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ABSTRACT 

AEMB is a 32-bit RISC architecture processor with multi threading. It is a soft core 

processor designed for FPGA implementation and available as an open source. The 

processor runs on the instruction set of the Microblaze processor developed by 

Xilinx. The current threading model in AEMB is a fine grained model that interleaves 

threads one instruction at a time with separate register sets for each thread. This 

project aims at understanding the architecture of the AEMB and improving the 

performance of its threading model.  

The chosen optimization is to change the current threading model to a coarse grained 

one that switches threads on branch instructions. The advantage of this approach is 

that the pipeline no longer has to stall on every branch instruction executed as the 

processor will be executing instructions from another thread. Thus, branches cause 

the processor to stall only when there is back to back branch instructions or when two 

branch instructions with one gap between them and the first of them has no delay slot. 

This is quite an improvement over the previous case where the processor stalls for 

one cycle on any branch instruction encountered.  

The disadvantage to the coarse grained threading model is that data hazards that can’t 

be forwarded can now cause the processor to stall up to three cycles in the worst case 

scenario compared to only one cycle stall in the old model.  

As for Area consumption on FPGA, synthesis showed that the modified core utilizes 

double the number of LUTs that the original AEMB needs but there was no 

significant increase in the number of register.  

Further quantitative analysis is necessary to determine the total gain in performance 

by running the suitable benchmarks on both versions of the processor. The results are 

expected to be in favor of the design if the improved case is more common that the 

negatively affected cases.  
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CHAPTER 1                                                                  

INTRODUCTION 

Computers are providing a very unique addition to every aspect of our lives at very 

low cost and with technology that is becoming abundant day after day. Thanks to the 

countless breakthroughs in the architecture of microprocessors, very small processors 

nowadays can handle tasks that required mainframes decades ago. In addition, 

computers are present at a very low cost and small size. An example is 

microcontroller chips like PIC or ATMEL chips. With these chips, whole systems can 

be built that fit in our palms. Another important factor is that the technology and 

concepts necessary to design computers are accessible by average individuals. Hence, 

with the presence of Microcontrollers that target hobbyists and FPGAs that can host 

chip designs, the boundaries on computer and system design are dissolving day after 

day.  

This explains why computers are embedded in our mobile phones, tablets and other 

personal devices that are slowly growing into a necessity for individuals. Computers 

are embedded in our houses, security systems, cars and endless other examples. On 

the industrial level, the rewarding increase in production resulting from automation 

brings computers into every industry.  With this high penetration level of computers 

in our everyday lives and industries, various traits and requirements are being used to 

judge a computer. Size and efficiency are two of those important traits and they are 

the focus of this project  

With the emergence of smart phones and tablets, the trend is now for personal, 

portable devices to be able to handle sophisticated processes that used to be run by 

main frames a few decades ago and were considered heavy duty by desktops few 

years ago. Thus, increasing the computational power of computers embedded in those 

devices while maintaining their small size is a persisting need. For a while, processor 

architects had it easy by increasing the performance of processors through making use 

of the developing semiconductor process. However, nowadays both the clock rate and 

the size of CMOS technology elements are hitting an upper limit. Hence, architectural 
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optimizations and improvements in efficiency are becoming more important than 

ever.  

At the heart of every computer is a microprocessor. This project focuses on 

optimizing an existing microprocessor to achieve higher computational power 

through threading model architecture.  

1.1    Background 

AEMB is an open source soft core processor developed by Aeste Works (M). Open 

Source refers to the availability of the source code of a product publicly and free of 

charge online. Furthermore, AEMB can be used in any commercial product without 

having to pay royalties to the designing company. Open source products are usually 

released under different versions of the general public license.  

Being a soft core means that AEMB was designed specifically for FPGA 

implementation. While FPGA and ASIC designs share many of the initial design 

stages, tools and coding languages, some minor differences still exist when designing 

for either of them. Those differences stem primarily from the available synthesizable 

digital elements and the complexity of the process.  

