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ABSTRACT 

Principal component analysis (PCA) is a well-known data dimensionality 

reduction technique that has been used to detect faults during the operation of 

industrial processes. A modification to this is the Dynamic Principal Component 

Analysis (DPCA) which takes into account serial correlations for rapid sampling and 

detection of faults. This method, although being studied for its fault detection 

capabilities, has not yet been widely tested and proved to detect a particular type of 

faults called structural faults. In this paper, a dynamic model of a Continuous Stirred 

Tank Reactor (CSTR) is built using the MATLAB software and used to generate a 

sample of base data and another sample of data with structural faults present. Further 

on in this project, the two data sets would be compared and tested using T2-statistics 

and Q-statistics method to identify the faults occurring in the system and study the 

difference in performances of these methods. Q-statistics which quantifies variations 

in the residual space is more sensitive but less robust to the faults than the T2-

statistics quantifying the variations in the score or state space. Faster fault detection 

via DPCA is also achieved in T2-statistics whereas results from Q-statistics are 

inconclusive. 
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CHAPTER 1 

INTRODUCTION 

This chapter provides a basic introduction of the project by giving a brief abstract of 

the project, its problem statement and finally highlighting the objectives outlined for 

the project.  

1.1. BACKGROUND 

In the recent years, there has been an increase in awareness towards to quality 

of manufactured goods as to producing higher quality products and maintaining a 

low rejection rate while under compliance with stricter safety and environmental 

regulations. To cope with this, process monitoring and control becomes of utmost 

importance. Standard process controllers can only detect and correct certain 

disturbances occurring in the process but however, are unable to handle other 

changes to the process. These changes, known as faults, are unpermitted deviations 

to the characteristic properties of the process. Therefore, detecting and subsequently 

correcting these faults are of major importance. 

 

Fault detection, along with fault identification, fault diagnosis and process 

recovery form the basis of process monitoring. The goal of process monitoring is to 

ensure the monitored process stays within desired conditions by recognising 

anomalies in the process behaviour and subsequently correcting it (2). Fault detection 

has been the object of study for a long time with many scholarly articles on fault 

detection and diagnosis. Its importance is seen when detecting a fault and correcting 

it in time while the system is operating avoids abnormal events and losses, thus 

keeping the process in desired conditions and avoiding any major system 

breakdowns. There are two main methods for fault detection, namely, model based 

and data driven. In model based fault detections one has to know the exact process 

model or the mathematical model of the system. However for certain industrial 



 
 

4 
 

processes contain many process variables and input parameters, it would be very 

difficult to know the exact process model of such systems, and in such cases data 

driven or statistical techniques can be used to detect and diagnose the fault. 

 

 

 

 

 
Figure 1: Process monitoring loop 

 

This project studies such data driven fault detection techniques occurring in 

industrial process systems. The particular type of fault being studied are structural 

faults. In large industrial process systems, a wide array of sensors and transmitters 

collect real-time data of the process. This data is monitored to identify and determine 

any abnormalities in the process behaviour known as faults, which may arise from 

factors such as equipment wear and tear, process parameter changes and equipment 

failure (4). In this project, the author applies several multivariate statistical methods 

to compress and reduce the dimensionality of the data and study the accuracies of 

fault detection. 

1.2. PROBLEM STATEMENT 

In recent years, there has been concerted effort throughout the industry 

improve upon production efficiency and quality. At the heart of this are process 

monitoring and diagnosis procedures such as fault detection (1). Early detection of 

these faults may provide invaluable warning on emerging problems, with appropriate 

actions taken to avoid serious process upsets (2). Commonly used methods for 

detecting faults are multivariate statistical methods with the most popular one being 

Principal Component Analysis (PCA), which is a data dimensionality reduction 

technique. An expansion of PCA to handle process dynamics is the Dynamic 

Principal Component Analysis (DPCA). Accuracies of fault detection using PCA and 
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DPCA methods were studied in various literatures, however, majority of it address 

only on the accuracy of the variable fault detection. Variable faults can be easily 

detected via   Due to this; further research is required to study the accuracies of 

structural fault detection. 

