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ABSTRACT 

 

Enhanced oil recovery benefits the oil and gas industry by increasing the oil production 

that had been declined in particular reservoir. One of the methods is by miscible gas 

injection. In order to inject the gas into the reservoir and achieve miscibility, the 

determination of minimum miscibility pressure (MMP) is important. This report is 

regarding the study of MMP by using group method of data handling (GMDH). There are 

many ways to determine MMP. However, selection of GMDH as a method had been done 

because most of the experimental methods take a lengthy time to be completed. Although 

through previous studies, a lot of models had been produced, still, the industry in need of 

researches that generate correlations that are better in accuracy. Therefore, this study 

aimed to model MMP with GMDH, using common correlated parameters, and made 

comparison with the previous model. In this report also, researches been done by gathering 

data required by doing comprehensive readings on particular topics related to the projects 

especially regarding the concepts of MMP and GMDH. Only then the model could be 

made and optimized ultimately producing an accurate and reliable correlations. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

EOR has been a main topic for the last decades. With declination of hydrocarbon 

production as a factor, EOR gained attentions due to its ability to improve the productivity 

of a reservoir. One of the most effective method in EOR is the miscible flooding. One of 

the condition that affects the selection of miscible flooding is the MMP. At reservoir 

temperature, a condition where the injected gas mixed with reservoir oil, the lowest 

pressure at that particular point is regarded as MMP. Therefore, a decrease in oil recovery 

can be observed if the reservoir pressure drop below MMP, resulting no miscible 

displacement can be achieved. Hence, considerable interest had been given to the industry 

to predict the minimum miscibility pressure of certain reservoir. Production of residual oil 

left in the reservoir will mostly depending on the EOR method. Consequently, obtaining 

the minimum miscibility pressure will be vital in determining preferable EOR method to 

be applied to the respective reservoir, increasing the production of oil and gas. 

 

There are a lot of technique can be done in order to predict the minimum 

miscibility pressure. Ranging from experimental to analytical approaches, many studies 

had been done in regards of this topic. GMDH has been proposed in this study to predict 

the MMP.

 

GMDH is a self-organizing network where the structure of the network is not 

defined by the users. GMDH works with the concept to link several input parameters to 

one output. GMDH consume less in term of time usage as the stopping criterion is 

specified by the users. Although the effectiveness of GMDH in oil and gas sector is still 

in doubt due to little references that can be found relating to this good modelling method, 

this approach had been selected for this study due to the fact of its benefits in contrast to 

other method. 

 

 



 

2 
 

1.2 Problem Statement 

Few problems have been identified related to the study of minimum miscibility 

pressure determination using group method data handling: 

 

i) Tedious experimental procedure. 

Determining the minimum miscibility pressure by using the experimental methods 

such as slim-tube test would be a better solution. However, such procedure would take 

more time in order for the test to be completed. This will exceed the time frame of the 

study. Taking an analytical approach will save more time. 

 

ii) Existing models and correlations are complex and lack in accuracy. 

Several assumptions and considerations had been taken to reach the current models 

and correlations. There are possibilities that those assumptions made and particular 

considerations are actually important to the prediction of minimum miscibility 

pressure. Thus, every details need to be taken into consideration before arriving at a 

simplified model yet with a high accuracy. 

 

iii) More general and universal correlation need to be introduced to the petroleum 

industry. 

By applying existed correlations, at certain conditions, the percentage error exceed 

100%. This shows that the correlations are bit off and over fit the experimental data 

used during the development of the correlation. Hence, a correlation that can cover a 

wider scope is needed by the industry in order to predict the minimum miscibility 

pressure. 
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1.3 Objectives and Scope of Study 

The objectives of this study are as follow: 

 

i) To model the MMP using GMDH approach with the most common correlated 

input parameters. 

GMDH method was selected to model the MMP. Besides having other experimental 

and analytical methods, a simpler, more applicable and reliable correlation will be 

generated to ease the prediction of MMP. There are several parameters involved in 

determination of MMP. However, most common input parameters, to be used in 

GMDH, will be determined in order to have a general correlation. General here can be 

defined as those parameters that frequently been used to predict the MMP. 

  

ii) To validate and test the model performance using actual data. 

Validation and testing is important once a model is being developed to ensure that the 

correlation is in working condition. On top of that, the usage of actual data preserve 

the originality of the results produced. Hence, by validation and testing, the output and 

accuracy of the correlation can be assured to be used generally in the industry. 

 

iii) To compare the model performance against the most common correlations 

adopted by the industry. 

There were several correlations that can be found in the industry regarding the 

prediction of MMP. However, comparison will be made between model produced in 

this study and the others to see the increment in accuracy and quality of the model 

generated using GMDH. A simple correlation is to be determined that does not fit the 

training with high accuracy from this study. A dimensionless model is also expected 

to ease the usage of the correlation. 
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Within the stipulated time frame, the study must be done accordingly and covering 

very specific scope to achieve all the objectives mentioned before. 

  

i) Literature survey 

An in depth study from any sources of literature relating to project’s topic need to be 

done. Comprehension of the topic need to be obtained, focusing on 3 points as follow: 

 

a) Concepts of MMP 

A detailed study need to be done on methods of MMP prediction where several 

methods and results will be discussed. Previous correlations obtained from the any 

available and trusted sources of reference will be used to search for parameters and 

factors that give major impact on the minimum miscibility pressure. These 

parameters and factors will be used in the validation and testing of the models 

produced and to compare with the previous correlations. Concurrently, evaluation 

studies will be done on the accuracy of the parameters and existing correlations to 

help in the MMP models generation. This is due to considerations taken of 

parameters that might have vital value must not being missed out during the 

modelling construction. 

 

b) Overview of GMDH 

Readings on modelling, basic concept of GMDH will be done to understand how 

GMDH operates and how it can be implemented in prediction of MMP. 

 

c) Application of GMDH in petroleum industry 

Researches are made in order to have a clear view on how GMDH has been 

affecting the oil and gas industry. 
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ii) Model simulation 

By utilizing the GMDH approach, a model development will be conducted with the 

inclusion of all parameters and factors identified which affect the prediction o 

minimum miscibility pressure. This development phase will require data that will be 

provided later on. 

 

iii) Correlation validation 

Prior to the completion of model in development phase, training, validation process 

and testing will be conducted based on the data collected. Therefore, the validity and 

accuracy of the correlation can be assured. This process will be repeated until the 

desired accuracy of the model is achieved. 
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CHAPTER 2 

LITERATURE REVIEW 

 

This chapter summaries all comprehensive study made on the selected literature regarding 

minimum miscibility pressure. It can be divided into three (3) subtopics which include 

 

2.1 Concept of MMP 

EOR or enhanced oil recovery is a mechanism to further increase the production 

of oil. Being regarded as the tertiary oil recovery phase, some highly cost equipment are 

deployed as part of EOR in order to produce up to 75 percent of OOIP. Three (3) EOR’s 

main types are always being discussed. These are chemical injection, thermal recovery 

and gas injection. Thermal injection involves an introduction of heat into the reservoir. 

This will eventually decrease the viscosity of the oil, usually used in a heavy oil reservoir, 

and ease the production of the oil. While chemical injection refers to those methods where 

chemical formulations are injected into the reservoirs to help in oil production increment. 

For example, alkaline, surfactant and/or polymer are being used with each of them will 

bring different results, altering particular reservoirs parameters. Last but not least, where 

this study is mostly about is the gas injection. As the term goes by, gases are being used 

in EOR to improve oil production. In the secondary oil recovery phase, gas injection is 

also deployed. However, the difference between both gas injections is that the one in the 

secondary recovery is a mere injection of particular gas to displace the oil to the surface 

while in tertiary recovery miscible gas injection occurs. MMP plays a role in determining 

the miscibility of the reservoir fluids. 

 

Miscible gas injection is a process of injecting gas into the reservoir to increase 

the production of oil. Gases being used include carbon dioxide (CO2), flue gas, nitrogen 

gas and lean gas. The injected gas will be selected based on the analysis made on the 

reservoir characteristics. There are two (2) miscible gas injection mechanisms, first-

contact miscibility and multiple contact miscibility. First-contact miscibility can be 

explained as when there are two fluids that mixed with each other upon the initial contact 

in contrast to multiple contact miscibility where exchange of fluids components happens 
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before the fluids mixed together. Multiple contact miscibility also consists of condensing 

drive and vaporizing drive. These drives also affected by particular reservoir 

characteristics. In condensing drive mechanism, intermediate components will enter the 

oil phase from the gas phase while it is the other way round for light and intermediate 

components in vaporizing drive mechanism. Anyway, MMP affects any of the mechanism 

above.  

 

A condition where the oil and injected gas mixed in the reservoir is called MMP. 

Usually, there are forces that prevent two immiscible fluids from mixing called the 

interfacial tension. However, as the MMP approaches, interfacial tension will diminish 

and the absence of interface between the two fluids causes miscibility. 

 

Being a very important parameter in EOR method’s selection, a lot of studies been 

done in order to determine MMP and studies done showing there are several methods to 

determine it, be it by experiments or numerical approaches. It was stated that MMP can 

be determined experimentally with slim tube test, RBA test and VIT technique. (Chen, G., 

Wang, X., Liang, Z., Gao, R., Sema, T., Luo, P., Zeng, F., and Tontiwachwuthikul, P., 

2013) [1]. According to Maklavani et al. [2], slim tube test is being adopted as the most 

typical method to measure MMP in the industry. However, they reinstated that the method 

take a lot of time and resorted to the use of a slim tube compositional simulator. In their 

study, the model consists of as following: rectangular reservoir with 20 meter in length 

and 0.000025m2 in cross-sectional area, hydrocarbon gas injected at 10 𝑐𝑐/ℎ, porosity at 

20%, permeability at 1000 md and 500 blocks. Initially, the model was saturated above 

the bubble point pressure and at reservoir temperature with oil. Peng-Robinson equation 

of state parameters was tuned and brought into the simulator in order to simulate the 

reservoir fluid. Before MMP was determined with this method, known oil MMP and PVT 

data was used to validate and calibrate the simulator. 

 

Other than that, Glaso [3] also mentioned that miscibility conditions can be 

determined with experimentation. He added that it is also possible to predict MMP from 

ternary diagrams. Calculations made from gas and liquid compositions of a reservoir 
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oil/injection-gas mixture is the key to this. Glaso also stressed that it is hard to get on 

experimental gas and liquid equilibrium data besides taking a long time to determine one, 

especially near the plait point. 

 

One of the popular numerical method is ANN modeling approach. By user-

definition of significant input parameters and ratio of network’s layer, used to establish 

the connection between multiple inputs and an output, ANN modeling succeed in giving 

new predictions with higher accuracy with just a simple model. Therefore, based on the 

application of this method, it was proven that ANN modelling gives better predictions 

with higher accuracy and lower complexity compared to the existing correlations or 

models. However, ANN has its limitations.  ANN takes a lot of time to reach finalized 

model. This is because trial and error need to be done to set various algorithms for the 

initial solution which affects the results produced. To estimate the structure of the model 

in ANN, the used need to decide the quantity of layers and transfer functions of nodes. 

This process can be very subjective and tedious. These two limitations hinder ANN 

potential to give a good prediction to minimum miscibility pressure. 

 

Several previous correlations identified can be used to determine MMP: 

 

i) Maklavani, A. M., et al. [2] Correlation 

This correlation is a result of regressed measured MMP data determined by 

experiments and also from compositional slim tube simulator. It includes the effect of 

temperature, oil composition and injected gas composition. 

𝑀𝑀𝑃 = 43.664 − 4.542𝛼 + 0.689𝛼2 − 0.132𝛽 

𝛼 =
𝑋𝐶2−6

1.72785 × 𝑋𝐶1

0.1

(1.8𝑇 + 32)0.5 × 𝑀𝐶7+

 

𝛽 = 𝑌𝐶2+

(1.064+0.00686𝑀𝐶2+)
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Parameter 

MMP: minimum miscibility pressure (MPa) 

𝑋𝐶2−6
: intermediate composition in the oil containing C2-6, CO2 and H2S in mole % 

𝑋𝐶1
: amount of methane in the oil (%) 

T: temperature (°C) 

𝑀𝐶7+
: molecular weight of C7+ (g/mol) 

𝑌𝐶2+
: mole percent of C2+ composition in injected gas (%) 

𝑀𝐶2+
: Molecular weight of C2+ in injected gas 

 

ii) Sebastian and Lawrence [4] Correlation 

This correlation includes effects of oil composition and reservoir temperature to 

determine the MMP of nitrogen. 

 

Parameter 

N2 MMP: nitrogen minimum miscibility pressure 

CL: mole fraction of methane in the oil 

CI: mole fraction of intermediates (C2-6 and CO2) 

T: reservoir temperature (°R) 

MW: molecular weight of C7+ 

 

iii) Firoozabadi and Aziz [5] Correlation 

This correlation utilized experimental data and simulation runs to develop a simple 

correlation to predict the MMP. 

𝑝𝑚 = 9433 − 188 × 103 (
𝐶𝐶2

− 𝐶𝐶5

(𝑀𝐶7+
)(𝑇0.25)

) + 1430 × 103 (
𝐶𝐶2

− 𝐶𝐶5

(𝑀𝐶7+
)(𝑇0.25)

)

2

 

Parameter 

𝑃𝑚: MMP (psia) 

T: temperature (°F) 

𝐶𝐶2
 –  𝐶𝐶5

: concentration of intermediates, (mol %) 

MC7+: molecular weight of heptane plus 

𝑁2 𝑀𝑀𝑃 = 4603 − 3283 [
(𝐶𝐿)(𝑇)

𝑀𝑊
] + 4.776 [

(𝐶𝐿2)(𝑇2)

𝑀𝑊
] − 4.008 [

(𝐶𝐼)(𝑇2)

𝑀𝑊
] + 2.05 (𝑀𝑊) + 7.541𝑇  
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2.2 Overview of GMDH 

Fujimoto and Nakabayashi [6] stated that GMDH was brought into the scene in 

1966 by Ivankhenko. Up until now, it has been known that GMDH is used in complex 

system modeling as an inductive learning algorithm for complex systems modeling. 