Currently, AEMB uses a fine grained threading model. It performs efficiently when 

running two threads together. Furthermore, AEMB has two distinct sets of registers 

for each thread. While AEMB was developed based on the Microblaze instruction set, 

its architecture differs from the Microblaze’s with threading being one of the major 

differences.  

This project aims at modifying the existing AEMB core to produce a new optimized 

version. The design goal for that version is to optimize the threading model for 

AEMB to perform efficiently when running single thread programs.  The key focus is 

achieving higher computational speed through efficient use of clock cycles.  

The project aims at providing a properly tested design by simulation and through 

FPGA implementation. One of the key goals of the project is to incite deeper 

understanding of microprocessor architecture are design.  
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1.2    Problem Statement 

 Fine-grained threading model performs poorly when running a single threaded 

application 

 With the variety of applications for microprocessors, different judging criteria 

emerge for each application which adds to the demand for application specific 

designs.  

 Application-specific computers require a wide range of microprocessor 

designs to cater for each need. 

1.3    Objectives  

 To improve the performance of the threading model of the AEMB 

Microprocessor. 

 Quantitatively characterize the performance of the new AEMB core. 

 FPGA implementation for the newly designed core.  
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CHAPTER 2                                                                                  

LITERATURE REVIEW 

The architecture of microprocessors has been ever evolving and ever expanding with 

ideas being researched every day to improve the efficiency and speed of 

Microprocessors. One of the basic concepts is Instruction Level Parallelism (ILP) 

which aims at exploiting independent instructions and running them in parallel. With 

ILP optimizations hitting a roof [1], Thread Level Parallelism (TLP) opens new 

horizons for improving the architecture. More interestingly, TLP and ILP are both 

orthogonal i.e. they can both be exploited in the same architecture without having to 

favor one over the other or balancing a trade-off between both architectures.  

Threads are different blocks of code that is executed independently with each one 

having its own instructions, data, program counter (PC), registers and page table. 

Threads can be different programs running at the same time or different parts of a 

single program. Threads can run on different functional units or they can interleave 

sharing the same functional units. Threads can really have their own PC or registers 

or the processor can be simply shifting between two sets of registers while actually 

containing only a single register set. While threads are supposed to be independent 

pieces of programs, this is rarely the case and dependencies do exist between threads 

raising a need for communication between threads and sharing data.  

Threading Models have many issues to worry about. The first issue is the granularity 

which is essentially a decision of when to switch between threads in order to achieve 

maximum efficiency out of available clock cycles. Fine-grained threads switch 

between threads after every clock cycle. This allows new threads to cover up stalls of 

other threads [2, 3, 4]. Coarse-grained threads, on the other hand switch threads only 

when big stalls are present for one thread such as cache misses [5]. The short coming 

of fine-grained is its poor performance when running single threaded program as it 

will fail to fill the stalls of this one and only thread. Coarse-grained on the other hand 

can leave full clock cycles empty if there is no thread ready for execution. That’s why 

architectures are going towards combining wide ranges of granularities [6, 7].   
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Dependencies are another issue with threading. When threads contain data 

dependencies they need to interact to exchange the correct data. Synchronization is 

one way to solve dependencies [8]. The compiler inserts synchronization points 

where data dependencies are expected to occur. Unfortunately, during run-time, some 

dependencies don’t really occur yet clock cycles are still wasted to synchronize. 

Speculation is the other approach, threads continue to process and only when real data 

dependencies occur then any incorrect data is squashed and the thread is supplied 

with the correct input [6, 9, 10].  

