UNIVERSITI
TEKNOLOGI
PETRONAS

Final Year Project 11

Final Draft

Estimation of GOR at reservoir pressures Below bubble
point pressure using GMDH (Group Method of Data
Handling)

Moctar Bebaha
(14209)

Supervised by: Dr. Mohammed Abdalla Ayoub

May 2014

II.

I1I1.

IV.

VL

VIL.

VIIL

IX.

Table of Content:

Certification

Abstract
Ch 1: Introduction:

a) Background

b) Problem Statement

c) Objectives and Scope of Study

Ch 2: Group Method of Data Handling GMDH

Ch 3: Literature Review:

Ch 4: Methodology:

Ch 5: Results:

Ch 6: Discussion and Comparison

Ch 7: Conclusion:

References:

Appendix

13

15

16

17

19

20

21

22

CERTIFICATION OF APPROVAL

Estimation of Solution Gas Oil Ratio at pressures below Bubble Point
Pressure using Group Method of Data Handling

by
Moctar Bebaha
14209
A project dissertation submitted to the
Petroleum Engineering Programme
Universiti Teknologi PETRONAS
In partial fulfilment of the requirement for the
BACHELOR OF ENGINEERING (Hons)
(PETROLEUM)

Approved by,

Dr. Mohammed Abdalla Ayoub Mohammed

CERTIFICATION OF ORIGINALITY

This is to certify that | am responsible for the work submitted in this
project, that the original work is my own except as specified in the
references and acknowledgements, and that the original work contained
herein have not been undertaken or done by unspecified sources or
persons.

Moctar Bebaha

List of Figures:

Figure 1: Solution Gas Oil Ratio vs. Pressure

Figure 2: Comparison of GOR prediction from several correlations with Laboratory
Data (Veralde, 1997)

Figure 3: The GMDH network with multiple inputs and a single output

I- Abstract:

A GMDH neural networks modelling approach is proposed to estimate
gas oil ratio at pressures below bubble point pressure. A new correlation
is developed by the use of 385 PVT data collected from available
literature on GOR measurement and ranging from 100scf/STB to a little
over 1500scf/STB. GMDH approach is explained and an overview of the
available literature on GMDH modelling is laid out. The new correlation
is multinomial algebraic in nature, and is tested against the currently
widely used correlations in the petroleum industry. Correlations factors
for all correlations are produced.

- Introduction:

-Solution Gas Oil Ratio:

Solution Gas Oil Ratio (GOR) or Rs is a measure or indication of the quantity of
hydrocarbon gas that is dissolved in reservoir liquids at reservoir pressures (Ahmed,
2007). GOR is defined as the ratio of the volume of gas that comes from the oil
produced (or water) at the surface (atmospheric pressure) measured in standard cubic
feet (scf) to the volume of oil produced after the dissolved gas has evolved from it at

the surface, measured in stb.
Rso = Vgas/ Vil
Vgas: Volume of gas that has evolved from the oil produced at the surface
V.ii: Volume of oil produced after the gas evolved from it at atmospheric pressure

The solution gas oil ratio Rs or GOR varies usually in the range of 0 scf/stb to 2100
scf per STB. 0 scf per STB is found in dead oil that has no gas at all. While 2100 scf

per STB is encountered with very light oil or gas condensate.

Rs is usually plotted against pressure, and the plot is characterized by a constant
value before the bubble point pressure is reached (from high pressure) until the

bubble point pressure of oil Py, is reached, after which the GOR decreases almost
linearly to 0. (Archer, 1986)

SOLUTION GAS-OIL RATIO
2000
Rso

I
I
| Pb

0 l

Pressure

Fig. 1. Gas Oil Ratio against Pressure

6

Knowing gas oil ratio is important for production and reservoir engineers since it has
a great influence on reservoir fluid properties such as formation volume factor and
viscosity. Therefore, in the past few decades, many correlations were devised and
developed to estimate gas oil ratio for the pupose production optimization and

formation evaluation (Franchi, 2006).
a) Background:

Standing, in 1947, published what went to become one of the most famous
correlations in the oil and gas industry. He was the first to undertake an extensive
PVT analysis on a number data gathered from oilfields attempting to develop a
correlation for Bubble Point Pressure Pb and Oil Formation VVolume Factor Bo.

The correlation was of great importance due to the necessity of estimating Solution
Gas Oil Ratio, due to the lack of actual pvt data most of the time, and to the difficulty
encountered often when attempting to predict reservoir fluid properties throughout
the oil field lifespan. This is mostly due to the number of variables that have to be
taken into consideration and to the difficulty and the expenses associated with
running lab pvt tests. It is not surprising therefore that many correlations have
followed Standing’s, and were developed estimate bubble point pressure and other

fluid properties.

Standing’s correlation is:

P, = 18.2*((Rq /yg)o.83(100.00091T-0.01257API)_1_ 40), and
Bo = 12*10°*(Ry(yq / y0)*° + 1.5*T)*? + 0.9760
Py . Bubble point pressure

Rsi : Initial gas oil ratio

Rs : gas oil ratio

vy :Gas specific gravity

Yo :Stock tank oil gravity

vapr1 API specific Gravity

T: Tempetrature in Fahrenheit

Numerous correlations have been developed since Standing’s correlations were
published in 1947. These generally provided wider range of applicability and more
accurate estimations of the various fluid properties. The boost came from fast
computers and the ever increasing need in the petroleum industry for more accurate
estimations. (Galso,1980), (Al-Marhoun,1988), (Farshad ,1990), (Valko,2003) and
(Veralde,1997) are some of the widely used correlations developed for different

regions and different types of Qil.

Sing et al (2012) utilized field information from Trinidad Oil fields to assess the
aforementioned correlations on liquid properties, for example, formation volume
factor and viscosity, bubble point pressure and gas oil ratio with the end goal of store

estimation.

Veralde et al (1997) created a set of correlations that is pertinent on more extensive
extent of temperatures, gas oil ratio. It was found that their correlations gave the
most correct estimations regarding air bubble point pressure, gravity and other fluid

properties in case of Trinidad oil fields.

The average absolute deviation AAD on account of Veralde et al correlations was
short of what 5%, while the deviation for different correlations was much higher
(Sing et al, 2012).

b) Problem Statement:
Although many gas oil ratio correlations have been developed in the past 50 years,
the vast majority of them have limited use on a limited range of values if they are to
be of any accuracy. As pointed out by Veralde (1997), in case of the Gas oil ratio,
most correlations yield significant errors when applied at pressures below bubble
point pressure and with high initial gas oil ratio. The typical concave up-point of
inflection-concave down shape that is characteristic of GOR curves vs. pressure is

seldom captured in GOR correlations.

Fig. 2 shows typical deviations from actual lab and field data encountered when
using most of the available correlations to estimate Gas Oil Ratio. These deviations
are their maximum when the initial GOR is very high.

T

5EEd

Solutlon Gas-Oil Ralfo, R, 82 STD

-BHBBEBYBBERUE

0 0 1000 1500 200 2500 000 aso0 4200 4500
Preasure, psig

Fig. 2. A Comparison of gas oil ratio prediction by several correlations with actual Laboratory Data Veralde,
(1997)

In terms of Average absolute deviation AAD the deviations can be in the range 20-
30% of (Sing, 2012).

Therefore, a new set of correlations should be developed, one that takes into
consideration the fact that the curve of a typical curve of gas oil ratio vs. Pressure, is
concave up inflexed and concave down at high initial gas oil ratio, and which can

cover a wider range of GOR values.

c) Objectives and Scope of study:

The aims and objectives of this paper are to create another correlation for gas oil

ratio GOR, more accurate than other correlations, at reservoir pressures below bubble
point pressure. Group Method of Data Handling (GMDH), a method of Artificial
Neural Networks ANN is to be utilized. The usage of Neural Network model
dependent upon GMDH has been chose due to the popularity of this field of study
and the encouraging results from its application in similar areas more recently. The

model will be prepared on various sets of PVT data to produce suitable working
model which then might be connected to new data and produce correct effects.

I11- Group Method of Data Handling:

Lety, X1 Xz and X, be:
y : Solution gas oil ratio
X1 . Bubble point pressure
Xz . Gas specific gravity

X3

Xm = API specific Gravity
X1 t0 Xn, are variables upon which solution gas oil ratio depends.

The purpose of a GMDH model is to find constants a;, a;j, and ajj, such that:

y—=a —FZG X; —I-ZZC? XX —I-ZZZGU;{I X X

i=1 j=1 i=1 j=1 k=1

This equation is in fact a correlation of y (solution gas oil ratio) to x; to Xy, (variables

such as specific gravity, formation volume factor etc.) upon which it depends.

The key to the success of the model is the estimation of the factors a; called weights.

The method consists of a combination of polynomial regressions combined in a

10

network and trained on a set of data in the input and output to extract the suitable
weights. This process is theoretically simple, but requires a lot of computation that

can only be done with mathematical software such as Matlab.