 

GMDH is an inductive self-organizing methods that was modified further to solve 

complex problems. It is built from complex, non-linear relationships, compacted into 

networks of mathematical functions that execute output faster than its original forms. A 

problem is divided into nodes predefined by the users. Then, those simpler problems are 

solved by using advanced regression techniques. That is what self-organizing is all about. 

Astakhov and Galitsky [7], in their study, reiterate to simplify that, GMDH works by 

establishing a general network, as shown in Kolmogorov-Gobor polynomial below. It 

requires inputs and producing output which is solution to the problem. 

 

𝑦 = 𝑏0 + ∑ 𝑏𝑖𝑥𝑖

𝑀

𝑖=1

+ ∑ ∑ 𝑏𝑖𝑗𝑥𝑖𝑥𝑗

𝑀

𝑗=1

𝑀

𝑖=1

+ ∑ ∑ ∑ 𝑏𝑖𝑗𝑘𝑥𝑖𝑥𝑗𝑥𝑘

𝑀

𝑘=1

𝑀

𝑗=1

𝑀

𝑖=1

 (1) 

 

The component of input can be either independent variable, functional forms or 

even finite difference terms. In addition to that, GMDH method simultaneously enables 

optimization of a model structure and produces a model that takes significant inputs for 

the output to depend on. In other words, GMDH excludes unimportant parameters and 

takes inputs that really affect the output, hence the model produced. 

 

Many fields, including medical diagnostics, military system, economy system and 

even environment system took the application of GMDH and succeed in doing so. 

However, there is very few application of this method in oil and gas sector although no 

valid reasons identified. Nevertheless, GMDH has a very high potential to be applied in 

oil and gas industries. Due to those uncertainties encountered in exploration, production 

and transportation especially, GMDH might produce reliable solutions to be applied. 

Therefore, if GMDH were to be compared with ANN, as per mentioned earlier, it is 
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expected an improved correlation will be produced besides overcoming all the limitations 

possess by ANN. 

 

2.3 GMDH and current Petroleum Industry 

Semenov et al. [8] were developing the best mathematical model for Dolgan 

reservoir rock characteristics estimation. To conduct the study, all well logs that can be 

obtained was utilized. Among the methods being used in their study are linear regression, 

neural networks, and GMDH which end up of GMDH method having the best correlation 

obtained based on statistical criteria. It is able to optimize model coefficient for 

predetermined mathematical equation and select optimal model complexity. The result of 

porosity calculation with GMDH eventually help in the realization of a full-field geomodel 

of Dolgan formation. The geomodel is then implemented on model simulation and field 

development design to decide the recovery rate and either to drill horizontal or side track 

wells, respectively. 

  

Lee et al. [9] used GMDH to determine drill life with various cutting conditions. 

Drill diameter, cutting speed, and feed rate have been selected as the parameters in this 

study. The drill life used in the abductive network is defined as the period of drilling time 

that the average flank wear, VB or maximum flank wear, VBmax, are equal to 0.3 mm or 

0.6 mm respectively. This criterion is the recommended by the ISO for effective life of 

high-speed steel tools. From the experimental result, it was then proven that abductive 

network, obtained prediction error of less than 9%, can be effectively used to make 

prediction of this study. On top of that, PSE was utilized. PSE were used as benchmark 

with the means of synthesizing as accurate but less complex network as possible. 
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CHAPTER 3 

METHODOLOGY 

 

This chapter covers all the methodology that will be used, project activities and key 

milestones on this study. In general, simulation software will be greatly used in the 

development of the model by using GMDH approach. Further explanation on GMDH 

approach will be explained below. 

 

3.1 Basic Layout of Planned Methodology 

 

 

 

3.2 Project Planning 

Towards the completion of this project, a proper planning need to be made. 

Therefore, it was vital for the author to identify the problems that need to be addressed as 

soon as the topic was confirmed. The formulation of problem was then conducted and 

three (3) problem statements were identified and understood. To solve the problems 

Selection and confirmation on project title

Studying the topic and select the scope of studies of the project

Familiarizing the MATLAB software

Understanding theory to build the model

Data gathering and assigning level

Develop model for minimum miscibility pressure using MATLAB

Analyze the results and discussion

Conclusion and documentation
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mentioned, next the author came out with the objectives of this study. Three (3) objectives 

determined was actually to help in solving the problems statements, in a more focused 

manner. 

 

In order for the planning to be commenced, the author need to take his resources 

into considerations. Resources in this case can be defined as inputs that will be needed 

with the author throughout the project’s time frame which include materials, manpower, 

money and also time, in order to produce an output for this project. Determination of those 

particular aspects will help in determining this project magnitude. Since this was a 

simulation project, materials required do not need any usage of money and huge 

manpower. Only high specification computer was needed and the manpower was the 

author himself. As for the timing aspect, the duration and key milestones were decided so 

that the project will be completed on time. 

  

The next step was to conduct a literature review. Works by previous authors were 

obtained from publications that can be accessible either at the library or from the internet. 

This was done in order to obtain better understanding regarding the project which include 

on MMP determination and the operation of GMDH. 

 

3.3 MATLAB software 

To complete the model, MATLAB was utilized. MATLAB is an advanced 

software used in numerical computation and programming. Data analysis, algorithms 

development and of course, to build a model can be done in MATLAB. Figure 1 and 2 

below are the interface of MATLAB R2013a: 
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Usually MATLAB is utilized in: 

 

i) Modelling, making prototype and simulation 

ii) Developing algorithms 

iii) Analyzing data 

iv) Producing scientific visualization and engineering graphics 

v) Building graphical user interface for application 

Figure 1: MATLAB Software 

Figure 2: MATLAB Software Interface 
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For this project, the author used a syntax in order to simulate the operation of 

GMDH. All the data was compiled in a Microsoft Excel file to be linked with the code. 

Eventually, a correlation was produced as a result of the process. 

 

3.4 GMDH Modeling Approach 

A study done on GMDH helped in understanding and developing a theory to build the 

model. Below is the basic technique of GMDH learning algorithm: 

 

i) Identify sets of data containing an output, y and independent inputs namely 

𝑥1, 𝑥2, … . , 𝑥𝑀. Divide them into a training set, a validation set and a testing set. 

ii) Put in all M input variables data (Input Layer) and construct combinations for 

every two (2) variables for the second layer (Layer 2). 

iii) By using training set, estimate the weights of all units 

(𝑏0 𝑢𝑛𝑡𝑖𝑙 𝑏𝑖𝑗𝑘 𝑖𝑛 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1) using stepwise regression method. 

iv) Compute mean square error between y and prediction of each unit. 

v) Arrange the unit by mean square error and discard poor units. 

vi) Set the prediction of units in the first layer to new input variables for the next 

layer and build up a multi-layer structure by applying step (ii) to (iv). 

vii) Stop adding layers and select the minimum mean square error unit in the highest 

layer as final model output when the mean square error become larger in the 

previous layer. 

 

Figure 3 shows the basic structure of GMDH. 
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3.5 Data Acquisition and Processing 

Data was needed in the process of building a model by using GMDH approach. 

Therefore, actual data of crucial parameters were started to be collected from trusted 

sources as per mentioned before. Parameters involved was selected from the studies done 

to obtain the correlations mentioned in literature review section. However, screening need 

to be done in order to select those parameters that are commonly obtained and used in the 

industry. Table 1 shows the screening of existing correlations done together with the 

parameters used. Finalized parameters selected for GMDH was based on the one that 

mostly used in the previous studies.  

 

 

 

 

 

 

 

 

Figure 3: GMDH Structure 
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Table 1: Parameter Screening 

Correlation 

Parameters 

Mole 

fraction of 

C2-6 

Mole 

fraction 

of C1 

Temperature Molecular 

weight of 

C7+ 

Mole 

fraction 

of C2+ 

Molecular 

weight of 

C2+ 

Bubblepoint 

Pressure 

Maklavani, A. 

M., et al. [2] 
             

Sebastian and 

Lawrence [4] 
            

Firoozabadi 

and Aziz [5] 
             

 

 

Based on the screening process, it was decided that 5 parameters will be used as input 

variables for this study which are: 

 

i) Reservoir temperature 

ii) Molecular weight of C7+ in the oil 

iii) Mole fraction of intermediates (C2 – C6) in the oil 

iv) Mole fraction of C1 in the oil 

v) Mole fraction of C2+ in the injected gas 

 

As the parameters were confirmed, data collection was began immediately. This is 

because a lot time was estimated in order to get the suitable data. 356 data sets used in 

this study is in APPENDIX A. 

 

All data obtained need to be divided into portions. According to a ratio of 2:1:1, 

data partitioning was conducted into training, validation and testing data sets respectively. 

Training data took the highest fraction because this portion was used to develop the model 

in the first place. Validation and testing data shared the same portion as validation was 

needed for model optimization and testing data used to conform the final performance of 

the produced correlations. 
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3.6 Modeling Process Flow 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Modeling Process Flow 
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i) Setting default Polynomial GMDH codes 

The GMDH coding was keyed in into the MATLAB software and modified suiting to 

the project objectives. This includes coding for the modeling and also statistical 

analysis. 

 

ii) Debugging 

The coding was debugged if any errors prompted by MATLAB. The errors prevent 

the program to run. 

 

iii) Model Run 

MATLAB was run. If errors were found, the coding need more debugging. If the run 

was error free, a model and statistical analysis graphs were produced. 

 

iv) Setting of Parameters for Trend Analysis 

The coding was then improved to have trend analysis. Specific parameter, depends on 

study done on them, was allowed to vary while the others were kept constant. 

 

v) Model Run 

MATLAB was run. If errors were found, the coding need more debugging. If the run 

was error free, a graph of trend analysis was produced to be compared with the real 

trend. 

 

vi) Optimizing Codes 

The coding were modified by trial and error to achieve optimum performance in terms 

of correlation coefficient and statistical analysis graph as well as obeying the original 

trend. 
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3.7 Types of Analysis 

In order for the author to clarify the precision of the model generated, few analysis 

need to be done: 

 

3.7.1 Group Error analysis 

Group input parameters into a few ranges and determine the average absolute 

relative error for each model. Then, select which model that obtains the lowest average 

absolute relative error value. This is to show the reliability of the model with average 

absolute relative error is used to be the benchmark. 

 

3.7.2 Statistical Error analysis 

Calculate the value of average percent relative error, average absolute percent 

relative error, minimum and maximum absolute percent error, root mean square error, 

standard deviation or error and the model coefficients. This is to check the accuracy 

of the models. 

 

i) APE (Er) 

 

𝐸𝑟 =
1

𝑛
∑ 𝐸𝑖

𝑛

𝑖=1
 

𝐸𝑖 = [
𝑀𝑀𝑃𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑀𝑀𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝑀𝑀𝑃𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
] × 100% , 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1, 2, 3,4, … 𝑛 

𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑠𝑒𝑡 

 

ii) AAPE (Ea) 

 

𝐸𝑎 =
1

𝑛
∑ |𝐸𝑖|

𝑛

𝑖=1
 

 

iii) Emin 

 

𝐸𝑚𝑖𝑛 = 𝑚𝑖𝑛𝑖+1
𝑛 |𝐸𝑖| 
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iv) Emax 

 

𝐸𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑖+1
𝑛 |𝐸𝑖| 

 

v) RMSE 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ 𝐸𝑖

2
𝑛

𝑖=1
 

 

vi) SD 

 

𝑆𝐷 = √∑
[�̅�𝑖𝑒𝑟𝑟𝑜𝑟𝑠

− 𝑥𝑖𝑒𝑟𝑟𝑜𝑟𝑠
]

2

𝑛 − 1

𝑛

𝑖=1
 

𝑤ℎ𝑒𝑟𝑒 𝑥𝑖𝑒𝑟𝑟𝑜𝑟𝑠
= 𝑀𝑀𝑃𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑀𝑀𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 

 

vii) R 

 

𝑅 = √1 −
∑ [𝑀𝑀𝑃𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑀𝑀𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑]𝑛

𝑖=1

∑ [𝑀𝑀𝑃𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝛥𝑀𝑀𝑃̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ]𝑛
𝑖=1

 

𝑤ℎ𝑒𝑟𝑒 𝛥𝑀𝑀𝑃̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =
1

𝑛
∑[ΔMMP𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑]

𝑁

𝑖=1

 

 

3.7.3 Graphical Error analysis 

Use cross-plots, error distribution and residual analysis to analyze the 

performance and accuracy of the model. 

 

i) Cross-plots 

To compare the predicted values and measured values, plot both values with a 45° 

straight line made to signify a perfect correlation for every set of data. The model said 

to be most accurate when the slope of the data is closest as the 45° straight line. 
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ii) Error distribution 

To see either the errors are normally distributed, histograms are generated for each set 

of data. A good indicator is if the models have skewed distribution curve and the mean 

around the 0% and the standard deviation is equal to 1.0. 

 

iii) Residual analysis 

To check for any deficiencies on the model, error trends are established by plotting 

relative difference of the measured and predicted values around zero line. 

 

3.7.4 Trend analysis 

Keep the value of required parameter to be varied while the other parameters 

constant. A plot between the input parameter and minimum miscibility pressure is then 

generated and analyzed. This is to validate either the model generated obey the real 

behavior of the input parameter or not. 

 

Other than those, the testing data sets were also used for comparison between the 

correlation generated and previous correlations. 

 

3.8 Reporting 

        At this stage, the project was concluded as final report preparation went on. 

Prediction of MMP by utilizing GMDH was completed. 
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3.9 Gantt Chart and Key Milestones 

Table 2: FYP 1 Gantt Chart 

No Detail/Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 Selection of Project Topic               

2 Preliminary Research Work               

3 Submission of Extended Proposal               

4 Proposal Defence               

5 Project Work Continues               

6 Submission of Interim Draft Report               

7 Submission of Interim Report               

Table 3: FYP 2 Gantt Chart 

No Detail/Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 Project Work Continues                
 

2 Submission of Progress Report                
 

3 Project Work Continues                
 

4 Pre-SEDEX                
 

5 Submission of Draft Report                
 

6 

Submission of Dissertation 

(Soft Bound)                
 

7 Submission of Technical Paper                
 

8 Viva                
 

9 

Submission of Project 

Dissertation (Hard Bound)                
 

 Process 

 Key Milestones 
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Figure 5: FYP Planning 
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CHAPTER 4 

RESULTS AND DISCUSSION 

 

4.1 Introduction 

In this chapter, the correlation produced by GMDH will be analyzed by statistical 

and graphical methods. Apart from that, comparison with the previous correlations will 

be done and trend analysis will wrap up the analysis, ensuring the model is following the 

same trend. 