AEMB is currently using a fine-grained threading model. The model allows the 

architecture to achieve almost 100% efficient use of clock cycles when running more 

than one thread but its efficiency drops when running single threaded programs. The 

purpose of the first modification of the AEMB core is to use coarse-grained threading 

model to improve the efficiency of the processor when running single threaded 

programs.  
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CHAPTER 3                                                               

METHODOLOGY 

To begin with, a thorough understanding of the AEMB architecture is a must before 

editing the core. To achieve that, the HDL code for the AEMB is the only source for 

the task as the datasheet for the AEMB provides minimal explanation. At the same 

time it is important to understand the basics of microprocessor architecture and relate 

the reading with the design of the AEMB. The initial stage began with analyzing the 

HDL code of the AEMB and comparing it with the instruction set of the Microblaze. 

Following that several drawings were generated representing the circuit for all of 

AEMB modules based on the HDL code. This approach provided a proper schematic 

of the AEMB and allowed all its subtle details to be properly observed. 

 Following that, it was necessary to monitor the pipeline and various modules of the 

processor in action. The purpose of this is to be able to understand how all the 

modules of AEMB work together and how the control signals are handled. The most 

efficient way was to compile some program for AEMB and simulate it through the 

processor and monitor the waveform.  

Last but not least, it is crucial to be aware of the inferred circuits that represent this 

processor on the FPGA. This is easily obtained by synthesizing the processor using 

the suitable synthesis tools for the target FPGA. This way when doing any changes, 

the designer will be aware of the key circuits that were targeted in the FPGA and will 

avoid altering the code that infers them or if necessary create better code to infer 

more suitable circuitry.  

The next step is to research on the required modifications for this project. Through 

proper literature review, research papers and textbooks were a great help in 

understanding the concepts of threading and its different models. Research papers 

provided a very rich material that contains not only theoretical information but also 

the findings of distinct researchers regarding threading.  
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After being familiar with the AMEB architecture and having a strong theoretical base 

regarding threading, the design stage commenced. Design is about choosing the most 

promising modifications and adjusting the structure of the processor accordingly.  

Once design and modification are done the first thing to check is the functionality of 

the processor. Functionality means that the processor still performs all instructions 

properly and yields the correct results without any regard to performance. This can be 

verified by running a bench mark that tests all the functionality of AEMB. 

Finally the most important part is testing the new design through simulation by 

running various benchmarks that can expose the effect of the modifications on the 

performance of the processor. The data acquired are then compared with the original 

AEMB design. If the performance is worse or the improvement is not satisfying 

enough then new concepts need to be explored until the required results are obtained. 

All results and tests need to be professionally documented as they act as a proof to the 

performance of the processor.  

After the processor performs well in the simulation stage it is then tested on FPGA 

for a proof of concept. This stage proves that the synthesis tool infers the correct 

circuitry for the processor and that all HDL code is synthesizable. It might be 

necessary to provide a test bench and a sample program that users can use to observe 

the effect of the new changes.  
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3.1    Project Milestones 

3.1.1    First Semester 

1. Understand basics of microprocessor architecture. 

2. Understand & characterize the AEMB core.  

3. Research on threading models.  

4. Understanding the threading model of AEMB. 

5. Understanding the program flow of AEMB.  

6. Understanding the forwarding unit of AEMB. 

 

3.1.2    Second Semester 

7. Identify data dependencies that needs resolution due to the new model 

8. Preparing a list of necessary changes for the new version. 

9. Coding the new design 

10. Testing the design by simulation 

11. Comparing the performance of the new version against the old version 

12. Testing on FPGA and adjusting design 

13. Finalizing results, writing test benches and programs for users.  
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3.2    Gantt chart 
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CHAPTER 4                                                                                  

RESULTS AND DISCUSSION 

While the primary objective of this project is to optimize the threading of AEMB, a 

great deal of time was spent in understanding the initial architecture of AEMB. Hence 

the results will be divided into three sections. The first section explains the 

architecture of the AEMB and the operation of its original threading model. The 

second section explains the new threading model and the changes that took place to 

the various parts of the core to adapt coarse grained threading. Last but not least the 

third part provides a qualitative analysis of the performance of the new core. It’s 

worth stressing that a quantitative analysis still needs to be conducted to properly 

characterize the performance of the new core.  