This is a sample of the data used to develop the correlation in this research. From
Gassan (1988)

RS P APl |GG | T GO

92.7 563.0 |26 0.95 | 212 0.898413

51.0 5120 |[14.7 |0.72 |123.008 | 0.967852

877.5 |3642.0 |32.8 |0.812 | 244.04 0.861229

3343 | 17400 |31 0.7 170.96 0.870769

742.5 | 3200.0 |32 0.75 | 170.06 0.865443

153.1 | 1200.0 |28 0.62 | 145.004 |0.887147

2404 | 14220 | 32 0.75 | 170.06 0.865443

168.5 |600.0 |26 0.94 | 140 0.898413

573.0 |2296.0 |32.6 |0.756 | 186.98 0.862279

361.2 |1462.0 | 36.3 | 0.816 | 136.4 0.843266

76.1 666.0 |12 0.73 | 116.06 0.986063

509.0 |24176 |24 0.75 | 170.06 0.909968

406.2 |1728.0 |37.4 |0.79 | 150.08 0.837774

284.8 | 1720.0 | 32 0.75 | 170.06 0.865443

57.0 555.0 |12 0.68 | 105.98 0.986063

660.7 | 33949 |35.7 |0.681 | 242.6 0.846292

782.6 |2885.9 |38.4 |0.713 | 150.08 0.832843

11

321.3 | 1409.0 | 49.1 |0.673 | 179.96 0.783499

736.5 [3683.9 |209 |0.75 |170.06 0.928478

357.3 | 1200.0 | 30 0.95 |120.02 0.876161

1007.3 | 3053.0 | 41.4 | 0.708 | 114.98 0.818392

679.8 |1846.0 |53.4 | 0.792 | 224.96 0.765279

429.3 | 2133.1 |23 0.75 |177.8 0.915858

372.1 | 1400.0 | 34 0.8 100.04 0.854985

316.3 | 1505.6 | 33 0.75 | 170.06 0.860182

Table 3: PVT data Middle East field (Ghassan, 1988)

The remaining data points can be found in the appendix I.

V- Literature Review:

Artificial Neural Networks have seen an expanding enthusiasm since their initiation
by in the 1940s. They have been utilized within data mining in diverse fields, from

Medical Sciences to Economy, Engineering and Earth Sciences (Maryam, 2013).

In the field of Petroleum Engineering, neural networks have been utilized within the
assessment of underneath bubble point consistency connections (Ayoub et al 2007).
A neural system model was created to foresee the thickness underneath the bubble
point pressure with a correspondence coefficient of 99.3%. Ayoub et al (2005)
likewise created a neural system model for anticipating bottomhole streaming

pressure in vertical multiphase stream with a correspondence coefficient of 97.35%.

Gas Oil Ratio Rs has additionally been subject to neural networks models. Sarit

Dutta and J.p. Gupta (2008) created neural models for Oil Formation VVolume Factor,

12

Bubble Point Pressure, Viscosity and Gas Oil Ratio, for Indian West Coast Crude
Oil. Their model, they claimed, performed better than most existing connections by
giving much lower normal total relative error. Asadisaghandi et al (2009) assessed
back spread neural system taking in calculations and exact correspondences for

forecast of PVT properties in Iran Oilfields.

One normal rule around all distributed writing on neural networks demonstrates in
oil and gas industry is the affirmation that the correspondences created by the neural
models are exceedingly faultless beat very nearly all existing relationships. They
likewise assert high adaptability in the model and the way that no real understanding
of the internal laws of the framework at study is required. Actually one property the
neural system demonstrate being referred to is that they are verifiable models,
implying that they can display complex frameworks gave a set of inputs and the
relating alluring yields are accessible, without the need for the learning of the inward

working of the framework (lvakhnenko, 1968).

V- Methodology:

Lab and Field Data has been assembled (see appendix _and gathered from accessible
writing and PVT Databanks on the web and Library Journals. The data concerns the
various inputs and the single output that are to be demonstrated (Pb Bubble point
pressure, Gg Gas specific gravity, Go Stock tank oil gravity, Grapi API specific
Gravity and Temperature) and (Rs) individually. A GMDH neural system model will
be created and a suitable back proliferation calculation will be connected to it, to
recognize the fitting synaptic weights. Matlab software will be utilized as a part of
the scientific estimations to help process the synaptic weights and evaluate the last

manifestation of the relationship.

13

Input Output

Py
Gear
N o
T
_ 4
Hidden Layers

Fig. 3. The GMDH network with multiple inputs and a single output

Two real issues that need to be alleviated and managed and that are often
experienced when planning such neural system models are the issue of
Generalization and the issue of Over-fitting. Generalization alludes to the inquiry
whether the model, which has been prepared to a certain set of data, could be
summed up (connected) effectively to other set of data that are not like the
preparation dat and produce correct yield. Over-fitting alludes to the situation when
the system endeavors to model all the data, including the clamor and superfluous

data, as opposed to discovering the relationship that underlies it.

As a way of mitigating these two problems and ensuring they don’t complicated the
model, we have designed our training data in such a way that it’s divided into three

sets of data which we have termed Train,Stop and Test.

14

Set Train will be the set of data the system is to be prepared with. Commonly, as we
prepare the system, its execution ought to expand on an autonomous set. That set will
be Set Stop. The reason for Set Stop is to check for over-fitting. As long as system is
advancing in the right course, the execution on the Set Stop ought to continue
expanding. On the other hand, there will be a point when the system begins to once
again fit, by then, its execution on Set Stop ought to go down. That is the point at
which the Network preparing ought to stop. Set Test will be utilized for the
assessment of the genuine execution of the system when the procedure is carried out.
The execution on the Set Test will be viewed as the true execution of the Neural
Network GMDH Model correlation.

The data used in creating this correlation is available in the published literature. 385
PVT data points consisting of 5 reservoir fluids parameters (Pressure (kPa),
Temperature(C), API, Gas specific gravity and Gas Oil Ratio (m3/m3)) were chosen
from Ghassan (1988). This data has not been used prior to its publication in creating
any correlation. The data was subsequently converted into field data for more

suitable treatment.

The common practice of dividing the data into three sets was followed. The choice
was made, after randomizing it, to divide it into 50%, 25% and 25% also known as
(2:1:1) partitioning. 50% was assigned for training, 25% for validation, and the
remaining 25% for testing.

Matlab was then used to produce the suitable network architecture. The code used is
a modified version of the original code created by Ayoub (2011) in his estimation of

pressure drop in pipelines by abductive (GMDH) neural networks. The changes

15

made to the original code included the type of input data, the number of data point,

the number of independent input variables and the number of layers etc.

VI- Results:

A Four-Layer model was produced with, as pre-defined, 4 independent parameters
(Pressure, Temperature, Gas Gravity and API) and one dependent parameter, Gas Oil
Ratio Rs. The output of the program was as follows:

Number of layers: 4

Layer #1

X5 =40 -0.0816*x4 -3.15*x2 +0.0794*x1 -0.0241*x2*x4 -0.00105*x1*x4
+0.0107*x1*x2 +0.00452*x4*x4 +0.025*x2*x2 +6.15e-006*x1*x1

Layer #2

X9 = -418 +0.0976*x5 +922*x3 +0.0245*x1 +0.505*x3*x5 -0.000201*x1*X5
+0.0943*x1*x3 +0.000649*x5*x5 -503*x3*x3 +1.88e-005*x1*x1

Layer #3

X13 =-79.4 +0.679*x9 +1.77*x4 -70*x3 +0.000994*x4*x9 +0.178*x3*x9 -
0.587*x3*x4 +2.03e-005*x9*x9 -0.00497*x4*x4 +100*Xx3*x3

Layer #4

y =-38.2 +0.782*x13 +0.438*x2 +0.0754*x1 +0.00519*x2*x13 -6.8e-006*x1*x13 -
0.00228*x1*x2 +2.7e-005*x13*x13 +0.0343*x2*x2 +5.55e-007*x1*x1

x1=Pressureinpsi P

x2= API Gravity API

x3= Gas Gravity GG and,
x4= Temperature inF T

y= Gas Oil Ratio Rs

x5, X9 and x13 are dependent variables produced by the models in is internal layers
that are dependent upon the input variables. We shall call them A, B and M
respectively.

The correlation therefore becomes:

Rs =-38.2 +0.782*M +0.438*API +0.0754*P +0.00519*AP1*M -6.8e-006*P*M -
0.00228*P*API +2.7e-005*M”2 +0.0343*API"2 +5.55e-007*P/"2

16

A =40 -0.0816*T -3.15*API +0.0794*P -0.0241*API*T -0.00105*P*T
+0.0107*P*API +0.00452*T"2 +0.025*API1"2 +6.15e-006*P"2

B =-418 +0.0976*A +922*GG+0.0245*P +0.505*GG*A -0.000201*P*A
+0.0943*P*GG +0.000649*A"2 -503*GG"2 +1.88e-005*(P)"2

M =-79.4 +0.679*B+1.77*T -70*GG +0.000994*T*B +0.178*GG*B -0.587*GG*T
+2.03e-005*B"2 -0.00497*T"2 +100*GG"2

The training stopped when the correlation achieved a 99% correlation factor R on the
training set. The corresponding correlation factor on the validation set stood at
99.23%, while the actual correlation factor of the model on the independ testing set
stood at 98.63%.