1.3. OBJECTIVES 

The two main objectives the author has identified for carrying out this project 

are such as the following: 

 

1. To develop a Continuous Stirred Tank Reactor (CSTR) computer simulation 

model and generate structural faults in the simulation. 

 

2. To investigate the performance of fault detection accuracies using the DPCA 

as compared to PCA with T2 statistics and Q statistics techniques. 

1.4. SCOPE OF STUDY 

The scopes of studies covered by the author in this particular project 

pertaining to the objectives mentioned previously are as per following: 

 

1. Studying and modelling a dynamic computer simulation of a CSTR to 

generate faults. 

 

2. Studying the application of DPCA and PCA fault detection methods with 

differing statistical techniques.  
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CHAPTER 2 

LITERATURE REVIEW 

In this chapter, the author discusses the themes addressed in this project such as the 

types of faults studied and the fault detection methods applied, with reference to 

available literature and past researches. The final study will be based upon the 

literature discussed in this chapter. 

2.1. TYPES OF PROCESS FAULTS 

Disturbances or faults in a process being monitored can be broken down into 

two main types, namely variable faults and structural faults. A variable fault or 

change is a basic form of disturbance observed as step changes or exponential 

variations usually occurring in the variables governing the process itself. Such 

variable faults include, temperatures, pressures and feed flowrates. Variable faults 

are rather easily detectable via univariate process monitoring methods. 

 

Structural faults occur in a process when the main characteristics governing 

the process changes or deviates from the ideal operating conditions. Examples of 

structural faults in a process include drift in reaction kinetics due to catalyst 

deactivation or a loss in heat transfer efficiency caused by fouling within the heat 

exchanger. Structural faults are rather difficult to detect compared to variable faults 

and this is the type of faults being studied in this project.  

2.2. STATISTICAL PROCESS CONTROL 

Statistical process control (SPC) employs statistical methods to study the data 

collected from processes for any changes. SPC can be broken down into univariate 

methods and multivariate methods. 
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Univariate methods generally involve the monitoring of a single process 

variable at a given time to compare its value against lower and upper control limits. 

Univariate monitoring methods can be used to determine the threshold for each 

observation variable where these thresholds define the boundary for in-controlled 

operations and a violation of these limit with on-line data would indicate a fault has 

occurred (2). 

 

The application of univariate process monitoring methods breaks down when 

applied to larger multivariable process systems (8). Multivariate process monitoring 

methods address this limitation by considering all the data simultaneously and 

extracting information on the directionality of the variations of one variable relative 

to the other. This technique allows the efficient handling of the massive amounts of 

data collected in the plant (6). 

2.3. PRINCIPAL COMPONENT ANALYSIS (PCA) 

Principal Component Analysis (PCA) is an optimal data dimensionality 

reduction technique which is able to capture the maximum variance present in the 

data set (4). It is able to do this by determining a set of orthogonal vectors called 

loading vectors. These loading vectors are ordered by the amount of variance present 

in the loading vector directions. The use of PCA as a fault detection method is 

motivated by these factors: 

 

1. PCA produces lower dimensional representations of the data set, 

transforming it into a new set of generalized independent variables called 

principle components and therefore, improve the proficiency of detecting and 

diagnosing faults. 

 

2. The structure derived from PCA aids in identifying the variables causing the 

fault and/or the variables most affected by the fault. 

 

3. PCA can separate the observation space into a subspace capturing the 

systematic trends of the process and a subspace containing essentially the 

random noise 
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Figure 2: PCA analysis of a sample data (normal (GREEN) and faulty (BLUE) operating conditions) 

 

2.2.1. Loading Vectors 

Given for n observations of m measurement variables organised into data 

matrix X, the loading vectors are obtained by computing the singularities of the 

optimisation problem (4). 

max
௩ஷ

ݒ்்ܺݒ
ݒ்ݒ  

 Eq. (2.1) 

where v ∈ Rm. The stationary points of Eq. (1) can be computed using Singular 

Value Decomposition (SVD) 
1

√݊ − 1
X = ்ܸߑܷ  

 Eq. (2.2) 

where U ∈ Rn x n and V ∈ Rm x m are unitary matrices and Σ ∈ Rn x m is the matrix 

containing the non-negative singular values. The loading vectors are the orthonormal 

column vectors in the matrix V, and the variance of the training set projected along 

the i th column of V is equal to σi
2. 