4.1    AEMB Architecture  

The ISA of AEMB is pretty much the same ISA for the Microblaze EDK 6.3. 

Instructions are all 32 bits and they come in two types. Type A have two source 

registers, A & B, and a destination register, D. Type B has one source register, one 

destination register and a 16 bit immediate value. The Immediate value can be sign 

extended to 32 bits or the top 16 bits can be supplied from the immediate instruction 

to create a 32 bit value. Internally, AEMB groups the instructions into the following 

types; Arithmetic, Multiply, Barrel Shift, Return, Conditional and Unconditional 

Branches, Immediate, Load and Store and Get/Put instructions. While Microblaze 

uses the GET instruction to access its Fast Simplex Link, FSL, AEMB uses it to 

access its accelerator bus. 

4.1.1    Memory Buses  

AEMB uses Wishbone bus for all of its interfaces with the outside world. It has three 

buses each dedicated for interfacing with one of the following; instruction memory, 
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data memory and accelerators. I/O devices can be memory mapped through the data 

bus. 

AEMB interfaces with the instruction memory through the module IWBIF and uses 

an instruction cache; ICHE. In edk63 version of AEMB, this cache can store 512 

words (32 bits per word). It keeps track of which instructions are in the cache through 

a look-up table. Each entry in this look-up table can keep track of the status of one 

cache line (16 words). The highest most 21 bits of an instruction address are used as a 

tag value saved in the look-up table. The next 5 bits are used to select a word in the 

look-up table. The status of a word is expressed by a single bit. First when an 

instruction is needed the processor looks it up in the cache. It loads it if there was an 

instruction hit. On misses, IWBIF fetches the instruction from memory. 

AEMB communicates with data memory and accelerator bus using the DWBIF and 

XSLIF respectively. In these interfaces, the wishbone signals are defined and the data 

coming in from wishbone is latched on. AEMB accesses the data memory only on 

Load or Store instructions. Unlike with the instruction interface, the wishbone cycle 

and strobe signals in the data interface are not connected to each other. There are 12 

instructions responsible for memory access. Half of them are load instructions that 

read data from memory and write it back to the destination register. The data read can 

be a word, half a word or a byte. The memory address can be calculated by adding 

two register together or a register and an immediate value. The store instructions 

write data from a register to the memory and they come with the same options as the 

load instructions. 

The Accelerator bus is accessed on Get and Put instructions. AEMB only uses the 

blocking instructions which freeze the pipeline until a transaction is complete with the 

accelerator and doesn’t put a limit on the number of cycles that this takes. Those 

instructions specify the address of the accelerator to be read as an immediate value 

and they have a bit to specify whether the register targeted at the device is a 

control/status or data register. 

4.1.2    Pipeline 

AEMB creates its internal clock, reset and flag interrupts and the signal that switches 

between active threads, GPHA, in the PIPE module. 
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There exists 4 special purpose registers. Those are Program Counter (PC), Machine 

Status Register (MSR) and two more registers that contain the exception status and 

address (ESR & EAR). While all 4 registers can be read, only the MSR can be edited 

by the user. There exists three instructions to write to the MSR, one copies the 

content of the register to it and the other two set or clear bits from the MSR lower half 

depending on the values of an immediate value. One instruction exists to read any of 

the 4 special purpose registers and store their content into the destination register. 

Instruction decoding takes place in the CTRL module. The OPCODE is decoded to 

identify the type of instruction and this information is forwarded to the rest of the 

processor. Addresses of operand and destination registers are obtained from the 

instruction word and saved into registers to free up the pipeline for the coming 

instruction. Furthermore, control signals for forwarding the operands or the 

destination are created in this module and if any forwarding is needed for those data 

to be used in the next cycle then it takes place in this module. 