Predicted Gas Qil Ratio vs_.Measured Gas Oil Ratio
2000 T T T

W Testing set

1800

1600

1400

4]

1200

1000

<]

<]
<]

800

600 | &

400

Predicted Gas Oil Ratio GOR "ft3/STB"
<

200 | correlation coefficient = (0.98628)

0

0 500 1000 1500 2000
Measured Gas Oil Ratio GOR "ft3/STB"

Fig. 2- X-Y Plot of Measured vs. Predicted Rs with the correlation coefficient

17

200 T T T T T T T T T

---&r-- Testing Set
150 ¢ 1
@ n
| i:
100 ; -
¥ o
50 ; i
o @0
g 0 FO0s of g
i Wy
Goor O Y
50 Hod & 4
0]
-100 .
150} : .
E
_200 1 1 1 1 1 1 (P 1 1
0 10 20 30 40 50 60 70 80 90 100

Data Point No
Fig. 3- Residual Graph for the Testing Set (Errors vs. Testing Points)

VII- Discussion and Comparison:

Three statistical parameters are going to be used to compare the performance of the

new correlation relative to avalaible correlations.

e The mean absolute percentage error defined as:

(X(actual value — predicted value)/actual value * n)*100

e The mean absolute deviation MAD defined as:

(X(actual value — predicted value)/n)*100
And,

e Correlation coefficient

18

Six widely used correlations were applied to the testing data and their Mean Absolute
Percentage and Deviation Errors, as well as their correlation factors were computed.
The correlations are: Standing’s, Vasquez and Beggs, Al-Marhoun, Lasater, Galso,

and Petrosky correlations.

The results are as follows:

MAPE: Mean Absolute Percentage Error
MAD: Mean Absolude Deviation

R: Correlation Coefficient

MAPE % MAD (scf/STB) R %
Standing 13.7 43.7 87.7
Al-Marhoun 23.5 71.53 83.1
Lasater 27.23 54.66 85.9
Vasquez and Beggs | 13.25 44.42 86.96
Galso 21.24 65.88 88.74
Petrosky and | 41.2 66.1 85
Farshad
Ayoub & 11.93 35.68 98.63
Moctar

Table 1- Comparison of the new correlation to the established correlations

The new correlation has the lowest absolute percentage error at 11.93%. Only
Standing’s and Vaquez correlations come close, at 13.7% and 13.25% respectively.
In terms of absolute deviation, measuring the deviation of the predicted value from
the actual value, the new correlation outperforms the existing tested correlations,
with an average of 35.68scf/STB. Again, Standing and Vasquez are the closest to
matching it, with 43.7 and 44.42scf/STB.

19

In terms of correlation coefficient, none of the widely used correlations tested here
achieved abot 89%. Our correlation has an impressive 98.63 correlation coefficient.

VIII- Conclusion:

A new correlation for Gas Oil Ratio at pressures below bubble point pressure has
been developed using Group Method of Data Handling. The new correlation has a
correlation coefficient of 98%. It has an average absolute deviation of less than
36scf/STB and an average percentage error of less than 12%.

The correlation has been compared to the most widely used correlations in the
industry and has outperformed them in terms of correlation coefficient, absolute and
average percentage error. The new correlation underlines the importance and the

potential of artificial neural networks in the field of petroleum engineering.

The use of Artificial Neural Networks and in particular GMDH algorithms (Group
Method of Data Handling GMDH) to model Solution Gas Oil Ratio at reservoir
pressures below bubble point pressure appears to be promising. More dedicated
research and development need to be carried out for more accurated and generalized
models to be developed. Future correlations need to be simpler in form and need to

have fewer paramters.

20

References:

Ahmed, T. (2007). Equations of States and PVT Analysis. Huston, Texas:
Gulf Publishing Company.

Archer, J. S., & Wall, C. J. (1986). Petroleum engineering, principles and
practices. London, UK: British Library Cataloguing in Publication data.

Ayoub. M.A, SPE, Raja, D.M, Al-Marhoun, M.A. (2007). Evaluation of
below Bubble Point viscosity correlations & construction of a new Neural
Network Model. SPE 108439

Ayoub. M.A, Osman El-Sayed, A. (2005) An Artificial Neural Network
Model for Predicting Bottomhole Flowing Pressure in Vertical Multiphase
Flow. 93632-MS SPE

Franchi, J., R. (2006). Principles of Applied Reservoir Simulation.
Burlington, MA: Gulf Professional Publishing.

Ghassan Abdul-Majeed, Naeema H. Salman (1988). Statistical Evaluations of

PVT correlations- Solution Gas Oil Ratio. JCPT Reservoir Engineering
Ivakhnenko, A.G. (1968). The Group Method of Data Handling-A rival of the

Method of Stochastic Approximation. Soviet Automatic Control, 13 (3), 43-
55.

Jalil Asadisaghandi, Pejman Tahmasebi (2011). Comparative evaluation of
back-propagation neural network learning algorithms and empirical
correlations for prediction of oil PVT properties in Iran oilfields. Journal of
Petroleum Science and Engineering. 78 (2011) 464-475

Sarit Dutta, J.P. Gupta (2010). PVT Correlations for Indian Crude using
Acrtificial Neural Networks. Journal of Petroleum Science and Engineering,
72,93-109

21

APPENDIX I:

Other data that will be included in further testing and training of the final

correlation from Al-Marhoun (1988), and Dokla and Osman (1990)

Rs pob Po Bob g API T
(scf/STB) | (Ib/fts) (psia) (bblISTB) | (air=1) E

1011 37.840 2090 1.68 1.05 48.2 210
494 41.610 2081 1.315 0.677 44.50 230
765 38.650 2058 1.52 0.939 48.80 205
491 44.470 2020 1.321 1.051 39.20 211
415 47.450 1982 1.246 1.14 36.10 224
367 45.020 1951 1.23 0.627 37.50 173
384 46.550 1910 1.238 0.733 32.60 152
366 46.690 1838 1.208 0.664 34.80 153
285 50.800 1818 1.153 0.704 26.60 152
606 38.550 1810 1.423 0.77 50.50 189
599 38.910 1805 1.424 0.767 48.10 204
686 38.040 1790 1.496 0.8 47.10 224
509 42.630 1780 1.362 0.853 37.80 205
585 39.240 1769 1.401 0.765 49.10 204
345 47.810 1765 1.184 0.695 34 151
372 49.410 1760 1.222 1.195 31 211
628 38.550 1758 1.442 0.762 48.4 199
694 38.000 1755 1.48 0.79 49.50 190
714 37.970 1750 15 0.82 48.70 189
524 42.650 1744 1.325 0.727 40.50 190
563 38.960 1741 1.409 0.759 48.40 217
397 44.500 1728 1.259 0.941 41.80 215
364 46.770 1700 1.232 1.028 36.60 206
646 42.580 1698 1.408 0.964 40 193
421 48.980 1660 1.221 1.298 37.10 203
368 45.710 1658 1.212 0.865 41.4 186
404 43.700 1620 1.265 0.847 42.9 188
421 45.980 1593 1.268 1.181 39.80 203
366.0 47.000 1570 1.241 1.315 39 207
463 47.490 1562 1.261 1.281 38.9 196
355 47.550 1530 1.24 1.228 35 209
566 42.170 1530 1.334 0.817 45.2 185
522 39.870 1510 1.365 0.73 47.8 189
341 46.290 1492 1.201 0.716 37.4 159

22

359 48.610 1450 1.214 1.25 35.4 208
425 46.330 1414 1.249 1.155 41 185
287 48.830 1390 1.154 0.718 33.4 141
313 47.840 1370 1.192 1174 38.2 205
242 48.640 1302 117 0.824 31.4 180
198 50.070 1271 1.139 0.775 29.2 187
267 48.200 1225 1.176 1.263 38 211
260 48.050 1225 117 1.168 38 211
267 48.950 1220 1.173 0.884 31.4 174
214 48.580 1195 1152 0.664 31.9 180
169 50.040 1085 1.128 0.638 29.1 187
220 49.800 1058 113 0.79 32.3 127
142 52.230 952 1.092 0.667 26.9 146
274 47.340 790 1.168 1.005 39.8 150
1507 37.970 3573 1.875 0.951 39.3 225
898 43.210 3571 1471 0.802 32.7 175
898 43.810 3426 1.451 0.802 32.7 150
1579 35.370 3405 1.997 0.93 42.8 235
825 43.350 3354 1.431 0.779 34.2 185
825 43.530 3311 1.425 0.779 34.2 175
867 42.750 3297 1.458 0.799 35.4 180
898 44.450 3279 1.43 0.802 32.7 125
1203 38.10 3250 1.747 0.925 40.2 240
775 43.510 3228 1.413 0.783 34.4 175
750 44.820 3223 1.387 08 32 175
1151 38.850 3218 1.686 0.894 39.9 110
742 44.750 3204 1.372 0.752 32.6 160
1579 36.790 3201 1.92 0.93 42.8 190
1602 35.780 3198 1.986 0.96 44.6 230
730 43.940 3160 1.392 0.757 33.1 175
700 44.30 3155 1.384 0.774 32.2 185
818 43.490 3155 1.427 0.789 34.2 170
898 45.050 3127 1.411 0.802 32.7 100
700 44.550 3101 1.376 0.774 32.2 175
680 45.410 3090 1.36 0.755 29.7 175
867 43.890 3066 1.42 0.799 35.4 140
811 42.570 3057 1.445 0.812 36.5 185
679 44.630 3057 1371 0.778 32 175
1151 40.040 3030 1.636 0.894 39.9 180
665 45.770 3003 1.34 0.766 30.8 175