 

This equation is equivalent to solving an eigenvalue decomposition of the covariance 

matrix S of the data set: 

ܵ =
1

݊ − 1ܺ
்ܺ =  ்ܸ߉ܸ

 Eq. (2.3) 

where V is the orthogonal and Λ is the diagonal and the loading matrix P is then built 

from the columns of V. 
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The data set is then projected into a lower dimensional score matrix T: 

ܶ = ܺܲ 

 Eq. (2.4) 

 

2.2.2. Fault Detection 

T2 statistic is normally used to detect faults for multivariate process system. 

For an observation vector x and assuming that Λ=ΣTΣ is invertible, the T2 statistic 

can be obtained from the PCA representation as such (4): 

ܶଶ =  ݔଵ்ܸି(ߑ்ߑ)்ܸݔ

 Eq. (2.5) 

By including the matrix P the loading vectors associated with the a largest singular 

values, the T2 statistic is then computed as: 

ܶଶ =  ݔିଶ்ܲߑ்ܸܲݔ

 Eq. (2.6) 

where, Σa contains the first a rows and columns of Σ, and x is an observation vector 

of dimension m.  

 

The T2 statistic threshold is: 

ఈܶ
ଶ = ߯ఈଶ(ܽ) 

 Eq. (2.7) 

and for a normalised data set, the T2 statistic threshold is derived as: 

 

ఈܶ
ଶ =

(݊ଶ − 1)ܽ
݊(݊ − ܽ) ,ܽ)ఈܨ ݊ − ܽ) 

 Eq. (2.8) 

where Fα(a, n - a) is the upper 100α% critical point of the F-distribution with a and 

n - a degrees of freedom. The calculated threshold would represent an elliptical 

confidence region. Any observation vector outside this region would register as a 

fault. The T2 statistic can be overly sensitive to inaccuracies in the PCA due to 

smaller singular values. 
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For robust monitoring of the portion of the measurement space corresponding 

to the m – a smallest singular values, Q statistic would be of better use: 

ܳ = ,ݎ்ݎ ݎ = (1 −  ݔ(்ܲܲ

 Eq. (2.9) 

where r is the residual vector, a projection of observation x into residual space. The 

Q statistic is not overly sensitive as the T2 statistic for it measures the total sum of 

variations in the residual space and not directly along each loading vector (4). 

 

The threshold for Q statistic can be approximated as: 

ܳ = ଵߠ ቈ
ℎܥఈඥ2ߠଶ

ଵߠ
+ 1 +

ଶℎ(ℎߠ − 1)
ଵଶߠ



ଵ
బൗ

 

 Eq. (2.10) 

where 

ߠ =  ଶߪ


ୀାଵ

 

ℎ = 1 −
ଷߠଵߠ2
ଶଶߠ3

 

and cα is the normal deviate which corresponds to (1- α) percentile. The Q statistic is 

able to measure the random variations within a process such as noise and a violation 

of the threshold would indicate a significant change in the random noise.  

 

The T2 statistic and the Q statistic along with their appropriate thresholds 

detect different types of faults and advantages of both these methods can be utilized 

by employing the two measurements together. 
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2.4. DYNAMIC PRINCIPAL COMPONENT ANALYSIS (DPCA) 

PCA monitoring methods assume that observations at any time instant are 

independent to observations of previous time instances. This is only valid for 

chemical process systems of long sampling intervals. For shorter sampling intervals 

and faster fault detection, the PCA methods are extended to take into account the 

serial correlations, by augmenting each observation vector with the previous l 

observations and stacking the data matrix as following (4): 

 

 
 Eq. (2.11) 

where xT
t is the m-dimensional observation vector in the training set at time instance 

t. By performing PCA on the data matrix in Eq. (2.11), a multivariate autoregressive 

(AR) model is extracted from the data. The Q statistic is then the squared prediction 

error of the model. If enough lags l are included in the data matrix, the Q statistic 

becomes statistically independent between time instances, and the threshold Eq. 