AEMB uses a register file that contains 64 general purpose registers. This is double 

the number of registers used in the Microblaze. This is because each 32 registers are 

used for one thread. The GPHA signal is used as the MSB of the address of the 

registers to determine which thread is currently active. 

4.1.3    Arithmetic Logical Unit 

The execution unit contains an integer unit, a multiplier and a barrel shifter. The 

integer unit handles addition, subtraction, logical operations and one bit shifting 

either logically or arithmetically.  

AEMB arithmetic instructions come in a variety. Addition and subtraction can be 

carried by 16 instruction each of which giving the user a special choice of options. 

Subtraction is done by adding the 2′s complement of operand A to the other operand. 

The operands can be either two registers or a register and an immediate value 

provided by the instruction. Furthermore, the instructions have the option to add the 

value of the carry bit into the operation. An interesting ability is to keep the current 

carry flag unaltered. If the K bit is set, the carry bit is not altered by the operation 

otherwise the carry bit receives the carry out value. An interesting compare 

instruction exists that subtracts operand A from B and then sets the MSB of the 

destination register if operand A is bigger than B or clears it otherwise. There exists 
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two variations of this compare instruction, one can consider A & B to be signed 

numbers and the other considers them unsigned numbers. 

AEMB can perform 4 logical instructions; OR, AND, XOR and AND Complement. 8 

instructions exist for those logical operations; 4 of which take in two registers as 

operands and the other four use one register and an immediate value. 

As for shifting, 3 variations exist for a right shift. Basically operand A is shifted to the 

right and place into the destination register. The carry bit of the MSR takes the value 

of the bit shifted out of A. The variations of shifting define the value of the MSB in 

the destination register. A logical shift clears this bit while an arithmetic shift extends 

the MSB of A into the MSB of the destination. Finally, a carry shift will place the 

carry bit into the MSB. 

AEMB has two Sign Extend instructions. It can extend a Byte or half a word of one 

register and place it in another. Barrel shifting has 6 different instructions. The 

instructions can shift to the right or to the left by a quantity specified in operand B or 

immediately in the instruction. Shifting can be logical or arithmetic similar to the shift 

instruction. However arithmetic shifting is only an option when shifting to the right. 

As for multiplication, two instructions allow multiplication of a register with a 

register or an immediate value. The value stored in the destination register is the 

lower word of the multiplication result. Multiplication and Barrel shifting are the only 

arithmetic instructions that take more than 2 cycles to execute. 

The execution unit considers any floating point instruction as an exception. 

Moreover, the integer unit contains the Machine Status Register (MSR). A major 

difference between the MSR of AEMB and the MicroBlaze is that bit 29 of AEMB 

MSR contains the current threading phase. 

4.1.4    Program Flow Control 

As for Program Flow Control, AEMB supports exceptions, one external hardware 

interrupt and the regular branching scheme. Exceptions in AEMB occur when internal 

errors are detected. Those include improperly aligned data. AEMB considers any 

floating point instruction as an exception. AEMB supports external interrupt through 

one interrupt channel.  
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Branching in AEMB mimics the branching scheme in Microblaze. Conditional 

branches are resolved at a special unit, the Branch Condition Check (BRCC) unit. If 

branches are not taken, the branch instruction has a latency of only one cycle. 

Moreover, AEMB supports a delay slot after branches. Branches with delay slots 

have a latency of 2 cycles while remaining branches have 3 cycle latency.  

Program flow instructions are the biggest family of instructions in the AEMB. 24 

instructions exist for conditional branching, 12 for unconditional branching and 4 

instructions for returning. Conditional branching compares the contents of register A 

against zero. All comparison variations exist. There is equal to zero, not equal, greater 

than or less than, greater than and equal to zero or less than or equal.  The address is 

calculated by adding either the content of register or an immediate value to the 

current PC value. Moreover, all conditional instructions have an option to include a 

delay slot after them. 