 

4.2 MMP Model by GMDH 

The model produced is made up of two (2) layers and ten (10) neurons were tried 

in the first layer which in the end with only one (1) neuron. As default, the second layer 

has the output, MMP, as the only neuron. The model produced show significant effect of 

mole fraction of intermediates (C2 – C6) in the oil, mole fraction of C1 in the oil and 

molecular weight of C2+ in the injected gas towards the prediction of MMP. The model is 

as follows: 

 

Layer 1 

Number of neuron: 1 

x6 = 1.04e+04 - 88.9*x5 - 841*x3 +7.19*x3*x5 - 3.14*x5*x5 + 

44.2*x3*x3 - 0.0159*x3*x5*x5 - 0.0996*x3*x3*x5 + 0.0332*x5*x5*x5 

- 0.71*x3*x3*x3 

x3 = mole fraction of intermediates (C2 – C6) 

x5 = mole fraction of C2+ 
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Layer 2 

Number of neuron: 1 

y = 2.87e+04 - 15.2*x6 - 533*x4 + 0.273*x4*x6 + 0.00274*x6*x6 -

2.69*x4*x4 - 2.58e-05*x4*x6*x6 - 0.000731*x4*x4*x6 - 1.43e-

07*x6*x6*x6 + 0.0707*x4*x4*x4 

y = MMP 

x4 = mole fraction of C1 

 

4.3 Group Error Analysis 

To compare the reliability of the new mode compared to the previous correlations, 

this analysis was completed with Ea used as the benchmark. The previous selected 

parameters by GMDH was selected and their values were grouped in several ranges and 

plotted. 
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Figure 6: Statistical Accuracy for MMP with Different Mole Fraction of C2 – C6 Range 
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Different mole fraction of C2 – C6 range is shown in Figure 6. Throughout the 

ranges, GMDH recorded the lowest AAPE with Maklavani, A. M., et al. [2] correlation is 

the nearest to rival GMDH. This signify the stability of GMDH model compared to the 

other correlations as the AAPE for all mole fraction of C2 – C6 ranges does not exceed 

10%. 

 

 

In Figure 7, the models are now compared with the ranges in mole fraction of C2+ 

whereby basically the same trend as before as GMDH recorded lowest value of AAPE in 

all ranges. In terms of C2+ mole fraction ranges, again this signify the performance of 

GMDH against the previous correlations is better. 
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Referring to Figure 8, comparison of AAPE was made among different ranges of 

C1 mole fraction. At range of 0 until 12, Maklavani, A. M., et al. [2] correlation has a better 

value of AAPE than GMDH. However, for the other ranges, GMDH register a better value 

of AAPE showing the stability of the model either at lower or higher limit of C1 mole 

fraction, displaying the lowest value of AAPE. 

 

4.4 Statistical and Graphical Analysis 

Table 4 contains results of statistical analysis which include Er, Ea, Emin, Emax, 

RMSE, R and SD to picture the model generated performance. 
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Table 4: Comparisons of Statistical Analysis for GMDH Model 

Parameters 
Data Sets 

Training Validation Testing 

Ea 4.1395 4.7146 3.6524 

Er -0.3550 -0.4022 -0.94923 

Emax 24.3380 21.7938 24.3380 

Emin 0.0131 0.1874 0.0131 

RMSE 6.0077 6.1428 5.1154 

R 0.9671 0.9666 0.9822 

SD 308.7416 342.7422 268.6085 

  

Figure 9, 10 and 11 shows cross plot for predicted versus measured MMP for 

training, validation and testing data sets respectively. Figure 9 shows the cross plot for the 

training data sets of the GMDH model and it produces 0.9671 R value. As per pictured by 

Figure 9: Predicted vs Measured MMP (Training Data Sets) 
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the figure, correlation line was set to be ideal at 45° and the tendency of values registered 

at the middle of the plot suggest that the MMP prediction will be more accurate at the 

range around 4000 psi to 8000 psi by using GMDH. However, both upper and lower range 

than that values shows lower registration of MMP. 

 

In order to avoid overtraining, validation data sets was introduced. Figure 10 

shows the cross plot for the validation data sets of the GMDH model and it produces 

0.9666 R value, slightly lower than the one in training data sets. Still, the accuracy of 

MMP determination is still the same as previous; higher in the middle range, lower in the 

upper and lower range. 

 

 

 

 

Figure 10: Predicted vs Measured MMP (Validation Data Sets) 
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Figure 11 shows the cross plot for the testing data sets of the GMDH model and it 

produces a better correlation coefficient of 0.9822, highest among the data sets. Having 

the same trend as the earlier data sets, again it shows that MMP prediction is close to ideal 

at the middle of the graph rather than early and last part of the graph. Even though the 

value of the correlation coefficient can be a good benchmark in determining the 

performance of the model, there are other indicators that need to be taken into 

consideration. 

 

To see the better performance of GMDH model, comparisons were made with the 

previous correlations. Table 5 summarizes the differences between the models. 

 

 

 

 

Figure 11: Predicted vs Measured MMP (Testing Data Sets) 
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Table 5: Comparison of Statistical Analysis 

Model Name 
Statistical Feature 

Ea Er Emax Emin RMSE R SD 

Maklavani, A. 

M., et al. [2] 
4.2830 -2.0624 26.2337 0.0078 6.0873 0.9739 239.2164 

Sebastian and 

Lawrence [4] 
24.1412 -9.5583 132.0621 0.4345 37.0458 0.2316 1403.9330 

Firoozabadi 

and Aziz [5] 
21.7103 -10.8427 237.6133 0.1781 47.4929 0.4015 1517.7150 

GMDH 3.6524 -0.9492 24.3380 0.0131 5.1154 0.9822 268.6085 

 

From Table 5, the author compares the R value of all the models. These 

coefficients were produced based on the utilization of testing data to each of the 

correlations. The outcome is GMDH model having the highest R value which is 0.9822 

with Maklavani, A. M., et al. [2] model come in next with 0.9739. 

 

On top of that, AAPE value of GMDH model also is the lowest among all. AAPE 

value can be used as a guidance to have a clearer graphical representation. This made 

AAPE the main criteria to be look at in this project. With lowest AAPE value of 3.6524%, 

GMDH model has the superiority as this means that the error from the actual value in this 

model is the smallest. 

 

The differences between the values of Emax and Emin shows how far off the 

prediction values when it is compared with the actual values. If the range is large, the model 

have a tendency to produce inconsistent predictions. GMDH has the best differences with 

24.3380 as the higher limit and 0.0131 as the lower limit followed by Maklavani, A. M., 

et al. [2] model with the next best error range. 
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A comparison also done on RMSE value. RMSE value shows the data dispersion 

around the zero deviation. Based on table 5, GMDH model has the lowest value of RMSE 

at 5.1154% followed by Maklavani, A. M., et al. [2] model at 6.0873%. This signify that 

GMDH model has less dispersion around the zero deviation compared to other 

correlations. 

 

Comparing the SD of the models, Maklavani, A. M., et al. [2] model has the lowest 

SD value which is 239.2164 psi compared to GMDH model, 268.6085, in the second 

place. SD also signify the dispersion of values obtained by using that particular model. 

Thus, this time Maklavani, A. M., et al. [2] model has lower dispersion compared to GMDH 

model. 

 

To rank each of the performances, Table 6 and 7 shows the comparison in terms of AAPE 

and R value, and RMSE and SD value respectively. 

 

Table 6: Model Ranking based on Ea and R value 

Model Name 
Statistical Feature 

Rank 
Ea R 

GMDH Model 3.6524 0.9822 1 

Maklavani, A. M., 

et al. model [2] 
4.2830 0.9739 2 

Firoozabadi and 

Aziz [5] 
21.7103 0.4015 3 

Sebastian and 

Lawrence [4] 
24.1412 0.2316 4 
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Table 7: Model Ranking based on RMSE and SD value 

Model Name 
Statistical Feature 

Rank 
RMSE SD 

GMDH Model 5.1154 268.6085 1 

Maklavani, A. M., 

et al. model [2] 
6.0873 239.2164 2 

Sebastian and 

Lawrence [4] 
37.0458 1403.9330 3 

Firoozabadi and 

Aziz [5] 
47.4929 1517.7150 4 

 

Ranking was decided in Table 6 based on AAPE and R value due to the nature of 

the statistical analysis. While the closer R value get to 1, AAPE will confirm its reliability 

by registering a low value of error. With GMDH model having the lowest Ea value and 

the highest R value, GMDH is ranked at first place followed by Maklavani, A. M., et al. 

[2] model at second place. 

 

However, it is a close call in Table 7, differentiating the RMSE and SD values of 

the models. Despite having a higher SD value, GMDH model also ranked at first place 

ahead of Maklavani, A. M., et al. [2] model. This is due to the lower RMSE value which 

contribute in having a lower dispersion beside the superiority on the early comparison 

above. Therefore, both GMDH model and Maklavani, A. M., et al. [2] model have lower 

dispersion but GMDH only ahead by tiny differences. 

 

As an overview, it can be seen from the tables above that GMDH model gives 

good MMP prediction as it has low AAPE, RMSE and SD value together with the highest 

R value. These shows that the model produce less errors and results that are far out from 

the reasonable range. 

 

Figure 12, 13 and 14 shows the error distribution for training, validation and 

testing data sets respectively. 
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Figure 12: Error Distribution Graph (Training Data Sets) 
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Figure 13: Error Distribution Graph (Validation Data Sets) 

Figure 14: Error Distribution Graph (Testing Data Sets) 
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From Figure 12, there is a slight shift to the left of the plotted means of errors, 

negatively valued. In Figure 13, the peaks also shift to the left of the plotted means of 

errors, again bearing negative error while in Figure 14, the means of errors distributed to 

the right of the plot. This 3 figures signify that there is no fixed trends of error distribution 

as all plots peaks nearly towards the zero error. 

 

To check for model consistency, residual analysis was utilized. In this analysis, 

the difference between the predicted and measured values is plotted with a zero line to 

indicate where the error values located at. Figure 15, 16 and 17 shows the residual graph 

for training, validation and testing data sets respectively. 

 

 

Figure 15: Residual Graph (Testing Data Sets) 
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Figure 16: Residual Graph (Validation Data Sets) 

 

Figure 17: Residual Graph (Validation Data Sets) 
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From Figure 15, the minimum and maximum residual errors for training data are 

-1127.32 and 1015.868 respectively. From Figure 16, the minimum and maximum 

residual errors for validation data are -1127.32 and 596.8538 respectively. From Figure 

17, the minimum and maximum residual errors for testing data are -919.452 and 1015.868 

respectively. This 3 figures also signify that there is no obvious tendency towards the 

negative and positive sides of errors. 

 

To verify the idealistic trend of the parameter involved in the study, trend analysis 

was conducted. Table 8 show the data range used in determination of trend analysis. 

 

Table 8: Data Ranges for Trend Analysis 

Data Range Temperature 

Molecular 

weight of 

C7+ 

Mole 

fraction of 

intermediates 

(C2 – C6) 

Mole 

fraction of 

C1 

Mole 

fraction of 

C2+ 

Min 121.9100 121.9100 1.0000 0.0000 0.0000 

Max 340.0000 302.0000 36.9000 60.5500 47.0000 

 

Figure 18, 19 and 20 shows the trend of selected parameters towards the MMP. 
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Figure 18: Molecular Weight of C7+ vs MMP 

 

Figure 18 shows the trend of molecular weight of C7+ against the predicted MMP. 

It shows that as the molecular weight of C7+ increase, the MMP also increase. Based on 

study by Maklavani, A. M., et al. [2], they also stated the same trend. This conclude that 

the molecular weight of C7+ trend adhere to the real behavior. 
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Figure 19: Mole Fraction of C1 vs MMP 

 

Figure 19 shows the trend of mole fraction of C1 against the predicted MMP. It 

shows that as the mole fraction of C1 increase, the MMP decrease. Based on study by 

Maklavani, A. M., et al. [2], they also stated the same trend. This conclude that the mole 

fraction of C1 trend adhere to the real behavior. 
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Figure 20: Mole Fraction of C2+ vs MMP 

 

Figure 20 shows the trend of mole fraction of C2+ against the predicted MMP. It 

shows that as the mole fraction of C2+ increase, the MMP decrease. Based on study by 

Maklavani, A. M., et al. [2], they also stated the same trend. This conclude that the mole 

fraction of C2+ trend adhere to the real behavior. 
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CHAPTER 5 

CONCLUSION AND RECOMMENDATION 

 

As a conclusion, this study is focusing on the prediction of MMP by utilizing the 

GMDH method. Proposed method to determine MMP using GMDH method was 

successfully conducted using common input parameters which are reservoir temperature, 

molecular weight of C7+ in the oil, mole fraction of intermediates (C2 – C6) in the oil, mole 

fraction of C1 in the oil and mole fraction of C2+ in the injected gas. However, only mole 

fraction of intermediates (C2 – C6) in the oil, mole fraction of C1 in the oil and mole 

fraction of C2+ in the injected gas found to be most influential to MMP prediction. 

Statistical and graphical analysis done enable the author to test and validate the 

performance of the model as low Ea, RMSE and SD together with high R value were 

obtained. Statistical comparison made with the previous correlations also showing that 

GMDH has better performance as Ea recorded was 3.6524 %, lowest among all and signify 

less errors can be found. The objectives of the study were achieved. 

 

There are several improvements can be made towards the betterment of this study. 