(2.10) is would be justified. This approach is known as dynamic PCA (DPCA). 

 

To put this in perspective, consider the following case where an AR process 

is defined as (11): 

)1()1(8.0)(  kukzkz  

 

If using static PCA method, 
Tkukz ])()([1 x  

 

where u is a coloured noise sample with 1000 samples generated as follows: 

)1()1(7.0)(  kwkuku  

 

and w is a white noise with variance 1. The SVD of the covariance matrix of the data 

matrix X1(k) without any lagged variables is: 
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Σ1 = 







352.10
047.21

,   V1 = 






 
985.0175.0
175.0985.0

 

After autoscaling, 

Σ1 = 







458.00
0542.1

 

 

It can be seen that there is no relation between the variables due to the 

absence of singular values equal to zero. To apply dynamic PCA to this case, the data 

vector is modified to: 
Tkukzkukz ])1()1()()([2 x  

 

By applying SVD, 

Σ2 = 



















0
709.0

599.2
37.42

 

V2 = 

























615.0506.0587.0145.0
492.0274.0452.0692.0
0766.0633.0110.0
615.0287.0225.0699.0

 

 

If the data is auto-scaled, 

Σ2 = 



















0
285.0

751.0
967.2

 

 

The zero singular value present in the matrix suggests that there is a dynamic 

relation between the variables revealed by the fourth singular vector: 

)1(615.0)(0)1(492.0)(615.0  kukukzkz  

 

Rearranging this yields 

)1()1(8.0)(  kukzkz  
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CHAPTER 3 

METHODOLOGY 

This chapter discusses the methods and procedures suggested to carry out this 

project. A Gantt chart is attached at the end of the chapter, highlighting the progress 

of the project. 

3.1. CSTR SIMULATION MODEL 

The continuous stirred tank reactor (CSTR) is a common reactor unit used in 

industrial process. It is a tank type reactor in which the contents are well stirred and it 

runs with continuous flow of reactants as well as products (5). The CSTR normally 

runs at a steady state condition with a uniform distribution of concentration and 

temperature throughout the reactor, thus making it easier to model as compared to 

other forms of reactors. 

 

 
Figure 3: Schematic representation of CSTR 

 

To develop a mathematical model of the CSTR in MATLAB, several 

assumptions were made. The assumptions are as following (5): 

1. The heat losses from the process are negligible (well-insulated). 

2. The mixture density and heat capacity are assumed constant. 

3. There are no variations in concentration, temperature, or reaction rate 

throughout the reactor as it is perfectly mixed. 

4. The exit stream has the same concentration and temperature as the entire 

reactor liquid. 

5. The overall heat transfer coefficient is assumed constant. 
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6. No energy balance around the jacket is considered. Indeed, the jacket 

temperature can directly be manipulated in order to control the desired reactor 

temperature. 

7. The reactor is a flat-bottomed vertical cylinder and the jacket is around the 

outside and the bottom. 

The CSTR simulation model in MATLAB will be built using these 

predefined parameters and operating conditions (5): 

 
Table 1: Default operating parameters 

Operating Parameter Symbol Value 

Cross-sectional area of the reactor, ft2 Ac 10.36 

Concentration of reactant A in the exit stream, 

lb-mol/ft3 

CA 
0.05 

Concentration of A in the feed stream, lb-mol/ft 3 CA,f 0.9 

Diameter of the cylindrical reactor, ft d 3.6319 

Activation energy, BTU/ lb-mol E 30000 

Volumetric feed flow rate, ft3/h Fi 20 

Height of the reactor liquid, ft h 3.8610 

Heat of reaction, BTU/ lb-mol -∆Hr -30000 

Universal gas constant, BTU/ (lb-mol)(R) R 1.987 

Frequency factor, h–1 α 7.08 × 1010 

Multiplication of mixture density and heat capacity, 

BTU/(ft3)(R) 