23

811 43.290 2941 1.421 0.812 36.5 160
693 43.320 2925 1.406 0.774 33.2 175
700 45.340 2901 1.352 0.774 32.2 140
818 45.470 2900 1.365 0.789 34.2 100
1579 38.140 2896 1.852 0.93 42.8 145
825 45.340 2871 1.368 0.779 34.2 100
742 46.270 2865 1.327 0.752 32.6 100
1143 39.510 2845 1.682 0.951 39.4 240
811 43.840 2836 1.403 0.812 36.5 140
1203 40.530 2831 1.642 0.925 40.2 160
867 45.030 2804 1.384 0.799 35.4 100
775 45.470 2789 1.352 0.783 344 100
750 46.630 2751 1.333 0.8 32 100
680 47.360 2687 1.304 0.755 29.7 100
1507 41.440 2652 1.718 0.951 39.3 100
700 46.340 2639 1.323 0.774 32.2 100
1143 40.350 2636 1.647 0.951 39.4 200
811 44.870 2617 1.371 0.812 36.5 100
679 46.530 2607 1.315 0.778 32 100
665 47.770 2588 1.284 0.766 30.8 100
1579 39.550 2559 1.786 0.93 42.8 100
602 45.540 2558 1.323 0.803 33 170
693 45.150 2530 1.349 0.774 33.2 100
746 42.980 2521 1.44 0.907 36.1 200
1151 42.320 2504 1.548 0.894 39.9 100
585 45.190 2445 1.329 0.815 33.3 180
1203 42.230 2413 1.576 0.925 40.2 100
567 44.930 2401 1.318 0.782 345 175
805 41.870 2392 1.479 0.929 39.1 200
498 46.950 2365 1.279 0.798 30.1 175
521 47.340 2359 1.274 0.801 30.1 160
1602 39.720 2350 1.789 0.96 44.6 100
1143 41.560 2344 1.599 0.951 39.4 150
521 47.980 2259 1.257 0.801 30.1 135
585 46.20 2256 1.3 0.815 33.3 140
469 47.440 2249 1.272 0.824 28.8 165
746 44.270 2231 1.398 0.907 36.1 150

24

580 44.370 2230 1.316 0.802 38.1 175
421 51.220 2177 1.213 0.799 21.9 145
602 47.330 2172 1.273 0.803 33 100
1493 40.880 2172 1.734 1.008 43.6 100
585 46.70 2148 1.286 0.815 33.3 120
805 43.250 2133 1.432 0.929 39.1 150
521 48.640 2132 1.24 0.801 30.1 110
692 42.080 2124 1.406 0.876 41.9 185
585 47.220 2035 1.272 0.815 33.3 100
803 43.880 2016 1.452 1.013 36.2 160
521 49.360 1990 1.222 0.801 30.1 85

692 43.030 1988 1.375 0.876 41.9 150
498 48.970 1981 1.226 0.798 30.1 100
746 45.710 1962 1.354 0.907 36.1 100
469 49.130 1928 1.228 0.824 28.8 100
585 47.780 1912 1.257 0.815 33.3 80

580 46.380 1890 1.259 0.802 38.1 100
805 44.650 1847 1.387 0.929 39.1 100
755 43.510 1834 1.425 1.004 39.3 170
692 44.020 1824 1.344 0.876 41.9 115
1087 44.160 1766 1.533 1.056 38 100
692 45.060 1641 1.313 0.876 41.9 80

803 45.610 1631 1.397 1.013 36.2 100
347 50.230 1630 1.203 0.933 26.1 165
755 44.70 1603 1.387 1.004 39.3 125
412 46.710 1480 1.28 0.973 31 180
560 44.870 1477 1.327 1.002 38.6 150
417 47.220 1472 1.267 0.98 31.2 185
389 49.420 1437 1.226 1.002 28.2 150
347 51.870 1405 1.165 0.933 26.1 100
412 47.490 1405 1.259 0.973 31 160
417 47.860 1378 1.25 0.98 31.2 160
331 49.060 1377 1.21 0.921 28.4 160
755 46.030 1367 1.347 1.004 39.3 80

412 48.290 1292 1.238 0.973 31 130
469 45.450 1282 1.291 0.96 36.5 155
417 48.680 1265 1.229 0.98 31.2 130

25

302 49.550 1230 1.188 0.931 28.9 160
389 51.480 1205 1.177 1.002 28.2 80

469 47.10 1193 1.246 0.96 36.5 130
412 49.170 1180 1.216 0.973 31 100
331 51.350 1180 1.156 0.921 28.4 100
512 47.10 1159 1.262 1.01 37 100
417 49.530 1153 1.208 0.98 31.2 100
433 48.320 1095 1.268 1.188 31.2 190
265 51.730 1094 1.18 1.058 22.8 185
302 51.10 1061 1.152 0.931 28.9 100
433 49.210 966 1.245 1.188 31.2 150
232 51.0 874 1.152 0.989 27.2 160
196 49.50 854 1.141 0.942 32.1 175
265 53.920 847 1.132 1.058 22.8 100
433 50.420 804 1.215 1.188 31.2 100
189 52.670 697 1.102 1.031 27.9 80

196 51.490 696 1.097 0.942 321 100
266 46.410 642 1.22 1.192 37.3 165
266 47.540 601 1.191 1.192 37.3 145
127 52.200 584 1.114 1.025 25.1 160
45 54.020 263 1.079 1.123 21.8 190
44 50.530 261 1.093 1.05 30.2 205
61 52.530 255 1.086 1.272 26.2 160
45 54.730 246 1.065 1.123 21.8 160
61 53.510 240 1.066 1.272 26.2 140
44 51.520 238 1.072 1.05 30.2 165
61 52.660 236 1.09 1.356 25.4 190
80 51.880 236 1.091 1.297 28.5 155
45 55.460 231 1.051 1.123 21.8 130
61 54.480 214 1.047 1.272 26.2 100
44 52.50 214 1.052 1.05 30.2 125
61 53.40 211 1.075 1.356 25.4 160
39 55.770 205 1.061 1.251 19.4 160
61 54.20 186 1.059 1.356 25.4 130
29 53.390 186 1.075 1.185 23.6 190

26

39 56.630 179 1.045 1.251 19.4 120
29 54.10 174 1.061 1.185 23.6 160
46 50.540 174 1.039 1.105 38.9 100
26 51.120 163 1.083 1.182 29.2 200
29 54.820 161 1.047 1.185 23.6 130
29 55.620 148 1.032 1.185 23.6 100
26 52.130 147 1.062 1.182 29.2 160
1408 38.550 3840 1.801 0.838 33.9 216
1260 39.230 3798 1.711 0.851 36.6 218
1295 39.480 3647 1.722 0.831 34 218
1184 36.780 3220 1.779 0.798 36.4 238
886 39.780 3212 1.536 0.806 40.3 219
1246 36.190 3200 1.852 0.91 39.6 250
1102 37.670 3187 1.707 0.861 40.3 228
1018 40.220 3184 1.647 0.865 31.2 226
1186 37.380 3172 1.753 0.825 37.6 230
1439 36.240 2946 1.946 0.924 36.9 240
1008 38.650 2944 1.65 0.841 37.5 230
1016 38.840 2768 1.686 0.942 36.8 218
941 39.220 2568 1.677 1.036 36.6 230
963 40.580 2509 1.572 0.865 36.8 220
948 40.780 2482 1.619 1.061 37.2 229
816 40.70 2425 1.571 0.873 31.3 250
889 39.0 2417 1.602 0.899 39.6 220
882 40.570 2310 1.62 1.063 35.2 229
765 40.920 2254 1.556 0.923 31.8 243
737 40.820 2061 1.533 0.936 34.5 234
523 41.350 1920 1.422 0.838 35.6 250
554 43.390 1719 1.416 0.975 31.7 216
631 41.970 1625 1.489 1.047 33.5 244
583 42.230 1591 1.475 1.054 32.2 239
537 43.610 1490 1.424 0.989 29.4 239
554 40.580 1430 1.478 0.958 35.8 226
490 45.080 1401 1.342 0.959 31.7 212
390 42.170 1345 1.364 0.923 36.3 254
439 45.210 1325 1.345 1.145 321 213