The author believe an increment in data sets will increase the accuracy of the results thus 

better correlation can be produced. Other sources of data should be discovered as the 

author believe that simulation project with enormous of data will generate better 

correlation. The author would also like to suggest this model to be implemented in the 

industry. This will give a larger overview on how the performance of the model and 

improvisation still can be made to the current model produced. 
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APPENDIX A 

Data set 

MMP (psi) 
Temperature 

(°F) 
MW C7+ 

Mole 

fraction C2 

- C6 (%) 

Mole 

fraction C1 

(%) 

Mole 

fraction C2+ 

(%) 

4718.9478 210.0020 252.2100 25.0000 32.0000 30.0000 

5050.0000 280.0000 215.0000 34.9800 24.6800 0.0000 

4531.9942 252.2120 252.2100 25.0000 32.0000 28.0000 

4850.0000 225.0000 140.0000 7.6300 38.6200 0.0000 

5400.4802 240.6740 240.6800 25.0000 46.0000 18.0000 

6000.0662 249.9980 250.0000 23.0000 50.0000 10.0000 

5456.0296 240.6740 240.6800 25.0000 46.0000 18.0000 

6598.0568 269.9960 270.0000 27.0000 31.0000 0.0000 

3565.0276 174.5960 175.0000 28.0000 6.0000 43.0000 

3650.0197 302.0000 302.0000 1.0000 42.0000 38.0000 

6526.0000 268.0000 223.0000 16.0700 57.9500 0.0000 

3565.0276 174.5960 175.0000 28.0000 6.0000 43.0000 

9000.0000 300.0000 140.0000 3.7200 9.3700 0.0000 

5753.9371 252.2120 252.2100 25.0000 32.0000 5.0000 

5161.0229 209.8040 209.8100 26.0000 33.0000 16.0000 

4650.0000 196.0000 232.0000 32.2000 43.0000 0.0000 

2399.9394 215.0060 215.0000 24.0000 33.0000 47.0000 

6028.9287 209.8040 209.8100 26.0000 33.0000 16.0000 

6800.0000 280.0000 261.0000 27.0500 21.5400 0.0000 

2750.0605 302.0000 302.0000 1.0000 42.0000 46.0000 

5489.9684 210.0020 252.2100 25.0000 32.0000 15.0000 

5309.9766 245.4260 245.4300 30.2500 26.5700 12.0000 

6700.0000 279.0000 140.0000 5.5000 22.6900 0.0000 

2680.0073 215.0060 215.0000 24.0000 33.0000 47.0000 

6300.0000 303.0000 250.0000 22.8000 49.0100 0.0000 

4650.0000 196.0000 232.0000 32.2000 43.0000 0.0000 

6029.9439 252.2120 252.2100 25.0000 32.0000 0.0000 

3206.0592 257.7020 257.7000 32.0800 22.9200 41.4700 

4728.0000 260.0000 190.0000 27.7900 57.8400 0.0000 

5753.9371 252.2120 252.2100 25.0000 32.0000 5.0000 

5467.0000 260.0000 199.0000 25.0600 60.3600 0.0000 

6526.0000 268.0000 223.0000 16.0700 57.9500 0.0000 

6300.0042 183.5960 183.6000 26.0000 57.0000 0.0000 

5228.7555 121.9100 121.9100 26.0000 33.0000 15.0000 

6600.0000 199.0000 232.0000 19.6000 36.2000 0.0000 

6300.0000 303.0000 250.0000 22.8000 49.0100 0.0000 
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5475.1746 210.0020 252.2100 25.0000 32.0000 10.0000 

6300.0042 249.9980 250.0000 23.0000 49.0000 0.0000 

5427.0221 269.9960 270.0000 27.0000 31.0000 20.0000 

5946.0000 268.0000 218.0000 20.6200 54.6300 0.0000 

5800.0591 208.9940 209.0000 22.0000 55.0000 14.0000 

6000.0000 280.0000 261.0000 33.6300 36.7800 0.0000 

8500.0000 225.0000 140.0000 3.7200 9.3700 0.0000 

5800.0000 200.0000 209.0000 22.1600 54.5000 15.3700 

5845.0208 209.8040 209.8100 26.0000 33.0000 16.0000 

3840.0000 250.0000 195.0000 36.9000 32.7300 0.0000 

9400.0000 279.0000 140.0000 2.4700 0.0000 0.0000 

5161.0229 209.8040 209.8100 26.0000 33.0000 16.0000 

5161.0229 209.8040 209.8100 26.0000 33.0000 16.0000 

6000.0662 249.9980 250.0000 22.0000 50.0000 10.0000 

4718.9478 210.0020 252.2100 25.0000 32.0000 30.0000 

5907.9672 269.9960 270.0000 27.0000 31.0000 10.0000 

3650.0197 302.0000 302.0000 1.0000 42.0000 38.0000 

3206.0592 257.7020 257.7000 32.0800 22.9200 41.4700 

5000.0310 294.9620 294.9700 25.0000 37.0000 23.0000 

5427.0221 269.9960 270.0000 27.0000 31.0000 20.0000 

3408.9670 254.4080 254.4000 30.3600 23.6400 41.4700 

8850.0000 279.0000 140.0000 3.7200 9.3700 0.0000 

3565.0276 174.5960 175.0000 28.0000 6.0000 43.0000 

6300.0042 183.5960 183.6000 26.0000 57.0000 0.0000 

5423.9763 210.0020 252.2100 25.0000 32.0000 20.0000 

5456.0296 240.6740 240.6800 25.0000 46.0000 18.0000 

6500.0000 250.0000 261.0000 27.0500 21.5400 0.0000 

4800.0000 340.0000 183.6000 26.3700 56.8600 0.0000 

3754.0000 140.0000 191.0000 32.7000 42.7000 0.0000 

6400.0000 225.0000 140.0000 5.5000 22.6900 0.0000 

4980.0000 279.0000 140.0000 7.6300 38.6200 0.0000 

3650.0197 302.0000 302.0000 1.0000 42.0000 38.0000 

6800.0000 280.0000 261.0000 27.0500 21.5400 0.0000 

5923.0511 209.8040 209.8100 26.0000 33.0000 16.0000 

5500.0000 280.0000 230.0000 34.0500 34.6400 0.0000 

4850.0000 225.0000 140.0000 7.6300 38.6200 0.0000 

5551.0293 252.2120 252.2100 25.0000 32.0000 10.0000 

5946.0000 268.0000 218.0000 20.6200 54.6300 0.0000 

5923.0511 209.8040 209.8100 26.0000 33.0000 16.0000 

6300.0042 249.9980 250.0000 23.0000 49.0000 0.0000 

6164.0000 268.0000 221.0000 18.2300 57.3600 0.0000 
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4980.0000 279.0000 140.0000 7.6300 38.6200 0.0000 

6300.0042 249.9980 250.0000 23.0000 49.0000 0.0000 

5309.9766 245.4260 245.4300 30.2500 26.5700 12.0000 

4728.0000 260.0000 190.0000 27.7900 57.8400 0.0000 

5907.9672 269.9960 270.0000 27.0000 31.0000 10.0000 

4924.0312 210.0020 252.2100 25.0000 32.0000 25.0000 

3650.0197 302.0000 302.0000 1.0000 42.0000 38.0000 

6400.0000 140.0000 232.0000 19.6000 36.2000 0.0000 

5800.0591 208.9940 209.0000 22.0000 55.0000 14.0000 

6000.0000 225.0000 250.0000 22.4900 50.3900 12.1500 

5100.0000 300.0000 140.0000 7.6300 38.6200 0.0000 

4814.9628 179.9960 197.3000 22.0000 50.0000 25.0000 

6300.0042 183.5960 183.6000 26.0000 57.0000 0.0000 

4814.9628 179.9960 197.3000 22.0000 50.0000 25.0000 

4924.0312 210.0020 252.2100 25.0000 32.0000 25.0000 

6300.0042 249.9980 250.0000 23.0000 49.0000 0.0000 

6000.0662 249.9980 250.0000 23.0000 50.0000 10.0000 

5214.6868 231.0080 231.0000 31.0000 44.0000 27.0000 

8850.0000 279.0000 140.0000 3.7200 9.3700 0.0000 

5845.0208 209.8040 209.8100 26.0000 33.0000 16.0000 

5400.4802 240.6740 240.6800 25.0000 46.0000 18.0000 

4174.0000 164.0000 193.0000 25.1700 52.6200 0.0000 

6029.9439 252.2120 252.2100 25.0000 32.0000 0.0000 

8500.0000 225.0000 140.0000 3.7200 9.3700 0.0000 

6700.0000 279.0000 140.0000 5.5000 22.6900 0.0000 

4531.9942 252.2120 252.2100 25.0000 32.0000 28.0000 

5497.9455 238.1540 238.1500 24.1200 54.2600 17.8800 

4336.0000 279.0000 179.0000 23.0900 45.2300 0.0000 

4924.0312 210.0020 252.2100 25.0000 32.0000 25.0000 

5157.9771 240.6740 240.6800 25.0000 46.0000 18.0000 

5467.0000 260.0000 199.0000 25.0600 60.3600 0.0000 

5455.0144 143.7080 143.7000 24.6800 45.8500 18.1200 

4500.0000 176.0000 192.0000 14.5500 13.0000 0.0000 

2750.0605 302.0000 302.0000 1.0000 42.0000 46.0000 

5407.0069 209.8040 209.8100 26.0000 33.0000 16.0000 

6028.9287 209.8040 209.8100 26.0000 33.0000 16.0000 

5467.0000 260.0000 199.0000 25.0600 60.3600 0.0000 

4774.9324 271.0040 271.0000 27.0000 31.0000 23.0000 

5923.0511 209.8040 209.8100 26.0000 33.0000 16.0000 

6000.0662 249.9980 250.0000 22.0000 50.0000 10.0000 

5500.0000 225.0000 215.0000 34.9800 24.6800 0.0000 
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4174.0000 164.0000 193.0000 25.1700 52.6200 0.0000 

8500.0000 225.0000 140.0000 3.7200 9.3700 0.0000 

3840.0000 250.0000 195.0000 36.9000 32.7300 0.0000 

5157.9771 240.6740 240.6800 25.0000 46.0000 18.0000 

3754.0000 140.0000 191.0000 32.7000 42.7000 0.0000 

6381.0000 268.0000 221.0000 16.5000 56.6500 0.0000 

5489.9684 210.0020 252.2100 25.0000 32.0000 15.0000 

6850.0000 300.0000 140.0000 5.5000 22.6900 0.0000 

5407.0069 209.8040 209.8100 26.0000 33.0000 16.0000 

5845.0208 209.8040 209.8100 26.0000 33.0000 16.0000 

3754.0000 140.0000 191.0000 32.7000 42.7000 0.0000 

4174.0000 164.0000 193.0000 25.1700 52.6200 0.0000 

5652.9909 252.2120 252.2100 25.0000 32.0000 10.0000 

6500.0000 250.0000 261.0000 27.0500 21.5400 0.0000 

5000.0310 294.9620 294.9700 25.0000 37.0000 23.0000 

6700.0000 279.0000 140.0000 5.5000 22.6900 0.0000 

5423.9763 210.0020 252.2100 25.0000 32.0000 20.0000 

6600.0000 199.0000 232.0000 19.6000 36.2000 0.0000 

2399.9394 215.0060 215.0000 24.0000 33.0000 47.0000 

6598.0568 269.9960 270.0000 27.0000 31.0000 0.0000 

5652.9909 252.2120 252.2100 25.0000 32.0000 10.0000 

6300.0042 249.9980 250.0000 23.0000 49.0000 0.0000 

5000.0310 294.9620 294.9700 25.0000 37.0000 23.0000 

6000.0000 280.0000 261.0000 33.6300 36.7800 0.0000 

6164.0000 268.0000 221.0000 18.2300 57.3600 0.0000 

6800.0000 280.0000 261.0000 27.0500 21.5400 0.0000 

3423.0356 141.9980 141.9900 30.0000 24.0000 41.0000 

6598.0568 269.9960 270.0000 27.0000 31.0000 0.0000 

5800.0591 208.9940 209.0000 22.0000 55.0000 16.0000 

4336.0000 279.0000 179.0000 23.0900 45.2300 0.0000 

5500.0000 140.0000 232.0000 20.9000 54.7000 0.0000 

2680.0073 215.0060 215.0000 24.0000 33.0000 47.0000 

4774.9324 271.0040 271.0000 27.0000 31.0000 23.0000 

5800.0591 208.9940 209.0000 22.0000 55.0000 14.0000 

5551.0293 252.2120 252.2100 25.0000 32.0000 10.0000 

5157.9771 240.6740 240.6800 25.0000 46.0000 18.0000 

6000.0000 280.0000 261.0000 33.6300 36.7800 0.0000 

5845.0208 209.8040 209.8100 26.0000 33.0000 16.0000 

5100.0000 300.0000 140.0000 7.6300 38.6200 0.0000 

6029.9439 252.2120 252.2100 25.0000 32.0000 0.0000 

3565.0276 174.5960 175.0000 28.0000 6.0000 43.0000 
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6164.0000 268.0000 221.0000 18.2300 57.3600 0.0000 