ρCP 
37.5 

Reactor temperature, R T 650 

Feed temperature, R Tf 600 

Jacket temperature, R Tj 70.0 

Overall heat transfer coefficient, BTU/(ft2)(R)(h) Ui 150 

 

3.1.1. Model Development 

Total Continuity Equation: 

Mass inflow rate = Fi 

Mass outflow rate = Fo 
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Rate of mass accumulation within reactor = 
dt

hAd
dt

Vd c )()( 
  

 Eq. (3.1) 

Ac is cross-sectional area of reactor and h is the height of the reactor liquid. 

 

oi

oi

FF
dt
dV

FF
dt

Vd



  )(

 

 Eq. (3.2) 

The reactor holdup, V and the exit flow rate Fo can be related as: 

VFo   

 

For this CSTR, hAF co 10   Eq. (3.3) 

 

Combining equations 3.2 and 3.3: 

cc

i

A
h

A
F

dt
dh 10

   Eq. (3.3) 

 

Component Continuity Equation: 

Mass inflow rate component A  = FiCAf, 

Mass outflow rate component A  = FoCA, 

Rate of generation of component A  = – (–rA)V 

Rate of accumulation of component A within the reactor = 
dt

VCd A )(
 

where –rA is the rate of consumption of chemical species A. The basic balance 

equation then becomes, 

 

 VrCFCF
dt

dC
V

dt
dVC

VrCFCF
dt
VCd

AAoAfi
A

A

AAoAfi
A




)(

 

 Eq. (3.4) 

Substituting equation 3.2 into 3.4 and simplifying, 

   AAAf
c

iA rCC
hA

F
dt

dC
   Eq. (3.5) 
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For the given first-order reaction,  

A

AA

C
RT

E
kCr







 



exp
 

 Eq. (3.6) 

Combining equations 3.5 and 3.6, 

  AAAf
c

iA C
RT

ECC
hA

F
dt

dC






  exp   Eq. (3.7) 

Energy Balance Equation: 

Energy input rate = FiCpTf 

Energy output rate = FoCpT + UiAh(T-Tj) 

Energy added by exothermic reaction   AC
RT

EVH 





  exp  

Energy accumulation rate: 

      Ajhipofpi
p C

RT
EVHTTAUTCFTCF

dt
TCVd







  exp


  Eq. (3.8) 

 

Using equation 3.2 and further simplifying: 

   j
cp

hi
A

p
f

c

i TT
hAC

AU
C

RT
E

C
HTT

hA
F

dt
dT







 










 






exp   Eq. (3.9) 

And therefore, this is the final form of the energy balance equation. 
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3.2. SIMULATION OF FAULTS 

The developed CSTR simulation model will be used to generate faults to test 

the detection accuracies of the PCA, DPCA and SPE methods. These faults, 

mentioned earlier are structural and not variable faults. Structural faults are the ones 

occurring in a process due to alteration of the main characteristics of the process. The 

structural faults simulated in this project would include: 

1. Drift in reaction kinetics. 

 e.g. Activation energy 

 Drift ranges, 1%, 5% and 20% 

A data set would then be generated using the developed model which is 

subjected to these faults and the data studied using the PCA, DPCA and SPE to 

detect the presence of any such faults. The results from each fault detection method 

would then be compared to investigate the accuracies of the respective methods. 
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3.3. PROJECT TOOLS 

The primary tool used for this project is the MATLAB software, specifically 

the SIMULINK simulation environment. MATLAB, (MATrix LABoratory), is a 

high level computing software for numerical computations and graphics developed 

by MathWorks. MATLAB is primarily designed for matrix computations such as 

solving linear systems, computing eigenvalues and eigenvectors and etc. It even has 

its own programming language which can be used to program specific functions to 

expand the capabilities and interface with other programmes written in other 

programming languages. The SIMULINK simulation environment is a separate 

feature of MATLAB which is a data graphical programming tool. It is widely used in 

control theory as it allows the user to model, simulate and analyse dynamic systems 

such as the CSTR model as mentioned above. 