27

364 46.590 1261 1.29 0.987 28.4 215
405 45.940 1207 1.322 1.079 29.7 212
457 41.960 1197 1.412 1.05 36 220
406 44.210 1179 1.334 1.048 345 220
446 44.080 1141 1.335 0.98 35.4 190
409 45.850 1110 1.328 1.087 29.5 234
408 44.980 1104 1.346 1.069 30.2 232
392 45.170 1065 1.305 1.061 34.2 213
393 44.650 1062 1.34 1.09 32 234
333 45.430 1030 1.322 1.055 28.2 230
343 46.030 994 1.301 1.16 30.6 230
242 47.040 901 1.24 1.12 30.1 235
265 47.120 710 1.252 1.144 29.4 216
209 48.260 601 1.216 1.29 29 218
141 51.190 545 1.125 1.072 27.5 155
266 48.680 518 1.163 1.192 37.3 105
127 53.060 515 1.096 1.025 25.1 120
141 51.880 508 1.11 1.072 27.5 130
158 50.030 477 1.169 1.308 27.1 220
168 49.130 444 1.173 1.367 30.5 205
62 52.510 421 1.045 0.875 31.6 170
104 52.060 408 1.098 1.126 27.4 160
168 50.20 392 1.148 1.367 30.5 165
79 52.950 370 1.099 1.146 23.5 185
100 51.390 368 1.124 1.247 26 205
168 51.220 343 1.125 1.367 30.5 125
74 52.570 331 1.078 1.093 27.4 160
79 53.890 327 1.08 1.146 23.5 145
74 53.510 293 1.059 1.093 27.4 120
103 52.480 290 1.108 1.335 25.4 155

28

Appendix Il: GMDH Matlab Script Code

Main Function :

clc
clf

clear all;%Clears all variables and other classes of data too.

close all;
tic
%$to reduce the risk of confusing errors.

o

(1) Reading the input file

o°
0n
t
0]
T

o°

o\

Loads data and prepares it for a neural network.
sndata= xlsread('all data.xls');

ndata= xlsread('main data.xlsx');

$50% of data will be used for training

$25% of data will be used for cross-validation
%25% of data will be used for testing

for i=1:189

atr (i, :)=ndata (i, :);
end
for 1=190:283

aval (1-189, :)=ndata (i, :);
end

%

for i=284:length(ndata)
atest (i-283, :)=ndata (i, :);
end
Ytr=atr(:,1);
Xtr=atr(:,2:5);
Xtst=atest (:,2:5);
Ytst=atest (:,1);
Yv=aval(:,1);
Xv=aval(:,2:5);

[model, time] = gmdhbuild(Xtr, Ytr, 3, 1, 2, 0, 2, 1, 0.9,
gmdheq (model, 3);

[Ygtst] = gmdhpredict (model, Xtst);

[Ygval] = gmdhpredict (model, Xv);

[Yagtr] = gmdhpredict (model, Xtr);

[MSE, RMSE, RRMSE, R2] = gmdhtest (model, Xtst, Ytst);

% Evaluating Relative Error for training set:

Etl=(Ytr-Ygtr)./Ytr*100;

[g,z] = size(Etl);
figure

plot (Ytst,Ygtst, 'sg')
grid off

set (gcf, 'color', 'white')
axis square

Xv,

title ('Predicted Gas 0il Ratio vs. Measured Gas 0Oil Ratio');

xlabel ('Measured Gas 0il Ratio GOR "ft3/STB"'):;
ylabel ('Predicted Gas 0il Ratio GOR "ft3/STB"')
legend ('Training set', 'location', 'Northwest')

% Addding Reference Line with 45 degree slope

line ([0 ; 20001,[0 ; 20001)

SHINT: Select the y-value based on your data limits
hold

29

Yv,1);

% Evaluating the correlation coefficient for training set:
Rtl=corrcoef (Ygtr,Ytr);

Rtll=min(Rt1l(:,1)):;

gtext (['correlation coefficient = (' num2str(Rtll) ')']);
hold

line ([0 ; 20001,[0 ; 20001)

Evl=(Ygval-Yv) ./Ygval*100;
[m,n] = size (Evl);
figure

plot (Yv,Ygval, 'ob")

grid off

set (gcf, 'color', 'white')

axis square

title ('Predicted Gas 0il Ratio vs. Measured Gas 0il Ratio'):;
xlabel ('Measured Gas 0Oil Ratio GOR "ft3/STB"'):;
ylabel ('Predicted Gas 0il Ratio GOR "ft3/STB"')
legend('Validation set', 'location', 'Northwest')

% Addding Reference Line with 45 degree slope

line ([0 ; 20001,[0 ; 20001)

$HINT: Select the y-value based on your data limits

Rvl=corrcoef (Ygval, Yv);

Rvll=min (Rv1l(:,1));

gtext (['correlation coefficient = (' num2str (Rvl1l) ')']l);
hold

% Evaluating Relative Error for testing set:

Ettl=(Ytst-Ygtst)./Ytst*100;
[m,n] = size (Ettl);

plot (Ytst,Ygtst, 'vb'")

grid off

set (gcf, 'color', 'white')
axis square

title('Predicted Gas 0il Ratio vs.Measured Gas 0il Ratio');
xlabel ('Measured Gas Oil Ratio GOR "ft3/STB"');

ylabel ('Predicted Gas 0il Ratio GOR "ft3/STB"')

legend ('Testing set', 'location', 'Northwest')

% Addding Reference Line with 45 degree slope

line ([0 ; 2000],[0 ; 20001)

SHINT: Select the y-value based on your data limits

% Evaluating the correlation coefficient for testing set:
Rttl=corrcoef (Ygtst, Ytst);

Rttll=min(Rttl(:,1));

gtext (['correlation coefficient = (' num2str(Rttll) ')']);
hold

% plotting the histogram of the errors for training set:

figure
histfit (Etl,10)

30

hist (Et1,10)

h = findobj(gca, 'Type', 'patch');

set (h, 'FaceColor', 'w', "EdgeColor', "k")

title('Error Distribution for Training Set (Polynomial GMDH Model) ') ;
legend ('Training set')

xlabel ("Error');

ylabel ('Frequency')

set (gcf, 'color', 'white')

hold

% plotting the histogram of the errors for validation set:
figure

histfit (Evl,10)

$hist (Ev1l,10)

h = findobj(gca, 'Type', 'patch');

set (h, 'FaceColor', 'w', "EdgeColor', "k")

title('Error Distribution for Validation Set (Polynomial GMDH
Model) ') ;

legend('Validation set')

xlabel ("Error');

ylabel ('Frequency')

set (gcf, 'color', 'white')

hold

% plotting the histogram of the errors for testing set:
figure

histfit (Ettl,10)

$hist (Ettl,10)

h = findobj(gca, 'Type', 'patch');

set (h, 'FaceColor', 'w', "EdgeColor', "k")

title('Error Distribution for Testing Set (Polynomial GMDH Model) ') ;
legend ('Testing set')

xlabel ("Error');

ylabel ('Frequency')

set (gcf, 'color', 'white')

hold

)

% Estimating the residuals for training set:

figure

Errortl = Ygtr-Ytr;

plot (Errortl, ':ro'");

grid off

set (gcf, 'color', 'white')

title('Error Distribution for Training Set (Polynomial GMDH Model) ')
legend ('Training Set')

xlabel ('"Data Point No')

ylabel ('Errors')

hold

o)

% Estimating the residuals for validation set:

figure

Errorvl = Ygval-Yv;

plot (Errorvl, '":ro');

grid off

set (gcf, 'color', 'white')

title('Residual Graph for Validation Set (Polynomial GMDH Model) ')
legend('Validation Set')

xlabel ('Data Point No')

ylabel ('Errors')

31

hold

Q

% Estimating the residuals for testing set:

figure

Errorttl = Ygtst-Ytst;

plot (Errorttl, ':ro');

grid off

set (gcf, 'color', 'white')

title ('Residual Graph for Testing Set (Polynomial GMDH Model) ")
legend ('Testing Set')

xlabel ('Data Point No')

ylabel ('Errors')

*hkkhkhkhkhkkhkkhkhkkkkhkkkkhkkkx*k

STATISTICAL ANALYSIS:

khkkhkhkhkkhkkhkrkhkkhkhkkkhkkhkkkhkkxk

o o° oP

o\

Training set:

o°

% Determining the Maximum Absolute Percent Relative Error
MaxErrtl = max (abs (Etl));

[}

% Evaluating the average error
Etavgl = 1/z*sum(Etl);

% Evaluating the standard deviation
STDT1 = std(Errortl);

% Determining the Minimum Absolute Percent Relative Error
MinErrtl = min (abs (Etl));

% Evaluating Average Absolute Percent Relative Error

% Determining the Maximum Absolute Percent Relative Error
MaxErrvl = max (abs (Evl));

Q

% Determining the Minimum Absolute Percent Relative Error
MinErrvl = min (abs(Evl));

Q

% Evaluating the average error
Evavgl = 1/m*sum(Evl) ;

% Evaluating the standard deviation
STDV1 = std(Errorvl);

oo

oo

Evaluating Average Absolute Percent Relative Error

oe

AAPEV1 = sum(abs (Evl)) /m;