6000.0000 225.0000 250.0000 22.4900 50.3900 12.1500 

5500.0000 225.0000 215.0000 34.9800 24.6800 0.0000 

5551.0293 252.2120 252.2100 25.0000 32.0000 10.0000 

4800.0000 340.0000 183.6000 26.3700 56.8600 0.0000 

6500.0000 250.0000 261.0000 27.0500 21.5400 0.0000 

5455.0144 143.7080 143.7000 24.6800 45.8500 18.1200 

6300.0042 249.9980 250.0000 23.0000 49.0000 0.0000 

5050.0000 280.0000 215.0000 34.9800 24.6800 0.0000 

6000.0000 225.0000 250.0000 22.4900 50.3900 12.1500 

3880.0496 302.0000 302.0000 1.0000 42.0000 35.0000 

6028.9287 209.8040 209.8100 26.0000 33.0000 16.0000 

4718.9478 210.0020 252.2100 25.0000 32.0000 30.0000 

5427.0221 269.9960 270.0000 27.0000 31.0000 20.0000 

3219.9828 141.7460 141.7400 33.0000 23.0000 41.0000 

4774.9324 271.0040 271.0000 27.0000 31.0000 23.0000 

5500.0000 280.0000 230.0000 34.0500 34.6400 0.0000 

5800.0591 208.9940 209.0000 22.0000 55.0000 16.0000 

4500.0000 176.0000 192.0000 14.5500 13.0000 0.0000 

6850.0000 300.0000 140.0000 5.5000 22.6900 0.0000 

6000.0000 225.0000 250.0000 22.4900 50.3900 12.1500 

6300.0000 303.0000 250.0000 22.8000 49.0100 0.0000 

5500.0000 225.0000 215.0000 34.9800 24.6800 0.0000 

5511.5791 132.1160 132.1200 24.0000 54.0000 17.0000 

7977.0000 268.0000 244.0000 14.0000 60.5500 0.0000 

6300.0042 249.9980 250.0000 23.0000 49.0000 0.0000 

4336.0000 279.0000 179.0000 23.0900 45.2300 0.0000 

6300.0042 183.5960 183.6000 26.0000 57.0000 0.0000 

3549.9437 249.9980 274.5000 29.7500 26.1500 43.0700 

4774.9324 271.0040 271.0000 27.0000 31.0000 23.0000 

4531.9942 252.2120 252.2100 25.0000 32.0000 28.0000 

6017.0000 271.0000 232.0000 20.9000 54.7000 0.0000 

3880.0496 302.0000 302.0000 1.0000 42.0000 35.0000 

4531.9942 252.2120 252.2100 25.0000 32.0000 28.0000 

6164.0000 268.0000 221.0000 18.2300 57.3600 0.0000 

6800.0000 280.0000 261.0000 27.0500 21.5400 0.0000 

6000.0662 249.9980 250.0000 23.0000 50.0000 10.0000 

7977.0000 268.0000 244.0000 14.0000 60.5500 0.0000 

5100.0000 300.0000 140.0000 7.6300 38.6200 0.0000 

4814.9628 179.9960 197.3000 22.0000 50.0000 25.0000 

4980.0000 279.0000 140.0000 7.6300 38.6200 0.0000 
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5228.7555 121.9100 121.9100 26.0000 33.0000 15.0000 

6017.0000 271.0000 232.0000 20.9000 54.7000 0.0000 

5907.9672 269.9960 270.0000 27.0000 31.0000 10.0000 

4336.0000 279.0000 179.0000 23.0900 45.2300 0.0000 

5400.4802 240.6740 240.6800 25.0000 46.0000 18.0000 

6400.0000 225.0000 140.0000 5.5000 22.6900 0.0000 

2399.9394 215.0060 215.0000 24.0000 33.0000 47.0000 

4850.0000 225.0000 140.0000 7.6300 38.6200 0.0000 

5500.0000 280.0000 230.0000 34.0500 34.6400 0.0000 

4774.9324 271.0040 271.0000 27.0000 31.0000 23.0000 

3408.9670 254.4080 254.4000 30.3600 23.6400 41.4700 

6028.9287 209.8040 209.8100 26.0000 33.0000 16.0000 

5800.0591 208.9940 209.0000 22.0000 55.0000 14.0000 

4774.9324 271.0040 271.0000 27.0000 31.0000 23.0000 

4825.9857 258.0080 258.0000 27.0000 39.0000 24.0000 

5157.9771 240.6740 240.6800 25.0000 46.0000 18.0000 

6500.0000 250.0000 261.0000 27.0500 21.5400 0.0000 

3206.0592 257.7020 257.7000 32.0800 22.9200 41.4700 

6850.0000 300.0000 140.0000 5.5000 22.6900 0.0000 

2680.0073 215.0060 215.0000 24.0000 33.0000 47.0000 

4650.0000 196.0000 232.0000 32.2000 43.0000 0.0000 

4814.9628 179.9960 197.3000 22.0000 50.0000 25.0000 

5511.5791 132.1160 132.1200 24.0000 54.0000 17.0000 

7000.0000 300.0000 261.0000 27.0500 21.5400 0.0000 

5309.9766 245.4260 245.4300 30.2500 26.5700 12.0000 

4924.0312 210.0020 252.2100 25.0000 32.0000 25.0000 

3408.9670 254.4080 254.4000 30.3600 23.6400 41.4700 

9400.0000 279.0000 140.0000 2.4700 0.0000 0.0000 

5551.0293 252.2120 252.2100 25.0000 32.0000 10.0000 

5907.9672 269.9960 270.0000 27.0000 31.0000 10.0000 

5407.0069 209.8040 209.8100 26.0000 33.0000 16.0000 

3206.0592 257.7020 257.7000 32.0800 22.9200 41.4700 

8500.0000 225.0000 140.0000 3.7200 9.3700 0.0000 

5500.0000 140.0000 232.0000 20.9000 54.7000 0.0000 

9000.0000 300.0000 140.0000 3.7200 9.3700 0.0000 

5100.0000 300.0000 140.0000 7.6300 38.6200 0.0000 

6300.0000 303.0000 250.0000 22.8000 49.0100 0.0000 

6000.0662 249.9980 250.0000 22.0000 50.0000 10.0000 

5753.9371 252.2120 252.2100 25.0000 32.0000 5.0000 

5455.0144 143.7080 143.7000 24.6800 45.8500 18.1200 

3754.0000 140.0000 191.0000 32.7000 42.7000 0.0000 



 

52 
 

5800.0000 200.0000 209.0000 22.1600 54.5000 15.3700 

6526.0000 268.0000 223.0000 16.0700 57.9500 0.0000 

4718.9478 210.0020 252.2100 25.0000 32.0000 30.0000 

8850.0000 279.0000 140.0000 3.7200 9.3700 0.0000 

6600.0000 199.0000 232.0000 19.6000 36.2000 0.0000 

5161.0229 209.8040 209.8100 26.0000 33.0000 16.0000 

4728.0000 260.0000 190.0000 27.7900 57.8400 0.0000 

3423.0356 141.9980 141.9900 30.0000 24.0000 41.0000 

5475.1746 210.0020 252.2100 25.0000 32.0000 10.0000 

6000.0662 249.9980 250.0000 23.0000 50.0000 10.0000 

6400.0000 225.0000 140.0000 5.5000 22.6900 0.0000 

6400.0000 225.0000 140.0000 5.5000 22.6900 0.0000 

3549.9437 249.9980 274.5000 29.7500 26.1500 43.0700 

6400.0000 140.0000 232.0000 19.6000 36.2000 0.0000 

5652.9909 252.2120 252.2100 25.0000 32.0000 10.0000 

5309.9766 245.4260 245.4300 30.2500 26.5700 12.0000 

5214.6868 231.0080 231.0000 31.0000 44.0000 27.0000 

5923.0511 209.8040 209.8100 26.0000 33.0000 16.0000 

7977.0000 268.0000 244.0000 14.0000 60.5500 0.0000 

5456.0296 240.6740 240.6800 25.0000 46.0000 18.0000 

4650.0000 196.0000 232.0000 32.2000 43.0000 0.0000 

5214.6868 231.0080 231.0000 31.0000 44.0000 27.0000 

6598.0568 269.9960 270.0000 27.0000 31.0000 0.0000 

5497.9455 238.1540 238.1500 24.1200 54.2600 17.8800 

7000.0000 300.0000 261.0000 27.0500 21.5400 0.0000 

5500.0000 225.0000 215.0000 34.9800 24.6800 0.0000 

6300.0042 249.9980 250.0000 23.0000 49.0000 0.0000 

6000.0662 249.9980 250.0000 22.0000 50.0000 10.0000 

5946.0000 268.0000 218.0000 20.6200 54.6300 0.0000 

5472.9990 252.2120 252.2100 25.0000 32.0000 10.0000 

6029.9439 252.2120 252.2100 25.0000 32.0000 0.0000 

5472.9990 252.2120 252.2100 25.0000 32.0000 10.0000 

5427.0221 269.9960 270.0000 27.0000 31.0000 20.0000 

7977.0000 268.0000 244.0000 14.0000 60.5500 0.0000 

5500.0000 280.0000 230.0000 34.0500 34.6400 0.0000 

3219.9828 141.7460 141.7400 33.0000 23.0000 41.0000 

6400.0000 140.0000 232.0000 19.6000 36.2000 0.0000 

6381.0000 268.0000 221.0000 16.5000 56.6500 0.0000 

4774.9324 271.0040 271.0000 27.0000 31.0000 23.0000 

5423.9763 210.0020 252.2100 25.0000 32.0000 20.0000 

9000.0000 300.0000 140.0000 3.7200 9.3700 0.0000 
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4500.0000 176.0000 192.0000 14.5500 13.0000 0.0000 

6526.0000 268.0000 223.0000 16.0700 57.9500 0.0000 

5475.1746 210.0020 252.2100 25.0000 32.0000 10.0000 

3423.0356 141.9980 141.9900 30.0000 24.0000 41.0000 

5423.9763 210.0020 252.2100 25.0000 32.0000 20.0000 

4980.0000 279.0000 140.0000 7.6300 38.6200 0.0000 

4800.0000 340.0000 183.6000 26.3700 56.8600 0.0000 

5050.0000 280.0000 215.0000 34.9800 24.6800 0.0000 

6381.0000 268.0000 221.0000 16.5000 56.6500 0.0000 

5472.9990 252.2120 252.2100 25.0000 32.0000 10.0000 

5228.7555 121.9100 121.9100 26.0000 33.0000 15.0000 

4850.0000 225.0000 140.0000 7.6300 38.6200 0.0000 

9000.0000 300.0000 140.0000 3.7200 9.3700 0.0000 

5511.5791 132.1160 132.1200 24.0000 54.0000 17.0000 

5489.9684 210.0020 252.2100 25.0000 32.0000 15.0000 

2680.0073 215.0060 215.0000 24.0000 33.0000 47.0000 

5407.0069 209.8040 209.8100 26.0000 33.0000 16.0000 

6381.0000 268.0000 221.0000 16.5000 56.6500 0.0000 

6000.0000 280.0000 261.0000 33.6300 36.7800 0.0000 

5000.0310 294.9620 294.9700 25.0000 37.0000 23.0000 

4174.0000 164.0000 193.0000 25.1700 52.6200 0.0000 

6400.0000 140.0000 232.0000 19.6000 36.2000 0.0000 

3219.9828 141.7460 141.7400 33.0000 23.0000 41.0000 

3840.0000 250.0000 195.0000 36.9000 32.7300 0.0000 

5456.0296 240.6740 240.6800 25.0000 46.0000 18.0000 

5497.9455 238.1540 238.1500 24.1200 54.2600 17.8800 

5500.0000 140.0000 232.0000 20.9000 54.7000 0.0000 

5467.0000 260.0000 199.0000 25.0600 60.3600 0.0000 

5500.0000 140.0000 232.0000 20.9000 54.7000 0.0000 

8850.0000 279.0000 140.0000 3.7200 9.3700 0.0000 

6700.0000 279.0000 140.0000 5.5000 22.6900 0.0000 

4500.0000 176.0000 192.0000 14.5500 13.0000 0.0000 

9400.0000 279.0000 140.0000 2.4700 0.0000 0.0000 

6017.0000 271.0000 232.0000 20.9000 54.7000 0.0000 

3880.0496 302.0000 302.0000 1.0000 42.0000 35.0000 

5050.0000 280.0000 215.0000 34.9800 24.6800 0.0000 

3880.0496 302.0000 302.0000 1.0000 42.0000 35.0000 

3408.9670 254.4080 254.4000 30.3600 23.6400 41.4700 

6850.0000 300.0000 140.0000 5.5000 22.6900 0.0000 

7000.0000 300.0000 261.0000 27.0500 21.5400 0.0000 

5800.0000 200.0000 209.0000 22.1600 54.5000 15.3700 
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3219.9828 141.7460 141.7400 33.0000 23.0000 41.0000 

3549.9437 249.9980 274.5000 29.7500 26.1500 43.0700 

3423.0356 141.9980 141.9900 30.0000 24.0000 41.0000 

5946.0000 268.0000 218.0000 20.6200 54.6300 0.0000 

5475.1746 210.0020 252.2100 25.0000 32.0000 10.0000 

6017.0000 271.0000 232.0000 20.9000 54.7000 0.0000 

6600.0000 199.0000 232.0000 19.6000 36.2000 0.0000 

3840.0000 250.0000 195.0000 36.9000 32.7300 0.0000 

5800.0591 208.9940 209.0000 22.0000 55.0000 16.0000 

5497.9455 238.1540 238.1500 24.1200 54.2600 17.8800 

5800.0000 200.0000 209.0000 22.1600 54.5000 15.3700 

5228.7555 121.9100 121.9100 26.0000 33.0000 15.0000 

3549.9437 249.9980 274.5000 29.7500 26.1500 43.0700 

5652.9909 252.2120 252.2100 25.0000 32.0000 10.0000 

5472.9990 252.2120 252.2100 25.0000 32.0000 10.0000 

4800.0000 340.0000 183.6000 26.3700 56.8600 0.0000 

5753.9371 252.2120 252.2100 25.0000 32.0000 5.0000 

5400.4802 240.6740 240.6800 25.0000 46.0000 18.0000 

4825.9857 258.0080 258.0000 27.0000 39.0000 24.0000 

9400.0000 279.0000 140.0000 2.4700 0.0000 0.0000 

2399.9394 215.0060 215.0000 24.0000 33.0000 47.0000 

5455.0144 143.7080 143.7000 24.6800 45.8500 18.1200 

5511.5791 132.1160 132.1200 24.0000 54.0000 17.0000 

4728.0000 260.0000 190.0000 27.7900 57.8400 0.0000 

4825.9857 258.0080 258.0000 27.0000 39.0000 24.0000 

7000.0000 300.0000 261.0000 27.0500 21.5400 0.0000 

5800.0591 208.9940 209.0000 22.0000 55.0000 16.0000 

5214.6868 231.0080 231.0000 31.0000 44.0000 27.0000 

2750.0605 302.0000 302.0000 1.0000 42.0000 46.0000 

4825.9857 258.0080 258.0000 27.0000 39.0000 24.0000 

4774.9324 271.0040 271.0000 27.0000 31.0000 23.0000 

5489.9684 210.0020 252.2100 25.0000 32.0000 15.0000 

2750.0605 302.0000 302.0000 1.0000 42.0000 46.0000 
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APPENDIX B 

MATLAB Code 

GMDH_script 

clc 

clf 

clear all;%Clears all variables and other classes of data too. 

close all; 

tic 

%to reduce the risk of confusing errors. 

