204.37] 
linspace(68.61,3298.66,10);%SOLUTION GOR [min=8.61    max=3298.66   

mean=614.60] 
linspace(1.044,1.044,10);%GAS GRAVITY[min=0.624    max=1.789    

mean=1.044] 
linspace(108.58,108.58,10);%SEPARATOR TEMPERATURE [min=59   max=194  

mean=108.58] 
linspace(254.88,254.88,10);%SEPARATOR PRESSURE [min=14.5    

max=868.79  mean=254.88] 
linspace(2357.18,2357.18,10)]';%BUBBLEPOINT PRESSURE [min=107.33 

max=6613.82    mean=2357.18] 

  
% Now simulate 
[Yq_angle] = gmdhpredict(model, ps2); 
% Plot Figures for Solution GOR Variation 
figure 
px2=plot(ps2(:,4),Yq_angle(:,1),'-rs'); 
set(gca,'YGrid','off','XGrid','off') 
set(gca,'FontSize',12,'LineWidth',2); 
set(px2,'LineStyle','-.','LineWidth',1.5,'Color','k','MarkerSize',6) 
xlabel('Solution GOR (scf/STB)','FontSize',12) 
ylabel('Oil Compressibility (1/psi)', 'fontsize',12) 
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%-------------------------------------------------------------------

----------- 
% Simulation: Variation of Bubble Point Pressure while fixing the 

other parameters 
% ------------BUBBLE POINT PRESSURE VARIATION-----------------------

--------------- 

  
ps3=[linspace(30.18,30.18,10); %DEGREE API [min=6    max=56.8   

mean=30.18] 
linspace(201.37,201.37,10);%RESERVOIR TEMPERATURE[min=80.6    

max=341.6 mean=201.37] 
linspace(7613.82,7613.82,10);%RESERVOIR PRESSURE [min=242.22   

max=15304.62  mean=4204.37] 
linspace(614.60,614.60,10);%SOLUTION GOR [min=8.61    max=3298.66   

mean=614.60] 
linspace(1.044,1.044,10);%GAS GRAVITY[min=0.624    max=1.789    

mean=1.044] 
linspace(108.58,108.58,10);%SEPARATOR TEMPERATURE [min=59   max=194  

mean=108.58] 
linspace(254.88,254.88,10);%SEPARATOR PRESSURE [min=14.5    

max=868.79  mean=254.88] 
linspace(107.33,6613.82,10)]';%BUBBLEPOINT PRESSURE [min=107.33 

max=6613.82    mean=2357.18] 

  
% Now simulate 
[Yq_angle] = gmdhpredict(model, ps3); 
% Plot Figures for Bubble Point Variation 
figure 
px3=plot(ps3(:,8),Yq_angle(:,1),'-rs'); 
set(gca,'YGrid','off','XGrid','off') 
set(gca,'FontSize',12,'LineWidth',2); 
set(px3,'LineStyle','-.','LineWidth',1.5,'Color','k','MarkerSize',6) 
xlabel('Bubble Point Pressure (psia)','FontSize',12) 
ylabel('Oil Compressibility (1/psi)', 'fontsize',12) 

 

 