% Evaluating Average Percent Relative Error

% Determining the Maximum Absolute Percent Relative Error
MaxErrttl = max(abs (Ettl));

% Determining the Minimum Absolute Percent Relative Error
MinErrttl = min (abs (Ettl));

o)

% Evaluating the average error
Ettavgl = 1/m*sum(Ettl);

% Evaluating the standard deviation
STDTT1 = std(Errorttl);

% Evaluating Average Absolute Percent Relative Error

RMSETT1 = sqgrt (sum(abs (Ettl).”2)/m);

Build Function

function [model, time] = gmdhbuild(Xtr, Ytr, maxNumInputs,
inputsMore,

maxNumNeurons, decNumNeurons, p, critNum, delta, Xv, Yv,
verbose)

GMDHBUILD

Builds a GMDH-type polynomial neural network using a
imple

layer-by-layer approach

o0 o©

0]

Call

[model, time] = gmdhbuild (Xtr, Ytr, maxNumInputs,
inputsMore, maxNumNeurons,
decNumNeurons, p, critNum, delta, Xv,

o® o° o oo

o°

Yv, verbose)
% [model, time] = gmdhbuild (Xtr, Ytr, maxNumInputs,
inputsMore, maxNumNeurons,

33

% decNumNeurons, p, critNum, delta, Xv,
Yv)

% [model, time] = gmdhbuild(Xtr, Ytr, maxNumInputs,
inputsMore, maxNumNeurons,

3 decNumNeurons, p, critNum, delta)

% [model, time] = gmdhbuild(Xtr, Ytr, maxNumInputs,
inputsMore, maxNumNeurons,

3 decNumNeurons, p, critNum)

% [model, time] = gmdhbuild(Xtr, Ytr, maxNumInputs,
inputsMore, maxNumNeurons,

% decNumNeurons, p)

% [model, time] = gmdhbuild(Xtr, Ytr, maxNumInputs,
inputsMore, maxNumNeurons,

% decNumNeurons)

% [model, time] = gmdhbuild(Xtr, Ytr, maxNumInputs,
inputsMore, maxNumNeurons)

% [model, time] = gmdhbuild(Xtr, Ytr, maxNumInputs,
inputsMore)

% [model, time] = gmdhbuild(Xtr, Ytr, maxNumInputs)

% [model, time] = gmdhbuild(Xtr, Ytr)

% Input

$ Xtr, Ytr Training data points (Xtr(i,:), Ytr(i)),
i=1,...,n

% maxNumInputs Maximum number of inputs for individual
neurons - if set

% to 3, both 2 and 3 inputs will be tried
(default = 2)

% inputsMore Set to 0 for the neurons to take inputs

only from the

o)

o

(o)

preceding layer, set to 1 to take inputs

also from the

o°

o° —~ o°

variables)

o)

maxNumNeurons:
default = equal

original input variables (default =
Maximal number of neurons in a layer
to

the number of the original input

1)

% decNumNeurons:

In each following layer decrease the

number of allowed

Qo

o

o

neurons by decNumNeurons until the

number is equal to 1

% (default = 0)

s p : Degree of polynomials in neurons
(allowed values are 2 and

% 3) (default = 2)

% critNum Criterion for evaluation of neurons and
for stopping.

In each layer only the best neurons
according to the

criterion)

o° —~ o°

are retained, and the rest

are discarded.

34

o°

efault = 2)
= use validation data (Xv, Yv)
use validation data (Xv, Yv) as well

o°

(d
0
1

o°

as training data
% 2
Criterion (AICC)

use Corrected Akaike's Information

3 use Minimum Description Length (MDL)
Note that both choices 0 and 1
correspond to the so called

"regularity criterion".

o°

o°

o°

% delta : How much lower the criterion value of
the network's new

% layer must be comparing the the
network's preceding layer

% (default = 0, which means that new

layers will be added as

% long as the value gets better (smaller))
$ Xv, Yv : Validation data points (Xv(i,:), Yv(i)),
i=1,...,nv

% (used when critNum is equal to either O
or 1)

% verbose : Set to 0 for no verbose (default = 1)

% Output

% model : GMDH model - a struct with the following
elements

% numlLayers : Number of layers in the network

% d : Number of input variables in the
training data set

% maxNumInputs : Maximal number of inputs for neurons
% inputsMore : See argument "inputsMore"

% maxNumNeurons : Maximal number of neurons in a layer
% P : See argument "p"

% critNum : See argument "critNum"

% layer : Full information about each layer
(number of neurons,

% indexes of inputs for neurons,
matrix of exponents for

% polynomial, polynomial coefficients)
% Note that the indexes of inputs are
in range [1..d] if

% an input is one of the original
input variables, and

% in range [d+1..d+maxNumNeurons] if

an input is taken
from a neuron in the preceding layer.
time : Execution time (in seconds)

o° o° o°

o°

Please give a reference to the software web page in any
publication

35

% describing research performed using the software e.g.,
like this:

% Jekabsons G. GMDH-type Polynomial Neural Networks for
Matlab, 2010,

Q

% available at http://www.cs.rtu.lv/jekabsons/

% This source code i1s tested with Matlab version 7.1
(R14SP3) .

% GMDH-type polynomial neural network

% Version: 1.5

% Date: June 2, 2011

% Author: Gints Jekabsons (gints.jekabsons@rtu.lv)
% URL: http://www.cs.rtu.lv/jekabsons/

% Copyright (C) 2009-2011 Gints Jekabsons

This program is free software: you can redistribute it
and/or modify

% it under the terms of the GNU General Public License as
published by

% the Free Software Foundation, either version 2 of the
License, or

(at your option) any later version.

o°

o\©

% This program is distributed in the hope that it will be
useful,

% but WITHOUT ANY WARRANTY; without even the implied
warranty of

$ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the

% GNU General Public License for more details.

% You should have received a copy of the GNU General
Public License

% along with this program. If not, see
<http://www.gnu.org/licenses/>.

if nargin < 2

error ('Too few input arguments.');
end
[n, d] = size(Xtr);
[ny, dy] = size(Ytr);
) 1

if (n < 2 (d<2) [I (ny ~=n) || (dy ~= 1)

36

error ('Wrong training data sizes.');
end

if (d < maxNumInputs)
error ('Numbet of input variables in the data is lower

than the number of inputs for individual neurons.');

end

if nargin < 4
inputsMore = 1;

end

if (nargin < 5) || (maxNumNeurons <= 0)
maxNumNeurons = d;

end

if maxNumNeurons > d * 2
error ('Too many neurons in a layer. Maximum is two

times the number of input variables.');
end
if maxNumNeurons < 1
error ('Too few neurons in a layer. Minimum is 1.'");
end
if (nargin < 6) || (decNumNeurons < 0)
decNumNeurons = 0;
end
if nargin < 7
p = 2;

elseif (p ~= 2) && (p ~= 3)
error ('Degree of individual neurons should be 2 or
3.")7
end
if nargin < 8
critNum = 2;
end
if any(critNum == [0,1,2,3]) == 0
error ('Only four values for critNum are available
(0,1 - use validation data; 2 - AICC; 3 - MDL).'");
end
if nargin < 9
delta = 0;
end
if (nargin < 11) && (critNum <= 1)
error ('Evaluating the models in validation data

requires validation data set.');
end
if (nargin >= 11) && (critNum <= 1)
[nv, dv] = size (Xv);
[nvy, dvy] = size(YvV);
if (nv < 1) [| (dv ~=d) || (nvy ~= nv) || (dvy ~= 1)
error ('Wrong validation data sizes.');
end
end

37

if nargin < 12
verbose = 1;
end

ws = warning('off');
if verbose ~= 0
fprintf ('Building GMDH-type neural network...\n');
end
tic;

if p ==
numTermsReal

terms

else
numTermsReal = 10 + 10 * (maxNumInputs == 3); %10 or

20 terms

end

6 + 4 * (maxNumInputs == 3); %6 or 10

Xtr(:, d+l:d+maxNumNeurons) = zeros (n, maxNumNeurons) ;
if critNum <= 1

Xv (:, d+1:d+maxNumNeurons) = zeros (nv,
maxNumNeurons) ;
end

%$start the main loop and create layers
model .numLayers = 0;
while 1

if verbose ~= 0
fprintf ('Building layer #%d...\n',
model .numLayers + 1);
end

layer (model.numLayers + 1) .numNeurons = 0;
modelsTried = 0;
layer (model.numlLayers + 1) .coefs =

zeros (maxNumNeurons, numTermsReal);

for numInputsTry = maxNumInputs:-1:2

%create matrix of exponents for polynomials

if p ==
numTerms = 6 + 4 * (numInputsTry == 3); %6 or
10 terms
if numInputsTry ==
r =100,0;0,1;1,0;1,1;0,2;2,01;
else
r =