%  

% Step (1) Reading the input file 

% =============================== 

% Loads data and prepares it for a neural network. 

%ndata= xlsread('all_data.xls'); 

ndata= xlsread('minimum_miscibility_pressure.xlsx'); 

%50% of data will be used for training 

%25% of data will be used for cross-validation 

%25% of data will be used for testing 

for i=1:178 

    atr(i,:)=ndata(i,:); 

end 

for i=179:267 

    aval(i-178,:)=ndata(i,:); 

end 

for i=268:length(ndata) 

    atest(i-267,:)=ndata(i,:); 

end 

Ytr=atr(:,1); 

Xtr=atr(:,2:6); 

Xtst=atest(:,2:6); 

Ytst=atest(:,1); 

Yv=aval(:,1); 

Xv=aval(:,2:6); 

[model, time] = gmdhbuild(Xtr, Ytr, 2, 1, 2, 0, 2, 1, 0, Xv, Yv, 0); 
gmdheq(model, 3); 

[Yqtst] = gmdhpredict(model, Xtst); 

[Yqval] = gmdhpredict(model, Xv); 

[Yqtr] = gmdhpredict(model, Xtr); 

[MSE, RMSE, RRMSE, R2] = gmdhtest(model, Xtst, Ytst); 

  

% Evaluating Relative Error for training set: 

%============================================ 

Et1=(Ytr-Yqtr)./Ytr*100; 

[q,z] = size(Et1); 

figure 

  

plot(Ytr,Yqtr,'o') 

grid off 

set(gcf, 'color', 'white') 

axis square 

  

title('Predicted Minimum Miscibility Pressure vs. Measured Minimum 

Miscibility Pressure'); 

xlabel('Measured Minimum Miscibility Pressure "psi"'); 
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ylabel('Predicted Minimum Miscibility Pressure "psi"') 

legend('Training set', 'location', 'Northwest') 

% Adding Reference Line with 45 degree slope  

line([0 ; 10000],[0 ; 10000]) 

%HINT: Select the y-value based on your data limits 

  

% Evaluating the correlation coefficient for training set: 

% ======================================================== 

Rt1=corrcoef(Yqtr,Ytr); 

Rt11=min(Rt1(:,1)); 

gtext(['correlation coefficient = (' num2str(Rt11) ')']); 

hold 

  

% Evaluating Relative Error for validation set: 

%============================================== 

Ev1=(Yqval-Yv)./Yqval*100; 

[m,n] = size(Ev1); 

figure 

  

plot(Yv,Yqval,'o') 

grid off 

set(gcf, 'color', 'white') 

axis square 

  

title('Predicted Minimum Miscibility Pressure vs. Measured Minimum 

Miscibility Pressure'); 

xlabel('Measured Minimum Miscibility Pressure "psi"'); 

ylabel('Predicted Minimum Miscibility Pressure "psi"') 

legend('Validation set', 'location', 'Northwest') 

% Adding Reference Line with 45 degree slope  

line([0 ; 10000],[0 ; 10000]) 

%HINT: Select the y-value based on your data limits 

  

% Evaluating the correlation coefficient for validation set: 

% ========================================================== 

% for the first target Pressure Drop 

Rv1=corrcoef(Yqval,Yv); 

Rv11=min(Rv1(:,1)); 

gtext(['correlation coefficient = (' num2str(Rv11) ')']); 

hold 

  

% Evaluating Relative Error for testing set: 

%=========================================== 

% for the first target Pressure Drop 

Ett1=(Ytst-Yqtst)./Ytst*100; 

[m,n] = size(Ett1); 

figure 

  

plot(Ytst,Yqtst,'o') 

grid off 

set(gcf, 'color', 'white') 

axis square 

  

title('Predicted Minimum Miscibility Pressure vs.Measured Minimum 

Miscibility Pressure'); 

xlabel('Measured Minimum Miscibility Pressure "psi"'); 

ylabel('Predicted Minimum Miscibility Pressure "psi"') 
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legend('Testing set', 'location', 'Northwest') 

% Addding Reference Line with 45 degree slope  

line([0 ; 10000],[0 ; 10000]) 

%HINT: Select the y-value based on your data limits 

  

% Evaluating the correlation coefficient for testing set: 

% ======================================================= 

Rtt1=corrcoef(Yqtst,Ytst); 

Rtt11=min(Rtt1(:,1)); 

gtext(['correlation coefficient = (' num2str(Rtt11) ')']); 

hold 

  

% Plotting the histogram of the errors for training set: 

% ====================================================== 

figure 

histfit(Et1,10) 

%hist(Et1,10) 

h = findobj(gca,'Type','patch'); 

set(h,'FaceColor','w','EdgeColor','k') 

title('Error Distribution for Training Set (Polynomial GMDH Model)'); 

legend('Training set') 

xlabel('Error'); 

ylabel('Frequency') 

set(gcf, 'color', 'white') 

hold 

  

% Plotting the histogram of the errors for validation set: 

% ======================================================== 

figure 

histfit(Ev1,10) 

%hist(Ev1,10) 

h = findobj(gca, 'Type', 'patch'); 

set(h,'FaceColor','w','EdgeColor','k') 

title('Error Distribution for Validation Set (Polynomial GMDH Model)'); 

legend('Validation set') 

xlabel('Error'); 

ylabel('Frequency') 

set(gcf, 'color', 'white') 

hold 

  

% Plotting the histogram of the errors for testing set: 

% ===================================================== 

figure 

histfit(Ett1,10) 

%hist(Ett1,10) 

h = findobj(gca,'Type','patch'); 

set(h,'FaceColor','w','EdgeColor','k') 

title('Error Distribution for Testing Set (Polynomial GMDH Model)'); 

legend('Testing set') 

xlabel('Error'); 

ylabel('Frequency') 

set(gcf, 'color', 'white') 

hold 

  

% Estimating the residuals for training set: 

% ========================================== 

figure 
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Errort1 = Yqtr-Ytr; 

plot(Errort1,':ro'); 

grid off 

set(gcf, 'color', 'white') 

title('Residual Graph for Training Set (Polynomial GMDH Model)') 

legend('Training Set') 

xlabel('Data Point No') 

ylabel('Errors') 

hold 

  

% Estimating the residuals for validation set: 

% ============================================ 

figure 

Errorv1 = Yqval-Yv; 

plot(Errorv1,':ro'); 

grid off 

set(gcf, 'color', 'white') 

title('Residual Graph for Validation Set (Polynomial GMDH Model)') 

legend('Validation Set') 

xlabel('Data Point No') 

ylabel('Errors') 

hold 

  

% Estimating the residuals for testing set: 

% ========================================= 

figure 

Errortt1 = Yqtst-Ytst; 

plot(Errortt1,':ro'); 

grid off 

set(gcf, 'color', 'white') 

title('Residual Graph for Testing Set (Polynomial GMDH Model)') 

legend('Testing Set') 

xlabel('Data Point No') 

ylabel('Errors') 

  

% ******************** 

% STATISTICAL ANALYSIS: 

% ******************** 

% Training set: 

% ============= 

% Determining the Maximum Absolute Percent Relative Error 

MaxErrt1 = max(abs(Et1)); 

  

% Determining the Minimum Absolute Percent Relative Error   

MinErrt1 = min(abs(Et1)); 

  

% Evaluating the average error 

Etavg1 = 1/q*sum(Et1); 

  

% Evaluating the standard deviation 

STDT1 = std(Errort1); 

  

% Evaluating Average Absolute Percent Relative Error  

AAPET1 = sum(abs(Et1))/q; 

  

% Evaluating Average Percent Relative Error 

APET1 = 1/q*sum(Et1); 
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% Evaluating Root Mean Square  

RMSET1 = sqrt(sum(abs(Et1).^2)/q); 

  

% Validation set: 

% =============== 

% Determining the Maximum Absolute Percent Relative Error 

MaxErrv1 = max(abs(Ev1)); 

  

% Determining the Minimum Absolute Percent Relative Error  

MinErrv1 = min(abs(Ev1)); 

  

% Evaluating the average error 

Evavg1 = 1/m*sum(Ev1); 

  

% Evaluating the standard deviation 

STDV1 = std(Errorv1); 

  

% Evaluating Average Absolute Percent Relative Error  

AAPEV1 = sum(abs(Ev1))/m; 

  

% Evaluating Average Percent Relative Error 

APEV1 = 1/m*sum(Ev1); 

  

% Evaluating Root Mean Square  

RMSEV1 = sqrt(sum(abs(Ev1).^2)/m); 

  

% Testing set: 

% ============ 

% Determining the Maximum Absolute Percent Relative Error 

MaxErrtt1 = max(abs(Ett1)); 

  

% Determining the Minimum Absolute Percent Relative Error 

MinErrtt1 = min(abs(Ett1)); 

  

% Evaluating the average error 

Ettavg1 = 1/m*sum(Ett1); 

  

% Evaluating the standard deviation 

STDTT1 = std(Errortt1); 

  

% Evaluating Average Absolute Percent Relative Error  

AAPETT1 = sum(abs(Ett1))/m; 

  

% Evaluating Average Percent Relative Error 

APETT1 = 1/m*sum(Ett1); 

  

% Evaluating Root Mean Square  

RMSETT1 = sqrt(sum(abs(Ett1).^2)/m); 

  

 

%----------------------------------------------------------------------

---------- 

% Simulation: Variation of C7+ Molecular Weight while fixing the other 

parameters 

% ------------Molecular Weight of C7+ variation------------------------

---------- 
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ps1=[linspace(240.6740,240.6740,10); %RESERVOIR TEMPERATURE 

[min=121.9100    max=340.0000   mean=121.9100] 

linspace(121.9100,302.0000,10);%MOLECULAR WEIGHT OF C7+ [min=121.9100    

max=302.0000   mean=219.8372] 

linspace(25.0000,25.0000,10);%MOLE FRACTION OF INTERMEDIATES 

[min=1.0000   max=36.9000   mean=22.4017] 

linspace(46.0000,46.0000,10);%MOLE FRACTION OF C1 [min=0.0000    

max=60.5500    mean=37.0900] 

linspace(18.0000,18.0000,10)]';%MOLE FRACTION OF C2+ [min=0.0000    

max=47.0000   mean=12.2869] 

  

% Now simulate 

[Yq_mwc7] = gmdhpredict(model, ps1); 

% Plot Figures for Molecular Weight of C7+ variation 

figure 

px1=plot(ps1(:,2),Yq_mwc7(:,1),'-rs'); 

set(gca,'YGrid','off','XGrid','off') 

set(gca,'FontSize',12,'LineWidth',2); 

set(px1,'LineStyle','-.','LineWidth',1.5,'Color','k','MarkerSize',6) 

xlabel('Molecular Weight of C7+','FontSize',12) 

ylabel('Minimum Miscibility Pressure (psi)', 'fontsize',12) 

  

%----------------------------------------------------------------------

------ 

% Simulation: Variation of C1 Mole Fraction while fixing the other 

parameters 

% ------------Mole Fraction of C1 variation----------------------------

------ 

  

ps2=[linspace(240.6740,240.6740,10); %RESERVOIR TEMPERATURE 

[min=121.9100    max=340.0000   mean=121.9100] 

linspace(240.6800,240.6800,10);%MOLECULAR WEIGHT OF C7+ [min=121.9100    

max=302.0000   mean=219.8372] 

linspace(25.0000,25.0000,10);%MOLE FRACTION OF INTERMEDIATES 

[min=1.0000   max=36.9000   mean=22.4017] 

linspace(0.0000,60.5500,10);%MOLE FRACTION OF C1 [min=0.0000    

max=60.5500    mean=37.0900] 

linspace(18.0000,18.0000,10)]';%MOLE FRACTION OF C2+ [min=0.0000    

max=47.0000   mean=12.2869] 

  

% Now simulate 

[Yq_mfc1] = gmdhpredict(model, ps2); 

% Plot Figures for Mole Fraction of C1 variation 

figure 

px2=plot(ps2(:,4),Yq_mfc1(:,1),'-rs'); 

set(gca,'YGrid','off','XGrid','off') 

set(gca,'FontSize',12,'LineWidth',2); 

set(px2,'LineStyle','-.','LineWidth',1.5,'Color','k','MarkerSize',6) 

xlabel('Mole Fraction of C1 (%)','FontSize',12) 

ylabel('Minimum Miscibility Pressure (psi)', 'fontsize',12) 

  

%----------------------------------------------------------------------

------- 

% Simulation: Variation of C2+ Mole Fraction while fixing the other 

parameters 
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% ------------Mole Fraction of C2+ variation---------------------------

------- 

  

ps3=[linspace(240.6740,240.6740,10); %RESERVOIR TEMPERATURE 

[min=121.9100    max=340.0000   mean=121.9100] 

linspace(240.6800,240.6800,10);%MOLECULAR WEIGHT OF C7+ [min=121.9100    

max=302.0000   mean=219.8372] 

linspace(25.0000,25.0000,10);%MOLE FRACTION OF INTERMEDIATES 

[min=1.0000   max=36.9000   mean=22.4017] 

linspace(46.0000,46.0000,10);%MOLE FRACTION OF C1 [min=0.0000    

max=60.5500    mean=37.0900] 

linspace(0.0000,47.0000,10)]';%MOLE FRACTION OF C2+ [min=0.0000    

max=47.0000   mean=12.2869] 

  

% Now simulate 

[Yq_mfc2] = gmdhpredict(model, ps3); 

% Plot Figures for Mole Fraction of C2+ variation 

figure 

px3=plot(ps3(:,5),Yq_mfc2(:,1),'-rs'); 

set(gca,'YGrid','off','XGrid','off') 

set(gca,'FontSize',12,'LineWidth',2); 

set(px3,'LineStyle','-.','LineWidth',1.5,'Color','k','MarkerSize',6) 

xlabel('Mole Fraction of C2+ (%)','FontSize',12) 

ylabel('Minimum Miscibility Pressure (psi)', 'fontsize',12) 