Unconditional branching comes in a combination of options. First, there is the option 

to branch and link where the content of the current PC is first copied to a register 

before branching. Second the option exists as to whether the branch target should be 

an increment of PC or an absolute value. Finally like conditional branches, the 

presence of a delay slot is also an option. One special branch instruction is a break 

instruction which manipulate the break in progress bit in the MSR. 

Return instructions all calculate the value of the target address by adding an 

immediate to the contents of a register. However, the difference between the 4 

instructions is in the way they manipulate the bits of the MSR. There exists return 

from exception, interrupt, break or subroutine. 

4.1.5    Data and Control Hazards 

AEMB has two kinds of hazards, branching and forwarding. When a hazard occurs, 

the control unit inserts a NOP into the pipeline. Branch hazards occur when a branch 

with no delay slot is taken. Forwarding hazards occur on data dependencies between 

instructions.  

Data dependencies are handled through forwarding and bubble insertion when 

forwarding is not possible.  
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There are instructions which don’t write back to the register and hence their following 

instructions can never have a data dependence on them. Those instructions are 

conditional branches, unconditional branches except when a link is required, return 

instructions, store instructions, PUT instructions, move to special purpose register and 

the immediate instruction. 

Adding to that, there are three instructions that don’t access the registry file and hence 

can’t depend on their previous instructions. Those are the GET instructions, move 

from special purpose register and finally the immediate instruction. 

There are instructions that have a latency of 2 cycles and hence can’t accommodate 

forwarding. Those are multiplication, barrel shifting, LOAD and GET instructions 

and move from special purpose register. When these instructions are followed by an 

instruction that depends on them a bubble is inserted in the pipeline by not allowing a 

write back to the register file and the depending instruction is loaded once more into 

the pipeline to give the preceding instruction a chance to retire. 

Thus forwarding in AEMB is done only with arithmetic, logical and shift instructions 

i.e. instructions that go through the ALU and have a latency of only one cycle which 

is enough to forward their data to the following instruction before they reach the 

execution stage. 

4.1.6    Original Threading Model  

In AEMB, each thread has a separate set of register file and hence no dependencies 

are expected to occur between threads. More importantly, AEMB has two modes of 

accessing the threads. The first is to issue the same instruction twice in consecutive 

clock cycles, that is, to use the same instruction to write to both threads. This is used 

in the beginning of the program before the flow is split between the two threads to 

setup data memory and the register files for both threads. The second mode takes 

place after the program is split into two threads and instructions are interleaved in a 

fine manner. 

The splitting of threads takes place in the program init function and it depends on the 

4th bit in the MSR; the MUTEX bit. When AEMB attempts to set the MUTEX bit it 

is set only for one thread but not the other as the instruction path for MSRSET has an 

extra register in the pipeline which delays its write back by one cycle. Thus the write 
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back takes place only to one thread. After this instruction is executed a branch 

instruction is used to check the register where it was written and hence the branch 

condition turns true for only one thread and the two threads split from each other and 

are no longer running the same instructions.  

The way the threads are utilized as explained before makes it not necessary for the 

original AEMB to resolve data dependencies between back to back instructions as no 

back to back instructions will exist from the same thread. Data dependencies that 

can’t be resolved will only stall the pipeline for one clock cycle. However, whenever 

a branch instruction occurs the pipeline needs to be stalled once until the branch 

target is calculated.  

Thus, it can be clearly observed that AEMB uses it’s threading model to cover up for 

back to back data dependencies and reduce necessary stalls of the pipeline. The 

processor is kept busy by fetching an instruction from another thread instead of 

stalling till the current instruction resolves. Those covered up dependencies save on 

chip area as not much forwarding is needed.  

4.2    Modified AEMB Core 

The key modification is replacing the fine grained model by a coarse grained model. 

The rest of the modifications are adjustments to different parts of the core to properly 

function with the new threading model.  