 

 
Figure 4: MATLAB logo (top), SIMULINK logo (left), wind turbine simulation in SIMULINK (right) 

 



 

19 
 

3.4. FYP II GANTT CHART 
Table 2: Gantt chart 

No. Activities Weeks 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 Project Work Continuation    
             

2 Progress Report Submission                

3 Project Work Continuation    
             

4 Pre-SEDEX    
             

5 Draft Final Report Submission    
             

6 Dissertation Submission  
(Soft Bound)                

7 Technical Paper Submission                

8 Viva    
             

9 Dissertation Submission 
(Hard Bound)                

 
 

Milestones:  
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3.5. PROJECT FLOWCHART 

Figure 5: Project Flowchart

Problem & 
objective 

identification

Literature 
review

Formulation of 
methodology

Computer 
model building

Model 
testing

Generate 
sample data

Fault testing Analysis of 
results
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CHAPTER 4 

RESULTS AND DISCUSSIONS 

This chapter compiles the data collected up to this date from the simulations 

conducted and the subsequent analysis of the data. This is followed by the findings 

regarding the project based on the engineering and technical review done on the 

second chapter. 

4.1. SIMULINK MODEL 

The diagram shows the computer model built using Simulink for the dynamic 

simulation of a CSTR using the given parameters. This model is then used to 

generate a sample set of baseline data (without faults) to be tested and used as 

benchmark later on. 

 

 
Figure 6: Simulink Model 
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Based on the model, there are 3 main inputs, namely feed flowrate, 

temperature and concentration denoted as Fin, Tin and Ca,in. To simulate a non-ideal 

operating condition, disturbances are added such as the sine wave function and 

random number function for measurement noise. The 3 main outputs which are 

recorded are the product flowrate, temperature and concentration denoted as F, T and 

Ca.  

Initially, a base data set without any faults present is generated. It is done by 

running the simulation using exactly the default operating parameters shown in Table 

1. This base data set is the one used to compute the loading vectors for both PCA and 

DPCA methods. The loading vector will then be incorporated with the fault data set. 

However, for the fault data set, the Simulink model is slightly modified. A ramp tool 

is added to the model as an input to simulate the drifting increase in activation energy 

at 1%, 5% and 20%. Therefore, 3 fault data sets corresponding to the different drift 

levels are generated. Both the base and fault data set consist of n = 5000 

observations. 

 

 
Figure 7: Ramp input 
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4.2. BASE DATA 

 
Figure 8: Product flowrate base data 

 

 
Figure 9: Product temperature base data 
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Figure 10: Product concentration base data 

 
The data obtained in the graphs shown above are the sample base data set 

generated without the structural faults. The effects of noise is evident in all the 

graphs with fluctuating values along the plot but the sine wave disturbances can only 

be clearly seen in the product flowrate graph. The noise present in the data simulates 

measurement noise. 

 

This base data set then normalized to 0 mean and unit variance and becomes 

the input for the MATLAB function princomp, which calculates the loading matrix 

(V), eigenvalues (Λ) and the score matrix (T). The obtained values are: 

 0675.03170.06155.2
7411.03067.05973.0
6646.04618.05875.0
0956.08323.05460.0






















V  

To optimally capture the variations of the data while minimizing the effects 

of noise, only the loading vectors corresponding to the a largest singular values are 

retained in the loading matrix, in this case, 2. Therefore, the new loading matrix, P 

is: 
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4.3. FAULT DATA 

The graphs below show the fault data generated from the Simulink model at 1%, 5% and 20% drifts. 