 

gmdhbuild.m 

function [model, time] = gmdhbuild(Xtr, Ytr, maxNumInputs, inputsMore, 

... 

maxNumNeurons, decNumNeurons, p, critNum, delta, Xv, Yv, verbose) 

% GMDHBUILD 

% Builds a GMDH-type polynomial neural network using a simple 

% layer-by-layer approach 

% 

% Call 

%   [model, time] = gmdhbuild(Xtr, Ytr, maxNumInputs, inputsMore, 

maxNumNeurons, 

%                   decNumNeurons, p, critNum, delta, Xv, Yv, verbose) 

%   [model, time] = gmdhbuild(Xtr, Ytr, maxNumInputs, inputsMore, 

maxNumNeurons, 

%                   decNumNeurons, p, critNum, delta, Xv, Yv) 

%   [model, time] = gmdhbuild(Xtr, Ytr, maxNumInputs, inputsMore, 

maxNumNeurons, 

%                   decNumNeurons, p, critNum, delta) 

%   [model, time] = gmdhbuild(Xtr, Ytr, maxNumInputs, inputsMore, 

maxNumNeurons, 

%                   decNumNeurons, p, critNum) 

%   [model, time] = gmdhbuild(Xtr, Ytr, maxNumInputs, inputsMore, 

maxNumNeurons, 

%                   decNumNeurons, p) 

%   [model, time] = gmdhbuild(Xtr, Ytr, maxNumInputs, inputsMore, 

maxNumNeurons, 

%                   decNumNeurons) 

%   [model, time] = gmdhbuild(Xtr, Ytr, maxNumInputs, inputsMore, 

maxNumNeurons) 

%   [model, time] = gmdhbuild(Xtr, Ytr, maxNumInputs, inputsMore) 
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%   [model, time] = gmdhbuild(Xtr, Ytr, maxNumInputs) 

%   [model, time] = gmdhbuild(Xtr, Ytr) 

% 

% Input 

% Xtr, Ytr     : Training data points (Xtr(i,:), Ytr(i)), i = 1,...,n 

% maxNumInputs : Maximum number of inputs for individual neurons - if 

set 

%                to 3, both 2 and 3 inputs will be tried (default = 2) 

% inputsMore   : Set to 0 for the neurons to take inputs only from the 

%                preceding layer, set to 1 to take inputs also from the 

%                original input variables (default = 1) 

% maxNumNeurons: Maximal number of neurons in a layer (default = equal 

to 

%                the number of the original input variables) 

% decNumNeurons: In each following layer decrease the number of allowed 

%                neurons by decNumNeurons until the number is equal to 

1 

%                (default = 0) 

% p            : Degree of polynomials in neurons (allowed values are 2 

and 

%                3) (default = 2) 

% critNum      : Criterion for evaluation of neurons and for stopping. 

%                In each layer only the best neurons (according to the 

%                criterion) are retained, and the rest are discarded. 

%                (default = 2) 

%                0 = use validation data (Xv, Yv) 

%                1 = use validation data (Xv, Yv) as well as training 

data 

%                2 = use Corrected Akaike's Information Criterion 

(AICC) 

%                3 = use Minimum Description Length (MDL) 

%                Note that both choices 0 and 1 correspond to the so 

called 

%                "regularity criterion". 

% delta        : How much lower the criterion value of the network's 

new 

%                layer must be comparing the the network's preceding 

layer 

%                (default = 0, which means that new layers will be 

added as 

%                long as the value gets better (smaller)) 

% Xv, Yv       : Validation data points (Xv(i,:), Yv(i)), i = 1,...,nv 

%                (used when critNum is equal to either 0 or 1) 

% verbose      : Set to 0 for no verbose (default = 1) 

% 

% Output 

% model        : GMDH model - a struct with the following elements: 

%    numLayers     : Number of layers in the network 

%    d             : Number of input variables in the training data set 

%    maxNumInputs  : Maximal number of inputs for neurons 

%    inputsMore    : See argument "inputsMore" 

%    maxNumNeurons : Maximal number of neurons in a layer 

%    p             : See argument "p" 

%    critNum       : See argument "critNum" 

%    layer         : Full information about each layer (number of 

neurons, 



 

63 
 

%                    indexes of inputs for neurons, matrix of exponents 

for 

%                    polynomial, polynomial coefficients) 

%                    Note that the indexes of inputs are in range 

[1..d] if 

%                    an input is one of the original input variables, 

and 

%                    in range [d+1..d+maxNumNeurons] if an input is 

taken 

%                    from a neuron in the preceding layer. 

% time         : Execution time (in seconds) 

% 

% Please give a reference to the software web page in any publication 

% describing research performed using the software e.g., like this: 

% Jekabsons G. GMDH-type Polynomial Neural Networks for Matlab, 2010, 

% available at http://www.cs.rtu.lv/jekabsons/ 

  

% This source code is tested with Matlab version 7.1 (R14SP3). 

  

% 

=======================================================================

== 

% GMDH-type polynomial neural network 

% Version: 1.5 

% Date: June 2, 2011 

% Author: Gints Jekabsons (gints.jekabsons@rtu.lv) 

% URL: http://www.cs.rtu.lv/jekabsons/ 

% 

% Copyright (C) 2009-2011  Gints Jekabsons 

% 

% This program is free software: you can redistribute it and/or modify 

% it under the terms of the GNU General Public License as published by 

% the Free Software Foundation, either version 2 of the License, or 

% (at your option) any later version. 

% 

% This program is distributed in the hope that it will be useful, 

% but WITHOUT ANY WARRANTY; without even the implied warranty of 

% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 

% GNU General Public License for more details. 

% 

% You should have received a copy of the GNU General Public License 

% along with this program. If not, see <http://www.gnu.org/licenses/>. 

% 

=======================================================================

== 

  

if nargin < 2 

    error('Too few input arguments.'); 

end 

  

[n, d] = size(Xtr); 

[ny, dy] = size(Ytr); 

if (n < 2) || (d < 2) || (ny ~= n) || (dy ~= 1) 

    error('Wrong training data sizes.'); 

end 

  

if nargin < 3 
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    maxNumInputs = 2; 

elseif (maxNumInputs ~= 2) && (maxNumInputs ~= 3) 

    error('Number of inputs for neurons should be 2 or 3.'); 

end 

if (d < maxNumInputs) 

    error('Numbet of input variables in the data is lower than the 

number of inputs for individual neurons.'); 

end 

if nargin < 4 

    inputsMore = 1; 

end 

if (nargin < 5) || (maxNumNeurons <= 0) 

    maxNumNeurons = d; 

end 

if maxNumNeurons > d * 2 

    error('Too many neurons in a layer. Maximum is two times the number 

of input variables.'); 

end 

if maxNumNeurons < 1 

    error('Too few neurons in a layer. Minimum is 1.'); 

end 

if (nargin < 6) || (decNumNeurons < 0) 

    decNumNeurons = 0; 

end 

if nargin < 7 

    p = 2; 

elseif (p ~= 2) && (p ~= 3) 

    error('Degree of individual neurons should be 2 or 3.'); 

end 

if nargin < 8 

    critNum = 2; 

end 

if any(critNum == [0,1,2,3]) == 0 

    error('Only four values for critNum are available (0,1 - use 

validation data; 2 - AICC; 3 - MDL).'); 

end 

if nargin < 9 

    delta = 0; 

end 

if (nargin < 11) && (critNum <= 1) 

    error('Evaluating the models in validation data requires validation 

data set.'); 

end 

if (nargin >= 11) && (critNum <= 1) 

    [nv, dv] = size(Xv); 

    [nvy, dvy] = size(Yv); 

    if (nv < 1) || (dv ~= d) || (nvy ~= nv) || (dvy ~= 1) 

        error('Wrong validation data sizes.'); 

    end 

end 

if nargin < 12 

    verbose = 1; 

end 

  

ws = warning('off'); 

if verbose ~= 0 

    fprintf('Building GMDH-type neural network...\n'); 
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end 

tic; 

  

if p == 2 

    numTermsReal = 6 + 4 * (maxNumInputs == 3); %6 or 10 terms 

else 

    numTermsReal = 10 + 10 * (maxNumInputs == 3); %10 or 20 terms 

end 

  

Xtr(:, d+1:d+maxNumNeurons) = zeros(n, maxNumNeurons); 

if critNum <= 1 

    Xv(:, d+1:d+maxNumNeurons) = zeros(nv, maxNumNeurons); 

end 

  

%start the main loop and create layers 

model.numLayers = 0; 

while 1 

  

    if verbose ~= 0 

        fprintf('Building layer #%d...\n', model.numLayers + 1); 

    end 

  

    layer(model.numLayers + 1).numNeurons = 0; 

    modelsTried = 0; 

    layer(model.numLayers + 1).coefs = zeros(maxNumNeurons, 

numTermsReal); 

  

    for numInputsTry = maxNumInputs:-1:2 

  

        %create matrix of exponents for polynomials 

        if p == 2 

            numTerms = 6 + 4 * (numInputsTry == 3); %6 or 10 terms 

            if numInputsTry == 2 

                r = [0,0;0,1;1,0;1,1;0,2;2,0]; 

            else 

                r = 

[0,0,0;0,0,1;0,1,0;1,0,0;0,1,1;1,0,1;1,1,0;0,0,2;0,2,0;2,0,0]; 

            end 

        else 

            numTerms = 10 + 10 * (numInputsTry == 3); %10 or 20 terms 

            if numInputsTry == 2 

                r = [0,0;0,1;1,0;1,1;0,2;2,0;1,2;2,1;0,3;3,0]; 

            else 

                r = 

[0,0,0;0,0,1;0,1,0;1,0,0;0,1,1;1,0,1;1,1,0;0,0,2;0,2,0;2,0,0; ... 

                     

1,1,1;0,1,2;0,2,1;1,0,2;1,2,0;2,0,1;2,1,0;0,0,3;0,3,0;3,0,0]; 

            end 

        end 

  

        %create matrix of all combinations of inputs for neurons 

        if model.numLayers == 0 

            combs = nchoosek(1:1:d, numInputsTry); 

        else 

            if inputsMore == 1 

                combs = nchoosek([1:1:d 

d+1:1:d+layer(model.numLayers).numNeurons], numInputsTry); 
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            else 

                combs = 

nchoosek(d+1:1:d+layer(model.numLayers).numNeurons, numInputsTry); 

            end 

        end 

        %delete all combinations in which none of the inputs are from 

the preceding layer 

        if model.numLayers > 0 

            i = 1;             

            while i <= size(combs,1) 

                if all(combs(i,:) <= d) 

                    combs(i,:) = []; 

                else 

                    i = i + 1; 

                end 

            end 

        end 

         

        makeEmpty = 1; 

         

        %try all the combinations of inputs for neurons 

        for i = 1 : size(combs,1) 

  

            %create matrix for all polynomial terms 

            Vals = ones(n, numTerms); 

            if critNum <= 1 

                Valsv = ones(nv, numTerms); 

            end 

            for idx = 2 : numTerms 

                bf = r(idx, :); 

                t = bf > 0; 

                tmp = Xtr(:, combs(i,t)) .^ bf(ones(n, 1), t); 

                if critNum <= 1 

                    tmpv = Xv(:, combs(i,t)) .^ bf(ones(nv, 1), t); 

                end 

                if size(tmp, 2) == 1 

                    Vals(:, idx) = tmp; 

                    if critNum <= 1 

                        Valsv(:, idx) = tmpv; 

                    end 

                else 

                    Vals(:, idx) = prod(tmp, 2); 

                    if critNum <= 1 

                        Valsv(:, idx) = prod(tmpv, 2); 

                    end 

                end 

            end 

  

            %calculate coefficients and evaluate the network 

            coefs = (Vals' * Vals) \ (Vals' * Ytr); 

            modelsTried = modelsTried + 1; 

            if ~isnan(coefs(1)) 

                predY = Vals * coefs; 

                if critNum <= 1 

                    predYv = Valsv * coefs; 

                    if critNum == 0 

                        crit = sqrt(mean((predYv - Yv).^2)); 
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                    else 

                        crit = sqrt(mean([(predYv - Yv).^2; (predY - 

Ytr).^2])); 

                    end 

                else 

                    comp = complexity(layer, model.numLayers, 

maxNumNeurons, d, combs(i,:)) + size(coefs, 2); 

                    if critNum == 2 %AICC 

                        if (n-comp-1 > 0) 

                            crit = n*log(mean((predY - Ytr).^2)) + 

2*comp + 2*comp*(comp+1)/(n-comp-1); 

                        else 

                            coefs = NaN; 

                        end 

                    else %MDL 

                        crit = n*log(mean((predY - Ytr).^2)) + 

comp*log(n); 

                    end 

                end 

            end 

  

            if ~isnan(coefs(1)) 

                %add the neuron to the layer if 

                %1) the layer is not full; 

                %2) the new neuron is better than an existing worst 

one. 

                maxN = maxNumNeurons - model.numLayers * decNumNeurons; 

                if maxN < 1, maxN = 1; end; 

                if layer(model.numLayers + 1).numNeurons < maxN 

                    %when the layer is not yet full 

                    if (maxNumInputs == 3) && (numInputsTry == 2) 

                        layer(model.numLayers + 

1).coefs(layer(model.numLayers + 1).numNeurons+1, :) = [coefs' 

zeros(1,4+6*(p == 3))]; 

                        layer(model.numLayers + 

1).inputs(layer(model.numLayers + 1).numNeurons+1, :) = [combs(i, :) 

0]; 

                    else 

                        layer(model.numLayers + 

1).coefs(layer(model.numLayers + 1).numNeurons+1, :) = coefs; 

                        layer(model.numLayers + 

1).inputs(layer(model.numLayers + 1).numNeurons+1, :) = combs(i, :); 

                    end 

                    layer(model.numLayers + 

1).comp(layer(model.numLayers + 1).numNeurons+1) = length(coefs); 

                    layer(model.numLayers + 

1).crit(layer(model.numLayers + 1).numNeurons+1) = crit; 

                    layer(model.numLayers + 

1).terms(layer(model.numLayers + 1).numNeurons+1).r = r; 

                    if makeEmpty == 1 

                        Xtr2 = []; 

                        if critNum <= 1 

                            Xv2 = []; 

                        end 

                        makeEmpty = 0; 

                    end 
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                    Xtr2(:, layer(model.numLayers + 1).numNeurons+1) = 

predY; 

                    if critNum <= 1 

                        Xv2(:, layer(model.numLayers + 1).numNeurons+1) 

= predYv; 

                    end 

                    if (layer(model.numLayers + 1).numNeurons == 0) || 

... 