(6,o0,¢0;0,0,1;0,1,0;1,0,0;0,1,1,1,0,1;1,1,0;0,0,2;0,2,0; 2,
Or O],
end

38

else
numTerms = 10 + 10 * (numInputsTry == 3); %10
or 20 terms

if numInputsTry == 2
r =
(6,0;0,1,1,0;1,1;0,2;2,0;1,2;2,1;0,3;3,0];
else
r =

(6,o0,¢0;0,0,1;0,1,0;1,0,0;0,1,1,1,0,1,;1,1,0;0,0,2;0,2,0; 2,
0,0;

1,1,10,1,2;0,2,1;1,0,2;1,2,0;2,0,1;2,1,0;0,0,3,;0,3,0;3,0
IO];
end
end

%create matrix of all combinations of inputs for
neurons
if model.numLayers ==

combs = nchoosek(l:1:d, numInputsTry);
else
if inputsMore == 1
combs = nchoosek([1:1:d
d+l:1:d+layer (model.numlLayers) .numNeurons], numInputsTry):;
else
combs =

nchoosek (d+1l:1:d+layer (model.numlLayers) .numNeurons,
numInputsTry) ;
end
end
%delete all combinations in which none of the
inputs are from the preceding layer
if model.numLayers > 0

i =1;
while 1 <= size (combs, 1)
if all(combs(i,:) <= d)
combs (i, :) = [];
else
i=14+ 1;
end
end

end
makeEmpty = 1;

$try all the combinations of inputs for neurons
for i = 1 : size(combs,1)

%create matrix for all polynomial terms
Vals = ones(n, numTerms);

if critNum <= 1

39

t);

Valsv = ones(nv, numTerms) ;

end
for idx = 2 numTerms
bf = r(idx, :);
t = bf > 0;
tmp = Xtr(:, combs(i,t)) .~ bf(ones(n,

if critNum <= 1

bf (ones (nv, 1), t);

tmpv = Xv(:, combs(i,t)) .”
end
if size(tmp, 2) ==

Vals (:, idx) = tmp;

if critNum <= 1

Valsv(:, 1idx) = tmpv;

end

else

Vals(:, idx) = prod(tmp, 2);
if critNum <= 1
Valsv(:, 1dx) = prod(tmpv, 2);
end
end
end

Scalculate coefficients and evaluate the

network
coefs = (Vals' * Vals) \ (Vals' * Ytr);
modelsTried = modelsTried + 1;
if ~isnan(coefs (1))
predY = Vals * coefs;
if critNum <= 1
pred¥v = Valsv * coefs;
if critNum ==
crit = sqgrt(mean ((pred¥Yv -
Yv)."2));
else
crit = sqgrt (mean ([(pred¥Yv -
Yv)."2; (predY - Ytr)."21));
end
else
comp = complexity(layer,
model .numLayers, maxNumNeurons, d, combs(i,:)) +

size (coefs, 2);

Ytr)

.N2))

if critNum == 2 %AICC
if (n-comp-1 > 0)
crit = n*log(mean ((pred¥Y -
+ 2*comp + 2*comp* (comp+l)/ (n-comp-1) ;
else
coefs = NaN;
end
else %MDL

40

crit = n*log(mean ((pred¥Y -
Ytr).”2)) + comp*log(n);
end
end
end

if ~isnan(coefs (1))
%add the neuron to the layer if
%1) the layer is not full;
%2) the new neuron is better than an
existing worst one.

maxN = maxNumNeurons - model.numlLayers *
decNumNeurons;
if maxN < 1, maxN = 1; end;
if layer (model.numLayers + 1) .numNeurons
< maxN
%when the layer is not yet full
if (maxNumInputs == 3) &&
(numInputsTry == 2)

layer (model.numlLayers +
1) .coefs (layer (model.numLayers + 1) .numNeurons+l, :) =
[coefs' zeros(l,4+6*(p == 3))1;

layer (model.numlayers +
1) .inputs (layer (model.numLayers + 1) .numNeurons+1l, :)
[combs (i, :) 07];

else
layer (model .numlLayers +
1) .coefs (layer (model.numlLayers + 1) .numNeurons+l, :) =
coefs;
layer (model .numLayers +
1) .inputs (layer (model.numLayers + 1) .numNeurons+1l, :)
combs (i, :);

end

layer (model.numlayers +
1) .comp (layer (model.numlLayers + 1) .numNeurons+l)
length (coefs) ;

layer (model .numlayers +

1) .crit(layer (model.numLayers + 1) .numNeurons+l) = crit;
layer (model .numlLayers +
1) .terms (layer (model .numLayers + 1) .numNeurons+l).r = r;
if makeEmpty ==
Xtr2 = [1;
if critNum <= 1
Xv2 = [1;
end
makeEmpty = 0;
end
Xtr2(:, layer (model.numLayers +
1) .numNeurons+l) = predY;

if critNum <= 1

41

Xv2 (:, layer (model.numLayers +
1) .numNeurons+l) = pred¥v;
end
if (layer (model.numLayers +
1) .numNeurons == 0) ||
(layer (model .numlLayers +
1) .crit (worstOne) < crit)
worstOne = layer (model.numlLayers
+ 1) .numNeurons + 1;
end
layer (model.numlLayers + 1) .numNeurons
= layer (model.numLayers + 1) .numNeurons + 1;
else
%when the layer is already full
if (layer (model.numLayers +
1) .crit (worstOne) > crit)

if (maxNumInputs == 3) &&
(numInputsTry == 2)
layer (model .numlLayers +
1) .coefs (worstOne, :) = [coefs' zeros(l,4+6*(p == 3))1;
layer (model .numLayers +
1) .inputs (worstOne, :) = [combs (i, :) 0];
else
layer (model .numlLayers +
1) .coefs (worstOne, :) = coefs;
layer (model.numlayers +
1) .inputs (worstOne, :) = combs (i, :);
end
layer (model.numlayers +
1) .comp (worstOne) = length (coefs);
layer (model.numlayers +
1) .crit (worstOne) = crit;
layer (model .numLayers +
1) .terms (worstOne) .r = r;
Xtr2(:, worstOne) = predY¥;
if critNum <= 1
Xv2 (:, worstOne) = pred¥Yv;
end

[dummy, worstOne] =
max (layer (model.numLayers + 1).crit);
end
end
end

end
end
if verbose ~= 0
fprintf ('"Neurons tried in this layer: %d\n',

modelsTried) ;

42

fprintf ('Neurons included in this layer: %d\n',
layer (model.numLayers + 1) .numNeurons) ;
if critNum <= 1
fprintf ('RMSE in the validation data of the
best neuron: $f\n', min(layer (model.numLayers + 1).crit));
else
fprintf ('Criterion value of the best
neuron: $f\n', min(layer (model.numLayers + 1).crit));
end
end

%stop the process if there are too few neurons in the
new layer

if ((inputsMore == 0) && (layer (model.numLayers +
1) .numNeurons < 2)) ||
((inputsMore == 1) && (layer (model.numLayers +

1) .numNeurons < 1))

if (layer (model.numLayers + 1) .numNeurons > 0)
model .numlLayers = model.numlLayers + 1;
end
break
end

%1if the network got "better", continue the process
if (layer (model.numLayers + 1) .numNeurons > 0) &&
((model.numLayers == 0) ||
(min (layer (model.numlLayers) .crit) -
min (layer (model.numlLayers + 1).crit) >
delta)) % (min(layer (model.numLayers + 1).crit) <
min (layer (model.numLayers) .crit)))
model .numLayers = model.numLayers + 1;
else
if model.numlayers ==
warning (ws) ;
error ('Failed.'");
end
break
end

%copy the output values of this layer's neurons to
the training

$data matrix

Xtr(:, dtl:d+layer (model.numLayers) .numNeurons) =
Xtr2;

if critNum <= 1

Xv(:, d+l:d+layer (model.numlLayers) .numNeurons) =
Xv2;
end

end

43

model.d = d;

model .maxNumInputs = maxNumInputs;
model.inputsMore = inputsMore;

model .maxNumNeurons = maxNumNeurons;
model.p = p;

model.critNum = critNum;

%only the neurons which are actually used (directly or
indirectly) to
%compute the output value may stay in the network
[dummy best] = min(layer (model.numlLayers) .crit);
model.layer (model.numLayers) .coefs(1l,:) =
layer (model .numlLayers) .coefs (best, 1) ;
model.layer (model.numLayers) .inputs(1l,:) =
layer (model .numLayers) .inputs (best, :);
model.layer (model.numlLayers) .terms (1) .r
layer (model.numLayers) .terms (best) .r;
model.layer (model.numlayers) .numNeurons = 1;
if model.numLayers > 1

for 1 = model.numLayers-1:-1:1 %$loop through all the
layers

model.layer (i) .numNeurons = 0;
for k = 1 : layer (i) .numNeurons %loop through all
the neurons in this layer
newNum = 0;
for j = 1 : model.layer (i+l) .numNeurons %loop

through all the neurons which will stay in the next layer
for jj = 1 : maxNumInputs %loop through
all the inputs
if k == model.layer (i+l) .inputs(j,3jJ)
- d
if newNum == 0
model.layer (i) .numNeurons =
model.layer (i) .numNeurons + 1;

model.layer (i) .coefs (model.layer (i) .numNeurons, :) =
layer (i) .coefs(k, :);

model.layer (i) .inputs (model.layer (i) .numNeurons, :) =
layer (i) .inputs(k, :);

model.layer (i) .terms (model.layer (i) .numNeurons) .r =
layer (i) .terms (k) .r;
newNum =
model.layer (i) .numNeurons + d;
model.layer (i+1) .inputs(j,JJ)

newNum;
else
model.layer (i+1) .inputs(j, jJ)

newNum;
end

44

break
end
end
end
end
end
end

time = toc;
warning (ws) ;

if verbose ~= 0
fprintf ('Done.\n") ;
used = zeros(d,1):

for 1 = 1 : model.numLayers
for 3 =1 :d
if any(any(model.layer (i) .inputs == 7j))
used(j) = 1;
end
end
end

fprintf ('Number of layers: %d\n', model.numLayers) ;
fprintf ('Number of used input variables: %d\n',
sum (used)) ;
fprintf ('Execution time: %0.2f seconds\n', time);
end

return
function [comp] = complexity(layer, numLayers,

maxNumNeurons, d, connections)