 

Figure 11: Product flowrate fault data 

 
Figure 12: Product temperature fault data 
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Figure 13: Product concentration fault data 
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As can be seen in the fault data, the variation among flowrate and 

temperature for different fault levels are almost non-existent but stark differences can 

be seen among concentration data. This could be due to the fact that at higher 

activation energies, reaction would not proceed fast and thereby consuming lesser 

reactants. 

4.4. STATISTICAL ANALYSIS 

4.4.1. PCA and DPCA 

With the fault data generated, 3 new data arrays for the 3 levels of drift are 

constructed in the following configuration: 

 
Table 3: PCA configuration 

Column 1 Column 2 Column 3 

F T Ca 

 

This array is then autoscaled according to the mean and variances of the base 

data. PCA score of the autoscaled array now is calculated using Eq.(2.4) and the 

loading matrix P. For the DPCA scores, the process is repeated but this time with a 

lag of 2 units as shown below: 

 
Table 4: DPCA configuration 

C1 C2 C3 C4 C5 C6 C7 C8 C9 

F(1x1) F(1x2) F(1x3) T(1x1) T(1x2) T(1x3) Ca(1x1) Ca(1x2) Ca(1x3) 

4.4.2. T2-statistics and Q-statistics 

The PCA and DPCA data are first tested using T2-statistics. The thresholds 

calculated using Eq. (2.8) is shown in the table below: 

 
Parameter PCA DPCA 

a 2 3 

n 5000 5000 

Tα
2 9.22 11.36 

The graphs in the following page show the PCA and DPCA T2-statistics for 

fault detection. 
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Figure 14: PCA T2-statistics for fault detection 

 

 
Figure 15: DPCA T2-statistics for fault detection 
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To model using Q-statistics, the residual matrix of the data is required. This 

residual matrix captures the variations beyond the a loading vectors. The residual 

matrix for PCA and DPCA is obtained from Eq.(2.9). The threshold for Q-statistics 

is obtained from Eq.(2.10). 

 

Case 
Thresholds, Qα 

PCA DPCA 

1% 10.78 16.33 

5% 440.48 499.24 

20% 20144.28 22181.29 

 

The graphs in the following page show the PCA and DPCA Q-statistics for 

fault detection. 
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Figure 16: PCA Q-Statistics for fault detection 

 

 
Figure 17: DPCA Q-Statistics for fault detection 
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From the T2-statistics graphs shown above, it can be seen that there are 

observations above the threshold occurring earlier in DPCA compared to PCA. This 

occurrence indicates fault detection and this fault detection happening earlier in 

DPCA shows that DPCA detects the fault earlier compared to PCA. 

 

However, for the Q-statistics graphs, it is difficult to notice the difference in 

first detection times for PCA and DPCA. Further analysis of both sets of the results 

is shown in the tables below. 

 
Table 5: First detection times (hours) from T2-statistics 

Case PCA DPCA 

1% 4.8 3.2 

5% 30.7 17.1 

20% 32.9 20.1 

 
Table 6: First detection times (hours) from Q-statistics 

Case PCA DPCA 

1% 42.63 0.09 

5% 40.65 41.19 

20% 39.6 37.42 
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CHAPTER 5 

CONCLUSION AND RECOMMENDATION  

Based on the simulations conducted and the statistical methods utilised, it can 

be concluded that DPCA is more effective and faster fault detecting technique 

compared to PCA but only marginally. 

 

This can be seen in the T2-statistics where DPCA has an earlier first detection 

time compared to PCA for all three tested cases. From the Q-statistic method, which 

was used for the quantifying variations in the residual space, earlier detection times 

for DPCA are seen for cases of 1% and 20% drift but not in 5% drift leading to 

inconclusive result and therefore will require further study. 

 

In addition to this, the two main objectives highlighted at the beginning of 

this project, which are: 

 

 To develop a Continuous Stirred Tank Reactor (CSTR) computer simulation 

model and generate structural faults in the simulation. 

 To investigate the performance of fault detection accuracies using the DPCA 

as compared to PCA with T2- statistics and Q-statistics techniques. 

 

have been successfully accomplished. 
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