The Coarse grained model of AEMB changes thread whenever a branch instruction, 

be it conditional, unconditional or a return is inserted into the pipeline. The main 

motivation behind this choice is to cover up the stalls that AEMB need to insert 

whenever a branch instruction is taken.  

In the initial stages of the program both threads begin at address zero. The first 

address starts execution and once it hits a branch the core switches to the other thread 

which starts at address zero as well. This way the two threads will be executing the 

same initial instructions necessary to initialize the core until threading split takes 

place. The splitting mechanism is exactly the same for the original core. It causes a 

branch instruction to evaluate true for one thread but not the other hence setting the 

threads on different paths. 

The address unit was modified to support two necessary abilities, first being able to 

fetch the next instruction straight away after the current one with no gap between and 
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branches need to be detected as early as the instruction is fetched to enable the next 

cycle to switch threads right away.  

The effect of the new threading model is very crucial on branch instructions. One way 

to think of it is that the new core branches to another thread whenever a branch 

instruction takes place. It remains in the other thread till a branch instruction is 

encountered and then it returns to the first thread precisely at the branch target where 

it was supposed to go. This way the pipeline is given a chance to resolve the branch 

target and hence no stalls are required except in two cases; if two branch instructions 

exist back to back or if two branch instructions have one instruction gap between 

them and the first branch instruction has no delay slot. The first case should be 

observed rarely in programs.  

As for data hazards, the new model will cause instructions from the same thread to 

enter the pipeline in proper order without any gap between them like the previous fine 

grained model. Thus several changes took place to resolve those data hazards. First 

forwarding from the ALU unit back to the decode stage need to be implemented. A 

new forwarding path was established and the circuit to detect back to back hazards 

was added. Moreover, for instructions that can’t be forwarded dependencies with two 

instruction gap need to be resolved. In this case stalling is utilized to resemble the 

way the original AEMB solves those dependencies.  

4.3    Performance  

The new changes improved some part of the processor, handling control hazards and 

may have a negative effect on other parts, data hazards particularly those that can’t be 

resolved by forwarding. The overall performance of the modified core will depend on 

which of the affected cases are more common to occur in test benches and hence in 

programs. This is a clear manifestation of the design principle that states that 

optimization reflects only on the overall performance is affected by how often the 

optimized cases occur. To properly measure that, the two cores need to run several 

suitable benchmarks and based on the result a conclusion can be drawn on the 

efficiency of this modification. It is unfortunate that such characterization is yet to be 

executed and hence a quantitative analysis can’t be presented in this dissertation.  
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Table 1 reflects the Area of both AEMB cores. Synthesis was done using Xilinx ISE 

14.4 for a Spartan 6 FPGA. It is clear that the modifications required a very small 

number of registers on top of the original AEMB core. However, a significant 

increase in the number of used LUTs. The number of LUTs used by the modified core 

is almost double the number of LUTs used by the original core. This is due to the 

hazard detection circuit that needs to be added for two extra stages of the pipeline. It 

is worth mentioning that the current modifications are simply a first version which 

can be optimized to decrease the number of inferred LUTs.  

 

Point of Comparison  Original AEMB Core Modified AEMB Core 

Slice Registers 953 959 

Slice LUTs 1221 2376 

Table 1, Consumed Area after Synthesis 
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CHAPTER 5                                                                      

CONCLUSION 

AEMB, an open source soft microprocessor core, needs modifications to improve its 

threading model. Currently, it is using a fine-grained threading model which switches 

between threads every clock cycle. This model is not efficient for running single 

threaded programs. Coarse-grained model can be helpful in optimizing the 

performance of AEMB for running single threaded programs. The process to 

implement those changes to produce a new AEMB starts with designing, coding and 

finally benchmarking. So far, AEMB has been thoroughly studied and the necessary 

planning for the new core has been conducted and all parts that need to be changed 

have been identified. Currently the design is in the coding stage and will be entering 

the final verification and testing stage soon.  
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