%calculates the complexity of the network given output
neuron's connections

% (it is assumed that the complexity of a network is equal
to the number of

%all polynomial terms in all it's neurons which are
actually connected

% (directly or indirectly) to network's output)

comp = 0;
if numLayers == 0
return
end
c = zeros (numlLayers, maxNumNeurons) ;
for 1 = 1 : numlLayers
c(i, :) = layer (i) .comp(:)"';
end

S {

Sunvectorized version:

45

for j = 1 : length(connections)
if connections(j) > d

comp = comp + c(numlLayers, connections(j) - d);
c (numLayers, connections(j) - d) = -1;
end
end
5}
ind = connections > d;
if any(ind)
comp = comp + sum(c(numlLayers, connections(ind) - d));
¢ (numLayers, connections(ind) - d) = -1;
end

5 {

Sunvectorized version:

for i = numlLayers-1:-1:1
for 3 = 1 : layer (i) .numNeurons
for k =1 : layer(i+l) .numNeurons
if (c(i+l, k) == -1) && (c(i, 3J) > -1) &&
any (layer (i+1) .inputs(k,:) == J + d)
comp = comp + c(i, 3J);
c(i, 3J) = -1;
end
end
end
end
5}
for i = numlLayers-1:-1:1
for k =1 : layer(i+l) .numNeurons
if c(i+1l, k) == -1

inp = layer (i+l) .inputs(k, :);
used = inp > d;
if any (used)
ind = inp(used) - d;
ind = ind(c(i, ind) > -1);
if ~isempty(ind)
comp = comp + sum(c (i, ind));
c(i, ind) = -1;
end
end
end
end
end
return

46

Equation Function:

function gmdheq(model, precision)

% gmdheq

% Outputs the equations of GMDH model.
%

% Call

% gmdheg(model, precision)

% gmdheg(model)

%

% Input

% model : GMDH-type model

% precision : Number of digits in the model coefficients

% (default = 15)

% This source code is tested with Matlab version 7.1 (R14SP3).

% GMDH-type polynomial neural network

% Version: 1.5

% Date: June 2, 2011

% Author: Gints Jekabsons (gints.jekabsons@rtu.lv)
% URL: http://www.cs.rtu.lv/jekabsons/

%

% Copyright (C) 2009-2011 Gints Jekabsons

47

%

% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 2 of the License, or

% (at your option) any later version.

%

% This program is distributed in the hope that it will be useful,

% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.

%

% You should have received a copy of the GNU General Public License

% along with this program. If not, see <http://www.gnu.org/licenses/>.

if nargin< 1
error('Too few input arguments.');
end
if (nargin < 2) || (isempty(precision))
precision = 15;

end

if model.numlLayers >0
p =['%.' num2str(precision) 'g'];
fprintf('Number of layers: %d\n', model.numLayers);

48

fori=1:model.numlLayers %loop through all the layers
fprintf('Layer #%d\n', i);
fprintf('Number of neurons: %d\n', model.layer(i).numNeurons);

for j=1 : model.layer(i).numNeurons %loop through all the neurons in the ith
layer

[terms inputs] = size(model.layer(i).terms(j).r); %number of terms and inputs
if (i == model.numLayers)
str = ['y ="' num2str(model.layer(i).coefs(j,1),p)];
else
str = ['x' num2str(j + i*model.d) ' = ' num2str(model.layer(i).coefs(j,1),p)];
end
for k = 2 : terms %loop through all the terms
if model.layer(i).coefs(j,k) >= 0
str = [str'+'];
else
str=[str''];
end
str = [str num2str(model.layer(i).coefs(j,k),p)];
for kk =1 : inputs %loop through all the inputs
if (model.layer(i).terms(j).r(k,kk) > 0)
for kkk = 1 : model.layer(i).terms(j).r(k,kk)
if (model.layer(i).inputs(j,kk) <= model.d)
str = [str "*x' num2str(model.layer(i).inputs(j,kk))];
else
str = [str "*x' num2str(model.layer(i).inputs(j,kk) + (i-2)*model.d)];

end

49

end
end
end
end
disp(str);
end
end
else

disp('The network has zero layers.');

end

return

Prediction Function

function Yq = gmdhpredict(model, Xq)

% GMDHPREDICT

% Predicts output values for the given query points Xq using a GMDH model
%

% Call

% [Yqg] = gmdhpredict(model, Xq)

%

% Input

% model : GMDH model

% Xq : Inputs of query data points (Xq(i,:)), i=1,...,nq

50

%
% Output

% Yq : Predicted outputs of query data points (Yq(i)), i =1,...,nq

% This source code is tested with Matlab version 7.1 (R14SP3).

% GMDH-type polynomial neural network

% Version: 1.5

% Date: June 2, 2011

% Author: Gints Jekabsons (gints.jekabsons@rtu.lv)
% URL: http://www.cs.rtu.lv/jekabsons/

%

% Copyright (C) 2009-2011 Gints Jekabsons

%

% This program is free software: you can redistribute it and/or modify

% it under the terms of the GNU General Public License as published by

% the Free Software Foundation, either version 2 of the License, or
% (at your option) any later version.
%

% This program is distributed in the hope that it will be useful,

% but WITHOUT ANY WARRANTY; without even the implied warranty of

% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

% GNU General Public License for more details.

%

51

% You should have received a copy of the GNU General Public License

% along with this program. If not, see <http://www.gnu.org/licenses/>.

if nargin <2

error('Too few input arguments.');
end
if model.d ~= size(Xq, 2)

error('The matrix should have the same number of columns as the matrix with
which the network was built.");

end

[n, d] = size(Xq);

Yq = zeros(n, 1);

forg=1:n
fori=1:model.numLayers
if i ~= model.numLayers
Xq_tmp = zeros(1, model.layer(i).numNeurons);
end

for j =1 : model.layer(i).numNeurons

%create matrix for all polynomial terms
numTerms = size(model.layer(i).terms(j).r,1);

Vals = ones(numTerms,1);

52

for idx =2 : numTerms
bf = model.layer(i).terms(j).r(idx, :);
t=bf>0;
tmp = Xq(qg, model.layer(i).inputs(j,t)) .» bf(1, t);
if size(tmp, 2) ==
Vals(idx,1) = tmp;
else
Vals(idx,1) = prod(tmp, 2);
end

end

%predict output value
predY = model.layer(i).coefs(j,1:numTerms) * Vals;
if i ~= model.numLayers
%Xq(q, d+j) = predy;
Xg_tmp(j) = predy;
else
Yq(q) = predY;
end
end
if i ~= model.numLayers
Xq(qg, d+1:d+model.layer(i).numNeurons) = Xg_tmp;
end
end
end

return

53

Testing Function

function [MSE, RMSE, RRMSE, R2] = gmdhtest(model, Xtst, Ytst)
% GMDHTEST

% Tests a GMDH-type network model on a test data set (Xtst, Ytst)
%

% Call

% [MSE, RMSE, RRMSE, R2] = gmdhtest(model, Xtst, Ytst)

%

% Input

% model : GMDH model

% Xtst, Ytst: Test data points (Xtst(i,:), Ytst(i)), i = 1,...,ntst

%

% Output

% MSE : Mean Squared Error

% RMSE : Root Mean Squared Error

% RRMSE : Relative Root Mean Squared Error

% R2 : Coefficient of Determination

% Copyright (C) 2009-2011 Gints Jekabsons

if nargin < 3

error('Too few input arguments.');
end
if (size(Xtst, 1) ~=size(Ytst, 1))

error('The number of rows in the matrix and the vector should be equal.');

54

end
if model.d ~= size(Xtst, 2)

error('The matrix should have the same number of columns as the matrix with
which the model was built.');

end
MSE = mean((gmdhpredict(model, Xtst) - Ytst) .A 2);
RMSE = sqrt(MSE);
if size(Ytst, 1) > 1
RRMSE = RMSE / std(Ytst, 1);
R2 =1 - MSE / var(Ytst, 1);
else
RRMSE = Inf;
R2 = Inf;
end

return

55