                       (layer(model.numLayers + 1).crit(worstOne) < 

crit) 

                        worstOne = layer(model.numLayers + 

1).numNeurons + 1; 

                    end 

                    layer(model.numLayers + 1).numNeurons = 

layer(model.numLayers + 1).numNeurons + 1; 

                else 

                    %when the layer is already full 

                    if (layer(model.numLayers + 1).crit(worstOne) > 

crit) 

                        if (maxNumInputs == 3) && (numInputsTry == 2) 

                            layer(model.numLayers + 1).coefs(worstOne, 

:) = [coefs' zeros(1,4+6*(p == 3))]; 

                            layer(model.numLayers + 1).inputs(worstOne, 

:) = [combs(i, :) 0]; 

                        else 

                            layer(model.numLayers + 1).coefs(worstOne, 

:) = coefs; 

                            layer(model.numLayers + 1).inputs(worstOne, 

:) = combs(i, :); 

                        end 

                        layer(model.numLayers + 1).comp(worstOne) = 

length(coefs); 

                        layer(model.numLayers + 1).crit(worstOne) = 

crit; 

                        layer(model.numLayers + 1).terms(worstOne).r = 

r; 

                        Xtr2(:, worstOne) = predY; 

                        if critNum <= 1 

                            Xv2(:, worstOne) = predYv; 

                        end 

                        [dummy, worstOne] = max(layer(model.numLayers + 

1).crit); 

                    end 

                end 

            end 

  

        end 

  

    end 

  

    if verbose ~= 0 

        fprintf('Neurons tried in this layer: %d\n', modelsTried); 

        fprintf('Neurons included in this layer: %d\n', 

layer(model.numLayers + 1).numNeurons); 

        if critNum <= 1 

            fprintf('RMSE in the validation data of the best neuron: 

%f\n', min(layer(model.numLayers + 1).crit)); 
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        else 

            fprintf('Criterion value of the best neuron: %f\n', 

min(layer(model.numLayers + 1).crit)); 

        end 

    end 

  

    %stop the process if there are too few neurons in the new layer 

    if ((inputsMore == 0) && (layer(model.numLayers + 1).numNeurons < 

2)) || ... 

       ((inputsMore == 1) && (layer(model.numLayers + 1).numNeurons < 

1)) 

        if (layer(model.numLayers + 1).numNeurons > 0) 

            model.numLayers = model.numLayers + 1; 

        end 

        break 

    end 

  

    %if the network got "better", continue the process 

    if (layer(model.numLayers + 1).numNeurons > 0) && ... 

       ((model.numLayers == 0) || ... 

        (min(layer(model.numLayers).crit) - min(layer(model.numLayers + 

1).crit) > delta) ) %(min(layer(model.numLayers + 1).crit) < 

min(layer(model.numLayers).crit)) ) 

        model.numLayers = model.numLayers + 1; 

    else 

        if model.numLayers == 0 

            warning(ws); 

            error('Failed.'); 

        end 

        break 

    end 

  

    %copy the output values of this layer's neurons to the training 

    %data matrix 

    Xtr(:, d+1:d+layer(model.numLayers).numNeurons) = Xtr2; 

    if critNum <= 1 

        Xv(:, d+1:d+layer(model.numLayers).numNeurons) = Xv2; 

    end 

  

end 

  

model.d = d; 

model.maxNumInputs = maxNumInputs; 

model.inputsMore = inputsMore; 

model.maxNumNeurons = maxNumNeurons; 

model.p = p; 

model.critNum = critNum; 

  

%only the neurons which are actually used (directly or indirectly) to 

%compute the output value may stay in the network 

[dummy best] = min(layer(model.numLayers).crit); 

model.layer(model.numLayers).coefs(1,:) = 

layer(model.numLayers).coefs(best,:); 

model.layer(model.numLayers).inputs(1,:) = 

layer(model.numLayers).inputs(best,:); 

model.layer(model.numLayers).terms(1).r = 

layer(model.numLayers).terms(best).r; 
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model.layer(model.numLayers).numNeurons = 1; 

if model.numLayers > 1 

    for i = model.numLayers-1:-1:1 %loop through all the layers 

        model.layer(i).numNeurons = 0; 

        for k = 1 : layer(i).numNeurons %loop through all the neurons 

in this layer 

            newNum = 0; 

            for j = 1 : model.layer(i+1).numNeurons %loop through all 

the neurons which will stay in the next layer 

                for jj = 1 : maxNumInputs %loop through all the inputs 

                    if k == model.layer(i+1).inputs(j,jj) - d 

                        if newNum == 0 

                            model.layer(i).numNeurons = 

model.layer(i).numNeurons + 1; 

                            

model.layer(i).coefs(model.layer(i).numNeurons,:) = 

layer(i).coefs(k,:); 

                            

model.layer(i).inputs(model.layer(i).numNeurons,:) = 

layer(i).inputs(k,:); 

                            

model.layer(i).terms(model.layer(i).numNeurons).r = 

layer(i).terms(k).r; 

                            newNum = model.layer(i).numNeurons + d; 

                            model.layer(i+1).inputs(j,jj) = newNum; 

                        else 

                            model.layer(i+1).inputs(j,jj) = newNum; 

                        end 

                        break 

                    end 

                end 

            end 

        end 

    end 

end 

  

time = toc; 

warning(ws); 

  

if verbose ~= 0 

    fprintf('Done.\n'); 

    used = zeros(d,1); 

    for i = 1 : model.numLayers 

        for j = 1 : d 

            if any(any(model.layer(i).inputs == j)) 

                used(j) = 1; 

            end 

        end 

    end 

    fprintf('Number of layers: %d\n', model.numLayers); 

    fprintf('Number of used input variables: %d\n', sum(used)); 

    fprintf('Execution time: %0.2f seconds\n', time); 

end 

  

return 

  

%====================  Auxiliary functions  ==================== 
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function [comp] = complexity(layer, numLayers, maxNumNeurons, d, 

connections) 

%calculates the complexity of the network given output neuron's 

connections 

%(it is assumed that the complexity of a network is equal to the number 

of 

%all polynomial terms in all it's neurons which are actually connected 

%(directly or indirectly) to network's output) 

comp = 0; 

if numLayers == 0 

    return 

end 

c = zeros(numLayers, maxNumNeurons); 

for i = 1 : numLayers 

    c(i, :) = layer(i).comp(:)'; 

end 

%{ 

%unvectorized version: 

for j = 1 : length(connections) 

    if connections(j) > d 

        comp = comp + c(numLayers, connections(j) - d); 

        c(numLayers, connections(j) - d) = -1; 

    end 

end 

%} 

ind = connections > d; 

if any(ind) 

    comp = comp + sum(c(numLayers, connections(ind) - d)); 

    c(numLayers, connections(ind) - d) = -1; 

end 

%{ 

%unvectorized version: 

for i = numLayers-1:-1:1 

    for j = 1 : layer(i).numNeurons 

        for k = 1 : layer(i+1).numNeurons 

            if (c(i+1, k) == -1) && (c(i, j) > -1) && ... 

               any(layer(i+1).inputs(k,:) == j + d) 

                comp = comp + c(i, j); 

                c(i, j) = -1; 

            end 

        end 

    end 

end 

%} 

for i = numLayers-1:-1:1 

        for k = 1 : layer(i+1).numNeurons 

            if c(i+1, k) == -1 

                inp = layer(i+1).inputs(k,:); 

                used = inp > d; 

                if any(used) 

                    ind = inp(used) - d; 

                    ind = ind(c(i, ind) > -1); 

                    if ~isempty(ind) 

                        comp = comp + sum(c(i, ind)); 

                        c(i, ind) = -1; 

                    end 
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                end 

            end 

        end 

end 

return 

 

gmdheq.m 

function gmdheq(model, precision) 

% gmdheq 

% Outputs the equations of GMDH model. 

% 

% Call 

%   gmdheq(model, precision) 

%   gmdheq(model) 

% 

% Input 

%   model         : GMDH-type model 

%   precision     : Number of digits in the model coefficients 

%                   (default = 15) 

  

if nargin < 1 

    error('Too few input arguments.'); 

end 

if (nargin < 2) || (isempty(precision)) 

    precision = 15; 

end 

  

if model.numLayers > 0 

    p = ['%.' num2str(precision) 'g']; 

    fprintf('Number of layers: %d\n', model.numLayers); 

    for i = 1 : model.numLayers %loop through all the layers 

        fprintf('Layer #%d\n', i); 

        fprintf('Number of neurons: %d\n', model.layer(i).numNeurons); 

        for j = 1 : model.layer(i).numNeurons %loop through all the 

neurons in the ith layer 

            [terms inputs] = size(model.layer(i).terms(j).r); %number 

of terms and inputs 

            if (i == model.numLayers) 

                str = ['y = ' num2str(model.layer(i).coefs(j,1),p)]; 

            else 

                str = ['x' num2str(j + i*model.d) ' = ' 

num2str(model.layer(i).coefs(j,1),p)]; 

            end 

            for k = 2 : terms %loop through all the terms 

                if model.layer(i).coefs(j,k) >= 0 

                    str = [str ' +']; 

                else 

                    str = [str ' ']; 

                end 

                str = [str num2str(model.layer(i).coefs(j,k),p)]; 

                for kk = 1 : inputs %loop through all the inputs 

                    if (model.layer(i).terms(j).r(k,kk) > 0) 

                        for kkk = 1 : model.layer(i).terms(j).r(k,kk) 

                            if (model.layer(i).inputs(j,kk) <= model.d) 
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                                str = [str '*x' 

num2str(model.layer(i).inputs(j,kk))]; 

                            else 

                                str = [str '*x' 

num2str(model.layer(i).inputs(j,kk) + (i-2)*model.d)]; 

                            end 

                        end 

                    end 

                end 

            end 

            disp(str); 

        end 

    end 

else 

    disp('The network has zero layers.'); 

end 

  

return 

 

gmdhpredict.m 

function Yq = gmdhpredict(model, Xq) 

% GMDHPREDICT 

% Predicts output values for the given query points Xq using a GMDH 

model 

% 

% Call 

%   [Yq] = gmdhpredict(model, Xq) 

% 

% Input 

% model     : GMDH model 

% Xq        : Inputs of query data points (Xq(i,:)), i = 1,...,nq 

% 

% Output 

% Yq        : Predicted outputs of query data points (Yq(i)), i = 

1,...,nq 

  

% This source code is tested with Matlab version 7.1 (R14SP3). 

  

if nargin < 2 

    error('Too few input arguments.'); 

end 

if model.d ~= size(Xq, 2) 

    error('The matrix should have the same number of columns as the 

matrix with which the network was built.'); 

end 

  

[n, d] = size(Xq); 

Yq = zeros(n, 1); 

  

for q = 1 : n 

    for i = 1 : model.numLayers 

        if i ~= model.numLayers 

            Xq_tmp = zeros(1, model.layer(i).numNeurons); 

        end 

        for j = 1 : model.layer(i).numNeurons 
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            %create matrix for all polynomial terms 

            numTerms =  size(model.layer(i).terms(j).r,1); 

            Vals = ones(numTerms,1); 

            for idx = 2 : numTerms 

                bf = model.layer(i).terms(j).r(idx, :); 

                t = bf > 0; 

                tmp = Xq(q, model.layer(i).inputs(j,t)) .^ bf(1, t); 

                if size(tmp, 2) == 1 

                    Vals(idx,1) = tmp; 

                else 

                    Vals(idx,1) = prod(tmp, 2); 

                end 

            end 

  

            %predict output value 

            predY = model.layer(i).coefs(j,1:numTerms) * Vals; 

            if i ~= model.numLayers 

                %Xq(q, d+j) = predY; 

                Xq_tmp(j) = predY; 

            else 

                Yq(q) = predY; 

            end 

  

        end 

        if i ~= model.numLayers 

            Xq(q, d+1:d+model.layer(i).numNeurons) = Xq_tmp; 

        end 

    end 

end 

  

return 

 

gmdhtest.m 

function [MSE, RMSE, RRMSE, R2] = gmdhtest(model, Xtst, Ytst) 
% GMDHTEST 
% Tests a GMDH-type network model on a test data set (Xtst, Ytst) 
% 
% Call 
%   [MSE, RMSE, RRMSE, R2] = gmdhtest(model, Xtst, Ytst) 
% 
% Input 
% model     : GMDH model 
% Xtst, Ytst: Test data points (Xtst(i,:), Ytst(i)), i = 1,...,ntst 
% 
% Output 
% MSE       : Mean Squared Error 
% RMSE      : Root Mean Squared Error 
% RRMSE     : Relative Root Mean Squared Error 
% R2        : Coefficient of Determination 

  
if nargin < 3 
    error('Too few input arguments.'); 
end 
if (size(Xtst, 1) ~= size(Ytst, 1)) 



 

75 
 

    error('The number of rows in the matrix and the vector should be 

equal.'); 
end 
if model.d ~= size(Xtst, 2) 
    error('The matrix should have the same number of columns as the 

matrix with which the model was built.'); 
end 
MSE = mean((gmdhpredict(model, Xtst) - Ytst) .^ 2); 
RMSE = sqrt(MSE); 
if size(Ytst, 1) > 1 
    RRMSE = RMSE / std(Ytst, 1); 
    R2 = 1 - MSE / var(Ytst, 1); 
else 
    RRMSE = Inf; 
    R2 = Inf; 
end 
return 


